1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2017 Joyent, Inc. 28 * Copyright (c) 2017, Intel Corporation. 29 * Copyright 2017 RackTop Systems. 30 */ 31 32 /* 33 * The objective of this program is to provide a DMU/ZAP/SPA stress test 34 * that runs entirely in userland, is easy to use, and easy to extend. 35 * 36 * The overall design of the ztest program is as follows: 37 * 38 * (1) For each major functional area (e.g. adding vdevs to a pool, 39 * creating and destroying datasets, reading and writing objects, etc) 40 * we have a simple routine to test that functionality. These 41 * individual routines do not have to do anything "stressful". 42 * 43 * (2) We turn these simple functionality tests into a stress test by 44 * running them all in parallel, with as many threads as desired, 45 * and spread across as many datasets, objects, and vdevs as desired. 46 * 47 * (3) While all this is happening, we inject faults into the pool to 48 * verify that self-healing data really works. 49 * 50 * (4) Every time we open a dataset, we change its checksum and compression 51 * functions. Thus even individual objects vary from block to block 52 * in which checksum they use and whether they're compressed. 53 * 54 * (5) To verify that we never lose on-disk consistency after a crash, 55 * we run the entire test in a child of the main process. 56 * At random times, the child self-immolates with a SIGKILL. 57 * This is the software equivalent of pulling the power cord. 58 * The parent then runs the test again, using the existing 59 * storage pool, as many times as desired. If backwards compatibility 60 * testing is enabled ztest will sometimes run the "older" version 61 * of ztest after a SIGKILL. 62 * 63 * (6) To verify that we don't have future leaks or temporal incursions, 64 * many of the functional tests record the transaction group number 65 * as part of their data. When reading old data, they verify that 66 * the transaction group number is less than the current, open txg. 67 * If you add a new test, please do this if applicable. 68 * 69 * When run with no arguments, ztest runs for about five minutes and 70 * produces no output if successful. To get a little bit of information, 71 * specify -V. To get more information, specify -VV, and so on. 72 * 73 * To turn this into an overnight stress test, use -T to specify run time. 74 * 75 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 76 * to increase the pool capacity, fanout, and overall stress level. 77 * 78 * Use the -k option to set the desired frequency of kills. 79 * 80 * When ztest invokes itself it passes all relevant information through a 81 * temporary file which is mmap-ed in the child process. This allows shared 82 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 83 * stored at offset 0 of this file and contains information on the size and 84 * number of shared structures in the file. The information stored in this file 85 * must remain backwards compatible with older versions of ztest so that 86 * ztest can invoke them during backwards compatibility testing (-B). 87 */ 88 89 #include <sys/zfs_context.h> 90 #include <sys/spa.h> 91 #include <sys/dmu.h> 92 #include <sys/txg.h> 93 #include <sys/dbuf.h> 94 #include <sys/zap.h> 95 #include <sys/dmu_objset.h> 96 #include <sys/poll.h> 97 #include <sys/stat.h> 98 #include <sys/time.h> 99 #include <sys/wait.h> 100 #include <sys/mman.h> 101 #include <sys/resource.h> 102 #include <sys/zio.h> 103 #include <sys/zil.h> 104 #include <sys/zil_impl.h> 105 #include <sys/vdev_impl.h> 106 #include <sys/vdev_file.h> 107 #include <sys/vdev_initialize.h> 108 #include <sys/vdev_trim.h> 109 #include <sys/spa_impl.h> 110 #include <sys/metaslab_impl.h> 111 #include <sys/dsl_prop.h> 112 #include <sys/dsl_dataset.h> 113 #include <sys/dsl_destroy.h> 114 #include <sys/dsl_scan.h> 115 #include <sys/zio_checksum.h> 116 #include <sys/refcount.h> 117 #include <sys/zfeature.h> 118 #include <sys/dsl_userhold.h> 119 #include <sys/abd.h> 120 #include <stdio.h> 121 #include <stdio_ext.h> 122 #include <stdlib.h> 123 #include <unistd.h> 124 #include <signal.h> 125 #include <umem.h> 126 #include <dlfcn.h> 127 #include <ctype.h> 128 #include <math.h> 129 #include <sys/fs/zfs.h> 130 #include <libnvpair.h> 131 #include <libzfs.h> 132 #include <libcmdutils.h> 133 134 static int ztest_fd_data = -1; 135 static int ztest_fd_rand = -1; 136 137 typedef struct ztest_shared_hdr { 138 uint64_t zh_hdr_size; 139 uint64_t zh_opts_size; 140 uint64_t zh_size; 141 uint64_t zh_stats_size; 142 uint64_t zh_stats_count; 143 uint64_t zh_ds_size; 144 uint64_t zh_ds_count; 145 } ztest_shared_hdr_t; 146 147 static ztest_shared_hdr_t *ztest_shared_hdr; 148 149 enum ztest_class_state { 150 ZTEST_VDEV_CLASS_OFF, 151 ZTEST_VDEV_CLASS_ON, 152 ZTEST_VDEV_CLASS_RND 153 }; 154 155 typedef struct ztest_shared_opts { 156 char zo_pool[ZFS_MAX_DATASET_NAME_LEN]; 157 char zo_dir[ZFS_MAX_DATASET_NAME_LEN]; 158 char zo_alt_ztest[MAXNAMELEN]; 159 char zo_alt_libpath[MAXNAMELEN]; 160 uint64_t zo_vdevs; 161 uint64_t zo_vdevtime; 162 size_t zo_vdev_size; 163 int zo_ashift; 164 int zo_mirrors; 165 int zo_raidz; 166 int zo_raidz_parity; 167 int zo_datasets; 168 int zo_threads; 169 uint64_t zo_passtime; 170 uint64_t zo_killrate; 171 int zo_verbose; 172 int zo_init; 173 uint64_t zo_time; 174 uint64_t zo_maxloops; 175 uint64_t zo_metaslab_force_ganging; 176 int zo_mmp_test; 177 int zo_special_vdevs; 178 } ztest_shared_opts_t; 179 180 static const ztest_shared_opts_t ztest_opts_defaults = { 181 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 182 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 183 .zo_alt_ztest = { '\0' }, 184 .zo_alt_libpath = { '\0' }, 185 .zo_vdevs = 5, 186 .zo_ashift = SPA_MINBLOCKSHIFT, 187 .zo_mirrors = 2, 188 .zo_raidz = 4, 189 .zo_raidz_parity = 1, 190 .zo_vdev_size = SPA_MINDEVSIZE * 4, /* 256m default size */ 191 .zo_datasets = 7, 192 .zo_threads = 23, 193 .zo_passtime = 60, /* 60 seconds */ 194 .zo_killrate = 70, /* 70% kill rate */ 195 .zo_verbose = 0, 196 .zo_mmp_test = 0, 197 .zo_init = 1, 198 .zo_time = 300, /* 5 minutes */ 199 .zo_maxloops = 50, /* max loops during spa_freeze() */ 200 .zo_metaslab_force_ganging = 32 << 10, 201 .zo_special_vdevs = ZTEST_VDEV_CLASS_RND, 202 }; 203 204 extern uint64_t metaslab_force_ganging; 205 extern uint64_t metaslab_df_alloc_threshold; 206 extern uint64_t zfs_deadman_synctime_ms; 207 extern int metaslab_preload_limit; 208 extern boolean_t zfs_compressed_arc_enabled; 209 extern boolean_t zfs_abd_scatter_enabled; 210 extern int dmu_object_alloc_chunk_shift; 211 extern boolean_t zfs_force_some_double_word_sm_entries; 212 extern unsigned long zfs_reconstruct_indirect_damage_fraction; 213 214 static ztest_shared_opts_t *ztest_shared_opts; 215 static ztest_shared_opts_t ztest_opts; 216 static char *ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345"; 217 218 typedef struct ztest_shared_ds { 219 uint64_t zd_seq; 220 } ztest_shared_ds_t; 221 222 static ztest_shared_ds_t *ztest_shared_ds; 223 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 224 225 #define BT_MAGIC 0x123456789abcdefULL 226 #define MAXFAULTS() \ 227 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 228 229 enum ztest_io_type { 230 ZTEST_IO_WRITE_TAG, 231 ZTEST_IO_WRITE_PATTERN, 232 ZTEST_IO_WRITE_ZEROES, 233 ZTEST_IO_TRUNCATE, 234 ZTEST_IO_SETATTR, 235 ZTEST_IO_REWRITE, 236 ZTEST_IO_TYPES 237 }; 238 239 typedef struct ztest_block_tag { 240 uint64_t bt_magic; 241 uint64_t bt_objset; 242 uint64_t bt_object; 243 uint64_t bt_dnodesize; 244 uint64_t bt_offset; 245 uint64_t bt_gen; 246 uint64_t bt_txg; 247 uint64_t bt_crtxg; 248 } ztest_block_tag_t; 249 250 typedef struct bufwad { 251 uint64_t bw_index; 252 uint64_t bw_txg; 253 uint64_t bw_data; 254 } bufwad_t; 255 256 /* 257 * It would be better to use a rangelock_t per object. Unfortunately 258 * the rangelock_t is not a drop-in replacement for rl_t, because we 259 * still need to map from object ID to rangelock_t. 260 */ 261 typedef enum { 262 RL_READER, 263 RL_WRITER, 264 RL_APPEND 265 } rl_type_t; 266 267 typedef struct rll { 268 void *rll_writer; 269 int rll_readers; 270 kmutex_t rll_lock; 271 kcondvar_t rll_cv; 272 } rll_t; 273 274 typedef struct rl { 275 uint64_t rl_object; 276 uint64_t rl_offset; 277 uint64_t rl_size; 278 rll_t *rl_lock; 279 } rl_t; 280 281 #define ZTEST_RANGE_LOCKS 64 282 #define ZTEST_OBJECT_LOCKS 64 283 284 /* 285 * Object descriptor. Used as a template for object lookup/create/remove. 286 */ 287 typedef struct ztest_od { 288 uint64_t od_dir; 289 uint64_t od_object; 290 dmu_object_type_t od_type; 291 dmu_object_type_t od_crtype; 292 uint64_t od_blocksize; 293 uint64_t od_crblocksize; 294 uint64_t od_crdnodesize; 295 uint64_t od_gen; 296 uint64_t od_crgen; 297 char od_name[ZFS_MAX_DATASET_NAME_LEN]; 298 } ztest_od_t; 299 300 /* 301 * Per-dataset state. 302 */ 303 typedef struct ztest_ds { 304 ztest_shared_ds_t *zd_shared; 305 objset_t *zd_os; 306 krwlock_t zd_zilog_lock; 307 zilog_t *zd_zilog; 308 ztest_od_t *zd_od; /* debugging aid */ 309 char zd_name[ZFS_MAX_DATASET_NAME_LEN]; 310 kmutex_t zd_dirobj_lock; 311 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 312 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 313 } ztest_ds_t; 314 315 /* 316 * Per-iteration state. 317 */ 318 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 319 320 typedef struct ztest_info { 321 ztest_func_t *zi_func; /* test function */ 322 uint64_t zi_iters; /* iterations per execution */ 323 uint64_t *zi_interval; /* execute every <interval> seconds */ 324 } ztest_info_t; 325 326 typedef struct ztest_shared_callstate { 327 uint64_t zc_count; /* per-pass count */ 328 uint64_t zc_time; /* per-pass time */ 329 uint64_t zc_next; /* next time to call this function */ 330 } ztest_shared_callstate_t; 331 332 static ztest_shared_callstate_t *ztest_shared_callstate; 333 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 334 335 /* 336 * Note: these aren't static because we want dladdr() to work. 337 */ 338 ztest_func_t ztest_dmu_read_write; 339 ztest_func_t ztest_dmu_write_parallel; 340 ztest_func_t ztest_dmu_object_alloc_free; 341 ztest_func_t ztest_dmu_object_next_chunk; 342 ztest_func_t ztest_dmu_commit_callbacks; 343 ztest_func_t ztest_zap; 344 ztest_func_t ztest_zap_parallel; 345 ztest_func_t ztest_zil_commit; 346 ztest_func_t ztest_zil_remount; 347 ztest_func_t ztest_dmu_read_write_zcopy; 348 ztest_func_t ztest_dmu_objset_create_destroy; 349 ztest_func_t ztest_dmu_prealloc; 350 ztest_func_t ztest_fzap; 351 ztest_func_t ztest_dmu_snapshot_create_destroy; 352 ztest_func_t ztest_dsl_prop_get_set; 353 ztest_func_t ztest_spa_prop_get_set; 354 ztest_func_t ztest_spa_create_destroy; 355 ztest_func_t ztest_fault_inject; 356 ztest_func_t ztest_ddt_repair; 357 ztest_func_t ztest_dmu_snapshot_hold; 358 ztest_func_t ztest_mmp_enable_disable; 359 ztest_func_t ztest_scrub; 360 ztest_func_t ztest_dsl_dataset_promote_busy; 361 ztest_func_t ztest_vdev_attach_detach; 362 ztest_func_t ztest_vdev_LUN_growth; 363 ztest_func_t ztest_vdev_add_remove; 364 ztest_func_t ztest_vdev_class_add; 365 ztest_func_t ztest_vdev_aux_add_remove; 366 ztest_func_t ztest_split_pool; 367 ztest_func_t ztest_reguid; 368 ztest_func_t ztest_spa_upgrade; 369 ztest_func_t ztest_device_removal; 370 ztest_func_t ztest_remap_blocks; 371 ztest_func_t ztest_spa_checkpoint_create_discard; 372 ztest_func_t ztest_initialize; 373 ztest_func_t ztest_trim; 374 ztest_func_t ztest_verify_dnode_bt; 375 376 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 377 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 378 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 379 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 380 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 381 382 ztest_info_t ztest_info[] = { 383 { ztest_dmu_read_write, 1, &zopt_always }, 384 { ztest_dmu_write_parallel, 10, &zopt_always }, 385 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 386 { ztest_dmu_object_next_chunk, 1, &zopt_sometimes }, 387 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 388 { ztest_zap, 30, &zopt_always }, 389 { ztest_zap_parallel, 100, &zopt_always }, 390 { ztest_split_pool, 1, &zopt_always }, 391 { ztest_zil_commit, 1, &zopt_incessant }, 392 { ztest_zil_remount, 1, &zopt_sometimes }, 393 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 394 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 395 { ztest_dsl_prop_get_set, 1, &zopt_often }, 396 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 397 #if 0 398 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 399 #endif 400 { ztest_fzap, 1, &zopt_sometimes }, 401 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 402 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 403 { ztest_fault_inject, 1, &zopt_incessant }, 404 { ztest_ddt_repair, 1, &zopt_sometimes }, 405 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 406 { ztest_mmp_enable_disable, 1, &zopt_sometimes }, 407 { ztest_reguid, 1, &zopt_rarely }, 408 { ztest_scrub, 1, &zopt_often }, 409 { ztest_spa_upgrade, 1, &zopt_rarely }, 410 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 411 { ztest_vdev_attach_detach, 1, &zopt_incessant }, 412 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 413 { ztest_vdev_add_remove, 1, 414 &ztest_opts.zo_vdevtime }, 415 { ztest_vdev_class_add, 1, 416 &ztest_opts.zo_vdevtime }, 417 { ztest_vdev_aux_add_remove, 1, 418 &ztest_opts.zo_vdevtime }, 419 { ztest_device_removal, 1, &zopt_sometimes }, 420 { ztest_remap_blocks, 1, &zopt_sometimes }, 421 { ztest_spa_checkpoint_create_discard, 1, &zopt_rarely }, 422 { ztest_initialize, 1, &zopt_sometimes }, 423 { ztest_trim, 1, &zopt_sometimes }, 424 { ztest_verify_dnode_bt, 1, &zopt_sometimes } 425 }; 426 427 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 428 429 /* 430 * The following struct is used to hold a list of uncalled commit callbacks. 431 * The callbacks are ordered by txg number. 432 */ 433 typedef struct ztest_cb_list { 434 kmutex_t zcl_callbacks_lock; 435 list_t zcl_callbacks; 436 } ztest_cb_list_t; 437 438 /* 439 * Stuff we need to share writably between parent and child. 440 */ 441 typedef struct ztest_shared { 442 boolean_t zs_do_init; 443 hrtime_t zs_proc_start; 444 hrtime_t zs_proc_stop; 445 hrtime_t zs_thread_start; 446 hrtime_t zs_thread_stop; 447 hrtime_t zs_thread_kill; 448 uint64_t zs_enospc_count; 449 uint64_t zs_vdev_next_leaf; 450 uint64_t zs_vdev_aux; 451 uint64_t zs_alloc; 452 uint64_t zs_space; 453 uint64_t zs_splits; 454 uint64_t zs_mirrors; 455 uint64_t zs_metaslab_sz; 456 uint64_t zs_metaslab_df_alloc_threshold; 457 uint64_t zs_guid; 458 } ztest_shared_t; 459 460 #define ID_PARALLEL -1ULL 461 462 static char ztest_dev_template[] = "%s/%s.%llua"; 463 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 464 ztest_shared_t *ztest_shared; 465 466 static spa_t *ztest_spa = NULL; 467 static ztest_ds_t *ztest_ds; 468 469 static kmutex_t ztest_vdev_lock; 470 static boolean_t ztest_device_removal_active = B_FALSE; 471 static kmutex_t ztest_checkpoint_lock; 472 473 /* 474 * The ztest_name_lock protects the pool and dataset namespace used by 475 * the individual tests. To modify the namespace, consumers must grab 476 * this lock as writer. Grabbing the lock as reader will ensure that the 477 * namespace does not change while the lock is held. 478 */ 479 static krwlock_t ztest_name_lock; 480 481 static boolean_t ztest_dump_core = B_TRUE; 482 static boolean_t ztest_exiting; 483 484 /* Global commit callback list */ 485 static ztest_cb_list_t zcl; 486 487 enum ztest_object { 488 ZTEST_META_DNODE = 0, 489 ZTEST_DIROBJ, 490 ZTEST_OBJECTS 491 }; 492 493 static void usage(boolean_t) __NORETURN; 494 495 /* 496 * These libumem hooks provide a reasonable set of defaults for the allocator's 497 * debugging facilities. 498 */ 499 const char * 500 _umem_debug_init() 501 { 502 return ("default,verbose"); /* $UMEM_DEBUG setting */ 503 } 504 505 const char * 506 _umem_logging_init(void) 507 { 508 return ("fail,contents"); /* $UMEM_LOGGING setting */ 509 } 510 511 #define FATAL_MSG_SZ 1024 512 513 char *fatal_msg; 514 515 static void 516 fatal(int do_perror, char *message, ...) 517 { 518 va_list args; 519 int save_errno = errno; 520 char buf[FATAL_MSG_SZ]; 521 522 (void) fflush(stdout); 523 524 va_start(args, message); 525 (void) sprintf(buf, "ztest: "); 526 /* LINTED */ 527 (void) vsprintf(buf + strlen(buf), message, args); 528 va_end(args); 529 if (do_perror) { 530 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 531 ": %s", strerror(save_errno)); 532 } 533 (void) fprintf(stderr, "%s\n", buf); 534 fatal_msg = buf; /* to ease debugging */ 535 if (ztest_dump_core) 536 abort(); 537 exit(3); 538 } 539 540 static int 541 str2shift(const char *buf) 542 { 543 const char *ends = "BKMGTPEZ"; 544 int i; 545 546 if (buf[0] == '\0') 547 return (0); 548 for (i = 0; i < strlen(ends); i++) { 549 if (toupper(buf[0]) == ends[i]) 550 break; 551 } 552 if (i == strlen(ends)) { 553 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 554 buf); 555 usage(B_FALSE); 556 } 557 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 558 return (10*i); 559 } 560 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 561 usage(B_FALSE); 562 /* NOTREACHED */ 563 } 564 565 static uint64_t 566 nicenumtoull(const char *buf) 567 { 568 char *end; 569 uint64_t val; 570 571 val = strtoull(buf, &end, 0); 572 if (end == buf) { 573 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 574 usage(B_FALSE); 575 } else if (end[0] == '.') { 576 double fval = strtod(buf, &end); 577 fval *= pow(2, str2shift(end)); 578 if (fval > UINT64_MAX) { 579 (void) fprintf(stderr, "ztest: value too large: %s\n", 580 buf); 581 usage(B_FALSE); 582 } 583 val = (uint64_t)fval; 584 } else { 585 int shift = str2shift(end); 586 if (shift >= 64 || (val << shift) >> shift != val) { 587 (void) fprintf(stderr, "ztest: value too large: %s\n", 588 buf); 589 usage(B_FALSE); 590 } 591 val <<= shift; 592 } 593 return (val); 594 } 595 596 static void 597 usage(boolean_t requested) 598 { 599 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 600 601 char nice_vdev_size[NN_NUMBUF_SZ]; 602 char nice_force_ganging[NN_NUMBUF_SZ]; 603 FILE *fp = requested ? stdout : stderr; 604 605 nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size)); 606 nicenum(zo->zo_metaslab_force_ganging, nice_force_ganging, 607 sizeof (nice_force_ganging)); 608 609 (void) fprintf(fp, "Usage: %s\n" 610 "\t[-v vdevs (default: %llu)]\n" 611 "\t[-s size_of_each_vdev (default: %s)]\n" 612 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 613 "\t[-m mirror_copies (default: %d)]\n" 614 "\t[-r raidz_disks (default: %d)]\n" 615 "\t[-R raidz_parity (default: %d)]\n" 616 "\t[-d datasets (default: %d)]\n" 617 "\t[-t threads (default: %d)]\n" 618 "\t[-g gang_block_threshold (default: %s)]\n" 619 "\t[-i init_count (default: %d)] initialize pool i times\n" 620 "\t[-k kill_percentage (default: %llu%%)]\n" 621 "\t[-p pool_name (default: %s)]\n" 622 "\t[-f dir (default: %s)] file directory for vdev files\n" 623 "\t[-M] Multi-host simulate pool imported on remote host\n" 624 "\t[-V] verbose (use multiple times for ever more blather)\n" 625 "\t[-E] use existing pool instead of creating new one\n" 626 "\t[-T time (default: %llu sec)] total run time\n" 627 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 628 "\t[-P passtime (default: %llu sec)] time per pass\n" 629 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 630 "\t[-C vdev class state (default: random)] special=on|off|random\n" 631 "\t[-o variable=value] ... set global variable to an unsigned\n" 632 "\t 32-bit integer value\n" 633 "\t[-h] (print help)\n" 634 "", 635 zo->zo_pool, 636 (u_longlong_t)zo->zo_vdevs, /* -v */ 637 nice_vdev_size, /* -s */ 638 zo->zo_ashift, /* -a */ 639 zo->zo_mirrors, /* -m */ 640 zo->zo_raidz, /* -r */ 641 zo->zo_raidz_parity, /* -R */ 642 zo->zo_datasets, /* -d */ 643 zo->zo_threads, /* -t */ 644 nice_force_ganging, /* -g */ 645 zo->zo_init, /* -i */ 646 (u_longlong_t)zo->zo_killrate, /* -k */ 647 zo->zo_pool, /* -p */ 648 zo->zo_dir, /* -f */ 649 (u_longlong_t)zo->zo_time, /* -T */ 650 (u_longlong_t)zo->zo_maxloops, /* -F */ 651 (u_longlong_t)zo->zo_passtime); 652 exit(requested ? 0 : 1); 653 } 654 655 656 static void 657 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo) 658 { 659 char name[32]; 660 char *value; 661 int state = ZTEST_VDEV_CLASS_RND; 662 663 (void) strlcpy(name, input, sizeof (name)); 664 665 value = strchr(name, '='); 666 if (value == NULL) { 667 (void) fprintf(stderr, "missing value in property=value " 668 "'-C' argument (%s)\n", input); 669 usage(B_FALSE); 670 } 671 *(value) = '\0'; 672 value++; 673 674 if (strcmp(value, "on") == 0) { 675 state = ZTEST_VDEV_CLASS_ON; 676 } else if (strcmp(value, "off") == 0) { 677 state = ZTEST_VDEV_CLASS_OFF; 678 } else if (strcmp(value, "random") == 0) { 679 state = ZTEST_VDEV_CLASS_RND; 680 } else { 681 (void) fprintf(stderr, "invalid property value '%s'\n", value); 682 usage(B_FALSE); 683 } 684 685 if (strcmp(name, "special") == 0) { 686 zo->zo_special_vdevs = state; 687 } else { 688 (void) fprintf(stderr, "invalid property name '%s'\n", name); 689 usage(B_FALSE); 690 } 691 if (zo->zo_verbose >= 3) 692 (void) printf("%s vdev state is '%s'\n", name, value); 693 } 694 695 static void 696 process_options(int argc, char **argv) 697 { 698 char *path; 699 ztest_shared_opts_t *zo = &ztest_opts; 700 701 int opt; 702 uint64_t value; 703 char altdir[MAXNAMELEN] = { 0 }; 704 705 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 706 707 while ((opt = getopt(argc, argv, 708 "v:s:a:m:r:R:d:t:g:i:k:p:f:MVET:P:hF:B:C:o:")) != EOF) { 709 value = 0; 710 switch (opt) { 711 case 'v': 712 case 's': 713 case 'a': 714 case 'm': 715 case 'r': 716 case 'R': 717 case 'd': 718 case 't': 719 case 'g': 720 case 'i': 721 case 'k': 722 case 'T': 723 case 'P': 724 case 'F': 725 value = nicenumtoull(optarg); 726 } 727 switch (opt) { 728 case 'v': 729 zo->zo_vdevs = value; 730 break; 731 case 's': 732 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 733 break; 734 case 'a': 735 zo->zo_ashift = value; 736 break; 737 case 'm': 738 zo->zo_mirrors = value; 739 break; 740 case 'r': 741 zo->zo_raidz = MAX(1, value); 742 break; 743 case 'R': 744 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 745 break; 746 case 'd': 747 zo->zo_datasets = MAX(1, value); 748 break; 749 case 't': 750 zo->zo_threads = MAX(1, value); 751 break; 752 case 'g': 753 zo->zo_metaslab_force_ganging = 754 MAX(SPA_MINBLOCKSIZE << 1, value); 755 break; 756 case 'i': 757 zo->zo_init = value; 758 break; 759 case 'k': 760 zo->zo_killrate = value; 761 break; 762 case 'p': 763 (void) strlcpy(zo->zo_pool, optarg, 764 sizeof (zo->zo_pool)); 765 break; 766 case 'f': 767 path = realpath(optarg, NULL); 768 if (path == NULL) { 769 (void) fprintf(stderr, "error: %s: %s\n", 770 optarg, strerror(errno)); 771 usage(B_FALSE); 772 } else { 773 (void) strlcpy(zo->zo_dir, path, 774 sizeof (zo->zo_dir)); 775 } 776 break; 777 case 'M': 778 zo->zo_mmp_test = 1; 779 break; 780 case 'V': 781 zo->zo_verbose++; 782 break; 783 case 'E': 784 zo->zo_init = 0; 785 break; 786 case 'T': 787 zo->zo_time = value; 788 break; 789 case 'P': 790 zo->zo_passtime = MAX(1, value); 791 break; 792 case 'F': 793 zo->zo_maxloops = MAX(1, value); 794 break; 795 case 'B': 796 (void) strlcpy(altdir, optarg, sizeof (altdir)); 797 break; 798 case 'C': 799 ztest_parse_name_value(optarg, zo); 800 break; 801 case 'o': 802 if (set_global_var(optarg) != 0) 803 usage(B_FALSE); 804 break; 805 case 'h': 806 usage(B_TRUE); 807 break; 808 case '?': 809 default: 810 usage(B_FALSE); 811 break; 812 } 813 } 814 815 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 816 817 zo->zo_vdevtime = 818 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 819 UINT64_MAX >> 2); 820 821 if (strlen(altdir) > 0) { 822 char *cmd; 823 char *realaltdir; 824 char *bin; 825 char *ztest; 826 char *isa; 827 int isalen; 828 829 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 830 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 831 832 VERIFY(NULL != realpath(getexecname(), cmd)); 833 if (0 != access(altdir, F_OK)) { 834 ztest_dump_core = B_FALSE; 835 fatal(B_TRUE, "invalid alternate ztest path: %s", 836 altdir); 837 } 838 VERIFY(NULL != realpath(altdir, realaltdir)); 839 840 /* 841 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 842 * We want to extract <isa> to determine if we should use 843 * 32 or 64 bit binaries. 844 */ 845 bin = strstr(cmd, "/usr/bin/"); 846 ztest = strstr(bin, "/ztest"); 847 isa = bin + 9; 848 isalen = ztest - isa; 849 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 850 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 851 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 852 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 853 854 if (0 != access(zo->zo_alt_ztest, X_OK)) { 855 ztest_dump_core = B_FALSE; 856 fatal(B_TRUE, "invalid alternate ztest: %s", 857 zo->zo_alt_ztest); 858 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 859 ztest_dump_core = B_FALSE; 860 fatal(B_TRUE, "invalid alternate lib directory %s", 861 zo->zo_alt_libpath); 862 } 863 864 umem_free(cmd, MAXPATHLEN); 865 umem_free(realaltdir, MAXPATHLEN); 866 } 867 } 868 869 static void 870 ztest_kill(ztest_shared_t *zs) 871 { 872 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 873 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 874 875 /* 876 * Before we kill off ztest, make sure that the config is updated. 877 * See comment above spa_write_cachefile(). 