1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2017 Joyent, Inc. 28 * Copyright 2017 RackTop Systems. 29 */ 30 31 /* 32 * The objective of this program is to provide a DMU/ZAP/SPA stress test 33 * that runs entirely in userland, is easy to use, and easy to extend. 34 * 35 * The overall design of the ztest program is as follows: 36 * 37 * (1) For each major functional area (e.g. adding vdevs to a pool, 38 * creating and destroying datasets, reading and writing objects, etc) 39 * we have a simple routine to test that functionality. These 40 * individual routines do not have to do anything "stressful". 41 * 42 * (2) We turn these simple functionality tests into a stress test by 43 * running them all in parallel, with as many threads as desired, 44 * and spread across as many datasets, objects, and vdevs as desired. 45 * 46 * (3) While all this is happening, we inject faults into the pool to 47 * verify that self-healing data really works. 48 * 49 * (4) Every time we open a dataset, we change its checksum and compression 50 * functions. Thus even individual objects vary from block to block 51 * in which checksum they use and whether they're compressed. 52 * 53 * (5) To verify that we never lose on-disk consistency after a crash, 54 * we run the entire test in a child of the main process. 55 * At random times, the child self-immolates with a SIGKILL. 56 * This is the software equivalent of pulling the power cord. 57 * The parent then runs the test again, using the existing 58 * storage pool, as many times as desired. If backwards compatibility 59 * testing is enabled ztest will sometimes run the "older" version 60 * of ztest after a SIGKILL. 61 * 62 * (6) To verify that we don't have future leaks or temporal incursions, 63 * many of the functional tests record the transaction group number 64 * as part of their data. When reading old data, they verify that 65 * the transaction group number is less than the current, open txg. 66 * If you add a new test, please do this if applicable. 67 * 68 * When run with no arguments, ztest runs for about five minutes and 69 * produces no output if successful. To get a little bit of information, 70 * specify -V. To get more information, specify -VV, and so on. 71 * 72 * To turn this into an overnight stress test, use -T to specify run time. 73 * 74 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 75 * to increase the pool capacity, fanout, and overall stress level. 76 * 77 * Use the -k option to set the desired frequency of kills. 78 * 79 * When ztest invokes itself it passes all relevant information through a 80 * temporary file which is mmap-ed in the child process. This allows shared 81 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 82 * stored at offset 0 of this file and contains information on the size and 83 * number of shared structures in the file. The information stored in this file 84 * must remain backwards compatible with older versions of ztest so that 85 * ztest can invoke them during backwards compatibility testing (-B). 86 */ 87 88 #include <sys/zfs_context.h> 89 #include <sys/spa.h> 90 #include <sys/dmu.h> 91 #include <sys/txg.h> 92 #include <sys/dbuf.h> 93 #include <sys/zap.h> 94 #include <sys/dmu_objset.h> 95 #include <sys/poll.h> 96 #include <sys/stat.h> 97 #include <sys/time.h> 98 #include <sys/wait.h> 99 #include <sys/mman.h> 100 #include <sys/resource.h> 101 #include <sys/zio.h> 102 #include <sys/zil.h> 103 #include <sys/zil_impl.h> 104 #include <sys/vdev_impl.h> 105 #include <sys/vdev_file.h> 106 #include <sys/spa_impl.h> 107 #include <sys/metaslab_impl.h> 108 #include <sys/dsl_prop.h> 109 #include <sys/dsl_dataset.h> 110 #include <sys/dsl_destroy.h> 111 #include <sys/dsl_scan.h> 112 #include <sys/zio_checksum.h> 113 #include <sys/refcount.h> 114 #include <sys/zfeature.h> 115 #include <sys/dsl_userhold.h> 116 #include <sys/abd.h> 117 #include <stdio.h> 118 #include <stdio_ext.h> 119 #include <stdlib.h> 120 #include <unistd.h> 121 #include <signal.h> 122 #include <umem.h> 123 #include <dlfcn.h> 124 #include <ctype.h> 125 #include <math.h> 126 #include <sys/fs/zfs.h> 127 #include <libnvpair.h> 128 #include <libcmdutils.h> 129 130 static int ztest_fd_data = -1; 131 static int ztest_fd_rand = -1; 132 133 typedef struct ztest_shared_hdr { 134 uint64_t zh_hdr_size; 135 uint64_t zh_opts_size; 136 uint64_t zh_size; 137 uint64_t zh_stats_size; 138 uint64_t zh_stats_count; 139 uint64_t zh_ds_size; 140 uint64_t zh_ds_count; 141 } ztest_shared_hdr_t; 142 143 static ztest_shared_hdr_t *ztest_shared_hdr; 144 145 typedef struct ztest_shared_opts { 146 char zo_pool[ZFS_MAX_DATASET_NAME_LEN]; 147 char zo_dir[ZFS_MAX_DATASET_NAME_LEN]; 148 char zo_alt_ztest[MAXNAMELEN]; 149 char zo_alt_libpath[MAXNAMELEN]; 150 uint64_t zo_vdevs; 151 uint64_t zo_vdevtime; 152 size_t zo_vdev_size; 153 int zo_ashift; 154 int zo_mirrors; 155 int zo_raidz; 156 int zo_raidz_parity; 157 int zo_datasets; 158 int zo_threads; 159 uint64_t zo_passtime; 160 uint64_t zo_killrate; 161 int zo_verbose; 162 int zo_init; 163 uint64_t zo_time; 164 uint64_t zo_maxloops; 165 uint64_t zo_metaslab_gang_bang; 166 } ztest_shared_opts_t; 167 168 static const ztest_shared_opts_t ztest_opts_defaults = { 169 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 170 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 171 .zo_alt_ztest = { '\0' }, 172 .zo_alt_libpath = { '\0' }, 173 .zo_vdevs = 5, 174 .zo_ashift = SPA_MINBLOCKSHIFT, 175 .zo_mirrors = 2, 176 .zo_raidz = 4, 177 .zo_raidz_parity = 1, 178 .zo_vdev_size = SPA_MINDEVSIZE * 4, /* 256m default size */ 179 .zo_datasets = 7, 180 .zo_threads = 23, 181 .zo_passtime = 60, /* 60 seconds */ 182 .zo_killrate = 70, /* 70% kill rate */ 183 .zo_verbose = 0, 184 .zo_init = 1, 185 .zo_time = 300, /* 5 minutes */ 186 .zo_maxloops = 50, /* max loops during spa_freeze() */ 187 .zo_metaslab_gang_bang = 32 << 10 188 }; 189 190 extern uint64_t metaslab_gang_bang; 191 extern uint64_t metaslab_df_alloc_threshold; 192 extern uint64_t zfs_deadman_synctime_ms; 193 extern int metaslab_preload_limit; 194 extern boolean_t zfs_compressed_arc_enabled; 195 extern boolean_t zfs_abd_scatter_enabled; 196 197 static ztest_shared_opts_t *ztest_shared_opts; 198 static ztest_shared_opts_t ztest_opts; 199 200 typedef struct ztest_shared_ds { 201 uint64_t zd_seq; 202 } ztest_shared_ds_t; 203 204 static ztest_shared_ds_t *ztest_shared_ds; 205 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 206 207 #define BT_MAGIC 0x123456789abcdefULL 208 #define MAXFAULTS() \ 209 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 210 211 enum ztest_io_type { 212 ZTEST_IO_WRITE_TAG, 213 ZTEST_IO_WRITE_PATTERN, 214 ZTEST_IO_WRITE_ZEROES, 215 ZTEST_IO_TRUNCATE, 216 ZTEST_IO_SETATTR, 217 ZTEST_IO_REWRITE, 218 ZTEST_IO_TYPES 219 }; 220 221 typedef struct ztest_block_tag { 222 uint64_t bt_magic; 223 uint64_t bt_objset; 224 uint64_t bt_object; 225 uint64_t bt_offset; 226 uint64_t bt_gen; 227 uint64_t bt_txg; 228 uint64_t bt_crtxg; 229 } ztest_block_tag_t; 230 231 typedef struct bufwad { 232 uint64_t bw_index; 233 uint64_t bw_txg; 234 uint64_t bw_data; 235 } bufwad_t; 236 237 /* 238 * XXX -- fix zfs range locks to be generic so we can use them here. 239 */ 240 typedef enum { 241 RL_READER, 242 RL_WRITER, 243 RL_APPEND 244 } rl_type_t; 245 246 typedef struct rll { 247 void *rll_writer; 248 int rll_readers; 249 kmutex_t rll_lock; 250 kcondvar_t rll_cv; 251 } rll_t; 252 253 typedef struct rl { 254 uint64_t rl_object; 255 uint64_t rl_offset; 256 uint64_t rl_size; 257 rll_t *rl_lock; 258 } rl_t; 259 260 #define ZTEST_RANGE_LOCKS 64 261 #define ZTEST_OBJECT_LOCKS 64 262 263 /* 264 * Object descriptor. Used as a template for object lookup/create/remove. 265 */ 266 typedef struct ztest_od { 267 uint64_t od_dir; 268 uint64_t od_object; 269 dmu_object_type_t od_type; 270 dmu_object_type_t od_crtype; 271 uint64_t od_blocksize; 272 uint64_t od_crblocksize; 273 uint64_t od_gen; 274 uint64_t od_crgen; 275 char od_name[ZFS_MAX_DATASET_NAME_LEN]; 276 } ztest_od_t; 277 278 /* 279 * Per-dataset state. 280 */ 281 typedef struct ztest_ds { 282 ztest_shared_ds_t *zd_shared; 283 objset_t *zd_os; 284 krwlock_t zd_zilog_lock; 285 zilog_t *zd_zilog; 286 ztest_od_t *zd_od; /* debugging aid */ 287 char zd_name[ZFS_MAX_DATASET_NAME_LEN]; 288 kmutex_t zd_dirobj_lock; 289 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 290 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 291 } ztest_ds_t; 292 293 /* 294 * Per-iteration state. 295 */ 296 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 297 298 typedef struct ztest_info { 299 ztest_func_t *zi_func; /* test function */ 300 uint64_t zi_iters; /* iterations per execution */ 301 uint64_t *zi_interval; /* execute every <interval> seconds */ 302 } ztest_info_t; 303 304 typedef struct ztest_shared_callstate { 305 uint64_t zc_count; /* per-pass count */ 306 uint64_t zc_time; /* per-pass time */ 307 uint64_t zc_next; /* next time to call this function */ 308 } ztest_shared_callstate_t; 309 310 static ztest_shared_callstate_t *ztest_shared_callstate; 311 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 312 313 /* 314 * Note: these aren't static because we want dladdr() to work. 315 */ 316 ztest_func_t ztest_dmu_read_write; 317 ztest_func_t ztest_dmu_write_parallel; 318 ztest_func_t ztest_dmu_object_alloc_free; 319 ztest_func_t ztest_dmu_commit_callbacks; 320 ztest_func_t ztest_zap; 321 ztest_func_t ztest_zap_parallel; 322 ztest_func_t ztest_zil_commit; 323 ztest_func_t ztest_zil_remount; 324 ztest_func_t ztest_dmu_read_write_zcopy; 325 ztest_func_t ztest_dmu_objset_create_destroy; 326 ztest_func_t ztest_dmu_prealloc; 327 ztest_func_t ztest_fzap; 328 ztest_func_t ztest_dmu_snapshot_create_destroy; 329 ztest_func_t ztest_dsl_prop_get_set; 330 ztest_func_t ztest_spa_prop_get_set; 331 ztest_func_t ztest_spa_create_destroy; 332 ztest_func_t ztest_fault_inject; 333 ztest_func_t ztest_ddt_repair; 334 ztest_func_t ztest_dmu_snapshot_hold; 335 ztest_func_t ztest_spa_rename; 336 ztest_func_t ztest_scrub; 337 ztest_func_t ztest_dsl_dataset_promote_busy; 338 ztest_func_t ztest_vdev_attach_detach; 339 ztest_func_t ztest_vdev_LUN_growth; 340 ztest_func_t ztest_vdev_add_remove; 341 ztest_func_t ztest_vdev_aux_add_remove; 342 ztest_func_t ztest_split_pool; 343 ztest_func_t ztest_reguid; 344 ztest_func_t ztest_spa_upgrade; 345 ztest_func_t ztest_device_removal; 346 ztest_func_t ztest_remap_blocks; 347 348 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 349 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 350 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 351 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 352 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 353 354 ztest_info_t ztest_info[] = { 355 { ztest_dmu_read_write, 1, &zopt_always }, 356 { ztest_dmu_write_parallel, 10, &zopt_always }, 357 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 358 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 359 { ztest_zap, 30, &zopt_always }, 360 { ztest_zap_parallel, 100, &zopt_always }, 361 { ztest_split_pool, 1, &zopt_always }, 362 { ztest_zil_commit, 1, &zopt_incessant }, 363 { ztest_zil_remount, 1, &zopt_sometimes }, 364 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 365 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 366 { ztest_dsl_prop_get_set, 1, &zopt_often }, 367 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 368 #if 0 369 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 370 #endif 371 { ztest_fzap, 1, &zopt_sometimes }, 372 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 373 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 374 { ztest_fault_inject, 1, &zopt_sometimes }, 375 { ztest_ddt_repair, 1, &zopt_sometimes }, 376 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 377 { ztest_reguid, 1, &zopt_rarely }, 378 { ztest_spa_rename, 1, &zopt_rarely }, 379 { ztest_scrub, 1, &zopt_rarely }, 380 { ztest_spa_upgrade, 1, &zopt_rarely }, 381 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 382 { ztest_vdev_attach_detach, 1, &zopt_sometimes }, 383 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 384 { ztest_vdev_add_remove, 1, 385 &ztest_opts.zo_vdevtime }, 386 { ztest_vdev_aux_add_remove, 1, 387 &ztest_opts.zo_vdevtime }, 388 { ztest_device_removal, 1, &zopt_sometimes }, 389 { ztest_remap_blocks, 1, &zopt_sometimes } 390 }; 391 392 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 393 394 /* 395 * The following struct is used to hold a list of uncalled commit callbacks. 396 * The callbacks are ordered by txg number. 397 */ 398 typedef struct ztest_cb_list { 399 kmutex_t zcl_callbacks_lock; 400 list_t zcl_callbacks; 401 } ztest_cb_list_t; 402 403 /* 404 * Stuff we need to share writably between parent and child. 405 */ 406 typedef struct ztest_shared { 407 boolean_t zs_do_init; 408 hrtime_t zs_proc_start; 409 hrtime_t zs_proc_stop; 410 hrtime_t zs_thread_start; 411 hrtime_t zs_thread_stop; 412 hrtime_t zs_thread_kill; 413 uint64_t zs_enospc_count; 414 uint64_t zs_vdev_next_leaf; 415 uint64_t zs_vdev_aux; 416 uint64_t zs_alloc; 417 uint64_t zs_space; 418 uint64_t zs_splits; 419 uint64_t zs_mirrors; 420 uint64_t zs_metaslab_sz; 421 uint64_t zs_metaslab_df_alloc_threshold; 422 uint64_t zs_guid; 423 } ztest_shared_t; 424 425 #define ID_PARALLEL -1ULL 426 427 static char ztest_dev_template[] = "%s/%s.%llua"; 428 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 429 ztest_shared_t *ztest_shared; 430 431 static spa_t *ztest_spa = NULL; 432 static ztest_ds_t *ztest_ds; 433 434 static kmutex_t ztest_vdev_lock; 435 436 /* 437 * The ztest_name_lock protects the pool and dataset namespace used by 438 * the individual tests. To modify the namespace, consumers must grab 439 * this lock as writer. Grabbing the lock as reader will ensure that the 440 * namespace does not change while the lock is held. 441 */ 442 static krwlock_t ztest_name_lock; 443 444 static boolean_t ztest_dump_core = B_TRUE; 445 static boolean_t ztest_exiting; 446 447 /* Global commit callback list */ 448 static ztest_cb_list_t zcl; 449 450 enum ztest_object { 451 ZTEST_META_DNODE = 0, 452 ZTEST_DIROBJ, 453 ZTEST_OBJECTS 454 }; 455 456 static void usage(boolean_t) __NORETURN; 457 458 /* 459 * These libumem hooks provide a reasonable set of defaults for the allocator's 460 * debugging facilities. 461 */ 462 const char * 463 _umem_debug_init() 464 { 465 return ("default,verbose"); /* $UMEM_DEBUG setting */ 466 } 467 468 const char * 469 _umem_logging_init(void) 470 { 471 return ("fail,contents"); /* $UMEM_LOGGING setting */ 472 } 473 474 #define FATAL_MSG_SZ 1024 475 476 char *fatal_msg; 477 478 static void 479 fatal(int do_perror, char *message, ...) 480 { 481 va_list args; 482 int save_errno = errno; 483 char buf[FATAL_MSG_SZ]; 484 485 (void) fflush(stdout); 486 487 va_start(args, message); 488 (void) sprintf(buf, "ztest: "); 489 /* LINTED */ 490 (void) vsprintf(buf + strlen(buf), message, args); 491 va_end(args); 492 if (do_perror) { 493 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 494 ": %s", strerror(save_errno)); 495 } 496 (void) fprintf(stderr, "%s\n", buf); 497 fatal_msg = buf; /* to ease debugging */ 498 if (ztest_dump_core) 499 abort(); 500 exit(3); 501 } 502 503 static int 504 str2shift(const char *buf) 505 { 506 const char *ends = "BKMGTPEZ"; 507 int i; 508 509 if (buf[0] == '\0') 510 return (0); 511 for (i = 0; i < strlen(ends); i++) { 512 if (toupper(buf[0]) == ends[i]) 513 break; 514 } 515 if (i == strlen(ends)) { 516 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 517 buf); 518 usage(B_FALSE); 519 } 520 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 521 return (10*i); 522 } 523 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 524 usage(B_FALSE); 525 /* NOTREACHED */ 526 } 527 528 static uint64_t 529 nicenumtoull(const char *buf) 530 { 531 char *end; 532 uint64_t val; 533 534 val = strtoull(buf, &end, 0); 535 if (end == buf) { 536 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 537 usage(B_FALSE); 538 } else if (end[0] == '.') { 539 double fval = strtod(buf, &end); 540 fval *= pow(2, str2shift(end)); 541 if (fval > UINT64_MAX) { 542 (void) fprintf(stderr, "ztest: value too large: %s\n", 543 buf); 544 usage(B_FALSE); 545 } 546 val = (uint64_t)fval; 547 } else { 548 int shift = str2shift(end); 549 if (shift >= 64 || (val << shift) >> shift != val) { 550 (void) fprintf(stderr, "ztest: value too large: %s\n", 551 buf); 552 usage(B_FALSE); 553 } 554 val <<= shift; 555 } 556 return (val); 557 } 558 559 static void 560 usage(boolean_t requested) 561 { 562 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 563 564 char nice_vdev_size[NN_NUMBUF_SZ]; 565 char nice_gang_bang[NN_NUMBUF_SZ]; 566 FILE *fp = requested ? stdout : stderr; 567 568 nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size)); 569 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang, 570 sizeof (nice_gang_bang)); 571 572 (void) fprintf(fp, "Usage: %s\n" 573 "\t[-v vdevs (default: %llu)]\n" 574 "\t[-s size_of_each_vdev (default: %s)]\n" 575 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 576 "\t[-m mirror_copies (default: %d)]\n" 577 "\t[-r raidz_disks (default: %d)]\n" 578 "\t[-R raidz_parity (default: %d)]\n" 579 "\t[-d datasets (default: %d)]\n" 580 "\t[-t threads (default: %d)]\n" 581 "\t[-g gang_block_threshold (default: %s)]\n" 582 "\t[-i init_count (default: %d)] initialize pool i times\n" 583 "\t[-k kill_percentage (default: %llu%%)]\n" 584 "\t[-p pool_name (default: %s)]\n" 585 "\t[-f dir (default: %s)] file directory for vdev files\n" 586 "\t[-V] verbose (use multiple times for ever more blather)\n" 587 "\t[-E] use existing pool instead of creating new one\n" 588 "\t[-T time (default: %llu sec)] total run time\n" 589 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 590 "\t[-P passtime (default: %llu sec)] time per pass\n" 591 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 592 "\t[-o variable=value] ... set global variable to an unsigned\n" 593 "\t 32-bit integer value\n" 594 "\t[-h] (print help)\n" 595 "", 596 zo->zo_pool, 597 (u_longlong_t)zo->zo_vdevs, /* -v */ 598 nice_vdev_size, /* -s */ 599 zo->zo_ashift, /* -a */ 600 zo->zo_mirrors, /* -m */ 601 zo->zo_raidz, /* -r */ 602 zo->zo_raidz_parity, /* -R */ 603 zo->zo_datasets, /* -d */ 604 zo->zo_threads, /* -t */ 605 nice_gang_bang, /* -g */ 606 zo->zo_init, /* -i */ 607 (u_longlong_t)zo->zo_killrate, /* -k */ 608 zo->zo_pool, /* -p */ 609 zo->zo_dir, /* -f */ 610 (u_longlong_t)zo->zo_time, /* -T */ 611 (u_longlong_t)zo->zo_maxloops, /* -F */ 612 (u_longlong_t)zo->zo_passtime); 613 exit(requested ? 0 : 1); 614 } 615 616 static void 617 process_options(int argc, char **argv) 618 { 619 char *path; 620 ztest_shared_opts_t *zo = &ztest_opts; 621 622 int opt; 623 uint64_t value; 624 char altdir[MAXNAMELEN] = { 0 }; 625 626 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 627 628 while ((opt = getopt(argc, argv, 629 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:o:")) != EOF) { 630 value = 0; 631 switch (opt) { 632 case 'v': 633 case 's': 634 case 'a': 635 case 'm': 636 case 'r': 637 case 'R': 638 case 'd': 639 case 't': 640 case 'g': 641 case 'i': 642 case 'k': 643 case 'T': 644 case 'P': 645 case 'F': 646 value = nicenumtoull(optarg); 647 } 648 switch (opt) { 649 case 'v': 650 zo->zo_vdevs = value; 651 break; 652 case 's': 653 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 654 break; 655 case 'a': 656 zo->zo_ashift = value; 657 break; 658 case 'm': 659 zo->zo_mirrors = value; 660 break; 661 case 'r': 662 zo->zo_raidz = MAX(1, value); 663 break; 664 case 'R': 665 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 666 break; 667 case 'd': 668 zo->zo_datasets = MAX(1, value); 669 break; 670 case 't': 671 zo->zo_threads = MAX(1, value); 672 break; 673 case 'g': 674 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 675 value); 676 break; 677 case 'i': 678 zo->zo_init = value; 679 break; 680 case 'k': 681 zo->zo_killrate = value; 682 break; 683 case 'p': 684 (void) strlcpy(zo->zo_pool, optarg, 685 sizeof (zo->zo_pool)); 686 break; 687 case 'f': 688 path = realpath(optarg, NULL); 689 if (path == NULL) { 690 (void) fprintf(stderr, "error: %s: %s\n", 691 optarg, strerror(errno)); 692 usage(B_FALSE); 693 } else { 694 (void) strlcpy(zo->zo_dir, path, 695 sizeof (zo->zo_dir)); 696 } 697 break; 698 case 'V': 699 zo->zo_verbose++; 700 break; 701 case 'E': 702 zo->zo_init = 0; 703 break; 704 case 'T': 705 zo->zo_time = value; 706 break; 707 case 'P': 708 zo->zo_passtime = MAX(1, value); 709 break; 710 case 'F': 711 zo->zo_maxloops = MAX(1, value); 712 break; 713 case 'B': 714 (void) strlcpy(altdir, optarg, sizeof (altdir)); 715 break; 716 case 'o': 717 if (set_global_var(optarg) != 0) 718 usage(B_FALSE); 719 break; 720 case 'h': 721 usage(B_TRUE); 722 break; 723 case '?': 724 default: 725 usage(B_FALSE); 726 break; 727 } 728 } 729 730 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 731 732 zo->zo_vdevtime = 733 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 734 UINT64_MAX >> 2); 735 736 if (strlen(altdir) > 0) { 737 char *cmd; 738 char *realaltdir; 739 char *bin; 740 char *ztest; 741 char *isa; 742 int isalen; 743 744 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 745 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 746 747 VERIFY(NULL != realpath(getexecname(), cmd)); 748 if (0 != access(altdir, F_OK)) { 749 ztest_dump_core = B_FALSE; 750 fatal(B_TRUE, "invalid alternate ztest path: %s", 751 altdir); 752 } 753 VERIFY(NULL != realpath(altdir, realaltdir)); 754 755 /* 756 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 757 * We want to extract <isa> to determine if we should use 758 * 32 or 64 bit binaries. 759 */ 760 bin = strstr(cmd, "/usr/bin/"); 761 ztest = strstr(bin, "/ztest"); 762 isa = bin + 9; 763 isalen = ztest - isa; 764 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 765 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 766 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 767 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 768 769 if (0 != access(zo->zo_alt_ztest, X_OK)) { 770 ztest_dump_core = B_FALSE; 771 fatal(B_TRUE, "invalid alternate ztest: %s", 772 zo->zo_alt_ztest); 773 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 774 ztest_dump_core = B_FALSE; 775 fatal(B_TRUE, "invalid alternate lib directory %s", 776 zo->zo_alt_libpath); 777 } 778 779 umem_free(cmd, MAXPATHLEN); 780 umem_free(realaltdir, MAXPATHLEN); 781 } 782 } 783 784 static void 785 ztest_kill(ztest_shared_t *zs) 786 { 787 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 788 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 789 790 /* 791 * Before we kill off ztest, make sure that the config is updated. 792 * See comment above spa_write_cachefile(). 