1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 */ 28 29 /* 30 * The objective of this program is to provide a DMU/ZAP/SPA stress test 31 * that runs entirely in userland, is easy to use, and easy to extend. 32 * 33 * The overall design of the ztest program is as follows: 34 * 35 * (1) For each major functional area (e.g. adding vdevs to a pool, 36 * creating and destroying datasets, reading and writing objects, etc) 37 * we have a simple routine to test that functionality. These 38 * individual routines do not have to do anything "stressful". 39 * 40 * (2) We turn these simple functionality tests into a stress test by 41 * running them all in parallel, with as many threads as desired, 42 * and spread across as many datasets, objects, and vdevs as desired. 43 * 44 * (3) While all this is happening, we inject faults into the pool to 45 * verify that self-healing data really works. 46 * 47 * (4) Every time we open a dataset, we change its checksum and compression 48 * functions. Thus even individual objects vary from block to block 49 * in which checksum they use and whether they're compressed. 50 * 51 * (5) To verify that we never lose on-disk consistency after a crash, 52 * we run the entire test in a child of the main process. 53 * At random times, the child self-immolates with a SIGKILL. 54 * This is the software equivalent of pulling the power cord. 55 * The parent then runs the test again, using the existing 56 * storage pool, as many times as desired. If backwards compatibility 57 * testing is enabled ztest will sometimes run the "older" version 58 * of ztest after a SIGKILL. 59 * 60 * (6) To verify that we don't have future leaks or temporal incursions, 61 * many of the functional tests record the transaction group number 62 * as part of their data. When reading old data, they verify that 63 * the transaction group number is less than the current, open txg. 64 * If you add a new test, please do this if applicable. 65 * 66 * When run with no arguments, ztest runs for about five minutes and 67 * produces no output if successful. To get a little bit of information, 68 * specify -V. To get more information, specify -VV, and so on. 69 * 70 * To turn this into an overnight stress test, use -T to specify run time. 71 * 72 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 73 * to increase the pool capacity, fanout, and overall stress level. 74 * 75 * Use the -k option to set the desired frequency of kills. 76 * 77 * When ztest invokes itself it passes all relevant information through a 78 * temporary file which is mmap-ed in the child process. This allows shared 79 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 80 * stored at offset 0 of this file and contains information on the size and 81 * number of shared structures in the file. The information stored in this file 82 * must remain backwards compatible with older versions of ztest so that 83 * ztest can invoke them during backwards compatibility testing (-B). 84 */ 85 86 #include <sys/zfs_context.h> 87 #include <sys/spa.h> 88 #include <sys/dmu.h> 89 #include <sys/txg.h> 90 #include <sys/dbuf.h> 91 #include <sys/zap.h> 92 #include <sys/dmu_objset.h> 93 #include <sys/poll.h> 94 #include <sys/stat.h> 95 #include <sys/time.h> 96 #include <sys/wait.h> 97 #include <sys/mman.h> 98 #include <sys/resource.h> 99 #include <sys/zio.h> 100 #include <sys/zil.h> 101 #include <sys/zil_impl.h> 102 #include <sys/vdev_impl.h> 103 #include <sys/vdev_file.h> 104 #include <sys/spa_impl.h> 105 #include <sys/metaslab_impl.h> 106 #include <sys/dsl_prop.h> 107 #include <sys/dsl_dataset.h> 108 #include <sys/dsl_destroy.h> 109 #include <sys/dsl_scan.h> 110 #include <sys/zio_checksum.h> 111 #include <sys/refcount.h> 112 #include <sys/zfeature.h> 113 #include <sys/dsl_userhold.h> 114 #include <sys/abd.h> 115 #include <stdio.h> 116 #include <stdio_ext.h> 117 #include <stdlib.h> 118 #include <unistd.h> 119 #include <signal.h> 120 #include <umem.h> 121 #include <dlfcn.h> 122 #include <ctype.h> 123 #include <math.h> 124 #include <sys/fs/zfs.h> 125 #include <libnvpair.h> 126 127 static int ztest_fd_data = -1; 128 static int ztest_fd_rand = -1; 129 130 typedef struct ztest_shared_hdr { 131 uint64_t zh_hdr_size; 132 uint64_t zh_opts_size; 133 uint64_t zh_size; 134 uint64_t zh_stats_size; 135 uint64_t zh_stats_count; 136 uint64_t zh_ds_size; 137 uint64_t zh_ds_count; 138 } ztest_shared_hdr_t; 139 140 static ztest_shared_hdr_t *ztest_shared_hdr; 141 142 typedef struct ztest_shared_opts { 143 char zo_pool[ZFS_MAX_DATASET_NAME_LEN]; 144 char zo_dir[ZFS_MAX_DATASET_NAME_LEN]; 145 char zo_alt_ztest[MAXNAMELEN]; 146 char zo_alt_libpath[MAXNAMELEN]; 147 uint64_t zo_vdevs; 148 uint64_t zo_vdevtime; 149 size_t zo_vdev_size; 150 int zo_ashift; 151 int zo_mirrors; 152 int zo_raidz; 153 int zo_raidz_parity; 154 int zo_datasets; 155 int zo_threads; 156 uint64_t zo_passtime; 157 uint64_t zo_killrate; 158 int zo_verbose; 159 int zo_init; 160 uint64_t zo_time; 161 uint64_t zo_maxloops; 162 uint64_t zo_metaslab_gang_bang; 163 } ztest_shared_opts_t; 164 165 static const ztest_shared_opts_t ztest_opts_defaults = { 166 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 167 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 168 .zo_alt_ztest = { '\0' }, 169 .zo_alt_libpath = { '\0' }, 170 .zo_vdevs = 5, 171 .zo_ashift = SPA_MINBLOCKSHIFT, 172 .zo_mirrors = 2, 173 .zo_raidz = 4, 174 .zo_raidz_parity = 1, 175 .zo_vdev_size = SPA_MINDEVSIZE * 4, /* 256m default size */ 176 .zo_datasets = 7, 177 .zo_threads = 23, 178 .zo_passtime = 60, /* 60 seconds */ 179 .zo_killrate = 70, /* 70% kill rate */ 180 .zo_verbose = 0, 181 .zo_init = 1, 182 .zo_time = 300, /* 5 minutes */ 183 .zo_maxloops = 50, /* max loops during spa_freeze() */ 184 .zo_metaslab_gang_bang = 32 << 10 185 }; 186 187 extern uint64_t metaslab_gang_bang; 188 extern uint64_t metaslab_df_alloc_threshold; 189 extern uint64_t zfs_deadman_synctime_ms; 190 extern int metaslab_preload_limit; 191 extern boolean_t zfs_compressed_arc_enabled; 192 extern boolean_t zfs_abd_scatter_enabled; 193 194 static ztest_shared_opts_t *ztest_shared_opts; 195 static ztest_shared_opts_t ztest_opts; 196 197 typedef struct ztest_shared_ds { 198 uint64_t zd_seq; 199 } ztest_shared_ds_t; 200 201 static ztest_shared_ds_t *ztest_shared_ds; 202 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 203 204 #define BT_MAGIC 0x123456789abcdefULL 205 #define MAXFAULTS() \ 206 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 207 208 enum ztest_io_type { 209 ZTEST_IO_WRITE_TAG, 210 ZTEST_IO_WRITE_PATTERN, 211 ZTEST_IO_WRITE_ZEROES, 212 ZTEST_IO_TRUNCATE, 213 ZTEST_IO_SETATTR, 214 ZTEST_IO_REWRITE, 215 ZTEST_IO_TYPES 216 }; 217 218 typedef struct ztest_block_tag { 219 uint64_t bt_magic; 220 uint64_t bt_objset; 221 uint64_t bt_object; 222 uint64_t bt_offset; 223 uint64_t bt_gen; 224 uint64_t bt_txg; 225 uint64_t bt_crtxg; 226 } ztest_block_tag_t; 227 228 typedef struct bufwad { 229 uint64_t bw_index; 230 uint64_t bw_txg; 231 uint64_t bw_data; 232 } bufwad_t; 233 234 /* 235 * XXX -- fix zfs range locks to be generic so we can use them here. 236 */ 237 typedef enum { 238 RL_READER, 239 RL_WRITER, 240 RL_APPEND 241 } rl_type_t; 242 243 typedef struct rll { 244 void *rll_writer; 245 int rll_readers; 246 mutex_t rll_lock; 247 cond_t rll_cv; 248 } rll_t; 249 250 typedef struct rl { 251 uint64_t rl_object; 252 uint64_t rl_offset; 253 uint64_t rl_size; 254 rll_t *rl_lock; 255 } rl_t; 256 257 #define ZTEST_RANGE_LOCKS 64 258 #define ZTEST_OBJECT_LOCKS 64 259 260 /* 261 * Object descriptor. Used as a template for object lookup/create/remove. 262 */ 263 typedef struct ztest_od { 264 uint64_t od_dir; 265 uint64_t od_object; 266 dmu_object_type_t od_type; 267 dmu_object_type_t od_crtype; 268 uint64_t od_blocksize; 269 uint64_t od_crblocksize; 270 uint64_t od_gen; 271 uint64_t od_crgen; 272 char od_name[ZFS_MAX_DATASET_NAME_LEN]; 273 } ztest_od_t; 274 275 /* 276 * Per-dataset state. 277 */ 278 typedef struct ztest_ds { 279 ztest_shared_ds_t *zd_shared; 280 objset_t *zd_os; 281 rwlock_t zd_zilog_lock; 282 zilog_t *zd_zilog; 283 ztest_od_t *zd_od; /* debugging aid */ 284 char zd_name[ZFS_MAX_DATASET_NAME_LEN]; 285 mutex_t zd_dirobj_lock; 286 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 287 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 288 } ztest_ds_t; 289 290 /* 291 * Per-iteration state. 292 */ 293 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 294 295 typedef struct ztest_info { 296 ztest_func_t *zi_func; /* test function */ 297 uint64_t zi_iters; /* iterations per execution */ 298 uint64_t *zi_interval; /* execute every <interval> seconds */ 299 } ztest_info_t; 300 301 typedef struct ztest_shared_callstate { 302 uint64_t zc_count; /* per-pass count */ 303 uint64_t zc_time; /* per-pass time */ 304 uint64_t zc_next; /* next time to call this function */ 305 } ztest_shared_callstate_t; 306 307 static ztest_shared_callstate_t *ztest_shared_callstate; 308 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 309 310 /* 311 * Note: these aren't static because we want dladdr() to work. 312 */ 313 ztest_func_t ztest_dmu_read_write; 314 ztest_func_t ztest_dmu_write_parallel; 315 ztest_func_t ztest_dmu_object_alloc_free; 316 ztest_func_t ztest_dmu_commit_callbacks; 317 ztest_func_t ztest_zap; 318 ztest_func_t ztest_zap_parallel; 319 ztest_func_t ztest_zil_commit; 320 ztest_func_t ztest_zil_remount; 321 ztest_func_t ztest_dmu_read_write_zcopy; 322 ztest_func_t ztest_dmu_objset_create_destroy; 323 ztest_func_t ztest_dmu_prealloc; 324 ztest_func_t ztest_fzap; 325 ztest_func_t ztest_dmu_snapshot_create_destroy; 326 ztest_func_t ztest_dsl_prop_get_set; 327 ztest_func_t ztest_spa_prop_get_set; 328 ztest_func_t ztest_spa_create_destroy; 329 ztest_func_t ztest_fault_inject; 330 ztest_func_t ztest_ddt_repair; 331 ztest_func_t ztest_dmu_snapshot_hold; 332 ztest_func_t ztest_spa_rename; 333 ztest_func_t ztest_scrub; 334 ztest_func_t ztest_dsl_dataset_promote_busy; 335 ztest_func_t ztest_vdev_attach_detach; 336 ztest_func_t ztest_vdev_LUN_growth; 337 ztest_func_t ztest_vdev_add_remove; 338 ztest_func_t ztest_vdev_aux_add_remove; 339 ztest_func_t ztest_split_pool; 340 ztest_func_t ztest_reguid; 341 ztest_func_t ztest_spa_upgrade; 342 343 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 344 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 345 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 346 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 347 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 348 349 ztest_info_t ztest_info[] = { 350 { ztest_dmu_read_write, 1, &zopt_always }, 351 { ztest_dmu_write_parallel, 10, &zopt_always }, 352 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 353 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 354 { ztest_zap, 30, &zopt_always }, 355 { ztest_zap_parallel, 100, &zopt_always }, 356 { ztest_split_pool, 1, &zopt_always }, 357 { ztest_zil_commit, 1, &zopt_incessant }, 358 { ztest_zil_remount, 1, &zopt_sometimes }, 359 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 360 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 361 { ztest_dsl_prop_get_set, 1, &zopt_often }, 362 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 363 #if 0 364 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 365 #endif 366 { ztest_fzap, 1, &zopt_sometimes }, 367 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 368 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 369 { ztest_fault_inject, 1, &zopt_sometimes }, 370 { ztest_ddt_repair, 1, &zopt_sometimes }, 371 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 372 { ztest_reguid, 1, &zopt_rarely }, 373 { ztest_spa_rename, 1, &zopt_rarely }, 374 { ztest_scrub, 1, &zopt_rarely }, 375 { ztest_spa_upgrade, 1, &zopt_rarely }, 376 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 377 { ztest_vdev_attach_detach, 1, &zopt_sometimes }, 378 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 379 { ztest_vdev_add_remove, 1, 380 &ztest_opts.zo_vdevtime }, 381 { ztest_vdev_aux_add_remove, 1, 382 &ztest_opts.zo_vdevtime }, 383 }; 384 385 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 386 387 /* 388 * The following struct is used to hold a list of uncalled commit callbacks. 389 * The callbacks are ordered by txg number. 390 */ 391 typedef struct ztest_cb_list { 392 mutex_t zcl_callbacks_lock; 393 list_t zcl_callbacks; 394 } ztest_cb_list_t; 395 396 /* 397 * Stuff we need to share writably between parent and child. 398 */ 399 typedef struct ztest_shared { 400 boolean_t zs_do_init; 401 hrtime_t zs_proc_start; 402 hrtime_t zs_proc_stop; 403 hrtime_t zs_thread_start; 404 hrtime_t zs_thread_stop; 405 hrtime_t zs_thread_kill; 406 uint64_t zs_enospc_count; 407 uint64_t zs_vdev_next_leaf; 408 uint64_t zs_vdev_aux; 409 uint64_t zs_alloc; 410 uint64_t zs_space; 411 uint64_t zs_splits; 412 uint64_t zs_mirrors; 413 uint64_t zs_metaslab_sz; 414 uint64_t zs_metaslab_df_alloc_threshold; 415 uint64_t zs_guid; 416 } ztest_shared_t; 417 418 #define ID_PARALLEL -1ULL 419 420 static char ztest_dev_template[] = "%s/%s.%llua"; 421 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 422 ztest_shared_t *ztest_shared; 423 424 static spa_t *ztest_spa = NULL; 425 static ztest_ds_t *ztest_ds; 426 427 static mutex_t ztest_vdev_lock; 428 429 /* 430 * The ztest_name_lock protects the pool and dataset namespace used by 431 * the individual tests. To modify the namespace, consumers must grab 432 * this lock as writer. Grabbing the lock as reader will ensure that the 433 * namespace does not change while the lock is held. 434 */ 435 static rwlock_t ztest_name_lock; 436 437 static boolean_t ztest_dump_core = B_TRUE; 438 static boolean_t ztest_exiting; 439 440 /* Global commit callback list */ 441 static ztest_cb_list_t zcl; 442 443 enum ztest_object { 444 ZTEST_META_DNODE = 0, 445 ZTEST_DIROBJ, 446 ZTEST_OBJECTS 447 }; 448 449 static void usage(boolean_t) __NORETURN; 450 451 /* 452 * These libumem hooks provide a reasonable set of defaults for the allocator's 453 * debugging facilities. 454 */ 455 const char * 456 _umem_debug_init() 457 { 458 return ("default,verbose"); /* $UMEM_DEBUG setting */ 459 } 460 461 const char * 462 _umem_logging_init(void) 463 { 464 return ("fail,contents"); /* $UMEM_LOGGING setting */ 465 } 466 467 #define FATAL_MSG_SZ 1024 468 469 char *fatal_msg; 470 471 static void 472 fatal(int do_perror, char *message, ...) 473 { 474 va_list args; 475 int save_errno = errno; 476 char buf[FATAL_MSG_SZ]; 477 478 (void) fflush(stdout); 479 480 va_start(args, message); 481 (void) sprintf(buf, "ztest: "); 482 /* LINTED */ 483 (void) vsprintf(buf + strlen(buf), message, args); 484 va_end(args); 485 if (do_perror) { 486 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 487 ": %s", strerror(save_errno)); 488 } 489 (void) fprintf(stderr, "%s\n", buf); 490 fatal_msg = buf; /* to ease debugging */ 491 if (ztest_dump_core) 492 abort(); 493 exit(3); 494 } 495 496 static int 497 str2shift(const char *buf) 498 { 499 const char *ends = "BKMGTPEZ"; 500 int i; 501 502 if (buf[0] == '\0') 503 return (0); 504 for (i = 0; i < strlen(ends); i++) { 505 if (toupper(buf[0]) == ends[i]) 506 break; 507 } 508 if (i == strlen(ends)) { 509 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 510 buf); 511 usage(B_FALSE); 512 } 513 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 514 return (10*i); 515 } 516 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 517 usage(B_FALSE); 518 /* NOTREACHED */ 519 } 520 521 static uint64_t 522 nicenumtoull(const char *buf) 523 { 524 char *end; 525 uint64_t val; 526 527 val = strtoull(buf, &end, 0); 528 if (end == buf) { 529 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 530 usage(B_FALSE); 531 } else if (end[0] == '.') { 532 double fval = strtod(buf, &end); 533 fval *= pow(2, str2shift(end)); 534 if (fval > UINT64_MAX) { 535 (void) fprintf(stderr, "ztest: value too large: %s\n", 536 buf); 537 usage(B_FALSE); 538 } 539 val = (uint64_t)fval; 540 } else { 541 int shift = str2shift(end); 542 if (shift >= 64 || (val << shift) >> shift != val) { 543 (void) fprintf(stderr, "ztest: value too large: %s\n", 544 buf); 545 usage(B_FALSE); 546 } 547 val <<= shift; 548 } 549 return (val); 550 } 551 552 static void 553 usage(boolean_t requested) 554 { 555 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 556 557 char nice_vdev_size[10]; 558 char nice_gang_bang[10]; 559 FILE *fp = requested ? stdout : stderr; 560 561 nicenum(zo->zo_vdev_size, nice_vdev_size); 562 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang); 563 564 (void) fprintf(fp, "Usage: %s\n" 565 "\t[-v vdevs (default: %llu)]\n" 566 "\t[-s size_of_each_vdev (default: %s)]\n" 567 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 568 "\t[-m mirror_copies (default: %d)]\n" 569 "\t[-r raidz_disks (default: %d)]\n" 570 "\t[-R raidz_parity (default: %d)]\n" 571 "\t[-d datasets (default: %d)]\n" 572 "\t[-t threads (default: %d)]\n" 573 "\t[-g gang_block_threshold (default: %s)]\n" 574 "\t[-i init_count (default: %d)] initialize pool i times\n" 575 "\t[-k kill_percentage (default: %llu%%)]\n" 576 "\t[-p pool_name (default: %s)]\n" 577 "\t[-f dir (default: %s)] file directory for vdev files\n" 578 "\t[-V] verbose (use multiple times for ever more blather)\n" 579 "\t[-E] use existing pool instead of creating new one\n" 580 "\t[-T time (default: %llu sec)] total run time\n" 581 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 582 "\t[-P passtime (default: %llu sec)] time per pass\n" 583 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 584 "\t[-o variable=value] ... set global variable to an unsigned\n" 585 "\t 32-bit integer value\n" 586 "\t[-h] (print help)\n" 587 "", 588 zo->zo_pool, 589 (u_longlong_t)zo->zo_vdevs, /* -v */ 590 nice_vdev_size, /* -s */ 591 zo->zo_ashift, /* -a */ 592 zo->zo_mirrors, /* -m */ 593 zo->zo_raidz, /* -r */ 594 zo->zo_raidz_parity, /* -R */ 595 zo->zo_datasets, /* -d */ 596 zo->zo_threads, /* -t */ 597 nice_gang_bang, /* -g */ 598 zo->zo_init, /* -i */ 599 (u_longlong_t)zo->zo_killrate, /* -k */ 600 zo->zo_pool, /* -p */ 601 zo->zo_dir, /* -f */ 602 (u_longlong_t)zo->zo_time, /* -T */ 603 (u_longlong_t)zo->zo_maxloops, /* -F */ 604 (u_longlong_t)zo->zo_passtime); 605 exit(requested ? 0 : 1); 606 } 607 608 static void 609 process_options(int argc, char **argv) 610 { 611 char *path; 612 ztest_shared_opts_t *zo = &ztest_opts; 613 614 int opt; 615 uint64_t value; 616 char altdir[MAXNAMELEN] = { 0 }; 617 618 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 619 620 while ((opt = getopt(argc, argv, 621 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:o:")) != EOF) { 622 value = 0; 623 switch (opt) { 624 case 'v': 625 case 's': 626 case 'a': 627 case 'm': 628 case 'r': 629 case 'R': 630 case 'd': 631 case 't': 632 case 'g': 633 case 'i': 634 case 'k': 635 case 'T': 636 case 'P': 637 case 'F': 638 value = nicenumtoull(optarg); 639 } 640 switch (opt) { 641 case 'v': 642 zo->zo_vdevs = value; 643 break; 644 case 's': 645 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 646 break; 647 case 'a': 648 zo->zo_ashift = value; 649 break; 650 case 'm': 651 zo->zo_mirrors = value; 652 break; 653 case 'r': 654 zo->zo_raidz = MAX(1, value); 655 break; 656 case 'R': 657 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 658 break; 659 case 'd': 660 zo->zo_datasets = MAX(1, value); 661 break; 662 case 't': 663 zo->zo_threads = MAX(1, value); 664 break; 665 case 'g': 666 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 667 value); 668 break; 669 case 'i': 670 zo->zo_init = value; 671 break; 672 case 'k': 673 zo->zo_killrate = value; 674 break; 675 case 'p': 676 (void) strlcpy(zo->zo_pool, optarg, 677 sizeof (zo->zo_pool)); 678 break; 679 case 'f': 680 path = realpath(optarg, NULL); 681 if (path == NULL) { 682 (void) fprintf(stderr, "error: %s: %s\n", 683 optarg, strerror(errno)); 684 usage(B_FALSE); 685 } else { 686 (void) strlcpy(zo->zo_dir, path, 687 sizeof (zo->zo_dir)); 688 } 689 break; 690 case 'V': 691 zo->zo_verbose++; 692 break; 693 case 'E': 694 zo->zo_init = 0; 695 break; 696 case 'T': 697 zo->zo_time = value; 698 break; 699 case 'P': 700 zo->zo_passtime = MAX(1, value); 701 break; 702 case 'F': 703 zo->zo_maxloops = MAX(1, value); 704 break; 705 case 'B': 706 (void) strlcpy(altdir, optarg, sizeof (altdir)); 707 break; 708 case 'o': 709 if (set_global_var(optarg) != 0) 710 usage(B_FALSE); 711 break; 712 case 'h': 713 usage(B_TRUE); 714 break; 715 case '?': 716 default: 717 usage(B_FALSE); 718 break; 719 } 720 } 721 722 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 723 724 zo->zo_vdevtime = 725 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 726 UINT64_MAX >> 2); 727 728 if (strlen(altdir) > 0) { 729 char *cmd; 730 char *realaltdir; 731 char *bin; 732 char *ztest; 733 char *isa; 734 int isalen; 735 736 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 737 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 738 739 VERIFY(NULL != realpath(getexecname(), cmd)); 740 if (0 != access(altdir, F_OK)) { 741 ztest_dump_core = B_FALSE; 742 fatal(B_TRUE, "invalid alternate ztest path: %s", 743 altdir); 744 } 745 VERIFY(NULL != realpath(altdir, realaltdir)); 746 747 /* 748 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 749 * We want to extract <isa> to determine if we should use 750 * 32 or 64 bit binaries. 751 */ 752 bin = strstr(cmd, "/usr/bin/"); 753 ztest = strstr(bin, "/ztest"); 754 isa = bin + 9; 755 isalen = ztest - isa; 756 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 757 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 758 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 759 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 760 761 if (0 != access(zo->zo_alt_ztest, X_OK)) { 762 ztest_dump_core = B_FALSE; 763 fatal(B_TRUE, "invalid alternate ztest: %s", 764 zo->zo_alt_ztest); 765 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 766 ztest_dump_core = B_FALSE; 767 fatal(B_TRUE, "invalid alternate lib directory %s", 768 zo->zo_alt_libpath); 769 } 770 771 umem_free(cmd, MAXPATHLEN); 772 umem_free(realaltdir, MAXPATHLEN); 773 } 774 } 775 776 static void 777 ztest_kill(ztest_shared_t *zs) 778 { 779 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 780 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 781 782 /* 783 * Before we kill off ztest, make sure that the config is updated. 784 * See comment above spa_config_sync(). 