878 */ 879 mutex_enter(&spa_namespace_lock); 880 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE); 881 mutex_exit(&spa_namespace_lock); 882 883 zfs_dbgmsg_print(FTAG); 884 (void) kill(getpid(), SIGKILL); 885 } 886 887 static uint64_t 888 ztest_random(uint64_t range) 889 { 890 uint64_t r; 891 892 ASSERT3S(ztest_fd_rand, >=, 0); 893 894 if (range == 0) 895 return (0); 896 897 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 898 fatal(1, "short read from /dev/urandom"); 899 900 return (r % range); 901 } 902 903 /* ARGSUSED */ 904 static void 905 ztest_record_enospc(const char *s) 906 { 907 ztest_shared->zs_enospc_count++; 908 } 909 910 static uint64_t 911 ztest_get_ashift(void) 912 { 913 if (ztest_opts.zo_ashift == 0) 914 return (SPA_MINBLOCKSHIFT + ztest_random(5)); 915 return (ztest_opts.zo_ashift); 916 } 917 918 static nvlist_t * 919 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 920 { 921 char pathbuf[MAXPATHLEN]; 922 uint64_t vdev; 923 nvlist_t *file; 924 925 if (ashift == 0) 926 ashift = ztest_get_ashift(); 927 928 if (path == NULL) { 929 path = pathbuf; 930 931 if (aux != NULL) { 932 vdev = ztest_shared->zs_vdev_aux; 933 (void) snprintf(path, sizeof (pathbuf), 934 ztest_aux_template, ztest_opts.zo_dir, 935 pool == NULL ? ztest_opts.zo_pool : pool, 936 aux, vdev); 937 } else { 938 vdev = ztest_shared->zs_vdev_next_leaf++; 939 (void) snprintf(path, sizeof (pathbuf), 940 ztest_dev_template, ztest_opts.zo_dir, 941 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 942 } 943 } 944 945 if (size != 0) { 946 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 947 if (fd == -1) 948 fatal(1, "can't open %s", path); 949 if (ftruncate(fd, size) != 0) 950 fatal(1, "can't ftruncate %s", path); 951 (void) close(fd); 952 } 953 954 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 955 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 956 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 957 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 958 959 return (file); 960 } 961 962 static nvlist_t * 963 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 964 uint64_t ashift, int r) 965 { 966 nvlist_t *raidz, **child; 967 int c; 968 969 if (r < 2) 970 return (make_vdev_file(path, aux, pool, size, ashift)); 971 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 972 973 for (c = 0; c < r; c++) 974 child[c] = make_vdev_file(path, aux, pool, size, ashift); 975 976 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 977 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 978 VDEV_TYPE_RAIDZ) == 0); 979 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 980 ztest_opts.zo_raidz_parity) == 0); 981 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 982 child, r) == 0); 983 984 for (c = 0; c < r; c++) 985 nvlist_free(child[c]); 986 987 umem_free(child, r * sizeof (nvlist_t *)); 988 989 return (raidz); 990 } 991 992 static nvlist_t * 993 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 994 uint64_t ashift, int r, int m) 995 { 996 nvlist_t *mirror, **child; 997 int c; 998 999 if (m < 1) 1000 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 1001 1002 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 1003 1004 for (c = 0; c < m; c++) 1005 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 1006 1007 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 1008 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 1009 VDEV_TYPE_MIRROR) == 0); 1010 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 1011 child, m) == 0); 1012 1013 for (c = 0; c < m; c++) 1014 nvlist_free(child[c]); 1015 1016 umem_free(child, m * sizeof (nvlist_t *)); 1017 1018 return (mirror); 1019 } 1020 1021 static nvlist_t * 1022 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 1023 const char *class, int r, int m, int t) 1024 { 1025 nvlist_t *root, **child; 1026 int c; 1027 boolean_t log; 1028 1029 ASSERT(t > 0); 1030 1031 log = (class != NULL && strcmp(class, "log") == 0); 1032 1033 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 1034 1035 for (c = 0; c < t; c++) { 1036 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 1037 r, m); 1038 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 1039 log) == 0); 1040 1041 if (class != NULL && class[0] != '\0') { 1042 ASSERT(m > 1 || log); /* expecting a mirror */ 1043 VERIFY(nvlist_add_string(child[c], 1044 ZPOOL_CONFIG_ALLOCATION_BIAS, class) == 0); 1045 } 1046 } 1047 1048 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 1049 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 1050 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 1051 child, t) == 0); 1052 1053 for (c = 0; c < t; c++) 1054 nvlist_free(child[c]); 1055 1056 umem_free(child, t * sizeof (nvlist_t *)); 1057 1058 return (root); 1059 } 1060 1061 /* 1062 * Find a random spa version. Returns back a random spa version in the 1063 * range [initial_version, SPA_VERSION_FEATURES]. 1064 */ 1065 static uint64_t 1066 ztest_random_spa_version(uint64_t initial_version) 1067 { 1068 uint64_t version = initial_version; 1069 1070 if (version <= SPA_VERSION_BEFORE_FEATURES) { 1071 version = version + 1072 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 1073 } 1074 1075 if (version > SPA_VERSION_BEFORE_FEATURES) 1076 version = SPA_VERSION_FEATURES; 1077 1078 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 1079 return (version); 1080 } 1081 1082 static int 1083 ztest_random_blocksize(void) 1084 { 1085 uint64_t block_shift; 1086 1087 ASSERT(ztest_spa->spa_max_ashift != 0); 1088 1089 /* 1090 * Choose a block size >= the ashift. 1091 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. 1092 */ 1093 int maxbs = SPA_OLD_MAXBLOCKSHIFT; 1094 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) 1095 maxbs = 20; 1096 block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1); 1097 return (1 << (SPA_MINBLOCKSHIFT + block_shift)); 1098 } 1099 1100 static int 1101 ztest_random_dnodesize(void) 1102 { 1103 int slots; 1104 int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT; 1105 1106 if (max_slots == DNODE_MIN_SLOTS) 1107 return (DNODE_MIN_SIZE); 1108 1109 /* 1110 * Weight the random distribution more heavily toward smaller 1111 * dnode sizes since that is more likely to reflect real-world 1112 * usage. 1113 */ 1114 ASSERT3U(max_slots, >, 4); 1115 switch (ztest_random(10)) { 1116 case 0: 1117 slots = 5 + ztest_random(max_slots - 4); 1118 break; 1119 case 1 ... 4: 1120 slots = 2 + ztest_random(3); 1121 break; 1122 default: 1123 slots = 1; 1124 break; 1125 } 1126 1127 return (slots << DNODE_SHIFT); 1128 } 1129 1130 static int 1131 ztest_random_ibshift(void) 1132 { 1133 return (DN_MIN_INDBLKSHIFT + 1134 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 1135 } 1136 1137 static uint64_t 1138 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 1139 { 1140 uint64_t top; 1141 vdev_t *rvd = spa->spa_root_vdev; 1142 vdev_t *tvd; 1143 1144 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1145 1146 do { 1147 top = ztest_random(rvd->vdev_children); 1148 tvd = rvd->vdev_child[top]; 1149 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) || 1150 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 1151 1152 return (top); 1153 } 1154 1155 static uint64_t 1156 ztest_random_dsl_prop(zfs_prop_t prop) 1157 { 1158 uint64_t value; 1159 1160 do { 1161 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 1162 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 1163 1164 return (value); 1165 } 1166 1167 static int 1168 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1169 boolean_t inherit) 1170 { 1171 const char *propname = zfs_prop_to_name(prop); 1172 const char *valname; 1173 char setpoint[MAXPATHLEN]; 1174 uint64_t curval; 1175 int error; 1176 1177 error = dsl_prop_set_int(osname, propname, 1178 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1179 1180 if (error == ENOSPC) { 1181 ztest_record_enospc(FTAG); 1182 return (error); 1183 } 1184 ASSERT0(error); 1185 1186 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1187 1188 if (ztest_opts.zo_verbose >= 6) { 1189 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1190 (void) printf("%s %s = %s at '%s'\n", 1191 osname, propname, valname, setpoint); 1192 } 1193 1194 return (error); 1195 } 1196 1197 static int 1198 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1199 { 1200 spa_t *spa = ztest_spa; 1201 nvlist_t *props = NULL; 1202 int error; 1203 1204 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1205 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1206 1207 error = spa_prop_set(spa, props); 1208 1209 nvlist_free(props); 1210 1211 if (error == ENOSPC) { 1212 ztest_record_enospc(FTAG); 1213 return (error); 1214 } 1215 ASSERT0(error); 1216 1217 return (error); 1218 } 1219 1220 static int 1221 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type, 1222 boolean_t readonly, boolean_t decrypt, void *tag, objset_t **osp) 1223 { 1224 int err; 1225 1226 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp); 1227 if (decrypt && err == EACCES) { 1228 char ddname[ZFS_MAX_DATASET_NAME_LEN]; 1229 dsl_crypto_params_t *dcp; 1230 nvlist_t *crypto_args = fnvlist_alloc(); 1231 char *cp = NULL; 1232 1233 /* spa_keystore_load_wkey() expects a dsl dir name */ 1234 (void) strcpy(ddname, name); 1235 cp = strchr(ddname, '@'); 1236 if (cp != NULL) 1237 *cp = '\0'; 1238 1239 fnvlist_add_uint8_array(crypto_args, "wkeydata", 1240 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN); 1241 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL, 1242 crypto_args, &dcp)); 1243 err = spa_keystore_load_wkey(ddname, dcp, B_FALSE); 1244 dsl_crypto_params_free(dcp, B_FALSE); 1245 fnvlist_free(crypto_args); 1246 1247 if (err != 0) 1248 return (err); 1249 1250 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp); 1251 } 1252 1253 return (err); 1254 } 1255 1256 static void 1257 ztest_rll_init(rll_t *rll) 1258 { 1259 rll->rll_writer = NULL; 1260 rll->rll_readers = 0; 1261 mutex_init(&rll->rll_lock, NULL, USYNC_THREAD, NULL); 1262 cv_init(&rll->rll_cv, NULL, USYNC_THREAD, NULL); 1263 } 1264 1265 static void 1266 ztest_rll_destroy(rll_t *rll) 1267 { 1268 ASSERT(rll->rll_writer == NULL); 1269 ASSERT(rll->rll_readers == 0); 1270 mutex_destroy(&rll->rll_lock); 1271 cv_destroy(&rll->rll_cv); 1272 } 1273 1274 static void 1275 ztest_rll_lock(rll_t *rll, rl_type_t type) 1276 { 1277 mutex_enter(&rll->rll_lock); 1278 1279 if (type == RL_READER) { 1280 while (rll->rll_writer != NULL) 1281 cv_wait(&rll->rll_cv, &rll->rll_lock); 1282 rll->rll_readers++; 1283 } else { 1284 while (rll->rll_writer != NULL || rll->rll_readers) 1285 cv_wait(&rll->rll_cv, &rll->rll_lock); 1286 rll->rll_writer = curthread; 1287 } 1288 1289 mutex_exit(&rll->rll_lock); 1290 } 1291 1292 static void 1293 ztest_rll_unlock(rll_t *rll) 1294 { 1295 mutex_enter(&rll->rll_lock); 1296 1297 if (rll->rll_writer) { 1298 ASSERT(rll->rll_readers == 0); 1299 rll->rll_writer = NULL; 1300 } else { 1301 ASSERT(rll->rll_readers != 0); 1302 ASSERT(rll->rll_writer == NULL); 1303 rll->rll_readers--; 1304 } 1305 1306 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1307 cv_broadcast(&rll->rll_cv); 1308 1309 mutex_exit(&rll->rll_lock); 1310 } 1311 1312 static void 1313 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1314 { 1315 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1316 1317 ztest_rll_lock(rll, type); 1318 } 1319 1320 static void 1321 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1322 { 1323 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1324 1325 ztest_rll_unlock(rll); 1326 } 1327 1328 static rl_t * 1329 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1330 uint64_t size, rl_type_t type) 1331 { 1332 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1333 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1334 rl_t *rl; 1335 1336 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1337 rl->rl_object = object; 1338 rl->rl_offset = offset; 1339 rl->rl_size = size; 1340 rl->rl_lock = rll; 1341 1342 ztest_rll_lock(rll, type); 1343 1344 return (rl); 1345 } 1346 1347 static void 1348 ztest_range_unlock(rl_t *rl) 1349 { 1350 rll_t *rll = rl->rl_lock; 1351 1352 ztest_rll_unlock(rll); 1353 1354 umem_free(rl, sizeof (*rl)); 1355 } 1356 1357 static void 1358 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1359 { 1360 zd->zd_os = os; 1361 zd->zd_zilog = dmu_objset_zil(os); 1362 zd->zd_shared = szd; 1363 dmu_objset_name(os, zd->zd_name); 1364 1365 if (zd->zd_shared != NULL) 1366 zd->zd_shared->zd_seq = 0; 1367 1368 rw_init(&zd->zd_zilog_lock, NULL, USYNC_THREAD, NULL); 1369 mutex_init(&zd->zd_dirobj_lock, NULL, USYNC_THREAD, NULL); 1370 1371 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1372 ztest_rll_init(&zd->zd_object_lock[l]); 1373 1374 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1375 ztest_rll_init(&zd->zd_range_lock[l]); 1376 } 1377 1378 static void 1379 ztest_zd_fini(ztest_ds_t *zd) 1380 { 1381 mutex_destroy(&zd->zd_dirobj_lock); 1382 1383 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1384 ztest_rll_destroy(&zd->zd_object_lock[l]); 1385 1386 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1387 ztest_rll_destroy(&zd->zd_range_lock[l]); 1388 } 1389 1390 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1391 1392 static uint64_t 1393 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1394 { 1395 uint64_t txg; 1396 int error; 1397 1398 /* 1399 * Attempt to assign tx to some transaction group. 1400 */ 1401 error = dmu_tx_assign(tx, txg_how); 1402 if (error) { 1403 if (error == ERESTART) { 1404 ASSERT(txg_how == TXG_NOWAIT); 1405 dmu_tx_wait(tx); 1406 } else { 1407 ASSERT3U(error, ==, ENOSPC); 1408 ztest_record_enospc(tag); 1409 } 1410 dmu_tx_abort(tx); 1411 return (0); 1412 } 1413 txg = dmu_tx_get_txg(tx); 1414 ASSERT(txg != 0); 1415 return (txg); 1416 } 1417 1418 static void 1419 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1420 { 1421 uint64_t *ip = buf; 1422 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1423 1424 while (ip < ip_end) 1425 *ip++ = value; 1426 } 1427 1428 static boolean_t 1429 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1430 { 1431 uint64_t *ip = buf; 1432 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1433 uint64_t diff = 0; 1434 1435 while (ip < ip_end) 1436 diff |= (value - *ip++); 1437 1438 return (diff == 0); 1439 } 1440 1441 static void 1442 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1443 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg, 1444 uint64_t crtxg) 1445 { 1446 bt->bt_magic = BT_MAGIC; 1447 bt->bt_objset = dmu_objset_id(os); 1448 bt->bt_object = object; 1449 bt->bt_dnodesize = dnodesize; 1450 bt->bt_offset = offset; 1451 bt->bt_gen = gen; 1452 bt->bt_txg = txg; 1453 bt->bt_crtxg = crtxg; 1454 } 1455 1456 static void 1457 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1458 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg, 1459 uint64_t crtxg) 1460 { 1461 ASSERT3U(bt->bt_magic, ==, BT_MAGIC); 1462 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1463 ASSERT3U(bt->bt_object, ==, object); 1464 ASSERT3U(bt->bt_dnodesize, ==, dnodesize); 1465 ASSERT3U(bt->bt_offset, ==, offset); 1466 ASSERT3U(bt->bt_gen, <=, gen); 1467 ASSERT3U(bt->bt_txg, <=, txg); 1468 ASSERT3U(bt->bt_crtxg, ==, crtxg); 1469 } 1470 1471 static ztest_block_tag_t * 1472 ztest_bt_bonus(dmu_buf_t *db) 1473 { 1474 dmu_object_info_t doi; 1475 ztest_block_tag_t *bt; 1476 1477 dmu_object_info_from_db(db, &doi); 1478 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1479 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1480 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1481 1482 return (bt); 1483 } 1484 1485 /* 1486 * Generate a token to fill up unused bonus buffer space. Try to make 1487 * it unique to the object, generation, and offset to verify that data 1488 * is not getting overwritten by data from other dnodes. 1489 */ 1490 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \ 1491 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset)) 1492 1493 /* 1494 * Fill up the unused bonus buffer region before the block tag with a 1495 * verifiable pattern. Filling the whole bonus area with non-zero data 1496 * helps ensure that all dnode traversal code properly skips the 1497 * interior regions of large dnodes. 1498 */ 1499 void 1500 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj, 1501 objset_t *os, uint64_t gen) 1502 { 1503 uint64_t *bonusp; 1504 1505 ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8)); 1506 1507 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) { 1508 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os), 1509 gen, bonusp - (uint64_t *)db->db_data); 1510 *bonusp = token; 1511 } 1512 } 1513 1514 /* 1515 * Verify that the unused area of a bonus buffer is filled with the 1516 * expected tokens. 1517 */ 1518 void 1519 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj, 1520 objset_t *os, uint64_t gen) 1521 { 1522 uint64_t *bonusp; 1523 1524 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) { 1525 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os), 1526 gen, bonusp - (uint64_t *)db->db_data); 1527 VERIFY3U(*bonusp, ==, token); 1528 } 1529 } 1530 1531 /* 1532 * ZIL logging ops 1533 */ 1534 1535 #define lrz_type lr_mode 1536 #define lrz_blocksize lr_uid 1537 #define lrz_ibshift lr_gid 1538 #define lrz_bonustype lr_rdev 1539 #define lrz_dnodesize lr_crtime[1] 1540 1541 static void 1542 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1543 { 1544 char *name = (void *)(lr + 1); /* name follows lr */ 1545 size_t namesize = strlen(name) + 1; 1546 itx_t *itx; 1547 1548 if (zil_replaying(zd->zd_zilog, tx)) 1549 return; 1550 1551 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1552 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1553 sizeof (*lr) + namesize - sizeof (lr_t)); 1554 1555 zil_itx_assign(zd->zd_zilog, itx, tx); 1556 } 1557 1558 static void 1559 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1560 { 1561 char *name = (void *)(lr + 1); /* name follows lr */ 1562 size_t namesize = strlen(name) + 1; 1563 itx_t *itx; 1564 1565 if (zil_replaying(zd->zd_zilog, tx)) 1566 return; 1567 1568 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1569 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1570 sizeof (*lr) + namesize - sizeof (lr_t)); 1571 1572 itx->itx_oid = object; 1573 zil_itx_assign(zd->zd_zilog, itx, tx); 1574 } 1575 1576 static void 1577 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1578 { 1579 itx_t *itx; 1580 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1581 1582 if (zil_replaying(zd->zd_zilog, tx)) 1583 return; 1584 1585 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1586 write_state = WR_INDIRECT; 1587 1588 itx = zil_itx_create(TX_WRITE, 1589 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1590 1591 if (write_state == WR_COPIED && 1592 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1593 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1594 zil_itx_destroy(itx); 1595 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1596 write_state = WR_NEED_COPY; 1597 } 1598 itx->itx_private = zd; 1599 itx->itx_wr_state = write_state; 1600 itx->itx_sync = (ztest_random(8) == 0); 1601 1602 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1603 sizeof (*lr) - sizeof (lr_t)); 1604 1605 zil_itx_assign(zd->zd_zilog, itx, tx); 1606 } 1607 1608 static void 1609 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1610 { 1611 itx_t *itx; 1612 1613 if (zil_replaying(zd->zd_zilog, tx)) 1614 return; 1615 1616 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1617 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1618 sizeof (*lr) - sizeof (lr_t)); 1619 1620 itx->itx_sync = B_FALSE; 1621 zil_itx_assign(zd->zd_zilog, itx, tx); 1622 } 1623 1624 static void 1625 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1626 { 1627 itx_t *itx; 1628 1629 if (zil_replaying(zd->zd_zilog, tx)) 1630 return; 1631 1632 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1633 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1634 sizeof (*lr) - sizeof (lr_t)); 1635 1636 itx->itx_sync = B_FALSE; 1637 zil_itx_assign(zd->zd_zilog, itx, tx); 1638 } 1639 1640 /* 1641 * ZIL replay ops 1642 */ 1643 static int 1644 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap) 1645 { 1646 ztest_ds_t *zd = arg1; 1647 lr_create_t *lr = arg2; 1648 char *name = (void *)(lr + 1); /* name follows lr */ 1649 objset_t *os = zd->zd_os; 1650 ztest_block_tag_t *bbt; 1651 dmu_buf_t *db; 1652 dmu_tx_t *tx; 1653 uint64_t txg; 1654 int error = 0; 1655 int bonuslen; 1656 1657 if (byteswap) 1658 byteswap_uint64_array(lr, sizeof (*lr)); 1659 1660 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1661 ASSERT(name[0] != '\0'); 1662 1663 tx = dmu_tx_create(os); 1664 1665 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1666 1667 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1668 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1669 } else { 1670 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1671 } 1672 1673 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1674 if (txg == 0) 1675 return (ENOSPC); 1676 1677 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1678 bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize); 1679 1680 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1681 if (lr->lr_foid == 0) { 1682 lr->lr_foid = zap_create_dnsize(os, 1683 lr->lrz_type, lr->lrz_bonustype, 1684 bonuslen, lr->lrz_dnodesize, tx); 1685 } else { 1686 error = zap_create_claim_dnsize(os, lr->lr_foid, 1687 lr->lrz_type, lr->lrz_bonustype, 1688 bonuslen, lr->lrz_dnodesize, tx); 1689 } 1690 } else { 1691 if (lr->lr_foid == 0) { 1692 lr->lr_foid = dmu_object_alloc_dnsize(os, 1693 lr->lrz_type, 0, lr->lrz_bonustype, 1694 bonuslen, lr->lrz_dnodesize, tx); 1695 } else { 1696 error = dmu_object_claim_dnsize(os, lr->lr_foid, 1697 lr->lrz_type, 0, lr->lrz_bonustype, 1698 bonuslen, lr->lrz_dnodesize, tx); 1699 } 1700 } 1701 1702 if (error) { 1703 ASSERT3U(error, ==, EEXIST); 1704 ASSERT(zd->zd_zilog->zl_replay); 1705 dmu_tx_commit(tx); 1706 return (error); 1707 } 1708 1709 ASSERT(lr->lr_foid != 0); 1710 1711 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1712 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1713 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1714 1715 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1716 bbt = ztest_bt_bonus(db); 1717 dmu_buf_will_dirty(db, tx); 1718 ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL, 1719 lr->lr_gen, txg, txg); 1720 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen); 1721 dmu_buf_rele(db, FTAG); 1722 1723 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1724 &lr->lr_foid, tx)); 1725 1726 (void) ztest_log_create(zd, tx, lr); 1727 1728 dmu_tx_commit(tx); 1729 1730 return (0); 1731 } 1732 1733 static int 1734 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap) 1735 { 1736 ztest_ds_t *zd = arg1; 1737 lr_remove_t *lr = arg2; 1738 char *name = (void *)(lr + 1); /* name follows lr */ 1739 objset_t *os = zd->zd_os; 1740 dmu_object_info_t doi; 1741 dmu_tx_t *tx; 1742 uint64_t object, txg; 1743 1744 if (byteswap) 1745 byteswap_uint64_array(lr, sizeof (*lr)); 1746 1747 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1748 ASSERT(name[0] != '\0'); 1749 1750 VERIFY3U(0, ==, 1751 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1752 ASSERT(object != 0); 1753 1754 ztest_object_lock(zd, object, RL_WRITER); 1755 1756 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1757 1758 tx = dmu_tx_create(os); 1759 1760 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1761 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1762 1763 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1764 if (txg == 0) { 1765 ztest_object_unlock(zd, object); 1766 return (ENOSPC); 1767 } 1768 1769 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1770 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1771 } else { 1772 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1773 } 1774 1775 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1776 1777 (void) ztest_log_remove(zd, tx, lr, object); 1778 1779 dmu_tx_commit(tx); 1780 1781 ztest_object_unlock(zd, object); 1782 1783 return (0); 1784 } 1785 1786 static int 1787 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap) 1788 { 1789 ztest_ds_t *zd = arg1; 1790 lr_write_t *lr = arg2; 1791 objset_t *os = zd->zd_os; 1792 void *data = lr + 1; /* data follows lr */ 1793 uint64_t offset, length; 1794 ztest_block_tag_t *bt = data; 1795 ztest_block_tag_t *bbt; 1796 uint64_t gen, txg, lrtxg, crtxg; 1797 dmu_object_info_t doi; 1798 dmu_tx_t *tx; 1799 dmu_buf_t *db; 1800 arc_buf_t *abuf = NULL; 1801 rl_t *rl; 1802 1803 if (byteswap) 1804 byteswap_uint64_array(lr, sizeof (*lr)); 1805 1806 offset = lr->lr_offset; 1807 length = lr->lr_length; 1808 1809 /* If it's a dmu_sync() block, write the whole block */ 1810 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1811 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1812 if (length < blocksize) { 1813 offset -= offset % blocksize; 1814 length = blocksize; 1815 } 1816 } 1817 1818 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1819 byteswap_uint64_array(bt, sizeof (*bt)); 1820 1821 if (bt->bt_magic != BT_MAGIC) 1822 bt = NULL; 1823 1824 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1825 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1826 1827 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1828 1829 dmu_object_info_from_db(db, &doi); 1830 1831 bbt = ztest_bt_bonus(db); 1832 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1833 gen = bbt->bt_gen; 1834 crtxg = bbt->bt_crtxg; 1835 lrtxg = lr->lr_common.lrc_txg; 1836 1837 tx = dmu_tx_create(os); 1838 1839 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1840 1841 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1842 P2PHASE(offset, length) == 0) 1843 abuf = dmu_request_arcbuf(db, length); 1844 1845 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1846 if (txg == 0) { 1847 if (abuf != NULL) 1848 dmu_return_arcbuf(abuf); 1849 dmu_buf_rele(db, FTAG); 1850 ztest_range_unlock(rl); 1851 ztest_object_unlock(zd, lr->lr_foid); 1852 return (ENOSPC); 1853 } 1854 1855 if (bt != NULL) { 1856 /* 1857 * Usually, verify the old data before writing new data -- 1858 * but not always, because we also want to verify correct 1859 * behavior when the data was not recently read into cache. 1860 */ 1861 ASSERT(offset % doi.doi_data_block_size == 0); 1862 if (ztest_random(4) != 0) { 1863 int prefetch = ztest_random(2) ? 1864 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1865 ztest_block_tag_t rbt; 1866 1867 VERIFY(dmu_read(os, lr->lr_foid, offset, 1868 sizeof (rbt), &rbt, prefetch) == 0); 1869 if (rbt.bt_magic == BT_MAGIC) { 1870 ztest_bt_verify(&rbt, os, lr->lr_foid, 0, 1871 offset, gen, txg, crtxg); 1872 } 1873 } 1874 1875 /* 1876 * Writes can appear to be newer than the bonus buffer because 1877 * the ztest_get_data() callback does a dmu_read() of the 1878 * open-context data, which may be different than the data 1879 * as it was when the write was generated. 