1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2017 Joyent, Inc. 28 * Copyright 2017 RackTop Systems. 29 */ 30 31 /* 32 * The objective of this program is to provide a DMU/ZAP/SPA stress test 33 * that runs entirely in userland, is easy to use, and easy to extend. 34 * 35 * The overall design of the ztest program is as follows: 36 * 37 * (1) For each major functional area (e.g. adding vdevs to a pool, 38 * creating and destroying datasets, reading and writing objects, etc) 39 * we have a simple routine to test that functionality. These 40 * individual routines do not have to do anything "stressful". 41 * 42 * (2) We turn these simple functionality tests into a stress test by 43 * running them all in parallel, with as many threads as desired, 44 * and spread across as many datasets, objects, and vdevs as desired. 45 * 46 * (3) While all this is happening, we inject faults into the pool to 47 * verify that self-healing data really works. 48 * 49 * (4) Every time we open a dataset, we change its checksum and compression 50 * functions. Thus even individual objects vary from block to block 51 * in which checksum they use and whether they're compressed. 52 * 53 * (5) To verify that we never lose on-disk consistency after a crash, 54 * we run the entire test in a child of the main process. 55 * At random times, the child self-immolates with a SIGKILL. 56 * This is the software equivalent of pulling the power cord. 57 * The parent then runs the test again, using the existing 58 * storage pool, as many times as desired. If backwards compatibility 59 * testing is enabled ztest will sometimes run the "older" version 60 * of ztest after a SIGKILL. 61 * 62 * (6) To verify that we don't have future leaks or temporal incursions, 63 * many of the functional tests record the transaction group number 64 * as part of their data. When reading old data, they verify that 65 * the transaction group number is less than the current, open txg. 66 * If you add a new test, please do this if applicable. 67 * 68 * When run with no arguments, ztest runs for about five minutes and 69 * produces no output if successful. To get a little bit of information, 70 * specify -V. To get more information, specify -VV, and so on. 71 * 72 * To turn this into an overnight stress test, use -T to specify run time. 73 * 74 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 75 * to increase the pool capacity, fanout, and overall stress level. 76 * 77 * Use the -k option to set the desired frequency of kills. 78 * 79 * When ztest invokes itself it passes all relevant information through a 80 * temporary file which is mmap-ed in the child process. This allows shared 81 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 82 * stored at offset 0 of this file and contains information on the size and 83 * number of shared structures in the file. The information stored in this file 84 * must remain backwards compatible with older versions of ztest so that 85 * ztest can invoke them during backwards compatibility testing (-B). 86 */ 87 88 #include <sys/zfs_context.h> 89 #include <sys/spa.h> 90 #include <sys/dmu.h> 91 #include <sys/txg.h> 92 #include <sys/dbuf.h> 93 #include <sys/zap.h> 94 #include <sys/dmu_objset.h> 95 #include <sys/poll.h> 96 #include <sys/stat.h> 97 #include <sys/time.h> 98 #include <sys/wait.h> 99 #include <sys/mman.h> 100 #include <sys/resource.h> 101 #include <sys/zio.h> 102 #include <sys/zil.h> 103 #include <sys/zil_impl.h> 104 #include <sys/vdev_impl.h> 105 #include <sys/vdev_file.h> 106 #include <sys/vdev_initialize.h> 107 #include <sys/spa_impl.h> 108 #include <sys/metaslab_impl.h> 109 #include <sys/dsl_prop.h> 110 #include <sys/dsl_dataset.h> 111 #include <sys/dsl_destroy.h> 112 #include <sys/dsl_scan.h> 113 #include <sys/zio_checksum.h> 114 #include <sys/refcount.h> 115 #include <sys/zfeature.h> 116 #include <sys/dsl_userhold.h> 117 #include <sys/abd.h> 118 #include <stdio.h> 119 #include <stdio_ext.h> 120 #include <stdlib.h> 121 #include <unistd.h> 122 #include <signal.h> 123 #include <umem.h> 124 #include <dlfcn.h> 125 #include <ctype.h> 126 #include <math.h> 127 #include <sys/fs/zfs.h> 128 #include <libnvpair.h> 129 #include <libcmdutils.h> 130 131 static int ztest_fd_data = -1; 132 static int ztest_fd_rand = -1; 133 134 typedef struct ztest_shared_hdr { 135 uint64_t zh_hdr_size; 136 uint64_t zh_opts_size; 137 uint64_t zh_size; 138 uint64_t zh_stats_size; 139 uint64_t zh_stats_count; 140 uint64_t zh_ds_size; 141 uint64_t zh_ds_count; 142 } ztest_shared_hdr_t; 143 144 static ztest_shared_hdr_t *ztest_shared_hdr; 145 146 typedef struct ztest_shared_opts { 147 char zo_pool[ZFS_MAX_DATASET_NAME_LEN]; 148 char zo_dir[ZFS_MAX_DATASET_NAME_LEN]; 149 char zo_alt_ztest[MAXNAMELEN]; 150 char zo_alt_libpath[MAXNAMELEN]; 151 uint64_t zo_vdevs; 152 uint64_t zo_vdevtime; 153 size_t zo_vdev_size; 154 int zo_ashift; 155 int zo_mirrors; 156 int zo_raidz; 157 int zo_raidz_parity; 158 int zo_datasets; 159 int zo_threads; 160 uint64_t zo_passtime; 161 uint64_t zo_killrate; 162 int zo_verbose; 163 int zo_init; 164 uint64_t zo_time; 165 uint64_t zo_maxloops; 166 uint64_t zo_metaslab_force_ganging; 167 } ztest_shared_opts_t; 168 169 static const ztest_shared_opts_t ztest_opts_defaults = { 170 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 171 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 172 .zo_alt_ztest = { '\0' }, 173 .zo_alt_libpath = { '\0' }, 174 .zo_vdevs = 5, 175 .zo_ashift = SPA_MINBLOCKSHIFT, 176 .zo_mirrors = 2, 177 .zo_raidz = 4, 178 .zo_raidz_parity = 1, 179 .zo_vdev_size = SPA_MINDEVSIZE * 4, /* 256m default size */ 180 .zo_datasets = 7, 181 .zo_threads = 23, 182 .zo_passtime = 60, /* 60 seconds */ 183 .zo_killrate = 70, /* 70% kill rate */ 184 .zo_verbose = 0, 185 .zo_init = 1, 186 .zo_time = 300, /* 5 minutes */ 187 .zo_maxloops = 50, /* max loops during spa_freeze() */ 188 .zo_metaslab_force_ganging = 32 << 10 189 }; 190 191 extern uint64_t metaslab_force_ganging; 192 extern uint64_t metaslab_df_alloc_threshold; 193 extern uint64_t zfs_deadman_synctime_ms; 194 extern int metaslab_preload_limit; 195 extern boolean_t zfs_compressed_arc_enabled; 196 extern boolean_t zfs_abd_scatter_enabled; 197 extern boolean_t zfs_force_some_double_word_sm_entries; 198 199 static ztest_shared_opts_t *ztest_shared_opts; 200 static ztest_shared_opts_t ztest_opts; 201 202 typedef struct ztest_shared_ds { 203 uint64_t zd_seq; 204 } ztest_shared_ds_t; 205 206 static ztest_shared_ds_t *ztest_shared_ds; 207 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 208 209 #define BT_MAGIC 0x123456789abcdefULL 210 #define MAXFAULTS() \ 211 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 212 213 enum ztest_io_type { 214 ZTEST_IO_WRITE_TAG, 215 ZTEST_IO_WRITE_PATTERN, 216 ZTEST_IO_WRITE_ZEROES, 217 ZTEST_IO_TRUNCATE, 218 ZTEST_IO_SETATTR, 219 ZTEST_IO_REWRITE, 220 ZTEST_IO_TYPES 221 }; 222 223 typedef struct ztest_block_tag { 224 uint64_t bt_magic; 225 uint64_t bt_objset; 226 uint64_t bt_object; 227 uint64_t bt_offset; 228 uint64_t bt_gen; 229 uint64_t bt_txg; 230 uint64_t bt_crtxg; 231 } ztest_block_tag_t; 232 233 typedef struct bufwad { 234 uint64_t bw_index; 235 uint64_t bw_txg; 236 uint64_t bw_data; 237 } bufwad_t; 238 239 /* 240 * XXX -- fix zfs range locks to be generic so we can use them here. 241 */ 242 typedef enum { 243 RL_READER, 244 RL_WRITER, 245 RL_APPEND 246 } rl_type_t; 247 248 typedef struct rll { 249 void *rll_writer; 250 int rll_readers; 251 kmutex_t rll_lock; 252 kcondvar_t rll_cv; 253 } rll_t; 254 255 typedef struct rl { 256 uint64_t rl_object; 257 uint64_t rl_offset; 258 uint64_t rl_size; 259 rll_t *rl_lock; 260 } rl_t; 261 262 #define ZTEST_RANGE_LOCKS 64 263 #define ZTEST_OBJECT_LOCKS 64 264 265 /* 266 * Object descriptor. Used as a template for object lookup/create/remove. 