785 */ 786 mutex_enter(&spa_namespace_lock); 787 spa_config_sync(ztest_spa, B_FALSE, B_FALSE); 788 mutex_exit(&spa_namespace_lock); 789 790 zfs_dbgmsg_print(FTAG); 791 (void) kill(getpid(), SIGKILL); 792 } 793 794 static uint64_t 795 ztest_random(uint64_t range) 796 { 797 uint64_t r; 798 799 ASSERT3S(ztest_fd_rand, >=, 0); 800 801 if (range == 0) 802 return (0); 803 804 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 805 fatal(1, "short read from /dev/urandom"); 806 807 return (r % range); 808 } 809 810 /* ARGSUSED */ 811 static void 812 ztest_record_enospc(const char *s) 813 { 814 ztest_shared->zs_enospc_count++; 815 } 816 817 static uint64_t 818 ztest_get_ashift(void) 819 { 820 if (ztest_opts.zo_ashift == 0) 821 return (SPA_MINBLOCKSHIFT + ztest_random(5)); 822 return (ztest_opts.zo_ashift); 823 } 824 825 static nvlist_t * 826 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 827 { 828 char pathbuf[MAXPATHLEN]; 829 uint64_t vdev; 830 nvlist_t *file; 831 832 if (ashift == 0) 833 ashift = ztest_get_ashift(); 834 835 if (path == NULL) { 836 path = pathbuf; 837 838 if (aux != NULL) { 839 vdev = ztest_shared->zs_vdev_aux; 840 (void) snprintf(path, sizeof (pathbuf), 841 ztest_aux_template, ztest_opts.zo_dir, 842 pool == NULL ? ztest_opts.zo_pool : pool, 843 aux, vdev); 844 } else { 845 vdev = ztest_shared->zs_vdev_next_leaf++; 846 (void) snprintf(path, sizeof (pathbuf), 847 ztest_dev_template, ztest_opts.zo_dir, 848 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 849 } 850 } 851 852 if (size != 0) { 853 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 854 if (fd == -1) 855 fatal(1, "can't open %s", path); 856 if (ftruncate(fd, size) != 0) 857 fatal(1, "can't ftruncate %s", path); 858 (void) close(fd); 859 } 860 861 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 862 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 863 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 864 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 865 866 return (file); 867 } 868 869 static nvlist_t * 870 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 871 uint64_t ashift, int r) 872 { 873 nvlist_t *raidz, **child; 874 int c; 875 876 if (r < 2) 877 return (make_vdev_file(path, aux, pool, size, ashift)); 878 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 879 880 for (c = 0; c < r; c++) 881 child[c] = make_vdev_file(path, aux, pool, size, ashift); 882 883 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 884 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 885 VDEV_TYPE_RAIDZ) == 0); 886 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 887 ztest_opts.zo_raidz_parity) == 0); 888 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 889 child, r) == 0); 890 891 for (c = 0; c < r; c++) 892 nvlist_free(child[c]); 893 894 umem_free(child, r * sizeof (nvlist_t *)); 895 896 return (raidz); 897 } 898 899 static nvlist_t * 900 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 901 uint64_t ashift, int r, int m) 902 { 903 nvlist_t *mirror, **child; 904 int c; 905 906 if (m < 1) 907 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 908 909 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 910 911 for (c = 0; c < m; c++) 912 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 913 914 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 915 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 916 VDEV_TYPE_MIRROR) == 0); 917 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 918 child, m) == 0); 919 920 for (c = 0; c < m; c++) 921 nvlist_free(child[c]); 922 923 umem_free(child, m * sizeof (nvlist_t *)); 924 925 return (mirror); 926 } 927 928 static nvlist_t * 929 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 930 int log, int r, int m, int t) 931 { 932 nvlist_t *root, **child; 933 int c; 934 935 ASSERT(t > 0); 936 937 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 938 939 for (c = 0; c < t; c++) { 940 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 941 r, m); 942 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 943 log) == 0); 944 } 945 946 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 947 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 948 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 949 child, t) == 0); 950 951 for (c = 0; c < t; c++) 952 nvlist_free(child[c]); 953 954 umem_free(child, t * sizeof (nvlist_t *)); 955 956 return (root); 957 } 958 959 /* 960 * Find a random spa version. Returns back a random spa version in the 961 * range [initial_version, SPA_VERSION_FEATURES]. 962 */ 963 static uint64_t 964 ztest_random_spa_version(uint64_t initial_version) 965 { 966 uint64_t version = initial_version; 967 968 if (version <= SPA_VERSION_BEFORE_FEATURES) { 969 version = version + 970 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 971 } 972 973 if (version > SPA_VERSION_BEFORE_FEATURES) 974 version = SPA_VERSION_FEATURES; 975 976 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 977 return (version); 978 } 979 980 static int 981 ztest_random_blocksize(void) 982 { 983 uint64_t block_shift; 984 /* 985 * Choose a block size >= the ashift. 986 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. 987 */ 988 int maxbs = SPA_OLD_MAXBLOCKSHIFT; 989 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) 990 maxbs = 20; 991 block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1); 992 return (1 << (SPA_MINBLOCKSHIFT + block_shift)); 993 } 994 995 static int 996 ztest_random_ibshift(void) 997 { 998 return (DN_MIN_INDBLKSHIFT + 999 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 1000 } 1001 1002 static uint64_t 1003 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 1004 { 1005 uint64_t top; 1006 vdev_t *rvd = spa->spa_root_vdev; 1007 vdev_t *tvd; 1008 1009 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1010 1011 do { 1012 top = ztest_random(rvd->vdev_children); 1013 tvd = rvd->vdev_child[top]; 1014 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 1015 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 1016 1017 return (top); 1018 } 1019 1020 static uint64_t 1021 ztest_random_dsl_prop(zfs_prop_t prop) 1022 { 1023 uint64_t value; 1024 1025 do { 1026 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 1027 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 1028 1029 return (value); 1030 } 1031 1032 static int 1033 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1034 boolean_t inherit) 1035 { 1036 const char *propname = zfs_prop_to_name(prop); 1037 const char *valname; 1038 char setpoint[MAXPATHLEN]; 1039 uint64_t curval; 1040 int error; 1041 1042 error = dsl_prop_set_int(osname, propname, 1043 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1044 1045 if (error == ENOSPC) { 1046 ztest_record_enospc(FTAG); 1047 return (error); 1048 } 1049 ASSERT0(error); 1050 1051 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1052 1053 if (ztest_opts.zo_verbose >= 6) { 1054 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1055 (void) printf("%s %s = %s at '%s'\n", 1056 osname, propname, valname, setpoint); 1057 } 1058 1059 return (error); 1060 } 1061 1062 static int 1063 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1064 { 1065 spa_t *spa = ztest_spa; 1066 nvlist_t *props = NULL; 1067 int error; 1068 1069 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1070 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1071 1072 error = spa_prop_set(spa, props); 1073 1074 nvlist_free(props); 1075 1076 if (error == ENOSPC) { 1077 ztest_record_enospc(FTAG); 1078 return (error); 1079 } 1080 ASSERT0(error); 1081 1082 return (error); 1083 } 1084 1085 static void 1086 ztest_rll_init(rll_t *rll) 1087 { 1088 rll->rll_writer = NULL; 1089 rll->rll_readers = 0; 1090 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 1091 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 1092 } 1093 1094 static void 1095 ztest_rll_destroy(rll_t *rll) 1096 { 1097 ASSERT(rll->rll_writer == NULL); 1098 ASSERT(rll->rll_readers == 0); 1099 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 1100 VERIFY(cond_destroy(&rll->rll_cv) == 0); 1101 } 1102 1103 static void 1104 ztest_rll_lock(rll_t *rll, rl_type_t type) 1105 { 1106 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1107 1108 if (type == RL_READER) { 1109 while (rll->rll_writer != NULL) 1110 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1111 rll->rll_readers++; 1112 } else { 1113 while (rll->rll_writer != NULL || rll->rll_readers) 1114 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1115 rll->rll_writer = curthread; 1116 } 1117 1118 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1119 } 1120 1121 static void 1122 ztest_rll_unlock(rll_t *rll) 1123 { 1124 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1125 1126 if (rll->rll_writer) { 1127 ASSERT(rll->rll_readers == 0); 1128 rll->rll_writer = NULL; 1129 } else { 1130 ASSERT(rll->rll_readers != 0); 1131 ASSERT(rll->rll_writer == NULL); 1132 rll->rll_readers--; 1133 } 1134 1135 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1136 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 1137 1138 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1139 } 1140 1141 static void 1142 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1143 { 1144 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1145 1146 ztest_rll_lock(rll, type); 1147 } 1148 1149 static void 1150 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1151 { 1152 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1153 1154 ztest_rll_unlock(rll); 1155 } 1156 1157 static rl_t * 1158 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1159 uint64_t size, rl_type_t type) 1160 { 1161 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1162 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1163 rl_t *rl; 1164 1165 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1166 rl->rl_object = object; 1167 rl->rl_offset = offset; 1168 rl->rl_size = size; 1169 rl->rl_lock = rll; 1170 1171 ztest_rll_lock(rll, type); 1172 1173 return (rl); 1174 } 1175 1176 static void 1177 ztest_range_unlock(rl_t *rl) 1178 { 1179 rll_t *rll = rl->rl_lock; 1180 1181 ztest_rll_unlock(rll); 1182 1183 umem_free(rl, sizeof (*rl)); 1184 } 1185 1186 static void 1187 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1188 { 1189 zd->zd_os = os; 1190 zd->zd_zilog = dmu_objset_zil(os); 1191 zd->zd_shared = szd; 1192 dmu_objset_name(os, zd->zd_name); 1193 1194 if (zd->zd_shared != NULL) 1195 zd->zd_shared->zd_seq = 0; 1196 1197 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0); 1198 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 1199 1200 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1201 ztest_rll_init(&zd->zd_object_lock[l]); 1202 1203 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1204 ztest_rll_init(&zd->zd_range_lock[l]); 1205 } 1206 1207 static void 1208 ztest_zd_fini(ztest_ds_t *zd) 1209 { 1210 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 1211 1212 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1213 ztest_rll_destroy(&zd->zd_object_lock[l]); 1214 1215 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1216 ztest_rll_destroy(&zd->zd_range_lock[l]); 1217 } 1218 1219 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1220 1221 static uint64_t 1222 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1223 { 1224 uint64_t txg; 1225 int error; 1226 1227 /* 1228 * Attempt to assign tx to some transaction group. 1229 */ 1230 error = dmu_tx_assign(tx, txg_how); 1231 if (error) { 1232 if (error == ERESTART) { 1233 ASSERT(txg_how == TXG_NOWAIT); 1234 dmu_tx_wait(tx); 1235 } else { 1236 ASSERT3U(error, ==, ENOSPC); 1237 ztest_record_enospc(tag); 1238 } 1239 dmu_tx_abort(tx); 1240 return (0); 1241 } 1242 txg = dmu_tx_get_txg(tx); 1243 ASSERT(txg != 0); 1244 return (txg); 1245 } 1246 1247 static void 1248 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1249 { 1250 uint64_t *ip = buf; 1251 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1252 1253 while (ip < ip_end) 1254 *ip++ = value; 1255 } 1256 1257 static boolean_t 1258 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1259 { 1260 uint64_t *ip = buf; 1261 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1262 uint64_t diff = 0; 1263 1264 while (ip < ip_end) 1265 diff |= (value - *ip++); 1266 1267 return (diff == 0); 1268 } 1269 1270 static void 1271 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1272 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1273 { 1274 bt->bt_magic = BT_MAGIC; 1275 bt->bt_objset = dmu_objset_id(os); 1276 bt->bt_object = object; 1277 bt->bt_offset = offset; 1278 bt->bt_gen = gen; 1279 bt->bt_txg = txg; 1280 bt->bt_crtxg = crtxg; 1281 } 1282 1283 static void 1284 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1285 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1286 { 1287 ASSERT3U(bt->bt_magic, ==, BT_MAGIC); 1288 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1289 ASSERT3U(bt->bt_object, ==, object); 1290 ASSERT3U(bt->bt_offset, ==, offset); 1291 ASSERT3U(bt->bt_gen, <=, gen); 1292 ASSERT3U(bt->bt_txg, <=, txg); 1293 ASSERT3U(bt->bt_crtxg, ==, crtxg); 1294 } 1295 1296 static ztest_block_tag_t * 1297 ztest_bt_bonus(dmu_buf_t *db) 1298 { 1299 dmu_object_info_t doi; 1300 ztest_block_tag_t *bt; 1301 1302 dmu_object_info_from_db(db, &doi); 1303 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1304 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1305 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1306 1307 return (bt); 1308 } 1309 1310 /* 1311 * ZIL logging ops 1312 */ 1313 1314 #define lrz_type lr_mode 1315 #define lrz_blocksize lr_uid 1316 #define lrz_ibshift lr_gid 1317 #define lrz_bonustype lr_rdev 1318 #define lrz_bonuslen lr_crtime[1] 1319 1320 static void 1321 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1322 { 1323 char *name = (void *)(lr + 1); /* name follows lr */ 1324 size_t namesize = strlen(name) + 1; 1325 itx_t *itx; 1326 1327 if (zil_replaying(zd->zd_zilog, tx)) 1328 return; 1329 1330 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1331 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1332 sizeof (*lr) + namesize - sizeof (lr_t)); 1333 1334 zil_itx_assign(zd->zd_zilog, itx, tx); 1335 } 1336 1337 static void 1338 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1339 { 1340 char *name = (void *)(lr + 1); /* name follows lr */ 1341 size_t namesize = strlen(name) + 1; 1342 itx_t *itx; 1343 1344 if (zil_replaying(zd->zd_zilog, tx)) 1345 return; 1346 1347 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1348 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1349 sizeof (*lr) + namesize - sizeof (lr_t)); 1350 1351 itx->itx_oid = object; 1352 zil_itx_assign(zd->zd_zilog, itx, tx); 1353 } 1354 1355 static void 1356 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1357 { 1358 itx_t *itx; 1359 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1360 1361 if (zil_replaying(zd->zd_zilog, tx)) 1362 return; 1363 1364 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1365 write_state = WR_INDIRECT; 1366 1367 itx = zil_itx_create(TX_WRITE, 1368 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1369 1370 if (write_state == WR_COPIED && 1371 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1372 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1373 zil_itx_destroy(itx); 1374 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1375 write_state = WR_NEED_COPY; 1376 } 1377 itx->itx_private = zd; 1378 itx->itx_wr_state = write_state; 1379 itx->itx_sync = (ztest_random(8) == 0); 1380 1381 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1382 sizeof (*lr) - sizeof (lr_t)); 1383 1384 zil_itx_assign(zd->zd_zilog, itx, tx); 1385 } 1386 1387 static void 1388 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1389 { 1390 itx_t *itx; 1391 1392 if (zil_replaying(zd->zd_zilog, tx)) 1393 return; 1394 1395 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1396 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1397 sizeof (*lr) - sizeof (lr_t)); 1398 1399 itx->itx_sync = B_FALSE; 1400 zil_itx_assign(zd->zd_zilog, itx, tx); 1401 } 1402 1403 static void 1404 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1405 { 1406 itx_t *itx; 1407 1408 if (zil_replaying(zd->zd_zilog, tx)) 1409 return; 1410 1411 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1412 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1413 sizeof (*lr) - sizeof (lr_t)); 1414 1415 itx->itx_sync = B_FALSE; 1416 zil_itx_assign(zd->zd_zilog, itx, tx); 1417 } 1418 1419 /* 1420 * ZIL replay ops 1421 */ 1422 static int 1423 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1424 { 1425 char *name = (void *)(lr + 1); /* name follows lr */ 1426 objset_t *os = zd->zd_os; 1427 ztest_block_tag_t *bbt; 1428 dmu_buf_t *db; 1429 dmu_tx_t *tx; 1430 uint64_t txg; 1431 int error = 0; 1432 1433 if (byteswap) 1434 byteswap_uint64_array(lr, sizeof (*lr)); 1435 1436 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1437 ASSERT(name[0] != '\0'); 1438 1439 tx = dmu_tx_create(os); 1440 1441 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1442 1443 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1444 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1445 } else { 1446 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1447 } 1448 1449 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1450 if (txg == 0) 1451 return (ENOSPC); 1452 1453 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1454 1455 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1456 if (lr->lr_foid == 0) { 1457 lr->lr_foid = zap_create(os, 1458 lr->lrz_type, lr->lrz_bonustype, 1459 lr->lrz_bonuslen, tx); 1460 } else { 1461 error = zap_create_claim(os, lr->lr_foid, 1462 lr->lrz_type, lr->lrz_bonustype, 1463 lr->lrz_bonuslen, tx); 1464 } 1465 } else { 1466 if (lr->lr_foid == 0) { 1467 lr->lr_foid = dmu_object_alloc(os, 1468 lr->lrz_type, 0, lr->lrz_bonustype, 1469 lr->lrz_bonuslen, tx); 1470 } else { 1471 error = dmu_object_claim(os, lr->lr_foid, 1472 lr->lrz_type, 0, lr->lrz_bonustype, 1473 lr->lrz_bonuslen, tx); 1474 } 1475 } 1476 1477 if (error) { 1478 ASSERT3U(error, ==, EEXIST); 1479 ASSERT(zd->zd_zilog->zl_replay); 1480 dmu_tx_commit(tx); 1481 return (error); 1482 } 1483 1484 ASSERT(lr->lr_foid != 0); 1485 1486 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1487 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1488 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1489 1490 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1491 bbt = ztest_bt_bonus(db); 1492 dmu_buf_will_dirty(db, tx); 1493 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1494 dmu_buf_rele(db, FTAG); 1495 1496 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1497 &lr->lr_foid, tx)); 1498 1499 (void) ztest_log_create(zd, tx, lr); 1500 1501 dmu_tx_commit(tx); 1502 1503 return (0); 1504 } 1505 1506 static int 1507 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1508 { 1509 char *name = (void *)(lr + 1); /* name follows lr */ 1510 objset_t *os = zd->zd_os; 1511 dmu_object_info_t doi; 1512 dmu_tx_t *tx; 1513 uint64_t object, txg; 1514 1515 if (byteswap) 1516 byteswap_uint64_array(lr, sizeof (*lr)); 1517 1518 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1519 ASSERT(name[0] != '\0'); 1520 1521 VERIFY3U(0, ==, 1522 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1523 ASSERT(object != 0); 1524 1525 ztest_object_lock(zd, object, RL_WRITER); 1526 1527 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1528 1529 tx = dmu_tx_create(os); 1530 1531 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1532 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1533 1534 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1535 if (txg == 0) { 1536 ztest_object_unlock(zd, object); 1537 return (ENOSPC); 1538 } 1539 1540 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1541 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1542 } else { 1543 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1544 } 1545 1546 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1547 1548 (void) ztest_log_remove(zd, tx, lr, object); 1549 1550 dmu_tx_commit(tx); 1551 1552 ztest_object_unlock(zd, object); 1553 1554 return (0); 1555 } 1556 1557 static int 1558 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1559 { 1560 objset_t *os = zd->zd_os; 1561 void *data = lr + 1; /* data follows lr */ 1562 uint64_t offset, length; 1563 ztest_block_tag_t *bt = data; 1564 ztest_block_tag_t *bbt; 1565 uint64_t gen, txg, lrtxg, crtxg; 1566 dmu_object_info_t doi; 1567 dmu_tx_t *tx; 1568 dmu_buf_t *db; 1569 arc_buf_t *abuf = NULL; 1570 rl_t *rl; 1571 1572 if (byteswap) 1573 byteswap_uint64_array(lr, sizeof (*lr)); 1574 1575 offset = lr->lr_offset; 1576 length = lr->lr_length; 1577 1578 /* If it's a dmu_sync() block, write the whole block */ 1579 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1580 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1581 if (length < blocksize) { 1582 offset -= offset % blocksize; 1583 length = blocksize; 1584 } 1585 } 1586 1587 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1588 byteswap_uint64_array(bt, sizeof (*bt)); 1589 1590 if (bt->bt_magic != BT_MAGIC) 1591 bt = NULL; 1592 1593 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1594 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1595 1596 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1597 1598 dmu_object_info_from_db(db, &doi); 1599 1600 bbt = ztest_bt_bonus(db); 1601 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1602 gen = bbt->bt_gen; 1603 crtxg = bbt->bt_crtxg; 1604 lrtxg = lr->lr_common.lrc_txg; 1605 1606 tx = dmu_tx_create(os); 1607 1608 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1609 1610 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1611 P2PHASE(offset, length) == 0) 1612 abuf = dmu_request_arcbuf(db, length); 1613 1614 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1615 if (txg == 0) { 1616 if (abuf != NULL) 1617 dmu_return_arcbuf(abuf); 1618 dmu_buf_rele(db, FTAG); 1619 ztest_range_unlock(rl); 1620 ztest_object_unlock(zd, lr->lr_foid); 1621 return (ENOSPC); 1622 } 1623 1624 if (bt != NULL) { 1625 /* 1626 * Usually, verify the old data before writing new data -- 1627 * but not always, because we also want to verify correct 1628 * behavior when the data was not recently read into cache. 1629 */ 1630 ASSERT(offset % doi.doi_data_block_size == 0); 1631 if (ztest_random(4) != 0) { 1632 int prefetch = ztest_random(2) ? 1633 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1634 ztest_block_tag_t rbt; 1635 1636 VERIFY(dmu_read(os, lr->lr_foid, offset, 1637 sizeof (rbt), &rbt, prefetch) == 0); 1638 if (rbt.bt_magic == BT_MAGIC) { 1639 ztest_bt_verify(&rbt, os, lr->lr_foid, 1640 offset, gen, txg, crtxg); 1641 } 1642 } 1643 1644 /* 1645 * Writes can appear to be newer than the bonus buffer because 1646 * the ztest_get_data() callback does a dmu_read() of the 1647 * open-context data, which may be different than the data 1648 * as it was when the write was generated. 