793 */ 794 mutex_enter(&spa_namespace_lock); 795 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE); 796 mutex_exit(&spa_namespace_lock); 797 798 zfs_dbgmsg_print(FTAG); 799 (void) kill(getpid(), SIGKILL); 800 } 801 802 static uint64_t 803 ztest_random(uint64_t range) 804 { 805 uint64_t r; 806 807 ASSERT3S(ztest_fd_rand, >=, 0); 808 809 if (range == 0) 810 return (0); 811 812 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 813 fatal(1, "short read from /dev/urandom"); 814 815 return (r % range); 816 } 817 818 /* ARGSUSED */ 819 static void 820 ztest_record_enospc(const char *s) 821 { 822 ztest_shared->zs_enospc_count++; 823 } 824 825 static uint64_t 826 ztest_get_ashift(void) 827 { 828 if (ztest_opts.zo_ashift == 0) 829 return (SPA_MINBLOCKSHIFT + ztest_random(5)); 830 return (ztest_opts.zo_ashift); 831 } 832 833 static nvlist_t * 834 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 835 { 836 char pathbuf[MAXPATHLEN]; 837 uint64_t vdev; 838 nvlist_t *file; 839 840 if (ashift == 0) 841 ashift = ztest_get_ashift(); 842 843 if (path == NULL) { 844 path = pathbuf; 845 846 if (aux != NULL) { 847 vdev = ztest_shared->zs_vdev_aux; 848 (void) snprintf(path, sizeof (pathbuf), 849 ztest_aux_template, ztest_opts.zo_dir, 850 pool == NULL ? ztest_opts.zo_pool : pool, 851 aux, vdev); 852 } else { 853 vdev = ztest_shared->zs_vdev_next_leaf++; 854 (void) snprintf(path, sizeof (pathbuf), 855 ztest_dev_template, ztest_opts.zo_dir, 856 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 857 } 858 } 859 860 if (size != 0) { 861 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 862 if (fd == -1) 863 fatal(1, "can't open %s", path); 864 if (ftruncate(fd, size) != 0) 865 fatal(1, "can't ftruncate %s", path); 866 (void) close(fd); 867 } 868 869 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 870 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 871 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 872 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 873 874 return (file); 875 } 876 877 static nvlist_t * 878 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 879 uint64_t ashift, int r) 880 { 881 nvlist_t *raidz, **child; 882 int c; 883 884 if (r < 2) 885 return (make_vdev_file(path, aux, pool, size, ashift)); 886 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 887 888 for (c = 0; c < r; c++) 889 child[c] = make_vdev_file(path, aux, pool, size, ashift); 890 891 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 892 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 893 VDEV_TYPE_RAIDZ) == 0); 894 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 895 ztest_opts.zo_raidz_parity) == 0); 896 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 897 child, r) == 0); 898 899 for (c = 0; c < r; c++) 900 nvlist_free(child[c]); 901 902 umem_free(child, r * sizeof (nvlist_t *)); 903 904 return (raidz); 905 } 906 907 static nvlist_t * 908 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 909 uint64_t ashift, int r, int m) 910 { 911 nvlist_t *mirror, **child; 912 int c; 913 914 if (m < 1) 915 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 916 917 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 918 919 for (c = 0; c < m; c++) 920 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 921 922 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 923 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 924 VDEV_TYPE_MIRROR) == 0); 925 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 926 child, m) == 0); 927 928 for (c = 0; c < m; c++) 929 nvlist_free(child[c]); 930 931 umem_free(child, m * sizeof (nvlist_t *)); 932 933 return (mirror); 934 } 935 936 static nvlist_t * 937 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 938 int log, int r, int m, int t) 939 { 940 nvlist_t *root, **child; 941 int c; 942 943 ASSERT(t > 0); 944 945 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 946 947 for (c = 0; c < t; c++) { 948 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 949 r, m); 950 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 951 log) == 0); 952 } 953 954 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 955 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 956 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 957 child, t) == 0); 958 959 for (c = 0; c < t; c++) 960 nvlist_free(child[c]); 961 962 umem_free(child, t * sizeof (nvlist_t *)); 963 964 return (root); 965 } 966 967 /* 968 * Find a random spa version. Returns back a random spa version in the 969 * range [initial_version, SPA_VERSION_FEATURES]. 970 */ 971 static uint64_t 972 ztest_random_spa_version(uint64_t initial_version) 973 { 974 uint64_t version = initial_version; 975 976 if (version <= SPA_VERSION_BEFORE_FEATURES) { 977 version = version + 978 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 979 } 980 981 if (version > SPA_VERSION_BEFORE_FEATURES) 982 version = SPA_VERSION_FEATURES; 983 984 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 985 return (version); 986 } 987 988 static int 989 ztest_random_blocksize(void) 990 { 991 uint64_t block_shift; 992 /* 993 * Choose a block size >= the ashift. 994 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. 995 */ 996 int maxbs = SPA_OLD_MAXBLOCKSHIFT; 997 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) 998 maxbs = 20; 999 block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1); 1000 return (1 << (SPA_MINBLOCKSHIFT + block_shift)); 1001 } 1002 1003 static int 1004 ztest_random_ibshift(void) 1005 { 1006 return (DN_MIN_INDBLKSHIFT + 1007 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 1008 } 1009 1010 static uint64_t 1011 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 1012 { 1013 uint64_t top; 1014 vdev_t *rvd = spa->spa_root_vdev; 1015 vdev_t *tvd; 1016 1017 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1018 1019 do { 1020 top = ztest_random(rvd->vdev_children); 1021 tvd = rvd->vdev_child[top]; 1022 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) || 1023 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 1024 1025 return (top); 1026 } 1027 1028 static uint64_t 1029 ztest_random_dsl_prop(zfs_prop_t prop) 1030 { 1031 uint64_t value; 1032 1033 do { 1034 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 1035 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 1036 1037 return (value); 1038 } 1039 1040 static int 1041 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1042 boolean_t inherit) 1043 { 1044 const char *propname = zfs_prop_to_name(prop); 1045 const char *valname; 1046 char setpoint[MAXPATHLEN]; 1047 uint64_t curval; 1048 int error; 1049 1050 error = dsl_prop_set_int(osname, propname, 1051 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1052 1053 if (error == ENOSPC) { 1054 ztest_record_enospc(FTAG); 1055 return (error); 1056 } 1057 ASSERT0(error); 1058 1059 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1060 1061 if (ztest_opts.zo_verbose >= 6) { 1062 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1063 (void) printf("%s %s = %s at '%s'\n", 1064 osname, propname, valname, setpoint); 1065 } 1066 1067 return (error); 1068 } 1069 1070 static int 1071 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1072 { 1073 spa_t *spa = ztest_spa; 1074 nvlist_t *props = NULL; 1075 int error; 1076 1077 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1078 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1079 1080 error = spa_prop_set(spa, props); 1081 1082 nvlist_free(props); 1083 1084 if (error == ENOSPC) { 1085 ztest_record_enospc(FTAG); 1086 return (error); 1087 } 1088 ASSERT0(error); 1089 1090 return (error); 1091 } 1092 1093 static void 1094 ztest_rll_init(rll_t *rll) 1095 { 1096 rll->rll_writer = NULL; 1097 rll->rll_readers = 0; 1098 mutex_init(&rll->rll_lock, NULL, USYNC_THREAD, NULL); 1099 cv_init(&rll->rll_cv, NULL, USYNC_THREAD, NULL); 1100 } 1101 1102 static void 1103 ztest_rll_destroy(rll_t *rll) 1104 { 1105 ASSERT(rll->rll_writer == NULL); 1106 ASSERT(rll->rll_readers == 0); 1107 mutex_destroy(&rll->rll_lock); 1108 cv_destroy(&rll->rll_cv); 1109 } 1110 1111 static void 1112 ztest_rll_lock(rll_t *rll, rl_type_t type) 1113 { 1114 mutex_enter(&rll->rll_lock); 1115 1116 if (type == RL_READER) { 1117 while (rll->rll_writer != NULL) 1118 cv_wait(&rll->rll_cv, &rll->rll_lock); 1119 rll->rll_readers++; 1120 } else { 1121 while (rll->rll_writer != NULL || rll->rll_readers) 1122 cv_wait(&rll->rll_cv, &rll->rll_lock); 1123 rll->rll_writer = curthread; 1124 } 1125 1126 mutex_exit(&rll->rll_lock); 1127 } 1128 1129 static void 1130 ztest_rll_unlock(rll_t *rll) 1131 { 1132 mutex_enter(&rll->rll_lock); 1133 1134 if (rll->rll_writer) { 1135 ASSERT(rll->rll_readers == 0); 1136 rll->rll_writer = NULL; 1137 } else { 1138 ASSERT(rll->rll_readers != 0); 1139 ASSERT(rll->rll_writer == NULL); 1140 rll->rll_readers--; 1141 } 1142 1143 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1144 cv_broadcast(&rll->rll_cv); 1145 1146 mutex_exit(&rll->rll_lock); 1147 } 1148 1149 static void 1150 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1151 { 1152 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1153 1154 ztest_rll_lock(rll, type); 1155 } 1156 1157 static void 1158 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1159 { 1160 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1161 1162 ztest_rll_unlock(rll); 1163 } 1164 1165 static rl_t * 1166 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1167 uint64_t size, rl_type_t type) 1168 { 1169 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1170 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1171 rl_t *rl; 1172 1173 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1174 rl->rl_object = object; 1175 rl->rl_offset = offset; 1176 rl->rl_size = size; 1177 rl->rl_lock = rll; 1178 1179 ztest_rll_lock(rll, type); 1180 1181 return (rl); 1182 } 1183 1184 static void 1185 ztest_range_unlock(rl_t *rl) 1186 { 1187 rll_t *rll = rl->rl_lock; 1188 1189 ztest_rll_unlock(rll); 1190 1191 umem_free(rl, sizeof (*rl)); 1192 } 1193 1194 static void 1195 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1196 { 1197 zd->zd_os = os; 1198 zd->zd_zilog = dmu_objset_zil(os); 1199 zd->zd_shared = szd; 1200 dmu_objset_name(os, zd->zd_name); 1201 1202 if (zd->zd_shared != NULL) 1203 zd->zd_shared->zd_seq = 0; 1204 1205 rw_init(&zd->zd_zilog_lock, NULL, USYNC_THREAD, NULL); 1206 mutex_init(&zd->zd_dirobj_lock, NULL, USYNC_THREAD, NULL); 1207 1208 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1209 ztest_rll_init(&zd->zd_object_lock[l]); 1210 1211 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1212 ztest_rll_init(&zd->zd_range_lock[l]); 1213 } 1214 1215 static void 1216 ztest_zd_fini(ztest_ds_t *zd) 1217 { 1218 mutex_destroy(&zd->zd_dirobj_lock); 1219 1220 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1221 ztest_rll_destroy(&zd->zd_object_lock[l]); 1222 1223 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1224 ztest_rll_destroy(&zd->zd_range_lock[l]); 1225 } 1226 1227 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1228 1229 static uint64_t 1230 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1231 { 1232 uint64_t txg; 1233 int error; 1234 1235 /* 1236 * Attempt to assign tx to some transaction group. 1237 */ 1238 error = dmu_tx_assign(tx, txg_how); 1239 if (error) { 1240 if (error == ERESTART) { 1241 ASSERT(txg_how == TXG_NOWAIT); 1242 dmu_tx_wait(tx); 1243 } else { 1244 ASSERT3U(error, ==, ENOSPC); 1245 ztest_record_enospc(tag); 1246 } 1247 dmu_tx_abort(tx); 1248 return (0); 1249 } 1250 txg = dmu_tx_get_txg(tx); 1251 ASSERT(txg != 0); 1252 return (txg); 1253 } 1254 1255 static void 1256 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1257 { 1258 uint64_t *ip = buf; 1259 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1260 1261 while (ip < ip_end) 1262 *ip++ = value; 1263 } 1264 1265 static boolean_t 1266 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1267 { 1268 uint64_t *ip = buf; 1269 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1270 uint64_t diff = 0; 1271 1272 while (ip < ip_end) 1273 diff |= (value - *ip++); 1274 1275 return (diff == 0); 1276 } 1277 1278 static void 1279 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1280 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1281 { 1282 bt->bt_magic = BT_MAGIC; 1283 bt->bt_objset = dmu_objset_id(os); 1284 bt->bt_object = object; 1285 bt->bt_offset = offset; 1286 bt->bt_gen = gen; 1287 bt->bt_txg = txg; 1288 bt->bt_crtxg = crtxg; 1289 } 1290 1291 static void 1292 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1293 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1294 { 1295 ASSERT3U(bt->bt_magic, ==, BT_MAGIC); 1296 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1297 ASSERT3U(bt->bt_object, ==, object); 1298 ASSERT3U(bt->bt_offset, ==, offset); 1299 ASSERT3U(bt->bt_gen, <=, gen); 1300 ASSERT3U(bt->bt_txg, <=, txg); 1301 ASSERT3U(bt->bt_crtxg, ==, crtxg); 1302 } 1303 1304 static ztest_block_tag_t * 1305 ztest_bt_bonus(dmu_buf_t *db) 1306 { 1307 dmu_object_info_t doi; 1308 ztest_block_tag_t *bt; 1309 1310 dmu_object_info_from_db(db, &doi); 1311 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1312 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1313 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1314 1315 return (bt); 1316 } 1317 1318 /* 1319 * ZIL logging ops 1320 */ 1321 1322 #define lrz_type lr_mode 1323 #define lrz_blocksize lr_uid 1324 #define lrz_ibshift lr_gid 1325 #define lrz_bonustype lr_rdev 1326 #define lrz_bonuslen lr_crtime[1] 1327 1328 static void 1329 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1330 { 1331 char *name = (void *)(lr + 1); /* name follows lr */ 1332 size_t namesize = strlen(name) + 1; 1333 itx_t *itx; 1334 1335 if (zil_replaying(zd->zd_zilog, tx)) 1336 return; 1337 1338 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1339 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1340 sizeof (*lr) + namesize - sizeof (lr_t)); 1341 1342 zil_itx_assign(zd->zd_zilog, itx, tx); 1343 } 1344 1345 static void 1346 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1347 { 1348 char *name = (void *)(lr + 1); /* name follows lr */ 1349 size_t namesize = strlen(name) + 1; 1350 itx_t *itx; 1351 1352 if (zil_replaying(zd->zd_zilog, tx)) 1353 return; 1354 1355 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1356 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1357 sizeof (*lr) + namesize - sizeof (lr_t)); 1358 1359 itx->itx_oid = object; 1360 zil_itx_assign(zd->zd_zilog, itx, tx); 1361 } 1362 1363 static void 1364 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1365 { 1366 itx_t *itx; 1367 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1368 1369 if (zil_replaying(zd->zd_zilog, tx)) 1370 return; 1371 1372 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1373 write_state = WR_INDIRECT; 1374 1375 itx = zil_itx_create(TX_WRITE, 1376 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1377 1378 if (write_state == WR_COPIED && 1379 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1380 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1381 zil_itx_destroy(itx); 1382 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1383 write_state = WR_NEED_COPY; 1384 } 1385 itx->itx_private = zd; 1386 itx->itx_wr_state = write_state; 1387 itx->itx_sync = (ztest_random(8) == 0); 1388 1389 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1390 sizeof (*lr) - sizeof (lr_t)); 1391 1392 zil_itx_assign(zd->zd_zilog, itx, tx); 1393 } 1394 1395 static void 1396 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1397 { 1398 itx_t *itx; 1399 1400 if (zil_replaying(zd->zd_zilog, tx)) 1401 return; 1402 1403 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1404 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1405 sizeof (*lr) - sizeof (lr_t)); 1406 1407 itx->itx_sync = B_FALSE; 1408 zil_itx_assign(zd->zd_zilog, itx, tx); 1409 } 1410 1411 static void 1412 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1413 { 1414 itx_t *itx; 1415 1416 if (zil_replaying(zd->zd_zilog, tx)) 1417 return; 1418 1419 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1420 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1421 sizeof (*lr) - sizeof (lr_t)); 1422 1423 itx->itx_sync = B_FALSE; 1424 zil_itx_assign(zd->zd_zilog, itx, tx); 1425 } 1426 1427 /* 1428 * ZIL replay ops 1429 */ 1430 static int 1431 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap) 1432 { 1433 ztest_ds_t *zd = arg1; 1434 lr_create_t *lr = arg2; 1435 char *name = (void *)(lr + 1); /* name follows lr */ 1436 objset_t *os = zd->zd_os; 1437 ztest_block_tag_t *bbt; 1438 dmu_buf_t *db; 1439 dmu_tx_t *tx; 1440 uint64_t txg; 1441 int error = 0; 1442 1443 if (byteswap) 1444 byteswap_uint64_array(lr, sizeof (*lr)); 1445 1446 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1447 ASSERT(name[0] != '\0'); 1448 1449 tx = dmu_tx_create(os); 1450 1451 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1452 1453 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1454 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1455 } else { 1456 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1457 } 1458 1459 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1460 if (txg == 0) 1461 return (ENOSPC); 1462 1463 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1464 1465 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1466 if (lr->lr_foid == 0) { 1467 lr->lr_foid = zap_create(os, 1468 lr->lrz_type, lr->lrz_bonustype, 1469 lr->lrz_bonuslen, tx); 1470 } else { 1471 error = zap_create_claim(os, lr->lr_foid, 1472 lr->lrz_type, lr->lrz_bonustype, 1473 lr->lrz_bonuslen, tx); 1474 } 1475 } else { 1476 if (lr->lr_foid == 0) { 1477 lr->lr_foid = dmu_object_alloc(os, 1478 lr->lrz_type, 0, lr->lrz_bonustype, 1479 lr->lrz_bonuslen, tx); 1480 } else { 1481 error = dmu_object_claim(os, lr->lr_foid, 1482 lr->lrz_type, 0, lr->lrz_bonustype, 1483 lr->lrz_bonuslen, tx); 1484 } 1485 } 1486 1487 if (error) { 1488 ASSERT3U(error, ==, EEXIST); 1489 ASSERT(zd->zd_zilog->zl_replay); 1490 dmu_tx_commit(tx); 1491 return (error); 1492 } 1493 1494 ASSERT(lr->lr_foid != 0); 1495 1496 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1497 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1498 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1499 1500 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1501 bbt = ztest_bt_bonus(db); 1502 dmu_buf_will_dirty(db, tx); 1503 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1504 dmu_buf_rele(db, FTAG); 1505 1506 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1507 &lr->lr_foid, tx)); 1508 1509 (void) ztest_log_create(zd, tx, lr); 1510 1511 dmu_tx_commit(tx); 1512 1513 return (0); 1514 } 1515 1516 static int 1517 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap) 1518 { 1519 ztest_ds_t *zd = arg1; 1520 lr_remove_t *lr = arg2; 1521 char *name = (void *)(lr + 1); /* name follows lr */ 1522 objset_t *os = zd->zd_os; 1523 dmu_object_info_t doi; 1524 dmu_tx_t *tx; 1525 uint64_t object, txg; 1526 1527 if (byteswap) 1528 byteswap_uint64_array(lr, sizeof (*lr)); 1529 1530 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1531 ASSERT(name[0] != '\0'); 1532 1533 VERIFY3U(0, ==, 1534 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1535 ASSERT(object != 0); 1536 1537 ztest_object_lock(zd, object, RL_WRITER); 1538 1539 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1540 1541 tx = dmu_tx_create(os); 1542 1543 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1544 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1545 1546 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1547 if (txg == 0) { 1548 ztest_object_unlock(zd, object); 1549 return (ENOSPC); 1550 } 1551 1552 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1553 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1554 } else { 1555 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1556 } 1557 1558 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1559 1560 (void) ztest_log_remove(zd, tx, lr, object); 1561 1562 dmu_tx_commit(tx); 1563 1564 ztest_object_unlock(zd, object); 1565 1566 return (0); 1567 } 1568 1569 static int 1570 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap) 1571 { 1572 ztest_ds_t *zd = arg1; 1573 lr_write_t *lr = arg2; 1574 objset_t *os = zd->zd_os; 1575 void *data = lr + 1; /* data follows lr */ 1576 uint64_t offset, length; 1577 ztest_block_tag_t *bt = data; 1578 ztest_block_tag_t *bbt; 1579 uint64_t gen, txg, lrtxg, crtxg; 1580 dmu_object_info_t doi; 1581 dmu_tx_t *tx; 1582 dmu_buf_t *db; 1583 arc_buf_t *abuf = NULL; 1584 rl_t *rl; 1585 1586 if (byteswap) 1587 byteswap_uint64_array(lr, sizeof (*lr)); 1588 1589 offset = lr->lr_offset; 1590 length = lr->lr_length; 1591 1592 /* If it's a dmu_sync() block, write the whole block */ 1593 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1594 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1595 if (length < blocksize) { 1596 offset -= offset % blocksize; 1597 length = blocksize; 1598 } 1599 } 1600 1601 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1602 byteswap_uint64_array(bt, sizeof (*bt)); 1603 1604 if (bt->bt_magic != BT_MAGIC) 1605 bt = NULL; 1606 1607 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1608 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1609 1610 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1611 1612 dmu_object_info_from_db(db, &doi); 1613 1614 bbt = ztest_bt_bonus(db); 1615 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1616 gen = bbt->bt_gen; 1617 crtxg = bbt->bt_crtxg; 1618 lrtxg = lr->lr_common.lrc_txg; 1619 1620 tx = dmu_tx_create(os); 1621 1622 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1623 1624 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1625 P2PHASE(offset, length) == 0) 1626 abuf = dmu_request_arcbuf(db, length); 1627 1628 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1629 if (txg == 0) { 1630 if (abuf != NULL) 1631 dmu_return_arcbuf(abuf); 1632 dmu_buf_rele(db, FTAG); 1633 ztest_range_unlock(rl); 1634 ztest_object_unlock(zd, lr->lr_foid); 1635 return (ENOSPC); 1636 } 1637 1638 if (bt != NULL) { 1639 /* 1640 * Usually, verify the old data before writing new data -- 1641 * but not always, because we also want to verify correct 1642 * behavior when the data was not recently read into cache. 1643 */ 1644 ASSERT(offset % doi.doi_data_block_size == 0); 1645 if (ztest_random(4) != 0) { 1646 int prefetch = ztest_random(2) ? 1647 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1648 ztest_block_tag_t rbt; 1649 1650 VERIFY(dmu_read(os, lr->lr_foid, offset, 1651 sizeof (rbt), &rbt, prefetch) == 0); 1652 if (rbt.bt_magic == BT_MAGIC) { 1653 ztest_bt_verify(&rbt, os, lr->lr_foid, 1654 offset, gen, txg, crtxg); 1655 } 1656 } 1657 1658 /* 1659 * Writes can appear to be newer than the bonus buffer because 1660 * the ztest_get_data() callback does a dmu_read() of the 1661 * open-context data, which may be different than the data 1662 * as it was when the write was generated. 