1880 */ 1881 if (zd->zd_zilog->zl_replay) { 1882 ztest_bt_verify(bt, os, lr->lr_foid, 0, offset, 1883 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1884 bt->bt_crtxg); 1885 } 1886 1887 /* 1888 * Set the bt's gen/txg to the bonus buffer's gen/txg 1889 * so that all of the usual ASSERTs will work. 1890 */ 1891 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg, 1892 crtxg); 1893 } 1894 1895 if (abuf == NULL) { 1896 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1897 } else { 1898 bcopy(data, abuf->b_data, length); 1899 dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx); 1900 } 1901 1902 (void) ztest_log_write(zd, tx, lr); 1903 1904 dmu_buf_rele(db, FTAG); 1905 1906 dmu_tx_commit(tx); 1907 1908 ztest_range_unlock(rl); 1909 ztest_object_unlock(zd, lr->lr_foid); 1910 1911 return (0); 1912 } 1913 1914 static int 1915 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) 1916 { 1917 ztest_ds_t *zd = arg1; 1918 lr_truncate_t *lr = arg2; 1919 objset_t *os = zd->zd_os; 1920 dmu_tx_t *tx; 1921 uint64_t txg; 1922 rl_t *rl; 1923 1924 if (byteswap) 1925 byteswap_uint64_array(lr, sizeof (*lr)); 1926 1927 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1928 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1929 RL_WRITER); 1930 1931 tx = dmu_tx_create(os); 1932 1933 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1934 1935 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1936 if (txg == 0) { 1937 ztest_range_unlock(rl); 1938 ztest_object_unlock(zd, lr->lr_foid); 1939 return (ENOSPC); 1940 } 1941 1942 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1943 lr->lr_length, tx) == 0); 1944 1945 (void) ztest_log_truncate(zd, tx, lr); 1946 1947 dmu_tx_commit(tx); 1948 1949 ztest_range_unlock(rl); 1950 ztest_object_unlock(zd, lr->lr_foid); 1951 1952 return (0); 1953 } 1954 1955 static int 1956 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap) 1957 { 1958 ztest_ds_t *zd = arg1; 1959 lr_setattr_t *lr = arg2; 1960 objset_t *os = zd->zd_os; 1961 dmu_tx_t *tx; 1962 dmu_buf_t *db; 1963 ztest_block_tag_t *bbt; 1964 uint64_t txg, lrtxg, crtxg, dnodesize; 1965 1966 if (byteswap) 1967 byteswap_uint64_array(lr, sizeof (*lr)); 1968 1969 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1970 1971 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1972 1973 tx = dmu_tx_create(os); 1974 dmu_tx_hold_bonus(tx, lr->lr_foid); 1975 1976 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1977 if (txg == 0) { 1978 dmu_buf_rele(db, FTAG); 1979 ztest_object_unlock(zd, lr->lr_foid); 1980 return (ENOSPC); 1981 } 1982 1983 bbt = ztest_bt_bonus(db); 1984 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1985 crtxg = bbt->bt_crtxg; 1986 lrtxg = lr->lr_common.lrc_txg; 1987 dnodesize = bbt->bt_dnodesize; 1988 1989 if (zd->zd_zilog->zl_replay) { 1990 ASSERT(lr->lr_size != 0); 1991 ASSERT(lr->lr_mode != 0); 1992 ASSERT(lrtxg != 0); 1993 } else { 1994 /* 1995 * Randomly change the size and increment the generation. 1996 */ 1997 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1998 sizeof (*bbt); 1999 lr->lr_mode = bbt->bt_gen + 1; 2000 ASSERT(lrtxg == 0); 2001 } 2002 2003 /* 2004 * Verify that the current bonus buffer is not newer than our txg. 2005 */ 2006 ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode, 2007 MAX(txg, lrtxg), crtxg); 2008 2009 dmu_buf_will_dirty(db, tx); 2010 2011 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 2012 ASSERT3U(lr->lr_size, <=, db->db_size); 2013 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 2014 bbt = ztest_bt_bonus(db); 2015 2016 ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode, 2017 txg, crtxg); 2018 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen); 2019 2020 dmu_buf_rele(db, FTAG); 2021 2022 (void) ztest_log_setattr(zd, tx, lr); 2023 2024 dmu_tx_commit(tx); 2025 2026 ztest_object_unlock(zd, lr->lr_foid); 2027 2028 return (0); 2029 } 2030 2031 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 2032 NULL, /* 0 no such transaction type */ 2033 ztest_replay_create, /* TX_CREATE */ 2034 NULL, /* TX_MKDIR */ 2035 NULL, /* TX_MKXATTR */ 2036 NULL, /* TX_SYMLINK */ 2037 ztest_replay_remove, /* TX_REMOVE */ 2038 NULL, /* TX_RMDIR */ 2039 NULL, /* TX_LINK */ 2040 NULL, /* TX_RENAME */ 2041 ztest_replay_write, /* TX_WRITE */ 2042 ztest_replay_truncate, /* TX_TRUNCATE */ 2043 ztest_replay_setattr, /* TX_SETATTR */ 2044 NULL, /* TX_ACL */ 2045 NULL, /* TX_CREATE_ACL */ 2046 NULL, /* TX_CREATE_ATTR */ 2047 NULL, /* TX_CREATE_ACL_ATTR */ 2048 NULL, /* TX_MKDIR_ACL */ 2049 NULL, /* TX_MKDIR_ATTR */ 2050 NULL, /* TX_MKDIR_ACL_ATTR */ 2051 NULL, /* TX_WRITE2 */ 2052 }; 2053 2054 /* 2055 * ZIL get_data callbacks 2056 */ 2057 2058 /* ARGSUSED */ 2059 static void 2060 ztest_get_done(zgd_t *zgd, int error) 2061 { 2062 ztest_ds_t *zd = zgd->zgd_private; 2063 uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object; 2064 2065 if (zgd->zgd_db) 2066 dmu_buf_rele(zgd->zgd_db, zgd); 2067 2068 ztest_range_unlock((rl_t *)zgd->zgd_lr); 2069 ztest_object_unlock(zd, object); 2070 2071 umem_free(zgd, sizeof (*zgd)); 2072 } 2073 2074 static int 2075 ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, 2076 zio_t *zio) 2077 { 2078 ztest_ds_t *zd = arg; 2079 objset_t *os = zd->zd_os; 2080 uint64_t object = lr->lr_foid; 2081 uint64_t offset = lr->lr_offset; 2082 uint64_t size = lr->lr_length; 2083 uint64_t txg = lr->lr_common.lrc_txg; 2084 uint64_t crtxg; 2085 dmu_object_info_t doi; 2086 dmu_buf_t *db; 2087 zgd_t *zgd; 2088 int error; 2089 2090 ASSERT3P(lwb, !=, NULL); 2091 ASSERT3P(zio, !=, NULL); 2092 ASSERT3U(size, !=, 0); 2093 2094 ztest_object_lock(zd, object, RL_READER); 2095 error = dmu_bonus_hold(os, object, FTAG, &db); 2096 if (error) { 2097 ztest_object_unlock(zd, object); 2098 return (error); 2099 } 2100 2101 crtxg = ztest_bt_bonus(db)->bt_crtxg; 2102 2103 if (crtxg == 0 || crtxg > txg) { 2104 dmu_buf_rele(db, FTAG); 2105 ztest_object_unlock(zd, object); 2106 return (ENOENT); 2107 } 2108 2109 dmu_object_info_from_db(db, &doi); 2110 dmu_buf_rele(db, FTAG); 2111 db = NULL; 2112 2113 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 2114 zgd->zgd_lwb = lwb; 2115 zgd->zgd_private = zd; 2116 2117 if (buf != NULL) { /* immediate write */ 2118 zgd->zgd_lr = (struct locked_range *)ztest_range_lock(zd, 2119 object, offset, size, RL_READER); 2120 2121 error = dmu_read(os, object, offset, size, buf, 2122 DMU_READ_NO_PREFETCH); 2123 ASSERT(error == 0); 2124 } else { 2125 size = doi.doi_data_block_size; 2126 if (ISP2(size)) { 2127 offset = P2ALIGN(offset, size); 2128 } else { 2129 ASSERT(offset < size); 2130 offset = 0; 2131 } 2132 2133 zgd->zgd_lr = (struct locked_range *)ztest_range_lock(zd, 2134 object, offset, size, RL_READER); 2135 2136 error = dmu_buf_hold(os, object, offset, zgd, &db, 2137 DMU_READ_NO_PREFETCH); 2138 2139 if (error == 0) { 2140 blkptr_t *bp = &lr->lr_blkptr; 2141 2142 zgd->zgd_db = db; 2143 zgd->zgd_bp = bp; 2144 2145 ASSERT(db->db_offset == offset); 2146 ASSERT(db->db_size == size); 2147 2148 error = dmu_sync(zio, lr->lr_common.lrc_txg, 2149 ztest_get_done, zgd); 2150 2151 if (error == 0) 2152 return (0); 2153 } 2154 } 2155 2156 ztest_get_done(zgd, error); 2157 2158 return (error); 2159 } 2160 2161 static void * 2162 ztest_lr_alloc(size_t lrsize, char *name) 2163 { 2164 char *lr; 2165 size_t namesize = name ? strlen(name) + 1 : 0; 2166 2167 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 2168 2169 if (name) 2170 bcopy(name, lr + lrsize, namesize); 2171 2172 return (lr); 2173 } 2174 2175 void 2176 ztest_lr_free(void *lr, size_t lrsize, char *name) 2177 { 2178 size_t namesize = name ? strlen(name) + 1 : 0; 2179 2180 umem_free(lr, lrsize + namesize); 2181 } 2182 2183 /* 2184 * Lookup a bunch of objects. Returns the number of objects not found. 2185 */ 2186 static int 2187 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 2188 { 2189 int missing = 0; 2190 int error; 2191 2192 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2193 2194 for (int i = 0; i < count; i++, od++) { 2195 od->od_object = 0; 2196 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 2197 sizeof (uint64_t), 1, &od->od_object); 2198 if (error) { 2199 ASSERT(error == ENOENT); 2200 ASSERT(od->od_object == 0); 2201 missing++; 2202 } else { 2203 dmu_buf_t *db; 2204 ztest_block_tag_t *bbt; 2205 dmu_object_info_t doi; 2206 2207 ASSERT(od->od_object != 0); 2208 ASSERT(missing == 0); /* there should be no gaps */ 2209 2210 ztest_object_lock(zd, od->od_object, RL_READER); 2211 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 2212 od->od_object, FTAG, &db)); 2213 dmu_object_info_from_db(db, &doi); 2214 bbt = ztest_bt_bonus(db); 2215 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 2216 od->od_type = doi.doi_type; 2217 od->od_blocksize = doi.doi_data_block_size; 2218 od->od_gen = bbt->bt_gen; 2219 dmu_buf_rele(db, FTAG); 2220 ztest_object_unlock(zd, od->od_object); 2221 } 2222 } 2223 2224 return (missing); 2225 } 2226 2227 static int 2228 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 2229 { 2230 int missing = 0; 2231 2232 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2233 2234 for (int i = 0; i < count; i++, od++) { 2235 if (missing) { 2236 od->od_object = 0; 2237 missing++; 2238 continue; 2239 } 2240 2241 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2242 2243 lr->lr_doid = od->od_dir; 2244 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 2245 lr->lrz_type = od->od_crtype; 2246 lr->lrz_blocksize = od->od_crblocksize; 2247 lr->lrz_ibshift = ztest_random_ibshift(); 2248 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 2249 lr->lrz_dnodesize = od->od_crdnodesize; 2250 lr->lr_gen = od->od_crgen; 2251 lr->lr_crtime[0] = time(NULL); 2252 2253 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 2254 ASSERT(missing == 0); 2255 od->od_object = 0; 2256 missing++; 2257 } else { 2258 od->od_object = lr->lr_foid; 2259 od->od_type = od->od_crtype; 2260 od->od_blocksize = od->od_crblocksize; 2261 od->od_gen = od->od_crgen; 2262 ASSERT(od->od_object != 0); 2263 } 2264 2265 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2266 } 2267 2268 return (missing); 2269 } 2270 2271 static int 2272 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2273 { 2274 int missing = 0; 2275 int error; 2276 2277 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2278 2279 od += count - 1; 2280 2281 for (int i = count - 1; i >= 0; i--, od--) { 2282 if (missing) { 2283 missing++; 2284 continue; 2285 } 2286 2287 /* 2288 * No object was found. 2289 */ 2290 if (od->od_object == 0) 2291 continue; 2292 2293 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2294 2295 lr->lr_doid = od->od_dir; 2296 2297 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2298 ASSERT3U(error, ==, ENOSPC); 2299 missing++; 2300 } else { 2301 od->od_object = 0; 2302 } 2303 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2304 } 2305 2306 return (missing); 2307 } 2308 2309 static int 2310 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2311 void *data) 2312 { 2313 lr_write_t *lr; 2314 int error; 2315 2316 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2317 2318 lr->lr_foid = object; 2319 lr->lr_offset = offset; 2320 lr->lr_length = size; 2321 lr->lr_blkoff = 0; 2322 BP_ZERO(&lr->lr_blkptr); 2323 2324 bcopy(data, lr + 1, size); 2325 2326 error = ztest_replay_write(zd, lr, B_FALSE); 2327 2328 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2329 2330 return (error); 2331 } 2332 2333 static int 2334 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2335 { 2336 lr_truncate_t *lr; 2337 int error; 2338 2339 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2340 2341 lr->lr_foid = object; 2342 lr->lr_offset = offset; 2343 lr->lr_length = size; 2344 2345 error = ztest_replay_truncate(zd, lr, B_FALSE); 2346 2347 ztest_lr_free(lr, sizeof (*lr), NULL); 2348 2349 return (error); 2350 } 2351 2352 static int 2353 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2354 { 2355 lr_setattr_t *lr; 2356 int error; 2357 2358 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2359 2360 lr->lr_foid = object; 2361 lr->lr_size = 0; 2362 lr->lr_mode = 0; 2363 2364 error = ztest_replay_setattr(zd, lr, B_FALSE); 2365 2366 ztest_lr_free(lr, sizeof (*lr), NULL); 2367 2368 return (error); 2369 } 2370 2371 static void 2372 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2373 { 2374 objset_t *os = zd->zd_os; 2375 dmu_tx_t *tx; 2376 uint64_t txg; 2377 rl_t *rl; 2378 2379 txg_wait_synced(dmu_objset_pool(os), 0); 2380 2381 ztest_object_lock(zd, object, RL_READER); 2382 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2383 2384 tx = dmu_tx_create(os); 2385 2386 dmu_tx_hold_write(tx, object, offset, size); 2387 2388 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2389 2390 if (txg != 0) { 2391 dmu_prealloc(os, object, offset, size, tx); 2392 dmu_tx_commit(tx); 2393 txg_wait_synced(dmu_objset_pool(os), txg); 2394 } else { 2395 (void) dmu_free_long_range(os, object, offset, size); 2396 } 2397 2398 ztest_range_unlock(rl); 2399 ztest_object_unlock(zd, object); 2400 } 2401 2402 static void 2403 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2404 { 2405 int err; 2406 ztest_block_tag_t wbt; 2407 dmu_object_info_t doi; 2408 enum ztest_io_type io_type; 2409 uint64_t blocksize; 2410 void *data; 2411 2412 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2413 blocksize = doi.doi_data_block_size; 2414 data = umem_alloc(blocksize, UMEM_NOFAIL); 2415 2416 /* 2417 * Pick an i/o type at random, biased toward writing block tags. 2418 */ 2419 io_type = ztest_random(ZTEST_IO_TYPES); 2420 if (ztest_random(2) == 0) 2421 io_type = ZTEST_IO_WRITE_TAG; 2422 2423 rw_enter(&zd->zd_zilog_lock, RW_READER); 2424 2425 switch (io_type) { 2426 2427 case ZTEST_IO_WRITE_TAG: 2428 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize, 2429 offset, 0, 0, 0); 2430 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2431 break; 2432 2433 case ZTEST_IO_WRITE_PATTERN: 2434 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2435 if (ztest_random(2) == 0) { 2436 /* 2437 * Induce fletcher2 collisions to ensure that 2438 * zio_ddt_collision() detects and resolves them 2439 * when using fletcher2-verify for deduplication. 2440 */ 2441 ((uint64_t *)data)[0] ^= 1ULL << 63; 2442 ((uint64_t *)data)[4] ^= 1ULL << 63; 2443 } 2444 (void) ztest_write(zd, object, offset, blocksize, data); 2445 break; 2446 2447 case ZTEST_IO_WRITE_ZEROES: 2448 bzero(data, blocksize); 2449 (void) ztest_write(zd, object, offset, blocksize, data); 2450 break; 2451 2452 case ZTEST_IO_TRUNCATE: 2453 (void) ztest_truncate(zd, object, offset, blocksize); 2454 break; 2455 2456 case ZTEST_IO_SETATTR: 2457 (void) ztest_setattr(zd, object); 2458 break; 2459 2460 case ZTEST_IO_REWRITE: 2461 rw_enter(&ztest_name_lock, RW_READER); 2462 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2463 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2464 B_FALSE); 2465 VERIFY(err == 0 || err == ENOSPC); 2466 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2467 ZFS_PROP_COMPRESSION, 2468 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2469 B_FALSE); 2470 VERIFY(err == 0 || err == ENOSPC); 2471 rw_exit(&ztest_name_lock); 2472 2473 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2474 DMU_READ_NO_PREFETCH)); 2475 2476 (void) ztest_write(zd, object, offset, blocksize, data); 2477 break; 2478 } 2479 2480 rw_exit(&zd->zd_zilog_lock); 2481 2482 umem_free(data, blocksize); 2483 } 2484 2485 /* 2486 * Initialize an object description template. 2487 */ 2488 static void 2489 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2490 dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize, 2491 uint64_t gen) 2492 { 2493 od->od_dir = ZTEST_DIROBJ; 2494 od->od_object = 0; 2495 2496 od->od_crtype = type; 2497 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2498 od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize(); 2499 od->od_crgen = gen; 2500 2501 od->od_type = DMU_OT_NONE; 2502 od->od_blocksize = 0; 2503 od->od_gen = 0; 2504 2505 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2506 tag, (int64_t)id, index); 2507 } 2508 2509 /* 2510 * Lookup or create the objects for a test using the od template. 2511 * If the objects do not all exist, or if 'remove' is specified, 2512 * remove any existing objects and create new ones. Otherwise, 2513 * use the existing objects. 2514 */ 2515 static int 2516 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2517 { 2518 int count = size / sizeof (*od); 2519 int rv = 0; 2520 2521 mutex_enter(&zd->zd_dirobj_lock); 2522 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2523 (ztest_remove(zd, od, count) != 0 || 2524 ztest_create(zd, od, count) != 0)) 2525 rv = -1; 2526 zd->zd_od = od; 2527 mutex_exit(&zd->zd_dirobj_lock); 2528 2529 return (rv); 2530 } 2531 2532 /* ARGSUSED */ 2533 void 2534 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2535 { 2536 zilog_t *zilog = zd->zd_zilog; 2537 2538 rw_enter(&zd->zd_zilog_lock, RW_READER); 2539 2540 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2541 2542 /* 2543 * Remember the committed values in zd, which is in parent/child 2544 * shared memory. If we die, the next iteration of ztest_run() 2545 * will verify that the log really does contain this record. 2546 */ 2547 mutex_enter(&zilog->zl_lock); 2548 ASSERT(zd->zd_shared != NULL); 2549 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2550 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2551 mutex_exit(&zilog->zl_lock); 2552 2553 rw_exit(&zd->zd_zilog_lock); 2554 } 2555 2556 /* 2557 * This function is designed to simulate the operations that occur during a 2558 * mount/unmount operation. We hold the dataset across these operations in an 2559 * attempt to expose any implicit assumptions about ZIL management. 2560 */ 2561 /* ARGSUSED */ 2562 void 2563 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2564 { 2565 objset_t *os = zd->zd_os; 2566 2567 /* 2568 * We grab the zd_dirobj_lock to ensure that no other thread is 2569 * updating the zil (i.e. adding in-memory log records) and the 2570 * zd_zilog_lock to block any I/O. 2571 */ 2572 mutex_enter(&zd->zd_dirobj_lock); 2573 rw_enter(&zd->zd_zilog_lock, RW_WRITER); 2574 2575 /* zfsvfs_teardown() */ 2576 zil_close(zd->zd_zilog); 2577 2578 /* zfsvfs_setup() */ 2579 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2580 zil_replay(os, zd, ztest_replay_vector); 2581 2582 rw_exit(&zd->zd_zilog_lock); 2583 mutex_exit(&zd->zd_dirobj_lock); 2584 } 2585 2586 /* 2587 * Verify that we can't destroy an active pool, create an existing pool, 2588 * or create a pool with a bad vdev spec. 2589 */ 2590 /* ARGSUSED */ 2591 void 2592 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2593 { 2594 ztest_shared_opts_t *zo = &ztest_opts; 2595 spa_t *spa; 2596 nvlist_t *nvroot; 2597 2598 if (zo->zo_mmp_test) 2599 return; 2600 2601 /* 2602 * Attempt to create using a bad file. 2603 */ 2604 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1); 2605 VERIFY3U(ENOENT, ==, 2606 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL)); 2607 nvlist_free(nvroot); 2608 2609 /* 2610 * Attempt to create using a bad mirror. 2611 */ 2612 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1); 2613 VERIFY3U(ENOENT, ==, 2614 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL)); 2615 nvlist_free(nvroot); 2616 2617 /* 2618 * Attempt to create an existing pool. It shouldn't matter 2619 * what's in the nvroot; we should fail with EEXIST. 2620 */ 2621 rw_enter(&ztest_name_lock, RW_READER); 2622 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1); 2623 VERIFY3U(EEXIST, ==, 2624 spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL)); 2625 nvlist_free(nvroot); 2626 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2627 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2628 spa_close(spa, FTAG); 2629 2630 rw_exit(&ztest_name_lock); 2631 } 2632 2633 /* 2634 * Start and then stop the MMP threads to ensure the startup and shutdown code 2635 * works properly. Actual protection and property-related code tested via ZTS. 2636 */ 2637 /* ARGSUSED */ 2638 void 2639 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id) 2640 { 2641 ztest_shared_opts_t *zo = &ztest_opts; 2642 spa_t *spa = ztest_spa; 2643 2644 if (zo->zo_mmp_test) 2645 return; 2646 2647 /* 2648 * Since enabling MMP involves setting a property, it could not be done 2649 * while the pool is suspended. 2650 */ 2651 if (spa_suspended(spa)) 2652 return; 2653 2654 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2655 mutex_enter(&spa->spa_props_lock); 2656 2657 zfs_multihost_fail_intervals = 0; 2658 2659 if (!spa_multihost(spa)) { 2660 spa->spa_multihost = B_TRUE; 2661 mmp_thread_start(spa); 2662 } 2663 2664 mutex_exit(&spa->spa_props_lock); 2665 spa_config_exit(spa, SCL_CONFIG, FTAG); 2666 2667 txg_wait_synced(spa_get_dsl(spa), 0); 2668 mmp_signal_all_threads(); 2669 txg_wait_synced(spa_get_dsl(spa), 0); 2670 2671 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2672 mutex_enter(&spa->spa_props_lock); 2673 2674 if (spa_multihost(spa)) { 2675 mmp_thread_stop(spa); 2676 spa->spa_multihost = B_FALSE; 2677 } 2678 2679 mutex_exit(&spa->spa_props_lock); 2680 spa_config_exit(spa, SCL_CONFIG, FTAG); 2681 } 2682 2683 /* ARGSUSED */ 2684 void 2685 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2686 { 2687 spa_t *spa; 2688 uint64_t initial_version = SPA_VERSION_INITIAL; 2689 uint64_t version, newversion; 2690 nvlist_t *nvroot, *props; 2691 char *name; 2692 2693 if (ztest_opts.zo_mmp_test) 2694 return; 2695 2696 mutex_enter(&ztest_vdev_lock); 2697 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2698 2699 /* 2700 * Clean up from previous runs. 2701 */ 2702 (void) spa_destroy(name); 2703 2704 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2705 NULL, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2706 2707 /* 2708 * If we're configuring a RAIDZ device then make sure that the 2709 * the initial version is capable of supporting that feature. 2710 */ 2711 switch (ztest_opts.zo_raidz_parity) { 2712 case 0: 2713 case 1: 2714 initial_version = SPA_VERSION_INITIAL; 2715 break; 2716 case 2: 2717 initial_version = SPA_VERSION_RAIDZ2; 2718 break; 2719 case 3: 2720 initial_version = SPA_VERSION_RAIDZ3; 2721 break; 2722 } 2723 2724 /* 2725 * Create a pool with a spa version that can be upgraded. Pick 2726 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2727 */ 2728 do { 2729 version = ztest_random_spa_version(initial_version); 2730 } while (version > SPA_VERSION_BEFORE_FEATURES); 2731 2732 props = fnvlist_alloc(); 2733 fnvlist_add_uint64(props, 2734 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2735 VERIFY0(spa_create(name, nvroot, props, NULL, NULL)); 2736 fnvlist_free(nvroot); 2737 fnvlist_free(props); 2738 2739 VERIFY0(spa_open(name, &spa, FTAG)); 2740 VERIFY3U(spa_version(spa), ==, version); 2741 newversion = ztest_random_spa_version(version + 1); 2742 2743 if (ztest_opts.zo_verbose >= 4) { 2744 (void) printf("upgrading spa version from %llu to %llu\n", 2745 (u_longlong_t)version, (u_longlong_t)newversion); 2746 } 2747 2748 spa_upgrade(spa, newversion); 2749 VERIFY3U(spa_version(spa), >, version); 2750 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2751 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2752 spa_close(spa, FTAG); 2753 2754 strfree(name); 2755 mutex_exit(&ztest_vdev_lock); 2756 } 2757 2758 static void 2759 ztest_spa_checkpoint(spa_t *spa) 2760 { 2761 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); 2762 2763 int error = spa_checkpoint(spa->spa_name); 2764 2765 switch (error) { 2766 case 0: 2767 case ZFS_ERR_DEVRM_IN_PROGRESS: 2768 case ZFS_ERR_DISCARDING_CHECKPOINT: 2769 case ZFS_ERR_CHECKPOINT_EXISTS: 2770 break; 2771 case ENOSPC: 2772 ztest_record_enospc(FTAG); 2773 break; 2774 default: 2775 fatal(0, "spa_checkpoint(%s) = %d", spa->spa_name, error); 2776 } 2777 } 2778 2779 static void 2780 ztest_spa_discard_checkpoint(spa_t *spa) 2781 { 2782 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); 2783 2784 int error = spa_checkpoint_discard(spa->spa_name); 2785 2786 switch (error) { 2787 case 0: 2788 case ZFS_ERR_DISCARDING_CHECKPOINT: 2789 case ZFS_ERR_NO_CHECKPOINT: 2790 break; 2791 default: 2792 fatal(0, "spa_discard_checkpoint(%s) = %d", 2793 spa->spa_name, error); 2794 } 2795 2796 } 2797 2798 /* ARGSUSED */ 2799 void 2800 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id) 2801 { 2802 spa_t *spa = ztest_spa; 2803 2804 mutex_enter(&ztest_checkpoint_lock); 2805 if (ztest_random(2) == 0) { 2806 ztest_spa_checkpoint(spa); 2807 } else { 2808 ztest_spa_discard_checkpoint(spa); 2809 } 2810 mutex_exit(&ztest_checkpoint_lock); 2811 } 2812 2813 2814 static vdev_t * 2815 vdev_lookup_by_path(vdev_t *vd, const char *path) 2816 { 2817 vdev_t *mvd; 2818 2819 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2820 return (vd); 2821 2822 for (int c = 0; c < vd->vdev_children; c++) 2823 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2824 NULL) 2825 return (mvd); 2826 2827 return (NULL); 2828 } 2829 2830 /* 2831 * Find the first available hole which can be used as a top-level. 2832 */ 2833 int 2834 find_vdev_hole(spa_t *spa) 2835 { 2836 vdev_t *rvd = spa->spa_root_vdev; 2837 int c; 2838 2839 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2840 2841 for (c = 0; c < rvd->vdev_children; c++) { 2842 vdev_t *cvd = rvd->vdev_child[c]; 2843 2844 if (cvd->vdev_ishole) 2845 break; 2846 } 2847 return (c); 2848 } 2849 2850 /* 2851 * Verify that vdev_add() works as expected. 