1649 */ 1650 if (zd->zd_zilog->zl_replay) { 1651 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1652 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1653 bt->bt_crtxg); 1654 } 1655 1656 /* 1657 * Set the bt's gen/txg to the bonus buffer's gen/txg 1658 * so that all of the usual ASSERTs will work. 1659 */ 1660 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1661 } 1662 1663 if (abuf == NULL) { 1664 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1665 } else { 1666 bcopy(data, abuf->b_data, length); 1667 dmu_assign_arcbuf(db, offset, abuf, tx); 1668 } 1669 1670 (void) ztest_log_write(zd, tx, lr); 1671 1672 dmu_buf_rele(db, FTAG); 1673 1674 dmu_tx_commit(tx); 1675 1676 ztest_range_unlock(rl); 1677 ztest_object_unlock(zd, lr->lr_foid); 1678 1679 return (0); 1680 } 1681 1682 static int 1683 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1684 { 1685 objset_t *os = zd->zd_os; 1686 dmu_tx_t *tx; 1687 uint64_t txg; 1688 rl_t *rl; 1689 1690 if (byteswap) 1691 byteswap_uint64_array(lr, sizeof (*lr)); 1692 1693 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1694 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1695 RL_WRITER); 1696 1697 tx = dmu_tx_create(os); 1698 1699 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1700 1701 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1702 if (txg == 0) { 1703 ztest_range_unlock(rl); 1704 ztest_object_unlock(zd, lr->lr_foid); 1705 return (ENOSPC); 1706 } 1707 1708 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1709 lr->lr_length, tx) == 0); 1710 1711 (void) ztest_log_truncate(zd, tx, lr); 1712 1713 dmu_tx_commit(tx); 1714 1715 ztest_range_unlock(rl); 1716 ztest_object_unlock(zd, lr->lr_foid); 1717 1718 return (0); 1719 } 1720 1721 static int 1722 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1723 { 1724 objset_t *os = zd->zd_os; 1725 dmu_tx_t *tx; 1726 dmu_buf_t *db; 1727 ztest_block_tag_t *bbt; 1728 uint64_t txg, lrtxg, crtxg; 1729 1730 if (byteswap) 1731 byteswap_uint64_array(lr, sizeof (*lr)); 1732 1733 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1734 1735 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1736 1737 tx = dmu_tx_create(os); 1738 dmu_tx_hold_bonus(tx, lr->lr_foid); 1739 1740 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1741 if (txg == 0) { 1742 dmu_buf_rele(db, FTAG); 1743 ztest_object_unlock(zd, lr->lr_foid); 1744 return (ENOSPC); 1745 } 1746 1747 bbt = ztest_bt_bonus(db); 1748 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1749 crtxg = bbt->bt_crtxg; 1750 lrtxg = lr->lr_common.lrc_txg; 1751 1752 if (zd->zd_zilog->zl_replay) { 1753 ASSERT(lr->lr_size != 0); 1754 ASSERT(lr->lr_mode != 0); 1755 ASSERT(lrtxg != 0); 1756 } else { 1757 /* 1758 * Randomly change the size and increment the generation. 1759 */ 1760 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1761 sizeof (*bbt); 1762 lr->lr_mode = bbt->bt_gen + 1; 1763 ASSERT(lrtxg == 0); 1764 } 1765 1766 /* 1767 * Verify that the current bonus buffer is not newer than our txg. 1768 */ 1769 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1770 MAX(txg, lrtxg), crtxg); 1771 1772 dmu_buf_will_dirty(db, tx); 1773 1774 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1775 ASSERT3U(lr->lr_size, <=, db->db_size); 1776 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1777 bbt = ztest_bt_bonus(db); 1778 1779 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1780 1781 dmu_buf_rele(db, FTAG); 1782 1783 (void) ztest_log_setattr(zd, tx, lr); 1784 1785 dmu_tx_commit(tx); 1786 1787 ztest_object_unlock(zd, lr->lr_foid); 1788 1789 return (0); 1790 } 1791 1792 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1793 NULL, /* 0 no such transaction type */ 1794 ztest_replay_create, /* TX_CREATE */ 1795 NULL, /* TX_MKDIR */ 1796 NULL, /* TX_MKXATTR */ 1797 NULL, /* TX_SYMLINK */ 1798 ztest_replay_remove, /* TX_REMOVE */ 1799 NULL, /* TX_RMDIR */ 1800 NULL, /* TX_LINK */ 1801 NULL, /* TX_RENAME */ 1802 ztest_replay_write, /* TX_WRITE */ 1803 ztest_replay_truncate, /* TX_TRUNCATE */ 1804 ztest_replay_setattr, /* TX_SETATTR */ 1805 NULL, /* TX_ACL */ 1806 NULL, /* TX_CREATE_ACL */ 1807 NULL, /* TX_CREATE_ATTR */ 1808 NULL, /* TX_CREATE_ACL_ATTR */ 1809 NULL, /* TX_MKDIR_ACL */ 1810 NULL, /* TX_MKDIR_ATTR */ 1811 NULL, /* TX_MKDIR_ACL_ATTR */ 1812 NULL, /* TX_WRITE2 */ 1813 }; 1814 1815 /* 1816 * ZIL get_data callbacks 1817 */ 1818 1819 static void 1820 ztest_get_done(zgd_t *zgd, int error) 1821 { 1822 ztest_ds_t *zd = zgd->zgd_private; 1823 uint64_t object = zgd->zgd_rl->rl_object; 1824 1825 if (zgd->zgd_db) 1826 dmu_buf_rele(zgd->zgd_db, zgd); 1827 1828 ztest_range_unlock(zgd->zgd_rl); 1829 ztest_object_unlock(zd, object); 1830 1831 if (error == 0 && zgd->zgd_bp) 1832 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1833 1834 umem_free(zgd, sizeof (*zgd)); 1835 } 1836 1837 static int 1838 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1839 { 1840 ztest_ds_t *zd = arg; 1841 objset_t *os = zd->zd_os; 1842 uint64_t object = lr->lr_foid; 1843 uint64_t offset = lr->lr_offset; 1844 uint64_t size = lr->lr_length; 1845 blkptr_t *bp = &lr->lr_blkptr; 1846 uint64_t txg = lr->lr_common.lrc_txg; 1847 uint64_t crtxg; 1848 dmu_object_info_t doi; 1849 dmu_buf_t *db; 1850 zgd_t *zgd; 1851 int error; 1852 1853 ztest_object_lock(zd, object, RL_READER); 1854 error = dmu_bonus_hold(os, object, FTAG, &db); 1855 if (error) { 1856 ztest_object_unlock(zd, object); 1857 return (error); 1858 } 1859 1860 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1861 1862 if (crtxg == 0 || crtxg > txg) { 1863 dmu_buf_rele(db, FTAG); 1864 ztest_object_unlock(zd, object); 1865 return (ENOENT); 1866 } 1867 1868 dmu_object_info_from_db(db, &doi); 1869 dmu_buf_rele(db, FTAG); 1870 db = NULL; 1871 1872 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1873 zgd->zgd_zilog = zd->zd_zilog; 1874 zgd->zgd_private = zd; 1875 1876 if (buf != NULL) { /* immediate write */ 1877 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1878 RL_READER); 1879 1880 error = dmu_read(os, object, offset, size, buf, 1881 DMU_READ_NO_PREFETCH); 1882 ASSERT(error == 0); 1883 } else { 1884 size = doi.doi_data_block_size; 1885 if (ISP2(size)) { 1886 offset = P2ALIGN(offset, size); 1887 } else { 1888 ASSERT(offset < size); 1889 offset = 0; 1890 } 1891 1892 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1893 RL_READER); 1894 1895 error = dmu_buf_hold(os, object, offset, zgd, &db, 1896 DMU_READ_NO_PREFETCH); 1897 1898 if (error == 0) { 1899 blkptr_t *obp = dmu_buf_get_blkptr(db); 1900 if (obp) { 1901 ASSERT(BP_IS_HOLE(bp)); 1902 *bp = *obp; 1903 } 1904 1905 zgd->zgd_db = db; 1906 zgd->zgd_bp = bp; 1907 1908 ASSERT(db->db_offset == offset); 1909 ASSERT(db->db_size == size); 1910 1911 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1912 ztest_get_done, zgd); 1913 1914 if (error == 0) 1915 return (0); 1916 } 1917 } 1918 1919 ztest_get_done(zgd, error); 1920 1921 return (error); 1922 } 1923 1924 static void * 1925 ztest_lr_alloc(size_t lrsize, char *name) 1926 { 1927 char *lr; 1928 size_t namesize = name ? strlen(name) + 1 : 0; 1929 1930 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1931 1932 if (name) 1933 bcopy(name, lr + lrsize, namesize); 1934 1935 return (lr); 1936 } 1937 1938 void 1939 ztest_lr_free(void *lr, size_t lrsize, char *name) 1940 { 1941 size_t namesize = name ? strlen(name) + 1 : 0; 1942 1943 umem_free(lr, lrsize + namesize); 1944 } 1945 1946 /* 1947 * Lookup a bunch of objects. Returns the number of objects not found. 1948 */ 1949 static int 1950 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1951 { 1952 int missing = 0; 1953 int error; 1954 1955 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1956 1957 for (int i = 0; i < count; i++, od++) { 1958 od->od_object = 0; 1959 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1960 sizeof (uint64_t), 1, &od->od_object); 1961 if (error) { 1962 ASSERT(error == ENOENT); 1963 ASSERT(od->od_object == 0); 1964 missing++; 1965 } else { 1966 dmu_buf_t *db; 1967 ztest_block_tag_t *bbt; 1968 dmu_object_info_t doi; 1969 1970 ASSERT(od->od_object != 0); 1971 ASSERT(missing == 0); /* there should be no gaps */ 1972 1973 ztest_object_lock(zd, od->od_object, RL_READER); 1974 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1975 od->od_object, FTAG, &db)); 1976 dmu_object_info_from_db(db, &doi); 1977 bbt = ztest_bt_bonus(db); 1978 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1979 od->od_type = doi.doi_type; 1980 od->od_blocksize = doi.doi_data_block_size; 1981 od->od_gen = bbt->bt_gen; 1982 dmu_buf_rele(db, FTAG); 1983 ztest_object_unlock(zd, od->od_object); 1984 } 1985 } 1986 1987 return (missing); 1988 } 1989 1990 static int 1991 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1992 { 1993 int missing = 0; 1994 1995 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1996 1997 for (int i = 0; i < count; i++, od++) { 1998 if (missing) { 1999 od->od_object = 0; 2000 missing++; 2001 continue; 2002 } 2003 2004 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2005 2006 lr->lr_doid = od->od_dir; 2007 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 2008 lr->lrz_type = od->od_crtype; 2009 lr->lrz_blocksize = od->od_crblocksize; 2010 lr->lrz_ibshift = ztest_random_ibshift(); 2011 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 2012 lr->lrz_bonuslen = dmu_bonus_max(); 2013 lr->lr_gen = od->od_crgen; 2014 lr->lr_crtime[0] = time(NULL); 2015 2016 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 2017 ASSERT(missing == 0); 2018 od->od_object = 0; 2019 missing++; 2020 } else { 2021 od->od_object = lr->lr_foid; 2022 od->od_type = od->od_crtype; 2023 od->od_blocksize = od->od_crblocksize; 2024 od->od_gen = od->od_crgen; 2025 ASSERT(od->od_object != 0); 2026 } 2027 2028 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2029 } 2030 2031 return (missing); 2032 } 2033 2034 static int 2035 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2036 { 2037 int missing = 0; 2038 int error; 2039 2040 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 2041 2042 od += count - 1; 2043 2044 for (int i = count - 1; i >= 0; i--, od--) { 2045 if (missing) { 2046 missing++; 2047 continue; 2048 } 2049 2050 /* 2051 * No object was found. 2052 */ 2053 if (od->od_object == 0) 2054 continue; 2055 2056 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2057 2058 lr->lr_doid = od->od_dir; 2059 2060 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2061 ASSERT3U(error, ==, ENOSPC); 2062 missing++; 2063 } else { 2064 od->od_object = 0; 2065 } 2066 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2067 } 2068 2069 return (missing); 2070 } 2071 2072 static int 2073 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2074 void *data) 2075 { 2076 lr_write_t *lr; 2077 int error; 2078 2079 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2080 2081 lr->lr_foid = object; 2082 lr->lr_offset = offset; 2083 lr->lr_length = size; 2084 lr->lr_blkoff = 0; 2085 BP_ZERO(&lr->lr_blkptr); 2086 2087 bcopy(data, lr + 1, size); 2088 2089 error = ztest_replay_write(zd, lr, B_FALSE); 2090 2091 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2092 2093 return (error); 2094 } 2095 2096 static int 2097 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2098 { 2099 lr_truncate_t *lr; 2100 int error; 2101 2102 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2103 2104 lr->lr_foid = object; 2105 lr->lr_offset = offset; 2106 lr->lr_length = size; 2107 2108 error = ztest_replay_truncate(zd, lr, B_FALSE); 2109 2110 ztest_lr_free(lr, sizeof (*lr), NULL); 2111 2112 return (error); 2113 } 2114 2115 static int 2116 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2117 { 2118 lr_setattr_t *lr; 2119 int error; 2120 2121 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2122 2123 lr->lr_foid = object; 2124 lr->lr_size = 0; 2125 lr->lr_mode = 0; 2126 2127 error = ztest_replay_setattr(zd, lr, B_FALSE); 2128 2129 ztest_lr_free(lr, sizeof (*lr), NULL); 2130 2131 return (error); 2132 } 2133 2134 static void 2135 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2136 { 2137 objset_t *os = zd->zd_os; 2138 dmu_tx_t *tx; 2139 uint64_t txg; 2140 rl_t *rl; 2141 2142 txg_wait_synced(dmu_objset_pool(os), 0); 2143 2144 ztest_object_lock(zd, object, RL_READER); 2145 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2146 2147 tx = dmu_tx_create(os); 2148 2149 dmu_tx_hold_write(tx, object, offset, size); 2150 2151 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2152 2153 if (txg != 0) { 2154 dmu_prealloc(os, object, offset, size, tx); 2155 dmu_tx_commit(tx); 2156 txg_wait_synced(dmu_objset_pool(os), txg); 2157 } else { 2158 (void) dmu_free_long_range(os, object, offset, size); 2159 } 2160 2161 ztest_range_unlock(rl); 2162 ztest_object_unlock(zd, object); 2163 } 2164 2165 static void 2166 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2167 { 2168 int err; 2169 ztest_block_tag_t wbt; 2170 dmu_object_info_t doi; 2171 enum ztest_io_type io_type; 2172 uint64_t blocksize; 2173 void *data; 2174 2175 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2176 blocksize = doi.doi_data_block_size; 2177 data = umem_alloc(blocksize, UMEM_NOFAIL); 2178 2179 /* 2180 * Pick an i/o type at random, biased toward writing block tags. 2181 */ 2182 io_type = ztest_random(ZTEST_IO_TYPES); 2183 if (ztest_random(2) == 0) 2184 io_type = ZTEST_IO_WRITE_TAG; 2185 2186 (void) rw_rdlock(&zd->zd_zilog_lock); 2187 2188 switch (io_type) { 2189 2190 case ZTEST_IO_WRITE_TAG: 2191 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2192 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2193 break; 2194 2195 case ZTEST_IO_WRITE_PATTERN: 2196 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2197 if (ztest_random(2) == 0) { 2198 /* 2199 * Induce fletcher2 collisions to ensure that 2200 * zio_ddt_collision() detects and resolves them 2201 * when using fletcher2-verify for deduplication. 2202 */ 2203 ((uint64_t *)data)[0] ^= 1ULL << 63; 2204 ((uint64_t *)data)[4] ^= 1ULL << 63; 2205 } 2206 (void) ztest_write(zd, object, offset, blocksize, data); 2207 break; 2208 2209 case ZTEST_IO_WRITE_ZEROES: 2210 bzero(data, blocksize); 2211 (void) ztest_write(zd, object, offset, blocksize, data); 2212 break; 2213 2214 case ZTEST_IO_TRUNCATE: 2215 (void) ztest_truncate(zd, object, offset, blocksize); 2216 break; 2217 2218 case ZTEST_IO_SETATTR: 2219 (void) ztest_setattr(zd, object); 2220 break; 2221 2222 case ZTEST_IO_REWRITE: 2223 (void) rw_rdlock(&ztest_name_lock); 2224 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2225 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2226 B_FALSE); 2227 VERIFY(err == 0 || err == ENOSPC); 2228 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2229 ZFS_PROP_COMPRESSION, 2230 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2231 B_FALSE); 2232 VERIFY(err == 0 || err == ENOSPC); 2233 (void) rw_unlock(&ztest_name_lock); 2234 2235 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2236 DMU_READ_NO_PREFETCH)); 2237 2238 (void) ztest_write(zd, object, offset, blocksize, data); 2239 break; 2240 } 2241 2242 (void) rw_unlock(&zd->zd_zilog_lock); 2243 2244 umem_free(data, blocksize); 2245 } 2246 2247 /* 2248 * Initialize an object description template. 2249 */ 2250 static void 2251 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2252 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2253 { 2254 od->od_dir = ZTEST_DIROBJ; 2255 od->od_object = 0; 2256 2257 od->od_crtype = type; 2258 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2259 od->od_crgen = gen; 2260 2261 od->od_type = DMU_OT_NONE; 2262 od->od_blocksize = 0; 2263 od->od_gen = 0; 2264 2265 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2266 tag, (int64_t)id, index); 2267 } 2268 2269 /* 2270 * Lookup or create the objects for a test using the od template. 2271 * If the objects do not all exist, or if 'remove' is specified, 2272 * remove any existing objects and create new ones. Otherwise, 2273 * use the existing objects. 2274 */ 2275 static int 2276 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2277 { 2278 int count = size / sizeof (*od); 2279 int rv = 0; 2280 2281 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2282 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2283 (ztest_remove(zd, od, count) != 0 || 2284 ztest_create(zd, od, count) != 0)) 2285 rv = -1; 2286 zd->zd_od = od; 2287 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2288 2289 return (rv); 2290 } 2291 2292 /* ARGSUSED */ 2293 void 2294 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2295 { 2296 zilog_t *zilog = zd->zd_zilog; 2297 2298 (void) rw_rdlock(&zd->zd_zilog_lock); 2299 2300 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2301 2302 /* 2303 * Remember the committed values in zd, which is in parent/child 2304 * shared memory. If we die, the next iteration of ztest_run() 2305 * will verify that the log really does contain this record. 2306 */ 2307 mutex_enter(&zilog->zl_lock); 2308 ASSERT(zd->zd_shared != NULL); 2309 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2310 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2311 mutex_exit(&zilog->zl_lock); 2312 2313 (void) rw_unlock(&zd->zd_zilog_lock); 2314 } 2315 2316 /* 2317 * This function is designed to simulate the operations that occur during a 2318 * mount/unmount operation. We hold the dataset across these operations in an 2319 * attempt to expose any implicit assumptions about ZIL management. 2320 */ 2321 /* ARGSUSED */ 2322 void 2323 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2324 { 2325 objset_t *os = zd->zd_os; 2326 2327 /* 2328 * We grab the zd_dirobj_lock to ensure that no other thread is 2329 * updating the zil (i.e. adding in-memory log records) and the 2330 * zd_zilog_lock to block any I/O. 2331 */ 2332 VERIFY0(mutex_lock(&zd->zd_dirobj_lock)); 2333 (void) rw_wrlock(&zd->zd_zilog_lock); 2334 2335 /* zfsvfs_teardown() */ 2336 zil_close(zd->zd_zilog); 2337 2338 /* zfsvfs_setup() */ 2339 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2340 zil_replay(os, zd, ztest_replay_vector); 2341 2342 (void) rw_unlock(&zd->zd_zilog_lock); 2343 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2344 } 2345 2346 /* 2347 * Verify that we can't destroy an active pool, create an existing pool, 2348 * or create a pool with a bad vdev spec. 2349 */ 2350 /* ARGSUSED */ 2351 void 2352 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2353 { 2354 ztest_shared_opts_t *zo = &ztest_opts; 2355 spa_t *spa; 2356 nvlist_t *nvroot; 2357 2358 /* 2359 * Attempt to create using a bad file. 2360 */ 2361 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2362 VERIFY3U(ENOENT, ==, 2363 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2364 nvlist_free(nvroot); 2365 2366 /* 2367 * Attempt to create using a bad mirror. 2368 */ 2369 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2370 VERIFY3U(ENOENT, ==, 2371 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2372 nvlist_free(nvroot); 2373 2374 /* 2375 * Attempt to create an existing pool. It shouldn't matter 2376 * what's in the nvroot; we should fail with EEXIST. 2377 */ 2378 (void) rw_rdlock(&ztest_name_lock); 2379 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2380 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2381 nvlist_free(nvroot); 2382 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2383 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2384 spa_close(spa, FTAG); 2385 2386 (void) rw_unlock(&ztest_name_lock); 2387 } 2388 2389 /* ARGSUSED */ 2390 void 2391 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2392 { 2393 spa_t *spa; 2394 uint64_t initial_version = SPA_VERSION_INITIAL; 2395 uint64_t version, newversion; 2396 nvlist_t *nvroot, *props; 2397 char *name; 2398 2399 VERIFY0(mutex_lock(&ztest_vdev_lock)); 2400 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2401 2402 /* 2403 * Clean up from previous runs. 2404 */ 2405 (void) spa_destroy(name); 2406 2407 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2408 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2409 2410 /* 2411 * If we're configuring a RAIDZ device then make sure that the 2412 * the initial version is capable of supporting that feature. 2413 */ 2414 switch (ztest_opts.zo_raidz_parity) { 2415 case 0: 2416 case 1: 2417 initial_version = SPA_VERSION_INITIAL; 2418 break; 2419 case 2: 2420 initial_version = SPA_VERSION_RAIDZ2; 2421 break; 2422 case 3: 2423 initial_version = SPA_VERSION_RAIDZ3; 2424 break; 2425 } 2426 2427 /* 2428 * Create a pool with a spa version that can be upgraded. Pick 2429 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2430 */ 2431 do { 2432 version = ztest_random_spa_version(initial_version); 2433 } while (version > SPA_VERSION_BEFORE_FEATURES); 2434 2435 props = fnvlist_alloc(); 2436 fnvlist_add_uint64(props, 2437 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2438 VERIFY0(spa_create(name, nvroot, props, NULL)); 2439 fnvlist_free(nvroot); 2440 fnvlist_free(props); 2441 2442 VERIFY0(spa_open(name, &spa, FTAG)); 2443 VERIFY3U(spa_version(spa), ==, version); 2444 newversion = ztest_random_spa_version(version + 1); 2445 2446 if (ztest_opts.zo_verbose >= 4) { 2447 (void) printf("upgrading spa version from %llu to %llu\n", 2448 (u_longlong_t)version, (u_longlong_t)newversion); 2449 } 2450 2451 spa_upgrade(spa, newversion); 2452 VERIFY3U(spa_version(spa), >, version); 2453 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2454 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2455 spa_close(spa, FTAG); 2456 2457 strfree(name); 2458 VERIFY0(mutex_unlock(&ztest_vdev_lock)); 2459 } 2460 2461 static vdev_t * 2462 vdev_lookup_by_path(vdev_t *vd, const char *path) 2463 { 2464 vdev_t *mvd; 2465 2466 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2467 return (vd); 2468 2469 for (int c = 0; c < vd->vdev_children; c++) 2470 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2471 NULL) 2472 return (mvd); 2473 2474 return (NULL); 2475 } 2476 2477 /* 2478 * Find the first available hole which can be used as a top-level. 2479 */ 2480 int 2481 find_vdev_hole(spa_t *spa) 2482 { 2483 vdev_t *rvd = spa->spa_root_vdev; 2484 int c; 2485 2486 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2487 2488 for (c = 0; c < rvd->vdev_children; c++) { 2489 vdev_t *cvd = rvd->vdev_child[c]; 2490 2491 if (cvd->vdev_ishole) 2492 break; 2493 } 2494 return (c); 2495 } 2496 2497 /* 2498 * Verify that vdev_add() works as expected. 2499 */ 2500 /* ARGSUSED */ 2501 void 2502 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2503 { 2504 ztest_shared_t *zs = ztest_shared; 2505 spa_t *spa = ztest_spa; 2506 uint64_t leaves; 2507 uint64_t guid; 2508 nvlist_t *nvroot; 2509 int error; 2510 2511 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2512 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2513 2514 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2515 2516 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2517 2518 /* 2519 * If we have slogs then remove them 1/4 of the time. 2520 */ 2521 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2522 /* 2523 * Grab the guid from the head of the log class rotor. 2524 */ 2525 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2526 2527 spa_config_exit(spa, SCL_VDEV, FTAG); 2528 2529 /* 2530 * We have to grab the zs_name_lock as writer to 2531 * prevent a race between removing a slog (dmu_objset_find) 2532 * and destroying a dataset. Removing the slog will 2533 * grab a reference on the dataset which may cause 2534 * dmu_objset_destroy() to fail with EBUSY thus 2535 * leaving the dataset in an inconsistent state. 