1663 */ 1664 if (zd->zd_zilog->zl_replay) { 1665 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1666 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1667 bt->bt_crtxg); 1668 } 1669 1670 /* 1671 * Set the bt's gen/txg to the bonus buffer's gen/txg 1672 * so that all of the usual ASSERTs will work. 1673 */ 1674 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1675 } 1676 1677 if (abuf == NULL) { 1678 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1679 } else { 1680 bcopy(data, abuf->b_data, length); 1681 dmu_assign_arcbuf(db, offset, abuf, tx); 1682 } 1683 1684 (void) ztest_log_write(zd, tx, lr); 1685 1686 dmu_buf_rele(db, FTAG); 1687 1688 dmu_tx_commit(tx); 1689 1690 ztest_range_unlock(rl); 1691 ztest_object_unlock(zd, lr->lr_foid); 1692 1693 return (0); 1694 } 1695 1696 static int 1697 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) 1698 { 1699 ztest_ds_t *zd = arg1; 1700 lr_truncate_t *lr = arg2; 1701 objset_t *os = zd->zd_os; 1702 dmu_tx_t *tx; 1703 uint64_t txg; 1704 rl_t *rl; 1705 1706 if (byteswap) 1707 byteswap_uint64_array(lr, sizeof (*lr)); 1708 1709 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1710 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1711 RL_WRITER); 1712 1713 tx = dmu_tx_create(os); 1714 1715 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1716 1717 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1718 if (txg == 0) { 1719 ztest_range_unlock(rl); 1720 ztest_object_unlock(zd, lr->lr_foid); 1721 return (ENOSPC); 1722 } 1723 1724 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1725 lr->lr_length, tx) == 0); 1726 1727 (void) ztest_log_truncate(zd, tx, lr); 1728 1729 dmu_tx_commit(tx); 1730 1731 ztest_range_unlock(rl); 1732 ztest_object_unlock(zd, lr->lr_foid); 1733 1734 return (0); 1735 } 1736 1737 static int 1738 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap) 1739 { 1740 ztest_ds_t *zd = arg1; 1741 lr_setattr_t *lr = arg2; 1742 objset_t *os = zd->zd_os; 1743 dmu_tx_t *tx; 1744 dmu_buf_t *db; 1745 ztest_block_tag_t *bbt; 1746 uint64_t txg, lrtxg, crtxg; 1747 1748 if (byteswap) 1749 byteswap_uint64_array(lr, sizeof (*lr)); 1750 1751 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1752 1753 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1754 1755 tx = dmu_tx_create(os); 1756 dmu_tx_hold_bonus(tx, lr->lr_foid); 1757 1758 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1759 if (txg == 0) { 1760 dmu_buf_rele(db, FTAG); 1761 ztest_object_unlock(zd, lr->lr_foid); 1762 return (ENOSPC); 1763 } 1764 1765 bbt = ztest_bt_bonus(db); 1766 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1767 crtxg = bbt->bt_crtxg; 1768 lrtxg = lr->lr_common.lrc_txg; 1769 1770 if (zd->zd_zilog->zl_replay) { 1771 ASSERT(lr->lr_size != 0); 1772 ASSERT(lr->lr_mode != 0); 1773 ASSERT(lrtxg != 0); 1774 } else { 1775 /* 1776 * Randomly change the size and increment the generation. 1777 */ 1778 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1779 sizeof (*bbt); 1780 lr->lr_mode = bbt->bt_gen + 1; 1781 ASSERT(lrtxg == 0); 1782 } 1783 1784 /* 1785 * Verify that the current bonus buffer is not newer than our txg. 1786 */ 1787 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1788 MAX(txg, lrtxg), crtxg); 1789 1790 dmu_buf_will_dirty(db, tx); 1791 1792 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1793 ASSERT3U(lr->lr_size, <=, db->db_size); 1794 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1795 bbt = ztest_bt_bonus(db); 1796 1797 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1798 1799 dmu_buf_rele(db, FTAG); 1800 1801 (void) ztest_log_setattr(zd, tx, lr); 1802 1803 dmu_tx_commit(tx); 1804 1805 ztest_object_unlock(zd, lr->lr_foid); 1806 1807 return (0); 1808 } 1809 1810 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1811 NULL, /* 0 no such transaction type */ 1812 ztest_replay_create, /* TX_CREATE */ 1813 NULL, /* TX_MKDIR */ 1814 NULL, /* TX_MKXATTR */ 1815 NULL, /* TX_SYMLINK */ 1816 ztest_replay_remove, /* TX_REMOVE */ 1817 NULL, /* TX_RMDIR */ 1818 NULL, /* TX_LINK */ 1819 NULL, /* TX_RENAME */ 1820 ztest_replay_write, /* TX_WRITE */ 1821 ztest_replay_truncate, /* TX_TRUNCATE */ 1822 ztest_replay_setattr, /* TX_SETATTR */ 1823 NULL, /* TX_ACL */ 1824 NULL, /* TX_CREATE_ACL */ 1825 NULL, /* TX_CREATE_ATTR */ 1826 NULL, /* TX_CREATE_ACL_ATTR */ 1827 NULL, /* TX_MKDIR_ACL */ 1828 NULL, /* TX_MKDIR_ATTR */ 1829 NULL, /* TX_MKDIR_ACL_ATTR */ 1830 NULL, /* TX_WRITE2 */ 1831 }; 1832 1833 /* 1834 * ZIL get_data callbacks 1835 */ 1836 1837 static void 1838 ztest_get_done(zgd_t *zgd, int error) 1839 { 1840 ztest_ds_t *zd = zgd->zgd_private; 1841 uint64_t object = zgd->zgd_rl->rl_object; 1842 1843 if (zgd->zgd_db) 1844 dmu_buf_rele(zgd->zgd_db, zgd); 1845 1846 ztest_range_unlock(zgd->zgd_rl); 1847 ztest_object_unlock(zd, object); 1848 1849 if (error == 0 && zgd->zgd_bp) 1850 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1851 1852 umem_free(zgd, sizeof (*zgd)); 1853 } 1854 1855 static int 1856 ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, 1857 zio_t *zio) 1858 { 1859 ztest_ds_t *zd = arg; 1860 objset_t *os = zd->zd_os; 1861 uint64_t object = lr->lr_foid; 1862 uint64_t offset = lr->lr_offset; 1863 uint64_t size = lr->lr_length; 1864 uint64_t txg = lr->lr_common.lrc_txg; 1865 uint64_t crtxg; 1866 dmu_object_info_t doi; 1867 dmu_buf_t *db; 1868 zgd_t *zgd; 1869 int error; 1870 1871 ASSERT3P(lwb, !=, NULL); 1872 ASSERT3P(zio, !=, NULL); 1873 ASSERT3U(size, !=, 0); 1874 1875 ztest_object_lock(zd, object, RL_READER); 1876 error = dmu_bonus_hold(os, object, FTAG, &db); 1877 if (error) { 1878 ztest_object_unlock(zd, object); 1879 return (error); 1880 } 1881 1882 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1883 1884 if (crtxg == 0 || crtxg > txg) { 1885 dmu_buf_rele(db, FTAG); 1886 ztest_object_unlock(zd, object); 1887 return (ENOENT); 1888 } 1889 1890 dmu_object_info_from_db(db, &doi); 1891 dmu_buf_rele(db, FTAG); 1892 db = NULL; 1893 1894 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1895 zgd->zgd_lwb = lwb; 1896 zgd->zgd_private = zd; 1897 1898 if (buf != NULL) { /* immediate write */ 1899 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1900 RL_READER); 1901 1902 error = dmu_read(os, object, offset, size, buf, 1903 DMU_READ_NO_PREFETCH); 1904 ASSERT(error == 0); 1905 } else { 1906 size = doi.doi_data_block_size; 1907 if (ISP2(size)) { 1908 offset = P2ALIGN(offset, size); 1909 } else { 1910 ASSERT(offset < size); 1911 offset = 0; 1912 } 1913 1914 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1915 RL_READER); 1916 1917 error = dmu_buf_hold(os, object, offset, zgd, &db, 1918 DMU_READ_NO_PREFETCH); 1919 1920 if (error == 0) { 1921 blkptr_t *bp = &lr->lr_blkptr; 1922 1923 zgd->zgd_db = db; 1924 zgd->zgd_bp = bp; 1925 1926 ASSERT(db->db_offset == offset); 1927 ASSERT(db->db_size == size); 1928 1929 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1930 ztest_get_done, zgd); 1931 1932 if (error == 0) 1933 return (0); 1934 } 1935 } 1936 1937 ztest_get_done(zgd, error); 1938 1939 return (error); 1940 } 1941 1942 static void * 1943 ztest_lr_alloc(size_t lrsize, char *name) 1944 { 1945 char *lr; 1946 size_t namesize = name ? strlen(name) + 1 : 0; 1947 1948 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1949 1950 if (name) 1951 bcopy(name, lr + lrsize, namesize); 1952 1953 return (lr); 1954 } 1955 1956 void 1957 ztest_lr_free(void *lr, size_t lrsize, char *name) 1958 { 1959 size_t namesize = name ? strlen(name) + 1 : 0; 1960 1961 umem_free(lr, lrsize + namesize); 1962 } 1963 1964 /* 1965 * Lookup a bunch of objects. Returns the number of objects not found. 1966 */ 1967 static int 1968 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1969 { 1970 int missing = 0; 1971 int error; 1972 1973 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 1974 1975 for (int i = 0; i < count; i++, od++) { 1976 od->od_object = 0; 1977 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1978 sizeof (uint64_t), 1, &od->od_object); 1979 if (error) { 1980 ASSERT(error == ENOENT); 1981 ASSERT(od->od_object == 0); 1982 missing++; 1983 } else { 1984 dmu_buf_t *db; 1985 ztest_block_tag_t *bbt; 1986 dmu_object_info_t doi; 1987 1988 ASSERT(od->od_object != 0); 1989 ASSERT(missing == 0); /* there should be no gaps */ 1990 1991 ztest_object_lock(zd, od->od_object, RL_READER); 1992 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1993 od->od_object, FTAG, &db)); 1994 dmu_object_info_from_db(db, &doi); 1995 bbt = ztest_bt_bonus(db); 1996 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1997 od->od_type = doi.doi_type; 1998 od->od_blocksize = doi.doi_data_block_size; 1999 od->od_gen = bbt->bt_gen; 2000 dmu_buf_rele(db, FTAG); 2001 ztest_object_unlock(zd, od->od_object); 2002 } 2003 } 2004 2005 return (missing); 2006 } 2007 2008 static int 2009 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 2010 { 2011 int missing = 0; 2012 2013 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2014 2015 for (int i = 0; i < count; i++, od++) { 2016 if (missing) { 2017 od->od_object = 0; 2018 missing++; 2019 continue; 2020 } 2021 2022 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2023 2024 lr->lr_doid = od->od_dir; 2025 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 2026 lr->lrz_type = od->od_crtype; 2027 lr->lrz_blocksize = od->od_crblocksize; 2028 lr->lrz_ibshift = ztest_random_ibshift(); 2029 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 2030 lr->lrz_bonuslen = dmu_bonus_max(); 2031 lr->lr_gen = od->od_crgen; 2032 lr->lr_crtime[0] = time(NULL); 2033 2034 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 2035 ASSERT(missing == 0); 2036 od->od_object = 0; 2037 missing++; 2038 } else { 2039 od->od_object = lr->lr_foid; 2040 od->od_type = od->od_crtype; 2041 od->od_blocksize = od->od_crblocksize; 2042 od->od_gen = od->od_crgen; 2043 ASSERT(od->od_object != 0); 2044 } 2045 2046 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2047 } 2048 2049 return (missing); 2050 } 2051 2052 static int 2053 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2054 { 2055 int missing = 0; 2056 int error; 2057 2058 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2059 2060 od += count - 1; 2061 2062 for (int i = count - 1; i >= 0; i--, od--) { 2063 if (missing) { 2064 missing++; 2065 continue; 2066 } 2067 2068 /* 2069 * No object was found. 2070 */ 2071 if (od->od_object == 0) 2072 continue; 2073 2074 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2075 2076 lr->lr_doid = od->od_dir; 2077 2078 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2079 ASSERT3U(error, ==, ENOSPC); 2080 missing++; 2081 } else { 2082 od->od_object = 0; 2083 } 2084 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2085 } 2086 2087 return (missing); 2088 } 2089 2090 static int 2091 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2092 void *data) 2093 { 2094 lr_write_t *lr; 2095 int error; 2096 2097 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2098 2099 lr->lr_foid = object; 2100 lr->lr_offset = offset; 2101 lr->lr_length = size; 2102 lr->lr_blkoff = 0; 2103 BP_ZERO(&lr->lr_blkptr); 2104 2105 bcopy(data, lr + 1, size); 2106 2107 error = ztest_replay_write(zd, lr, B_FALSE); 2108 2109 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2110 2111 return (error); 2112 } 2113 2114 static int 2115 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2116 { 2117 lr_truncate_t *lr; 2118 int error; 2119 2120 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2121 2122 lr->lr_foid = object; 2123 lr->lr_offset = offset; 2124 lr->lr_length = size; 2125 2126 error = ztest_replay_truncate(zd, lr, B_FALSE); 2127 2128 ztest_lr_free(lr, sizeof (*lr), NULL); 2129 2130 return (error); 2131 } 2132 2133 static int 2134 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2135 { 2136 lr_setattr_t *lr; 2137 int error; 2138 2139 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2140 2141 lr->lr_foid = object; 2142 lr->lr_size = 0; 2143 lr->lr_mode = 0; 2144 2145 error = ztest_replay_setattr(zd, lr, B_FALSE); 2146 2147 ztest_lr_free(lr, sizeof (*lr), NULL); 2148 2149 return (error); 2150 } 2151 2152 static void 2153 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2154 { 2155 objset_t *os = zd->zd_os; 2156 dmu_tx_t *tx; 2157 uint64_t txg; 2158 rl_t *rl; 2159 2160 txg_wait_synced(dmu_objset_pool(os), 0); 2161 2162 ztest_object_lock(zd, object, RL_READER); 2163 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2164 2165 tx = dmu_tx_create(os); 2166 2167 dmu_tx_hold_write(tx, object, offset, size); 2168 2169 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2170 2171 if (txg != 0) { 2172 dmu_prealloc(os, object, offset, size, tx); 2173 dmu_tx_commit(tx); 2174 txg_wait_synced(dmu_objset_pool(os), txg); 2175 } else { 2176 (void) dmu_free_long_range(os, object, offset, size); 2177 } 2178 2179 ztest_range_unlock(rl); 2180 ztest_object_unlock(zd, object); 2181 } 2182 2183 static void 2184 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2185 { 2186 int err; 2187 ztest_block_tag_t wbt; 2188 dmu_object_info_t doi; 2189 enum ztest_io_type io_type; 2190 uint64_t blocksize; 2191 void *data; 2192 2193 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2194 blocksize = doi.doi_data_block_size; 2195 data = umem_alloc(blocksize, UMEM_NOFAIL); 2196 2197 /* 2198 * Pick an i/o type at random, biased toward writing block tags. 2199 */ 2200 io_type = ztest_random(ZTEST_IO_TYPES); 2201 if (ztest_random(2) == 0) 2202 io_type = ZTEST_IO_WRITE_TAG; 2203 2204 rw_enter(&zd->zd_zilog_lock, RW_READER); 2205 2206 switch (io_type) { 2207 2208 case ZTEST_IO_WRITE_TAG: 2209 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2210 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2211 break; 2212 2213 case ZTEST_IO_WRITE_PATTERN: 2214 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2215 if (ztest_random(2) == 0) { 2216 /* 2217 * Induce fletcher2 collisions to ensure that 2218 * zio_ddt_collision() detects and resolves them 2219 * when using fletcher2-verify for deduplication. 2220 */ 2221 ((uint64_t *)data)[0] ^= 1ULL << 63; 2222 ((uint64_t *)data)[4] ^= 1ULL << 63; 2223 } 2224 (void) ztest_write(zd, object, offset, blocksize, data); 2225 break; 2226 2227 case ZTEST_IO_WRITE_ZEROES: 2228 bzero(data, blocksize); 2229 (void) ztest_write(zd, object, offset, blocksize, data); 2230 break; 2231 2232 case ZTEST_IO_TRUNCATE: 2233 (void) ztest_truncate(zd, object, offset, blocksize); 2234 break; 2235 2236 case ZTEST_IO_SETATTR: 2237 (void) ztest_setattr(zd, object); 2238 break; 2239 2240 case ZTEST_IO_REWRITE: 2241 rw_enter(&ztest_name_lock, RW_READER); 2242 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2243 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2244 B_FALSE); 2245 VERIFY(err == 0 || err == ENOSPC); 2246 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2247 ZFS_PROP_COMPRESSION, 2248 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2249 B_FALSE); 2250 VERIFY(err == 0 || err == ENOSPC); 2251 rw_exit(&ztest_name_lock); 2252 2253 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2254 DMU_READ_NO_PREFETCH)); 2255 2256 (void) ztest_write(zd, object, offset, blocksize, data); 2257 break; 2258 } 2259 2260 rw_exit(&zd->zd_zilog_lock); 2261 2262 umem_free(data, blocksize); 2263 } 2264 2265 /* 2266 * Initialize an object description template. 2267 */ 2268 static void 2269 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2270 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2271 { 2272 od->od_dir = ZTEST_DIROBJ; 2273 od->od_object = 0; 2274 2275 od->od_crtype = type; 2276 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2277 od->od_crgen = gen; 2278 2279 od->od_type = DMU_OT_NONE; 2280 od->od_blocksize = 0; 2281 od->od_gen = 0; 2282 2283 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2284 tag, (int64_t)id, index); 2285 } 2286 2287 /* 2288 * Lookup or create the objects for a test using the od template. 2289 * If the objects do not all exist, or if 'remove' is specified, 2290 * remove any existing objects and create new ones. Otherwise, 2291 * use the existing objects. 2292 */ 2293 static int 2294 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2295 { 2296 int count = size / sizeof (*od); 2297 int rv = 0; 2298 2299 mutex_enter(&zd->zd_dirobj_lock); 2300 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2301 (ztest_remove(zd, od, count) != 0 || 2302 ztest_create(zd, od, count) != 0)) 2303 rv = -1; 2304 zd->zd_od = od; 2305 mutex_exit(&zd->zd_dirobj_lock); 2306 2307 return (rv); 2308 } 2309 2310 /* ARGSUSED */ 2311 void 2312 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2313 { 2314 zilog_t *zilog = zd->zd_zilog; 2315 2316 rw_enter(&zd->zd_zilog_lock, RW_READER); 2317 2318 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2319 2320 /* 2321 * Remember the committed values in zd, which is in parent/child 2322 * shared memory. If we die, the next iteration of ztest_run() 2323 * will verify that the log really does contain this record. 2324 */ 2325 mutex_enter(&zilog->zl_lock); 2326 ASSERT(zd->zd_shared != NULL); 2327 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2328 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2329 mutex_exit(&zilog->zl_lock); 2330 2331 rw_exit(&zd->zd_zilog_lock); 2332 } 2333 2334 /* 2335 * This function is designed to simulate the operations that occur during a 2336 * mount/unmount operation. We hold the dataset across these operations in an 2337 * attempt to expose any implicit assumptions about ZIL management. 2338 */ 2339 /* ARGSUSED */ 2340 void 2341 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2342 { 2343 objset_t *os = zd->zd_os; 2344 2345 /* 2346 * We grab the zd_dirobj_lock to ensure that no other thread is 2347 * updating the zil (i.e. adding in-memory log records) and the 2348 * zd_zilog_lock to block any I/O. 2349 */ 2350 mutex_enter(&zd->zd_dirobj_lock); 2351 rw_enter(&zd->zd_zilog_lock, RW_WRITER); 2352 2353 /* zfsvfs_teardown() */ 2354 zil_close(zd->zd_zilog); 2355 2356 /* zfsvfs_setup() */ 2357 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2358 zil_replay(os, zd, ztest_replay_vector); 2359 2360 rw_exit(&zd->zd_zilog_lock); 2361 mutex_exit(&zd->zd_dirobj_lock); 2362 } 2363 2364 /* 2365 * Verify that we can't destroy an active pool, create an existing pool, 2366 * or create a pool with a bad vdev spec. 2367 */ 2368 /* ARGSUSED */ 2369 void 2370 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2371 { 2372 ztest_shared_opts_t *zo = &ztest_opts; 2373 spa_t *spa; 2374 nvlist_t *nvroot; 2375 2376 /* 2377 * Attempt to create using a bad file. 2378 */ 2379 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2380 VERIFY3U(ENOENT, ==, 2381 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2382 nvlist_free(nvroot); 2383 2384 /* 2385 * Attempt to create using a bad mirror. 2386 */ 2387 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2388 VERIFY3U(ENOENT, ==, 2389 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2390 nvlist_free(nvroot); 2391 2392 /* 2393 * Attempt to create an existing pool. It shouldn't matter 2394 * what's in the nvroot; we should fail with EEXIST. 2395 */ 2396 rw_enter(&ztest_name_lock, RW_READER); 2397 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2398 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2399 nvlist_free(nvroot); 2400 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2401 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2402 spa_close(spa, FTAG); 2403 2404 rw_exit(&ztest_name_lock); 2405 } 2406 2407 /* ARGSUSED */ 2408 void 2409 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2410 { 2411 spa_t *spa; 2412 uint64_t initial_version = SPA_VERSION_INITIAL; 2413 uint64_t version, newversion; 2414 nvlist_t *nvroot, *props; 2415 char *name; 2416 2417 mutex_enter(&ztest_vdev_lock); 2418 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2419 2420 /* 2421 * Clean up from previous runs. 2422 */ 2423 (void) spa_destroy(name); 2424 2425 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2426 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2427 2428 /* 2429 * If we're configuring a RAIDZ device then make sure that the 2430 * the initial version is capable of supporting that feature. 2431 */ 2432 switch (ztest_opts.zo_raidz_parity) { 2433 case 0: 2434 case 1: 2435 initial_version = SPA_VERSION_INITIAL; 2436 break; 2437 case 2: 2438 initial_version = SPA_VERSION_RAIDZ2; 2439 break; 2440 case 3: 2441 initial_version = SPA_VERSION_RAIDZ3; 2442 break; 2443 } 2444 2445 /* 2446 * Create a pool with a spa version that can be upgraded. Pick 2447 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2448 */ 2449 do { 2450 version = ztest_random_spa_version(initial_version); 2451 } while (version > SPA_VERSION_BEFORE_FEATURES); 2452 2453 props = fnvlist_alloc(); 2454 fnvlist_add_uint64(props, 2455 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2456 VERIFY0(spa_create(name, nvroot, props, NULL)); 2457 fnvlist_free(nvroot); 2458 fnvlist_free(props); 2459 2460 VERIFY0(spa_open(name, &spa, FTAG)); 2461 VERIFY3U(spa_version(spa), ==, version); 2462 newversion = ztest_random_spa_version(version + 1); 2463 2464 if (ztest_opts.zo_verbose >= 4) { 2465 (void) printf("upgrading spa version from %llu to %llu\n", 2466 (u_longlong_t)version, (u_longlong_t)newversion); 2467 } 2468 2469 spa_upgrade(spa, newversion); 2470 VERIFY3U(spa_version(spa), >, version); 2471 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2472 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2473 spa_close(spa, FTAG); 2474 2475 strfree(name); 2476 mutex_exit(&ztest_vdev_lock); 2477 } 2478 2479 static vdev_t * 2480 vdev_lookup_by_path(vdev_t *vd, const char *path) 2481 { 2482 vdev_t *mvd; 2483 2484 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2485 return (vd); 2486 2487 for (int c = 0; c < vd->vdev_children; c++) 2488 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2489 NULL) 2490 return (mvd); 2491 2492 return (NULL); 2493 } 2494 2495 /* 2496 * Find the first available hole which can be used as a top-level. 2497 */ 2498 int 2499 find_vdev_hole(spa_t *spa) 2500 { 2501 vdev_t *rvd = spa->spa_root_vdev; 2502 int c; 2503 2504 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2505 2506 for (c = 0; c < rvd->vdev_children; c++) { 2507 vdev_t *cvd = rvd->vdev_child[c]; 2508 2509 if (cvd->vdev_ishole) 2510 break; 2511 } 2512 return (c); 2513 } 2514 2515 /* 2516 * Verify that vdev_add() works as expected. 2517 */ 2518 /* ARGSUSED */ 2519 void 2520 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2521 { 2522 ztest_shared_t *zs = ztest_shared; 2523 spa_t *spa = ztest_spa; 2524 uint64_t leaves; 2525 uint64_t guid; 2526 nvlist_t *nvroot; 2527 int error; 2528 2529 mutex_enter(&ztest_vdev_lock); 2530 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2531 2532 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2533 2534 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2535 2536 /* 2537 * If we have slogs then remove them 1/4 of the time. 2538 */ 2539 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2540 /* 2541 * Grab the guid from the head of the log class rotor. 2542 */ 2543 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2544 2545 spa_config_exit(spa, SCL_VDEV, FTAG); 2546 2547 /* 2548 * We have to grab the zs_name_lock as writer to 2549 * prevent a race between removing a slog (dmu_objset_find) 2550 * and destroying a dataset. Removing the slog will 2551 * grab a reference on the dataset which may cause 2552 * dmu_objset_destroy() to fail with EBUSY thus 2553 * leaving the dataset in an inconsistent state. 