2852 */ 2853 /* ARGSUSED */ 2854 void 2855 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2856 { 2857 ztest_shared_t *zs = ztest_shared; 2858 spa_t *spa = ztest_spa; 2859 uint64_t leaves; 2860 uint64_t guid; 2861 nvlist_t *nvroot; 2862 int error; 2863 2864 if (ztest_opts.zo_mmp_test) 2865 return; 2866 2867 mutex_enter(&ztest_vdev_lock); 2868 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2869 2870 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2871 2872 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2873 2874 /* 2875 * If we have slogs then remove them 1/4 of the time. 2876 */ 2877 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2878 metaslab_group_t *mg; 2879 2880 /* 2881 * find the first real slog in log allocation class 2882 */ 2883 mg = spa_log_class(spa)->mc_rotor; 2884 while (!mg->mg_vd->vdev_islog) 2885 mg = mg->mg_next; 2886 2887 guid = mg->mg_vd->vdev_guid; 2888 2889 spa_config_exit(spa, SCL_VDEV, FTAG); 2890 2891 /* 2892 * We have to grab the zs_name_lock as writer to 2893 * prevent a race between removing a slog (dmu_objset_find) 2894 * and destroying a dataset. Removing the slog will 2895 * grab a reference on the dataset which may cause 2896 * dmu_objset_destroy() to fail with EBUSY thus 2897 * leaving the dataset in an inconsistent state. 2898 */ 2899 rw_enter(&ztest_name_lock, RW_WRITER); 2900 error = spa_vdev_remove(spa, guid, B_FALSE); 2901 rw_exit(&ztest_name_lock); 2902 2903 switch (error) { 2904 case 0: 2905 case EEXIST: 2906 case ZFS_ERR_CHECKPOINT_EXISTS: 2907 case ZFS_ERR_DISCARDING_CHECKPOINT: 2908 break; 2909 default: 2910 fatal(0, "spa_vdev_remove() = %d", error); 2911 } 2912 } else { 2913 spa_config_exit(spa, SCL_VDEV, FTAG); 2914 2915 /* 2916 * Make 1/4 of the devices be log devices 2917 */ 2918 nvroot = make_vdev_root(NULL, NULL, NULL, 2919 ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ? 2920 "log" : NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 2921 2922 error = spa_vdev_add(spa, nvroot); 2923 nvlist_free(nvroot); 2924 2925 switch (error) { 2926 case 0: 2927 break; 2928 case ENOSPC: 2929 ztest_record_enospc("spa_vdev_add"); 2930 break; 2931 default: 2932 fatal(0, "spa_vdev_add() = %d", error); 2933 } 2934 } 2935 2936 mutex_exit(&ztest_vdev_lock); 2937 } 2938 2939 /* ARGSUSED */ 2940 void 2941 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id) 2942 { 2943 ztest_shared_t *zs = ztest_shared; 2944 spa_t *spa = ztest_spa; 2945 uint64_t leaves; 2946 nvlist_t *nvroot; 2947 const char *class = (ztest_random(2) == 0) ? 2948 VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP; 2949 int error; 2950 2951 /* 2952 * By default add a special vdev 50% of the time 2953 */ 2954 if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) || 2955 (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND && 2956 ztest_random(2) == 0)) { 2957 return; 2958 } 2959 2960 mutex_enter(&ztest_vdev_lock); 2961 2962 /* Only test with mirrors */ 2963 if (zs->zs_mirrors < 2) { 2964 mutex_exit(&ztest_vdev_lock); 2965 return; 2966 } 2967 2968 /* requires feature@allocation_classes */ 2969 if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) { 2970 mutex_exit(&ztest_vdev_lock); 2971 return; 2972 } 2973 2974 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2975 2976 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2977 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2978 spa_config_exit(spa, SCL_VDEV, FTAG); 2979 2980 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 2981 class, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 2982 2983 error = spa_vdev_add(spa, nvroot); 2984 nvlist_free(nvroot); 2985 2986 if (error == ENOSPC) 2987 ztest_record_enospc("spa_vdev_add"); 2988 else if (error != 0) 2989 fatal(0, "spa_vdev_add() = %d", error); 2990 2991 /* 2992 * 50% of the time allow small blocks in the special class 2993 */ 2994 if (error == 0 && 2995 spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) { 2996 if (ztest_opts.zo_verbose >= 3) 2997 (void) printf("Enabling special VDEV small blocks\n"); 2998 (void) ztest_dsl_prop_set_uint64(zd->zd_name, 2999 ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE); 3000 } 3001 3002 mutex_exit(&ztest_vdev_lock); 3003 3004 if (ztest_opts.zo_verbose >= 3) { 3005 metaslab_class_t *mc; 3006 3007 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0) 3008 mc = spa_special_class(spa); 3009 else 3010 mc = spa_dedup_class(spa); 3011 (void) printf("Added a %s mirrored vdev (of %d)\n", 3012 class, (int)mc->mc_groups); 3013 } 3014 } 3015 3016 /* 3017 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 3018 */ 3019 /* ARGSUSED */ 3020 void 3021 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 3022 { 3023 ztest_shared_t *zs = ztest_shared; 3024 spa_t *spa = ztest_spa; 3025 vdev_t *rvd = spa->spa_root_vdev; 3026 spa_aux_vdev_t *sav; 3027 char *aux; 3028 uint64_t guid = 0; 3029 int error; 3030 3031 if (ztest_opts.zo_mmp_test) 3032 return; 3033 3034 if (ztest_random(2) == 0) { 3035 sav = &spa->spa_spares; 3036 aux = ZPOOL_CONFIG_SPARES; 3037 } else { 3038 sav = &spa->spa_l2cache; 3039 aux = ZPOOL_CONFIG_L2CACHE; 3040 } 3041 3042 mutex_enter(&ztest_vdev_lock); 3043 3044 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3045 3046 if (sav->sav_count != 0 && ztest_random(4) == 0) { 3047 /* 3048 * Pick a random device to remove. 3049 */ 3050 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 3051 } else { 3052 /* 3053 * Find an unused device we can add. 3054 */ 3055 zs->zs_vdev_aux = 0; 3056 for (;;) { 3057 char path[MAXPATHLEN]; 3058 int c; 3059 (void) snprintf(path, sizeof (path), ztest_aux_template, 3060 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 3061 zs->zs_vdev_aux); 3062 for (c = 0; c < sav->sav_count; c++) 3063 if (strcmp(sav->sav_vdevs[c]->vdev_path, 3064 path) == 0) 3065 break; 3066 if (c == sav->sav_count && 3067 vdev_lookup_by_path(rvd, path) == NULL) 3068 break; 3069 zs->zs_vdev_aux++; 3070 } 3071 } 3072 3073 spa_config_exit(spa, SCL_VDEV, FTAG); 3074 3075 if (guid == 0) { 3076 /* 3077 * Add a new device. 3078 */ 3079 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 3080 (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1); 3081 error = spa_vdev_add(spa, nvroot); 3082 3083 switch (error) { 3084 case 0: 3085 break; 3086 default: 3087 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 3088 } 3089 nvlist_free(nvroot); 3090 } else { 3091 /* 3092 * Remove an existing device. Sometimes, dirty its 3093 * vdev state first to make sure we handle removal 3094 * of devices that have pending state changes. 3095 */ 3096 if (ztest_random(2) == 0) 3097 (void) vdev_online(spa, guid, 0, NULL); 3098 3099 error = spa_vdev_remove(spa, guid, B_FALSE); 3100 3101 switch (error) { 3102 case 0: 3103 case EBUSY: 3104 case ZFS_ERR_CHECKPOINT_EXISTS: 3105 case ZFS_ERR_DISCARDING_CHECKPOINT: 3106 break; 3107 default: 3108 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 3109 } 3110 } 3111 3112 mutex_exit(&ztest_vdev_lock); 3113 } 3114 3115 /* 3116 * split a pool if it has mirror tlvdevs 3117 */ 3118 /* ARGSUSED */ 3119 void 3120 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 3121 { 3122 ztest_shared_t *zs = ztest_shared; 3123 spa_t *spa = ztest_spa; 3124 vdev_t *rvd = spa->spa_root_vdev; 3125 nvlist_t *tree, **child, *config, *split, **schild; 3126 uint_t c, children, schildren = 0, lastlogid = 0; 3127 int error = 0; 3128 3129 if (ztest_opts.zo_mmp_test) 3130 return; 3131 3132 mutex_enter(&ztest_vdev_lock); 3133 3134 /* ensure we have a useable config; mirrors of raidz aren't supported */ 3135 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 3136 mutex_exit(&ztest_vdev_lock); 3137 return; 3138 } 3139 3140 /* clean up the old pool, if any */ 3141 (void) spa_destroy("splitp"); 3142 3143 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3144 3145 /* generate a config from the existing config */ 3146 mutex_enter(&spa->spa_props_lock); 3147 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 3148 &tree) == 0); 3149 mutex_exit(&spa->spa_props_lock); 3150 3151 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 3152 &children) == 0); 3153 3154 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 3155 for (c = 0; c < children; c++) { 3156 vdev_t *tvd = rvd->vdev_child[c]; 3157 nvlist_t **mchild; 3158 uint_t mchildren; 3159 3160 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 3161 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 3162 0) == 0); 3163 VERIFY(nvlist_add_string(schild[schildren], 3164 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 3165 VERIFY(nvlist_add_uint64(schild[schildren], 3166 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 3167 if (lastlogid == 0) 3168 lastlogid = schildren; 3169 ++schildren; 3170 continue; 3171 } 3172 lastlogid = 0; 3173 VERIFY(nvlist_lookup_nvlist_array(child[c], 3174 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 3175 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 3176 } 3177 3178 /* OK, create a config that can be used to split */ 3179 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 3180 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 3181 VDEV_TYPE_ROOT) == 0); 3182 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 3183 lastlogid != 0 ? lastlogid : schildren) == 0); 3184 3185 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 3186 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 3187 3188 for (c = 0; c < schildren; c++) 3189 nvlist_free(schild[c]); 3190 free(schild); 3191 nvlist_free(split); 3192 3193 spa_config_exit(spa, SCL_VDEV, FTAG); 3194 3195 rw_enter(&ztest_name_lock, RW_WRITER); 3196 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 3197 rw_exit(&ztest_name_lock); 3198 3199 nvlist_free(config); 3200 3201 if (error == 0) { 3202 (void) printf("successful split - results:\n"); 3203 mutex_enter(&spa_namespace_lock); 3204 show_pool_stats(spa); 3205 show_pool_stats(spa_lookup("splitp")); 3206 mutex_exit(&spa_namespace_lock); 3207 ++zs->zs_splits; 3208 --zs->zs_mirrors; 3209 } 3210 mutex_exit(&ztest_vdev_lock); 3211 } 3212 3213 /* 3214 * Verify that we can attach and detach devices. 3215 */ 3216 /* ARGSUSED */ 3217 void 3218 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 3219 { 3220 ztest_shared_t *zs = ztest_shared; 3221 spa_t *spa = ztest_spa; 3222 spa_aux_vdev_t *sav = &spa->spa_spares; 3223 vdev_t *rvd = spa->spa_root_vdev; 3224 vdev_t *oldvd, *newvd, *pvd; 3225 nvlist_t *root; 3226 uint64_t leaves; 3227 uint64_t leaf, top; 3228 uint64_t ashift = ztest_get_ashift(); 3229 uint64_t oldguid, pguid; 3230 uint64_t oldsize, newsize; 3231 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 3232 int replacing; 3233 int oldvd_has_siblings = B_FALSE; 3234 int newvd_is_spare = B_FALSE; 3235 int oldvd_is_log; 3236 int error, expected_error; 3237 3238 if (ztest_opts.zo_mmp_test) 3239 return; 3240 3241 mutex_enter(&ztest_vdev_lock); 3242 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 3243 3244 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3245 3246 /* 3247 * If a vdev is in the process of being removed, its removal may 3248 * finish while we are in progress, leading to an unexpected error 3249 * value. Don't bother trying to attach while we are in the middle 3250 * of removal. 3251 */ 3252 if (ztest_device_removal_active) { 3253 spa_config_exit(spa, SCL_ALL, FTAG); 3254 mutex_exit(&ztest_vdev_lock); 3255 return; 3256 } 3257 3258 /* 3259 * Decide whether to do an attach or a replace. 3260 */ 3261 replacing = ztest_random(2); 3262 3263 /* 3264 * Pick a random top-level vdev. 3265 */ 3266 top = ztest_random_vdev_top(spa, B_TRUE); 3267 3268 /* 3269 * Pick a random leaf within it. 3270 */ 3271 leaf = ztest_random(leaves); 3272 3273 /* 3274 * Locate this vdev. 3275 */ 3276 oldvd = rvd->vdev_child[top]; 3277 3278 /* pick a child from the mirror */ 3279 if (zs->zs_mirrors >= 1) { 3280 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 3281 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 3282 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 3283 } 3284 3285 /* pick a child out of the raidz group */ 3286 if (ztest_opts.zo_raidz > 1) { 3287 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 3288 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 3289 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 3290 } 3291 3292 /* 3293 * If we're already doing an attach or replace, oldvd may be a 3294 * mirror vdev -- in which case, pick a random child. 3295 */ 3296 while (oldvd->vdev_children != 0) { 3297 oldvd_has_siblings = B_TRUE; 3298 ASSERT(oldvd->vdev_children >= 2); 3299 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 3300 } 3301 3302 oldguid = oldvd->vdev_guid; 3303 oldsize = vdev_get_min_asize(oldvd); 3304 oldvd_is_log = oldvd->vdev_top->vdev_islog; 3305 (void) strcpy(oldpath, oldvd->vdev_path); 3306 pvd = oldvd->vdev_parent; 3307 pguid = pvd->vdev_guid; 3308 3309 /* 3310 * If oldvd has siblings, then half of the time, detach it. 3311 */ 3312 if (oldvd_has_siblings && ztest_random(2) == 0) { 3313 spa_config_exit(spa, SCL_ALL, FTAG); 3314 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 3315 if (error != 0 && error != ENODEV && error != EBUSY && 3316 error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS && 3317 error != ZFS_ERR_DISCARDING_CHECKPOINT) 3318 fatal(0, "detach (%s) returned %d", oldpath, error); 3319 mutex_exit(&ztest_vdev_lock); 3320 return; 3321 } 3322 3323 /* 3324 * For the new vdev, choose with equal probability between the two 3325 * standard paths (ending in either 'a' or 'b') or a random hot spare. 3326 */ 3327 if (sav->sav_count != 0 && ztest_random(3) == 0) { 3328 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 3329 newvd_is_spare = B_TRUE; 3330 (void) strcpy(newpath, newvd->vdev_path); 3331 } else { 3332 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 3333 ztest_opts.zo_dir, ztest_opts.zo_pool, 3334 top * leaves + leaf); 3335 if (ztest_random(2) == 0) 3336 newpath[strlen(newpath) - 1] = 'b'; 3337 newvd = vdev_lookup_by_path(rvd, newpath); 3338 } 3339 3340 if (newvd) { 3341 /* 3342 * Reopen to ensure the vdev's asize field isn't stale. 3343 */ 3344 vdev_reopen(newvd); 3345 newsize = vdev_get_min_asize(newvd); 3346 } else { 3347 /* 3348 * Make newsize a little bigger or smaller than oldsize. 3349 * If it's smaller, the attach should fail. 3350 * If it's larger, and we're doing a replace, 3351 * we should get dynamic LUN growth when we're done. 3352 */ 3353 newsize = 10 * oldsize / (9 + ztest_random(3)); 3354 } 3355 3356 /* 3357 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 3358 * unless it's a replace; in that case any non-replacing parent is OK. 3359 * 3360 * If newvd is already part of the pool, it should fail with EBUSY. 3361 * 3362 * If newvd is too small, it should fail with EOVERFLOW. 3363 */ 3364 if (pvd->vdev_ops != &vdev_mirror_ops && 3365 pvd->vdev_ops != &vdev_root_ops && (!replacing || 3366 pvd->vdev_ops == &vdev_replacing_ops || 3367 pvd->vdev_ops == &vdev_spare_ops)) 3368 expected_error = ENOTSUP; 3369 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 3370 expected_error = ENOTSUP; 3371 else if (newvd == oldvd) 3372 expected_error = replacing ? 0 : EBUSY; 3373 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 3374 expected_error = EBUSY; 3375 else if (newsize < oldsize) 3376 expected_error = EOVERFLOW; 3377 else if (ashift > oldvd->vdev_top->vdev_ashift) 3378 expected_error = EDOM; 3379 else 3380 expected_error = 0; 3381 3382 spa_config_exit(spa, SCL_ALL, FTAG); 3383 3384 /* 3385 * Build the nvlist describing newpath. 3386 */ 3387 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 3388 ashift, NULL, 0, 0, 1); 3389 3390 error = spa_vdev_attach(spa, oldguid, root, replacing); 3391 3392 nvlist_free(root); 3393 3394 /* 3395 * If our parent was the replacing vdev, but the replace completed, 3396 * then instead of failing with ENOTSUP we may either succeed, 3397 * fail with ENODEV, or fail with EOVERFLOW. 3398 */ 3399 if (expected_error == ENOTSUP && 3400 (error == 0 || error == ENODEV || error == EOVERFLOW)) 3401 expected_error = error; 3402 3403 /* 3404 * If someone grew the LUN, the replacement may be too small. 3405 */ 3406 if (error == EOVERFLOW || error == EBUSY) 3407 expected_error = error; 3408 3409 if (error == ZFS_ERR_CHECKPOINT_EXISTS || 3410 error == ZFS_ERR_DISCARDING_CHECKPOINT) 3411 expected_error = error; 3412 3413 /* XXX workaround 6690467 */ 3414 if (error != expected_error && expected_error != EBUSY) { 3415 fatal(0, "attach (%s %llu, %s %llu, %d) " 3416 "returned %d, expected %d", 3417 oldpath, oldsize, newpath, 3418 newsize, replacing, error, expected_error); 3419 } 3420 3421 mutex_exit(&ztest_vdev_lock); 3422 } 3423 3424 /* ARGSUSED */ 3425 void 3426 ztest_device_removal(ztest_ds_t *zd, uint64_t id) 3427 { 3428 spa_t *spa = ztest_spa; 3429 vdev_t *vd; 3430 uint64_t guid; 3431 int error; 3432 3433 mutex_enter(&ztest_vdev_lock); 3434 3435 if (ztest_device_removal_active) { 3436 mutex_exit(&ztest_vdev_lock); 3437 return; 3438 } 3439 3440 /* 3441 * Remove a random top-level vdev and wait for removal to finish. 3442 */ 3443 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3444 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE)); 3445 guid = vd->vdev_guid; 3446 spa_config_exit(spa, SCL_VDEV, FTAG); 3447 3448 error = spa_vdev_remove(spa, guid, B_FALSE); 3449 if (error == 0) { 3450 ztest_device_removal_active = B_TRUE; 3451 mutex_exit(&ztest_vdev_lock); 3452 3453 while (spa->spa_vdev_removal != NULL) 3454 txg_wait_synced(spa_get_dsl(spa), 0); 3455 } else { 3456 mutex_exit(&ztest_vdev_lock); 3457 return; 3458 } 3459 3460 /* 3461 * The pool needs to be scrubbed after completing device removal. 3462 * Failure to do so may result in checksum errors due to the 3463 * strategy employed by ztest_fault_inject() when selecting which 3464 * offset are redundant and can be damaged. 3465 */ 3466 error = spa_scan(spa, POOL_SCAN_SCRUB); 3467 if (error == 0) { 3468 while (dsl_scan_scrubbing(spa_get_dsl(spa))) 3469 txg_wait_synced(spa_get_dsl(spa), 0); 3470 } 3471 3472 mutex_enter(&ztest_vdev_lock); 3473 ztest_device_removal_active = B_FALSE; 3474 mutex_exit(&ztest_vdev_lock); 3475 } 3476 3477 /* 3478 * Callback function which expands the physical size of the vdev. 3479 */ 3480 vdev_t * 3481 grow_vdev(vdev_t *vd, void *arg) 3482 { 3483 spa_t *spa = vd->vdev_spa; 3484 size_t *newsize = arg; 3485 size_t fsize; 3486 int fd; 3487 3488 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 3489 ASSERT(vd->vdev_ops->vdev_op_leaf); 3490 3491 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 3492 return (vd); 3493 3494 fsize = lseek(fd, 0, SEEK_END); 3495 (void) ftruncate(fd, *newsize); 3496 3497 if (ztest_opts.zo_verbose >= 6) { 3498 (void) printf("%s grew from %lu to %lu bytes\n", 3499 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 3500 } 3501 (void) close(fd); 3502 return (NULL); 3503 } 3504 3505 /* 3506 * Callback function which expands a given vdev by calling vdev_online(). 3507 */ 3508 /* ARGSUSED */ 3509 vdev_t * 3510 online_vdev(vdev_t *vd, void *arg) 3511 { 3512 spa_t *spa = vd->vdev_spa; 3513 vdev_t *tvd = vd->vdev_top; 3514 uint64_t guid = vd->vdev_guid; 3515 uint64_t generation = spa->spa_config_generation + 1; 3516 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 3517 int error; 3518 3519 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 3520 ASSERT(vd->vdev_ops->vdev_op_leaf); 3521 3522 /* Calling vdev_online will initialize the new metaslabs */ 3523 spa_config_exit(spa, SCL_STATE, spa); 3524 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 3525 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3526 3527 /* 3528 * If vdev_online returned an error or the underlying vdev_open 3529 * failed then we abort the expand. The only way to know that 3530 * vdev_open fails is by checking the returned newstate. 3531 */ 3532 if (error || newstate != VDEV_STATE_HEALTHY) { 3533 if (ztest_opts.zo_verbose >= 5) { 3534 (void) printf("Unable to expand vdev, state %llu, " 3535 "error %d\n", (u_longlong_t)newstate, error); 3536 } 3537 return (vd); 3538 } 3539 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 3540 3541 /* 3542 * Since we dropped the lock we need to ensure that we're 3543 * still talking to the original vdev. It's possible this 3544 * vdev may have been detached/replaced while we were 3545 * trying to online it. 3546 */ 3547 if (generation != spa->spa_config_generation) { 3548 if (ztest_opts.zo_verbose >= 5) { 3549 (void) printf("vdev configuration has changed, " 3550 "guid %llu, state %llu, expected gen %llu, " 3551 "got gen %llu\n", 3552 (u_longlong_t)guid, 3553 (u_longlong_t)tvd->vdev_state, 3554 (u_longlong_t)generation, 3555 (u_longlong_t)spa->spa_config_generation); 3556 } 3557 return (vd); 3558 } 3559 return (NULL); 3560 } 3561 3562 /* 3563 * Traverse the vdev tree calling the supplied function. 3564 * We continue to walk the tree until we either have walked all 3565 * children or we receive a non-NULL return from the callback. 3566 * If a NULL callback is passed, then we just return back the first 3567 * leaf vdev we encounter. 3568 */ 3569 vdev_t * 3570 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 3571 { 3572 if (vd->vdev_ops->vdev_op_leaf) { 3573 if (func == NULL) 3574 return (vd); 3575 else 3576 return (func(vd, arg)); 3577 } 3578 3579 for (uint_t c = 0; c < vd->vdev_children; c++) { 3580 vdev_t *cvd = vd->vdev_child[c]; 3581 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3582 return (cvd); 3583 } 3584 return (NULL); 3585 } 3586 3587 /* 3588 * Verify that dynamic LUN growth works as expected. 3589 */ 3590 /* ARGSUSED */ 3591 void 3592 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3593 { 3594 spa_t *spa = ztest_spa; 3595 vdev_t *vd, *tvd; 3596 metaslab_class_t *mc; 3597 metaslab_group_t *mg; 3598 size_t psize, newsize; 3599 uint64_t top; 3600 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3601 3602 mutex_enter(&ztest_checkpoint_lock); 3603 mutex_enter(&ztest_vdev_lock); 3604 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3605 3606 /* 3607 * If there is a vdev removal in progress, it could complete while 3608 * we are running, in which case we would not be able to verify 3609 * that the metaslab_class space increased (because it decreases 3610 * when the device removal completes). 3611 */ 3612 if (ztest_device_removal_active) { 3613 spa_config_exit(spa, SCL_STATE, spa); 3614 mutex_exit(&ztest_vdev_lock); 3615 mutex_exit(&ztest_checkpoint_lock); 3616 return; 3617 } 3618 3619 top = ztest_random_vdev_top(spa, B_TRUE); 3620 3621 tvd = spa->spa_root_vdev->vdev_child[top]; 3622 mg = tvd->vdev_mg; 3623 mc = mg->mg_class; 3624 old_ms_count = tvd->vdev_ms_count; 3625 old_class_space = metaslab_class_get_space(mc); 3626 3627 /* 3628 * Determine the size of the first leaf vdev associated with 3629 * our top-level device. 3630 */ 3631 vd = vdev_walk_tree(tvd, NULL, NULL); 3632 ASSERT3P(vd, !=, NULL); 3633 ASSERT(vd->vdev_ops->vdev_op_leaf); 3634 3635 psize = vd->vdev_psize; 3636 3637 /* 3638 * We only try to expand the vdev if it's healthy, less than 4x its 3639 * original size, and it has a valid psize. 3640 */ 3641 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3642 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3643 spa_config_exit(spa, SCL_STATE, spa); 3644 mutex_exit(&ztest_vdev_lock); 3645 mutex_exit(&ztest_checkpoint_lock); 3646 return; 3647 } 3648 ASSERT(psize > 0); 3649 newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE); 3650 ASSERT3U(newsize, >, psize); 3651 3652 if (ztest_opts.zo_verbose >= 6) { 3653 (void) printf("Expanding LUN %s from %lu to %lu\n", 3654 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3655 } 3656 3657 /* 3658 * Growing the vdev is a two step process: 3659 * 1). expand the physical size (i.e. relabel) 3660 * 2). online the vdev to create the new metaslabs 3661 */ 3662 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3663 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3664 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3665 if (ztest_opts.zo_verbose >= 5) { 3666 (void) printf("Could not expand LUN because " 3667 "the vdev configuration changed.\n"); 3668 } 3669 spa_config_exit(spa, SCL_STATE, spa); 3670 mutex_exit(&ztest_vdev_lock); 3671 mutex_exit(&ztest_checkpoint_lock); 3672 return; 3673 } 3674 3675 spa_config_exit(spa, SCL_STATE, spa); 3676 3677 /* 3678 * Expanding the LUN will update the config asynchronously, 3679 * thus we must wait for the async thread to complete any 3680 * pending tasks before proceeding. 3681 */ 3682 for (;;) { 3683 boolean_t done; 3684 mutex_enter(&spa->spa_async_lock); 3685 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3686 mutex_exit(&spa->spa_async_lock); 3687 if (done) 3688 break; 3689 txg_wait_synced(spa_get_dsl(spa), 0); 3690 (void) poll(NULL, 0, 100); 3691 } 3692 3693 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3694 3695 tvd = spa->spa_root_vdev->vdev_child[top]; 3696 new_ms_count = tvd->vdev_ms_count; 3697 new_class_space = metaslab_class_get_space(mc); 3698 3699 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3700 if (ztest_opts.zo_verbose >= 5) { 3701 (void) printf("Could not verify LUN expansion due to " 3702 "intervening vdev offline or remove.\n"); 3703 } 3704 spa_config_exit(spa, SCL_STATE, spa); 3705 mutex_exit(&ztest_vdev_lock); 3706 mutex_exit(&ztest_checkpoint_lock); 3707 return; 3708 } 3709 3710 /* 3711 * Make sure we were able to grow the vdev. 3712 */ 3713 if (new_ms_count <= old_ms_count) { 3714 fatal(0, "LUN expansion failed: ms_count %llu < %llu\n", 3715 old_ms_count, new_ms_count); 3716 } 3717 3718 /* 3719 * Make sure we were able to grow the pool. 3720 */ 3721 if (new_class_space <= old_class_space) { 3722 fatal(0, "LUN expansion failed: class_space %llu < %llu\n", 3723 old_class_space, new_class_space); 3724 } 3725 3726 if (ztest_opts.zo_verbose >= 5) { 3727 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ]; 3728 3729 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf)); 3730 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf)); 3731 (void) printf("%s grew from %s to %s\n", 3732 spa->spa_name, oldnumbuf, newnumbuf); 3733 } 3734 3735 spa_config_exit(spa, SCL_STATE, spa); 3736 mutex_exit(&ztest_vdev_lock); 3737 mutex_exit(&ztest_checkpoint_lock); 3738 } 3739 3740 /* 3741 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3742 */ 3743 /* ARGSUSED */ 3744 static void 3745 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3746 { 3747 /* 3748 * Create the objects common to all ztest datasets. 