2536 */ 2537 VERIFY(rw_wrlock(&ztest_name_lock) == 0); 2538 error = spa_vdev_remove(spa, guid, B_FALSE); 2539 VERIFY(rw_unlock(&ztest_name_lock) == 0); 2540 2541 if (error && error != EEXIST) 2542 fatal(0, "spa_vdev_remove() = %d", error); 2543 } else { 2544 spa_config_exit(spa, SCL_VDEV, FTAG); 2545 2546 /* 2547 * Make 1/4 of the devices be log devices. 2548 */ 2549 nvroot = make_vdev_root(NULL, NULL, NULL, 2550 ztest_opts.zo_vdev_size, 0, 2551 ztest_random(4) == 0, ztest_opts.zo_raidz, 2552 zs->zs_mirrors, 1); 2553 2554 error = spa_vdev_add(spa, nvroot); 2555 nvlist_free(nvroot); 2556 2557 if (error == ENOSPC) 2558 ztest_record_enospc("spa_vdev_add"); 2559 else if (error != 0) 2560 fatal(0, "spa_vdev_add() = %d", error); 2561 } 2562 2563 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2564 } 2565 2566 /* 2567 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2568 */ 2569 /* ARGSUSED */ 2570 void 2571 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2572 { 2573 ztest_shared_t *zs = ztest_shared; 2574 spa_t *spa = ztest_spa; 2575 vdev_t *rvd = spa->spa_root_vdev; 2576 spa_aux_vdev_t *sav; 2577 char *aux; 2578 uint64_t guid = 0; 2579 int error; 2580 2581 if (ztest_random(2) == 0) { 2582 sav = &spa->spa_spares; 2583 aux = ZPOOL_CONFIG_SPARES; 2584 } else { 2585 sav = &spa->spa_l2cache; 2586 aux = ZPOOL_CONFIG_L2CACHE; 2587 } 2588 2589 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2590 2591 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2592 2593 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2594 /* 2595 * Pick a random device to remove. 2596 */ 2597 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2598 } else { 2599 /* 2600 * Find an unused device we can add. 2601 */ 2602 zs->zs_vdev_aux = 0; 2603 for (;;) { 2604 char path[MAXPATHLEN]; 2605 int c; 2606 (void) snprintf(path, sizeof (path), ztest_aux_template, 2607 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2608 zs->zs_vdev_aux); 2609 for (c = 0; c < sav->sav_count; c++) 2610 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2611 path) == 0) 2612 break; 2613 if (c == sav->sav_count && 2614 vdev_lookup_by_path(rvd, path) == NULL) 2615 break; 2616 zs->zs_vdev_aux++; 2617 } 2618 } 2619 2620 spa_config_exit(spa, SCL_VDEV, FTAG); 2621 2622 if (guid == 0) { 2623 /* 2624 * Add a new device. 2625 */ 2626 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2627 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2628 error = spa_vdev_add(spa, nvroot); 2629 if (error != 0) 2630 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2631 nvlist_free(nvroot); 2632 } else { 2633 /* 2634 * Remove an existing device. Sometimes, dirty its 2635 * vdev state first to make sure we handle removal 2636 * of devices that have pending state changes. 2637 */ 2638 if (ztest_random(2) == 0) 2639 (void) vdev_online(spa, guid, 0, NULL); 2640 2641 error = spa_vdev_remove(spa, guid, B_FALSE); 2642 if (error != 0 && error != EBUSY) 2643 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2644 } 2645 2646 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2647 } 2648 2649 /* 2650 * split a pool if it has mirror tlvdevs 2651 */ 2652 /* ARGSUSED */ 2653 void 2654 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2655 { 2656 ztest_shared_t *zs = ztest_shared; 2657 spa_t *spa = ztest_spa; 2658 vdev_t *rvd = spa->spa_root_vdev; 2659 nvlist_t *tree, **child, *config, *split, **schild; 2660 uint_t c, children, schildren = 0, lastlogid = 0; 2661 int error = 0; 2662 2663 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2664 2665 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2666 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2667 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2668 return; 2669 } 2670 2671 /* clean up the old pool, if any */ 2672 (void) spa_destroy("splitp"); 2673 2674 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2675 2676 /* generate a config from the existing config */ 2677 mutex_enter(&spa->spa_props_lock); 2678 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2679 &tree) == 0); 2680 mutex_exit(&spa->spa_props_lock); 2681 2682 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2683 &children) == 0); 2684 2685 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2686 for (c = 0; c < children; c++) { 2687 vdev_t *tvd = rvd->vdev_child[c]; 2688 nvlist_t **mchild; 2689 uint_t mchildren; 2690 2691 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2692 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2693 0) == 0); 2694 VERIFY(nvlist_add_string(schild[schildren], 2695 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2696 VERIFY(nvlist_add_uint64(schild[schildren], 2697 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2698 if (lastlogid == 0) 2699 lastlogid = schildren; 2700 ++schildren; 2701 continue; 2702 } 2703 lastlogid = 0; 2704 VERIFY(nvlist_lookup_nvlist_array(child[c], 2705 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2706 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2707 } 2708 2709 /* OK, create a config that can be used to split */ 2710 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2711 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2712 VDEV_TYPE_ROOT) == 0); 2713 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2714 lastlogid != 0 ? lastlogid : schildren) == 0); 2715 2716 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2717 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2718 2719 for (c = 0; c < schildren; c++) 2720 nvlist_free(schild[c]); 2721 free(schild); 2722 nvlist_free(split); 2723 2724 spa_config_exit(spa, SCL_VDEV, FTAG); 2725 2726 (void) rw_wrlock(&ztest_name_lock); 2727 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2728 (void) rw_unlock(&ztest_name_lock); 2729 2730 nvlist_free(config); 2731 2732 if (error == 0) { 2733 (void) printf("successful split - results:\n"); 2734 mutex_enter(&spa_namespace_lock); 2735 show_pool_stats(spa); 2736 show_pool_stats(spa_lookup("splitp")); 2737 mutex_exit(&spa_namespace_lock); 2738 ++zs->zs_splits; 2739 --zs->zs_mirrors; 2740 } 2741 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2742 2743 } 2744 2745 /* 2746 * Verify that we can attach and detach devices. 2747 */ 2748 /* ARGSUSED */ 2749 void 2750 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2751 { 2752 ztest_shared_t *zs = ztest_shared; 2753 spa_t *spa = ztest_spa; 2754 spa_aux_vdev_t *sav = &spa->spa_spares; 2755 vdev_t *rvd = spa->spa_root_vdev; 2756 vdev_t *oldvd, *newvd, *pvd; 2757 nvlist_t *root; 2758 uint64_t leaves; 2759 uint64_t leaf, top; 2760 uint64_t ashift = ztest_get_ashift(); 2761 uint64_t oldguid, pguid; 2762 uint64_t oldsize, newsize; 2763 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2764 int replacing; 2765 int oldvd_has_siblings = B_FALSE; 2766 int newvd_is_spare = B_FALSE; 2767 int oldvd_is_log; 2768 int error, expected_error; 2769 2770 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2771 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2772 2773 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2774 2775 /* 2776 * Decide whether to do an attach or a replace. 2777 */ 2778 replacing = ztest_random(2); 2779 2780 /* 2781 * Pick a random top-level vdev. 2782 */ 2783 top = ztest_random_vdev_top(spa, B_TRUE); 2784 2785 /* 2786 * Pick a random leaf within it. 2787 */ 2788 leaf = ztest_random(leaves); 2789 2790 /* 2791 * Locate this vdev. 2792 */ 2793 oldvd = rvd->vdev_child[top]; 2794 if (zs->zs_mirrors >= 1) { 2795 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2796 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2797 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2798 } 2799 if (ztest_opts.zo_raidz > 1) { 2800 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2801 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2802 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2803 } 2804 2805 /* 2806 * If we're already doing an attach or replace, oldvd may be a 2807 * mirror vdev -- in which case, pick a random child. 2808 */ 2809 while (oldvd->vdev_children != 0) { 2810 oldvd_has_siblings = B_TRUE; 2811 ASSERT(oldvd->vdev_children >= 2); 2812 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2813 } 2814 2815 oldguid = oldvd->vdev_guid; 2816 oldsize = vdev_get_min_asize(oldvd); 2817 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2818 (void) strcpy(oldpath, oldvd->vdev_path); 2819 pvd = oldvd->vdev_parent; 2820 pguid = pvd->vdev_guid; 2821 2822 /* 2823 * If oldvd has siblings, then half of the time, detach it. 2824 */ 2825 if (oldvd_has_siblings && ztest_random(2) == 0) { 2826 spa_config_exit(spa, SCL_VDEV, FTAG); 2827 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2828 if (error != 0 && error != ENODEV && error != EBUSY && 2829 error != ENOTSUP) 2830 fatal(0, "detach (%s) returned %d", oldpath, error); 2831 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2832 return; 2833 } 2834 2835 /* 2836 * For the new vdev, choose with equal probability between the two 2837 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2838 */ 2839 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2840 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2841 newvd_is_spare = B_TRUE; 2842 (void) strcpy(newpath, newvd->vdev_path); 2843 } else { 2844 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2845 ztest_opts.zo_dir, ztest_opts.zo_pool, 2846 top * leaves + leaf); 2847 if (ztest_random(2) == 0) 2848 newpath[strlen(newpath) - 1] = 'b'; 2849 newvd = vdev_lookup_by_path(rvd, newpath); 2850 } 2851 2852 if (newvd) { 2853 newsize = vdev_get_min_asize(newvd); 2854 } else { 2855 /* 2856 * Make newsize a little bigger or smaller than oldsize. 2857 * If it's smaller, the attach should fail. 2858 * If it's larger, and we're doing a replace, 2859 * we should get dynamic LUN growth when we're done. 2860 */ 2861 newsize = 10 * oldsize / (9 + ztest_random(3)); 2862 } 2863 2864 /* 2865 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2866 * unless it's a replace; in that case any non-replacing parent is OK. 2867 * 2868 * If newvd is already part of the pool, it should fail with EBUSY. 2869 * 2870 * If newvd is too small, it should fail with EOVERFLOW. 2871 */ 2872 if (pvd->vdev_ops != &vdev_mirror_ops && 2873 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2874 pvd->vdev_ops == &vdev_replacing_ops || 2875 pvd->vdev_ops == &vdev_spare_ops)) 2876 expected_error = ENOTSUP; 2877 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2878 expected_error = ENOTSUP; 2879 else if (newvd == oldvd) 2880 expected_error = replacing ? 0 : EBUSY; 2881 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2882 expected_error = EBUSY; 2883 else if (newsize < oldsize) 2884 expected_error = EOVERFLOW; 2885 else if (ashift > oldvd->vdev_top->vdev_ashift) 2886 expected_error = EDOM; 2887 else 2888 expected_error = 0; 2889 2890 spa_config_exit(spa, SCL_VDEV, FTAG); 2891 2892 /* 2893 * Build the nvlist describing newpath. 2894 */ 2895 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 2896 ashift, 0, 0, 0, 1); 2897 2898 error = spa_vdev_attach(spa, oldguid, root, replacing); 2899 2900 nvlist_free(root); 2901 2902 /* 2903 * If our parent was the replacing vdev, but the replace completed, 2904 * then instead of failing with ENOTSUP we may either succeed, 2905 * fail with ENODEV, or fail with EOVERFLOW. 2906 */ 2907 if (expected_error == ENOTSUP && 2908 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2909 expected_error = error; 2910 2911 /* 2912 * If someone grew the LUN, the replacement may be too small. 2913 */ 2914 if (error == EOVERFLOW || error == EBUSY) 2915 expected_error = error; 2916 2917 /* XXX workaround 6690467 */ 2918 if (error != expected_error && expected_error != EBUSY) { 2919 fatal(0, "attach (%s %llu, %s %llu, %d) " 2920 "returned %d, expected %d", 2921 oldpath, oldsize, newpath, 2922 newsize, replacing, error, expected_error); 2923 } 2924 2925 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2926 } 2927 2928 /* 2929 * Callback function which expands the physical size of the vdev. 2930 */ 2931 vdev_t * 2932 grow_vdev(vdev_t *vd, void *arg) 2933 { 2934 spa_t *spa = vd->vdev_spa; 2935 size_t *newsize = arg; 2936 size_t fsize; 2937 int fd; 2938 2939 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2940 ASSERT(vd->vdev_ops->vdev_op_leaf); 2941 2942 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2943 return (vd); 2944 2945 fsize = lseek(fd, 0, SEEK_END); 2946 (void) ftruncate(fd, *newsize); 2947 2948 if (ztest_opts.zo_verbose >= 6) { 2949 (void) printf("%s grew from %lu to %lu bytes\n", 2950 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2951 } 2952 (void) close(fd); 2953 return (NULL); 2954 } 2955 2956 /* 2957 * Callback function which expands a given vdev by calling vdev_online(). 2958 */ 2959 /* ARGSUSED */ 2960 vdev_t * 2961 online_vdev(vdev_t *vd, void *arg) 2962 { 2963 spa_t *spa = vd->vdev_spa; 2964 vdev_t *tvd = vd->vdev_top; 2965 uint64_t guid = vd->vdev_guid; 2966 uint64_t generation = spa->spa_config_generation + 1; 2967 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2968 int error; 2969 2970 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2971 ASSERT(vd->vdev_ops->vdev_op_leaf); 2972 2973 /* Calling vdev_online will initialize the new metaslabs */ 2974 spa_config_exit(spa, SCL_STATE, spa); 2975 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2976 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2977 2978 /* 2979 * If vdev_online returned an error or the underlying vdev_open 2980 * failed then we abort the expand. The only way to know that 2981 * vdev_open fails is by checking the returned newstate. 2982 */ 2983 if (error || newstate != VDEV_STATE_HEALTHY) { 2984 if (ztest_opts.zo_verbose >= 5) { 2985 (void) printf("Unable to expand vdev, state %llu, " 2986 "error %d\n", (u_longlong_t)newstate, error); 2987 } 2988 return (vd); 2989 } 2990 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2991 2992 /* 2993 * Since we dropped the lock we need to ensure that we're 2994 * still talking to the original vdev. It's possible this 2995 * vdev may have been detached/replaced while we were 2996 * trying to online it. 2997 */ 2998 if (generation != spa->spa_config_generation) { 2999 if (ztest_opts.zo_verbose >= 5) { 3000 (void) printf("vdev configuration has changed, " 3001 "guid %llu, state %llu, expected gen %llu, " 3002 "got gen %llu\n", 3003 (u_longlong_t)guid, 3004 (u_longlong_t)tvd->vdev_state, 3005 (u_longlong_t)generation, 3006 (u_longlong_t)spa->spa_config_generation); 3007 } 3008 return (vd); 3009 } 3010 return (NULL); 3011 } 3012 3013 /* 3014 * Traverse the vdev tree calling the supplied function. 3015 * We continue to walk the tree until we either have walked all 3016 * children or we receive a non-NULL return from the callback. 3017 * If a NULL callback is passed, then we just return back the first 3018 * leaf vdev we encounter. 3019 */ 3020 vdev_t * 3021 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 3022 { 3023 if (vd->vdev_ops->vdev_op_leaf) { 3024 if (func == NULL) 3025 return (vd); 3026 else 3027 return (func(vd, arg)); 3028 } 3029 3030 for (uint_t c = 0; c < vd->vdev_children; c++) { 3031 vdev_t *cvd = vd->vdev_child[c]; 3032 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3033 return (cvd); 3034 } 3035 return (NULL); 3036 } 3037 3038 /* 3039 * Verify that dynamic LUN growth works as expected. 3040 */ 3041 /* ARGSUSED */ 3042 void 3043 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3044 { 3045 spa_t *spa = ztest_spa; 3046 vdev_t *vd, *tvd; 3047 metaslab_class_t *mc; 3048 metaslab_group_t *mg; 3049 size_t psize, newsize; 3050 uint64_t top; 3051 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3052 3053 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 3054 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3055 3056 top = ztest_random_vdev_top(spa, B_TRUE); 3057 3058 tvd = spa->spa_root_vdev->vdev_child[top]; 3059 mg = tvd->vdev_mg; 3060 mc = mg->mg_class; 3061 old_ms_count = tvd->vdev_ms_count; 3062 old_class_space = metaslab_class_get_space(mc); 3063 3064 /* 3065 * Determine the size of the first leaf vdev associated with 3066 * our top-level device. 3067 */ 3068 vd = vdev_walk_tree(tvd, NULL, NULL); 3069 ASSERT3P(vd, !=, NULL); 3070 ASSERT(vd->vdev_ops->vdev_op_leaf); 3071 3072 psize = vd->vdev_psize; 3073 3074 /* 3075 * We only try to expand the vdev if it's healthy, less than 4x its 3076 * original size, and it has a valid psize. 3077 */ 3078 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3079 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3080 spa_config_exit(spa, SCL_STATE, spa); 3081 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3082 return; 3083 } 3084 ASSERT(psize > 0); 3085 newsize = psize + psize / 8; 3086 ASSERT3U(newsize, >, psize); 3087 3088 if (ztest_opts.zo_verbose >= 6) { 3089 (void) printf("Expanding LUN %s from %lu to %lu\n", 3090 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3091 } 3092 3093 /* 3094 * Growing the vdev is a two step process: 3095 * 1). expand the physical size (i.e. relabel) 3096 * 2). online the vdev to create the new metaslabs 3097 */ 3098 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3099 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3100 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3101 if (ztest_opts.zo_verbose >= 5) { 3102 (void) printf("Could not expand LUN because " 3103 "the vdev configuration changed.\n"); 3104 } 3105 spa_config_exit(spa, SCL_STATE, spa); 3106 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3107 return; 3108 } 3109 3110 spa_config_exit(spa, SCL_STATE, spa); 3111 3112 /* 3113 * Expanding the LUN will update the config asynchronously, 3114 * thus we must wait for the async thread to complete any 3115 * pending tasks before proceeding. 3116 */ 3117 for (;;) { 3118 boolean_t done; 3119 mutex_enter(&spa->spa_async_lock); 3120 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3121 mutex_exit(&spa->spa_async_lock); 3122 if (done) 3123 break; 3124 txg_wait_synced(spa_get_dsl(spa), 0); 3125 (void) poll(NULL, 0, 100); 3126 } 3127 3128 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3129 3130 tvd = spa->spa_root_vdev->vdev_child[top]; 3131 new_ms_count = tvd->vdev_ms_count; 3132 new_class_space = metaslab_class_get_space(mc); 3133 3134 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3135 if (ztest_opts.zo_verbose >= 5) { 3136 (void) printf("Could not verify LUN expansion due to " 3137 "intervening vdev offline or remove.\n"); 3138 } 3139 spa_config_exit(spa, SCL_STATE, spa); 3140 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3141 return; 3142 } 3143 3144 /* 3145 * Make sure we were able to grow the vdev. 3146 */ 3147 if (new_ms_count <= old_ms_count) 3148 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 3149 old_ms_count, new_ms_count); 3150 3151 /* 3152 * Make sure we were able to grow the pool. 3153 */ 3154 if (new_class_space <= old_class_space) 3155 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 3156 old_class_space, new_class_space); 3157 3158 if (ztest_opts.zo_verbose >= 5) { 3159 char oldnumbuf[6], newnumbuf[6]; 3160 3161 nicenum(old_class_space, oldnumbuf); 3162 nicenum(new_class_space, newnumbuf); 3163 (void) printf("%s grew from %s to %s\n", 3164 spa->spa_name, oldnumbuf, newnumbuf); 3165 } 3166 3167 spa_config_exit(spa, SCL_STATE, spa); 3168 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3169 } 3170 3171 /* 3172 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3173 */ 3174 /* ARGSUSED */ 3175 static void 3176 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3177 { 3178 /* 3179 * Create the objects common to all ztest datasets. 3180 */ 3181 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3182 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3183 } 3184 3185 static int 3186 ztest_dataset_create(char *dsname) 3187 { 3188 uint64_t zilset = ztest_random(100); 3189 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3190 ztest_objset_create_cb, NULL); 3191 3192 if (err || zilset < 80) 3193 return (err); 3194 3195 if (ztest_opts.zo_verbose >= 6) 3196 (void) printf("Setting dataset %s to sync always\n", dsname); 3197 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3198 ZFS_SYNC_ALWAYS, B_FALSE)); 3199 } 3200 3201 /* ARGSUSED */ 3202 static int 3203 ztest_objset_destroy_cb(const char *name, void *arg) 3204 { 3205 objset_t *os; 3206 dmu_object_info_t doi; 3207 int error; 3208 3209 /* 3210 * Verify that the dataset contains a directory object. 3211 */ 3212 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); 3213 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3214 if (error != ENOENT) { 3215 /* We could have crashed in the middle of destroying it */ 3216 ASSERT0(error); 3217 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3218 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3219 } 3220 dmu_objset_disown(os, FTAG); 3221 3222 /* 3223 * Destroy the dataset. 3224 */ 3225 if (strchr(name, '@') != NULL) { 3226 VERIFY0(dsl_destroy_snapshot(name, B_TRUE)); 3227 } else { 3228 error = dsl_destroy_head(name); 3229 /* There could be a hold on this dataset */ 3230 if (error != EBUSY) 3231 ASSERT0(error); 3232 } 3233 return (0); 3234 } 3235 3236 static boolean_t 3237 ztest_snapshot_create(char *osname, uint64_t id) 3238 { 3239 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3240 int error; 3241 3242 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3243 3244 error = dmu_objset_snapshot_one(osname, snapname); 3245 if (error == ENOSPC) { 3246 ztest_record_enospc(FTAG); 3247 return (B_FALSE); 3248 } 3249 if (error != 0 && error != EEXIST) { 3250 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3251 snapname, error); 3252 } 3253 return (B_TRUE); 3254 } 3255 3256 static boolean_t 3257 ztest_snapshot_destroy(char *osname, uint64_t id) 3258 { 3259 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3260 int error; 3261 3262 (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname, 3263 (u_longlong_t)id); 3264 3265 error = dsl_destroy_snapshot(snapname, B_FALSE); 3266 if (error != 0 && error != ENOENT) 3267 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3268 return (B_TRUE); 3269 } 3270 3271 /* ARGSUSED */ 3272 void 3273 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3274 { 3275 ztest_ds_t zdtmp; 3276 int iters; 3277 int error; 3278 objset_t *os, *os2; 3279 char name[ZFS_MAX_DATASET_NAME_LEN]; 3280 zilog_t *zilog; 3281 3282 (void) rw_rdlock(&ztest_name_lock); 3283 3284 (void) snprintf(name, sizeof (name), "%s/temp_%llu", 3285 ztest_opts.zo_pool, (u_longlong_t)id); 3286 3287 /* 3288 * If this dataset exists from a previous run, process its replay log 3289 * half of the time. If we don't replay it, then dmu_objset_destroy() 3290 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3291 */ 3292 if (ztest_random(2) == 0 && 3293 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3294 ztest_zd_init(&zdtmp, NULL, os); 3295 zil_replay(os, &zdtmp, ztest_replay_vector); 3296 ztest_zd_fini(&zdtmp); 3297 dmu_objset_disown(os, FTAG); 3298 } 3299 3300 /* 3301 * There may be an old instance of the dataset we're about to 3302 * create lying around from a previous run. If so, destroy it 3303 * and all of its snapshots. 