2554 */ 2555 rw_enter(&ztest_name_lock, RW_WRITER); 2556 error = spa_vdev_remove(spa, guid, B_FALSE); 2557 rw_exit(&ztest_name_lock); 2558 2559 if (error && error != EEXIST) 2560 fatal(0, "spa_vdev_remove() = %d", error); 2561 } else { 2562 spa_config_exit(spa, SCL_VDEV, FTAG); 2563 2564 /* 2565 * Make 1/4 of the devices be log devices. 2566 */ 2567 nvroot = make_vdev_root(NULL, NULL, NULL, 2568 ztest_opts.zo_vdev_size, 0, 2569 ztest_random(4) == 0, ztest_opts.zo_raidz, 2570 zs->zs_mirrors, 1); 2571 2572 error = spa_vdev_add(spa, nvroot); 2573 nvlist_free(nvroot); 2574 2575 if (error == ENOSPC) 2576 ztest_record_enospc("spa_vdev_add"); 2577 else if (error != 0) 2578 fatal(0, "spa_vdev_add() = %d", error); 2579 } 2580 2581 mutex_exit(&ztest_vdev_lock); 2582 } 2583 2584 /* 2585 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2586 */ 2587 /* ARGSUSED */ 2588 void 2589 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2590 { 2591 ztest_shared_t *zs = ztest_shared; 2592 spa_t *spa = ztest_spa; 2593 vdev_t *rvd = spa->spa_root_vdev; 2594 spa_aux_vdev_t *sav; 2595 char *aux; 2596 uint64_t guid = 0; 2597 int error; 2598 2599 if (ztest_random(2) == 0) { 2600 sav = &spa->spa_spares; 2601 aux = ZPOOL_CONFIG_SPARES; 2602 } else { 2603 sav = &spa->spa_l2cache; 2604 aux = ZPOOL_CONFIG_L2CACHE; 2605 } 2606 2607 mutex_enter(&ztest_vdev_lock); 2608 2609 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2610 2611 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2612 /* 2613 * Pick a random device to remove. 2614 */ 2615 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2616 } else { 2617 /* 2618 * Find an unused device we can add. 2619 */ 2620 zs->zs_vdev_aux = 0; 2621 for (;;) { 2622 char path[MAXPATHLEN]; 2623 int c; 2624 (void) snprintf(path, sizeof (path), ztest_aux_template, 2625 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2626 zs->zs_vdev_aux); 2627 for (c = 0; c < sav->sav_count; c++) 2628 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2629 path) == 0) 2630 break; 2631 if (c == sav->sav_count && 2632 vdev_lookup_by_path(rvd, path) == NULL) 2633 break; 2634 zs->zs_vdev_aux++; 2635 } 2636 } 2637 2638 spa_config_exit(spa, SCL_VDEV, FTAG); 2639 2640 if (guid == 0) { 2641 /* 2642 * Add a new device. 2643 */ 2644 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2645 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2646 error = spa_vdev_add(spa, nvroot); 2647 if (error != 0) 2648 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2649 nvlist_free(nvroot); 2650 } else { 2651 /* 2652 * Remove an existing device. Sometimes, dirty its 2653 * vdev state first to make sure we handle removal 2654 * of devices that have pending state changes. 2655 */ 2656 if (ztest_random(2) == 0) 2657 (void) vdev_online(spa, guid, 0, NULL); 2658 2659 error = spa_vdev_remove(spa, guid, B_FALSE); 2660 if (error != 0 && error != EBUSY) 2661 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2662 } 2663 2664 mutex_exit(&ztest_vdev_lock); 2665 } 2666 2667 /* 2668 * split a pool if it has mirror tlvdevs 2669 */ 2670 /* ARGSUSED */ 2671 void 2672 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2673 { 2674 ztest_shared_t *zs = ztest_shared; 2675 spa_t *spa = ztest_spa; 2676 vdev_t *rvd = spa->spa_root_vdev; 2677 nvlist_t *tree, **child, *config, *split, **schild; 2678 uint_t c, children, schildren = 0, lastlogid = 0; 2679 int error = 0; 2680 2681 mutex_enter(&ztest_vdev_lock); 2682 2683 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2684 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2685 mutex_exit(&ztest_vdev_lock); 2686 return; 2687 } 2688 2689 /* clean up the old pool, if any */ 2690 (void) spa_destroy("splitp"); 2691 2692 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2693 2694 /* generate a config from the existing config */ 2695 mutex_enter(&spa->spa_props_lock); 2696 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2697 &tree) == 0); 2698 mutex_exit(&spa->spa_props_lock); 2699 2700 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2701 &children) == 0); 2702 2703 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2704 for (c = 0; c < children; c++) { 2705 vdev_t *tvd = rvd->vdev_child[c]; 2706 nvlist_t **mchild; 2707 uint_t mchildren; 2708 2709 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2710 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2711 0) == 0); 2712 VERIFY(nvlist_add_string(schild[schildren], 2713 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2714 VERIFY(nvlist_add_uint64(schild[schildren], 2715 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2716 if (lastlogid == 0) 2717 lastlogid = schildren; 2718 ++schildren; 2719 continue; 2720 } 2721 lastlogid = 0; 2722 VERIFY(nvlist_lookup_nvlist_array(child[c], 2723 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2724 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2725 } 2726 2727 /* OK, create a config that can be used to split */ 2728 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2729 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2730 VDEV_TYPE_ROOT) == 0); 2731 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2732 lastlogid != 0 ? lastlogid : schildren) == 0); 2733 2734 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2735 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2736 2737 for (c = 0; c < schildren; c++) 2738 nvlist_free(schild[c]); 2739 free(schild); 2740 nvlist_free(split); 2741 2742 spa_config_exit(spa, SCL_VDEV, FTAG); 2743 2744 rw_enter(&ztest_name_lock, RW_WRITER); 2745 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2746 rw_exit(&ztest_name_lock); 2747 2748 nvlist_free(config); 2749 2750 if (error == 0) { 2751 (void) printf("successful split - results:\n"); 2752 mutex_enter(&spa_namespace_lock); 2753 show_pool_stats(spa); 2754 show_pool_stats(spa_lookup("splitp")); 2755 mutex_exit(&spa_namespace_lock); 2756 ++zs->zs_splits; 2757 --zs->zs_mirrors; 2758 } 2759 mutex_exit(&ztest_vdev_lock); 2760 2761 } 2762 2763 /* 2764 * Verify that we can attach and detach devices. 2765 */ 2766 /* ARGSUSED */ 2767 void 2768 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2769 { 2770 ztest_shared_t *zs = ztest_shared; 2771 spa_t *spa = ztest_spa; 2772 spa_aux_vdev_t *sav = &spa->spa_spares; 2773 vdev_t *rvd = spa->spa_root_vdev; 2774 vdev_t *oldvd, *newvd, *pvd; 2775 nvlist_t *root; 2776 uint64_t leaves; 2777 uint64_t leaf, top; 2778 uint64_t ashift = ztest_get_ashift(); 2779 uint64_t oldguid, pguid; 2780 uint64_t oldsize, newsize; 2781 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2782 int replacing; 2783 int oldvd_has_siblings = B_FALSE; 2784 int newvd_is_spare = B_FALSE; 2785 int oldvd_is_log; 2786 int error, expected_error; 2787 2788 mutex_enter(&ztest_vdev_lock); 2789 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2790 2791 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2792 2793 /* 2794 * If a vdev is in the process of being removed, its removal may 2795 * finish while we are in progress, leading to an unexpected error 2796 * value. Don't bother trying to attach while we are in the middle 2797 * of removal. 2798 */ 2799 if (spa->spa_vdev_removal != NULL) { 2800 spa_config_exit(spa, SCL_ALL, FTAG); 2801 mutex_exit(&ztest_vdev_lock); 2802 return; 2803 } 2804 2805 /* 2806 * Decide whether to do an attach or a replace. 2807 */ 2808 replacing = ztest_random(2); 2809 2810 /* 2811 * Pick a random top-level vdev. 2812 */ 2813 top = ztest_random_vdev_top(spa, B_TRUE); 2814 2815 /* 2816 * Pick a random leaf within it. 2817 */ 2818 leaf = ztest_random(leaves); 2819 2820 /* 2821 * Locate this vdev. 2822 */ 2823 oldvd = rvd->vdev_child[top]; 2824 if (zs->zs_mirrors >= 1) { 2825 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2826 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2827 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2828 } 2829 if (ztest_opts.zo_raidz > 1) { 2830 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2831 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2832 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2833 } 2834 2835 /* 2836 * If we're already doing an attach or replace, oldvd may be a 2837 * mirror vdev -- in which case, pick a random child. 2838 */ 2839 while (oldvd->vdev_children != 0) { 2840 oldvd_has_siblings = B_TRUE; 2841 ASSERT(oldvd->vdev_children >= 2); 2842 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2843 } 2844 2845 oldguid = oldvd->vdev_guid; 2846 oldsize = vdev_get_min_asize(oldvd); 2847 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2848 (void) strcpy(oldpath, oldvd->vdev_path); 2849 pvd = oldvd->vdev_parent; 2850 pguid = pvd->vdev_guid; 2851 2852 /* 2853 * If oldvd has siblings, then half of the time, detach it. 2854 */ 2855 if (oldvd_has_siblings && ztest_random(2) == 0) { 2856 spa_config_exit(spa, SCL_ALL, FTAG); 2857 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2858 if (error != 0 && error != ENODEV && error != EBUSY && 2859 error != ENOTSUP) 2860 fatal(0, "detach (%s) returned %d", oldpath, error); 2861 mutex_exit(&ztest_vdev_lock); 2862 return; 2863 } 2864 2865 /* 2866 * For the new vdev, choose with equal probability between the two 2867 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2868 */ 2869 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2870 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2871 newvd_is_spare = B_TRUE; 2872 (void) strcpy(newpath, newvd->vdev_path); 2873 } else { 2874 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2875 ztest_opts.zo_dir, ztest_opts.zo_pool, 2876 top * leaves + leaf); 2877 if (ztest_random(2) == 0) 2878 newpath[strlen(newpath) - 1] = 'b'; 2879 newvd = vdev_lookup_by_path(rvd, newpath); 2880 } 2881 2882 if (newvd) { 2883 /* 2884 * Reopen to ensure the vdev's asize field isn't stale. 2885 */ 2886 vdev_reopen(newvd); 2887 newsize = vdev_get_min_asize(newvd); 2888 } else { 2889 /* 2890 * Make newsize a little bigger or smaller than oldsize. 2891 * If it's smaller, the attach should fail. 2892 * If it's larger, and we're doing a replace, 2893 * we should get dynamic LUN growth when we're done. 2894 */ 2895 newsize = 10 * oldsize / (9 + ztest_random(3)); 2896 } 2897 2898 /* 2899 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2900 * unless it's a replace; in that case any non-replacing parent is OK. 2901 * 2902 * If newvd is already part of the pool, it should fail with EBUSY. 2903 * 2904 * If newvd is too small, it should fail with EOVERFLOW. 2905 */ 2906 if (pvd->vdev_ops != &vdev_mirror_ops && 2907 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2908 pvd->vdev_ops == &vdev_replacing_ops || 2909 pvd->vdev_ops == &vdev_spare_ops)) 2910 expected_error = ENOTSUP; 2911 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2912 expected_error = ENOTSUP; 2913 else if (newvd == oldvd) 2914 expected_error = replacing ? 0 : EBUSY; 2915 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2916 expected_error = EBUSY; 2917 else if (newsize < oldsize) 2918 expected_error = EOVERFLOW; 2919 else if (ashift > oldvd->vdev_top->vdev_ashift) 2920 expected_error = EDOM; 2921 else 2922 expected_error = 0; 2923 2924 spa_config_exit(spa, SCL_ALL, FTAG); 2925 2926 /* 2927 * Build the nvlist describing newpath. 2928 */ 2929 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 2930 ashift, 0, 0, 0, 1); 2931 2932 error = spa_vdev_attach(spa, oldguid, root, replacing); 2933 2934 nvlist_free(root); 2935 2936 /* 2937 * If our parent was the replacing vdev, but the replace completed, 2938 * then instead of failing with ENOTSUP we may either succeed, 2939 * fail with ENODEV, or fail with EOVERFLOW. 2940 */ 2941 if (expected_error == ENOTSUP && 2942 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2943 expected_error = error; 2944 2945 /* 2946 * If someone grew the LUN, the replacement may be too small. 2947 */ 2948 if (error == EOVERFLOW || error == EBUSY) 2949 expected_error = error; 2950 2951 /* XXX workaround 6690467 */ 2952 if (error != expected_error && expected_error != EBUSY) { 2953 fatal(0, "attach (%s %llu, %s %llu, %d) " 2954 "returned %d, expected %d", 2955 oldpath, oldsize, newpath, 2956 newsize, replacing, error, expected_error); 2957 } 2958 2959 mutex_exit(&ztest_vdev_lock); 2960 } 2961 2962 /* ARGSUSED */ 2963 void 2964 ztest_device_removal(ztest_ds_t *zd, uint64_t id) 2965 { 2966 spa_t *spa = ztest_spa; 2967 vdev_t *vd; 2968 uint64_t guid; 2969 2970 mutex_enter(&ztest_vdev_lock); 2971 2972 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2973 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE)); 2974 guid = vd->vdev_guid; 2975 spa_config_exit(spa, SCL_VDEV, FTAG); 2976 2977 (void) spa_vdev_remove(spa, guid, B_FALSE); 2978 2979 mutex_exit(&ztest_vdev_lock); 2980 } 2981 2982 /* 2983 * Callback function which expands the physical size of the vdev. 2984 */ 2985 vdev_t * 2986 grow_vdev(vdev_t *vd, void *arg) 2987 { 2988 spa_t *spa = vd->vdev_spa; 2989 size_t *newsize = arg; 2990 size_t fsize; 2991 int fd; 2992 2993 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2994 ASSERT(vd->vdev_ops->vdev_op_leaf); 2995 2996 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2997 return (vd); 2998 2999 fsize = lseek(fd, 0, SEEK_END); 3000 (void) ftruncate(fd, *newsize); 3001 3002 if (ztest_opts.zo_verbose >= 6) { 3003 (void) printf("%s grew from %lu to %lu bytes\n", 3004 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 3005 } 3006 (void) close(fd); 3007 return (NULL); 3008 } 3009 3010 /* 3011 * Callback function which expands a given vdev by calling vdev_online(). 3012 */ 3013 /* ARGSUSED */ 3014 vdev_t * 3015 online_vdev(vdev_t *vd, void *arg) 3016 { 3017 spa_t *spa = vd->vdev_spa; 3018 vdev_t *tvd = vd->vdev_top; 3019 uint64_t guid = vd->vdev_guid; 3020 uint64_t generation = spa->spa_config_generation + 1; 3021 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 3022 int error; 3023 3024 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 3025 ASSERT(vd->vdev_ops->vdev_op_leaf); 3026 3027 /* Calling vdev_online will initialize the new metaslabs */ 3028 spa_config_exit(spa, SCL_STATE, spa); 3029 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 3030 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3031 3032 /* 3033 * If vdev_online returned an error or the underlying vdev_open 3034 * failed then we abort the expand. The only way to know that 3035 * vdev_open fails is by checking the returned newstate. 3036 */ 3037 if (error || newstate != VDEV_STATE_HEALTHY) { 3038 if (ztest_opts.zo_verbose >= 5) { 3039 (void) printf("Unable to expand vdev, state %llu, " 3040 "error %d\n", (u_longlong_t)newstate, error); 3041 } 3042 return (vd); 3043 } 3044 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 3045 3046 /* 3047 * Since we dropped the lock we need to ensure that we're 3048 * still talking to the original vdev. It's possible this 3049 * vdev may have been detached/replaced while we were 3050 * trying to online it. 3051 */ 3052 if (generation != spa->spa_config_generation) { 3053 if (ztest_opts.zo_verbose >= 5) { 3054 (void) printf("vdev configuration has changed, " 3055 "guid %llu, state %llu, expected gen %llu, " 3056 "got gen %llu\n", 3057 (u_longlong_t)guid, 3058 (u_longlong_t)tvd->vdev_state, 3059 (u_longlong_t)generation, 3060 (u_longlong_t)spa->spa_config_generation); 3061 } 3062 return (vd); 3063 } 3064 return (NULL); 3065 } 3066 3067 /* 3068 * Traverse the vdev tree calling the supplied function. 3069 * We continue to walk the tree until we either have walked all 3070 * children or we receive a non-NULL return from the callback. 3071 * If a NULL callback is passed, then we just return back the first 3072 * leaf vdev we encounter. 3073 */ 3074 vdev_t * 3075 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 3076 { 3077 if (vd->vdev_ops->vdev_op_leaf) { 3078 if (func == NULL) 3079 return (vd); 3080 else 3081 return (func(vd, arg)); 3082 } 3083 3084 for (uint_t c = 0; c < vd->vdev_children; c++) { 3085 vdev_t *cvd = vd->vdev_child[c]; 3086 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3087 return (cvd); 3088 } 3089 return (NULL); 3090 } 3091 3092 /* 3093 * Verify that dynamic LUN growth works as expected. 3094 */ 3095 /* ARGSUSED */ 3096 void 3097 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3098 { 3099 spa_t *spa = ztest_spa; 3100 vdev_t *vd, *tvd; 3101 metaslab_class_t *mc; 3102 metaslab_group_t *mg; 3103 size_t psize, newsize; 3104 uint64_t top; 3105 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3106 3107 mutex_enter(&ztest_vdev_lock); 3108 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3109 3110 /* 3111 * If there is a vdev removal in progress, it could complete while 3112 * we are running, in which case we would not be able to verify 3113 * that the metaslab_class space increased (because it decreases 3114 * when the device removal completes). 3115 */ 3116 if (spa->spa_vdev_removal != NULL) { 3117 spa_config_exit(spa, SCL_STATE, FTAG); 3118 mutex_exit(&ztest_vdev_lock); 3119 return; 3120 } 3121 3122 top = ztest_random_vdev_top(spa, B_TRUE); 3123 3124 tvd = spa->spa_root_vdev->vdev_child[top]; 3125 mg = tvd->vdev_mg; 3126 mc = mg->mg_class; 3127 old_ms_count = tvd->vdev_ms_count; 3128 old_class_space = metaslab_class_get_space(mc); 3129 3130 /* 3131 * Determine the size of the first leaf vdev associated with 3132 * our top-level device. 3133 */ 3134 vd = vdev_walk_tree(tvd, NULL, NULL); 3135 ASSERT3P(vd, !=, NULL); 3136 ASSERT(vd->vdev_ops->vdev_op_leaf); 3137 3138 psize = vd->vdev_psize; 3139 3140 /* 3141 * We only try to expand the vdev if it's healthy, less than 4x its 3142 * original size, and it has a valid psize. 3143 */ 3144 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3145 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3146 spa_config_exit(spa, SCL_STATE, spa); 3147 mutex_exit(&ztest_vdev_lock); 3148 return; 3149 } 3150 ASSERT(psize > 0); 3151 newsize = psize + psize / 8; 3152 ASSERT3U(newsize, >, psize); 3153 3154 if (ztest_opts.zo_verbose >= 6) { 3155 (void) printf("Expanding LUN %s from %lu to %lu\n", 3156 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3157 } 3158 3159 /* 3160 * Growing the vdev is a two step process: 3161 * 1). expand the physical size (i.e. relabel) 3162 * 2). online the vdev to create the new metaslabs 3163 */ 3164 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3165 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3166 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3167 if (ztest_opts.zo_verbose >= 5) { 3168 (void) printf("Could not expand LUN because " 3169 "the vdev configuration changed.\n"); 3170 } 3171 spa_config_exit(spa, SCL_STATE, spa); 3172 mutex_exit(&ztest_vdev_lock); 3173 return; 3174 } 3175 3176 spa_config_exit(spa, SCL_STATE, spa); 3177 3178 /* 3179 * Expanding the LUN will update the config asynchronously, 3180 * thus we must wait for the async thread to complete any 3181 * pending tasks before proceeding. 3182 */ 3183 for (;;) { 3184 boolean_t done; 3185 mutex_enter(&spa->spa_async_lock); 3186 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3187 mutex_exit(&spa->spa_async_lock); 3188 if (done) 3189 break; 3190 txg_wait_synced(spa_get_dsl(spa), 0); 3191 (void) poll(NULL, 0, 100); 3192 } 3193 3194 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3195 3196 tvd = spa->spa_root_vdev->vdev_child[top]; 3197 new_ms_count = tvd->vdev_ms_count; 3198 new_class_space = metaslab_class_get_space(mc); 3199 3200 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3201 if (ztest_opts.zo_verbose >= 5) { 3202 (void) printf("Could not verify LUN expansion due to " 3203 "intervening vdev offline or remove.\n"); 3204 } 3205 spa_config_exit(spa, SCL_STATE, spa); 3206 mutex_exit(&ztest_vdev_lock); 3207 return; 3208 } 3209 3210 /* 3211 * Make sure we were able to grow the vdev. 3212 */ 3213 if (new_ms_count <= old_ms_count) { 3214 fatal(0, "LUN expansion failed: ms_count %llu < %llu\n", 3215 old_ms_count, new_ms_count); 3216 } 3217 3218 /* 3219 * Make sure we were able to grow the pool. 3220 */ 3221 if (new_class_space <= old_class_space) { 3222 fatal(0, "LUN expansion failed: class_space %llu < %llu\n", 3223 old_class_space, new_class_space); 3224 } 3225 3226 if (ztest_opts.zo_verbose >= 5) { 3227 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ]; 3228 3229 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf)); 3230 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf)); 3231 (void) printf("%s grew from %s to %s\n", 3232 spa->spa_name, oldnumbuf, newnumbuf); 3233 } 3234 3235 spa_config_exit(spa, SCL_STATE, spa); 3236 mutex_exit(&ztest_vdev_lock); 3237 } 3238 3239 /* 3240 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3241 */ 3242 /* ARGSUSED */ 3243 static void 3244 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3245 { 3246 /* 3247 * Create the objects common to all ztest datasets. 3248 */ 3249 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3250 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3251 } 3252 3253 static int 3254 ztest_dataset_create(char *dsname) 3255 { 3256 uint64_t zilset = ztest_random(100); 3257 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3258 ztest_objset_create_cb, NULL); 3259 3260 if (err || zilset < 80) 3261 return (err); 3262 3263 if (ztest_opts.zo_verbose >= 6) 3264 (void) printf("Setting dataset %s to sync always\n", dsname); 3265 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3266 ZFS_SYNC_ALWAYS, B_FALSE)); 3267 } 3268 3269 /* ARGSUSED */ 3270 static int 3271 ztest_objset_destroy_cb(const char *name, void *arg) 3272 { 3273 objset_t *os; 3274 dmu_object_info_t doi; 3275 int error; 3276 3277 /* 3278 * Verify that the dataset contains a directory object. 3279 */ 3280 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); 3281 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3282 if (error != ENOENT) { 3283 /* We could have crashed in the middle of destroying it */ 3284 ASSERT0(error); 3285 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3286 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3287 } 3288 dmu_objset_disown(os, FTAG); 3289 3290 /* 3291 * Destroy the dataset. 3292 */ 3293 if (strchr(name, '@') != NULL) { 3294 VERIFY0(dsl_destroy_snapshot(name, B_TRUE)); 3295 } else { 3296 error = dsl_destroy_head(name); 3297 /* There could be a hold on this dataset */ 3298 if (error != EBUSY) 3299 ASSERT0(error); 3300 } 3301 return (0); 3302 } 3303 3304 static boolean_t 3305 ztest_snapshot_create(char *osname, uint64_t id) 3306 { 3307 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3308 int error; 3309 3310 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3311 3312 error = dmu_objset_snapshot_one(osname, snapname); 3313 if (error == ENOSPC) { 3314 ztest_record_enospc(FTAG); 3315 return (B_FALSE); 3316 } 3317 if (error != 0 && error != EEXIST) { 3318 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3319 snapname, error); 3320 } 3321 return (B_TRUE); 3322 } 3323 3324 static boolean_t 3325 ztest_snapshot_destroy(char *osname, uint64_t id) 3326 { 3327 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3328 int error; 3329 3330 (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname, 3331 (u_longlong_t)id); 3332 3333 error = dsl_destroy_snapshot(snapname, B_FALSE); 3334 if (error != 0 && error != ENOENT) 3335 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3336 return (B_TRUE); 3337 } 3338 3339 /* ARGSUSED */ 3340 void 3341 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3342 { 3343 ztest_ds_t zdtmp; 3344 int iters; 3345 int error; 3346 objset_t *os, *os2; 3347 char name[ZFS_MAX_DATASET_NAME_LEN]; 3348 zilog_t *zilog; 3349 3350 rw_enter(&ztest_name_lock, RW_READER); 3351 3352 (void) snprintf(name, sizeof (name), "%s/temp_%llu", 3353 ztest_opts.zo_pool, (u_longlong_t)id); 3354 3355 /* 3356 * If this dataset exists from a previous run, process its replay log 3357 * half of the time. If we don't replay it, then dmu_objset_destroy() 3358 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3359 */ 3360 if (ztest_random(2) == 0 && 3361 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3362 ztest_zd_init(&zdtmp, NULL, os); 3363 zil_replay(os, &zdtmp, ztest_replay_vector); 3364 ztest_zd_fini(&zdtmp); 3365 dmu_objset_disown(os, FTAG); 3366 } 3367 3368 /* 3369 * There may be an old instance of the dataset we're about to 3370 * create lying around from a previous run. If so, destroy it 3371 * and all of its snapshots. 