3749 */ 3750 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3751 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3752 } 3753 3754 static int 3755 ztest_dataset_create(char *dsname) 3756 { 3757 int err; 3758 uint64_t rand; 3759 dsl_crypto_params_t *dcp = NULL; 3760 3761 /* 3762 * 50% of the time, we create encrypted datasets 3763 * using a random cipher suite and a hard-coded 3764 * wrapping key. 3765 */ 3766 #ifdef WITHCRYPTO 3767 /* 3768 * Until the crypto framework is compiled in userland, the ztest using 3769 * crypto will not work. 3770 */ 3771 rand = ztest_random(2); 3772 #else 3773 rand = 0; 3774 #endif 3775 if (rand != 0) { 3776 nvlist_t *crypto_args = fnvlist_alloc(); 3777 nvlist_t *props = fnvlist_alloc(); 3778 3779 /* slight bias towards the default cipher suite */ 3780 rand = ztest_random(ZIO_CRYPT_FUNCTIONS); 3781 if (rand < ZIO_CRYPT_AES_128_CCM) 3782 rand = ZIO_CRYPT_ON; 3783 3784 fnvlist_add_uint64(props, 3785 zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand); 3786 fnvlist_add_uint8_array(crypto_args, "wkeydata", 3787 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN); 3788 3789 /* 3790 * These parameters aren't really used by the kernel. They 3791 * are simply stored so that userspace knows how to load 3792 * the wrapping key. 3793 */ 3794 fnvlist_add_uint64(props, 3795 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW); 3796 fnvlist_add_string(props, 3797 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt"); 3798 fnvlist_add_uint64(props, 3799 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL); 3800 fnvlist_add_uint64(props, 3801 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL); 3802 3803 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props, 3804 crypto_args, &dcp)); 3805 3806 fnvlist_free(crypto_args); 3807 fnvlist_free(props); 3808 } 3809 3810 err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp, 3811 ztest_objset_create_cb, NULL); 3812 dsl_crypto_params_free(dcp, !!err); 3813 3814 rand = ztest_random(100); 3815 if (err || rand < 80) 3816 return (err); 3817 3818 if (ztest_opts.zo_verbose >= 6) 3819 (void) printf("Setting dataset %s to sync always\n", dsname); 3820 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3821 ZFS_SYNC_ALWAYS, B_FALSE)); 3822 } 3823 3824 /* ARGSUSED */ 3825 static int 3826 ztest_objset_destroy_cb(const char *name, void *arg) 3827 { 3828 objset_t *os; 3829 dmu_object_info_t doi; 3830 int error; 3831 3832 /* 3833 * Verify that the dataset contains a directory object. 3834 */ 3835 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3836 B_TRUE, FTAG, &os)); 3837 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3838 if (error != ENOENT) { 3839 /* We could have crashed in the middle of destroying it */ 3840 ASSERT0(error); 3841 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3842 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3843 } 3844 dmu_objset_disown(os, B_TRUE, FTAG); 3845 3846 /* 3847 * Destroy the dataset. 3848 */ 3849 if (strchr(name, '@') != NULL) { 3850 VERIFY0(dsl_destroy_snapshot(name, B_TRUE)); 3851 } else { 3852 error = dsl_destroy_head(name); 3853 /* There could be a hold on this dataset */ 3854 if (error != EBUSY) 3855 ASSERT0(error); 3856 } 3857 return (0); 3858 } 3859 3860 static boolean_t 3861 ztest_snapshot_create(char *osname, uint64_t id) 3862 { 3863 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3864 int error; 3865 3866 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3867 3868 error = dmu_objset_snapshot_one(osname, snapname); 3869 if (error == ENOSPC) { 3870 ztest_record_enospc(FTAG); 3871 return (B_FALSE); 3872 } 3873 if (error != 0 && error != EEXIST) { 3874 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3875 snapname, error); 3876 } 3877 return (B_TRUE); 3878 } 3879 3880 static boolean_t 3881 ztest_snapshot_destroy(char *osname, uint64_t id) 3882 { 3883 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3884 int error; 3885 3886 (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname, 3887 (u_longlong_t)id); 3888 3889 error = dsl_destroy_snapshot(snapname, B_FALSE); 3890 if (error != 0 && error != ENOENT) 3891 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3892 return (B_TRUE); 3893 } 3894 3895 /* ARGSUSED */ 3896 void 3897 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3898 { 3899 ztest_ds_t zdtmp; 3900 int iters; 3901 int error; 3902 objset_t *os, *os2; 3903 char name[ZFS_MAX_DATASET_NAME_LEN]; 3904 zilog_t *zilog; 3905 3906 rw_enter(&ztest_name_lock, RW_READER); 3907 3908 (void) snprintf(name, sizeof (name), "%s/temp_%llu", 3909 ztest_opts.zo_pool, (u_longlong_t)id); 3910 3911 /* 3912 * If this dataset exists from a previous run, process its replay log 3913 * half of the time. If we don't replay it, then dmu_objset_destroy() 3914 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3915 */ 3916 if (ztest_random(2) == 0 && 3917 ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, 3918 B_TRUE, FTAG, &os) == 0) { 3919 ztest_zd_init(&zdtmp, NULL, os); 3920 zil_replay(os, &zdtmp, ztest_replay_vector); 3921 ztest_zd_fini(&zdtmp); 3922 dmu_objset_disown(os, B_TRUE, FTAG); 3923 } 3924 3925 /* 3926 * There may be an old instance of the dataset we're about to 3927 * create lying around from a previous run. If so, destroy it 3928 * and all of its snapshots. 3929 */ 3930 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3931 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3932 3933 /* 3934 * Verify that the destroyed dataset is no longer in the namespace. 3935 */ 3936 VERIFY3U(ENOENT, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3937 B_TRUE, FTAG, &os)); 3938 3939 /* 3940 * Verify that we can create a new dataset. 3941 */ 3942 error = ztest_dataset_create(name); 3943 if (error) { 3944 if (error == ENOSPC) { 3945 ztest_record_enospc(FTAG); 3946 rw_exit(&ztest_name_lock); 3947 return; 3948 } 3949 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3950 } 3951 3952 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE, 3953 FTAG, &os)); 3954 3955 ztest_zd_init(&zdtmp, NULL, os); 3956 3957 /* 3958 * Open the intent log for it. 3959 */ 3960 zilog = zil_open(os, ztest_get_data); 3961 3962 /* 3963 * Put some objects in there, do a little I/O to them, 3964 * and randomly take a couple of snapshots along the way. 3965 */ 3966 iters = ztest_random(5); 3967 for (int i = 0; i < iters; i++) { 3968 ztest_dmu_object_alloc_free(&zdtmp, id); 3969 if (ztest_random(iters) == 0) 3970 (void) ztest_snapshot_create(name, i); 3971 } 3972 3973 /* 3974 * Verify that we cannot create an existing dataset. 3975 */ 3976 VERIFY3U(EEXIST, ==, 3977 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL)); 3978 3979 /* 3980 * Verify that we can hold an objset that is also owned. 3981 */ 3982 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3983 dmu_objset_rele(os2, FTAG); 3984 3985 /* 3986 * Verify that we cannot own an objset that is already owned. 3987 */ 3988 VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, 3989 B_FALSE, B_TRUE, FTAG, &os2)); 3990 3991 zil_close(zilog); 3992 dmu_objset_disown(os, B_TRUE, FTAG); 3993 ztest_zd_fini(&zdtmp); 3994 3995 rw_exit(&ztest_name_lock); 3996 } 3997 3998 /* 3999 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 4000 */ 4001 void 4002 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 4003 { 4004 rw_enter(&ztest_name_lock, RW_READER); 4005 (void) ztest_snapshot_destroy(zd->zd_name, id); 4006 (void) ztest_snapshot_create(zd->zd_name, id); 4007 rw_exit(&ztest_name_lock); 4008 } 4009 4010 /* 4011 * Cleanup non-standard snapshots and clones. 4012 */ 4013 void 4014 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 4015 { 4016 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 4017 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 4018 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 4019 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 4020 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 4021 int error; 4022 4023 (void) snprintf(snap1name, sizeof (snap1name), 4024 "%s@s1_%llu", osname, id); 4025 (void) snprintf(clone1name, sizeof (clone1name), 4026 "%s/c1_%llu", osname, id); 4027 (void) snprintf(snap2name, sizeof (snap2name), 4028 "%s@s2_%llu", clone1name, id); 4029 (void) snprintf(clone2name, sizeof (clone2name), 4030 "%s/c2_%llu", osname, id); 4031 (void) snprintf(snap3name, sizeof (snap3name), 4032 "%s@s3_%llu", clone1name, id); 4033 4034 error = dsl_destroy_head(clone2name); 4035 if (error && error != ENOENT) 4036 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 4037 error = dsl_destroy_snapshot(snap3name, B_FALSE); 4038 if (error && error != ENOENT) 4039 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 4040 error = dsl_destroy_snapshot(snap2name, B_FALSE); 4041 if (error && error != ENOENT) 4042 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 4043 error = dsl_destroy_head(clone1name); 4044 if (error && error != ENOENT) 4045 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 4046 error = dsl_destroy_snapshot(snap1name, B_FALSE); 4047 if (error && error != ENOENT) 4048 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 4049 } 4050 4051 /* 4052 * Verify dsl_dataset_promote handles EBUSY 4053 */ 4054 void 4055 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 4056 { 4057 objset_t *os; 4058 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 4059 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 4060 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 4061 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 4062 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 4063 char *osname = zd->zd_name; 4064 int error; 4065 4066 rw_enter(&ztest_name_lock, RW_READER); 4067 4068 ztest_dsl_dataset_cleanup(osname, id); 4069 4070 (void) snprintf(snap1name, sizeof (snap1name), 4071 "%s@s1_%llu", osname, id); 4072 (void) snprintf(clone1name, sizeof (clone1name), 4073 "%s/c1_%llu", osname, id); 4074 (void) snprintf(snap2name, sizeof (snap2name), 4075 "%s@s2_%llu", clone1name, id); 4076 (void) snprintf(clone2name, sizeof (clone2name), 4077 "%s/c2_%llu", osname, id); 4078 (void) snprintf(snap3name, sizeof (snap3name), 4079 "%s@s3_%llu", clone1name, id); 4080 4081 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 4082 if (error && error != EEXIST) { 4083 if (error == ENOSPC) { 4084 ztest_record_enospc(FTAG); 4085 goto out; 4086 } 4087 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 4088 } 4089 4090 error = dmu_objset_clone(clone1name, snap1name); 4091 if (error) { 4092 if (error == ENOSPC) { 4093 ztest_record_enospc(FTAG); 4094 goto out; 4095 } 4096 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 4097 } 4098 4099 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 4100 if (error && error != EEXIST) { 4101 if (error == ENOSPC) { 4102 ztest_record_enospc(FTAG); 4103 goto out; 4104 } 4105 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 4106 } 4107 4108 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 4109 if (error && error != EEXIST) { 4110 if (error == ENOSPC) { 4111 ztest_record_enospc(FTAG); 4112 goto out; 4113 } 4114 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 4115 } 4116 4117 error = dmu_objset_clone(clone2name, snap3name); 4118 if (error) { 4119 if (error == ENOSPC) { 4120 ztest_record_enospc(FTAG); 4121 goto out; 4122 } 4123 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 4124 } 4125 4126 error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE, 4127 FTAG, &os); 4128 if (error) 4129 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 4130 error = dsl_dataset_promote(clone2name, NULL); 4131 if (error == ENOSPC) { 4132 dmu_objset_disown(os, B_TRUE, FTAG); 4133 ztest_record_enospc(FTAG); 4134 goto out; 4135 } 4136 if (error != EBUSY) 4137 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 4138 error); 4139 dmu_objset_disown(os, B_TRUE, FTAG); 4140 4141 out: 4142 ztest_dsl_dataset_cleanup(osname, id); 4143 4144 rw_exit(&ztest_name_lock); 4145 } 4146 4147 /* 4148 * Verify that dmu_object_{alloc,free} work as expected. 4149 */ 4150 void 4151 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 4152 { 4153 ztest_od_t od[4]; 4154 int batchsize = sizeof (od) / sizeof (od[0]); 4155 4156 for (int b = 0; b < batchsize; b++) { 4157 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 4158 0, 0, 0); 4159 } 4160 4161 /* 4162 * Destroy the previous batch of objects, create a new batch, 4163 * and do some I/O on the new objects. 4164 */ 4165 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 4166 return; 4167 4168 while (ztest_random(4 * batchsize) != 0) 4169 ztest_io(zd, od[ztest_random(batchsize)].od_object, 4170 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4171 } 4172 4173 /* 4174 * Rewind the global allocator to verify object allocation backfilling. 4175 */ 4176 void 4177 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id) 4178 { 4179 objset_t *os = zd->zd_os; 4180 int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift; 4181 uint64_t object; 4182 4183 /* 4184 * Rewind the global allocator randomly back to a lower object number 4185 * to force backfilling and reclamation of recently freed dnodes. 4186 */ 4187 mutex_enter(&os->os_obj_lock); 4188 object = ztest_random(os->os_obj_next_chunk); 4189 os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk); 4190 mutex_exit(&os->os_obj_lock); 4191 } 4192 4193 /* 4194 * Verify that dmu_{read,write} work as expected. 4195 */ 4196 void 4197 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 4198 { 4199 objset_t *os = zd->zd_os; 4200 ztest_od_t od[2]; 4201 dmu_tx_t *tx; 4202 int i, freeit, error; 4203 uint64_t n, s, txg; 4204 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 4205 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 4206 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 4207 uint64_t regions = 997; 4208 uint64_t stride = 123456789ULL; 4209 uint64_t width = 40; 4210 int free_percent = 5; 4211 4212 /* 4213 * This test uses two objects, packobj and bigobj, that are always 4214 * updated together (i.e. in the same tx) so that their contents are 4215 * in sync and can be compared. Their contents relate to each other 4216 * in a simple way: packobj is a dense array of 'bufwad' structures, 4217 * while bigobj is a sparse array of the same bufwads. Specifically, 4218 * for any index n, there are three bufwads that should be identical: 4219 * 4220 * packobj, at offset n * sizeof (bufwad_t) 4221 * bigobj, at the head of the nth chunk 4222 * bigobj, at the tail of the nth chunk 4223 * 4224 * The chunk size is arbitrary. It doesn't have to be a power of two, 4225 * and it doesn't have any relation to the object blocksize. 4226 * The only requirement is that it can hold at least two bufwads. 4227 * 4228 * Normally, we write the bufwad to each of these locations. 4229 * However, free_percent of the time we instead write zeroes to 4230 * packobj and perform a dmu_free_range() on bigobj. By comparing 4231 * bigobj to packobj, we can verify that the DMU is correctly 4232 * tracking which parts of an object are allocated and free, 4233 * and that the contents of the allocated blocks are correct. 4234 */ 4235 4236 /* 4237 * Read the directory info. If it's the first time, set things up. 4238 */ 4239 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 4240 chunksize); 4241 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, 4242 chunksize); 4243 4244 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4245 return; 4246 4247 bigobj = od[0].od_object; 4248 packobj = od[1].od_object; 4249 chunksize = od[0].od_gen; 4250 ASSERT(chunksize == od[1].od_gen); 4251 4252 /* 4253 * Prefetch a random chunk of the big object. 4254 * Our aim here is to get some async reads in flight 4255 * for blocks that we may free below; the DMU should 4256 * handle this race correctly. 4257 */ 4258 n = ztest_random(regions) * stride + ztest_random(width); 4259 s = 1 + ztest_random(2 * width - 1); 4260 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize, 4261 ZIO_PRIORITY_SYNC_READ); 4262 4263 /* 4264 * Pick a random index and compute the offsets into packobj and bigobj. 4265 */ 4266 n = ztest_random(regions) * stride + ztest_random(width); 4267 s = 1 + ztest_random(width - 1); 4268 4269 packoff = n * sizeof (bufwad_t); 4270 packsize = s * sizeof (bufwad_t); 4271 4272 bigoff = n * chunksize; 4273 bigsize = s * chunksize; 4274 4275 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 4276 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 4277 4278 /* 4279 * free_percent of the time, free a range of bigobj rather than 4280 * overwriting it. 4281 */ 4282 freeit = (ztest_random(100) < free_percent); 4283 4284 /* 4285 * Read the current contents of our objects. 4286 */ 4287 error = dmu_read(os, packobj, packoff, packsize, packbuf, 4288 DMU_READ_PREFETCH); 4289 ASSERT0(error); 4290 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 4291 DMU_READ_PREFETCH); 4292 ASSERT0(error); 4293 4294 /* 4295 * Get a tx for the mods to both packobj and bigobj. 4296 */ 4297 tx = dmu_tx_create(os); 4298 4299 dmu_tx_hold_write(tx, packobj, packoff, packsize); 4300 4301 if (freeit) 4302 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 4303 else 4304 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 4305 4306 /* This accounts for setting the checksum/compression. */ 4307 dmu_tx_hold_bonus(tx, bigobj); 4308 4309 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4310 if (txg == 0) { 4311 umem_free(packbuf, packsize); 4312 umem_free(bigbuf, bigsize); 4313 return; 4314 } 4315 4316 enum zio_checksum cksum; 4317 do { 4318 cksum = (enum zio_checksum) 4319 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); 4320 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); 4321 dmu_object_set_checksum(os, bigobj, cksum, tx); 4322 4323 enum zio_compress comp; 4324 do { 4325 comp = (enum zio_compress) 4326 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); 4327 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); 4328 dmu_object_set_compress(os, bigobj, comp, tx); 4329 4330 /* 4331 * For each index from n to n + s, verify that the existing bufwad 4332 * in packobj matches the bufwads at the head and tail of the 4333 * corresponding chunk in bigobj. Then update all three bufwads 4334 * with the new values we want to write out. 4335 */ 4336 for (i = 0; i < s; i++) { 4337 /* LINTED */ 4338 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 4339 /* LINTED */ 4340 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 4341 /* LINTED */ 4342 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 4343 4344 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 4345 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 4346 4347 if (pack->bw_txg > txg) 4348 fatal(0, "future leak: got %llx, open txg is %llx", 4349 pack->bw_txg, txg); 4350 4351 if (pack->bw_data != 0 && pack->bw_index != n + i) 4352 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 4353 pack->bw_index, n, i); 4354 4355 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 4356 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 4357 4358 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 4359 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 4360 4361 if (freeit) { 4362 bzero(pack, sizeof (bufwad_t)); 4363 } else { 4364 pack->bw_index = n + i; 4365 pack->bw_txg = txg; 4366 pack->bw_data = 1 + ztest_random(-2ULL); 4367 } 4368 *bigH = *pack; 4369 *bigT = *pack; 4370 } 4371 4372 /* 4373 * We've verified all the old bufwads, and made new ones. 4374 * Now write them out. 4375 */ 4376 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 4377 4378 if (freeit) { 4379 if (ztest_opts.zo_verbose >= 7) { 4380 (void) printf("freeing offset %llx size %llx" 4381 " txg %llx\n", 4382 (u_longlong_t)bigoff, 4383 (u_longlong_t)bigsize, 4384 (u_longlong_t)txg); 4385 } 4386 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 4387 } else { 4388 if (ztest_opts.zo_verbose >= 7) { 4389 (void) printf("writing offset %llx size %llx" 4390 " txg %llx\n", 4391 (u_longlong_t)bigoff, 4392 (u_longlong_t)bigsize, 4393 (u_longlong_t)txg); 4394 } 4395 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 4396 } 4397 4398 dmu_tx_commit(tx); 4399 4400 /* 4401 * Sanity check the stuff we just wrote. 4402 */ 4403 { 4404 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 4405 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 4406 4407 VERIFY(0 == dmu_read(os, packobj, packoff, 4408 packsize, packcheck, DMU_READ_PREFETCH)); 4409 VERIFY(0 == dmu_read(os, bigobj, bigoff, 4410 bigsize, bigcheck, DMU_READ_PREFETCH)); 4411 4412 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 4413 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 4414 4415 umem_free(packcheck, packsize); 4416 umem_free(bigcheck, bigsize); 4417 } 4418 4419 umem_free(packbuf, packsize); 4420 umem_free(bigbuf, bigsize); 4421 } 4422 4423 void 4424 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 4425 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 4426 { 4427 uint64_t i; 4428 bufwad_t *pack; 4429 bufwad_t *bigH; 4430 bufwad_t *bigT; 4431 4432 /* 4433 * For each index from n to n + s, verify that the existing bufwad 4434 * in packobj matches the bufwads at the head and tail of the 4435 * corresponding chunk in bigobj. Then update all three bufwads 4436 * with the new values we want to write out. 4437 */ 4438 for (i = 0; i < s; i++) { 4439 /* LINTED */ 4440 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 4441 /* LINTED */ 4442 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 4443 /* LINTED */ 4444 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 4445 4446 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 4447 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 4448 4449 if (pack->bw_txg > txg) 4450 fatal(0, "future leak: got %llx, open txg is %llx", 4451 pack->bw_txg, txg); 4452 4453 if (pack->bw_data != 0 && pack->bw_index != n + i) 4454 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 4455 pack->bw_index, n, i); 4456 4457 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 4458 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 4459 4460 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 4461 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 4462 4463 pack->bw_index = n + i; 4464 pack->bw_txg = txg; 4465 pack->bw_data = 1 + ztest_random(-2ULL); 4466 4467 *bigH = *pack; 4468 *bigT = *pack; 4469 } 4470 } 4471 4472 void 4473 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 4474 { 4475 objset_t *os = zd->zd_os; 4476 ztest_od_t od[2]; 4477 dmu_tx_t *tx; 4478 uint64_t i; 4479 int error; 4480 uint64_t n, s, txg; 4481 bufwad_t *packbuf, *bigbuf; 4482 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 4483 uint64_t blocksize = ztest_random_blocksize(); 4484 uint64_t chunksize = blocksize; 4485 uint64_t regions = 997; 4486 uint64_t stride = 123456789ULL; 4487 uint64_t width = 9; 4488 dmu_buf_t *bonus_db; 4489 arc_buf_t **bigbuf_arcbufs; 4490 dmu_object_info_t doi; 4491 4492 /* 4493 * This test uses two objects, packobj and bigobj, that are always 4494 * updated together (i.e. in the same tx) so that their contents are 4495 * in sync and can be compared. Their contents relate to each other 4496 * in a simple way: packobj is a dense array of 'bufwad' structures, 4497 * while bigobj is a sparse array of the same bufwads. Specifically, 4498 * for any index n, there are three bufwads that should be identical: 4499 * 4500 * packobj, at offset n * sizeof (bufwad_t) 4501 * bigobj, at the head of the nth chunk 4502 * bigobj, at the tail of the nth chunk 4503 * 4504 * The chunk size is set equal to bigobj block size so that 4505 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates. 4506 */ 4507 4508 /* 4509 * Read the directory info. If it's the first time, set things up. 4510 */ 4511 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 4512 0, 0); 4513 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0, 4514 chunksize); 4515 4516 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4517 return; 4518 4519 bigobj = od[0].od_object; 4520 packobj = od[1].od_object; 4521 blocksize = od[0].od_blocksize; 4522 chunksize = blocksize; 4523 ASSERT(chunksize == od[1].od_gen); 4524 4525 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 4526 VERIFY(ISP2(doi.doi_data_block_size)); 4527 VERIFY(chunksize == doi.doi_data_block_size); 4528 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 4529 4530 /* 4531 * Pick a random index and compute the offsets into packobj and bigobj. 4532 */ 4533 n = ztest_random(regions) * stride + ztest_random(width); 4534 s = 1 + ztest_random(width - 1); 4535 4536 packoff = n * sizeof (bufwad_t); 4537 packsize = s * sizeof (bufwad_t); 4538 4539 bigoff = n * chunksize; 4540 bigsize = s * chunksize; 4541 4542 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 4543 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 4544 4545 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 4546 4547 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 4548 4549 /* 4550 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 4551 * Iteration 1 test zcopy to already referenced dbufs. 4552 * Iteration 2 test zcopy to dirty dbuf in the same txg. 4553 * Iteration 3 test zcopy to dbuf dirty in previous txg. 4554 * Iteration 4 test zcopy when dbuf is no longer dirty. 4555 * Iteration 5 test zcopy when it can't be done. 4556 * Iteration 6 one more zcopy write. 4557 */ 4558 for (i = 0; i < 7; i++) { 4559 uint64_t j; 4560 uint64_t off; 4561 4562 /* 4563 * In iteration 5 (i == 5) use arcbufs 4564 * that don't match bigobj blksz to test 4565 * dmu_assign_arcbuf_by_dbuf() when it can't directly 4566 * assign an arcbuf to a dbuf. 4567 */ 4568 for (j = 0; j < s; j++) { 4569 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 4570 bigbuf_arcbufs[j] = 4571 dmu_request_arcbuf(bonus_db, chunksize); 4572 } else { 4573 bigbuf_arcbufs[2 * j] = 4574 dmu_request_arcbuf(bonus_db, chunksize / 2); 4575 bigbuf_arcbufs[2 * j + 1] = 4576 dmu_request_arcbuf(bonus_db, chunksize / 2); 4577 } 4578 } 4579 4580 /* 4581 * Get a tx for the mods to both packobj and bigobj. 