3304 */ 3305 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3306 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3307 3308 /* 3309 * Verify that the destroyed dataset is no longer in the namespace. 3310 */ 3311 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3312 FTAG, &os)); 3313 3314 /* 3315 * Verify that we can create a new dataset. 3316 */ 3317 error = ztest_dataset_create(name); 3318 if (error) { 3319 if (error == ENOSPC) { 3320 ztest_record_enospc(FTAG); 3321 (void) rw_unlock(&ztest_name_lock); 3322 return; 3323 } 3324 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3325 } 3326 3327 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3328 3329 ztest_zd_init(&zdtmp, NULL, os); 3330 3331 /* 3332 * Open the intent log for it. 3333 */ 3334 zilog = zil_open(os, ztest_get_data); 3335 3336 /* 3337 * Put some objects in there, do a little I/O to them, 3338 * and randomly take a couple of snapshots along the way. 3339 */ 3340 iters = ztest_random(5); 3341 for (int i = 0; i < iters; i++) { 3342 ztest_dmu_object_alloc_free(&zdtmp, id); 3343 if (ztest_random(iters) == 0) 3344 (void) ztest_snapshot_create(name, i); 3345 } 3346 3347 /* 3348 * Verify that we cannot create an existing dataset. 3349 */ 3350 VERIFY3U(EEXIST, ==, 3351 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3352 3353 /* 3354 * Verify that we can hold an objset that is also owned. 3355 */ 3356 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3357 dmu_objset_rele(os2, FTAG); 3358 3359 /* 3360 * Verify that we cannot own an objset that is already owned. 3361 */ 3362 VERIFY3U(EBUSY, ==, 3363 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3364 3365 zil_close(zilog); 3366 dmu_objset_disown(os, FTAG); 3367 ztest_zd_fini(&zdtmp); 3368 3369 (void) rw_unlock(&ztest_name_lock); 3370 } 3371 3372 /* 3373 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3374 */ 3375 void 3376 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3377 { 3378 (void) rw_rdlock(&ztest_name_lock); 3379 (void) ztest_snapshot_destroy(zd->zd_name, id); 3380 (void) ztest_snapshot_create(zd->zd_name, id); 3381 (void) rw_unlock(&ztest_name_lock); 3382 } 3383 3384 /* 3385 * Cleanup non-standard snapshots and clones. 3386 */ 3387 void 3388 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3389 { 3390 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 3391 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 3392 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 3393 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 3394 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 3395 int error; 3396 3397 (void) snprintf(snap1name, sizeof (snap1name), 3398 "%s@s1_%llu", osname, id); 3399 (void) snprintf(clone1name, sizeof (clone1name), 3400 "%s/c1_%llu", osname, id); 3401 (void) snprintf(snap2name, sizeof (snap2name), 3402 "%s@s2_%llu", clone1name, id); 3403 (void) snprintf(clone2name, sizeof (clone2name), 3404 "%s/c2_%llu", osname, id); 3405 (void) snprintf(snap3name, sizeof (snap3name), 3406 "%s@s3_%llu", clone1name, id); 3407 3408 error = dsl_destroy_head(clone2name); 3409 if (error && error != ENOENT) 3410 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 3411 error = dsl_destroy_snapshot(snap3name, B_FALSE); 3412 if (error && error != ENOENT) 3413 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 3414 error = dsl_destroy_snapshot(snap2name, B_FALSE); 3415 if (error && error != ENOENT) 3416 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 3417 error = dsl_destroy_head(clone1name); 3418 if (error && error != ENOENT) 3419 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 3420 error = dsl_destroy_snapshot(snap1name, B_FALSE); 3421 if (error && error != ENOENT) 3422 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 3423 } 3424 3425 /* 3426 * Verify dsl_dataset_promote handles EBUSY 3427 */ 3428 void 3429 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3430 { 3431 objset_t *os; 3432 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 3433 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 3434 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 3435 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 3436 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 3437 char *osname = zd->zd_name; 3438 int error; 3439 3440 (void) rw_rdlock(&ztest_name_lock); 3441 3442 ztest_dsl_dataset_cleanup(osname, id); 3443 3444 (void) snprintf(snap1name, sizeof (snap1name), 3445 "%s@s1_%llu", osname, id); 3446 (void) snprintf(clone1name, sizeof (clone1name), 3447 "%s/c1_%llu", osname, id); 3448 (void) snprintf(snap2name, sizeof (snap2name), 3449 "%s@s2_%llu", clone1name, id); 3450 (void) snprintf(clone2name, sizeof (clone2name), 3451 "%s/c2_%llu", osname, id); 3452 (void) snprintf(snap3name, sizeof (snap3name), 3453 "%s@s3_%llu", clone1name, id); 3454 3455 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3456 if (error && error != EEXIST) { 3457 if (error == ENOSPC) { 3458 ztest_record_enospc(FTAG); 3459 goto out; 3460 } 3461 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3462 } 3463 3464 error = dmu_objset_clone(clone1name, snap1name); 3465 if (error) { 3466 if (error == ENOSPC) { 3467 ztest_record_enospc(FTAG); 3468 goto out; 3469 } 3470 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3471 } 3472 3473 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3474 if (error && error != EEXIST) { 3475 if (error == ENOSPC) { 3476 ztest_record_enospc(FTAG); 3477 goto out; 3478 } 3479 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3480 } 3481 3482 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3483 if (error && error != EEXIST) { 3484 if (error == ENOSPC) { 3485 ztest_record_enospc(FTAG); 3486 goto out; 3487 } 3488 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3489 } 3490 3491 error = dmu_objset_clone(clone2name, snap3name); 3492 if (error) { 3493 if (error == ENOSPC) { 3494 ztest_record_enospc(FTAG); 3495 goto out; 3496 } 3497 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3498 } 3499 3500 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); 3501 if (error) 3502 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 3503 error = dsl_dataset_promote(clone2name, NULL); 3504 if (error == ENOSPC) { 3505 dmu_objset_disown(os, FTAG); 3506 ztest_record_enospc(FTAG); 3507 goto out; 3508 } 3509 if (error != EBUSY) 3510 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3511 error); 3512 dmu_objset_disown(os, FTAG); 3513 3514 out: 3515 ztest_dsl_dataset_cleanup(osname, id); 3516 3517 (void) rw_unlock(&ztest_name_lock); 3518 } 3519 3520 /* 3521 * Verify that dmu_object_{alloc,free} work as expected. 3522 */ 3523 void 3524 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3525 { 3526 ztest_od_t od[4]; 3527 int batchsize = sizeof (od) / sizeof (od[0]); 3528 3529 for (int b = 0; b < batchsize; b++) 3530 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3531 3532 /* 3533 * Destroy the previous batch of objects, create a new batch, 3534 * and do some I/O on the new objects. 3535 */ 3536 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3537 return; 3538 3539 while (ztest_random(4 * batchsize) != 0) 3540 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3541 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3542 } 3543 3544 /* 3545 * Verify that dmu_{read,write} work as expected. 3546 */ 3547 void 3548 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3549 { 3550 objset_t *os = zd->zd_os; 3551 ztest_od_t od[2]; 3552 dmu_tx_t *tx; 3553 int i, freeit, error; 3554 uint64_t n, s, txg; 3555 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3556 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3557 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3558 uint64_t regions = 997; 3559 uint64_t stride = 123456789ULL; 3560 uint64_t width = 40; 3561 int free_percent = 5; 3562 3563 /* 3564 * This test uses two objects, packobj and bigobj, that are always 3565 * updated together (i.e. in the same tx) so that their contents are 3566 * in sync and can be compared. Their contents relate to each other 3567 * in a simple way: packobj is a dense array of 'bufwad' structures, 3568 * while bigobj is a sparse array of the same bufwads. Specifically, 3569 * for any index n, there are three bufwads that should be identical: 3570 * 3571 * packobj, at offset n * sizeof (bufwad_t) 3572 * bigobj, at the head of the nth chunk 3573 * bigobj, at the tail of the nth chunk 3574 * 3575 * The chunk size is arbitrary. It doesn't have to be a power of two, 3576 * and it doesn't have any relation to the object blocksize. 3577 * The only requirement is that it can hold at least two bufwads. 3578 * 3579 * Normally, we write the bufwad to each of these locations. 3580 * However, free_percent of the time we instead write zeroes to 3581 * packobj and perform a dmu_free_range() on bigobj. By comparing 3582 * bigobj to packobj, we can verify that the DMU is correctly 3583 * tracking which parts of an object are allocated and free, 3584 * and that the contents of the allocated blocks are correct. 3585 */ 3586 3587 /* 3588 * Read the directory info. If it's the first time, set things up. 3589 */ 3590 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3591 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3592 3593 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3594 return; 3595 3596 bigobj = od[0].od_object; 3597 packobj = od[1].od_object; 3598 chunksize = od[0].od_gen; 3599 ASSERT(chunksize == od[1].od_gen); 3600 3601 /* 3602 * Prefetch a random chunk of the big object. 3603 * Our aim here is to get some async reads in flight 3604 * for blocks that we may free below; the DMU should 3605 * handle this race correctly. 3606 */ 3607 n = ztest_random(regions) * stride + ztest_random(width); 3608 s = 1 + ztest_random(2 * width - 1); 3609 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize, 3610 ZIO_PRIORITY_SYNC_READ); 3611 3612 /* 3613 * Pick a random index and compute the offsets into packobj and bigobj. 3614 */ 3615 n = ztest_random(regions) * stride + ztest_random(width); 3616 s = 1 + ztest_random(width - 1); 3617 3618 packoff = n * sizeof (bufwad_t); 3619 packsize = s * sizeof (bufwad_t); 3620 3621 bigoff = n * chunksize; 3622 bigsize = s * chunksize; 3623 3624 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3625 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3626 3627 /* 3628 * free_percent of the time, free a range of bigobj rather than 3629 * overwriting it. 3630 */ 3631 freeit = (ztest_random(100) < free_percent); 3632 3633 /* 3634 * Read the current contents of our objects. 3635 */ 3636 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3637 DMU_READ_PREFETCH); 3638 ASSERT0(error); 3639 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3640 DMU_READ_PREFETCH); 3641 ASSERT0(error); 3642 3643 /* 3644 * Get a tx for the mods to both packobj and bigobj. 3645 */ 3646 tx = dmu_tx_create(os); 3647 3648 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3649 3650 if (freeit) 3651 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3652 else 3653 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3654 3655 /* This accounts for setting the checksum/compression. */ 3656 dmu_tx_hold_bonus(tx, bigobj); 3657 3658 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3659 if (txg == 0) { 3660 umem_free(packbuf, packsize); 3661 umem_free(bigbuf, bigsize); 3662 return; 3663 } 3664 3665 enum zio_checksum cksum; 3666 do { 3667 cksum = (enum zio_checksum) 3668 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); 3669 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); 3670 dmu_object_set_checksum(os, bigobj, cksum, tx); 3671 3672 enum zio_compress comp; 3673 do { 3674 comp = (enum zio_compress) 3675 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); 3676 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); 3677 dmu_object_set_compress(os, bigobj, comp, tx); 3678 3679 /* 3680 * For each index from n to n + s, verify that the existing bufwad 3681 * in packobj matches the bufwads at the head and tail of the 3682 * corresponding chunk in bigobj. Then update all three bufwads 3683 * with the new values we want to write out. 3684 */ 3685 for (i = 0; i < s; i++) { 3686 /* LINTED */ 3687 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3688 /* LINTED */ 3689 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3690 /* LINTED */ 3691 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3692 3693 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3694 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3695 3696 if (pack->bw_txg > txg) 3697 fatal(0, "future leak: got %llx, open txg is %llx", 3698 pack->bw_txg, txg); 3699 3700 if (pack->bw_data != 0 && pack->bw_index != n + i) 3701 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3702 pack->bw_index, n, i); 3703 3704 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3705 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3706 3707 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3708 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3709 3710 if (freeit) { 3711 bzero(pack, sizeof (bufwad_t)); 3712 } else { 3713 pack->bw_index = n + i; 3714 pack->bw_txg = txg; 3715 pack->bw_data = 1 + ztest_random(-2ULL); 3716 } 3717 *bigH = *pack; 3718 *bigT = *pack; 3719 } 3720 3721 /* 3722 * We've verified all the old bufwads, and made new ones. 3723 * Now write them out. 3724 */ 3725 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3726 3727 if (freeit) { 3728 if (ztest_opts.zo_verbose >= 7) { 3729 (void) printf("freeing offset %llx size %llx" 3730 " txg %llx\n", 3731 (u_longlong_t)bigoff, 3732 (u_longlong_t)bigsize, 3733 (u_longlong_t)txg); 3734 } 3735 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3736 } else { 3737 if (ztest_opts.zo_verbose >= 7) { 3738 (void) printf("writing offset %llx size %llx" 3739 " txg %llx\n", 3740 (u_longlong_t)bigoff, 3741 (u_longlong_t)bigsize, 3742 (u_longlong_t)txg); 3743 } 3744 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3745 } 3746 3747 dmu_tx_commit(tx); 3748 3749 /* 3750 * Sanity check the stuff we just wrote. 3751 */ 3752 { 3753 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3754 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3755 3756 VERIFY(0 == dmu_read(os, packobj, packoff, 3757 packsize, packcheck, DMU_READ_PREFETCH)); 3758 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3759 bigsize, bigcheck, DMU_READ_PREFETCH)); 3760 3761 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3762 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3763 3764 umem_free(packcheck, packsize); 3765 umem_free(bigcheck, bigsize); 3766 } 3767 3768 umem_free(packbuf, packsize); 3769 umem_free(bigbuf, bigsize); 3770 } 3771 3772 void 3773 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3774 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3775 { 3776 uint64_t i; 3777 bufwad_t *pack; 3778 bufwad_t *bigH; 3779 bufwad_t *bigT; 3780 3781 /* 3782 * For each index from n to n + s, verify that the existing bufwad 3783 * in packobj matches the bufwads at the head and tail of the 3784 * corresponding chunk in bigobj. Then update all three bufwads 3785 * with the new values we want to write out. 3786 */ 3787 for (i = 0; i < s; i++) { 3788 /* LINTED */ 3789 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3790 /* LINTED */ 3791 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3792 /* LINTED */ 3793 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3794 3795 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3796 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3797 3798 if (pack->bw_txg > txg) 3799 fatal(0, "future leak: got %llx, open txg is %llx", 3800 pack->bw_txg, txg); 3801 3802 if (pack->bw_data != 0 && pack->bw_index != n + i) 3803 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3804 pack->bw_index, n, i); 3805 3806 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3807 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3808 3809 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3810 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3811 3812 pack->bw_index = n + i; 3813 pack->bw_txg = txg; 3814 pack->bw_data = 1 + ztest_random(-2ULL); 3815 3816 *bigH = *pack; 3817 *bigT = *pack; 3818 } 3819 } 3820 3821 void 3822 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3823 { 3824 objset_t *os = zd->zd_os; 3825 ztest_od_t od[2]; 3826 dmu_tx_t *tx; 3827 uint64_t i; 3828 int error; 3829 uint64_t n, s, txg; 3830 bufwad_t *packbuf, *bigbuf; 3831 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3832 uint64_t blocksize = ztest_random_blocksize(); 3833 uint64_t chunksize = blocksize; 3834 uint64_t regions = 997; 3835 uint64_t stride = 123456789ULL; 3836 uint64_t width = 9; 3837 dmu_buf_t *bonus_db; 3838 arc_buf_t **bigbuf_arcbufs; 3839 dmu_object_info_t doi; 3840 3841 /* 3842 * This test uses two objects, packobj and bigobj, that are always 3843 * updated together (i.e. in the same tx) so that their contents are 3844 * in sync and can be compared. Their contents relate to each other 3845 * in a simple way: packobj is a dense array of 'bufwad' structures, 3846 * while bigobj is a sparse array of the same bufwads. Specifically, 3847 * for any index n, there are three bufwads that should be identical: 3848 * 3849 * packobj, at offset n * sizeof (bufwad_t) 3850 * bigobj, at the head of the nth chunk 3851 * bigobj, at the tail of the nth chunk 3852 * 3853 * The chunk size is set equal to bigobj block size so that 3854 * dmu_assign_arcbuf() can be tested for object updates. 3855 */ 3856 3857 /* 3858 * Read the directory info. If it's the first time, set things up. 3859 */ 3860 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3861 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3862 3863 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3864 return; 3865 3866 bigobj = od[0].od_object; 3867 packobj = od[1].od_object; 3868 blocksize = od[0].od_blocksize; 3869 chunksize = blocksize; 3870 ASSERT(chunksize == od[1].od_gen); 3871 3872 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3873 VERIFY(ISP2(doi.doi_data_block_size)); 3874 VERIFY(chunksize == doi.doi_data_block_size); 3875 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3876 3877 /* 3878 * Pick a random index and compute the offsets into packobj and bigobj. 3879 */ 3880 n = ztest_random(regions) * stride + ztest_random(width); 3881 s = 1 + ztest_random(width - 1); 3882 3883 packoff = n * sizeof (bufwad_t); 3884 packsize = s * sizeof (bufwad_t); 3885 3886 bigoff = n * chunksize; 3887 bigsize = s * chunksize; 3888 3889 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3890 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3891 3892 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3893 3894 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3895 3896 /* 3897 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3898 * Iteration 1 test zcopy to already referenced dbufs. 3899 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3900 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3901 * Iteration 4 test zcopy when dbuf is no longer dirty. 3902 * Iteration 5 test zcopy when it can't be done. 3903 * Iteration 6 one more zcopy write. 3904 */ 3905 for (i = 0; i < 7; i++) { 3906 uint64_t j; 3907 uint64_t off; 3908 3909 /* 3910 * In iteration 5 (i == 5) use arcbufs 3911 * that don't match bigobj blksz to test 3912 * dmu_assign_arcbuf() when it can't directly 3913 * assign an arcbuf to a dbuf. 3914 */ 3915 for (j = 0; j < s; j++) { 3916 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3917 bigbuf_arcbufs[j] = 3918 dmu_request_arcbuf(bonus_db, chunksize); 3919 } else { 3920 bigbuf_arcbufs[2 * j] = 3921 dmu_request_arcbuf(bonus_db, chunksize / 2); 3922 bigbuf_arcbufs[2 * j + 1] = 3923 dmu_request_arcbuf(bonus_db, chunksize / 2); 3924 } 3925 } 3926 3927 /* 3928 * Get a tx for the mods to both packobj and bigobj. 3929 */ 3930 tx = dmu_tx_create(os); 3931 3932 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3933 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3934 3935 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3936 if (txg == 0) { 3937 umem_free(packbuf, packsize); 3938 umem_free(bigbuf, bigsize); 3939 for (j = 0; j < s; j++) { 3940 if (i != 5 || 3941 chunksize < (SPA_MINBLOCKSIZE * 2)) { 3942 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3943 } else { 3944 dmu_return_arcbuf( 3945 bigbuf_arcbufs[2 * j]); 3946 dmu_return_arcbuf( 3947 bigbuf_arcbufs[2 * j + 1]); 3948 } 3949 } 3950 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3951 dmu_buf_rele(bonus_db, FTAG); 3952 return; 3953 } 3954 3955 /* 3956 * 50% of the time don't read objects in the 1st iteration to 3957 * test dmu_assign_arcbuf() for the case when there're no 3958 * existing dbufs for the specified offsets. 3959 */ 3960 if (i != 0 || ztest_random(2) != 0) { 3961 error = dmu_read(os, packobj, packoff, 3962 packsize, packbuf, DMU_READ_PREFETCH); 3963 ASSERT0(error); 3964 error = dmu_read(os, bigobj, bigoff, bigsize, 3965 bigbuf, DMU_READ_PREFETCH); 3966 ASSERT0(error); 3967 } 3968 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3969 n, chunksize, txg); 3970 3971 /* 3972 * We've verified all the old bufwads, and made new ones. 3973 * Now write them out. 3974 */ 3975 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3976 if (ztest_opts.zo_verbose >= 7) { 3977 (void) printf("writing offset %llx size %llx" 3978 " txg %llx\n", 3979 (u_longlong_t)bigoff, 3980 (u_longlong_t)bigsize, 3981 (u_longlong_t)txg); 3982 } 3983 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3984 dmu_buf_t *dbt; 3985 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3986 bcopy((caddr_t)bigbuf + (off - bigoff), 3987 bigbuf_arcbufs[j]->b_data, chunksize); 3988 } else { 3989 bcopy((caddr_t)bigbuf + (off - bigoff), 3990 bigbuf_arcbufs[2 * j]->b_data, 3991 chunksize / 2); 3992 bcopy((caddr_t)bigbuf + (off - bigoff) + 3993 chunksize / 2, 3994 bigbuf_arcbufs[2 * j + 1]->b_data, 3995 chunksize / 2); 3996 } 3997 3998 if (i == 1) { 3999 VERIFY(dmu_buf_hold(os, bigobj, off, 4000 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 4001 } 4002 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 4003 dmu_assign_arcbuf(bonus_db, off, 4004 bigbuf_arcbufs[j], tx); 4005 } else { 4006 dmu_assign_arcbuf(bonus_db, off, 4007 bigbuf_arcbufs[2 * j], tx); 4008 dmu_assign_arcbuf(bonus_db, 4009 off + chunksize / 2, 4010 bigbuf_arcbufs[2 * j + 1], tx); 4011 } 4012 if (i == 1) { 4013 dmu_buf_rele(dbt, FTAG); 4014 } 4015 } 4016 dmu_tx_commit(tx); 4017 4018 /* 4019 * Sanity check the stuff we just wrote. 