3372 */ 3373 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3374 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3375 3376 /* 3377 * Verify that the destroyed dataset is no longer in the namespace. 3378 */ 3379 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3380 FTAG, &os)); 3381 3382 /* 3383 * Verify that we can create a new dataset. 3384 */ 3385 error = ztest_dataset_create(name); 3386 if (error) { 3387 if (error == ENOSPC) { 3388 ztest_record_enospc(FTAG); 3389 rw_exit(&ztest_name_lock); 3390 return; 3391 } 3392 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3393 } 3394 3395 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3396 3397 ztest_zd_init(&zdtmp, NULL, os); 3398 3399 /* 3400 * Open the intent log for it. 3401 */ 3402 zilog = zil_open(os, ztest_get_data); 3403 3404 /* 3405 * Put some objects in there, do a little I/O to them, 3406 * and randomly take a couple of snapshots along the way. 3407 */ 3408 iters = ztest_random(5); 3409 for (int i = 0; i < iters; i++) { 3410 ztest_dmu_object_alloc_free(&zdtmp, id); 3411 if (ztest_random(iters) == 0) 3412 (void) ztest_snapshot_create(name, i); 3413 } 3414 3415 /* 3416 * Verify that we cannot create an existing dataset. 3417 */ 3418 VERIFY3U(EEXIST, ==, 3419 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3420 3421 /* 3422 * Verify that we can hold an objset that is also owned. 3423 */ 3424 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3425 dmu_objset_rele(os2, FTAG); 3426 3427 /* 3428 * Verify that we cannot own an objset that is already owned. 3429 */ 3430 VERIFY3U(EBUSY, ==, 3431 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3432 3433 zil_close(zilog); 3434 dmu_objset_disown(os, FTAG); 3435 ztest_zd_fini(&zdtmp); 3436 3437 rw_exit(&ztest_name_lock); 3438 } 3439 3440 /* 3441 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3442 */ 3443 void 3444 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3445 { 3446 rw_enter(&ztest_name_lock, RW_READER); 3447 (void) ztest_snapshot_destroy(zd->zd_name, id); 3448 (void) ztest_snapshot_create(zd->zd_name, id); 3449 rw_exit(&ztest_name_lock); 3450 } 3451 3452 /* 3453 * Cleanup non-standard snapshots and clones. 3454 */ 3455 void 3456 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3457 { 3458 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 3459 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 3460 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 3461 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 3462 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 3463 int error; 3464 3465 (void) snprintf(snap1name, sizeof (snap1name), 3466 "%s@s1_%llu", osname, id); 3467 (void) snprintf(clone1name, sizeof (clone1name), 3468 "%s/c1_%llu", osname, id); 3469 (void) snprintf(snap2name, sizeof (snap2name), 3470 "%s@s2_%llu", clone1name, id); 3471 (void) snprintf(clone2name, sizeof (clone2name), 3472 "%s/c2_%llu", osname, id); 3473 (void) snprintf(snap3name, sizeof (snap3name), 3474 "%s@s3_%llu", clone1name, id); 3475 3476 error = dsl_destroy_head(clone2name); 3477 if (error && error != ENOENT) 3478 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 3479 error = dsl_destroy_snapshot(snap3name, B_FALSE); 3480 if (error && error != ENOENT) 3481 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 3482 error = dsl_destroy_snapshot(snap2name, B_FALSE); 3483 if (error && error != ENOENT) 3484 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 3485 error = dsl_destroy_head(clone1name); 3486 if (error && error != ENOENT) 3487 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 3488 error = dsl_destroy_snapshot(snap1name, B_FALSE); 3489 if (error && error != ENOENT) 3490 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 3491 } 3492 3493 /* 3494 * Verify dsl_dataset_promote handles EBUSY 3495 */ 3496 void 3497 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3498 { 3499 objset_t *os; 3500 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 3501 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 3502 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 3503 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 3504 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 3505 char *osname = zd->zd_name; 3506 int error; 3507 3508 rw_enter(&ztest_name_lock, RW_READER); 3509 3510 ztest_dsl_dataset_cleanup(osname, id); 3511 3512 (void) snprintf(snap1name, sizeof (snap1name), 3513 "%s@s1_%llu", osname, id); 3514 (void) snprintf(clone1name, sizeof (clone1name), 3515 "%s/c1_%llu", osname, id); 3516 (void) snprintf(snap2name, sizeof (snap2name), 3517 "%s@s2_%llu", clone1name, id); 3518 (void) snprintf(clone2name, sizeof (clone2name), 3519 "%s/c2_%llu", osname, id); 3520 (void) snprintf(snap3name, sizeof (snap3name), 3521 "%s@s3_%llu", clone1name, id); 3522 3523 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3524 if (error && error != EEXIST) { 3525 if (error == ENOSPC) { 3526 ztest_record_enospc(FTAG); 3527 goto out; 3528 } 3529 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3530 } 3531 3532 error = dmu_objset_clone(clone1name, snap1name); 3533 if (error) { 3534 if (error == ENOSPC) { 3535 ztest_record_enospc(FTAG); 3536 goto out; 3537 } 3538 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3539 } 3540 3541 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3542 if (error && error != EEXIST) { 3543 if (error == ENOSPC) { 3544 ztest_record_enospc(FTAG); 3545 goto out; 3546 } 3547 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3548 } 3549 3550 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3551 if (error && error != EEXIST) { 3552 if (error == ENOSPC) { 3553 ztest_record_enospc(FTAG); 3554 goto out; 3555 } 3556 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3557 } 3558 3559 error = dmu_objset_clone(clone2name, snap3name); 3560 if (error) { 3561 if (error == ENOSPC) { 3562 ztest_record_enospc(FTAG); 3563 goto out; 3564 } 3565 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3566 } 3567 3568 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); 3569 if (error) 3570 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 3571 error = dsl_dataset_promote(clone2name, NULL); 3572 if (error == ENOSPC) { 3573 dmu_objset_disown(os, FTAG); 3574 ztest_record_enospc(FTAG); 3575 goto out; 3576 } 3577 if (error != EBUSY) 3578 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3579 error); 3580 dmu_objset_disown(os, FTAG); 3581 3582 out: 3583 ztest_dsl_dataset_cleanup(osname, id); 3584 3585 rw_exit(&ztest_name_lock); 3586 } 3587 3588 /* 3589 * Verify that dmu_object_{alloc,free} work as expected. 3590 */ 3591 void 3592 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3593 { 3594 ztest_od_t od[4]; 3595 int batchsize = sizeof (od) / sizeof (od[0]); 3596 3597 for (int b = 0; b < batchsize; b++) 3598 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3599 3600 /* 3601 * Destroy the previous batch of objects, create a new batch, 3602 * and do some I/O on the new objects. 3603 */ 3604 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3605 return; 3606 3607 while (ztest_random(4 * batchsize) != 0) 3608 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3609 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3610 } 3611 3612 /* 3613 * Verify that dmu_{read,write} work as expected. 3614 */ 3615 void 3616 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3617 { 3618 objset_t *os = zd->zd_os; 3619 ztest_od_t od[2]; 3620 dmu_tx_t *tx; 3621 int i, freeit, error; 3622 uint64_t n, s, txg; 3623 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3624 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3625 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3626 uint64_t regions = 997; 3627 uint64_t stride = 123456789ULL; 3628 uint64_t width = 40; 3629 int free_percent = 5; 3630 3631 /* 3632 * This test uses two objects, packobj and bigobj, that are always 3633 * updated together (i.e. in the same tx) so that their contents are 3634 * in sync and can be compared. Their contents relate to each other 3635 * in a simple way: packobj is a dense array of 'bufwad' structures, 3636 * while bigobj is a sparse array of the same bufwads. Specifically, 3637 * for any index n, there are three bufwads that should be identical: 3638 * 3639 * packobj, at offset n * sizeof (bufwad_t) 3640 * bigobj, at the head of the nth chunk 3641 * bigobj, at the tail of the nth chunk 3642 * 3643 * The chunk size is arbitrary. It doesn't have to be a power of two, 3644 * and it doesn't have any relation to the object blocksize. 3645 * The only requirement is that it can hold at least two bufwads. 3646 * 3647 * Normally, we write the bufwad to each of these locations. 3648 * However, free_percent of the time we instead write zeroes to 3649 * packobj and perform a dmu_free_range() on bigobj. By comparing 3650 * bigobj to packobj, we can verify that the DMU is correctly 3651 * tracking which parts of an object are allocated and free, 3652 * and that the contents of the allocated blocks are correct. 3653 */ 3654 3655 /* 3656 * Read the directory info. If it's the first time, set things up. 3657 */ 3658 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3659 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3660 3661 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3662 return; 3663 3664 bigobj = od[0].od_object; 3665 packobj = od[1].od_object; 3666 chunksize = od[0].od_gen; 3667 ASSERT(chunksize == od[1].od_gen); 3668 3669 /* 3670 * Prefetch a random chunk of the big object. 3671 * Our aim here is to get some async reads in flight 3672 * for blocks that we may free below; the DMU should 3673 * handle this race correctly. 3674 */ 3675 n = ztest_random(regions) * stride + ztest_random(width); 3676 s = 1 + ztest_random(2 * width - 1); 3677 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize, 3678 ZIO_PRIORITY_SYNC_READ); 3679 3680 /* 3681 * Pick a random index and compute the offsets into packobj and bigobj. 3682 */ 3683 n = ztest_random(regions) * stride + ztest_random(width); 3684 s = 1 + ztest_random(width - 1); 3685 3686 packoff = n * sizeof (bufwad_t); 3687 packsize = s * sizeof (bufwad_t); 3688 3689 bigoff = n * chunksize; 3690 bigsize = s * chunksize; 3691 3692 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3693 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3694 3695 /* 3696 * free_percent of the time, free a range of bigobj rather than 3697 * overwriting it. 3698 */ 3699 freeit = (ztest_random(100) < free_percent); 3700 3701 /* 3702 * Read the current contents of our objects. 3703 */ 3704 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3705 DMU_READ_PREFETCH); 3706 ASSERT0(error); 3707 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3708 DMU_READ_PREFETCH); 3709 ASSERT0(error); 3710 3711 /* 3712 * Get a tx for the mods to both packobj and bigobj. 3713 */ 3714 tx = dmu_tx_create(os); 3715 3716 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3717 3718 if (freeit) 3719 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3720 else 3721 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3722 3723 /* This accounts for setting the checksum/compression. */ 3724 dmu_tx_hold_bonus(tx, bigobj); 3725 3726 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3727 if (txg == 0) { 3728 umem_free(packbuf, packsize); 3729 umem_free(bigbuf, bigsize); 3730 return; 3731 } 3732 3733 enum zio_checksum cksum; 3734 do { 3735 cksum = (enum zio_checksum) 3736 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); 3737 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); 3738 dmu_object_set_checksum(os, bigobj, cksum, tx); 3739 3740 enum zio_compress comp; 3741 do { 3742 comp = (enum zio_compress) 3743 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); 3744 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); 3745 dmu_object_set_compress(os, bigobj, comp, tx); 3746 3747 /* 3748 * For each index from n to n + s, verify that the existing bufwad 3749 * in packobj matches the bufwads at the head and tail of the 3750 * corresponding chunk in bigobj. Then update all three bufwads 3751 * with the new values we want to write out. 3752 */ 3753 for (i = 0; i < s; i++) { 3754 /* LINTED */ 3755 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3756 /* LINTED */ 3757 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3758 /* LINTED */ 3759 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3760 3761 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3762 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3763 3764 if (pack->bw_txg > txg) 3765 fatal(0, "future leak: got %llx, open txg is %llx", 3766 pack->bw_txg, txg); 3767 3768 if (pack->bw_data != 0 && pack->bw_index != n + i) 3769 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3770 pack->bw_index, n, i); 3771 3772 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3773 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3774 3775 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3776 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3777 3778 if (freeit) { 3779 bzero(pack, sizeof (bufwad_t)); 3780 } else { 3781 pack->bw_index = n + i; 3782 pack->bw_txg = txg; 3783 pack->bw_data = 1 + ztest_random(-2ULL); 3784 } 3785 *bigH = *pack; 3786 *bigT = *pack; 3787 } 3788 3789 /* 3790 * We've verified all the old bufwads, and made new ones. 3791 * Now write them out. 3792 */ 3793 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3794 3795 if (freeit) { 3796 if (ztest_opts.zo_verbose >= 7) { 3797 (void) printf("freeing offset %llx size %llx" 3798 " txg %llx\n", 3799 (u_longlong_t)bigoff, 3800 (u_longlong_t)bigsize, 3801 (u_longlong_t)txg); 3802 } 3803 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3804 } else { 3805 if (ztest_opts.zo_verbose >= 7) { 3806 (void) printf("writing offset %llx size %llx" 3807 " txg %llx\n", 3808 (u_longlong_t)bigoff, 3809 (u_longlong_t)bigsize, 3810 (u_longlong_t)txg); 3811 } 3812 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3813 } 3814 3815 dmu_tx_commit(tx); 3816 3817 /* 3818 * Sanity check the stuff we just wrote. 3819 */ 3820 { 3821 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3822 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3823 3824 VERIFY(0 == dmu_read(os, packobj, packoff, 3825 packsize, packcheck, DMU_READ_PREFETCH)); 3826 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3827 bigsize, bigcheck, DMU_READ_PREFETCH)); 3828 3829 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3830 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3831 3832 umem_free(packcheck, packsize); 3833 umem_free(bigcheck, bigsize); 3834 } 3835 3836 umem_free(packbuf, packsize); 3837 umem_free(bigbuf, bigsize); 3838 } 3839 3840 void 3841 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3842 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3843 { 3844 uint64_t i; 3845 bufwad_t *pack; 3846 bufwad_t *bigH; 3847 bufwad_t *bigT; 3848 3849 /* 3850 * For each index from n to n + s, verify that the existing bufwad 3851 * in packobj matches the bufwads at the head and tail of the 3852 * corresponding chunk in bigobj. Then update all three bufwads 3853 * with the new values we want to write out. 3854 */ 3855 for (i = 0; i < s; i++) { 3856 /* LINTED */ 3857 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3858 /* LINTED */ 3859 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3860 /* LINTED */ 3861 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3862 3863 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3864 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3865 3866 if (pack->bw_txg > txg) 3867 fatal(0, "future leak: got %llx, open txg is %llx", 3868 pack->bw_txg, txg); 3869 3870 if (pack->bw_data != 0 && pack->bw_index != n + i) 3871 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3872 pack->bw_index, n, i); 3873 3874 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3875 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3876 3877 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3878 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3879 3880 pack->bw_index = n + i; 3881 pack->bw_txg = txg; 3882 pack->bw_data = 1 + ztest_random(-2ULL); 3883 3884 *bigH = *pack; 3885 *bigT = *pack; 3886 } 3887 } 3888 3889 void 3890 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3891 { 3892 objset_t *os = zd->zd_os; 3893 ztest_od_t od[2]; 3894 dmu_tx_t *tx; 3895 uint64_t i; 3896 int error; 3897 uint64_t n, s, txg; 3898 bufwad_t *packbuf, *bigbuf; 3899 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3900 uint64_t blocksize = ztest_random_blocksize(); 3901 uint64_t chunksize = blocksize; 3902 uint64_t regions = 997; 3903 uint64_t stride = 123456789ULL; 3904 uint64_t width = 9; 3905 dmu_buf_t *bonus_db; 3906 arc_buf_t **bigbuf_arcbufs; 3907 dmu_object_info_t doi; 3908 3909 /* 3910 * This test uses two objects, packobj and bigobj, that are always 3911 * updated together (i.e. in the same tx) so that their contents are 3912 * in sync and can be compared. Their contents relate to each other 3913 * in a simple way: packobj is a dense array of 'bufwad' structures, 3914 * while bigobj is a sparse array of the same bufwads. Specifically, 3915 * for any index n, there are three bufwads that should be identical: 3916 * 3917 * packobj, at offset n * sizeof (bufwad_t) 3918 * bigobj, at the head of the nth chunk 3919 * bigobj, at the tail of the nth chunk 3920 * 3921 * The chunk size is set equal to bigobj block size so that 3922 * dmu_assign_arcbuf() can be tested for object updates. 3923 */ 3924 3925 /* 3926 * Read the directory info. If it's the first time, set things up. 3927 */ 3928 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3929 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3930 3931 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3932 return; 3933 3934 bigobj = od[0].od_object; 3935 packobj = od[1].od_object; 3936 blocksize = od[0].od_blocksize; 3937 chunksize = blocksize; 3938 ASSERT(chunksize == od[1].od_gen); 3939 3940 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3941 VERIFY(ISP2(doi.doi_data_block_size)); 3942 VERIFY(chunksize == doi.doi_data_block_size); 3943 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3944 3945 /* 3946 * Pick a random index and compute the offsets into packobj and bigobj. 3947 */ 3948 n = ztest_random(regions) * stride + ztest_random(width); 3949 s = 1 + ztest_random(width - 1); 3950 3951 packoff = n * sizeof (bufwad_t); 3952 packsize = s * sizeof (bufwad_t); 3953 3954 bigoff = n * chunksize; 3955 bigsize = s * chunksize; 3956 3957 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3958 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3959 3960 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3961 3962 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3963 3964 /* 3965 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3966 * Iteration 1 test zcopy to already referenced dbufs. 3967 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3968 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3969 * Iteration 4 test zcopy when dbuf is no longer dirty. 3970 * Iteration 5 test zcopy when it can't be done. 3971 * Iteration 6 one more zcopy write. 3972 */ 3973 for (i = 0; i < 7; i++) { 3974 uint64_t j; 3975 uint64_t off; 3976 3977 /* 3978 * In iteration 5 (i == 5) use arcbufs 3979 * that don't match bigobj blksz to test 3980 * dmu_assign_arcbuf() when it can't directly 3981 * assign an arcbuf to a dbuf. 3982 */ 3983 for (j = 0; j < s; j++) { 3984 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3985 bigbuf_arcbufs[j] = 3986 dmu_request_arcbuf(bonus_db, chunksize); 3987 } else { 3988 bigbuf_arcbufs[2 * j] = 3989 dmu_request_arcbuf(bonus_db, chunksize / 2); 3990 bigbuf_arcbufs[2 * j + 1] = 3991 dmu_request_arcbuf(bonus_db, chunksize / 2); 3992 } 3993 } 3994 3995 /* 3996 * Get a tx for the mods to both packobj and bigobj. 3997 */ 3998 tx = dmu_tx_create(os); 3999 4000 dmu_tx_hold_write(tx, packobj, packoff, packsize); 4001 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 4002 4003 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4004 if (txg == 0) { 4005 umem_free(packbuf, packsize); 4006 umem_free(bigbuf, bigsize); 4007 for (j = 0; j < s; j++) { 4008 if (i != 5 || 4009 chunksize < (SPA_MINBLOCKSIZE * 2)) { 4010 dmu_return_arcbuf(bigbuf_arcbufs[j]); 4011 } else { 4012 dmu_return_arcbuf( 4013 bigbuf_arcbufs[2 * j]); 4014 dmu_return_arcbuf( 4015 bigbuf_arcbufs[2 * j + 1]); 4016 } 4017 } 4018 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4019 dmu_buf_rele(bonus_db, FTAG); 4020 return; 4021 } 4022 4023 /* 4024 * 50% of the time don't read objects in the 1st iteration to 4025 * test dmu_assign_arcbuf() for the case when there're no 4026 * existing dbufs for the specified offsets. 4027 */ 4028 if (i != 0 || ztest_random(2) != 0) { 4029 error = dmu_read(os, packobj, packoff, 4030 packsize, packbuf, DMU_READ_PREFETCH); 4031 ASSERT0(error); 4032 error = dmu_read(os, bigobj, bigoff, bigsize, 4033 bigbuf, DMU_READ_PREFETCH); 4034 ASSERT0(error); 4035 } 4036 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 4037 n, chunksize, txg); 4038 4039 /* 4040 * We've verified all the old bufwads, and made new ones. 4041 * Now write them out. 4042 */ 4043 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 4044 if (ztest_opts.zo_verbose >= 7) { 4045 (void) printf("writing offset %llx size %llx" 4046 " txg %llx\n", 4047 (u_longlong_t)bigoff, 4048 (u_longlong_t)bigsize, 4049 (u_longlong_t)txg); 4050 } 4051 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 4052 dmu_buf_t *dbt; 4053 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 4054 bcopy((caddr_t)bigbuf + (off - bigoff), 4055 bigbuf_arcbufs[j]->b_data, chunksize); 4056 } else { 4057 bcopy((caddr_t)bigbuf + (off - bigoff), 4058 bigbuf_arcbufs[2 * j]->b_data, 4059 chunksize / 2); 4060 bcopy((caddr_t)bigbuf + (off - bigoff) + 4061 chunksize / 2, 4062 bigbuf_arcbufs[2 * j + 1]->b_data, 4063 chunksize / 2); 4064 } 4065 4066 if (i == 1) { 4067 VERIFY(dmu_buf_hold(os, bigobj, off, 4068 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 4069 } 4070 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 4071 dmu_assign_arcbuf(bonus_db, off, 4072 bigbuf_arcbufs[j], tx); 4073 } else { 4074 dmu_assign_arcbuf(bonus_db, off, 4075 bigbuf_arcbufs[2 * j], tx); 4076 dmu_assign_arcbuf(bonus_db, 4077 off + chunksize / 2, 4078 bigbuf_arcbufs[2 * j + 1], tx); 4079 } 4080 if (i == 1) { 4081 dmu_buf_rele(dbt, FTAG); 4082 } 4083 } 4084 dmu_tx_commit(tx); 4085 4086 /* 4087 * Sanity check the stuff we just wrote. 