4582 */ 4583 tx = dmu_tx_create(os); 4584 4585 dmu_tx_hold_write(tx, packobj, packoff, packsize); 4586 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 4587 4588 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4589 if (txg == 0) { 4590 umem_free(packbuf, packsize); 4591 umem_free(bigbuf, bigsize); 4592 for (j = 0; j < s; j++) { 4593 if (i != 5 || 4594 chunksize < (SPA_MINBLOCKSIZE * 2)) { 4595 dmu_return_arcbuf(bigbuf_arcbufs[j]); 4596 } else { 4597 dmu_return_arcbuf( 4598 bigbuf_arcbufs[2 * j]); 4599 dmu_return_arcbuf( 4600 bigbuf_arcbufs[2 * j + 1]); 4601 } 4602 } 4603 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4604 dmu_buf_rele(bonus_db, FTAG); 4605 return; 4606 } 4607 4608 /* 4609 * 50% of the time don't read objects in the 1st iteration to 4610 * test dmu_assign_arcbuf_by_dbuf() for the case when there are 4611 * no existing dbufs for the specified offsets. 4612 */ 4613 if (i != 0 || ztest_random(2) != 0) { 4614 error = dmu_read(os, packobj, packoff, 4615 packsize, packbuf, DMU_READ_PREFETCH); 4616 ASSERT0(error); 4617 error = dmu_read(os, bigobj, bigoff, bigsize, 4618 bigbuf, DMU_READ_PREFETCH); 4619 ASSERT0(error); 4620 } 4621 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 4622 n, chunksize, txg); 4623 4624 /* 4625 * We've verified all the old bufwads, and made new ones. 4626 * Now write them out. 4627 */ 4628 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 4629 if (ztest_opts.zo_verbose >= 7) { 4630 (void) printf("writing offset %llx size %llx" 4631 " txg %llx\n", 4632 (u_longlong_t)bigoff, 4633 (u_longlong_t)bigsize, 4634 (u_longlong_t)txg); 4635 } 4636 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 4637 dmu_buf_t *dbt; 4638 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 4639 bcopy((caddr_t)bigbuf + (off - bigoff), 4640 bigbuf_arcbufs[j]->b_data, chunksize); 4641 } else { 4642 bcopy((caddr_t)bigbuf + (off - bigoff), 4643 bigbuf_arcbufs[2 * j]->b_data, 4644 chunksize / 2); 4645 bcopy((caddr_t)bigbuf + (off - bigoff) + 4646 chunksize / 2, 4647 bigbuf_arcbufs[2 * j + 1]->b_data, 4648 chunksize / 2); 4649 } 4650 4651 if (i == 1) { 4652 VERIFY(dmu_buf_hold(os, bigobj, off, 4653 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 4654 } 4655 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 4656 dmu_assign_arcbuf_by_dbuf(bonus_db, off, 4657 bigbuf_arcbufs[j], tx); 4658 } else { 4659 dmu_assign_arcbuf_by_dbuf(bonus_db, off, 4660 bigbuf_arcbufs[2 * j], tx); 4661 dmu_assign_arcbuf_by_dbuf(bonus_db, 4662 off + chunksize / 2, 4663 bigbuf_arcbufs[2 * j + 1], tx); 4664 } 4665 if (i == 1) { 4666 dmu_buf_rele(dbt, FTAG); 4667 } 4668 } 4669 dmu_tx_commit(tx); 4670 4671 /* 4672 * Sanity check the stuff we just wrote. 4673 */ 4674 { 4675 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 4676 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 4677 4678 VERIFY(0 == dmu_read(os, packobj, packoff, 4679 packsize, packcheck, DMU_READ_PREFETCH)); 4680 VERIFY(0 == dmu_read(os, bigobj, bigoff, 4681 bigsize, bigcheck, DMU_READ_PREFETCH)); 4682 4683 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 4684 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 4685 4686 umem_free(packcheck, packsize); 4687 umem_free(bigcheck, bigsize); 4688 } 4689 if (i == 2) { 4690 txg_wait_open(dmu_objset_pool(os), 0, B_TRUE); 4691 } else if (i == 3) { 4692 txg_wait_synced(dmu_objset_pool(os), 0); 4693 } 4694 } 4695 4696 dmu_buf_rele(bonus_db, FTAG); 4697 umem_free(packbuf, packsize); 4698 umem_free(bigbuf, bigsize); 4699 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4700 } 4701 4702 /* ARGSUSED */ 4703 void 4704 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 4705 { 4706 ztest_od_t od[1]; 4707 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 4708 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4709 4710 /* 4711 * Have multiple threads write to large offsets in an object 4712 * to verify that parallel writes to an object -- even to the 4713 * same blocks within the object -- doesn't cause any trouble. 4714 */ 4715 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 4716 0, 0, 0); 4717 4718 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4719 return; 4720 4721 while (ztest_random(10) != 0) 4722 ztest_io(zd, od[0].od_object, offset); 4723 } 4724 4725 void 4726 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4727 { 4728 ztest_od_t od[1]; 4729 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4730 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4731 uint64_t count = ztest_random(20) + 1; 4732 uint64_t blocksize = ztest_random_blocksize(); 4733 void *data; 4734 4735 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 4736 0, 0); 4737 4738 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4739 return; 4740 4741 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4742 return; 4743 4744 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4745 4746 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4747 4748 while (ztest_random(count) != 0) { 4749 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4750 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4751 data) != 0) 4752 break; 4753 while (ztest_random(4) != 0) 4754 ztest_io(zd, od[0].od_object, randoff); 4755 } 4756 4757 umem_free(data, blocksize); 4758 } 4759 4760 /* 4761 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4762 */ 4763 #define ZTEST_ZAP_MIN_INTS 1 4764 #define ZTEST_ZAP_MAX_INTS 4 4765 #define ZTEST_ZAP_MAX_PROPS 1000 4766 4767 void 4768 ztest_zap(ztest_ds_t *zd, uint64_t id) 4769 { 4770 objset_t *os = zd->zd_os; 4771 ztest_od_t od[1]; 4772 uint64_t object; 4773 uint64_t txg, last_txg; 4774 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4775 uint64_t zl_ints, zl_intsize, prop; 4776 int i, ints; 4777 dmu_tx_t *tx; 4778 char propname[100], txgname[100]; 4779 int error; 4780 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4781 4782 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0); 4783 4784 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4785 return; 4786 4787 object = od[0].od_object; 4788 4789 /* 4790 * Generate a known hash collision, and verify that 4791 * we can lookup and remove both entries. 4792 */ 4793 tx = dmu_tx_create(os); 4794 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4795 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4796 if (txg == 0) 4797 return; 4798 for (i = 0; i < 2; i++) { 4799 value[i] = i; 4800 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4801 1, &value[i], tx)); 4802 } 4803 for (i = 0; i < 2; i++) { 4804 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4805 sizeof (uint64_t), 1, &value[i], tx)); 4806 VERIFY3U(0, ==, 4807 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4808 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4809 ASSERT3U(zl_ints, ==, 1); 4810 } 4811 for (i = 0; i < 2; i++) { 4812 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4813 } 4814 dmu_tx_commit(tx); 4815 4816 /* 4817 * Generate a buch of random entries. 4818 */ 4819 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4820 4821 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4822 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4823 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4824 bzero(value, sizeof (value)); 4825 last_txg = 0; 4826 4827 /* 4828 * If these zap entries already exist, validate their contents. 4829 */ 4830 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4831 if (error == 0) { 4832 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4833 ASSERT3U(zl_ints, ==, 1); 4834 4835 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4836 zl_ints, &last_txg) == 0); 4837 4838 VERIFY(zap_length(os, object, propname, &zl_intsize, 4839 &zl_ints) == 0); 4840 4841 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4842 ASSERT3U(zl_ints, ==, ints); 4843 4844 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4845 zl_ints, value) == 0); 4846 4847 for (i = 0; i < ints; i++) { 4848 ASSERT3U(value[i], ==, last_txg + object + i); 4849 } 4850 } else { 4851 ASSERT3U(error, ==, ENOENT); 4852 } 4853 4854 /* 4855 * Atomically update two entries in our zap object. 4856 * The first is named txg_%llu, and contains the txg 4857 * in which the property was last updated. The second 4858 * is named prop_%llu, and the nth element of its value 4859 * should be txg + object + n. 4860 */ 4861 tx = dmu_tx_create(os); 4862 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4863 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4864 if (txg == 0) 4865 return; 4866 4867 if (last_txg > txg) 4868 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4869 4870 for (i = 0; i < ints; i++) 4871 value[i] = txg + object + i; 4872 4873 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4874 1, &txg, tx)); 4875 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4876 ints, value, tx)); 4877 4878 dmu_tx_commit(tx); 4879 4880 /* 4881 * Remove a random pair of entries. 4882 */ 4883 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4884 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4885 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4886 4887 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4888 4889 if (error == ENOENT) 4890 return; 4891 4892 ASSERT0(error); 4893 4894 tx = dmu_tx_create(os); 4895 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4896 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4897 if (txg == 0) 4898 return; 4899 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4900 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4901 dmu_tx_commit(tx); 4902 } 4903 4904 /* 4905 * Testcase to test the upgrading of a microzap to fatzap. 4906 */ 4907 void 4908 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4909 { 4910 objset_t *os = zd->zd_os; 4911 ztest_od_t od[1]; 4912 uint64_t object, txg; 4913 4914 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0); 4915 4916 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4917 return; 4918 4919 object = od[0].od_object; 4920 4921 /* 4922 * Add entries to this ZAP and make sure it spills over 4923 * and gets upgraded to a fatzap. Also, since we are adding 4924 * 2050 entries we should see ptrtbl growth and leaf-block split. 4925 */ 4926 for (int i = 0; i < 2050; i++) { 4927 char name[ZFS_MAX_DATASET_NAME_LEN]; 4928 uint64_t value = i; 4929 dmu_tx_t *tx; 4930 int error; 4931 4932 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4933 id, value); 4934 4935 tx = dmu_tx_create(os); 4936 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4937 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4938 if (txg == 0) 4939 return; 4940 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4941 &value, tx); 4942 ASSERT(error == 0 || error == EEXIST); 4943 dmu_tx_commit(tx); 4944 } 4945 } 4946 4947 /* ARGSUSED */ 4948 void 4949 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4950 { 4951 objset_t *os = zd->zd_os; 4952 ztest_od_t od[1]; 4953 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4954 dmu_tx_t *tx; 4955 int i, namelen, error; 4956 int micro = ztest_random(2); 4957 char name[20], string_value[20]; 4958 void *data; 4959 4960 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 4961 0, 0, 0); 4962 4963 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4964 return; 4965 4966 object = od[0].od_object; 4967 4968 /* 4969 * Generate a random name of the form 'xxx.....' where each 4970 * x is a random printable character and the dots are dots. 4971 * There are 94 such characters, and the name length goes from 4972 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4973 */ 4974 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4975 4976 for (i = 0; i < 3; i++) 4977 name[i] = '!' + ztest_random('~' - '!' + 1); 4978 for (; i < namelen - 1; i++) 4979 name[i] = '.'; 4980 name[i] = '\0'; 4981 4982 if ((namelen & 1) || micro) { 4983 wsize = sizeof (txg); 4984 wc = 1; 4985 data = &txg; 4986 } else { 4987 wsize = 1; 4988 wc = namelen; 4989 data = string_value; 4990 } 4991 4992 count = -1ULL; 4993 VERIFY0(zap_count(os, object, &count)); 4994 ASSERT(count != -1ULL); 4995 4996 /* 4997 * Select an operation: length, lookup, add, update, remove. 4998 */ 4999 i = ztest_random(5); 5000 5001 if (i >= 2) { 5002 tx = dmu_tx_create(os); 5003 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 5004 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 5005 if (txg == 0) 5006 return; 5007 bcopy(name, string_value, namelen); 5008 } else { 5009 tx = NULL; 5010 txg = 0; 5011 bzero(string_value, namelen); 5012 } 5013 5014 switch (i) { 5015 5016 case 0: 5017 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 5018 if (error == 0) { 5019 ASSERT3U(wsize, ==, zl_wsize); 5020 ASSERT3U(wc, ==, zl_wc); 5021 } else { 5022 ASSERT3U(error, ==, ENOENT); 5023 } 5024 break; 5025 5026 case 1: 5027 error = zap_lookup(os, object, name, wsize, wc, data); 5028 if (error == 0) { 5029 if (data == string_value && 5030 bcmp(name, data, namelen) != 0) 5031 fatal(0, "name '%s' != val '%s' len %d", 5032 name, data, namelen); 5033 } else { 5034 ASSERT3U(error, ==, ENOENT); 5035 } 5036 break; 5037 5038 case 2: 5039 error = zap_add(os, object, name, wsize, wc, data, tx); 5040 ASSERT(error == 0 || error == EEXIST); 5041 break; 5042 5043 case 3: 5044 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 5045 break; 5046 5047 case 4: 5048 error = zap_remove(os, object, name, tx); 5049 ASSERT(error == 0 || error == ENOENT); 5050 break; 5051 } 5052 5053 if (tx != NULL) 5054 dmu_tx_commit(tx); 5055 } 5056 5057 /* 5058 * Commit callback data. 5059 */ 5060 typedef struct ztest_cb_data { 5061 list_node_t zcd_node; 5062 uint64_t zcd_txg; 5063 int zcd_expected_err; 5064 boolean_t zcd_added; 5065 boolean_t zcd_called; 5066 spa_t *zcd_spa; 5067 } ztest_cb_data_t; 5068 5069 /* This is the actual commit callback function */ 5070 static void 5071 ztest_commit_callback(void *arg, int error) 5072 { 5073 ztest_cb_data_t *data = arg; 5074 uint64_t synced_txg; 5075 5076 VERIFY(data != NULL); 5077 VERIFY3S(data->zcd_expected_err, ==, error); 5078 VERIFY(!data->zcd_called); 5079 5080 synced_txg = spa_last_synced_txg(data->zcd_spa); 5081 if (data->zcd_txg > synced_txg) 5082 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 5083 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 5084 synced_txg); 5085 5086 data->zcd_called = B_TRUE; 5087 5088 if (error == ECANCELED) { 5089 ASSERT0(data->zcd_txg); 5090 ASSERT(!data->zcd_added); 5091 5092 /* 5093 * The private callback data should be destroyed here, but 5094 * since we are going to check the zcd_called field after 5095 * dmu_tx_abort(), we will destroy it there. 5096 */ 5097 return; 5098 } 5099 5100 /* Was this callback added to the global callback list? */ 5101 if (!data->zcd_added) 5102 goto out; 5103 5104 ASSERT3U(data->zcd_txg, !=, 0); 5105 5106 /* Remove our callback from the list */ 5107 mutex_enter(&zcl.zcl_callbacks_lock); 5108 list_remove(&zcl.zcl_callbacks, data); 5109 mutex_exit(&zcl.zcl_callbacks_lock); 5110 5111 out: 5112 umem_free(data, sizeof (ztest_cb_data_t)); 5113 } 5114 5115 /* Allocate and initialize callback data structure */ 5116 static ztest_cb_data_t * 5117 ztest_create_cb_data(objset_t *os, uint64_t txg) 5118 { 5119 ztest_cb_data_t *cb_data; 5120 5121 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 5122 5123 cb_data->zcd_txg = txg; 5124 cb_data->zcd_spa = dmu_objset_spa(os); 5125 5126 return (cb_data); 5127 } 5128 5129 /* 5130 * If a number of txgs equal to this threshold have been created after a commit 5131 * callback has been registered but not called, then we assume there is an 5132 * implementation bug. 5133 */ 5134 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 5135 5136 /* 5137 * Commit callback test. 5138 */ 5139 void 5140 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 5141 { 5142 objset_t *os = zd->zd_os; 5143 ztest_od_t od[1]; 5144 dmu_tx_t *tx; 5145 ztest_cb_data_t *cb_data[3], *tmp_cb; 5146 uint64_t old_txg, txg; 5147 int i, error; 5148 5149 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); 5150 5151 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 5152 return; 5153 5154 tx = dmu_tx_create(os); 5155 5156 cb_data[0] = ztest_create_cb_data(os, 0); 5157 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 5158 5159 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 5160 5161 /* Every once in a while, abort the transaction on purpose */ 5162 if (ztest_random(100) == 0) 5163 error = -1; 5164 5165 if (!error) 5166 error = dmu_tx_assign(tx, TXG_NOWAIT); 5167 5168 txg = error ? 0 : dmu_tx_get_txg(tx); 5169 5170 cb_data[0]->zcd_txg = txg; 5171 cb_data[1] = ztest_create_cb_data(os, txg); 5172 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 5173 5174 if (error) { 5175 /* 5176 * It's not a strict requirement to call the registered 5177 * callbacks from inside dmu_tx_abort(), but that's what 5178 * it's supposed to happen in the current implementation 5179 * so we will check for that. 5180 */ 5181 for (i = 0; i < 2; i++) { 5182 cb_data[i]->zcd_expected_err = ECANCELED; 5183 VERIFY(!cb_data[i]->zcd_called); 5184 } 5185 5186 dmu_tx_abort(tx); 5187 5188 for (i = 0; i < 2; i++) { 5189 VERIFY(cb_data[i]->zcd_called); 5190 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 5191 } 5192 5193 return; 5194 } 5195 5196 cb_data[2] = ztest_create_cb_data(os, txg); 5197 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 5198 5199 /* 5200 * Read existing data to make sure there isn't a future leak. 5201 */ 5202 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 5203 &old_txg, DMU_READ_PREFETCH)); 5204 5205 if (old_txg > txg) 5206 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 5207 old_txg, txg); 5208 5209 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 5210 5211 mutex_enter(&zcl.zcl_callbacks_lock); 5212 5213 /* 5214 * Since commit callbacks don't have any ordering requirement and since 5215 * it is theoretically possible for a commit callback to be called 5216 * after an arbitrary amount of time has elapsed since its txg has been 5217 * synced, it is difficult to reliably determine whether a commit 5218 * callback hasn't been called due to high load or due to a flawed 5219 * implementation. 5220 * 5221 * In practice, we will assume that if after a certain number of txgs a 5222 * commit callback hasn't been called, then most likely there's an 5223 * implementation bug.. 5224 */ 5225 tmp_cb = list_head(&zcl.zcl_callbacks); 5226 if (tmp_cb != NULL && 5227 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { 5228 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 5229 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 5230 } 5231 5232 /* 5233 * Let's find the place to insert our callbacks. 5234 * 5235 * Even though the list is ordered by txg, it is possible for the 5236 * insertion point to not be the end because our txg may already be 5237 * quiescing at this point and other callbacks in the open txg 5238 * (from other objsets) may have sneaked in. 5239 */ 5240 tmp_cb = list_tail(&zcl.zcl_callbacks); 5241 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 5242 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 5243 5244 /* Add the 3 callbacks to the list */ 5245 for (i = 0; i < 3; i++) { 5246 if (tmp_cb == NULL) 5247 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 5248 else 5249 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 5250 cb_data[i]); 5251 5252 cb_data[i]->zcd_added = B_TRUE; 5253 VERIFY(!cb_data[i]->zcd_called); 5254 5255 tmp_cb = cb_data[i]; 5256 } 5257 5258 mutex_exit(&zcl.zcl_callbacks_lock); 5259 5260 dmu_tx_commit(tx); 5261 } 5262 5263 /* 5264 * Visit each object in the dataset. Verify that its properties 5265 * are consistent what was stored in the block tag when it was created, 5266 * and that its unused bonus buffer space has not been overwritten. 5267 */ 5268 void 5269 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id) 5270 { 5271 objset_t *os = zd->zd_os; 5272 uint64_t obj; 5273 int err = 0; 5274 5275 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) { 5276 ztest_block_tag_t *bt = NULL; 5277 dmu_object_info_t doi; 5278 dmu_buf_t *db; 5279 5280 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) 5281 continue; 5282 5283 dmu_object_info_from_db(db, &doi); 5284 if (doi.doi_bonus_size >= sizeof (*bt)) 5285 bt = ztest_bt_bonus(db); 5286 5287 if (bt && bt->bt_magic == BT_MAGIC) { 5288 ztest_bt_verify(bt, os, obj, doi.doi_dnodesize, 5289 bt->bt_offset, bt->bt_gen, bt->bt_txg, 5290 bt->bt_crtxg); 5291 ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen); 5292 } 5293 5294 dmu_buf_rele(db, FTAG); 5295 } 5296 } 5297 5298 /* ARGSUSED */ 5299 void 5300 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 5301 { 5302 zfs_prop_t proplist[] = { 5303 ZFS_PROP_CHECKSUM, 5304 ZFS_PROP_COMPRESSION, 5305 ZFS_PROP_COPIES, 5306 ZFS_PROP_DEDUP 5307 }; 5308 5309 rw_enter(&ztest_name_lock, RW_READER); 5310 5311 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 5312 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 5313 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 5314 5315 rw_exit(&ztest_name_lock); 5316 } 5317 5318 /* ARGSUSED */ 5319 void 5320 ztest_remap_blocks(ztest_ds_t *zd, uint64_t id) 5321 { 5322 rw_enter(&ztest_name_lock, RW_READER); 5323 5324 int error = dmu_objset_remap_indirects(zd->zd_name); 5325 if (error == ENOSPC) 5326 error = 0; 5327 ASSERT0(error); 5328 5329 rw_exit(&ztest_name_lock); 5330 } 5331 5332 /* ARGSUSED */ 5333 void 5334 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 5335 { 5336 nvlist_t *props = NULL; 5337 5338 rw_enter(&ztest_name_lock, RW_READER); 5339 5340 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 5341 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 5342 5343 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2)); 5344 5345 VERIFY0(spa_prop_get(ztest_spa, &props)); 5346 5347 if (ztest_opts.zo_verbose >= 6) 5348 dump_nvlist(props, 4); 5349 5350 nvlist_free(props); 5351 5352 rw_exit(&ztest_name_lock); 5353 } 5354 5355 static int 5356 user_release_one(const char *snapname, const char *holdname) 5357 { 5358 nvlist_t *snaps, *holds; 5359 int error; 5360 5361 snaps = fnvlist_alloc(); 5362 holds = fnvlist_alloc(); 5363 fnvlist_add_boolean(holds, holdname); 5364 fnvlist_add_nvlist(snaps, snapname, holds); 5365 fnvlist_free(holds); 5366 error = dsl_dataset_user_release(snaps, NULL); 5367 fnvlist_free(snaps); 5368 return (error); 5369 } 5370 5371 /* 5372 * Test snapshot hold/release and deferred destroy. 5373 */ 5374 void 5375 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 5376 { 5377 int error; 5378 objset_t *os = zd->zd_os; 5379 objset_t *origin; 5380 char snapname[100]; 5381 char fullname[100]; 5382 char clonename[100]; 5383 char tag[100]; 5384 char osname[ZFS_MAX_DATASET_NAME_LEN]; 5385 nvlist_t *holds; 5386 5387 rw_enter(&ztest_name_lock, RW_READER); 5388 5389 dmu_objset_name(os, osname); 5390 5391 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 5392 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 5393 (void) snprintf(clonename, sizeof (clonename), 5394 "%s/ch1_%llu", osname, id); 5395 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 5396 5397 /* 5398 * Clean up from any previous run. 5399 */ 5400 error = dsl_destroy_head(clonename); 5401 if (error != ENOENT) 5402 ASSERT0(error); 5403 error = user_release_one(fullname, tag); 5404 if (error != ESRCH && error != ENOENT) 5405 ASSERT0(error); 5406 error = dsl_destroy_snapshot(fullname, B_FALSE); 5407 if (error != ENOENT) 5408 ASSERT0(error); 5409 5410 /* 5411 * Create snapshot, clone it, mark snap for deferred destroy, 5412 * destroy clone, verify snap was also destroyed. 5413 */ 5414 error = dmu_objset_snapshot_one(osname, snapname); 5415 if (error) { 5416 if (error == ENOSPC) { 5417 ztest_record_enospc("dmu_objset_snapshot"); 5418 goto out; 5419 } 5420 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 5421 } 5422 5423 error = dmu_objset_clone(clonename, fullname); 5424 if (error) { 5425 if (error == ENOSPC) { 5426 ztest_record_enospc("dmu_objset_clone"); 5427 goto out; 5428 } 5429 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 5430 } 5431 5432 error = dsl_destroy_snapshot(fullname, B_TRUE); 5433 if (error) { 5434 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 5435 fullname, error); 5436 } 5437 5438 error = dsl_destroy_head(clonename); 5439 if (error) 5440 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 5441 5442 error = dmu_objset_hold(fullname, FTAG, &origin); 5443 if (error != ENOENT) 5444 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 5445 5446 /* 5447 * Create snapshot, add temporary hold, verify that we can't 5448 * destroy a held snapshot, mark for deferred destroy, 5449 * release hold, verify snapshot was destroyed. 5450 */ 5451 error = dmu_objset_snapshot_one(osname, snapname); 5452 if (error) { 5453 if (error == ENOSPC) { 5454 ztest_record_enospc("dmu_objset_snapshot"); 5455 goto out; 5456 } 5457 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 5458 } 5459 5460 holds = fnvlist_alloc(); 5461 fnvlist_add_string(holds, fullname, tag); 5462 error = dsl_dataset_user_hold(holds, 0, NULL); 5463 fnvlist_free(holds); 5464 5465 if (error == ENOSPC) { 5466 ztest_record_enospc("dsl_dataset_user_hold"); 5467 goto out; 5468 } else if (error) { 5469 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", 5470 fullname, tag, error); 5471 } 5472 5473 error = dsl_destroy_snapshot(fullname, B_FALSE); 5474 if (error != EBUSY) { 5475 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 5476 fullname, error); 5477 } 5478 5479 error = dsl_destroy_snapshot(fullname, B_TRUE); 5480 if (error) { 5481 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 5482 fullname, error); 5483 } 5484 5485 error = user_release_one(fullname, tag); 5486 if (error) 5487 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); 5488 5489 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 5490 5491 out: 5492 rw_exit(&ztest_name_lock); 5493 } 5494 5495 /* 5496 * Inject random faults into the on-disk data. 5497 */ 5498 /* ARGSUSED */ 5499 void 5500 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 5501 { 5502 ztest_shared_t *zs = ztest_shared; 5503 spa_t *spa = ztest_spa; 5504 int fd; 5505 uint64_t offset; 5506 uint64_t leaves; 5507 uint64_t bad = 0x1990c0ffeedecade; 5508 uint64_t top, leaf; 5509 char path0[MAXPATHLEN]; 5510 char pathrand[MAXPATHLEN]; 5511 size_t fsize; 5512 int bshift = SPA_MAXBLOCKSHIFT + 2; 5513 int iters = 1000; 5514 int maxfaults; 5515 int mirror_save; 5516 vdev_t *vd0 = NULL; 5517 uint64_t guid0 = 0; 5518 boolean_t islog = B_FALSE; 5519 5520 mutex_enter(&ztest_vdev_lock); 5521 5522 /* 5523 * Device removal is in progress, fault injection must be disabled 5524 * until it completes and the pool is scrubbed. The fault injection 5525 * strategy for damaging blocks does not take in to account evacuated 5526 * blocks which may have already been damaged. 