267 */ 268 typedef struct ztest_od { 269 uint64_t od_dir; 270 uint64_t od_object; 271 dmu_object_type_t od_type; 272 dmu_object_type_t od_crtype; 273 uint64_t od_blocksize; 274 uint64_t od_crblocksize; 275 uint64_t od_gen; 276 uint64_t od_crgen; 277 char od_name[ZFS_MAX_DATASET_NAME_LEN]; 278 } ztest_od_t; 279 280 /* 281 * Per-dataset state. 282 */ 283 typedef struct ztest_ds { 284 ztest_shared_ds_t *zd_shared; 285 objset_t *zd_os; 286 krwlock_t zd_zilog_lock; 287 zilog_t *zd_zilog; 288 ztest_od_t *zd_od; /* debugging aid */ 289 char zd_name[ZFS_MAX_DATASET_NAME_LEN]; 290 kmutex_t zd_dirobj_lock; 291 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 292 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 293 } ztest_ds_t; 294 295 /* 296 * Per-iteration state. 297 */ 298 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 299 300 typedef struct ztest_info { 301 ztest_func_t *zi_func; /* test function */ 302 uint64_t zi_iters; /* iterations per execution */ 303 uint64_t *zi_interval; /* execute every <interval> seconds */ 304 } ztest_info_t; 305 306 typedef struct ztest_shared_callstate { 307 uint64_t zc_count; /* per-pass count */ 308 uint64_t zc_time; /* per-pass time */ 309 uint64_t zc_next; /* next time to call this function */ 310 } ztest_shared_callstate_t; 311 312 static ztest_shared_callstate_t *ztest_shared_callstate; 313 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 314 315 /* 316 * Note: these aren't static because we want dladdr() to work. 317 */ 318 ztest_func_t ztest_dmu_read_write; 319 ztest_func_t ztest_dmu_write_parallel; 320 ztest_func_t ztest_dmu_object_alloc_free; 321 ztest_func_t ztest_dmu_commit_callbacks; 322 ztest_func_t ztest_zap; 323 ztest_func_t ztest_zap_parallel; 324 ztest_func_t ztest_zil_commit; 325 ztest_func_t ztest_zil_remount; 326 ztest_func_t ztest_dmu_read_write_zcopy; 327 ztest_func_t ztest_dmu_objset_create_destroy; 328 ztest_func_t ztest_dmu_prealloc; 329 ztest_func_t ztest_fzap; 330 ztest_func_t ztest_dmu_snapshot_create_destroy; 331 ztest_func_t ztest_dsl_prop_get_set; 332 ztest_func_t ztest_spa_prop_get_set; 333 ztest_func_t ztest_spa_create_destroy; 334 ztest_func_t ztest_fault_inject; 335 ztest_func_t ztest_ddt_repair; 336 ztest_func_t ztest_dmu_snapshot_hold; 337 ztest_func_t ztest_scrub; 338 ztest_func_t ztest_dsl_dataset_promote_busy; 339 ztest_func_t ztest_vdev_attach_detach; 340 ztest_func_t ztest_vdev_LUN_growth; 341 ztest_func_t ztest_vdev_add_remove; 342 ztest_func_t ztest_vdev_aux_add_remove; 343 ztest_func_t ztest_split_pool; 344 ztest_func_t ztest_reguid; 345 ztest_func_t ztest_spa_upgrade; 346 ztest_func_t ztest_device_removal; 347 ztest_func_t ztest_remap_blocks; 348 ztest_func_t ztest_spa_checkpoint_create_discard; 349 ztest_func_t ztest_initialize; 350 351 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 352 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 353 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 354 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 355 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 356 357 ztest_info_t ztest_info[] = { 358 { ztest_dmu_read_write, 1, &zopt_always }, 359 { ztest_dmu_write_parallel, 10, &zopt_always }, 360 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 361 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 362 { ztest_zap, 30, &zopt_always }, 363 { ztest_zap_parallel, 100, &zopt_always }, 364 { ztest_split_pool, 1, &zopt_always }, 365 { ztest_zil_commit, 1, &zopt_incessant }, 366 { ztest_zil_remount, 1, &zopt_sometimes }, 367 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 368 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 369 { ztest_dsl_prop_get_set, 