4088 */ 4089 { 4090 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 4091 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 4092 4093 VERIFY(0 == dmu_read(os, packobj, packoff, 4094 packsize, packcheck, DMU_READ_PREFETCH)); 4095 VERIFY(0 == dmu_read(os, bigobj, bigoff, 4096 bigsize, bigcheck, DMU_READ_PREFETCH)); 4097 4098 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 4099 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 4100 4101 umem_free(packcheck, packsize); 4102 umem_free(bigcheck, bigsize); 4103 } 4104 if (i == 2) { 4105 txg_wait_open(dmu_objset_pool(os), 0); 4106 } else if (i == 3) { 4107 txg_wait_synced(dmu_objset_pool(os), 0); 4108 } 4109 } 4110 4111 dmu_buf_rele(bonus_db, FTAG); 4112 umem_free(packbuf, packsize); 4113 umem_free(bigbuf, bigsize); 4114 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4115 } 4116 4117 /* ARGSUSED */ 4118 void 4119 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 4120 { 4121 ztest_od_t od[1]; 4122 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 4123 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4124 4125 /* 4126 * Have multiple threads write to large offsets in an object 4127 * to verify that parallel writes to an object -- even to the 4128 * same blocks within the object -- doesn't cause any trouble. 4129 */ 4130 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4131 4132 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4133 return; 4134 4135 while (ztest_random(10) != 0) 4136 ztest_io(zd, od[0].od_object, offset); 4137 } 4138 4139 void 4140 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4141 { 4142 ztest_od_t od[1]; 4143 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4144 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4145 uint64_t count = ztest_random(20) + 1; 4146 uint64_t blocksize = ztest_random_blocksize(); 4147 void *data; 4148 4149 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4150 4151 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4152 return; 4153 4154 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4155 return; 4156 4157 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4158 4159 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4160 4161 while (ztest_random(count) != 0) { 4162 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4163 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4164 data) != 0) 4165 break; 4166 while (ztest_random(4) != 0) 4167 ztest_io(zd, od[0].od_object, randoff); 4168 } 4169 4170 umem_free(data, blocksize); 4171 } 4172 4173 /* 4174 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4175 */ 4176 #define ZTEST_ZAP_MIN_INTS 1 4177 #define ZTEST_ZAP_MAX_INTS 4 4178 #define ZTEST_ZAP_MAX_PROPS 1000 4179 4180 void 4181 ztest_zap(ztest_ds_t *zd, uint64_t id) 4182 { 4183 objset_t *os = zd->zd_os; 4184 ztest_od_t od[1]; 4185 uint64_t object; 4186 uint64_t txg, last_txg; 4187 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4188 uint64_t zl_ints, zl_intsize, prop; 4189 int i, ints; 4190 dmu_tx_t *tx; 4191 char propname[100], txgname[100]; 4192 int error; 4193 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4194 4195 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4196 4197 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4198 return; 4199 4200 object = od[0].od_object; 4201 4202 /* 4203 * Generate a known hash collision, and verify that 4204 * we can lookup and remove both entries. 4205 */ 4206 tx = dmu_tx_create(os); 4207 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4208 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4209 if (txg == 0) 4210 return; 4211 for (i = 0; i < 2; i++) { 4212 value[i] = i; 4213 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4214 1, &value[i], tx)); 4215 } 4216 for (i = 0; i < 2; i++) { 4217 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4218 sizeof (uint64_t), 1, &value[i], tx)); 4219 VERIFY3U(0, ==, 4220 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4221 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4222 ASSERT3U(zl_ints, ==, 1); 4223 } 4224 for (i = 0; i < 2; i++) { 4225 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4226 } 4227 dmu_tx_commit(tx); 4228 4229 /* 4230 * Generate a buch of random entries. 4231 */ 4232 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4233 4234 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4235 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4236 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4237 bzero(value, sizeof (value)); 4238 last_txg = 0; 4239 4240 /* 4241 * If these zap entries already exist, validate their contents. 4242 */ 4243 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4244 if (error == 0) { 4245 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4246 ASSERT3U(zl_ints, ==, 1); 4247 4248 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4249 zl_ints, &last_txg) == 0); 4250 4251 VERIFY(zap_length(os, object, propname, &zl_intsize, 4252 &zl_ints) == 0); 4253 4254 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4255 ASSERT3U(zl_ints, ==, ints); 4256 4257 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4258 zl_ints, value) == 0); 4259 4260 for (i = 0; i < ints; i++) { 4261 ASSERT3U(value[i], ==, last_txg + object + i); 4262 } 4263 } else { 4264 ASSERT3U(error, ==, ENOENT); 4265 } 4266 4267 /* 4268 * Atomically update two entries in our zap object. 4269 * The first is named txg_%llu, and contains the txg 4270 * in which the property was last updated. The second 4271 * is named prop_%llu, and the nth element of its value 4272 * should be txg + object + n. 4273 */ 4274 tx = dmu_tx_create(os); 4275 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4276 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4277 if (txg == 0) 4278 return; 4279 4280 if (last_txg > txg) 4281 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4282 4283 for (i = 0; i < ints; i++) 4284 value[i] = txg + object + i; 4285 4286 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4287 1, &txg, tx)); 4288 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4289 ints, value, tx)); 4290 4291 dmu_tx_commit(tx); 4292 4293 /* 4294 * Remove a random pair of entries. 4295 */ 4296 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4297 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4298 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4299 4300 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4301 4302 if (error == ENOENT) 4303 return; 4304 4305 ASSERT0(error); 4306 4307 tx = dmu_tx_create(os); 4308 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4309 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4310 if (txg == 0) 4311 return; 4312 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4313 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4314 dmu_tx_commit(tx); 4315 } 4316 4317 /* 4318 * Testcase to test the upgrading of a microzap to fatzap. 4319 */ 4320 void 4321 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4322 { 4323 objset_t *os = zd->zd_os; 4324 ztest_od_t od[1]; 4325 uint64_t object, txg; 4326 4327 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4328 4329 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4330 return; 4331 4332 object = od[0].od_object; 4333 4334 /* 4335 * Add entries to this ZAP and make sure it spills over 4336 * and gets upgraded to a fatzap. Also, since we are adding 4337 * 2050 entries we should see ptrtbl growth and leaf-block split. 4338 */ 4339 for (int i = 0; i < 2050; i++) { 4340 char name[ZFS_MAX_DATASET_NAME_LEN]; 4341 uint64_t value = i; 4342 dmu_tx_t *tx; 4343 int error; 4344 4345 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4346 id, value); 4347 4348 tx = dmu_tx_create(os); 4349 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4350 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4351 if (txg == 0) 4352 return; 4353 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4354 &value, tx); 4355 ASSERT(error == 0 || error == EEXIST); 4356 dmu_tx_commit(tx); 4357 } 4358 } 4359 4360 /* ARGSUSED */ 4361 void 4362 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4363 { 4364 objset_t *os = zd->zd_os; 4365 ztest_od_t od[1]; 4366 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4367 dmu_tx_t *tx; 4368 int i, namelen, error; 4369 int micro = ztest_random(2); 4370 char name[20], string_value[20]; 4371 void *data; 4372 4373 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4374 4375 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4376 return; 4377 4378 object = od[0].od_object; 4379 4380 /* 4381 * Generate a random name of the form 'xxx.....' where each 4382 * x is a random printable character and the dots are dots. 4383 * There are 94 such characters, and the name length goes from 4384 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4385 */ 4386 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4387 4388 for (i = 0; i < 3; i++) 4389 name[i] = '!' + ztest_random('~' - '!' + 1); 4390 for (; i < namelen - 1; i++) 4391 name[i] = '.'; 4392 name[i] = '\0'; 4393 4394 if ((namelen & 1) || micro) { 4395 wsize = sizeof (txg); 4396 wc = 1; 4397 data = &txg; 4398 } else { 4399 wsize = 1; 4400 wc = namelen; 4401 data = string_value; 4402 } 4403 4404 count = -1ULL; 4405 VERIFY0(zap_count(os, object, &count)); 4406 ASSERT(count != -1ULL); 4407 4408 /* 4409 * Select an operation: length, lookup, add, update, remove. 4410 */ 4411 i = ztest_random(5); 4412 4413 if (i >= 2) { 4414 tx = dmu_tx_create(os); 4415 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4416 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4417 if (txg == 0) 4418 return; 4419 bcopy(name, string_value, namelen); 4420 } else { 4421 tx = NULL; 4422 txg = 0; 4423 bzero(string_value, namelen); 4424 } 4425 4426 switch (i) { 4427 4428 case 0: 4429 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4430 if (error == 0) { 4431 ASSERT3U(wsize, ==, zl_wsize); 4432 ASSERT3U(wc, ==, zl_wc); 4433 } else { 4434 ASSERT3U(error, ==, ENOENT); 4435 } 4436 break; 4437 4438 case 1: 4439 error = zap_lookup(os, object, name, wsize, wc, data); 4440 if (error == 0) { 4441 if (data == string_value && 4442 bcmp(name, data, namelen) != 0) 4443 fatal(0, "name '%s' != val '%s' len %d", 4444 name, data, namelen); 4445 } else { 4446 ASSERT3U(error, ==, ENOENT); 4447 } 4448 break; 4449 4450 case 2: 4451 error = zap_add(os, object, name, wsize, wc, data, tx); 4452 ASSERT(error == 0 || error == EEXIST); 4453 break; 4454 4455 case 3: 4456 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4457 break; 4458 4459 case 4: 4460 error = zap_remove(os, object, name, tx); 4461 ASSERT(error == 0 || error == ENOENT); 4462 break; 4463 } 4464 4465 if (tx != NULL) 4466 dmu_tx_commit(tx); 4467 } 4468 4469 /* 4470 * Commit callback data. 4471 */ 4472 typedef struct ztest_cb_data { 4473 list_node_t zcd_node; 4474 uint64_t zcd_txg; 4475 int zcd_expected_err; 4476 boolean_t zcd_added; 4477 boolean_t zcd_called; 4478 spa_t *zcd_spa; 4479 } ztest_cb_data_t; 4480 4481 /* This is the actual commit callback function */ 4482 static void 4483 ztest_commit_callback(void *arg, int error) 4484 { 4485 ztest_cb_data_t *data = arg; 4486 uint64_t synced_txg; 4487 4488 VERIFY(data != NULL); 4489 VERIFY3S(data->zcd_expected_err, ==, error); 4490 VERIFY(!data->zcd_called); 4491 4492 synced_txg = spa_last_synced_txg(data->zcd_spa); 4493 if (data->zcd_txg > synced_txg) 4494 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4495 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4496 synced_txg); 4497 4498 data->zcd_called = B_TRUE; 4499 4500 if (error == ECANCELED) { 4501 ASSERT0(data->zcd_txg); 4502 ASSERT(!data->zcd_added); 4503 4504 /* 4505 * The private callback data should be destroyed here, but 4506 * since we are going to check the zcd_called field after 4507 * dmu_tx_abort(), we will destroy it there. 4508 */ 4509 return; 4510 } 4511 4512 /* Was this callback added to the global callback list? */ 4513 if (!data->zcd_added) 4514 goto out; 4515 4516 ASSERT3U(data->zcd_txg, !=, 0); 4517 4518 /* Remove our callback from the list */ 4519 mutex_enter(&zcl.zcl_callbacks_lock); 4520 list_remove(&zcl.zcl_callbacks, data); 4521 mutex_exit(&zcl.zcl_callbacks_lock); 4522 4523 out: 4524 umem_free(data, sizeof (ztest_cb_data_t)); 4525 } 4526 4527 /* Allocate and initialize callback data structure */ 4528 static ztest_cb_data_t * 4529 ztest_create_cb_data(objset_t *os, uint64_t txg) 4530 { 4531 ztest_cb_data_t *cb_data; 4532 4533 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4534 4535 cb_data->zcd_txg = txg; 4536 cb_data->zcd_spa = dmu_objset_spa(os); 4537 4538 return (cb_data); 4539 } 4540 4541 /* 4542 * If a number of txgs equal to this threshold have been created after a commit 4543 * callback has been registered but not called, then we assume there is an 4544 * implementation bug. 4545 */ 4546 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4547 4548 /* 4549 * Commit callback test. 4550 */ 4551 void 4552 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4553 { 4554 objset_t *os = zd->zd_os; 4555 ztest_od_t od[1]; 4556 dmu_tx_t *tx; 4557 ztest_cb_data_t *cb_data[3], *tmp_cb; 4558 uint64_t old_txg, txg; 4559 int i, error; 4560 4561 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4562 4563 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4564 return; 4565 4566 tx = dmu_tx_create(os); 4567 4568 cb_data[0] = ztest_create_cb_data(os, 0); 4569 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4570 4571 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4572 4573 /* Every once in a while, abort the transaction on purpose */ 4574 if (ztest_random(100) == 0) 4575 error = -1; 4576 4577 if (!error) 4578 error = dmu_tx_assign(tx, TXG_NOWAIT); 4579 4580 txg = error ? 0 : dmu_tx_get_txg(tx); 4581 4582 cb_data[0]->zcd_txg = txg; 4583 cb_data[1] = ztest_create_cb_data(os, txg); 4584 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4585 4586 if (error) { 4587 /* 4588 * It's not a strict requirement to call the registered 4589 * callbacks from inside dmu_tx_abort(), but that's what 4590 * it's supposed to happen in the current implementation 4591 * so we will check for that. 4592 */ 4593 for (i = 0; i < 2; i++) { 4594 cb_data[i]->zcd_expected_err = ECANCELED; 4595 VERIFY(!cb_data[i]->zcd_called); 4596 } 4597 4598 dmu_tx_abort(tx); 4599 4600 for (i = 0; i < 2; i++) { 4601 VERIFY(cb_data[i]->zcd_called); 4602 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4603 } 4604 4605 return; 4606 } 4607 4608 cb_data[2] = ztest_create_cb_data(os, txg); 4609 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4610 4611 /* 4612 * Read existing data to make sure there isn't a future leak. 4613 */ 4614 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4615 &old_txg, DMU_READ_PREFETCH)); 4616 4617 if (old_txg > txg) 4618 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4619 old_txg, txg); 4620 4621 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4622 4623 mutex_enter(&zcl.zcl_callbacks_lock); 4624 4625 /* 4626 * Since commit callbacks don't have any ordering requirement and since 4627 * it is theoretically possible for a commit callback to be called 4628 * after an arbitrary amount of time has elapsed since its txg has been 4629 * synced, it is difficult to reliably determine whether a commit 4630 * callback hasn't been called due to high load or due to a flawed 4631 * implementation. 4632 * 4633 * In practice, we will assume that if after a certain number of txgs a 4634 * commit callback hasn't been called, then most likely there's an 4635 * implementation bug.. 4636 */ 4637 tmp_cb = list_head(&zcl.zcl_callbacks); 4638 if (tmp_cb != NULL && 4639 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { 4640 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4641 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4642 } 4643 4644 /* 4645 * Let's find the place to insert our callbacks. 4646 * 4647 * Even though the list is ordered by txg, it is possible for the 4648 * insertion point to not be the end because our txg may already be 4649 * quiescing at this point and other callbacks in the open txg 4650 * (from other objsets) may have sneaked in. 4651 */ 4652 tmp_cb = list_tail(&zcl.zcl_callbacks); 4653 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4654 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4655 4656 /* Add the 3 callbacks to the list */ 4657 for (i = 0; i < 3; i++) { 4658 if (tmp_cb == NULL) 4659 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4660 else 4661 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4662 cb_data[i]); 4663 4664 cb_data[i]->zcd_added = B_TRUE; 4665 VERIFY(!cb_data[i]->zcd_called); 4666 4667 tmp_cb = cb_data[i]; 4668 } 4669 4670 mutex_exit(&zcl.zcl_callbacks_lock); 4671 4672 dmu_tx_commit(tx); 4673 } 4674 4675 /* ARGSUSED */ 4676 void 4677 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4678 { 4679 zfs_prop_t proplist[] = { 4680 ZFS_PROP_CHECKSUM, 4681 ZFS_PROP_COMPRESSION, 4682 ZFS_PROP_COPIES, 4683 ZFS_PROP_DEDUP 4684 }; 4685 4686 rw_enter(&ztest_name_lock, RW_READER); 4687 4688 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4689 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4690 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4691 4692 rw_exit(&ztest_name_lock); 4693 } 4694 4695 /* ARGSUSED */ 4696 void 4697 ztest_remap_blocks(ztest_ds_t *zd, uint64_t id) 4698 { 4699 rw_enter(&ztest_name_lock, RW_READER); 4700 4701 int error = dmu_objset_remap_indirects(zd->zd_name); 4702 if (error == ENOSPC) 4703 error = 0; 4704 ASSERT0(error); 4705 4706 rw_exit(&ztest_name_lock); 4707 } 4708 4709 /* ARGSUSED */ 4710 void 4711 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4712 { 4713 nvlist_t *props = NULL; 4714 4715 rw_enter(&ztest_name_lock, RW_READER); 4716 4717 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4718 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4719 4720 VERIFY0(spa_prop_get(ztest_spa, &props)); 4721 4722 if (ztest_opts.zo_verbose >= 6) 4723 dump_nvlist(props, 4); 4724 4725 nvlist_free(props); 4726 4727 rw_exit(&ztest_name_lock); 4728 } 4729 4730 static int 4731 user_release_one(const char *snapname, const char *holdname) 4732 { 4733 nvlist_t *snaps, *holds; 4734 int error; 4735 4736 snaps = fnvlist_alloc(); 4737 holds = fnvlist_alloc(); 4738 fnvlist_add_boolean(holds, holdname); 4739 fnvlist_add_nvlist(snaps, snapname, holds); 4740 fnvlist_free(holds); 4741 error = dsl_dataset_user_release(snaps, NULL); 4742 fnvlist_free(snaps); 4743 return (error); 4744 } 4745 4746 /* 4747 * Test snapshot hold/release and deferred destroy. 4748 */ 4749 void 4750 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4751 { 4752 int error; 4753 objset_t *os = zd->zd_os; 4754 objset_t *origin; 4755 char snapname[100]; 4756 char fullname[100]; 4757 char clonename[100]; 4758 char tag[100]; 4759 char osname[ZFS_MAX_DATASET_NAME_LEN]; 4760 nvlist_t *holds; 4761 4762 rw_enter(&ztest_name_lock, RW_READER); 4763 4764 dmu_objset_name(os, osname); 4765 4766 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 4767 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 4768 (void) snprintf(clonename, sizeof (clonename), 4769 "%s/ch1_%llu", osname, id); 4770 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 4771 4772 /* 4773 * Clean up from any previous run. 4774 */ 4775 error = dsl_destroy_head(clonename); 4776 if (error != ENOENT) 4777 ASSERT0(error); 4778 error = user_release_one(fullname, tag); 4779 if (error != ESRCH && error != ENOENT) 4780 ASSERT0(error); 4781 error = dsl_destroy_snapshot(fullname, B_FALSE); 4782 if (error != ENOENT) 4783 ASSERT0(error); 4784 4785 /* 4786 * Create snapshot, clone it, mark snap for deferred destroy, 4787 * destroy clone, verify snap was also destroyed. 4788 */ 4789 error = dmu_objset_snapshot_one(osname, snapname); 4790 if (error) { 4791 if (error == ENOSPC) { 4792 ztest_record_enospc("dmu_objset_snapshot"); 4793 goto out; 4794 } 4795 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4796 } 4797 4798 error = dmu_objset_clone(clonename, fullname); 4799 if (error) { 4800 if (error == ENOSPC) { 4801 ztest_record_enospc("dmu_objset_clone"); 4802 goto out; 4803 } 4804 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4805 } 4806 4807 error = dsl_destroy_snapshot(fullname, B_TRUE); 4808 if (error) { 4809 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4810 fullname, error); 4811 } 4812 4813 error = dsl_destroy_head(clonename); 4814 if (error) 4815 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 4816 4817 error = dmu_objset_hold(fullname, FTAG, &origin); 4818 if (error != ENOENT) 4819 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4820 4821 /* 4822 * Create snapshot, add temporary hold, verify that we can't 4823 * destroy a held snapshot, mark for deferred destroy, 4824 * release hold, verify snapshot was destroyed. 4825 */ 4826 error = dmu_objset_snapshot_one(osname, snapname); 4827 if (error) { 4828 if (error == ENOSPC) { 4829 ztest_record_enospc("dmu_objset_snapshot"); 4830 goto out; 4831 } 4832 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4833 } 4834 4835 holds = fnvlist_alloc(); 4836 fnvlist_add_string(holds, fullname, tag); 4837 error = dsl_dataset_user_hold(holds, 0, NULL); 4838 fnvlist_free(holds); 4839 4840 if (error == ENOSPC) { 4841 ztest_record_enospc("dsl_dataset_user_hold"); 4842 goto out; 4843 } else if (error) { 4844 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", 4845 fullname, tag, error); 4846 } 4847 4848 error = dsl_destroy_snapshot(fullname, B_FALSE); 4849 if (error != EBUSY) { 4850 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 4851 fullname, error); 4852 } 4853 4854 error = dsl_destroy_snapshot(fullname, B_TRUE); 4855 if (error) { 4856 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4857 fullname, error); 4858 } 4859 4860 error = user_release_one(fullname, tag); 4861 if (error) 4862 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); 4863 4864 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 4865 4866 out: 4867 rw_exit(&ztest_name_lock); 4868 } 4869 4870 /* 4871 * Inject random faults into the on-disk data. 4872 */ 4873 /* ARGSUSED */ 4874 void 4875 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4876 { 4877 ztest_shared_t *zs = ztest_shared; 4878 spa_t *spa = ztest_spa; 4879 int fd; 4880 uint64_t offset; 4881 uint64_t leaves; 4882 uint64_t bad = 0x1990c0ffeedecade; 4883 uint64_t top, leaf; 4884 char path0[MAXPATHLEN]; 4885 char pathrand[MAXPATHLEN]; 4886 size_t fsize; 4887 int bshift = SPA_MAXBLOCKSHIFT + 2; 4888 int iters = 1000; 4889 int maxfaults; 4890 int mirror_save; 4891 vdev_t *vd0 = NULL; 4892 uint64_t guid0 = 0; 4893 boolean_t islog = B_FALSE; 4894 4895 mutex_enter(&ztest_vdev_lock); 4896 maxfaults = MAXFAULTS(); 4897 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4898 mirror_save = zs->zs_mirrors; 4899 mutex_exit(&ztest_vdev_lock); 4900 4901 ASSERT(leaves >= 1); 4902 4903 /* 4904 * Grab the name lock as reader. There are some operations 4905 * which don't like to have their vdevs changed while 4906 * they are in progress (i.e. spa_change_guid). Those 4907 * operations will have grabbed the name lock as writer. 