5527 */ 5528 if (ztest_device_removal_active) { 5529 mutex_exit(&ztest_vdev_lock); 5530 return; 5531 } 5532 5533 maxfaults = MAXFAULTS(); 5534 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 5535 mirror_save = zs->zs_mirrors; 5536 mutex_exit(&ztest_vdev_lock); 5537 5538 ASSERT(leaves >= 1); 5539 5540 /* 5541 * Grab the name lock as reader. There are some operations 5542 * which don't like to have their vdevs changed while 5543 * they are in progress (i.e. spa_change_guid). Those 5544 * operations will have grabbed the name lock as writer. 5545 */ 5546 rw_enter(&ztest_name_lock, RW_READER); 5547 5548 /* 5549 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 5550 */ 5551 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5552 5553 if (ztest_random(2) == 0) { 5554 /* 5555 * Inject errors on a normal data device or slog device. 5556 */ 5557 top = ztest_random_vdev_top(spa, B_TRUE); 5558 leaf = ztest_random(leaves) + zs->zs_splits; 5559 5560 /* 5561 * Generate paths to the first leaf in this top-level vdev, 5562 * and to the random leaf we selected. We'll induce transient 5563 * write failures and random online/offline activity on leaf 0, 5564 * and we'll write random garbage to the randomly chosen leaf. 5565 */ 5566 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 5567 ztest_opts.zo_dir, ztest_opts.zo_pool, 5568 top * leaves + zs->zs_splits); 5569 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 5570 ztest_opts.zo_dir, ztest_opts.zo_pool, 5571 top * leaves + leaf); 5572 5573 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 5574 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 5575 islog = B_TRUE; 5576 5577 /* 5578 * If the top-level vdev needs to be resilvered 5579 * then we only allow faults on the device that is 5580 * resilvering. 5581 */ 5582 if (vd0 != NULL && maxfaults != 1 && 5583 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 5584 vd0->vdev_resilver_txg != 0)) { 5585 /* 5586 * Make vd0 explicitly claim to be unreadable, 5587 * or unwriteable, or reach behind its back 5588 * and close the underlying fd. We can do this if 5589 * maxfaults == 0 because we'll fail and reexecute, 5590 * and we can do it if maxfaults >= 2 because we'll 5591 * have enough redundancy. If maxfaults == 1, the 5592 * combination of this with injection of random data 5593 * corruption below exceeds the pool's fault tolerance. 5594 */ 5595 vdev_file_t *vf = vd0->vdev_tsd; 5596 5597 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d", 5598 (long long)vd0->vdev_id, (int)maxfaults); 5599 5600 if (vf != NULL && ztest_random(3) == 0) { 5601 (void) close(vf->vf_vnode->v_fd); 5602 vf->vf_vnode->v_fd = -1; 5603 } else if (ztest_random(2) == 0) { 5604 vd0->vdev_cant_read = B_TRUE; 5605 } else { 5606 vd0->vdev_cant_write = B_TRUE; 5607 } 5608 guid0 = vd0->vdev_guid; 5609 } 5610 } else { 5611 /* 5612 * Inject errors on an l2cache device. 5613 */ 5614 spa_aux_vdev_t *sav = &spa->spa_l2cache; 5615 5616 if (sav->sav_count == 0) { 5617 spa_config_exit(spa, SCL_STATE, FTAG); 5618 rw_exit(&ztest_name_lock); 5619 return; 5620 } 5621 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 5622 guid0 = vd0->vdev_guid; 5623 (void) strcpy(path0, vd0->vdev_path); 5624 (void) strcpy(pathrand, vd0->vdev_path); 5625 5626 leaf = 0; 5627 leaves = 1; 5628 maxfaults = INT_MAX; /* no limit on cache devices */ 5629 } 5630 5631 spa_config_exit(spa, SCL_STATE, FTAG); 5632 rw_exit(&ztest_name_lock); 5633 5634 /* 5635 * If we can tolerate two or more faults, or we're dealing 5636 * with a slog, randomly online/offline vd0. 5637 */ 5638 if ((maxfaults >= 2 || islog) && guid0 != 0) { 5639 if (ztest_random(10) < 6) { 5640 int flags = (ztest_random(2) == 0 ? 5641 ZFS_OFFLINE_TEMPORARY : 0); 5642 5643 /* 5644 * We have to grab the zs_name_lock as writer to 5645 * prevent a race between offlining a slog and 5646 * destroying a dataset. Offlining the slog will 5647 * grab a reference on the dataset which may cause 5648 * dmu_objset_destroy() to fail with EBUSY thus 5649 * leaving the dataset in an inconsistent state. 5650 */ 5651 if (islog) 5652 rw_enter(&ztest_name_lock, RW_WRITER); 5653 5654 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 5655 5656 if (islog) 5657 rw_exit(&ztest_name_lock); 5658 } else { 5659 /* 5660 * Ideally we would like to be able to randomly 5661 * call vdev_[on|off]line without holding locks 5662 * to force unpredictable failures but the side 5663 * effects of vdev_[on|off]line prevent us from 5664 * doing so. We grab the ztest_vdev_lock here to 5665 * prevent a race between injection testing and 5666 * aux_vdev removal. 5667 */ 5668 mutex_enter(&ztest_vdev_lock); 5669 (void) vdev_online(spa, guid0, 0, NULL); 5670 mutex_exit(&ztest_vdev_lock); 5671 } 5672 } 5673 5674 if (maxfaults == 0) 5675 return; 5676 5677 /* 5678 * We have at least single-fault tolerance, so inject data corruption. 5679 */ 5680 fd = open(pathrand, O_RDWR); 5681 5682 if (fd == -1) /* we hit a gap in the device namespace */ 5683 return; 5684 5685 fsize = lseek(fd, 0, SEEK_END); 5686 5687 while (--iters != 0) { 5688 /* 5689 * The offset must be chosen carefully to ensure that 5690 * we do not inject a given logical block with errors 5691 * on two different leaf devices, because ZFS can not 5692 * tolerate that (if maxfaults==1). 5693 * 5694 * We divide each leaf into chunks of size 5695 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk 5696 * there is a series of ranges to which we can inject errors. 5697 * Each range can accept errors on only a single leaf vdev. 5698 * The error injection ranges are separated by ranges 5699 * which we will not inject errors on any device (DMZs). 5700 * Each DMZ must be large enough such that a single block 5701 * can not straddle it, so that a single block can not be 5702 * a target in two different injection ranges (on different 5703 * leaf vdevs). 5704 * 5705 * For example, with 3 leaves, each chunk looks like: 5706 * 0 to 32M: injection range for leaf 0 5707 * 32M to 64M: DMZ - no injection allowed 5708 * 64M to 96M: injection range for leaf 1 5709 * 96M to 128M: DMZ - no injection allowed 5710 * 128M to 160M: injection range for leaf 2 5711 * 160M to 192M: DMZ - no injection allowed 5712 */ 5713 offset = ztest_random(fsize / (leaves << bshift)) * 5714 (leaves << bshift) + (leaf << bshift) + 5715 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 5716 5717 /* 5718 * Only allow damage to the labels at one end of the vdev. 5719 * 5720 * If all labels are damaged, the device will be totally 5721 * inaccessible, which will result in loss of data, 5722 * because we also damage (parts of) the other side of 5723 * the mirror/raidz. 5724 * 5725 * Additionally, we will always have both an even and an 5726 * odd label, so that we can handle crashes in the 5727 * middle of vdev_config_sync(). 5728 */ 5729 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE) 5730 continue; 5731 5732 /* 5733 * The two end labels are stored at the "end" of the disk, but 5734 * the end of the disk (vdev_psize) is aligned to 5735 * sizeof (vdev_label_t). 5736 */ 5737 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t)); 5738 if ((leaf & 1) == 1 && 5739 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE) 5740 continue; 5741 5742 mutex_enter(&ztest_vdev_lock); 5743 if (mirror_save != zs->zs_mirrors) { 5744 mutex_exit(&ztest_vdev_lock); 5745 (void) close(fd); 5746 return; 5747 } 5748 5749 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 5750 fatal(1, "can't inject bad word at 0x%llx in %s", 5751 offset, pathrand); 5752 5753 mutex_exit(&ztest_vdev_lock); 5754 5755 if (ztest_opts.zo_verbose >= 7) 5756 (void) printf("injected bad word into %s," 5757 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 5758 } 5759 5760 (void) close(fd); 5761 } 5762 5763 /* 5764 * Verify that DDT repair works as expected. 5765 */ 5766 void 5767 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 5768 { 5769 ztest_shared_t *zs = ztest_shared; 5770 spa_t *spa = ztest_spa; 5771 objset_t *os = zd->zd_os; 5772 ztest_od_t od[1]; 5773 uint64_t object, blocksize, txg, pattern, psize; 5774 enum zio_checksum checksum = spa_dedup_checksum(spa); 5775 dmu_buf_t *db; 5776 dmu_tx_t *tx; 5777 abd_t *abd; 5778 blkptr_t blk; 5779 int copies = 2 * ZIO_DEDUPDITTO_MIN; 5780 5781 blocksize = ztest_random_blocksize(); 5782 blocksize = MIN(blocksize, 2048); /* because we write so many */ 5783 5784 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 5785 0, 0); 5786 5787 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 5788 return; 5789 5790 /* 5791 * Take the name lock as writer to prevent anyone else from changing 5792 * the pool and dataset properies we need to maintain during this test. 5793 */ 5794 rw_enter(&ztest_name_lock, RW_WRITER); 5795 5796 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 5797 B_FALSE) != 0 || 5798 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 5799 B_FALSE) != 0) { 5800 rw_exit(&ztest_name_lock); 5801 return; 5802 } 5803 5804 dmu_objset_stats_t dds; 5805 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 5806 dmu_objset_fast_stat(os, &dds); 5807 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 5808 5809 object = od[0].od_object; 5810 blocksize = od[0].od_blocksize; 5811 pattern = zs->zs_guid ^ dds.dds_guid; 5812 5813 ASSERT(object != 0); 5814 5815 tx = dmu_tx_create(os); 5816 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 5817 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 5818 if (txg == 0) { 5819 rw_exit(&ztest_name_lock); 5820 return; 5821 } 5822 5823 /* 5824 * Write all the copies of our block. 5825 */ 5826 for (int i = 0; i < copies; i++) { 5827 uint64_t offset = i * blocksize; 5828 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 5829 DMU_READ_NO_PREFETCH); 5830 if (error != 0) { 5831 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 5832 os, (long long)object, (long long) offset, error); 5833 } 5834 ASSERT(db->db_offset == offset); 5835 ASSERT(db->db_size == blocksize); 5836 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 5837 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 5838 dmu_buf_will_fill(db, tx); 5839 ztest_pattern_set(db->db_data, db->db_size, pattern); 5840 dmu_buf_rele(db, FTAG); 5841 } 5842 5843 dmu_tx_commit(tx); 5844 txg_wait_synced(spa_get_dsl(spa), txg); 5845 5846 /* 5847 * Find out what block we got. 5848 */ 5849 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 5850 DMU_READ_NO_PREFETCH)); 5851 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 5852 dmu_buf_rele(db, FTAG); 5853 5854 /* 5855 * Damage the block. Dedup-ditto will save us when we read it later. 5856 */ 5857 psize = BP_GET_PSIZE(&blk); 5858 abd = abd_alloc_linear(psize, B_TRUE); 5859 ztest_pattern_set(abd_to_buf(abd), psize, ~pattern); 5860 5861 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5862 abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5863 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5864 5865 abd_free(abd); 5866 5867 rw_exit(&ztest_name_lock); 5868 } 5869 5870 /* 5871 * Scrub the pool. 5872 */ 5873 /* ARGSUSED */ 5874 void 5875 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5876 { 5877 spa_t *spa = ztest_spa; 5878 5879 /* 5880 * Scrub in progress by device removal. 5881 */ 5882 if (ztest_device_removal_active) 5883 return; 5884 5885 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5886 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5887 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5888 } 5889 5890 /* 5891 * Change the guid for the pool. 5892 */ 5893 /* ARGSUSED */ 5894 void 5895 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5896 { 5897 spa_t *spa = ztest_spa; 5898 uint64_t orig, load; 5899 int error; 5900 5901 if (ztest_opts.zo_mmp_test) 5902 return; 5903 5904 orig = spa_guid(spa); 5905 load = spa_load_guid(spa); 5906 5907 rw_enter(&ztest_name_lock, RW_WRITER); 5908 error = spa_change_guid(spa); 5909 rw_exit(&ztest_name_lock); 5910 5911 if (error != 0) 5912 return; 5913 5914 if (ztest_opts.zo_verbose >= 4) { 5915 (void) printf("Changed guid old %llu -> %llu\n", 5916 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5917 } 5918 5919 VERIFY3U(orig, !=, spa_guid(spa)); 5920 VERIFY3U(load, ==, spa_load_guid(spa)); 5921 } 5922 5923 static vdev_t * 5924 ztest_random_concrete_vdev_leaf(vdev_t *vd) 5925 { 5926 if (vd == NULL) 5927 return (NULL); 5928 5929 if (vd->vdev_children == 0) 5930 return (vd); 5931 5932 vdev_t *eligible[vd->vdev_children]; 5933 int eligible_idx = 0, i; 5934 for (i = 0; i < vd->vdev_children; i++) { 5935 vdev_t *cvd = vd->vdev_child[i]; 5936 if (cvd->vdev_top->vdev_removing) 5937 continue; 5938 if (cvd->vdev_children > 0 || 5939 (vdev_is_concrete(cvd) && !cvd->vdev_detached)) { 5940 eligible[eligible_idx++] = cvd; 5941 } 5942 } 5943 VERIFY(eligible_idx > 0); 5944 5945 uint64_t child_no = ztest_random(eligible_idx); 5946 return (ztest_random_concrete_vdev_leaf(eligible[child_no])); 5947 } 5948 5949 /* ARGSUSED */ 5950 void 5951 ztest_initialize(ztest_ds_t *zd, uint64_t id) 5952 { 5953 spa_t *spa = ztest_spa; 5954 int error = 0; 5955 5956 mutex_enter(&ztest_vdev_lock); 5957 5958 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5959 5960 /* Random leaf vdev */ 5961 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev); 5962 if (rand_vd == NULL) { 5963 spa_config_exit(spa, SCL_VDEV, FTAG); 5964 mutex_exit(&ztest_vdev_lock); 5965 return; 5966 } 5967 5968 /* 5969 * The random vdev we've selected may change as soon as we 5970 * drop the spa_config_lock. We create local copies of things 5971 * we're interested in. 5972 */ 5973 uint64_t guid = rand_vd->vdev_guid; 5974 char *path = strdup(rand_vd->vdev_path); 5975 boolean_t active = rand_vd->vdev_initialize_thread != NULL; 5976 5977 zfs_dbgmsg("vd %p, guid %llu", rand_vd, guid); 5978 spa_config_exit(spa, SCL_VDEV, FTAG); 5979 5980 uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS); 5981 5982 nvlist_t *vdev_guids = fnvlist_alloc(); 5983 nvlist_t *vdev_errlist = fnvlist_alloc(); 5984 fnvlist_add_uint64(vdev_guids, path, guid); 5985 error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist); 5986 fnvlist_free(vdev_guids); 5987 fnvlist_free(vdev_errlist); 5988 5989 switch (cmd) { 5990 case POOL_INITIALIZE_CANCEL: 5991 if (ztest_opts.zo_verbose >= 4) { 5992 (void) printf("Cancel initialize %s", path); 5993 if (!active) 5994 (void) printf(" failed (no initialize active)"); 5995 (void) printf("\n"); 5996 } 5997 break; 5998 case POOL_INITIALIZE_START: 5999 if (ztest_opts.zo_verbose >= 4) { 6000 (void) printf("Start initialize %s", path); 6001 if (active && error == 0) 6002 (void) printf(" failed (already active)"); 6003 else if (error != 0) 6004 (void) printf(" failed (error %d)", error); 6005 (void) printf("\n"); 6006 } 6007 break; 6008 case POOL_INITIALIZE_SUSPEND: 6009 if (ztest_opts.zo_verbose >= 4) { 6010 (void) printf("Suspend initialize %s", path); 6011 if (!active) 6012 (void) printf(" failed (no initialize active)"); 6013 (void) printf("\n"); 6014 } 6015 break; 6016 } 6017 free(path); 6018 mutex_exit(&ztest_vdev_lock); 6019 } 6020 6021 /* ARGSUSED */ 6022 void 6023 ztest_trim(ztest_ds_t *zd, uint64_t id) 6024 { 6025 spa_t *spa = ztest_spa; 6026 int error = 0; 6027 6028 mutex_enter(&ztest_vdev_lock); 6029 6030 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6031 6032 /* Random leaf vdev */ 6033 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev); 6034 if (rand_vd == NULL) { 6035 spa_config_exit(spa, SCL_VDEV, FTAG); 6036 mutex_exit(&ztest_vdev_lock); 6037 return; 6038 } 6039 6040 /* 6041 * The random vdev we've selected may change as soon as we 6042 * drop the spa_config_lock. We create local copies of things 6043 * we're interested in. 6044 */ 6045 uint64_t guid = rand_vd->vdev_guid; 6046 char *path = strdup(rand_vd->vdev_path); 6047 boolean_t active = rand_vd->vdev_trim_thread != NULL; 6048 6049 zfs_dbgmsg("vd %p, guid %llu", rand_vd, guid); 6050 spa_config_exit(spa, SCL_VDEV, FTAG); 6051 6052 uint64_t cmd = ztest_random(POOL_TRIM_FUNCS); 6053 uint64_t rate = 1 << ztest_random(30); 6054 boolean_t partial = (ztest_random(5) > 0); 6055 boolean_t secure = (ztest_random(5) > 0); 6056 6057 nvlist_t *vdev_guids = fnvlist_alloc(); 6058 nvlist_t *vdev_errlist = fnvlist_alloc(); 6059 fnvlist_add_uint64(vdev_guids, path, guid); 6060 error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial, 6061 secure, vdev_errlist); 6062 fnvlist_free(vdev_guids); 6063 fnvlist_free(vdev_errlist); 6064 6065 switch (cmd) { 6066 case POOL_TRIM_CANCEL: 6067 if (ztest_opts.zo_verbose >= 4) { 6068 (void) printf("Cancel TRIM %s", path); 6069 if (!active) 6070 (void) printf(" failed (no TRIM active)"); 6071 (void) printf("\n"); 6072 } 6073 break; 6074 case POOL_TRIM_START: 6075 if (ztest_opts.zo_verbose >= 4) { 6076 (void) printf("Start TRIM %s", path); 6077 if (active && error == 0) 6078 (void) printf(" failed (already active)"); 6079 else if (error != 0) 6080 (void) printf(" failed (error %d)", error); 6081 (void) printf("\n"); 6082 } 6083 break; 6084 case POOL_TRIM_SUSPEND: 6085 if (ztest_opts.zo_verbose >= 4) { 6086 (void) printf("Suspend TRIM %s", path); 6087 if (!active) 6088 (void) printf(" failed (no TRIM active)"); 6089 (void) printf("\n"); 6090 } 6091 break; 6092 } 6093 free(path); 6094 mutex_exit(&ztest_vdev_lock); 6095 } 6096 6097 /* 6098 * Verify pool integrity by running zdb. 6099 */ 6100 static void 6101 ztest_run_zdb(char *pool) 6102 { 6103 int status; 6104 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 6105 char zbuf[1024]; 6106 char *bin; 6107 char *ztest; 6108 char *isa; 6109 int isalen; 6110 FILE *fp; 6111 6112 (void) realpath(getexecname(), zdb); 6113 6114 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 6115 bin = strstr(zdb, "/usr/bin/"); 6116 ztest = strstr(bin, "/ztest"); 6117 isa = bin + 8; 6118 isalen = ztest - isa; 6119 isa = strdup(isa); 6120 /* LINTED */ 6121 (void) sprintf(bin, 6122 "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s " 6123 "-o zfs_reconstruct_indirect_combinations_max=65536 %s", 6124 isalen, 6125 isa, 6126 ztest_opts.zo_verbose >= 3 ? "s" : "", 6127 ztest_opts.zo_verbose >= 4 ? "v" : "", 6128 spa_config_path, 6129 pool); 6130 free(isa); 6131 6132 if (ztest_opts.zo_verbose >= 5) 6133 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 6134 6135 fp = popen(zdb, "r"); 6136 6137 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 6138 if (ztest_opts.zo_verbose >= 3) 6139 (void) printf("%s", zbuf); 6140 6141 status = pclose(fp); 6142 6143 if (status == 0) 6144 return; 6145 6146 ztest_dump_core = 0; 6147 if (WIFEXITED(status)) 6148 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 6149 else 6150 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 6151 } 6152 6153 static void 6154 ztest_walk_pool_directory(char *header) 6155 { 6156 spa_t *spa = NULL; 6157 6158 if (ztest_opts.zo_verbose >= 6) 6159 (void) printf("%s\n", header); 6160 6161 mutex_enter(&spa_namespace_lock); 6162 while ((spa = spa_next(spa)) != NULL) 6163 if (ztest_opts.zo_verbose >= 6) 6164 (void) printf("\t%s\n", spa_name(spa)); 6165 mutex_exit(&spa_namespace_lock); 6166 } 6167 6168 static void 6169 ztest_spa_import_export(char *oldname, char *newname) 6170 { 6171 nvlist_t *config, *newconfig; 6172 uint64_t pool_guid; 6173 spa_t *spa; 6174 int error; 6175 6176 if (ztest_opts.zo_verbose >= 4) { 6177 (void) printf("import/export: old = %s, new = %s\n", 6178 oldname, newname); 6179 } 6180 6181 /* 6182 * Clean up from previous runs. 6183 */ 6184 (void) spa_destroy(newname); 6185 6186 /* 6187 * Get the pool's configuration and guid. 6188 */ 6189 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 6190 6191 /* 6192 * Kick off a scrub to tickle scrub/export races. 6193 */ 6194 if (ztest_random(2) == 0) 6195 (void) spa_scan(spa, POOL_SCAN_SCRUB); 6196 6197 pool_guid = spa_guid(spa); 6198 spa_close(spa, FTAG); 6199 6200 ztest_walk_pool_directory("pools before export"); 6201 6202 /* 6203 * Export it. 6204 */ 6205 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 6206 6207 ztest_walk_pool_directory("pools after export"); 6208 6209 /* 6210 * Try to import it. 6211 */ 6212 newconfig = spa_tryimport(config); 6213 ASSERT(newconfig != NULL); 6214 nvlist_free(newconfig); 6215 6216 /* 6217 * Import it under the new name. 6218 */ 6219 error = spa_import(newname, config, NULL, 0); 6220 if (error != 0) { 6221 dump_nvlist(config, 0); 6222 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 6223 oldname, newname, error); 6224 } 6225 6226 ztest_walk_pool_directory("pools after import"); 6227 6228 /* 6229 * Try to import it again -- should fail with EEXIST. 6230 */ 6231 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 6232 6233 /* 6234 * Try to import it under a different name -- should fail with EEXIST. 6235 */ 6236 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 6237 6238 /* 6239 * Verify that the pool is no longer visible under the old name. 6240 */ 6241 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 6242 6243 /* 6244 * Verify that we can open and close the pool using the new name. 6245 */ 6246 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 6247 ASSERT(pool_guid == spa_guid(spa)); 6248 spa_close(spa, FTAG); 6249 6250 nvlist_free(config); 6251 } 6252 6253 static void 6254 ztest_resume(spa_t *spa) 6255 { 6256 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 6257 (void) printf("resuming from suspended state\n"); 6258 spa_vdev_state_enter(spa, SCL_NONE); 6259 vdev_clear(spa, NULL); 6260 (void) spa_vdev_state_exit(spa, NULL, 0); 6261 (void) zio_resume(spa); 6262 } 6263 6264 static void * 6265 ztest_resume_thread(void *arg) 6266 { 6267 spa_t *spa = arg; 6268 6269 while (!ztest_exiting) { 6270 if (spa_suspended(spa)) 6271 ztest_resume(spa); 6272 (void) poll(NULL, 0, 100); 6273 6274 /* 6275 * Periodically change the zfs_compressed_arc_enabled setting. 6276 */ 6277 if (ztest_random(10) == 0) 6278 zfs_compressed_arc_enabled = ztest_random(2); 6279 6280 /* 6281 * Periodically change the zfs_abd_scatter_enabled setting. 6282 */ 6283 if (ztest_random(10) == 0) 6284 zfs_abd_scatter_enabled = ztest_random(2); 6285 } 6286 return (NULL); 6287 } 6288 6289 static void * 6290 ztest_deadman_thread(void *arg) 6291 { 6292 ztest_shared_t *zs = arg; 6293 spa_t *spa = ztest_spa; 6294 hrtime_t delta, total = 0; 6295 6296 for (;;) { 6297 delta = zs->zs_thread_stop - zs->zs_thread_start + 6298 MSEC2NSEC(zfs_deadman_synctime_ms); 6299 6300 (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); 6301 6302 /* 6303 * If the pool is suspended then fail immediately. Otherwise, 6304 * check to see if the pool is making any progress. If 6305 * vdev_deadman() discovers that there hasn't been any recent 6306 * I/Os then it will end up aborting the tests. 6307 */ 6308 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { 6309 fatal(0, "aborting test after %llu seconds because " 6310 "pool has transitioned to a suspended state.", 6311 zfs_deadman_synctime_ms / 1000); 6312 return (NULL); 6313 } 6314 vdev_deadman(spa->spa_root_vdev); 6315 6316 total += zfs_deadman_synctime_ms/1000; 6317 (void) printf("ztest has been running for %lld seconds\n", 6318 total); 6319 } 6320 } 6321 6322 static void 6323 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 6324 { 6325 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 6326 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 6327 hrtime_t functime = gethrtime(); 6328 6329 for (int i = 0; i < zi->zi_iters; i++) 6330 zi->zi_func(zd, id); 6331 6332 functime = gethrtime() - functime; 6333 6334 atomic_add_64(&zc->zc_count, 1); 6335 atomic_add_64(&zc->zc_time, functime); 6336 6337 if (ztest_opts.zo_verbose >= 4) { 6338 Dl_info dli; 6339 (void) dladdr((void *)zi->zi_func, &dli); 6340 (void) printf("%6.2f sec in %s\n", 6341 (double)functime / NANOSEC, dli.dli_sname); 6342 } 6343 } 6344 6345 static void * 6346 ztest_thread(void *arg) 6347 { 6348 int rand; 6349 uint64_t id = (uintptr_t)arg; 6350 ztest_shared_t *zs = ztest_shared; 6351 uint64_t call_next; 6352 hrtime_t now; 6353 ztest_info_t *zi; 6354 ztest_shared_callstate_t *zc; 6355 6356 while ((now = gethrtime()) < zs->zs_thread_stop) { 6357 /* 6358 * See if it's time to force a crash. 6359 */ 6360 if (now > zs->zs_thread_kill) 6361 ztest_kill(zs); 6362 6363 /* 6364 * If we're getting ENOSPC with some regularity, stop. 6365 */ 6366 if (zs->zs_enospc_count > 10) 6367 break; 6368 6369 /* 6370 * Pick a random function to execute. 6371 */ 6372 rand = ztest_random(ZTEST_FUNCS); 6373 zi = &ztest_info[rand]; 6374 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 6375 call_next = zc->zc_next; 6376 6377 if (now >= call_next && 6378 atomic_cas_64(&zc->zc_next, call_next, call_next + 6379 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 6380 ztest_execute(rand, zi, id); 6381 } 6382 } 6383 6384 return (NULL); 6385 } 6386 6387 static void 6388 ztest_dataset_name(char *dsname, char *pool, int d) 6389 { 6390 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d); 6391 } 6392 6393 static void 6394 ztest_dataset_destroy(int d) 6395 { 6396 char name[ZFS_MAX_DATASET_NAME_LEN]; 6397 6398 ztest_dataset_name(name, ztest_opts.zo_pool, d); 6399 6400 if (ztest_opts.zo_verbose >= 3) 6401 (void) printf("Destroying %s to free up space\n", name); 6402 6403 /* 6404 * Cleanup any non-standard clones and snapshots. In general, 6405 * ztest thread t operates on dataset (t % zopt_datasets), 6406 * so there may be more than one thing to clean up. 6407 */ 6408 for (int t = d; t < ztest_opts.zo_threads; 6409 t += ztest_opts.zo_datasets) { 6410 ztest_dsl_dataset_cleanup(name, t); 6411 } 6412 6413 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 6414 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 6415 } 6416 6417 static void 6418 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 6419 { 6420 uint64_t usedobjs, dirobjs, scratch; 6421 6422 /* 6423 * ZTEST_DIROBJ is the object directory for the entire dataset. 