1, &zopt_often }, 370 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 371 #if 0 372 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 373 #endif 374 { ztest_fzap, 1, &zopt_sometimes }, 375 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 376 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 377 { ztest_fault_inject, 1, &zopt_sometimes }, 378 { ztest_ddt_repair, 1, &zopt_sometimes }, 379 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 380 { ztest_reguid, 1, &zopt_rarely }, 381 { ztest_scrub, 1, &zopt_rarely }, 382 { ztest_spa_upgrade, 1, &zopt_rarely }, 383 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 384 { ztest_vdev_attach_detach, 1, &zopt_sometimes }, 385 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 386 { ztest_vdev_add_remove, 1, 387 &ztest_opts.zo_vdevtime }, 388 { ztest_vdev_aux_add_remove, 1, 389 &ztest_opts.zo_vdevtime }, 390 { ztest_device_removal, 1, &zopt_sometimes }, 391 { ztest_remap_blocks, 1, &zopt_sometimes }, 392 { ztest_spa_checkpoint_create_discard, 1, &zopt_rarely }, 393 { ztest_initialize, 1, &zopt_sometimes } 394 }; 395 396 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 397 398 /* 399 * The following struct is used to hold a list of uncalled commit callbacks. 400 * The callbacks are ordered by txg number. 401 */ 402 typedef struct ztest_cb_list { 403 kmutex_t zcl_callbacks_lock; 404 list_t zcl_callbacks; 405 } ztest_cb_list_t; 406 407 /* 408 * Stuff we need to share writably between parent and child. 409 */ 410 typedef struct ztest_shared { 411 boolean_t zs_do_init; 412 hrtime_t zs_proc_start; 413 hrtime_t zs_proc_stop; 414 hrtime_t zs_thread_start; 415 hrtime_t zs_thread_stop; 416 hrtime_t zs_thread_kill; 417 uint64_t zs_enospc_count; 418 uint64_t zs_vdev_next_leaf; 419 uint64_t zs_vdev_aux; 420 uint64_t zs_alloc; 421 uint64_t zs_space; 422 uint64_t zs_splits; 423 uint64_t zs_mirrors; 424 uint64_t zs_metaslab_sz; 425 uint64_t zs_metaslab_df_alloc_threshold; 426 uint64_t zs_guid; 427 } ztest_shared_t; 428 429 #define ID_PARALLEL -1ULL 430 431 static char ztest_dev_template[] = "%s/%s.%llua"; 432 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 433 ztest_shared_t *ztest_shared; 434 435 static spa_t *ztest_spa = NULL; 436 static ztest_ds_t *ztest_ds; 437 438 static kmutex_t ztest_vdev_lock; 439 static kmutex_t ztest_checkpoint_lock; 440 static boolean_t ztest_device_removal_active = B_FALSE; 441 442 /* 443 * The ztest_name_lock protects the pool and dataset namespace used by 444 * the individual tests. To modify the namespace, consumers must grab 445 * this lock as writer. Grabbing the lock as reader will ensure that the 446 * namespace does not change while the lock is held. 447 */ 448 static krwlock_t ztest_name_lock; 449 450 static boolean_t ztest_dump_core = B_TRUE; 451 static boolean_t ztest_exiting; 452 453 /* Global commit callback list */ 454 static ztest_cb_list_t zcl; 455 456 enum ztest_object { 457 ZTEST_META_DNODE = 0, 458 ZTEST_DIROBJ, 459 ZTEST_OBJECTS 460 }; 461 462 static void usage(boolean_t) __NORETURN; 463 464 /* 465 * These libumem hooks provide a reasonable set of defaults for the allocator's 466 * debugging facilities. 467 */ 468 const char * 469 _umem_debug_init() 470 { 471 return ("default,verbose"); /* $UMEM_DEBUG setting */ 472 } 473 474 const char * 475 _umem_logging_init(void) 476 { 477 return ("fail,contents"); /* $UMEM_LOGGING setting */ 478 } 479 480 #define FATAL_MSG_SZ 1024 481 482 char *fatal_msg; 483 484 static void 485 fatal(int do_perror, char *message, ...) 