4908 */ 4909 rw_enter(&ztest_name_lock, RW_READER); 4910 4911 /* 4912 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4913 */ 4914 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4915 4916 if (ztest_random(2) == 0) { 4917 /* 4918 * Inject errors on a normal data device or slog device. 4919 */ 4920 top = ztest_random_vdev_top(spa, B_TRUE); 4921 leaf = ztest_random(leaves) + zs->zs_splits; 4922 4923 /* 4924 * Generate paths to the first leaf in this top-level vdev, 4925 * and to the random leaf we selected. We'll induce transient 4926 * write failures and random online/offline activity on leaf 0, 4927 * and we'll write random garbage to the randomly chosen leaf. 4928 */ 4929 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4930 ztest_opts.zo_dir, ztest_opts.zo_pool, 4931 top * leaves + zs->zs_splits); 4932 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4933 ztest_opts.zo_dir, ztest_opts.zo_pool, 4934 top * leaves + leaf); 4935 4936 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4937 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4938 islog = B_TRUE; 4939 4940 /* 4941 * If the top-level vdev needs to be resilvered 4942 * then we only allow faults on the device that is 4943 * resilvering. 4944 */ 4945 if (vd0 != NULL && maxfaults != 1 && 4946 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 4947 vd0->vdev_resilver_txg != 0)) { 4948 /* 4949 * Make vd0 explicitly claim to be unreadable, 4950 * or unwriteable, or reach behind its back 4951 * and close the underlying fd. We can do this if 4952 * maxfaults == 0 because we'll fail and reexecute, 4953 * and we can do it if maxfaults >= 2 because we'll 4954 * have enough redundancy. If maxfaults == 1, the 4955 * combination of this with injection of random data 4956 * corruption below exceeds the pool's fault tolerance. 4957 */ 4958 vdev_file_t *vf = vd0->vdev_tsd; 4959 4960 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d", 4961 (long long)vd0->vdev_id, (int)maxfaults); 4962 4963 if (vf != NULL && ztest_random(3) == 0) { 4964 (void) close(vf->vf_vnode->v_fd); 4965 vf->vf_vnode->v_fd = -1; 4966 } else if (ztest_random(2) == 0) { 4967 vd0->vdev_cant_read = B_TRUE; 4968 } else { 4969 vd0->vdev_cant_write = B_TRUE; 4970 } 4971 guid0 = vd0->vdev_guid; 4972 } 4973 } else { 4974 /* 4975 * Inject errors on an l2cache device. 4976 */ 4977 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4978 4979 if (sav->sav_count == 0) { 4980 spa_config_exit(spa, SCL_STATE, FTAG); 4981 rw_exit(&ztest_name_lock); 4982 return; 4983 } 4984 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4985 guid0 = vd0->vdev_guid; 4986 (void) strcpy(path0, vd0->vdev_path); 4987 (void) strcpy(pathrand, vd0->vdev_path); 4988 4989 leaf = 0; 4990 leaves = 1; 4991 maxfaults = INT_MAX; /* no limit on cache devices */ 4992 } 4993 4994 spa_config_exit(spa, SCL_STATE, FTAG); 4995 rw_exit(&ztest_name_lock); 4996 4997 /* 4998 * If we can tolerate two or more faults, or we're dealing 4999 * with a slog, randomly online/offline vd0. 5000 */ 5001 if ((maxfaults >= 2 || islog) && guid0 != 0) { 5002 if (ztest_random(10) < 6) { 5003 int flags = (ztest_random(2) == 0 ? 5004 ZFS_OFFLINE_TEMPORARY : 0); 5005 5006 /* 5007 * We have to grab the zs_name_lock as writer to 5008 * prevent a race between offlining a slog and 5009 * destroying a dataset. Offlining the slog will 5010 * grab a reference on the dataset which may cause 5011 * dmu_objset_destroy() to fail with EBUSY thus 5012 * leaving the dataset in an inconsistent state. 5013 */ 5014 if (islog) 5015 rw_enter(&ztest_name_lock, RW_WRITER); 5016 5017 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 5018 5019 if (islog) 5020 rw_exit(&ztest_name_lock); 5021 } else { 5022 /* 5023 * Ideally we would like to be able to randomly 5024 * call vdev_[on|off]line without holding locks 5025 * to force unpredictable failures but the side 5026 * effects of vdev_[on|off]line prevent us from 5027 * doing so. We grab the ztest_vdev_lock here to 5028 * prevent a race between injection testing and 5029 * aux_vdev removal. 5030 */ 5031 mutex_enter(&ztest_vdev_lock); 5032 (void) vdev_online(spa, guid0, 0, NULL); 5033 mutex_exit(&ztest_vdev_lock); 5034 } 5035 } 5036 5037 if (maxfaults == 0) 5038 return; 5039 5040 /* 5041 * We have at least single-fault tolerance, so inject data corruption. 5042 */ 5043 fd = open(pathrand, O_RDWR); 5044 5045 if (fd == -1) /* we hit a gap in the device namespace */ 5046 return; 5047 5048 fsize = lseek(fd, 0, SEEK_END); 5049 5050 while (--iters != 0) { 5051 /* 5052 * The offset must be chosen carefully to ensure that 5053 * we do not inject a given logical block with errors 5054 * on two different leaf devices, because ZFS can not 5055 * tolerate that (if maxfaults==1). 5056 * 5057 * We divide each leaf into chunks of size 5058 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk 5059 * there is a series of ranges to which we can inject errors. 5060 * Each range can accept errors on only a single leaf vdev. 5061 * The error injection ranges are separated by ranges 5062 * which we will not inject errors on any device (DMZs). 5063 * Each DMZ must be large enough such that a single block 5064 * can not straddle it, so that a single block can not be 5065 * a target in two different injection ranges (on different 5066 * leaf vdevs). 5067 * 5068 * For example, with 3 leaves, each chunk looks like: 5069 * 0 to 32M: injection range for leaf 0 5070 * 32M to 64M: DMZ - no injection allowed 5071 * 64M to 96M: injection range for leaf 1 5072 * 96M to 128M: DMZ - no injection allowed 5073 * 128M to 160M: injection range for leaf 2 5074 * 160M to 192M: DMZ - no injection allowed 5075 */ 5076 offset = ztest_random(fsize / (leaves << bshift)) * 5077 (leaves << bshift) + (leaf << bshift) + 5078 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 5079 5080 /* 5081 * Only allow damage to the labels at one end of the vdev. 5082 * 5083 * If all labels are damaged, the device will be totally 5084 * inaccessible, which will result in loss of data, 5085 * because we also damage (parts of) the other side of 5086 * the mirror/raidz. 5087 * 5088 * Additionally, we will always have both an even and an 5089 * odd label, so that we can handle crashes in the 5090 * middle of vdev_config_sync(). 5091 */ 5092 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE) 5093 continue; 5094 5095 /* 5096 * The two end labels are stored at the "end" of the disk, but 5097 * the end of the disk (vdev_psize) is aligned to 5098 * sizeof (vdev_label_t). 5099 */ 5100 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t)); 5101 if ((leaf & 1) == 1 && 5102 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE) 5103 continue; 5104 5105 mutex_enter(&ztest_vdev_lock); 5106 if (mirror_save != zs->zs_mirrors) { 5107 mutex_exit(&ztest_vdev_lock); 5108 (void) close(fd); 5109 return; 5110 } 5111 5112 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 5113 fatal(1, "can't inject bad word at 0x%llx in %s", 5114 offset, pathrand); 5115 5116 mutex_exit(&ztest_vdev_lock); 5117 5118 if (ztest_opts.zo_verbose >= 7) 5119 (void) printf("injected bad word into %s," 5120 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 5121 } 5122 5123 (void) close(fd); 5124 } 5125 5126 /* 5127 * Verify that DDT repair works as expected. 5128 */ 5129 void 5130 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 5131 { 5132 ztest_shared_t *zs = ztest_shared; 5133 spa_t *spa = ztest_spa; 5134 objset_t *os = zd->zd_os; 5135 ztest_od_t od[1]; 5136 uint64_t object, blocksize, txg, pattern, psize; 5137 enum zio_checksum checksum = spa_dedup_checksum(spa); 5138 dmu_buf_t *db; 5139 dmu_tx_t *tx; 5140 abd_t *abd; 5141 blkptr_t blk; 5142 int copies = 2 * ZIO_DEDUPDITTO_MIN; 5143 5144 blocksize = ztest_random_blocksize(); 5145 blocksize = MIN(blocksize, 2048); /* because we write so many */ 5146 5147 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 5148 5149 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 5150 return; 5151 5152 /* 5153 * Take the name lock as writer to prevent anyone else from changing 5154 * the pool and dataset properies we need to maintain during this test. 5155 */ 5156 rw_enter(&ztest_name_lock, RW_WRITER); 5157 5158 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 5159 B_FALSE) != 0 || 5160 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 5161 B_FALSE) != 0) { 5162 rw_exit(&ztest_name_lock); 5163 return; 5164 } 5165 5166 dmu_objset_stats_t dds; 5167 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 5168 dmu_objset_fast_stat(os, &dds); 5169 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 5170 5171 object = od[0].od_object; 5172 blocksize = od[0].od_blocksize; 5173 pattern = zs->zs_guid ^ dds.dds_guid; 5174 5175 ASSERT(object != 0); 5176 5177 tx = dmu_tx_create(os); 5178 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 5179 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 5180 if (txg == 0) { 5181 rw_exit(&ztest_name_lock); 5182 return; 5183 } 5184 5185 /* 5186 * Write all the copies of our block. 5187 */ 5188 for (int i = 0; i < copies; i++) { 5189 uint64_t offset = i * blocksize; 5190 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 5191 DMU_READ_NO_PREFETCH); 5192 if (error != 0) { 5193 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 5194 os, (long long)object, (long long) offset, error); 5195 } 5196 ASSERT(db->db_offset == offset); 5197 ASSERT(db->db_size == blocksize); 5198 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 5199 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 5200 dmu_buf_will_fill(db, tx); 5201 ztest_pattern_set(db->db_data, db->db_size, pattern); 5202 dmu_buf_rele(db, FTAG); 5203 } 5204 5205 dmu_tx_commit(tx); 5206 txg_wait_synced(spa_get_dsl(spa), txg); 5207 5208 /* 5209 * Find out what block we got. 5210 */ 5211 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 5212 DMU_READ_NO_PREFETCH)); 5213 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 5214 dmu_buf_rele(db, FTAG); 5215 5216 /* 5217 * Damage the block. Dedup-ditto will save us when we read it later. 5218 */ 5219 psize = BP_GET_PSIZE(&blk); 5220 abd = abd_alloc_linear(psize, B_TRUE); 5221 ztest_pattern_set(abd_to_buf(abd), psize, ~pattern); 5222 5223 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5224 abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5225 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5226 5227 abd_free(abd); 5228 5229 rw_exit(&ztest_name_lock); 5230 } 5231 5232 /* 5233 * Scrub the pool. 5234 */ 5235 /* ARGSUSED */ 5236 void 5237 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5238 { 5239 spa_t *spa = ztest_spa; 5240 5241 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5242 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5243 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5244 } 5245 5246 /* 5247 * Change the guid for the pool. 5248 */ 5249 /* ARGSUSED */ 5250 void 5251 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5252 { 5253 spa_t *spa = ztest_spa; 5254 uint64_t orig, load; 5255 int error; 5256 5257 orig = spa_guid(spa); 5258 load = spa_load_guid(spa); 5259 5260 rw_enter(&ztest_name_lock, RW_WRITER); 5261 error = spa_change_guid(spa); 5262 rw_exit(&ztest_name_lock); 5263 5264 if (error != 0) 5265 return; 5266 5267 if (ztest_opts.zo_verbose >= 4) { 5268 (void) printf("Changed guid old %llu -> %llu\n", 5269 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5270 } 5271 5272 VERIFY3U(orig, !=, spa_guid(spa)); 5273 VERIFY3U(load, ==, spa_load_guid(spa)); 5274 } 5275 5276 /* 5277 * Rename the pool to a different name and then rename it back. 5278 */ 5279 /* ARGSUSED */ 5280 void 5281 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 5282 { 5283 char *oldname, *newname; 5284 spa_t *spa; 5285 5286 rw_enter(&ztest_name_lock, RW_WRITER); 5287 5288 oldname = ztest_opts.zo_pool; 5289 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 5290 (void) strcpy(newname, oldname); 5291 (void) strcat(newname, "_tmp"); 5292 5293 /* 5294 * Do the rename 5295 */ 5296 VERIFY3U(0, ==, spa_rename(oldname, newname)); 5297 5298 /* 5299 * Try to open it under the old name, which shouldn't exist 5300 */ 5301 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5302 5303 /* 5304 * Open it under the new name and make sure it's still the same spa_t. 5305 */ 5306 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5307 5308 ASSERT(spa == ztest_spa); 5309 spa_close(spa, FTAG); 5310 5311 /* 5312 * Rename it back to the original 5313 */ 5314 VERIFY3U(0, ==, spa_rename(newname, oldname)); 5315 5316 /* 5317 * Make sure it can still be opened 5318 */ 5319 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5320 5321 ASSERT(spa == ztest_spa); 5322 spa_close(spa, FTAG); 5323 5324 umem_free(newname, strlen(newname) + 1); 5325 5326 rw_exit(&ztest_name_lock); 5327 } 5328 5329 /* 5330 * Verify pool integrity by running zdb. 5331 */ 5332 static void 5333 ztest_run_zdb(char *pool) 5334 { 5335 int status; 5336 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5337 char zbuf[1024]; 5338 char *bin; 5339 char *ztest; 5340 char *isa; 5341 int isalen; 5342 FILE *fp; 5343 5344 (void) realpath(getexecname(), zdb); 5345 5346 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 5347 bin = strstr(zdb, "/usr/bin/"); 5348 ztest = strstr(bin, "/ztest"); 5349 isa = bin + 8; 5350 isalen = ztest - isa; 5351 isa = strdup(isa); 5352 /* LINTED */ 5353 (void) sprintf(bin, 5354 "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s %s", 5355 isalen, 5356 isa, 5357 ztest_opts.zo_verbose >= 3 ? "s" : "", 5358 ztest_opts.zo_verbose >= 4 ? "v" : "", 5359 spa_config_path, 5360 pool); 5361 free(isa); 5362 5363 if (ztest_opts.zo_verbose >= 5) 5364 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5365 5366 fp = popen(zdb, "r"); 5367 5368 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5369 if (ztest_opts.zo_verbose >= 3) 5370 (void) printf("%s", zbuf); 5371 5372 status = pclose(fp); 5373 5374 if (status == 0) 5375 return; 5376 5377 ztest_dump_core = 0; 5378 if (WIFEXITED(status)) 5379 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5380 else 5381 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5382 } 5383 5384 static void 5385 ztest_walk_pool_directory(char *header) 5386 { 5387 spa_t *spa = NULL; 5388 5389 if (ztest_opts.zo_verbose >= 6) 5390 (void) printf("%s\n", header); 5391 5392 mutex_enter(&spa_namespace_lock); 5393 while ((spa = spa_next(spa)) != NULL) 5394 if (ztest_opts.zo_verbose >= 6) 5395 (void) printf("\t%s\n", spa_name(spa)); 5396 mutex_exit(&spa_namespace_lock); 5397 } 5398 5399 static void 5400 ztest_spa_import_export(char *oldname, char *newname) 5401 { 5402 nvlist_t *config, *newconfig; 5403 uint64_t pool_guid; 5404 spa_t *spa; 5405 int error; 5406 5407 if (ztest_opts.zo_verbose >= 4) { 5408 (void) printf("import/export: old = %s, new = %s\n", 5409 oldname, newname); 5410 } 5411 5412 /* 5413 * Clean up from previous runs. 5414 */ 5415 (void) spa_destroy(newname); 5416 5417 /* 5418 * Get the pool's configuration and guid. 5419 */ 5420 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5421 5422 /* 5423 * Kick off a scrub to tickle scrub/export races. 5424 */ 5425 if (ztest_random(2) == 0) 5426 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5427 5428 pool_guid = spa_guid(spa); 5429 spa_close(spa, FTAG); 5430 5431 ztest_walk_pool_directory("pools before export"); 5432 5433 /* 5434 * Export it. 5435 */ 5436 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5437 5438 ztest_walk_pool_directory("pools after export"); 5439 5440 /* 5441 * Try to import it. 5442 */ 5443 newconfig = spa_tryimport(config); 5444 ASSERT(newconfig != NULL); 5445 nvlist_free(newconfig); 5446 5447 /* 5448 * Import it under the new name. 5449 */ 5450 error = spa_import(newname, config, NULL, 0); 5451 if (error != 0) { 5452 dump_nvlist(config, 0); 5453 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 5454 oldname, newname, error); 5455 } 5456 5457 ztest_walk_pool_directory("pools after import"); 5458 5459 /* 5460 * Try to import it again -- should fail with EEXIST. 5461 */ 5462 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5463 5464 /* 5465 * Try to import it under a different name -- should fail with EEXIST. 5466 */ 5467 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5468 5469 /* 5470 * Verify that the pool is no longer visible under the old name. 5471 */ 5472 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5473 5474 /* 5475 * Verify that we can open and close the pool using the new name. 5476 */ 5477 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5478 ASSERT(pool_guid == spa_guid(spa)); 5479 spa_close(spa, FTAG); 5480 5481 nvlist_free(config); 5482 } 5483 5484 static void 5485 ztest_resume(spa_t *spa) 5486 { 5487 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5488 (void) printf("resuming from suspended state\n"); 5489 spa_vdev_state_enter(spa, SCL_NONE); 5490 vdev_clear(spa, NULL); 5491 (void) spa_vdev_state_exit(spa, NULL, 0); 5492 (void) zio_resume(spa); 5493 } 5494 5495 static void * 5496 ztest_resume_thread(void *arg) 5497 { 5498 spa_t *spa = arg; 5499 5500 while (!ztest_exiting) { 5501 if (spa_suspended(spa)) 5502 ztest_resume(spa); 5503 (void) poll(NULL, 0, 100); 5504 5505 /* 5506 * Periodically change the zfs_compressed_arc_enabled setting. 5507 */ 5508 if (ztest_random(10) == 0) 5509 zfs_compressed_arc_enabled = ztest_random(2); 5510 5511 /* 5512 * Periodically change the zfs_abd_scatter_enabled setting. 5513 */ 5514 if (ztest_random(10) == 0) 5515 zfs_abd_scatter_enabled = ztest_random(2); 5516 } 5517 return (NULL); 5518 } 5519 5520 static void * 5521 ztest_deadman_thread(void *arg) 5522 { 5523 ztest_shared_t *zs = arg; 5524 spa_t *spa = ztest_spa; 5525 hrtime_t delta, total = 0; 5526 5527 for (;;) { 5528 delta = zs->zs_thread_stop - zs->zs_thread_start + 5529 MSEC2NSEC(zfs_deadman_synctime_ms); 5530 5531 (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); 5532 5533 /* 5534 * If the pool is suspended then fail immediately. Otherwise, 5535 * check to see if the pool is making any progress. If 5536 * vdev_deadman() discovers that there hasn't been any recent 5537 * I/Os then it will end up aborting the tests. 5538 */ 5539 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { 5540 fatal(0, "aborting test after %llu seconds because " 5541 "pool has transitioned to a suspended state.", 5542 zfs_deadman_synctime_ms / 1000); 5543 return (NULL); 5544 } 5545 vdev_deadman(spa->spa_root_vdev); 5546 5547 total += zfs_deadman_synctime_ms/1000; 5548 (void) printf("ztest has been running for %lld seconds\n", 5549 total); 5550 } 5551 } 5552 5553 static void 5554 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5555 { 5556 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5557 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5558 hrtime_t functime = gethrtime(); 5559 5560 for (int i = 0; i < zi->zi_iters; i++) 5561 zi->zi_func(zd, id); 5562 5563 functime = gethrtime() - functime; 5564 5565 atomic_add_64(&zc->zc_count, 1); 5566 atomic_add_64(&zc->zc_time, functime); 5567 5568 if (ztest_opts.zo_verbose >= 4) { 5569 Dl_info dli; 5570 (void) dladdr((void *)zi->zi_func, &dli); 5571 (void) printf("%6.2f sec in %s\n", 5572 (double)functime / NANOSEC, dli.dli_sname); 5573 } 5574 } 5575 5576 static void * 5577 ztest_thread(void *arg) 5578 { 5579 int rand; 5580 uint64_t id = (uintptr_t)arg; 5581 ztest_shared_t *zs = ztest_shared; 5582 uint64_t call_next; 5583 hrtime_t now; 5584 ztest_info_t *zi; 5585 ztest_shared_callstate_t *zc; 5586 5587 while ((now = gethrtime()) < zs->zs_thread_stop) { 5588 /* 5589 * See if it's time to force a crash. 5590 */ 5591 if (now > zs->zs_thread_kill) 5592 ztest_kill(zs); 5593 5594 /* 5595 * If we're getting ENOSPC with some regularity, stop. 5596 */ 5597 if (zs->zs_enospc_count > 10) 5598 break; 5599 5600 /* 5601 * Pick a random function to execute. 5602 */ 5603 rand = ztest_random(ZTEST_FUNCS); 5604 zi = &ztest_info[rand]; 5605 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5606 call_next = zc->zc_next; 5607 5608 if (now >= call_next && 5609 atomic_cas_64(&zc->zc_next, call_next, call_next + 5610 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5611 ztest_execute(rand, zi, id); 5612 } 5613 } 5614 5615 return (NULL); 5616 } 5617 5618 static void 5619 ztest_dataset_name(char *dsname, char *pool, int d) 5620 { 5621 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d); 5622 } 5623 5624 static void 5625 ztest_dataset_destroy(int d) 5626 { 5627 char name[ZFS_MAX_DATASET_NAME_LEN]; 5628 5629 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5630 5631 if (ztest_opts.zo_verbose >= 3) 5632 (void) printf("Destroying %s to free up space\n", name); 5633 5634 /* 5635 * Cleanup any non-standard clones and snapshots. In general, 5636 * ztest thread t operates on dataset (t % zopt_datasets), 5637 * so there may be more than one thing to clean up. 5638 */ 5639 for (int t = d; t < ztest_opts.zo_threads; 5640 t += ztest_opts.zo_datasets) { 5641 ztest_dsl_dataset_cleanup(name, t); 5642 } 5643 5644 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5645 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5646 } 5647 5648 static void 5649 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5650 { 5651 uint64_t usedobjs, dirobjs, scratch; 5652 5653 /* 5654 * ZTEST_DIROBJ is the object directory for the entire dataset. 5655 * Therefore, the number of objects in use should equal the 5656 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5657 * If not, we have an object leak. 5658 * 5659 * Note that we can only check this in ztest_dataset_open(), 5660 * when the open-context and syncing-context values agree. 5661 * That's because zap_count() returns the open-context value, 5662 * while dmu_objset_space() returns the rootbp fill count. 