6424 * Therefore, the number of objects in use should equal the 6425 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 6426 * If not, we have an object leak. 6427 * 6428 * Note that we can only check this in ztest_dataset_open(), 6429 * when the open-context and syncing-context values agree. 6430 * That's because zap_count() returns the open-context value, 6431 * while dmu_objset_space() returns the rootbp fill count. 6432 */ 6433 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 6434 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 6435 ASSERT3U(dirobjs + 1, ==, usedobjs); 6436 } 6437 6438 static int 6439 ztest_dataset_open(int d) 6440 { 6441 ztest_ds_t *zd = &ztest_ds[d]; 6442 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 6443 objset_t *os; 6444 zilog_t *zilog; 6445 char name[ZFS_MAX_DATASET_NAME_LEN]; 6446 int error; 6447 6448 ztest_dataset_name(name, ztest_opts.zo_pool, d); 6449 6450 rw_enter(&ztest_name_lock, RW_READER); 6451 6452 error = ztest_dataset_create(name); 6453 if (error == ENOSPC) { 6454 rw_exit(&ztest_name_lock); 6455 ztest_record_enospc(FTAG); 6456 return (error); 6457 } 6458 ASSERT(error == 0 || error == EEXIST); 6459 6460 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, 6461 B_TRUE, zd, &os)); 6462 rw_exit(&ztest_name_lock); 6463 6464 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 6465 6466 zilog = zd->zd_zilog; 6467 6468 if (zilog->zl_header->zh_claim_lr_seq != 0 && 6469 zilog->zl_header->zh_claim_lr_seq < committed_seq) 6470 fatal(0, "missing log records: claimed %llu < committed %llu", 6471 zilog->zl_header->zh_claim_lr_seq, committed_seq); 6472 6473 ztest_dataset_dirobj_verify(zd); 6474 6475 zil_replay(os, zd, ztest_replay_vector); 6476 6477 ztest_dataset_dirobj_verify(zd); 6478 6479 if (ztest_opts.zo_verbose >= 6) 6480 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 6481 zd->zd_name, 6482 (u_longlong_t)zilog->zl_parse_blk_count, 6483 (u_longlong_t)zilog->zl_parse_lr_count, 6484 (u_longlong_t)zilog->zl_replaying_seq); 6485 6486 zilog = zil_open(os, ztest_get_data); 6487 6488 if (zilog->zl_replaying_seq != 0 && 6489 zilog->zl_replaying_seq < committed_seq) 6490 fatal(0, "missing log records: replayed %llu < committed %llu", 6491 zilog->zl_replaying_seq, committed_seq); 6492 6493 return (0); 6494 } 6495 6496 static void 6497 ztest_dataset_close(int d) 6498 { 6499 ztest_ds_t *zd = &ztest_ds[d]; 6500 6501 zil_close(zd->zd_zilog); 6502 dmu_objset_disown(zd->zd_os, B_TRUE, zd); 6503 6504 ztest_zd_fini(zd); 6505 } 6506 6507 /* 6508 * Kick off threads to run tests on all datasets in parallel. 6509 */ 6510 static void 6511 ztest_run(ztest_shared_t *zs) 6512 { 6513 thread_t *tid; 6514 spa_t *spa; 6515 objset_t *os; 6516 thread_t resume_tid; 6517 int error; 6518 6519 ztest_exiting = B_FALSE; 6520 6521 /* 6522 * Initialize parent/child shared state. 6523 */ 6524 mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL); 6525 mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL); 6526 rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL); 6527 6528 zs->zs_thread_start = gethrtime(); 6529 zs->zs_thread_stop = 6530 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 6531 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 6532 zs->zs_thread_kill = zs->zs_thread_stop; 6533 if (ztest_random(100) < ztest_opts.zo_killrate) { 6534 zs->zs_thread_kill -= 6535 ztest_random(ztest_opts.zo_passtime * NANOSEC); 6536 } 6537 6538 mutex_init(&zcl.zcl_callbacks_lock, NULL, USYNC_THREAD, NULL); 6539 6540 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 6541 offsetof(ztest_cb_data_t, zcd_node)); 6542 6543 /* 6544 * Open our pool. 6545 */ 6546 kernel_init(FREAD | FWRITE); 6547 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 6548 metaslab_preload_limit = ztest_random(20) + 1; 6549 ztest_spa = spa; 6550 6551 dmu_objset_stats_t dds; 6552 VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool, 6553 DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os)); 6554 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 6555 dmu_objset_fast_stat(os, &dds); 6556 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 6557 zs->zs_guid = dds.dds_guid; 6558 dmu_objset_disown(os, B_TRUE, FTAG); 6559 6560 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 6561 6562 /* 6563 * We don't expect the pool to suspend unless maxfaults == 0, 6564 * in which case ztest_fault_inject() temporarily takes away 6565 * the only valid replica. 6566 */ 6567 if (MAXFAULTS() == 0) 6568 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 6569 else 6570 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 6571 6572 /* 6573 * Create a thread to periodically resume suspended I/O. 6574 */ 6575 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 6576 &resume_tid) == 0); 6577 6578 /* 6579 * Create a deadman thread to abort() if we hang. 6580 */ 6581 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 6582 NULL) == 0); 6583 6584 /* 6585 * Verify that we can safely inquire about any object, 6586 * whether it's allocated or not. To make it interesting, 6587 * we probe a 5-wide window around each power of two. 6588 * This hits all edge cases, including zero and the max. 6589 */ 6590 for (int t = 0; t < 64; t++) { 6591 for (int d = -5; d <= 5; d++) { 6592 error = dmu_object_info(spa->spa_meta_objset, 6593 (1ULL << t) + d, NULL); 6594 ASSERT(error == 0 || error == ENOENT || 6595 error == EINVAL); 6596 } 6597 } 6598 6599 /* 6600 * If we got any ENOSPC errors on the previous run, destroy something. 6601 */ 6602 if (zs->zs_enospc_count != 0) { 6603 int d = ztest_random(ztest_opts.zo_datasets); 6604 ztest_dataset_destroy(d); 6605 } 6606 zs->zs_enospc_count = 0; 6607 6608 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 6609 UMEM_NOFAIL); 6610 6611 if (ztest_opts.zo_verbose >= 4) 6612 (void) printf("starting main threads...\n"); 6613 6614 /* 6615 * Kick off all the tests that run in parallel. 6616 */ 6617 for (int t = 0; t < ztest_opts.zo_threads; t++) { 6618 if (t < ztest_opts.zo_datasets && 6619 ztest_dataset_open(t) != 0) 6620 return; 6621 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 6622 THR_BOUND, &tid[t]) == 0); 6623 } 6624 6625 /* 6626 * Wait for all of the tests to complete. We go in reverse order 6627 * so we don't close datasets while threads are still using them. 6628 */ 6629 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 6630 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 6631 if (t < ztest_opts.zo_datasets) 6632 ztest_dataset_close(t); 6633 } 6634 6635 txg_wait_synced(spa_get_dsl(spa), 0); 6636 6637 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 6638 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 6639 zfs_dbgmsg_print(FTAG); 6640 6641 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 6642 6643 /* Kill the resume thread */ 6644 ztest_exiting = B_TRUE; 6645 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 6646 ztest_resume(spa); 6647 6648 /* 6649 * Right before closing the pool, kick off a bunch of async I/O; 6650 * spa_close() should wait for it to complete. 6651 */ 6652 for (uint64_t object = 1; object < 50; object++) { 6653 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20, 6654 ZIO_PRIORITY_SYNC_READ); 6655 } 6656 6657 spa_close(spa, FTAG); 6658 6659 /* 6660 * Verify that we can loop over all pools. 6661 */ 6662 mutex_enter(&spa_namespace_lock); 6663 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 6664 if (ztest_opts.zo_verbose > 3) 6665 (void) printf("spa_next: found %s\n", spa_name(spa)); 6666 mutex_exit(&spa_namespace_lock); 6667 6668 /* 6669 * Verify that we can export the pool and reimport it under a 6670 * different name. 6671 */ 6672 if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) { 6673 char name[ZFS_MAX_DATASET_NAME_LEN]; 6674 (void) snprintf(name, sizeof (name), "%s_import", 6675 ztest_opts.zo_pool); 6676 ztest_spa_import_export(ztest_opts.zo_pool, name); 6677 ztest_spa_import_export(name, ztest_opts.zo_pool); 6678 } 6679 6680 kernel_fini(); 6681 6682 list_destroy(&zcl.zcl_callbacks); 6683 6684 mutex_destroy(&zcl.zcl_callbacks_lock); 6685 6686 rw_destroy(&ztest_name_lock); 6687 mutex_destroy(&ztest_vdev_lock); 6688 mutex_destroy(&ztest_checkpoint_lock); 6689 } 6690 6691 static void 6692 ztest_freeze(void) 6693 { 6694 ztest_ds_t *zd = &ztest_ds[0]; 6695 spa_t *spa; 6696 int numloops = 0; 6697 6698 if (ztest_opts.zo_verbose >= 3) 6699 (void) printf("testing spa_freeze()...\n"); 6700 6701 kernel_init(FREAD | FWRITE); 6702 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 6703 VERIFY3U(0, ==, ztest_dataset_open(0)); 6704 ztest_spa = spa; 6705 6706 /* 6707 * Force the first log block to be transactionally allocated. 6708 * We have to do this before we freeze the pool -- otherwise 6709 * the log chain won't be anchored. 6710 */ 6711 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 6712 ztest_dmu_object_alloc_free(zd, 0); 6713 zil_commit(zd->zd_zilog, 0); 6714 } 6715 6716 txg_wait_synced(spa_get_dsl(spa), 0); 6717 6718 /* 6719 * Freeze the pool. This stops spa_sync() from doing anything, 6720 * so that the only way to record changes from now on is the ZIL. 6721 */ 6722 spa_freeze(spa); 6723 6724 /* 6725 * Because it is hard to predict how much space a write will actually 6726 * require beforehand, we leave ourselves some fudge space to write over 6727 * capacity. 6728 */ 6729 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; 6730 6731 /* 6732 * Run tests that generate log records but don't alter the pool config 6733 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 6734 * We do a txg_wait_synced() after each iteration to force the txg 6735 * to increase well beyond the last synced value in the uberblock. 6736 * The ZIL should be OK with that. 6737 * 6738 * Run a random number of times less than zo_maxloops and ensure we do 6739 * not run out of space on the pool. 6740 */ 6741 while (ztest_random(10) != 0 && 6742 numloops++ < ztest_opts.zo_maxloops && 6743 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { 6744 ztest_od_t od; 6745 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0); 6746 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); 6747 ztest_io(zd, od.od_object, 6748 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 6749 txg_wait_synced(spa_get_dsl(spa), 0); 6750 } 6751 6752 /* 6753 * Commit all of the changes we just generated. 6754 */ 6755 zil_commit(zd->zd_zilog, 0); 6756 txg_wait_synced(spa_get_dsl(spa), 0); 6757 6758 /* 6759 * Close our dataset and close the pool. 6760 */ 6761 ztest_dataset_close(0); 6762 spa_close(spa, FTAG); 6763 kernel_fini(); 6764 6765 /* 6766 * Open and close the pool and dataset to induce log replay. 6767 */ 6768 kernel_init(FREAD | FWRITE); 6769 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 6770 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 6771 VERIFY3U(0, ==, ztest_dataset_open(0)); 6772 ztest_spa = spa; 6773 txg_wait_synced(spa_get_dsl(spa), 0); 6774 ztest_dataset_close(0); 6775 ztest_reguid(NULL, 0); 6776 6777 spa_close(spa, FTAG); 6778 kernel_fini(); 6779 } 6780 6781 void 6782 print_time(hrtime_t t, char *timebuf) 6783 { 6784 hrtime_t s = t / NANOSEC; 6785 hrtime_t m = s / 60; 6786 hrtime_t h = m / 60; 6787 hrtime_t d = h / 24; 6788 6789 s -= m * 60; 6790 m -= h * 60; 6791 h -= d * 24; 6792 6793 timebuf[0] = '\0'; 6794 6795 if (d) 6796 (void) sprintf(timebuf, 6797 "%llud%02lluh%02llum%02llus", d, h, m, s); 6798 else if (h) 6799 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 6800 else if (m) 6801 (void) sprintf(timebuf, "%llum%02llus", m, s); 6802 else 6803 (void) sprintf(timebuf, "%llus", s); 6804 } 6805 6806 static nvlist_t * 6807 make_random_props() 6808 { 6809 nvlist_t *props; 6810 6811 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 6812 6813 if (ztest_random(2) == 0) 6814 return (props); 6815 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 6816 6817 return (props); 6818 } 6819 6820 /* 6821 * Import a storage pool with the given name. 6822 */ 6823 static void 6824 ztest_import(ztest_shared_t *zs) 6825 { 6826 libzfs_handle_t *hdl; 6827 importargs_t args = { 0 }; 6828 spa_t *spa; 6829 nvlist_t *cfg = NULL; 6830 int nsearch = 1; 6831 char *searchdirs[nsearch]; 6832 char *name = ztest_opts.zo_pool; 6833 int flags = ZFS_IMPORT_MISSING_LOG; 6834 int error; 6835 6836 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL); 6837 rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL); 6838 6839 kernel_init(FREAD | FWRITE); 6840 hdl = libzfs_init(); 6841 6842 searchdirs[0] = ztest_opts.zo_dir; 6843 args.paths = nsearch; 6844 args.path = searchdirs; 6845 args.can_be_active = B_FALSE; 6846 6847 error = zpool_tryimport(hdl, name, &cfg, &args); 6848 if (error) 6849 (void) fatal(0, "No pools found\n"); 6850 6851 VERIFY0(spa_import(name, cfg, NULL, flags)); 6852 VERIFY0(spa_open(name, &spa, FTAG)); 6853 zs->zs_metaslab_sz = 6854 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 6855 spa_close(spa, FTAG); 6856 6857 libzfs_fini(hdl); 6858 kernel_fini(); 6859 6860 if (!ztest_opts.zo_mmp_test) { 6861 ztest_run_zdb(ztest_opts.zo_pool); 6862 ztest_freeze(); 6863 ztest_run_zdb(ztest_opts.zo_pool); 6864 } 6865 6866 rw_destroy(&ztest_name_lock); 6867 mutex_destroy(&ztest_vdev_lock); 6868 } 6869 6870 /* 6871 * Create a storage pool with the given name and initial vdev size. 6872 * Then test spa_freeze() functionality. 6873 */ 6874 static void 6875 ztest_init(ztest_shared_t *zs) 6876 { 6877 spa_t *spa; 6878 nvlist_t *nvroot, *props; 6879 6880 mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL); 6881 mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL); 6882 rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL); 6883 6884 kernel_init(FREAD | FWRITE); 6885 6886 /* 6887 * Create the storage pool. 6888 */ 6889 (void) spa_destroy(ztest_opts.zo_pool); 6890 ztest_shared->zs_vdev_next_leaf = 0; 6891 zs->zs_splits = 0; 6892 zs->zs_mirrors = ztest_opts.zo_mirrors; 6893 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 6894 NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 6895 props = make_random_props(); 6896 for (int i = 0; i < SPA_FEATURES; i++) { 6897 char buf[1024]; 6898 (void) snprintf(buf, sizeof (buf), "feature@%s", 6899 spa_feature_table[i].fi_uname); 6900 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 6901 } 6902 VERIFY3U(0, ==, 6903 spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL)); 6904 nvlist_free(nvroot); 6905 nvlist_free(props); 6906 6907 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 6908 zs->zs_metaslab_sz = 6909 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 6910 6911 spa_close(spa, FTAG); 6912 6913 kernel_fini(); 6914 6915 if (!ztest_opts.zo_mmp_test) { 6916 ztest_run_zdb(ztest_opts.zo_pool); 6917 ztest_freeze(); 6918 ztest_run_zdb(ztest_opts.zo_pool); 6919 } 6920 6921 rw_destroy(&ztest_name_lock); 6922 mutex_destroy(&ztest_vdev_lock); 6923 mutex_destroy(&ztest_checkpoint_lock); 6924 } 6925 6926 static void 6927 setup_data_fd(void) 6928 { 6929 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 6930 6931 ztest_fd_data = mkstemp(ztest_name_data); 6932 ASSERT3S(ztest_fd_data, >=, 0); 6933 (void) unlink(ztest_name_data); 6934 } 6935 6936 static int 6937 shared_data_size(ztest_shared_hdr_t *hdr) 6938 { 6939 int size; 6940 6941 size = hdr->zh_hdr_size; 6942 size += hdr->zh_opts_size; 6943 size += hdr->zh_size; 6944 size += hdr->zh_stats_size * hdr->zh_stats_count; 6945 size += hdr->zh_ds_size * hdr->zh_ds_count; 6946 6947 return (size); 6948 } 6949 6950 static void 6951 setup_hdr(void) 6952 { 6953 int size; 6954 ztest_shared_hdr_t *hdr; 6955 6956 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6957 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6958 ASSERT(hdr != MAP_FAILED); 6959 6960 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 6961 6962 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 6963 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 6964 hdr->zh_size = sizeof (ztest_shared_t); 6965 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 6966 hdr->zh_stats_count = ZTEST_FUNCS; 6967 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 6968 hdr->zh_ds_count = ztest_opts.zo_datasets; 6969 6970 size = shared_data_size(hdr); 6971 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 6972 6973 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6974 } 6975 6976 static void 6977 setup_data(void) 6978 { 6979 int size, offset; 6980 ztest_shared_hdr_t *hdr; 6981 uint8_t *buf; 6982 6983 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6984 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 6985 ASSERT(hdr != MAP_FAILED); 6986 6987 size = shared_data_size(hdr); 6988 6989 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6990 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 6991 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6992 ASSERT(hdr != MAP_FAILED); 6993 buf = (uint8_t *)hdr; 6994 6995 offset = hdr->zh_hdr_size; 6996 ztest_shared_opts = (void *)&buf[offset]; 6997 offset += hdr->zh_opts_size; 6998 ztest_shared = (void *)&buf[offset]; 6999 offset += hdr->zh_size; 7000 ztest_shared_callstate = (void *)&buf[offset]; 7001 offset += hdr->zh_stats_size * hdr->zh_stats_count; 7002 ztest_shared_ds = (void *)&buf[offset]; 7003 } 7004 7005 static boolean_t 7006 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 7007 { 7008 pid_t pid; 7009 int status; 7010 char *cmdbuf = NULL; 7011 7012 pid = fork(); 7013 7014 if (cmd == NULL) { 7015 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 7016 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 7017 cmd = cmdbuf; 7018 } 7019 7020 if (pid == -1) 7021 fatal(1, "fork failed"); 7022 7023 if (pid == 0) { /* child */ 7024 char *emptyargv[2] = { cmd, NULL }; 7025 char fd_data_str[12]; 7026 7027 struct rlimit rl = { 1024, 1024 }; 7028 (void) setrlimit(RLIMIT_NOFILE, &rl); 7029 7030 (void) close(ztest_fd_rand); 7031 VERIFY3U(11, >=, 7032 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 7033 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 7034 7035 (void) enable_extended_FILE_stdio(-1, -1); 7036 if (libpath != NULL) 7037 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 7038 (void) execv(cmd, emptyargv); 7039 ztest_dump_core = B_FALSE; 7040 fatal(B_TRUE, "exec failed: %s", cmd); 7041 } 7042 7043 if (cmdbuf != NULL) { 7044 umem_free(cmdbuf, MAXPATHLEN); 7045 cmd = NULL; 7046 } 7047 7048 while (waitpid(pid, &status, 0) != pid) 7049 continue; 7050 if (statusp != NULL) 7051 *statusp = status; 7052 7053 if (WIFEXITED(status)) { 7054 if (WEXITSTATUS(status) != 0) { 7055 (void) fprintf(stderr, "child exited with code %d\n", 7056 WEXITSTATUS(status)); 7057 exit(2); 7058 } 7059 return (B_FALSE); 7060 } else if (WIFSIGNALED(status)) { 7061 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 7062 (void) fprintf(stderr, "child died with signal %d\n", 7063 WTERMSIG(status)); 7064 exit(3); 7065 } 7066 return (B_TRUE); 7067 } else { 7068 (void) fprintf(stderr, "something strange happened to child\n"); 7069 exit(4); 7070 /* NOTREACHED */ 7071 } 7072 } 7073 7074 static void 7075 ztest_run_init(void) 7076 { 7077 ztest_shared_t *zs = ztest_shared; 7078 7079 /* 7080 * Blow away any existing copy of zpool.cache 7081 */ 7082 (void) remove(spa_config_path); 7083 7084 if (ztest_opts.zo_init == 0) { 7085 if (ztest_opts.zo_verbose >= 1) 7086 (void) printf("Importing pool %s\n", 7087 ztest_opts.zo_pool); 7088 ztest_import(zs); 7089 return; 7090 } 7091 7092 /* 7093 * Create and initialize our storage pool. 7094 */ 7095 for (int i = 1; i <= ztest_opts.zo_init; i++) { 7096 bzero(zs, sizeof (ztest_shared_t)); 7097 if (ztest_opts.zo_verbose >= 3 && 7098 ztest_opts.zo_init != 1) { 7099 (void) printf("ztest_init(), pass %d\n", i); 7100 } 7101 ztest_init(zs); 7102 } 7103 } 7104 7105 int 7106 main(int argc, char **argv) 7107 { 7108 int kills = 0; 7109 int iters = 0; 7110 int older = 0; 7111 int newer = 0; 7112 ztest_shared_t *zs; 7113 ztest_info_t *zi; 7114 ztest_shared_callstate_t *zc; 7115 char timebuf[100]; 7116 char numbuf[NN_NUMBUF_SZ]; 7117 char *cmd; 7118 boolean_t hasalt; 7119 char *fd_data_str = getenv("ZTEST_FD_DATA"); 7120 7121 (void) setvbuf(stdout, NULL, _IOLBF, 0); 7122 7123 dprintf_setup(&argc, argv); 7124 zfs_deadman_synctime_ms = 300000; 7125 /* 7126 * As two-word space map entries may not come up often (especially 7127 * if pool and vdev sizes are small) we want to force at least some 7128 * of them so the feature get tested. 7129 */ 7130 zfs_force_some_double_word_sm_entries = B_TRUE; 7131 7132 /* 7133 * Verify that even extensively damaged split blocks with many 7134 * segments can be reconstructed in a reasonable amount of time 7135 * when reconstruction is known to be possible. 7136 */ 7137 zfs_reconstruct_indirect_damage_fraction = 4; 7138 7139 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 7140 ASSERT3S(ztest_fd_rand, >=, 0); 7141 7142 if (!fd_data_str) { 7143 process_options(argc, argv); 7144 7145 setup_data_fd(); 7146 setup_hdr(); 7147 setup_data(); 7148 bcopy(&ztest_opts, ztest_shared_opts, 7149 sizeof (*ztest_shared_opts)); 7150 } else { 7151 ztest_fd_data = atoi(fd_data_str); 7152 setup_data(); 7153 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 7154 } 7155 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 7156 7157 /* Override location of zpool.cache */ 7158 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 7159 ztest_opts.zo_dir), !=, -1); 7160 7161 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 7162 UMEM_NOFAIL); 7163 zs = ztest_shared; 7164 7165 if (fd_data_str) { 7166 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging; 7167 metaslab_df_alloc_threshold = 7168 zs->zs_metaslab_df_alloc_threshold; 7169 7170 if (zs->zs_do_init) 7171 ztest_run_init(); 7172 else 7173 ztest_run(zs); 7174 exit(0); 7175 } 7176 7177 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 7178 7179 if (ztest_opts.zo_verbose >= 1) { 7180 (void) printf("%llu vdevs, %d datasets, %d threads," 7181 " %llu seconds...\n", 7182 (u_longlong_t)ztest_opts.zo_vdevs, 7183 ztest_opts.zo_datasets, 7184 ztest_opts.zo_threads, 7185 (u_longlong_t)ztest_opts.zo_time); 7186 } 7187 7188 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 7189 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 7190 7191 zs->zs_do_init = B_TRUE; 7192 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 7193 if (ztest_opts.zo_verbose >= 1) { 7194 (void) printf("Executing older ztest for " 7195 "initialization: %s\n", ztest_opts.zo_alt_ztest); 7196 } 7197 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 7198 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 7199 } else { 7200 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 7201 } 7202 zs->zs_do_init = B_FALSE; 7203 7204 zs->zs_proc_start = gethrtime(); 7205 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 7206 7207 for (int f = 0; f < ZTEST_FUNCS; f++) { 7208 zi = &ztest_info[f]; 7209 zc = ZTEST_GET_SHARED_CALLSTATE(f); 7210 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 7211 zc->zc_next = UINT64_MAX; 7212 else 7213 zc->zc_next = zs->zs_proc_start + 7214 ztest_random(2 * zi->zi_interval[0] + 1); 7215 } 7216 7217 /* 7218 * Run the tests in a loop. These tests include fault injection 7219 * to verify that self-healing data works, and forced crashes 7220 * to verify that we never lose on-disk consistency. 7221 */ 7222 while (gethrtime() < zs->zs_proc_stop) { 7223 int status; 7224 boolean_t killed; 7225 7226 /* 7227 * Initialize the workload counters for each function. 7228 */ 7229 for (int f = 0; f < ZTEST_FUNCS; f++) { 7230 zc = ZTEST_GET_SHARED_CALLSTATE(f); 7231 zc->zc_count = 0; 7232 zc->zc_time = 0; 7233 } 7234 7235 /* Set the allocation switch size */ 7236 zs->zs_metaslab_df_alloc_threshold = 7237 ztest_random(zs->zs_metaslab_sz / 4) + 1; 7238 7239 if (!hasalt || ztest_random(2) == 0) { 7240 if (hasalt && ztest_opts.zo_verbose >= 1) { 7241 (void) printf("Executing newer ztest: %s\n", 7242 cmd); 7243 } 7244 newer++; 7245 killed = exec_child(cmd, NULL, B_TRUE, &status); 7246 } else { 7247 if (hasalt && ztest_opts.zo_verbose >= 1) { 7248 (void) printf("Executing older ztest: %s\n", 7249 ztest_opts.zo_alt_ztest); 7250 } 7251 older++; 7252 killed = exec_child(ztest_opts.zo_alt_ztest, 7253 ztest_opts.zo_alt_libpath, B_TRUE, &status); 7254 } 7255 7256 if (killed) 7257 kills++; 7258 iters++; 7259 7260 if (ztest_opts.zo_verbose >= 1) { 7261 hrtime_t now = gethrtime(); 7262 7263 now = MIN(now, zs->zs_proc_stop); 7264 print_time(zs->zs_proc_stop - now, timebuf); 7265 nicenum(zs->zs_space, numbuf, sizeof (numbuf)); 7266 7267 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 7268 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 7269 iters, 7270 WIFEXITED(status) ? "Complete" : "SIGKILL", 7271 (u_longlong_t)zs->zs_enospc_count, 7272 100.0 * zs->zs_alloc / zs->zs_space, 7273 numbuf, 7274 100.0 * (now - zs->zs_proc_start) / 7275 (ztest_opts.zo_time * NANOSEC), timebuf); 7276 } 7277 7278 if (ztest_opts.zo_verbose >= 2) { 7279 (void) printf("\nWorkload summary:\n\n"); 7280 (void) printf("%7s %9s %s\n", 7281 "Calls", "Time", "Function"); 7282 (void) printf("%7s %9s %s\n", 7283 "-----", "----", "--------"); 7284 for (int f = 0; f < ZTEST_FUNCS; f++) { 7285 Dl_info dli; 7286 7287 zi = &ztest_info[f]; 7288 zc = ZTEST_GET_SHARED_CALLSTATE(f); 7289 print_time(zc->zc_time, timebuf); 7290 (void) dladdr((void *)zi->zi_func, &dli); 7291 (void) printf("%7llu %9s %s\n", 7292 (u_longlong_t)zc->zc_count, timebuf, 7293 dli.dli_sname); 7294 } 7295 (void) printf("\n"); 7296 } 7297 7298 if (!ztest_opts.zo_mmp_test) 7299 ztest_run_zdb(ztest_opts.zo_pool); 7300 } 7301 7302 if (ztest_opts.zo_verbose >= 1) { 7303 if (hasalt) { 7304 (void) printf("%d runs of older ztest: %s\n", older, 7305 ztest_opts.zo_alt_ztest); 7306 (void) printf("%d runs of newer ztest: %s\n", newer, 7307 cmd); 7308 } 7309 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 7310 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 7311 } 7312 7313 umem_free(cmd, MAXNAMELEN); 7314 7315 return (0); 7316 } 7317