486 { 487 va_list args; 488 int save_errno = errno; 489 char buf[FATAL_MSG_SZ]; 490 491 (void) fflush(stdout); 492 493 va_start(args, message); 494 (void) sprintf(buf, "ztest: "); 495 /* LINTED */ 496 (void) vsprintf(buf + strlen(buf), message, args); 497 va_end(args); 498 if (do_perror) { 499 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 500 ": %s", strerror(save_errno)); 501 } 502 (void) fprintf(stderr, "%s\n", buf); 503 fatal_msg = buf; /* to ease debugging */ 504 if (ztest_dump_core) 505 abort(); 506 exit(3); 507 } 508 509 static int 510 str2shift(const char *buf) 511 { 512 const char *ends = "BKMGTPEZ"; 513 int i; 514 515 if (buf[0] == '\0') 516 return (0); 517 for (i = 0; i < strlen(ends); i++) { 518 if (toupper(buf[0]) == ends[i]) 519 break; 520 } 521 if (i == strlen(ends)) { 522 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 523 buf); 524 usage(B_FALSE); 525 } 526 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 527 return (10*i); 528 } 529 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 530 usage(B_FALSE); 531 /* NOTREACHED */ 532 } 533 534 static uint64_t 535 nicenumtoull(const char *buf) 536 { 537 char *end; 538 uint64_t val; 539 540 val = strtoull(buf, &end, 0); 541 if (end == buf) { 542 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 543 usage(B_FALSE); 544 } else if (end[0] == '.') { 545 double fval = strtod(buf, &end); 546 fval *= pow(2, str2shift(end)); 547 if (fval > UINT64_MAX) { 548 (void) fprintf(stderr, "ztest: value too large: %s\n", 549 buf); 550 usage(B_FALSE); 551 } 552 val = (uint64_t)fval; 553 } else { 554 int shift = str2shift(end); 555 if (shift >= 64 || (val << shift) >> shift != val) { 556 (void) fprintf(stderr, "ztest: value too large: %s\n", 557 buf); 558 usage(B_FALSE); 559 } 560 val <<= shift; 561 } 562 return (val); 563 } 564 565 static void 566 usage(boolean_t requested) 567 { 568 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 569 570 char nice_vdev_size[NN_NUMBUF_SZ]; 571 char nice_force_ganging[NN_NUMBUF_SZ]; 572 FILE *fp = requested ? stdout : stderr; 573 574 nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size)); 575 nicenum(zo->zo_metaslab_force_ganging, nice_force_ganging, 576 sizeof (nice_force_ganging)); 577 578 (void) fprintf(fp, "Usage: %s\n" 579 "\t[-v vdevs (default: %llu)]\n" 580 "\t[-s size_of_each_vdev (default: %s)]\n" 581 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 582 "\t[-m mirror_copies (default: %d)]\n" 583 "\t[-r raidz_disks (default: %d)]\n" 584 "\t[-R raidz_parity (default: %d)]\n" 585 "\t[-d datasets (default: %d)]\n" 586 "\t[-t threads (default: %d)]\n" 587 "\t[-g gang_block_threshold (default: %s)]\n" 588 "\t[-i init_count (default: %d)] initialize pool i times\n" 589 "\t[-k kill_percentage (default: %llu%%)]\n" 590 "\t[-p pool_name (default: %s)]\n" 591 "\t[-f dir (default: %s)] file directory for vdev files\n" 592 "\t[-V] verbose (use multiple times for ever more blather)\n" 593 "\t[-E] use existing pool instead of creating new one\n" 594 "\t[-T time (default: %llu sec)] total run time\n" 595 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 596 "\t[-P passtime (default: %llu sec)] time per pass\n" 597 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 598 "\t[-o variable=value] ... set global variable to an unsigned\n" 599 "\t 32-bit integer value\n" 600 "\t[-h] (print help)\n" 601 "", 602 zo->zo_pool, 603 (u_longlong_t)zo->zo_vdevs, /* -v */ 604 nice_vdev_size, /* -s */ 605 zo->zo_ashift, /* -a */ 606 zo->zo_mirrors, /* -m */ 607 zo->zo_raidz, /* -r */ 608 zo->zo_raidz_parity, /* -R */ 609 zo->zo_datasets, /* -d */ 610 zo->zo_threads, /* -t */ 611 nice_force_ganging, /* -g */ 612 zo->zo_init, /* -i */ 613 (u_longlong_t)zo->zo_killrate, /* -k */ 614 zo->zo_pool, /* -p */ 615 zo->zo_dir, /* -f */ 616 (u_longlong_t)zo->zo_time, /* -T */ 617 (u_longlong_t)zo->zo_maxloops, /* -F */ 618 (u_longlong_t)zo->zo_passtime); 619 exit(requested ? 