5663 */ 5664 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5665 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5666 ASSERT3U(dirobjs + 1, ==, usedobjs); 5667 } 5668 5669 static int 5670 ztest_dataset_open(int d) 5671 { 5672 ztest_ds_t *zd = &ztest_ds[d]; 5673 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5674 objset_t *os; 5675 zilog_t *zilog; 5676 char name[ZFS_MAX_DATASET_NAME_LEN]; 5677 int error; 5678 5679 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5680 5681 rw_enter(&ztest_name_lock, RW_READER); 5682 5683 error = ztest_dataset_create(name); 5684 if (error == ENOSPC) { 5685 rw_exit(&ztest_name_lock); 5686 ztest_record_enospc(FTAG); 5687 return (error); 5688 } 5689 ASSERT(error == 0 || error == EEXIST); 5690 5691 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); 5692 rw_exit(&ztest_name_lock); 5693 5694 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5695 5696 zilog = zd->zd_zilog; 5697 5698 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5699 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5700 fatal(0, "missing log records: claimed %llu < committed %llu", 5701 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5702 5703 ztest_dataset_dirobj_verify(zd); 5704 5705 zil_replay(os, zd, ztest_replay_vector); 5706 5707 ztest_dataset_dirobj_verify(zd); 5708 5709 if (ztest_opts.zo_verbose >= 6) 5710 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5711 zd->zd_name, 5712 (u_longlong_t)zilog->zl_parse_blk_count, 5713 (u_longlong_t)zilog->zl_parse_lr_count, 5714 (u_longlong_t)zilog->zl_replaying_seq); 5715 5716 zilog = zil_open(os, ztest_get_data); 5717 5718 if (zilog->zl_replaying_seq != 0 && 5719 zilog->zl_replaying_seq < committed_seq) 5720 fatal(0, "missing log records: replayed %llu < committed %llu", 5721 zilog->zl_replaying_seq, committed_seq); 5722 5723 return (0); 5724 } 5725 5726 static void 5727 ztest_dataset_close(int d) 5728 { 5729 ztest_ds_t *zd = &ztest_ds[d]; 5730 5731 zil_close(zd->zd_zilog); 5732 dmu_objset_disown(zd->zd_os, zd); 5733 5734 ztest_zd_fini(zd); 5735 } 5736 5737 /* 5738 * Kick off threads to run tests on all datasets in parallel. 5739 */ 5740 static void 5741 ztest_run(ztest_shared_t *zs) 5742 { 5743 thread_t *tid; 5744 spa_t *spa; 5745 objset_t *os; 5746 thread_t resume_tid; 5747 int error; 5748 5749 ztest_exiting = B_FALSE; 5750 5751 /* 5752 * Initialize parent/child shared state. 5753 */ 5754 mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL); 5755 rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL); 5756 5757 zs->zs_thread_start = gethrtime(); 5758 zs->zs_thread_stop = 5759 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5760 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5761 zs->zs_thread_kill = zs->zs_thread_stop; 5762 if (ztest_random(100) < ztest_opts.zo_killrate) { 5763 zs->zs_thread_kill -= 5764 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5765 } 5766 5767 mutex_init(&zcl.zcl_callbacks_lock, NULL, USYNC_THREAD, NULL); 5768 5769 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5770 offsetof(ztest_cb_data_t, zcd_node)); 5771 5772 /* 5773 * Open our pool. 5774 */ 5775 kernel_init(FREAD | FWRITE); 5776 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5777 spa->spa_debug = B_TRUE; 5778 metaslab_preload_limit = ztest_random(20) + 1; 5779 ztest_spa = spa; 5780 5781 dmu_objset_stats_t dds; 5782 VERIFY0(dmu_objset_own(ztest_opts.zo_pool, 5783 DMU_OST_ANY, B_TRUE, FTAG, &os)); 5784 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 5785 dmu_objset_fast_stat(os, &dds); 5786 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 5787 zs->zs_guid = dds.dds_guid; 5788 dmu_objset_disown(os, FTAG); 5789 5790 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5791 5792 /* 5793 * We don't expect the pool to suspend unless maxfaults == 0, 5794 * in which case ztest_fault_inject() temporarily takes away 5795 * the only valid replica. 5796 */ 5797 if (MAXFAULTS() == 0) 5798 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5799 else 5800 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5801 5802 /* 5803 * Create a thread to periodically resume suspended I/O. 5804 */ 5805 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5806 &resume_tid) == 0); 5807 5808 /* 5809 * Create a deadman thread to abort() if we hang. 5810 */ 5811 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5812 NULL) == 0); 5813 5814 /* 5815 * Verify that we can safely inquire about about any object, 5816 * whether it's allocated or not. To make it interesting, 5817 * we probe a 5-wide window around each power of two. 5818 * This hits all edge cases, including zero and the max. 5819 */ 5820 for (int t = 0; t < 64; t++) { 5821 for (int d = -5; d <= 5; d++) { 5822 error = dmu_object_info(spa->spa_meta_objset, 5823 (1ULL << t) + d, NULL); 5824 ASSERT(error == 0 || error == ENOENT || 5825 error == EINVAL); 5826 } 5827 } 5828 5829 /* 5830 * If we got any ENOSPC errors on the previous run, destroy something. 5831 */ 5832 if (zs->zs_enospc_count != 0) { 5833 int d = ztest_random(ztest_opts.zo_datasets); 5834 ztest_dataset_destroy(d); 5835 } 5836 zs->zs_enospc_count = 0; 5837 5838 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 5839 UMEM_NOFAIL); 5840 5841 if (ztest_opts.zo_verbose >= 4) 5842 (void) printf("starting main threads...\n"); 5843 5844 /* 5845 * Kick off all the tests that run in parallel. 5846 */ 5847 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5848 if (t < ztest_opts.zo_datasets && 5849 ztest_dataset_open(t) != 0) 5850 return; 5851 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5852 THR_BOUND, &tid[t]) == 0); 5853 } 5854 5855 /* 5856 * Wait for all of the tests to complete. We go in reverse order 5857 * so we don't close datasets while threads are still using them. 5858 */ 5859 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5860 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5861 if (t < ztest_opts.zo_datasets) 5862 ztest_dataset_close(t); 5863 } 5864 5865 txg_wait_synced(spa_get_dsl(spa), 0); 5866 5867 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5868 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5869 zfs_dbgmsg_print(FTAG); 5870 5871 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 5872 5873 /* Kill the resume thread */ 5874 ztest_exiting = B_TRUE; 5875 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5876 ztest_resume(spa); 5877 5878 /* 5879 * Right before closing the pool, kick off a bunch of async I/O; 5880 * spa_close() should wait for it to complete. 5881 */ 5882 for (uint64_t object = 1; object < 50; object++) { 5883 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20, 5884 ZIO_PRIORITY_SYNC_READ); 5885 } 5886 5887 spa_close(spa, FTAG); 5888 5889 /* 5890 * Verify that we can loop over all pools. 5891 */ 5892 mutex_enter(&spa_namespace_lock); 5893 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5894 if (ztest_opts.zo_verbose > 3) 5895 (void) printf("spa_next: found %s\n", spa_name(spa)); 5896 mutex_exit(&spa_namespace_lock); 5897 5898 /* 5899 * Verify that we can export the pool and reimport it under a 5900 * different name. 5901 */ 5902 if (ztest_random(2) == 0) { 5903 char name[ZFS_MAX_DATASET_NAME_LEN]; 5904 (void) snprintf(name, sizeof (name), "%s_import", 5905 ztest_opts.zo_pool); 5906 ztest_spa_import_export(ztest_opts.zo_pool, name); 5907 ztest_spa_import_export(name, ztest_opts.zo_pool); 5908 } 5909 5910 kernel_fini(); 5911 5912 list_destroy(&zcl.zcl_callbacks); 5913 5914 mutex_destroy(&zcl.zcl_callbacks_lock); 5915 5916 rw_destroy(&ztest_name_lock); 5917 mutex_destroy(&ztest_vdev_lock); 5918 } 5919 5920 static void 5921 ztest_freeze(void) 5922 { 5923 ztest_ds_t *zd = &ztest_ds[0]; 5924 spa_t *spa; 5925 int numloops = 0; 5926 5927 if (ztest_opts.zo_verbose >= 3) 5928 (void) printf("testing spa_freeze()...\n"); 5929 5930 kernel_init(FREAD | FWRITE); 5931 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5932 VERIFY3U(0, ==, ztest_dataset_open(0)); 5933 spa->spa_debug = B_TRUE; 5934 ztest_spa = spa; 5935 5936 /* 5937 * Force the first log block to be transactionally allocated. 5938 * We have to do this before we freeze the pool -- otherwise 5939 * the log chain won't be anchored. 5940 */ 5941 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5942 ztest_dmu_object_alloc_free(zd, 0); 5943 zil_commit(zd->zd_zilog, 0); 5944 } 5945 5946 txg_wait_synced(spa_get_dsl(spa), 0); 5947 5948 /* 5949 * Freeze the pool. This stops spa_sync() from doing anything, 5950 * so that the only way to record changes from now on is the ZIL. 5951 */ 5952 spa_freeze(spa); 5953 5954 /* 5955 * Because it is hard to predict how much space a write will actually 5956 * require beforehand, we leave ourselves some fudge space to write over 5957 * capacity. 5958 */ 5959 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; 5960 5961 /* 5962 * Run tests that generate log records but don't alter the pool config 5963 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5964 * We do a txg_wait_synced() after each iteration to force the txg 5965 * to increase well beyond the last synced value in the uberblock. 5966 * The ZIL should be OK with that. 5967 * 5968 * Run a random number of times less than zo_maxloops and ensure we do 5969 * not run out of space on the pool. 5970 */ 5971 while (ztest_random(10) != 0 && 5972 numloops++ < ztest_opts.zo_maxloops && 5973 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { 5974 ztest_od_t od; 5975 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 5976 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); 5977 ztest_io(zd, od.od_object, 5978 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 5979 txg_wait_synced(spa_get_dsl(spa), 0); 5980 } 5981 5982 /* 5983 * Commit all of the changes we just generated. 5984 */ 5985 zil_commit(zd->zd_zilog, 0); 5986 txg_wait_synced(spa_get_dsl(spa), 0); 5987 5988 /* 5989 * Close our dataset and close the pool. 5990 */ 5991 ztest_dataset_close(0); 5992 spa_close(spa, FTAG); 5993 kernel_fini(); 5994 5995 /* 5996 * Open and close the pool and dataset to induce log replay. 5997 */ 5998 kernel_init(FREAD | FWRITE); 5999 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 6000 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 6001 VERIFY3U(0, ==, ztest_dataset_open(0)); 6002 ztest_dataset_close(0); 6003 6004 spa->spa_debug = B_TRUE; 6005 ztest_spa = spa; 6006 txg_wait_synced(spa_get_dsl(spa), 0); 6007 ztest_reguid(NULL, 0); 6008 6009 spa_close(spa, FTAG); 6010 kernel_fini(); 6011 } 6012 6013 void 6014 print_time(hrtime_t t, char *timebuf) 6015 { 6016 hrtime_t s = t / NANOSEC; 6017 hrtime_t m = s / 60; 6018 hrtime_t h = m / 60; 6019 hrtime_t d = h / 24; 6020 6021 s -= m * 60; 6022 m -= h * 60; 6023 h -= d * 24; 6024 6025 timebuf[0] = '\0'; 6026 6027 if (d) 6028 (void) sprintf(timebuf, 6029 "%llud%02lluh%02llum%02llus", d, h, m, s); 6030 else if (h) 6031 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 6032 else if (m) 6033 (void) sprintf(timebuf, "%llum%02llus", m, s); 6034 else 6035 (void) sprintf(timebuf, "%llus", s); 6036 } 6037 6038 static nvlist_t * 6039 make_random_props() 6040 { 6041 nvlist_t *props; 6042 6043 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 6044 if (ztest_random(2) == 0) 6045 return (props); 6046 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 6047 6048 return (props); 6049 } 6050 6051 /* 6052 * Create a storage pool with the given name and initial vdev size. 6053 * Then test spa_freeze() functionality. 6054 */ 6055 static void 6056 ztest_init(ztest_shared_t *zs) 6057 { 6058 spa_t *spa; 6059 nvlist_t *nvroot, *props; 6060 6061 mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL); 6062 rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL); 6063 6064 kernel_init(FREAD | FWRITE); 6065 6066 /* 6067 * Create the storage pool. 6068 */ 6069 (void) spa_destroy(ztest_opts.zo_pool); 6070 ztest_shared->zs_vdev_next_leaf = 0; 6071 zs->zs_splits = 0; 6072 zs->zs_mirrors = ztest_opts.zo_mirrors; 6073 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 6074 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 6075 props = make_random_props(); 6076 for (int i = 0; i < SPA_FEATURES; i++) { 6077 char buf[1024]; 6078 (void) snprintf(buf, sizeof (buf), "feature@%s", 6079 spa_feature_table[i].fi_uname); 6080 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 6081 } 6082 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 6083 nvlist_free(nvroot); 6084 nvlist_free(props); 6085 6086 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 6087 zs->zs_metaslab_sz = 6088 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 6089 6090 spa_close(spa, FTAG); 6091 6092 kernel_fini(); 6093 6094 ztest_run_zdb(ztest_opts.zo_pool); 6095 6096 ztest_freeze(); 6097 6098 ztest_run_zdb(ztest_opts.zo_pool); 6099 6100 rw_destroy(&ztest_name_lock); 6101 mutex_destroy(&ztest_vdev_lock); 6102 } 6103 6104 static void 6105 setup_data_fd(void) 6106 { 6107 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 6108 6109 ztest_fd_data = mkstemp(ztest_name_data); 6110 ASSERT3S(ztest_fd_data, >=, 0); 6111 (void) unlink(ztest_name_data); 6112 } 6113 6114 6115 static int 6116 shared_data_size(ztest_shared_hdr_t *hdr) 6117 { 6118 int size; 6119 6120 size = hdr->zh_hdr_size; 6121 size += hdr->zh_opts_size; 6122 size += hdr->zh_size; 6123 size += hdr->zh_stats_size * hdr->zh_stats_count; 6124 size += hdr->zh_ds_size * hdr->zh_ds_count; 6125 6126 return (size); 6127 } 6128 6129 static void 6130 setup_hdr(void) 6131 { 6132 int size; 6133 ztest_shared_hdr_t *hdr; 6134 6135 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6136 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6137 ASSERT(hdr != MAP_FAILED); 6138 6139 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 6140 6141 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 6142 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 6143 hdr->zh_size = sizeof (ztest_shared_t); 6144 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 6145 hdr->zh_stats_count = ZTEST_FUNCS; 6146 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 6147 hdr->zh_ds_count = ztest_opts.zo_datasets; 6148 6149 size = shared_data_size(hdr); 6150 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 6151 6152 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6153 } 6154 6155 static void 6156 setup_data(void) 6157 { 6158 int size, offset; 6159 ztest_shared_hdr_t *hdr; 6160 uint8_t *buf; 6161 6162 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6163 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 6164 ASSERT(hdr != MAP_FAILED); 6165 6166 size = shared_data_size(hdr); 6167 6168 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6169 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 6170 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6171 ASSERT(hdr != MAP_FAILED); 6172 buf = (uint8_t *)hdr; 6173 6174 offset = hdr->zh_hdr_size; 6175 ztest_shared_opts = (void *)&buf[offset]; 6176 offset += hdr->zh_opts_size; 6177 ztest_shared = (void *)&buf[offset]; 6178 offset += hdr->zh_size; 6179 ztest_shared_callstate = (void *)&buf[offset]; 6180 offset += hdr->zh_stats_size * hdr->zh_stats_count; 6181 ztest_shared_ds = (void *)&buf[offset]; 6182 } 6183 6184 static boolean_t 6185 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 6186 { 6187 pid_t pid; 6188 int status; 6189 char *cmdbuf = NULL; 6190 6191 pid = fork(); 6192 6193 if (cmd == NULL) { 6194 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 6195 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 6196 cmd = cmdbuf; 6197 } 6198 6199 if (pid == -1) 6200 fatal(1, "fork failed"); 6201 6202 if (pid == 0) { /* child */ 6203 char *emptyargv[2] = { cmd, NULL }; 6204 char fd_data_str[12]; 6205 6206 struct rlimit rl = { 1024, 1024 }; 6207 (void) setrlimit(RLIMIT_NOFILE, &rl); 6208 6209 (void) close(ztest_fd_rand); 6210 VERIFY3U(11, >=, 6211 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 6212 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 6213 6214 (void) enable_extended_FILE_stdio(-1, -1); 6215 if (libpath != NULL) 6216 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 6217 (void) execv(cmd, emptyargv); 6218 ztest_dump_core = B_FALSE; 6219 fatal(B_TRUE, "exec failed: %s", cmd); 6220 } 6221 6222 if (cmdbuf != NULL) { 6223 umem_free(cmdbuf, MAXPATHLEN); 6224 cmd = NULL; 6225 } 6226 6227 while (waitpid(pid, &status, 0) != pid) 6228 continue; 6229 if (statusp != NULL) 6230 *statusp = status; 6231 6232 if (WIFEXITED(status)) { 6233 if (WEXITSTATUS(status) != 0) { 6234 (void) fprintf(stderr, "child exited with code %d\n", 6235 WEXITSTATUS(status)); 6236 exit(2); 6237 } 6238 return (B_FALSE); 6239 } else if (WIFSIGNALED(status)) { 6240 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 6241 (void) fprintf(stderr, "child died with signal %d\n", 6242 WTERMSIG(status)); 6243 exit(3); 6244 } 6245 return (B_TRUE); 6246 } else { 6247 (void) fprintf(stderr, "something strange happened to child\n"); 6248 exit(4); 6249 /* NOTREACHED */ 6250 } 6251 } 6252 6253 static void 6254 ztest_run_init(void) 6255 { 6256 ztest_shared_t *zs = ztest_shared; 6257 6258 ASSERT(ztest_opts.zo_init != 0); 6259 6260 /* 6261 * Blow away any existing copy of zpool.cache 6262 */ 6263 (void) remove(spa_config_path); 6264 6265 /* 6266 * Create and initialize our storage pool. 6267 */ 6268 for (int i = 1; i <= ztest_opts.zo_init; i++) { 6269 bzero(zs, sizeof (ztest_shared_t)); 6270 if (ztest_opts.zo_verbose >= 3 && 6271 ztest_opts.zo_init != 1) { 6272 (void) printf("ztest_init(), pass %d\n", i); 6273 } 6274 ztest_init(zs); 6275 } 6276 } 6277 6278 int 6279 main(int argc, char **argv) 6280 { 6281 int kills = 0; 6282 int iters = 0; 6283 int older = 0; 6284 int newer = 0; 6285 ztest_shared_t *zs; 6286 ztest_info_t *zi; 6287 ztest_shared_callstate_t *zc; 6288 char timebuf[100]; 6289 char numbuf[NN_NUMBUF_SZ]; 6290 spa_t *spa; 6291 char *cmd; 6292 boolean_t hasalt; 6293 char *fd_data_str = getenv("ZTEST_FD_DATA"); 6294 6295 (void) setvbuf(stdout, NULL, _IOLBF, 0); 6296 6297 dprintf_setup(&argc, argv); 6298 zfs_deadman_synctime_ms = 300000; 6299 6300 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6301 ASSERT3S(ztest_fd_rand, >=, 0); 6302 6303 if (!fd_data_str) { 6304 process_options(argc, argv); 6305 6306 setup_data_fd(); 6307 setup_hdr(); 6308 setup_data(); 6309 bcopy(&ztest_opts, ztest_shared_opts, 6310 sizeof (*ztest_shared_opts)); 6311 } else { 6312 ztest_fd_data = atoi(fd_data_str); 6313 setup_data(); 6314 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6315 } 6316 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6317 6318 /* Override location of zpool.cache */ 6319 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6320 ztest_opts.zo_dir), !=, -1); 6321 6322 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6323 UMEM_NOFAIL); 6324 zs = ztest_shared; 6325 6326 if (fd_data_str) { 6327 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 6328 metaslab_df_alloc_threshold = 6329 zs->zs_metaslab_df_alloc_threshold; 6330 6331 if (zs->zs_do_init) 6332 ztest_run_init(); 6333 else 6334 ztest_run(zs); 6335 exit(0); 6336 } 6337 6338 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6339 6340 if (ztest_opts.zo_verbose >= 1) { 6341 (void) printf("%llu vdevs, %d datasets, %d threads," 6342 " %llu seconds...\n", 6343 (u_longlong_t)ztest_opts.zo_vdevs, 6344 ztest_opts.zo_datasets, 6345 ztest_opts.zo_threads, 6346 (u_longlong_t)ztest_opts.zo_time); 6347 } 6348 6349 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6350 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6351 6352 zs->zs_do_init = B_TRUE; 6353 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6354 if (ztest_opts.zo_verbose >= 1) { 6355 (void) printf("Executing older ztest for " 6356 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6357 } 6358 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6359 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6360 } else { 6361 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6362 } 6363 zs->zs_do_init = B_FALSE; 6364 6365 zs->zs_proc_start = gethrtime(); 6366 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6367 6368 for (int f = 0; f < ZTEST_FUNCS; f++) { 6369 zi = &ztest_info[f]; 6370 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6371 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6372 zc->zc_next = UINT64_MAX; 6373 else 6374 zc->zc_next = zs->zs_proc_start + 6375 ztest_random(2 * zi->zi_interval[0] + 1); 6376 } 6377 6378 /* 6379 * Run the tests in a loop. These tests include fault injection 6380 * to verify that self-healing data works, and forced crashes 6381 * to verify that we never lose on-disk consistency. 6382 */ 6383 while (gethrtime() < zs->zs_proc_stop) { 6384 int status; 6385 boolean_t killed; 6386 6387 /* 6388 * Initialize the workload counters for each function. 6389 */ 6390 for (int f = 0; f < ZTEST_FUNCS; f++) { 6391 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6392 zc->zc_count = 0; 6393 zc->zc_time = 0; 6394 } 6395 6396 /* Set the allocation switch size */ 6397 zs->zs_metaslab_df_alloc_threshold = 6398 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6399 6400 if (!hasalt || ztest_random(2) == 0) { 6401 if (hasalt && ztest_opts.zo_verbose >= 1) { 6402 (void) printf("Executing newer ztest: %s\n", 6403 cmd); 6404 } 6405 newer++; 6406 killed = exec_child(cmd, NULL, B_TRUE, &status); 6407 } else { 6408 if (hasalt && ztest_opts.zo_verbose >= 1) { 6409 (void) printf("Executing older ztest: %s\n", 6410 ztest_opts.zo_alt_ztest); 6411 } 6412 older++; 6413 killed = exec_child(ztest_opts.zo_alt_ztest, 6414 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6415 } 6416 6417 if (killed) 6418 kills++; 6419 iters++; 6420 6421 if (ztest_opts.zo_verbose >= 1) { 6422 hrtime_t now = gethrtime(); 6423 6424 now = MIN(now, zs->zs_proc_stop); 6425 print_time(zs->zs_proc_stop - now, timebuf); 6426 nicenum(zs->zs_space, numbuf, sizeof (numbuf)); 6427 6428 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6429 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6430 iters, 6431 WIFEXITED(status) ? "Complete" : "SIGKILL", 6432 (u_longlong_t)zs->zs_enospc_count, 6433 100.0 * zs->zs_alloc / zs->zs_space, 6434 numbuf, 6435 100.0 * (now - zs->zs_proc_start) / 6436 (ztest_opts.zo_time * NANOSEC), timebuf); 6437 } 6438 6439 if (ztest_opts.zo_verbose >= 2) { 6440 (void) printf("\nWorkload summary:\n\n"); 6441 (void) printf("%7s %9s %s\n", 6442 "Calls", "Time", "Function"); 6443 (void) printf("%7s %9s %s\n", 6444 "-----", "----", "--------"); 6445 for (int f = 0; f < ZTEST_FUNCS; f++) { 6446 Dl_info dli; 6447 6448 zi = &ztest_info[f]; 6449 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6450 print_time(zc->zc_time, timebuf); 6451 (void) dladdr((void *)zi->zi_func, &dli); 6452 (void) printf("%7llu %9s %s\n", 6453 (u_longlong_t)zc->zc_count, timebuf, 6454 dli.dli_sname); 6455 } 6456 (void) printf("\n"); 6457 } 6458 6459 /* 6460 * It's possible that we killed a child during a rename test, 6461 * in which case we'll have a 'ztest_tmp' pool lying around 6462 * instead of 'ztest'. Do a blind rename in case this happened. 6463 */ 6464 kernel_init(FREAD); 6465 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6466 spa_close(spa, FTAG); 6467 } else { 6468 char tmpname[ZFS_MAX_DATASET_NAME_LEN]; 6469 kernel_fini(); 6470 kernel_init(FREAD | FWRITE); 6471 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6472 ztest_opts.zo_pool); 6473 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6474 } 6475 kernel_fini(); 6476 6477 ztest_run_zdb(ztest_opts.zo_pool); 6478 } 6479 6480 if (ztest_opts.zo_verbose >= 1) { 6481 if (hasalt) { 6482 (void) printf("%d runs of older ztest: %s\n", older, 6483 ztest_opts.zo_alt_ztest); 6484 (void) printf("%d runs of newer ztest: %s\n", newer, 6485 cmd); 6486 } 6487 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6488 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6489 } 6490 6491 umem_free(cmd, MAXNAMELEN); 6492 6493 return (0); 6494 } 6495