4020 */ 4021 { 4022 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 4023 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 4024 4025 VERIFY(0 == dmu_read(os, packobj, packoff, 4026 packsize, packcheck, DMU_READ_PREFETCH)); 4027 VERIFY(0 == dmu_read(os, bigobj, bigoff, 4028 bigsize, bigcheck, DMU_READ_PREFETCH)); 4029 4030 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 4031 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 4032 4033 umem_free(packcheck, packsize); 4034 umem_free(bigcheck, bigsize); 4035 } 4036 if (i == 2) { 4037 txg_wait_open(dmu_objset_pool(os), 0); 4038 } else if (i == 3) { 4039 txg_wait_synced(dmu_objset_pool(os), 0); 4040 } 4041 } 4042 4043 dmu_buf_rele(bonus_db, FTAG); 4044 umem_free(packbuf, packsize); 4045 umem_free(bigbuf, bigsize); 4046 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4047 } 4048 4049 /* ARGSUSED */ 4050 void 4051 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 4052 { 4053 ztest_od_t od[1]; 4054 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 4055 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4056 4057 /* 4058 * Have multiple threads write to large offsets in an object 4059 * to verify that parallel writes to an object -- even to the 4060 * same blocks within the object -- doesn't cause any trouble. 4061 */ 4062 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4063 4064 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4065 return; 4066 4067 while (ztest_random(10) != 0) 4068 ztest_io(zd, od[0].od_object, offset); 4069 } 4070 4071 void 4072 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4073 { 4074 ztest_od_t od[1]; 4075 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4076 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4077 uint64_t count = ztest_random(20) + 1; 4078 uint64_t blocksize = ztest_random_blocksize(); 4079 void *data; 4080 4081 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4082 4083 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4084 return; 4085 4086 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4087 return; 4088 4089 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4090 4091 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4092 4093 while (ztest_random(count) != 0) { 4094 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4095 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4096 data) != 0) 4097 break; 4098 while (ztest_random(4) != 0) 4099 ztest_io(zd, od[0].od_object, randoff); 4100 } 4101 4102 umem_free(data, blocksize); 4103 } 4104 4105 /* 4106 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4107 */ 4108 #define ZTEST_ZAP_MIN_INTS 1 4109 #define ZTEST_ZAP_MAX_INTS 4 4110 #define ZTEST_ZAP_MAX_PROPS 1000 4111 4112 void 4113 ztest_zap(ztest_ds_t *zd, uint64_t id) 4114 { 4115 objset_t *os = zd->zd_os; 4116 ztest_od_t od[1]; 4117 uint64_t object; 4118 uint64_t txg, last_txg; 4119 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4120 uint64_t zl_ints, zl_intsize, prop; 4121 int i, ints; 4122 dmu_tx_t *tx; 4123 char propname[100], txgname[100]; 4124 int error; 4125 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4126 4127 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4128 4129 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4130 return; 4131 4132 object = od[0].od_object; 4133 4134 /* 4135 * Generate a known hash collision, and verify that 4136 * we can lookup and remove both entries. 4137 */ 4138 tx = dmu_tx_create(os); 4139 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4140 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4141 if (txg == 0) 4142 return; 4143 for (i = 0; i < 2; i++) { 4144 value[i] = i; 4145 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4146 1, &value[i], tx)); 4147 } 4148 for (i = 0; i < 2; i++) { 4149 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4150 sizeof (uint64_t), 1, &value[i], tx)); 4151 VERIFY3U(0, ==, 4152 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4153 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4154 ASSERT3U(zl_ints, ==, 1); 4155 } 4156 for (i = 0; i < 2; i++) { 4157 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4158 } 4159 dmu_tx_commit(tx); 4160 4161 /* 4162 * Generate a buch of random entries. 4163 */ 4164 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4165 4166 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4167 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4168 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4169 bzero(value, sizeof (value)); 4170 last_txg = 0; 4171 4172 /* 4173 * If these zap entries already exist, validate their contents. 4174 */ 4175 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4176 if (error == 0) { 4177 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4178 ASSERT3U(zl_ints, ==, 1); 4179 4180 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4181 zl_ints, &last_txg) == 0); 4182 4183 VERIFY(zap_length(os, object, propname, &zl_intsize, 4184 &zl_ints) == 0); 4185 4186 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4187 ASSERT3U(zl_ints, ==, ints); 4188 4189 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4190 zl_ints, value) == 0); 4191 4192 for (i = 0; i < ints; i++) { 4193 ASSERT3U(value[i], ==, last_txg + object + i); 4194 } 4195 } else { 4196 ASSERT3U(error, ==, ENOENT); 4197 } 4198 4199 /* 4200 * Atomically update two entries in our zap object. 4201 * The first is named txg_%llu, and contains the txg 4202 * in which the property was last updated. The second 4203 * is named prop_%llu, and the nth element of its value 4204 * should be txg + object + n. 4205 */ 4206 tx = dmu_tx_create(os); 4207 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4208 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4209 if (txg == 0) 4210 return; 4211 4212 if (last_txg > txg) 4213 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4214 4215 for (i = 0; i < ints; i++) 4216 value[i] = txg + object + i; 4217 4218 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4219 1, &txg, tx)); 4220 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4221 ints, value, tx)); 4222 4223 dmu_tx_commit(tx); 4224 4225 /* 4226 * Remove a random pair of entries. 4227 */ 4228 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4229 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4230 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4231 4232 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4233 4234 if (error == ENOENT) 4235 return; 4236 4237 ASSERT0(error); 4238 4239 tx = dmu_tx_create(os); 4240 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4241 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4242 if (txg == 0) 4243 return; 4244 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4245 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4246 dmu_tx_commit(tx); 4247 } 4248 4249 /* 4250 * Testcase to test the upgrading of a microzap to fatzap. 4251 */ 4252 void 4253 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4254 { 4255 objset_t *os = zd->zd_os; 4256 ztest_od_t od[1]; 4257 uint64_t object, txg; 4258 4259 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4260 4261 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4262 return; 4263 4264 object = od[0].od_object; 4265 4266 /* 4267 * Add entries to this ZAP and make sure it spills over 4268 * and gets upgraded to a fatzap. Also, since we are adding 4269 * 2050 entries we should see ptrtbl growth and leaf-block split. 4270 */ 4271 for (int i = 0; i < 2050; i++) { 4272 char name[ZFS_MAX_DATASET_NAME_LEN]; 4273 uint64_t value = i; 4274 dmu_tx_t *tx; 4275 int error; 4276 4277 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4278 id, value); 4279 4280 tx = dmu_tx_create(os); 4281 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4282 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4283 if (txg == 0) 4284 return; 4285 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4286 &value, tx); 4287 ASSERT(error == 0 || error == EEXIST); 4288 dmu_tx_commit(tx); 4289 } 4290 } 4291 4292 /* ARGSUSED */ 4293 void 4294 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4295 { 4296 objset_t *os = zd->zd_os; 4297 ztest_od_t od[1]; 4298 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4299 dmu_tx_t *tx; 4300 int i, namelen, error; 4301 int micro = ztest_random(2); 4302 char name[20], string_value[20]; 4303 void *data; 4304 4305 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4306 4307 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4308 return; 4309 4310 object = od[0].od_object; 4311 4312 /* 4313 * Generate a random name of the form 'xxx.....' where each 4314 * x is a random printable character and the dots are dots. 4315 * There are 94 such characters, and the name length goes from 4316 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4317 */ 4318 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4319 4320 for (i = 0; i < 3; i++) 4321 name[i] = '!' + ztest_random('~' - '!' + 1); 4322 for (; i < namelen - 1; i++) 4323 name[i] = '.'; 4324 name[i] = '\0'; 4325 4326 if ((namelen & 1) || micro) { 4327 wsize = sizeof (txg); 4328 wc = 1; 4329 data = &txg; 4330 } else { 4331 wsize = 1; 4332 wc = namelen; 4333 data = string_value; 4334 } 4335 4336 count = -1ULL; 4337 VERIFY0(zap_count(os, object, &count)); 4338 ASSERT(count != -1ULL); 4339 4340 /* 4341 * Select an operation: length, lookup, add, update, remove. 4342 */ 4343 i = ztest_random(5); 4344 4345 if (i >= 2) { 4346 tx = dmu_tx_create(os); 4347 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4348 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4349 if (txg == 0) 4350 return; 4351 bcopy(name, string_value, namelen); 4352 } else { 4353 tx = NULL; 4354 txg = 0; 4355 bzero(string_value, namelen); 4356 } 4357 4358 switch (i) { 4359 4360 case 0: 4361 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4362 if (error == 0) { 4363 ASSERT3U(wsize, ==, zl_wsize); 4364 ASSERT3U(wc, ==, zl_wc); 4365 } else { 4366 ASSERT3U(error, ==, ENOENT); 4367 } 4368 break; 4369 4370 case 1: 4371 error = zap_lookup(os, object, name, wsize, wc, data); 4372 if (error == 0) { 4373 if (data == string_value && 4374 bcmp(name, data, namelen) != 0) 4375 fatal(0, "name '%s' != val '%s' len %d", 4376 name, data, namelen); 4377 } else { 4378 ASSERT3U(error, ==, ENOENT); 4379 } 4380 break; 4381 4382 case 2: 4383 error = zap_add(os, object, name, wsize, wc, data, tx); 4384 ASSERT(error == 0 || error == EEXIST); 4385 break; 4386 4387 case 3: 4388 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4389 break; 4390 4391 case 4: 4392 error = zap_remove(os, object, name, tx); 4393 ASSERT(error == 0 || error == ENOENT); 4394 break; 4395 } 4396 4397 if (tx != NULL) 4398 dmu_tx_commit(tx); 4399 } 4400 4401 /* 4402 * Commit callback data. 4403 */ 4404 typedef struct ztest_cb_data { 4405 list_node_t zcd_node; 4406 uint64_t zcd_txg; 4407 int zcd_expected_err; 4408 boolean_t zcd_added; 4409 boolean_t zcd_called; 4410 spa_t *zcd_spa; 4411 } ztest_cb_data_t; 4412 4413 /* This is the actual commit callback function */ 4414 static void 4415 ztest_commit_callback(void *arg, int error) 4416 { 4417 ztest_cb_data_t *data = arg; 4418 uint64_t synced_txg; 4419 4420 VERIFY(data != NULL); 4421 VERIFY3S(data->zcd_expected_err, ==, error); 4422 VERIFY(!data->zcd_called); 4423 4424 synced_txg = spa_last_synced_txg(data->zcd_spa); 4425 if (data->zcd_txg > synced_txg) 4426 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4427 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4428 synced_txg); 4429 4430 data->zcd_called = B_TRUE; 4431 4432 if (error == ECANCELED) { 4433 ASSERT0(data->zcd_txg); 4434 ASSERT(!data->zcd_added); 4435 4436 /* 4437 * The private callback data should be destroyed here, but 4438 * since we are going to check the zcd_called field after 4439 * dmu_tx_abort(), we will destroy it there. 4440 */ 4441 return; 4442 } 4443 4444 /* Was this callback added to the global callback list? */ 4445 if (!data->zcd_added) 4446 goto out; 4447 4448 ASSERT3U(data->zcd_txg, !=, 0); 4449 4450 /* Remove our callback from the list */ 4451 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4452 list_remove(&zcl.zcl_callbacks, data); 4453 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4454 4455 out: 4456 umem_free(data, sizeof (ztest_cb_data_t)); 4457 } 4458 4459 /* Allocate and initialize callback data structure */ 4460 static ztest_cb_data_t * 4461 ztest_create_cb_data(objset_t *os, uint64_t txg) 4462 { 4463 ztest_cb_data_t *cb_data; 4464 4465 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4466 4467 cb_data->zcd_txg = txg; 4468 cb_data->zcd_spa = dmu_objset_spa(os); 4469 4470 return (cb_data); 4471 } 4472 4473 /* 4474 * If a number of txgs equal to this threshold have been created after a commit 4475 * callback has been registered but not called, then we assume there is an 4476 * implementation bug. 4477 */ 4478 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4479 4480 /* 4481 * Commit callback test. 4482 */ 4483 void 4484 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4485 { 4486 objset_t *os = zd->zd_os; 4487 ztest_od_t od[1]; 4488 dmu_tx_t *tx; 4489 ztest_cb_data_t *cb_data[3], *tmp_cb; 4490 uint64_t old_txg, txg; 4491 int i, error; 4492 4493 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4494 4495 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4496 return; 4497 4498 tx = dmu_tx_create(os); 4499 4500 cb_data[0] = ztest_create_cb_data(os, 0); 4501 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4502 4503 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4504 4505 /* Every once in a while, abort the transaction on purpose */ 4506 if (ztest_random(100) == 0) 4507 error = -1; 4508 4509 if (!error) 4510 error = dmu_tx_assign(tx, TXG_NOWAIT); 4511 4512 txg = error ? 0 : dmu_tx_get_txg(tx); 4513 4514 cb_data[0]->zcd_txg = txg; 4515 cb_data[1] = ztest_create_cb_data(os, txg); 4516 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4517 4518 if (error) { 4519 /* 4520 * It's not a strict requirement to call the registered 4521 * callbacks from inside dmu_tx_abort(), but that's what 4522 * it's supposed to happen in the current implementation 4523 * so we will check for that. 4524 */ 4525 for (i = 0; i < 2; i++) { 4526 cb_data[i]->zcd_expected_err = ECANCELED; 4527 VERIFY(!cb_data[i]->zcd_called); 4528 } 4529 4530 dmu_tx_abort(tx); 4531 4532 for (i = 0; i < 2; i++) { 4533 VERIFY(cb_data[i]->zcd_called); 4534 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4535 } 4536 4537 return; 4538 } 4539 4540 cb_data[2] = ztest_create_cb_data(os, txg); 4541 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4542 4543 /* 4544 * Read existing data to make sure there isn't a future leak. 4545 */ 4546 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4547 &old_txg, DMU_READ_PREFETCH)); 4548 4549 if (old_txg > txg) 4550 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4551 old_txg, txg); 4552 4553 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4554 4555 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4556 4557 /* 4558 * Since commit callbacks don't have any ordering requirement and since 4559 * it is theoretically possible for a commit callback to be called 4560 * after an arbitrary amount of time has elapsed since its txg has been 4561 * synced, it is difficult to reliably determine whether a commit 4562 * callback hasn't been called due to high load or due to a flawed 4563 * implementation. 4564 * 4565 * In practice, we will assume that if after a certain number of txgs a 4566 * commit callback hasn't been called, then most likely there's an 4567 * implementation bug.. 4568 */ 4569 tmp_cb = list_head(&zcl.zcl_callbacks); 4570 if (tmp_cb != NULL && 4571 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { 4572 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4573 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4574 } 4575 4576 /* 4577 * Let's find the place to insert our callbacks. 4578 * 4579 * Even though the list is ordered by txg, it is possible for the 4580 * insertion point to not be the end because our txg may already be 4581 * quiescing at this point and other callbacks in the open txg 4582 * (from other objsets) may have sneaked in. 4583 */ 4584 tmp_cb = list_tail(&zcl.zcl_callbacks); 4585 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4586 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4587 4588 /* Add the 3 callbacks to the list */ 4589 for (i = 0; i < 3; i++) { 4590 if (tmp_cb == NULL) 4591 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4592 else 4593 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4594 cb_data[i]); 4595 4596 cb_data[i]->zcd_added = B_TRUE; 4597 VERIFY(!cb_data[i]->zcd_called); 4598 4599 tmp_cb = cb_data[i]; 4600 } 4601 4602 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4603 4604 dmu_tx_commit(tx); 4605 } 4606 4607 /* ARGSUSED */ 4608 void 4609 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4610 { 4611 zfs_prop_t proplist[] = { 4612 ZFS_PROP_CHECKSUM, 4613 ZFS_PROP_COMPRESSION, 4614 ZFS_PROP_COPIES, 4615 ZFS_PROP_DEDUP 4616 }; 4617 4618 (void) rw_rdlock(&ztest_name_lock); 4619 4620 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4621 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4622 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4623 4624 (void) rw_unlock(&ztest_name_lock); 4625 } 4626 4627 /* ARGSUSED */ 4628 void 4629 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4630 { 4631 nvlist_t *props = NULL; 4632 4633 (void) rw_rdlock(&ztest_name_lock); 4634 4635 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4636 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4637 4638 VERIFY0(spa_prop_get(ztest_spa, &props)); 4639 4640 if (ztest_opts.zo_verbose >= 6) 4641 dump_nvlist(props, 4); 4642 4643 nvlist_free(props); 4644 4645 (void) rw_unlock(&ztest_name_lock); 4646 } 4647 4648 static int 4649 user_release_one(const char *snapname, const char *holdname) 4650 { 4651 nvlist_t *snaps, *holds; 4652 int error; 4653 4654 snaps = fnvlist_alloc(); 4655 holds = fnvlist_alloc(); 4656 fnvlist_add_boolean(holds, holdname); 4657 fnvlist_add_nvlist(snaps, snapname, holds); 4658 fnvlist_free(holds); 4659 error = dsl_dataset_user_release(snaps, NULL); 4660 fnvlist_free(snaps); 4661 return (error); 4662 } 4663 4664 /* 4665 * Test snapshot hold/release and deferred destroy. 4666 */ 4667 void 4668 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4669 { 4670 int error; 4671 objset_t *os = zd->zd_os; 4672 objset_t *origin; 4673 char snapname[100]; 4674 char fullname[100]; 4675 char clonename[100]; 4676 char tag[100]; 4677 char osname[ZFS_MAX_DATASET_NAME_LEN]; 4678 nvlist_t *holds; 4679 4680 (void) rw_rdlock(&ztest_name_lock); 4681 4682 dmu_objset_name(os, osname); 4683 4684 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 4685 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 4686 (void) snprintf(clonename, sizeof (clonename), 4687 "%s/ch1_%llu", osname, id); 4688 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 4689 4690 /* 4691 * Clean up from any previous run. 4692 */ 4693 error = dsl_destroy_head(clonename); 4694 if (error != ENOENT) 4695 ASSERT0(error); 4696 error = user_release_one(fullname, tag); 4697 if (error != ESRCH && error != ENOENT) 4698 ASSERT0(error); 4699 error = dsl_destroy_snapshot(fullname, B_FALSE); 4700 if (error != ENOENT) 4701 ASSERT0(error); 4702 4703 /* 4704 * Create snapshot, clone it, mark snap for deferred destroy, 4705 * destroy clone, verify snap was also destroyed. 4706 */ 4707 error = dmu_objset_snapshot_one(osname, snapname); 4708 if (error) { 4709 if (error == ENOSPC) { 4710 ztest_record_enospc("dmu_objset_snapshot"); 4711 goto out; 4712 } 4713 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4714 } 4715 4716 error = dmu_objset_clone(clonename, fullname); 4717 if (error) { 4718 if (error == ENOSPC) { 4719 ztest_record_enospc("dmu_objset_clone"); 4720 goto out; 4721 } 4722 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4723 } 4724 4725 error = dsl_destroy_snapshot(fullname, B_TRUE); 4726 if (error) { 4727 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4728 fullname, error); 4729 } 4730 4731 error = dsl_destroy_head(clonename); 4732 if (error) 4733 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 4734 4735 error = dmu_objset_hold(fullname, FTAG, &origin); 4736 if (error != ENOENT) 4737 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4738 4739 /* 4740 * Create snapshot, add temporary hold, verify that we can't 4741 * destroy a held snapshot, mark for deferred destroy, 4742 * release hold, verify snapshot was destroyed. 4743 */ 4744 error = dmu_objset_snapshot_one(osname, snapname); 4745 if (error) { 4746 if (error == ENOSPC) { 4747 ztest_record_enospc("dmu_objset_snapshot"); 4748 goto out; 4749 } 4750 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4751 } 4752 4753 holds = fnvlist_alloc(); 4754 fnvlist_add_string(holds, fullname, tag); 4755 error = dsl_dataset_user_hold(holds, 0, NULL); 4756 fnvlist_free(holds); 4757 4758 if (error == ENOSPC) { 4759 ztest_record_enospc("dsl_dataset_user_hold"); 4760 goto out; 4761 } else if (error) { 4762 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", 4763 fullname, tag, error); 4764 } 4765 4766 error = dsl_destroy_snapshot(fullname, B_FALSE); 4767 if (error != EBUSY) { 4768 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 4769 fullname, error); 4770 } 4771 4772 error = dsl_destroy_snapshot(fullname, B_TRUE); 4773 if (error) { 4774 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4775 fullname, error); 4776 } 4777 4778 error = user_release_one(fullname, tag); 4779 if (error) 4780 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); 4781 4782 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 4783 4784 out: 4785 (void) rw_unlock(&ztest_name_lock); 4786 } 4787 4788 /* 4789 * Inject random faults into the on-disk data. 4790 */ 4791 /* ARGSUSED */ 4792 void 4793 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4794 { 4795 ztest_shared_t *zs = ztest_shared; 4796 spa_t *spa = ztest_spa; 4797 int fd; 4798 uint64_t offset; 4799 uint64_t leaves; 4800 uint64_t bad = 0x1990c0ffeedecade; 4801 uint64_t top, leaf; 4802 char path0[MAXPATHLEN]; 4803 char pathrand[MAXPATHLEN]; 4804 size_t fsize; 4805 int bshift = SPA_MAXBLOCKSHIFT + 2; 4806 int iters = 1000; 4807 int maxfaults; 4808 int mirror_save; 4809 vdev_t *vd0 = NULL; 4810 uint64_t guid0 = 0; 4811 boolean_t islog = B_FALSE; 4812 4813 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4814 maxfaults = MAXFAULTS(); 4815 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4816 mirror_save = zs->zs_mirrors; 4817 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4818 4819 ASSERT(leaves >= 1); 4820 4821 /* 4822 * Grab the name lock as reader. There are some operations 4823 * which don't like to have their vdevs changed while 4824 * they are in progress (i.e. spa_change_guid). Those 4825 * operations will have grabbed the name lock as writer. 