0 : 1); 620 } 621 622 static void 623 process_options(int argc, char **argv) 624 { 625 char *path; 626 ztest_shared_opts_t *zo = &ztest_opts; 627 628 int opt; 629 uint64_t value; 630 char altdir[MAXNAMELEN] = { 0 }; 631 632 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 633 634 while ((opt = getopt(argc, argv, 635 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:o:")) != EOF) { 636 value = 0; 637 switch (opt) { 638 case 'v': 639 case 's': 640 case 'a': 641 case 'm': 642 case 'r': 643 case 'R': 644 case 'd': 645 case 't': 646 case 'g': 647 case 'i': 648 case 'k': 649 case 'T': 650 case 'P': 651 case 'F': 652 value = nicenumtoull(optarg); 653 } 654 switch (opt) { 655 case 'v': 656 zo->zo_vdevs = value; 657 break; 658 case 's': 659 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 660 break; 661 case 'a': 662 zo->zo_ashift = value; 663 break; 664 case 'm': 665 zo->zo_mirrors = value; 666 break; 667 case 'r': 668 zo->zo_raidz = MAX(1, value); 669 break; 670 case 'R': 671 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 672 break; 673 case 'd': 674 zo->zo_datasets = MAX(1, value); 675 break; 676 case 't': 677 zo->zo_threads = MAX(1, value); 678 break; 679 case 'g': 680 zo->zo_metaslab_force_ganging = 681 MAX(SPA_MINBLOCKSIZE << 1, value); 682 break; 683 case 'i': 684 zo->zo_init = value; 685 break; 686 case 'k': 687 zo->zo_killrate = value; 688 break; 689 case 'p': 690 (void) strlcpy(zo->zo_pool, optarg, 691 sizeof (zo->zo_pool)); 692 break; 693 case 'f': 694 path = realpath(optarg, NULL); 695 if (path == NULL) { 696 (void) fprintf(stderr, "error: %s: %s\n", 697 optarg, strerror(errno)); 698 usage(B_FALSE); 699 } else { 700 (void) strlcpy(zo->zo_dir, path, 701 sizeof (zo->zo_dir)); 702 } 703 break; 704 case 'V': 705 zo->zo_verbose++; 706 break; 707 case 'E': 708 zo->zo_init = 0; 709 break; 710 case 'T': 711 zo->zo_time = value; 712 break; 713 case 'P': 714 zo->zo_passtime = MAX(1, value); 715 break; 716 case 'F': 717 zo->zo_maxloops = MAX(1, value); 718 break; 719 case 'B': 720 (void) strlcpy(altdir, optarg, sizeof (altdir)); 721 break; 722 case 'o': 723 if (set_global_var(optarg) != 0) 724 usage(B_FALSE); 725 break; 726 case 'h': 727 usage(B_TRUE); 728 break; 729 case '?': 730 default: 731 usage(B_FALSE); 732 break; 733 } 734 } 735 736 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 737 738 zo->zo_vdevtime = 739 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 740 UINT64_MAX >> 2); 741 742 if (strlen(altdir) > 0) { 743 char *cmd; 744 char *realaltdir; 745 char *bin; 746 char *ztest; 747 char *isa; 748 int isalen; 749 750 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 751 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 752 753 VERIFY(NULL != realpath(getexecname(), cmd)); 754 if (0 != access(altdir, F_OK)) { 755 ztest_dump_core = B_FALSE; 756 fatal(B_TRUE, "invalid alternate ztest path: %s", 757 altdir); 758 } 759 VERIFY(NULL != realpath(altdir, realaltdir)); 760 761 /* 762 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 763 * We want to extract <isa> to determine if we should use 764 * 32 or 64 bit binaries. 765 */ 766 bin = strstr(cmd, "/usr/bin/"); 767 ztest = strstr(bin, "/ztest"); 768 isa = bin + 9; 769 isalen = ztest - isa; 770 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 771 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 772 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 773 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 774 775 if (0 != access(zo->zo_alt_ztest, X_OK)) { 776 ztest_dump_core = B_FALSE; 777 fatal(B_TRUE, "invalid alternate ztest: %s", 778 zo->zo_alt_ztest); 779 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 780 ztest_dump_core = B_FALSE; 781 fatal(B_TRUE, "invalid alternate lib directory %s", 782 zo->zo_alt_libpath); 783 } 784 785 umem_free(cmd, MAXPATHLEN); 786 umem_free(realaltdir, MAXPATHLEN); 787 } 788 } 789 790 static void 791 ztest_kill(ztest_shared_t *zs) 792 { 793 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 794 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 795 796 /* 797 * Before we kill off ztest, make sure that the config is updated. 