4826 */ 4827 (void) rw_rdlock(&ztest_name_lock); 4828 4829 /* 4830 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4831 */ 4832 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4833 4834 if (ztest_random(2) == 0) { 4835 /* 4836 * Inject errors on a normal data device or slog device. 4837 */ 4838 top = ztest_random_vdev_top(spa, B_TRUE); 4839 leaf = ztest_random(leaves) + zs->zs_splits; 4840 4841 /* 4842 * Generate paths to the first leaf in this top-level vdev, 4843 * and to the random leaf we selected. We'll induce transient 4844 * write failures and random online/offline activity on leaf 0, 4845 * and we'll write random garbage to the randomly chosen leaf. 4846 */ 4847 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4848 ztest_opts.zo_dir, ztest_opts.zo_pool, 4849 top * leaves + zs->zs_splits); 4850 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4851 ztest_opts.zo_dir, ztest_opts.zo_pool, 4852 top * leaves + leaf); 4853 4854 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4855 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4856 islog = B_TRUE; 4857 4858 /* 4859 * If the top-level vdev needs to be resilvered 4860 * then we only allow faults on the device that is 4861 * resilvering. 4862 */ 4863 if (vd0 != NULL && maxfaults != 1 && 4864 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 4865 vd0->vdev_resilver_txg != 0)) { 4866 /* 4867 * Make vd0 explicitly claim to be unreadable, 4868 * or unwriteable, or reach behind its back 4869 * and close the underlying fd. We can do this if 4870 * maxfaults == 0 because we'll fail and reexecute, 4871 * and we can do it if maxfaults >= 2 because we'll 4872 * have enough redundancy. If maxfaults == 1, the 4873 * combination of this with injection of random data 4874 * corruption below exceeds the pool's fault tolerance. 4875 */ 4876 vdev_file_t *vf = vd0->vdev_tsd; 4877 4878 if (vf != NULL && ztest_random(3) == 0) { 4879 (void) close(vf->vf_vnode->v_fd); 4880 vf->vf_vnode->v_fd = -1; 4881 } else if (ztest_random(2) == 0) { 4882 vd0->vdev_cant_read = B_TRUE; 4883 } else { 4884 vd0->vdev_cant_write = B_TRUE; 4885 } 4886 guid0 = vd0->vdev_guid; 4887 } 4888 } else { 4889 /* 4890 * Inject errors on an l2cache device. 4891 */ 4892 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4893 4894 if (sav->sav_count == 0) { 4895 spa_config_exit(spa, SCL_STATE, FTAG); 4896 (void) rw_unlock(&ztest_name_lock); 4897 return; 4898 } 4899 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4900 guid0 = vd0->vdev_guid; 4901 (void) strcpy(path0, vd0->vdev_path); 4902 (void) strcpy(pathrand, vd0->vdev_path); 4903 4904 leaf = 0; 4905 leaves = 1; 4906 maxfaults = INT_MAX; /* no limit on cache devices */ 4907 } 4908 4909 spa_config_exit(spa, SCL_STATE, FTAG); 4910 (void) rw_unlock(&ztest_name_lock); 4911 4912 /* 4913 * If we can tolerate two or more faults, or we're dealing 4914 * with a slog, randomly online/offline vd0. 4915 */ 4916 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4917 if (ztest_random(10) < 6) { 4918 int flags = (ztest_random(2) == 0 ? 4919 ZFS_OFFLINE_TEMPORARY : 0); 4920 4921 /* 4922 * We have to grab the zs_name_lock as writer to 4923 * prevent a race between offlining a slog and 4924 * destroying a dataset. Offlining the slog will 4925 * grab a reference on the dataset which may cause 4926 * dmu_objset_destroy() to fail with EBUSY thus 4927 * leaving the dataset in an inconsistent state. 4928 */ 4929 if (islog) 4930 (void) rw_wrlock(&ztest_name_lock); 4931 4932 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4933 4934 if (islog) 4935 (void) rw_unlock(&ztest_name_lock); 4936 } else { 4937 /* 4938 * Ideally we would like to be able to randomly 4939 * call vdev_[on|off]line without holding locks 4940 * to force unpredictable failures but the side 4941 * effects of vdev_[on|off]line prevent us from 4942 * doing so. We grab the ztest_vdev_lock here to 4943 * prevent a race between injection testing and 4944 * aux_vdev removal. 4945 */ 4946 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4947 (void) vdev_online(spa, guid0, 0, NULL); 4948 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4949 } 4950 } 4951 4952 if (maxfaults == 0) 4953 return; 4954 4955 /* 4956 * We have at least single-fault tolerance, so inject data corruption. 4957 */ 4958 fd = open(pathrand, O_RDWR); 4959 4960 if (fd == -1) /* we hit a gap in the device namespace */ 4961 return; 4962 4963 fsize = lseek(fd, 0, SEEK_END); 4964 4965 while (--iters != 0) { 4966 /* 4967 * The offset must be chosen carefully to ensure that 4968 * we do not inject a given logical block with errors 4969 * on two different leaf devices, because ZFS can not 4970 * tolerate that (if maxfaults==1). 4971 * 4972 * We divide each leaf into chunks of size 4973 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk 4974 * there is a series of ranges to which we can inject errors. 4975 * Each range can accept errors on only a single leaf vdev. 4976 * The error injection ranges are separated by ranges 4977 * which we will not inject errors on any device (DMZs). 4978 * Each DMZ must be large enough such that a single block 4979 * can not straddle it, so that a single block can not be 4980 * a target in two different injection ranges (on different 4981 * leaf vdevs). 4982 * 4983 * For example, with 3 leaves, each chunk looks like: 4984 * 0 to 32M: injection range for leaf 0 4985 * 32M to 64M: DMZ - no injection allowed 4986 * 64M to 96M: injection range for leaf 1 4987 * 96M to 128M: DMZ - no injection allowed 4988 * 128M to 160M: injection range for leaf 2 4989 * 160M to 192M: DMZ - no injection allowed 4990 */ 4991 offset = ztest_random(fsize / (leaves << bshift)) * 4992 (leaves << bshift) + (leaf << bshift) + 4993 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4994 4995 /* 4996 * Only allow damage to the labels at one end of the vdev. 4997 * 4998 * If all labels are damaged, the device will be totally 4999 * inaccessible, which will result in loss of data, 5000 * because we also damage (parts of) the other side of 5001 * the mirror/raidz. 5002 * 5003 * Additionally, we will always have both an even and an 5004 * odd label, so that we can handle crashes in the 5005 * middle of vdev_config_sync(). 5006 */ 5007 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE) 5008 continue; 5009 5010 /* 5011 * The two end labels are stored at the "end" of the disk, but 5012 * the end of the disk (vdev_psize) is aligned to 5013 * sizeof (vdev_label_t). 5014 */ 5015 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t)); 5016 if ((leaf & 1) == 1 && 5017 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE) 5018 continue; 5019 5020 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 5021 if (mirror_save != zs->zs_mirrors) { 5022 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 5023 (void) close(fd); 5024 return; 5025 } 5026 5027 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 5028 fatal(1, "can't inject bad word at 0x%llx in %s", 5029 offset, pathrand); 5030 5031 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 5032 5033 if (ztest_opts.zo_verbose >= 7) 5034 (void) printf("injected bad word into %s," 5035 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 5036 } 5037 5038 (void) close(fd); 5039 } 5040 5041 /* 5042 * Verify that DDT repair works as expected. 5043 */ 5044 void 5045 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 5046 { 5047 ztest_shared_t *zs = ztest_shared; 5048 spa_t *spa = ztest_spa; 5049 objset_t *os = zd->zd_os; 5050 ztest_od_t od[1]; 5051 uint64_t object, blocksize, txg, pattern, psize; 5052 enum zio_checksum checksum = spa_dedup_checksum(spa); 5053 dmu_buf_t *db; 5054 dmu_tx_t *tx; 5055 abd_t *abd; 5056 blkptr_t blk; 5057 int copies = 2 * ZIO_DEDUPDITTO_MIN; 5058 5059 blocksize = ztest_random_blocksize(); 5060 blocksize = MIN(blocksize, 2048); /* because we write so many */ 5061 5062 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 5063 5064 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 5065 return; 5066 5067 /* 5068 * Take the name lock as writer to prevent anyone else from changing 5069 * the pool and dataset properies we need to maintain during this test. 5070 */ 5071 (void) rw_wrlock(&ztest_name_lock); 5072 5073 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 5074 B_FALSE) != 0 || 5075 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 5076 B_FALSE) != 0) { 5077 (void) rw_unlock(&ztest_name_lock); 5078 return; 5079 } 5080 5081 dmu_objset_stats_t dds; 5082 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 5083 dmu_objset_fast_stat(os, &dds); 5084 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 5085 5086 object = od[0].od_object; 5087 blocksize = od[0].od_blocksize; 5088 pattern = zs->zs_guid ^ dds.dds_guid; 5089 5090 ASSERT(object != 0); 5091 5092 tx = dmu_tx_create(os); 5093 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 5094 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 5095 if (txg == 0) { 5096 (void) rw_unlock(&ztest_name_lock); 5097 return; 5098 } 5099 5100 /* 5101 * Write all the copies of our block. 5102 */ 5103 for (int i = 0; i < copies; i++) { 5104 uint64_t offset = i * blocksize; 5105 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 5106 DMU_READ_NO_PREFETCH); 5107 if (error != 0) { 5108 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 5109 os, (long long)object, (long long) offset, error); 5110 } 5111 ASSERT(db->db_offset == offset); 5112 ASSERT(db->db_size == blocksize); 5113 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 5114 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 5115 dmu_buf_will_fill(db, tx); 5116 ztest_pattern_set(db->db_data, db->db_size, pattern); 5117 dmu_buf_rele(db, FTAG); 5118 } 5119 5120 dmu_tx_commit(tx); 5121 txg_wait_synced(spa_get_dsl(spa), txg); 5122 5123 /* 5124 * Find out what block we got. 5125 */ 5126 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 5127 DMU_READ_NO_PREFETCH)); 5128 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 5129 dmu_buf_rele(db, FTAG); 5130 5131 /* 5132 * Damage the block. Dedup-ditto will save us when we read it later. 5133 */ 5134 psize = BP_GET_PSIZE(&blk); 5135 abd = abd_alloc_linear(psize, B_TRUE); 5136 ztest_pattern_set(abd_to_buf(abd), psize, ~pattern); 5137 5138 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5139 abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5140 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5141 5142 abd_free(abd); 5143 5144 (void) rw_unlock(&ztest_name_lock); 5145 } 5146 5147 /* 5148 * Scrub the pool. 5149 */ 5150 /* ARGSUSED */ 5151 void 5152 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5153 { 5154 spa_t *spa = ztest_spa; 5155 5156 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5157 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5158 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5159 } 5160 5161 /* 5162 * Change the guid for the pool. 5163 */ 5164 /* ARGSUSED */ 5165 void 5166 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5167 { 5168 spa_t *spa = ztest_spa; 5169 uint64_t orig, load; 5170 int error; 5171 5172 orig = spa_guid(spa); 5173 load = spa_load_guid(spa); 5174 5175 (void) rw_wrlock(&ztest_name_lock); 5176 error = spa_change_guid(spa); 5177 (void) rw_unlock(&ztest_name_lock); 5178 5179 if (error != 0) 5180 return; 5181 5182 if (ztest_opts.zo_verbose >= 4) { 5183 (void) printf("Changed guid old %llu -> %llu\n", 5184 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5185 } 5186 5187 VERIFY3U(orig, !=, spa_guid(spa)); 5188 VERIFY3U(load, ==, spa_load_guid(spa)); 5189 } 5190 5191 /* 5192 * Rename the pool to a different name and then rename it back. 5193 */ 5194 /* ARGSUSED */ 5195 void 5196 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 5197 { 5198 char *oldname, *newname; 5199 spa_t *spa; 5200 5201 (void) rw_wrlock(&ztest_name_lock); 5202 5203 oldname = ztest_opts.zo_pool; 5204 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 5205 (void) strcpy(newname, oldname); 5206 (void) strcat(newname, "_tmp"); 5207 5208 /* 5209 * Do the rename 5210 */ 5211 VERIFY3U(0, ==, spa_rename(oldname, newname)); 5212 5213 /* 5214 * Try to open it under the old name, which shouldn't exist 5215 */ 5216 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5217 5218 /* 5219 * Open it under the new name and make sure it's still the same spa_t. 5220 */ 5221 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5222 5223 ASSERT(spa == ztest_spa); 5224 spa_close(spa, FTAG); 5225 5226 /* 5227 * Rename it back to the original 5228 */ 5229 VERIFY3U(0, ==, spa_rename(newname, oldname)); 5230 5231 /* 5232 * Make sure it can still be opened 5233 */ 5234 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5235 5236 ASSERT(spa == ztest_spa); 5237 spa_close(spa, FTAG); 5238 5239 umem_free(newname, strlen(newname) + 1); 5240 5241 (void) rw_unlock(&ztest_name_lock); 5242 } 5243 5244 /* 5245 * Verify pool integrity by running zdb. 5246 */ 5247 static void 5248 ztest_run_zdb(char *pool) 5249 { 5250 int status; 5251 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5252 char zbuf[1024]; 5253 char *bin; 5254 char *ztest; 5255 char *isa; 5256 int isalen; 5257 FILE *fp; 5258 5259 (void) realpath(getexecname(), zdb); 5260 5261 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 5262 bin = strstr(zdb, "/usr/bin/"); 5263 ztest = strstr(bin, "/ztest"); 5264 isa = bin + 8; 5265 isalen = ztest - isa; 5266 isa = strdup(isa); 5267 /* LINTED */ 5268 (void) sprintf(bin, 5269 "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s %s", 5270 isalen, 5271 isa, 5272 ztest_opts.zo_verbose >= 3 ? "s" : "", 5273 ztest_opts.zo_verbose >= 4 ? "v" : "", 5274 spa_config_path, 5275 pool); 5276 free(isa); 5277 5278 if (ztest_opts.zo_verbose >= 5) 5279 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5280 5281 fp = popen(zdb, "r"); 5282 5283 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5284 if (ztest_opts.zo_verbose >= 3) 5285 (void) printf("%s", zbuf); 5286 5287 status = pclose(fp); 5288 5289 if (status == 0) 5290 return; 5291 5292 ztest_dump_core = 0; 5293 if (WIFEXITED(status)) 5294 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5295 else 5296 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5297 } 5298 5299 static void 5300 ztest_walk_pool_directory(char *header) 5301 { 5302 spa_t *spa = NULL; 5303 5304 if (ztest_opts.zo_verbose >= 6) 5305 (void) printf("%s\n", header); 5306 5307 mutex_enter(&spa_namespace_lock); 5308 while ((spa = spa_next(spa)) != NULL) 5309 if (ztest_opts.zo_verbose >= 6) 5310 (void) printf("\t%s\n", spa_name(spa)); 5311 mutex_exit(&spa_namespace_lock); 5312 } 5313 5314 static void 5315 ztest_spa_import_export(char *oldname, char *newname) 5316 { 5317 nvlist_t *config, *newconfig; 5318 uint64_t pool_guid; 5319 spa_t *spa; 5320 int error; 5321 5322 if (ztest_opts.zo_verbose >= 4) { 5323 (void) printf("import/export: old = %s, new = %s\n", 5324 oldname, newname); 5325 } 5326 5327 /* 5328 * Clean up from previous runs. 5329 */ 5330 (void) spa_destroy(newname); 5331 5332 /* 5333 * Get the pool's configuration and guid. 5334 */ 5335 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5336 5337 /* 5338 * Kick off a scrub to tickle scrub/export races. 5339 */ 5340 if (ztest_random(2) == 0) 5341 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5342 5343 pool_guid = spa_guid(spa); 5344 spa_close(spa, FTAG); 5345 5346 ztest_walk_pool_directory("pools before export"); 5347 5348 /* 5349 * Export it. 5350 */ 5351 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5352 5353 ztest_walk_pool_directory("pools after export"); 5354 5355 /* 5356 * Try to import it. 5357 */ 5358 newconfig = spa_tryimport(config); 5359 ASSERT(newconfig != NULL); 5360 nvlist_free(newconfig); 5361 5362 /* 5363 * Import it under the new name. 5364 */ 5365 error = spa_import(newname, config, NULL, 0); 5366 if (error != 0) { 5367 dump_nvlist(config, 0); 5368 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 5369 oldname, newname, error); 5370 } 5371 5372 ztest_walk_pool_directory("pools after import"); 5373 5374 /* 5375 * Try to import it again -- should fail with EEXIST. 5376 */ 5377 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5378 5379 /* 5380 * Try to import it under a different name -- should fail with EEXIST. 5381 */ 5382 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5383 5384 /* 5385 * Verify that the pool is no longer visible under the old name. 5386 */ 5387 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5388 5389 /* 5390 * Verify that we can open and close the pool using the new name. 5391 */ 5392 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5393 ASSERT(pool_guid == spa_guid(spa)); 5394 spa_close(spa, FTAG); 5395 5396 nvlist_free(config); 5397 } 5398 5399 static void 5400 ztest_resume(spa_t *spa) 5401 { 5402 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5403 (void) printf("resuming from suspended state\n"); 5404 spa_vdev_state_enter(spa, SCL_NONE); 5405 vdev_clear(spa, NULL); 5406 (void) spa_vdev_state_exit(spa, NULL, 0); 5407 (void) zio_resume(spa); 5408 } 5409 5410 static void * 5411 ztest_resume_thread(void *arg) 5412 { 5413 spa_t *spa = arg; 5414 5415 while (!ztest_exiting) { 5416 if (spa_suspended(spa)) 5417 ztest_resume(spa); 5418 (void) poll(NULL, 0, 100); 5419 5420 /* 5421 * Periodically change the zfs_compressed_arc_enabled setting. 5422 */ 5423 if (ztest_random(10) == 0) 5424 zfs_compressed_arc_enabled = ztest_random(2); 5425 5426 /* 5427 * Periodically change the zfs_abd_scatter_enabled setting. 5428 */ 5429 if (ztest_random(10) == 0) 5430 zfs_abd_scatter_enabled = ztest_random(2); 5431 } 5432 return (NULL); 5433 } 5434 5435 static void * 5436 ztest_deadman_thread(void *arg) 5437 { 5438 ztest_shared_t *zs = arg; 5439 spa_t *spa = ztest_spa; 5440 hrtime_t delta, total = 0; 5441 5442 for (;;) { 5443 delta = zs->zs_thread_stop - zs->zs_thread_start + 5444 MSEC2NSEC(zfs_deadman_synctime_ms); 5445 5446 (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); 5447 5448 /* 5449 * If the pool is suspended then fail immediately. Otherwise, 5450 * check to see if the pool is making any progress. If 5451 * vdev_deadman() discovers that there hasn't been any recent 5452 * I/Os then it will end up aborting the tests. 5453 */ 5454 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { 5455 fatal(0, "aborting test after %llu seconds because " 5456 "pool has transitioned to a suspended state.", 5457 zfs_deadman_synctime_ms / 1000); 5458 return (NULL); 5459 } 5460 vdev_deadman(spa->spa_root_vdev); 5461 5462 total += zfs_deadman_synctime_ms/1000; 5463 (void) printf("ztest has been running for %lld seconds\n", 5464 total); 5465 } 5466 } 5467 5468 static void 5469 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5470 { 5471 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5472 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5473 hrtime_t functime = gethrtime(); 5474 5475 for (int i = 0; i < zi->zi_iters; i++) 5476 zi->zi_func(zd, id); 5477 5478 functime = gethrtime() - functime; 5479 5480 atomic_add_64(&zc->zc_count, 1); 5481 atomic_add_64(&zc->zc_time, functime); 5482 5483 if (ztest_opts.zo_verbose >= 4) { 5484 Dl_info dli; 5485 (void) dladdr((void *)zi->zi_func, &dli); 5486 (void) printf("%6.2f sec in %s\n", 5487 (double)functime / NANOSEC, dli.dli_sname); 5488 } 5489 } 5490 5491 static void * 5492 ztest_thread(void *arg) 5493 { 5494 int rand; 5495 uint64_t id = (uintptr_t)arg; 5496 ztest_shared_t *zs = ztest_shared; 5497 uint64_t call_next; 5498 hrtime_t now; 5499 ztest_info_t *zi; 5500 ztest_shared_callstate_t *zc; 5501 5502 while ((now = gethrtime()) < zs->zs_thread_stop) { 5503 /* 5504 * See if it's time to force a crash. 5505 */ 5506 if (now > zs->zs_thread_kill) 5507 ztest_kill(zs); 5508 5509 /* 5510 * If we're getting ENOSPC with some regularity, stop. 5511 */ 5512 if (zs->zs_enospc_count > 10) 5513 break; 5514 5515 /* 5516 * Pick a random function to execute. 5517 */ 5518 rand = ztest_random(ZTEST_FUNCS); 5519 zi = &ztest_info[rand]; 5520 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5521 call_next = zc->zc_next; 5522 5523 if (now >= call_next && 5524 atomic_cas_64(&zc->zc_next, call_next, call_next + 5525 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5526 ztest_execute(rand, zi, id); 5527 } 5528 } 5529 5530 return (NULL); 5531 } 5532 5533 static void 5534 ztest_dataset_name(char *dsname, char *pool, int d) 5535 { 5536 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d); 5537 } 5538 5539 static void 5540 ztest_dataset_destroy(int d) 5541 { 5542 char name[ZFS_MAX_DATASET_NAME_LEN]; 5543 5544 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5545 5546 if (ztest_opts.zo_verbose >= 3) 5547 (void) printf("Destroying %s to free up space\n", name); 5548 5549 /* 5550 * Cleanup any non-standard clones and snapshots. In general, 5551 * ztest thread t operates on dataset (t % zopt_datasets), 5552 * so there may be more than one thing to clean up. 5553 */ 5554 for (int t = d; t < ztest_opts.zo_threads; 5555 t += ztest_opts.zo_datasets) { 5556 ztest_dsl_dataset_cleanup(name, t); 5557 } 5558 5559 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5560 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5561 } 5562 5563 static void 5564 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5565 { 5566 uint64_t usedobjs, dirobjs, scratch; 5567 5568 /* 5569 * ZTEST_DIROBJ is the object directory for the entire dataset. 5570 * Therefore, the number of objects in use should equal the 5571 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5572 * If not, we have an object leak. 5573 * 5574 * Note that we can only check this in ztest_dataset_open(), 5575 * when the open-context and syncing-context values agree. 5576 * That's because zap_count() returns the open-context value, 5577 * while dmu_objset_space() returns the rootbp fill count. 5578 */ 5579 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5580 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5581 ASSERT3U(dirobjs + 1, ==, usedobjs); 5582 } 5583 5584 static int 5585 ztest_dataset_open(int d) 5586 { 5587 ztest_ds_t *zd = &ztest_ds[d]; 5588 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5589 objset_t *os; 5590 zilog_t *zilog; 5591 char name[ZFS_MAX_DATASET_NAME_LEN]; 5592 int error; 5593 5594 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5595 5596 (void) rw_rdlock(&ztest_name_lock); 5597 5598 error = ztest_dataset_create(name); 5599 if (error == ENOSPC) { 5600 (void) rw_unlock(&ztest_name_lock); 5601 ztest_record_enospc(FTAG); 5602 return (error); 5603 } 5604 ASSERT(error == 0 || error == EEXIST); 5605 5606 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); 5607 (void) rw_unlock(&ztest_name_lock); 5608 5609 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5610 5611 zilog = zd->zd_zilog; 5612 5613 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5614 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5615 fatal(0, "missing log records: claimed %llu < committed %llu", 5616 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5617 5618 ztest_dataset_dirobj_verify(zd); 5619 5620 zil_replay(os, zd, ztest_replay_vector); 5621 5622 ztest_dataset_dirobj_verify(zd); 5623 5624 if (ztest_opts.zo_verbose >= 6) 5625 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5626 zd->zd_name, 5627 (u_longlong_t)zilog->zl_parse_blk_count, 5628 (u_longlong_t)zilog->zl_parse_lr_count, 5629 (u_longlong_t)zilog->zl_replaying_seq); 5630 5631 zilog = zil_open(os, ztest_get_data); 5632 5633 if (zilog->zl_replaying_seq != 0 && 5634 zilog->zl_replaying_seq < committed_seq) 5635 fatal(0, "missing log records: replayed %llu < committed %llu", 5636 zilog->zl_replaying_seq, committed_seq); 5637 5638 return (0); 5639 } 5640 5641 static void 5642 ztest_dataset_close(int d) 5643 { 5644 ztest_ds_t *zd = &ztest_ds[d]; 5645 5646 zil_close(zd->zd_zilog); 5647 dmu_objset_disown(zd->zd_os, zd); 5648 5649 ztest_zd_fini(zd); 5650 } 5651 5652 /* 5653 * Kick off threads to run tests on all datasets in parallel. 5654 */ 5655 static void 5656 ztest_run(ztest_shared_t *zs) 5657 { 5658 thread_t *tid; 5659 spa_t *spa; 5660 objset_t *os; 5661 thread_t resume_tid; 5662 int error; 5663 5664 ztest_exiting = B_FALSE; 5665 5666 /* 5667 * Initialize parent/child shared state. 5668 */ 5669 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5670 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5671 5672 zs->zs_thread_start = gethrtime(); 5673 zs->zs_thread_stop = 5674 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5675 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5676 zs->zs_thread_kill = zs->zs_thread_stop; 5677 if (ztest_random(100) < ztest_opts.zo_killrate) { 5678 zs->zs_thread_kill -= 5679 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5680 } 5681 5682 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5683 5684 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5685 offsetof(ztest_cb_data_t, zcd_node)); 5686 5687 /* 5688 * Open our pool. 5689 */ 5690 kernel_init(FREAD | FWRITE); 5691 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5692 spa->spa_debug = B_TRUE; 5693 metaslab_preload_limit = ztest_random(20) + 1; 5694 ztest_spa = spa; 5695 5696 dmu_objset_stats_t dds; 5697 VERIFY0(dmu_objset_own(ztest_opts.zo_pool, 5698 DMU_OST_ANY, B_TRUE, FTAG, &os)); 5699 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 5700 dmu_objset_fast_stat(os, &dds); 5701 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 5702 zs->zs_guid = dds.dds_guid; 5703 dmu_objset_disown(os, FTAG); 5704 5705 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5706 5707 /* 5708 * We don't expect the pool to suspend unless maxfaults == 0, 5709 * in which case ztest_fault_inject() temporarily takes away 5710 * the only valid replica. 5711 */ 5712 if (MAXFAULTS() == 0) 5713 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5714 else 5715 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5716 5717 /* 5718 * Create a thread to periodically resume suspended I/O. 5719 */ 5720 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5721 &resume_tid) == 0); 5722 5723 /* 5724 * Create a deadman thread to abort() if we hang. 5725 */ 5726 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5727 NULL) == 0); 5728 5729 /* 5730 * Verify that we can safely inquire about about any object, 5731 * whether it's allocated or not. To make it interesting, 5732 * we probe a 5-wide window around each power of two. 5733 * This hits all edge cases, including zero and the max. 5734 */ 5735 for (int t = 0; t < 64; t++) { 5736 for (int d = -5; d <= 5; d++) { 5737 error = dmu_object_info(spa->spa_meta_objset, 5738 (1ULL << t) + d, NULL); 5739 ASSERT(error == 0 || error == ENOENT || 5740 error == EINVAL); 5741 } 5742 } 5743 5744 /* 5745 * If we got any ENOSPC errors on the previous run, destroy something. 5746 */ 5747 if (zs->zs_enospc_count != 0) { 5748 int d = ztest_random(ztest_opts.zo_datasets); 5749 ztest_dataset_destroy(d); 5750 } 5751 zs->zs_enospc_count = 0; 5752 5753 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 5754 UMEM_NOFAIL); 5755 5756 if (ztest_opts.zo_verbose >= 4) 5757 (void) printf("starting main threads...\n"); 5758 5759 /* 5760 * Kick off all the tests that run in parallel. 5761 */ 5762 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5763 if (t < ztest_opts.zo_datasets && 5764 ztest_dataset_open(t) != 0) 5765 return; 5766 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5767 THR_BOUND, &tid[t]) == 0); 5768 } 5769 5770 /* 5771 * Wait for all of the tests to complete. We go in reverse order 5772 * so we don't close datasets while threads are still using them. 5773 */ 5774 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5775 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5776 if (t < ztest_opts.zo_datasets) 5777 ztest_dataset_close(t); 5778 } 5779 5780 txg_wait_synced(spa_get_dsl(spa), 0); 5781 5782 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5783 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5784 zfs_dbgmsg_print(FTAG); 5785 5786 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 5787 5788 /* Kill the resume thread */ 5789 ztest_exiting = B_TRUE; 5790 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5791 ztest_resume(spa); 5792 5793 /* 5794 * Right before closing the pool, kick off a bunch of async I/O; 5795 * spa_close() should wait for it to complete. 5796 */ 5797 for (uint64_t object = 1; object < 50; object++) { 5798 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20, 5799 ZIO_PRIORITY_SYNC_READ); 5800 } 5801 5802 spa_close(spa, FTAG); 5803 5804 /* 5805 * Verify that we can loop over all pools. 5806 */ 5807 mutex_enter(&spa_namespace_lock); 5808 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5809 if (ztest_opts.zo_verbose > 3) 5810 (void) printf("spa_next: found %s\n", spa_name(spa)); 5811 mutex_exit(&spa_namespace_lock); 5812 5813 /* 5814 * Verify that we can export the pool and reimport it under a 5815 * different name. 5816 */ 5817 if (ztest_random(2) == 0) { 5818 char name[ZFS_MAX_DATASET_NAME_LEN]; 5819 (void) snprintf(name, sizeof (name), "%s_import", 5820 ztest_opts.zo_pool); 5821 ztest_spa_import_export(ztest_opts.zo_pool, name); 5822 ztest_spa_import_export(name, ztest_opts.zo_pool); 5823 } 5824 5825 kernel_fini(); 5826 5827 list_destroy(&zcl.zcl_callbacks); 5828 5829 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5830 5831 (void) rwlock_destroy(&ztest_name_lock); 5832 (void) _mutex_destroy(&ztest_vdev_lock); 5833 } 5834 5835 static void 5836 ztest_freeze(void) 5837 { 5838 ztest_ds_t *zd = &ztest_ds[0]; 5839 spa_t *spa; 5840 int numloops = 0; 5841 5842 if (ztest_opts.zo_verbose >= 3) 5843 (void) printf("testing spa_freeze()...\n"); 5844 5845 kernel_init(FREAD | FWRITE); 5846 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5847 VERIFY3U(0, ==, ztest_dataset_open(0)); 5848 spa->spa_debug = B_TRUE; 5849 ztest_spa = spa; 5850 5851 /* 5852 * Force the first log block to be transactionally allocated. 5853 * We have to do this before we freeze the pool -- otherwise 5854 * the log chain won't be anchored. 5855 */ 5856 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5857 ztest_dmu_object_alloc_free(zd, 0); 5858 zil_commit(zd->zd_zilog, 0); 5859 } 5860 5861 txg_wait_synced(spa_get_dsl(spa), 0); 5862 5863 /* 5864 * Freeze the pool. This stops spa_sync() from doing anything, 5865 * so that the only way to record changes from now on is the ZIL. 5866 */ 5867 spa_freeze(spa); 5868 5869 /* 5870 * Because it is hard to predict how much space a write will actually 5871 * require beforehand, we leave ourselves some fudge space to write over 5872 * capacity. 5873 */ 5874 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; 5875 5876 /* 5877 * Run tests that generate log records but don't alter the pool config 5878 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5879 * We do a txg_wait_synced() after each iteration to force the txg 5880 * to increase well beyond the last synced value in the uberblock. 5881 * The ZIL should be OK with that. 5882 * 5883 * Run a random number of times less than zo_maxloops and ensure we do 5884 * not run out of space on the pool. 5885 */ 5886 while (ztest_random(10) != 0 && 5887 numloops++ < ztest_opts.zo_maxloops && 5888 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { 5889 ztest_od_t od; 5890 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 5891 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); 5892 ztest_io(zd, od.od_object, 5893 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 5894 txg_wait_synced(spa_get_dsl(spa), 0); 5895 } 5896 5897 /* 5898 * Commit all of the changes we just generated. 5899 */ 5900 zil_commit(zd->zd_zilog, 0); 5901 txg_wait_synced(spa_get_dsl(spa), 0); 5902 5903 /* 5904 * Close our dataset and close the pool. 5905 */ 5906 ztest_dataset_close(0); 5907 spa_close(spa, FTAG); 5908 kernel_fini(); 5909 5910 /* 5911 * Open and close the pool and dataset to induce log replay. 5912 */ 5913 kernel_init(FREAD | FWRITE); 5914 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5915 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 5916 VERIFY3U(0, ==, ztest_dataset_open(0)); 5917 ztest_dataset_close(0); 5918 5919 spa->spa_debug = B_TRUE; 5920 ztest_spa = spa; 5921 txg_wait_synced(spa_get_dsl(spa), 0); 5922 ztest_reguid(NULL, 0); 5923 5924 spa_close(spa, FTAG); 5925 kernel_fini(); 5926 } 5927 5928 void 5929 print_time(hrtime_t t, char *timebuf) 5930 { 5931 hrtime_t s = t / NANOSEC; 5932 hrtime_t m = s / 60; 5933 hrtime_t h = m / 60; 5934 hrtime_t d = h / 24; 5935 5936 s -= m * 60; 5937 m -= h * 60; 5938 h -= d * 24; 5939 5940 timebuf[0] = '\0'; 5941 5942 if (d) 5943 (void) sprintf(timebuf, 5944 "%llud%02lluh%02llum%02llus", d, h, m, s); 5945 else if (h) 5946 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5947 else if (m) 5948 (void) sprintf(timebuf, "%llum%02llus", m, s); 5949 else 5950 (void) sprintf(timebuf, "%llus", s); 5951 } 5952 5953 static nvlist_t * 5954 make_random_props() 5955 { 5956 nvlist_t *props; 5957 5958 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5959 if (ztest_random(2) == 0) 5960 return (props); 5961 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5962 5963 return (props); 5964 } 5965 5966 /* 5967 * Create a storage pool with the given name and initial vdev size. 5968 * Then test spa_freeze() functionality. 5969 */ 5970 static void 5971 ztest_init(ztest_shared_t *zs) 5972 { 5973 spa_t *spa; 5974 nvlist_t *nvroot, *props; 5975 5976 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5977 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5978 5979 kernel_init(FREAD | FWRITE); 5980 5981 /* 5982 * Create the storage pool. 5983 */ 5984 (void) spa_destroy(ztest_opts.zo_pool); 5985 ztest_shared->zs_vdev_next_leaf = 0; 5986 zs->zs_splits = 0; 5987 zs->zs_mirrors = ztest_opts.zo_mirrors; 5988 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 5989 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 5990 props = make_random_props(); 5991 for (int i = 0; i < SPA_FEATURES; i++) { 5992 char buf[1024]; 5993 (void) snprintf(buf, sizeof (buf), "feature@%s", 5994 spa_feature_table[i].fi_uname); 5995 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 5996 } 5997 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 5998 nvlist_free(nvroot); 5999 nvlist_free(props); 6000 6001 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 6002 zs->zs_metaslab_sz = 6003 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 6004 6005 spa_close(spa, FTAG); 6006 6007 kernel_fini(); 6008 6009 ztest_run_zdb(ztest_opts.zo_pool); 6010 6011 ztest_freeze(); 6012 6013 ztest_run_zdb(ztest_opts.zo_pool); 6014 6015 (void) rwlock_destroy(&ztest_name_lock); 6016 (void) _mutex_destroy(&ztest_vdev_lock); 6017 } 6018 6019 static void 6020 setup_data_fd(void) 6021 { 6022 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 6023 6024 ztest_fd_data = mkstemp(ztest_name_data); 6025 ASSERT3S(ztest_fd_data, >=, 0); 6026 (void) unlink(ztest_name_data); 6027 } 6028 6029 6030 static int 6031 shared_data_size(ztest_shared_hdr_t *hdr) 6032 { 6033 int size; 6034 6035 size = hdr->zh_hdr_size; 6036 size += hdr->zh_opts_size; 6037 size += hdr->zh_size; 6038 size += hdr->zh_stats_size * hdr->zh_stats_count; 6039 size += hdr->zh_ds_size * hdr->zh_ds_count; 6040 6041 return (size); 6042 } 6043 6044 static void 6045 setup_hdr(void) 6046 { 6047 int size; 6048 ztest_shared_hdr_t *hdr; 6049 6050 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6051 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6052 ASSERT(hdr != MAP_FAILED); 6053 6054 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 6055 6056 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 6057 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 6058 hdr->zh_size = sizeof (ztest_shared_t); 6059 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 6060 hdr->zh_stats_count = ZTEST_FUNCS; 6061 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 6062 hdr->zh_ds_count = ztest_opts.zo_datasets; 6063 6064 size = shared_data_size(hdr); 6065 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 6066 6067 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6068 } 6069 6070 static void 6071 setup_data(void) 6072 { 6073 int size, offset; 6074 ztest_shared_hdr_t *hdr; 6075 uint8_t *buf; 6076 6077 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6078 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 6079 ASSERT(hdr != MAP_FAILED); 6080 6081 size = shared_data_size(hdr); 6082 6083 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6084 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 6085 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6086 ASSERT(hdr != MAP_FAILED); 6087 buf = (uint8_t *)hdr; 6088 6089 offset = hdr->zh_hdr_size; 6090 ztest_shared_opts = (void *)&buf[offset]; 6091 offset += hdr->zh_opts_size; 6092 ztest_shared = (void *)&buf[offset]; 6093 offset += hdr->zh_size; 6094 ztest_shared_callstate = (void *)&buf[offset]; 6095 offset += hdr->zh_stats_size * hdr->zh_stats_count; 6096 ztest_shared_ds = (void *)&buf[offset]; 6097 } 6098 6099 static boolean_t 6100 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 6101 { 6102 pid_t pid; 6103 int status; 6104 char *cmdbuf = NULL; 6105 6106 pid = fork(); 6107 6108 if (cmd == NULL) { 6109 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 6110 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 6111 cmd = cmdbuf; 6112 } 6113 6114 if (pid == -1) 6115 fatal(1, "fork failed"); 6116 6117 if (pid == 0) { /* child */ 6118 char *emptyargv[2] = { cmd, NULL }; 6119 char fd_data_str[12]; 6120 6121 struct rlimit rl = { 1024, 1024 }; 6122 (void) setrlimit(RLIMIT_NOFILE, &rl); 6123 6124 (void) close(ztest_fd_rand); 6125 VERIFY3U(11, >=, 6126 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 6127 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 6128 6129 (void) enable_extended_FILE_stdio(-1, -1); 6130 if (libpath != NULL) 6131 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 6132 (void) execv(cmd, emptyargv); 6133 ztest_dump_core = B_FALSE; 6134 fatal(B_TRUE, "exec failed: %s", cmd); 6135 } 6136 6137 if (cmdbuf != NULL) { 6138 umem_free(cmdbuf, MAXPATHLEN); 6139 cmd = NULL; 6140 } 6141 6142 while (waitpid(pid, &status, 0) != pid) 6143 continue; 6144 if (statusp != NULL) 6145 *statusp = status; 6146 6147 if (WIFEXITED(status)) { 6148 if (WEXITSTATUS(status) != 0) { 6149 (void) fprintf(stderr, "child exited with code %d\n", 6150 WEXITSTATUS(status)); 6151 exit(2); 6152 } 6153 return (B_FALSE); 6154 } else if (WIFSIGNALED(status)) { 6155 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 6156 (void) fprintf(stderr, "child died with signal %d\n", 6157 WTERMSIG(status)); 6158 exit(3); 6159 } 6160 return (B_TRUE); 6161 } else { 6162 (void) fprintf(stderr, "something strange happened to child\n"); 6163 exit(4); 6164 /* NOTREACHED */ 6165 } 6166 } 6167 6168 static void 6169 ztest_run_init(void) 6170 { 6171 ztest_shared_t *zs = ztest_shared; 6172 6173 ASSERT(ztest_opts.zo_init != 0); 6174 6175 /* 6176 * Blow away any existing copy of zpool.cache 6177 */ 6178 (void) remove(spa_config_path); 6179 6180 /* 6181 * Create and initialize our storage pool. 6182 */ 6183 for (int i = 1; i <= ztest_opts.zo_init; i++) { 6184 bzero(zs, sizeof (ztest_shared_t)); 6185 if (ztest_opts.zo_verbose >= 3 && 6186 ztest_opts.zo_init != 1) { 6187 (void) printf("ztest_init(), pass %d\n", i); 6188 } 6189 ztest_init(zs); 6190 } 6191 } 6192 6193 int 6194 main(int argc, char **argv) 6195 { 6196 int kills = 0; 6197 int iters = 0; 6198 int older = 0; 6199 int newer = 0; 6200 ztest_shared_t *zs; 6201 ztest_info_t *zi; 6202 ztest_shared_callstate_t *zc; 6203 char timebuf[100]; 6204 char numbuf[6]; 6205 spa_t *spa; 6206 char *cmd; 6207 boolean_t hasalt; 6208 char *fd_data_str = getenv("ZTEST_FD_DATA"); 6209 6210 (void) setvbuf(stdout, NULL, _IOLBF, 0); 6211 6212 dprintf_setup(&argc, argv); 6213 zfs_deadman_synctime_ms = 300000; 6214 6215 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6216 ASSERT3S(ztest_fd_rand, >=, 0); 6217 6218 if (!fd_data_str) { 6219 process_options(argc, argv); 6220 6221 setup_data_fd(); 6222 setup_hdr(); 6223 setup_data(); 6224 bcopy(&ztest_opts, ztest_shared_opts, 6225 sizeof (*ztest_shared_opts)); 6226 } else { 6227 ztest_fd_data = atoi(fd_data_str); 6228 setup_data(); 6229 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6230 } 6231 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6232 6233 /* Override location of zpool.cache */ 6234 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6235 ztest_opts.zo_dir), !=, -1); 6236 6237 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6238 UMEM_NOFAIL); 6239 zs = ztest_shared; 6240 6241 if (fd_data_str) { 6242 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 6243 metaslab_df_alloc_threshold = 6244 zs->zs_metaslab_df_alloc_threshold; 6245 6246 if (zs->zs_do_init) 6247 ztest_run_init(); 6248 else 6249 ztest_run(zs); 6250 exit(0); 6251 } 6252 6253 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6254 6255 if (ztest_opts.zo_verbose >= 1) { 6256 (void) printf("%llu vdevs, %d datasets, %d threads," 6257 " %llu seconds...\n", 6258 (u_longlong_t)ztest_opts.zo_vdevs, 6259 ztest_opts.zo_datasets, 6260 ztest_opts.zo_threads, 6261 (u_longlong_t)ztest_opts.zo_time); 6262 } 6263 6264 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6265 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6266 6267 zs->zs_do_init = B_TRUE; 6268 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6269 if (ztest_opts.zo_verbose >= 1) { 6270 (void) printf("Executing older ztest for " 6271 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6272 } 6273 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6274 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6275 } else { 6276 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6277 } 6278 zs->zs_do_init = B_FALSE; 6279 6280 zs->zs_proc_start = gethrtime(); 6281 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6282 6283 for (int f = 0; f < ZTEST_FUNCS; f++) { 6284 zi = &ztest_info[f]; 6285 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6286 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6287 zc->zc_next = UINT64_MAX; 6288 else 6289 zc->zc_next = zs->zs_proc_start + 6290 ztest_random(2 * zi->zi_interval[0] + 1); 6291 } 6292 6293 /* 6294 * Run the tests in a loop. These tests include fault injection 6295 * to verify that self-healing data works, and forced crashes 6296 * to verify that we never lose on-disk consistency. 6297 */ 6298 while (gethrtime() < zs->zs_proc_stop) { 6299 int status; 6300 boolean_t killed; 6301 6302 /* 6303 * Initialize the workload counters for each function. 6304 */ 6305 for (int f = 0; f < ZTEST_FUNCS; f++) { 6306 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6307 zc->zc_count = 0; 6308 zc->zc_time = 0; 6309 } 6310 6311 /* Set the allocation switch size */ 6312 zs->zs_metaslab_df_alloc_threshold = 6313 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6314 6315 if (!hasalt || ztest_random(2) == 0) { 6316 if (hasalt && ztest_opts.zo_verbose >= 1) { 6317 (void) printf("Executing newer ztest: %s\n", 6318 cmd); 6319 } 6320 newer++; 6321 killed = exec_child(cmd, NULL, B_TRUE, &status); 6322 } else { 6323 if (hasalt && ztest_opts.zo_verbose >= 1) { 6324 (void) printf("Executing older ztest: %s\n", 6325 ztest_opts.zo_alt_ztest); 6326 } 6327 older++; 6328 killed = exec_child(ztest_opts.zo_alt_ztest, 6329 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6330 } 6331 6332 if (killed) 6333 kills++; 6334 iters++; 6335 6336 if (ztest_opts.zo_verbose >= 1) { 6337 hrtime_t now = gethrtime(); 6338 6339 now = MIN(now, zs->zs_proc_stop); 6340 print_time(zs->zs_proc_stop - now, timebuf); 6341 nicenum(zs->zs_space, numbuf); 6342 6343 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6344 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6345 iters, 6346 WIFEXITED(status) ? "Complete" : "SIGKILL", 6347 (u_longlong_t)zs->zs_enospc_count, 6348 100.0 * zs->zs_alloc / zs->zs_space, 6349 numbuf, 6350 100.0 * (now - zs->zs_proc_start) / 6351 (ztest_opts.zo_time * NANOSEC), timebuf); 6352 } 6353 6354 if (ztest_opts.zo_verbose >= 2) { 6355 (void) printf("\nWorkload summary:\n\n"); 6356 (void) printf("%7s %9s %s\n", 6357 "Calls", "Time", "Function"); 6358 (void) printf("%7s %9s %s\n", 6359 "-----", "----", "--------"); 6360 for (int f = 0; f < ZTEST_FUNCS; f++) { 6361 Dl_info dli; 6362 6363 zi = &ztest_info[f]; 6364 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6365 print_time(zc->zc_time, timebuf); 6366 (void) dladdr((void *)zi->zi_func, &dli); 6367 (void) printf("%7llu %9s %s\n", 6368 (u_longlong_t)zc->zc_count, timebuf, 6369 dli.dli_sname); 6370 } 6371 (void) printf("\n"); 6372 } 6373 6374 /* 6375 * It's possible that we killed a child during a rename test, 6376 * in which case we'll have a 'ztest_tmp' pool lying around 6377 * instead of 'ztest'. Do a blind rename in case this happened. 6378 */ 6379 kernel_init(FREAD); 6380 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6381 spa_close(spa, FTAG); 6382 } else { 6383 char tmpname[ZFS_MAX_DATASET_NAME_LEN]; 6384 kernel_fini(); 6385 kernel_init(FREAD | FWRITE); 6386 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6387 ztest_opts.zo_pool); 6388 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6389 } 6390 kernel_fini(); 6391 6392 ztest_run_zdb(ztest_opts.zo_pool); 6393 } 6394 6395 if (ztest_opts.zo_verbose >= 1) { 6396 if (hasalt) { 6397 (void) printf("%d runs of older ztest: %s\n", older, 6398 ztest_opts.zo_alt_ztest); 6399 (void) printf("%d runs of newer ztest: %s\n", newer, 6400 cmd); 6401 } 6402 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6403 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6404 } 6405 6406 umem_free(cmd, MAXNAMELEN); 6407 6408 return (0); 6409 } 6410