798 * See comment above spa_write_cachefile(). 799 */ 800 mutex_enter(&spa_namespace_lock); 801 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE); 802 mutex_exit(&spa_namespace_lock); 803 804 zfs_dbgmsg_print(FTAG); 805 (void) kill(getpid(), SIGKILL); 806 } 807 808 static uint64_t 809 ztest_random(uint64_t range) 810 { 811 uint64_t r; 812 813 ASSERT3S(ztest_fd_rand, >=, 0); 814 815 if (range == 0) 816 return (0); 817 818 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 819 fatal(1, "short read from /dev/urandom"); 820 821 return (r % range); 822 } 823 824 /* ARGSUSED */ 825 static void 826 ztest_record_enospc(const char *s) 827 { 828 ztest_shared->zs_enospc_count++; 829 } 830 831 static uint64_t 832 ztest_get_ashift(void) 833 { 834 if (ztest_opts.zo_ashift == 0) 835 return (SPA_MINBLOCKSHIFT + ztest_random(5)); 836 return (ztest_opts.zo_ashift); 837 } 838 839 static nvlist_t * 840 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 841 { 842 char pathbuf[MAXPATHLEN]; 843 uint64_t vdev; 844 nvlist_t *file; 845 846 if (ashift == 0) 847 ashift = ztest_get_ashift(); 848 849 if (path == NULL) { 850 path = pathbuf; 851 852 if (aux != NULL) { 853 vdev = ztest_shared->zs_vdev_aux; 854 (void) snprintf(path, sizeof (pathbuf), 855 ztest_aux_template, ztest_opts.zo_dir, 856 pool == NULL ? ztest_opts.zo_pool : pool, 857 aux, vdev); 858 } else { 859 vdev = ztest_shared->zs_vdev_next_leaf++; 860 (void) snprintf(path, sizeof (pathbuf), 861 ztest_dev_template, ztest_opts.zo_dir, 862 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 863 } 864 } 865 866 if (size != 0) { 867 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 868 if (fd == -1) 869 fatal(1, "can't open %s", path); 870 if (ftruncate(fd, size) != 0) 871 fatal(1, "can't ftruncate %s", path); 872 (void) close(fd); 873 } 874 875 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 876 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 877 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 878 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 879 880 return (file); 881 } 882 883 static nvlist_t * 884 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 885 uint64_t ashift, int r) 886 { 887 nvlist_t *raidz, **child; 888 int c; 889 890 if (r < 2) 891 return (make_vdev_file(path, aux, pool, size, ashift)); 892 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 893 894 for (c = 0; c < r; c++) 895 child[c] = make_vdev_file(path, aux, pool, size, ashift); 896 897 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 898 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 899 VDEV_TYPE_RAIDZ) == 0); 900 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 901 ztest_opts.zo_raidz_parity) == 0); 902 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 903 child, r) == 0); 904 905 for (c = 0; c < r; c++) 906 nvlist_free(child[c]); 907 908 umem_free(child, r * sizeof (nvlist_t *)); 909 910 return (raidz); 911 } 912 913 static nvlist_t * 914 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 915 uint64_t ashift, int r, int m) 916 { 917 nvlist_t *mirror, **child; 918 int c; 919 920 if (m < 1) 921 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 922 923 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 924 925 for (c = 0; c < m; c++) 926 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 927 928 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 929 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 930 VDEV_TYPE_MIRROR) == 0); 931 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 932 child, m) == 0); 933 934 for (c = 0; c < m; c++) 935 nvlist_free(child[c]); 936 937 umem_free(child, m * sizeof (nvlist_t *)); 938 939 return (mirror); 940 } 941 942 static nvlist_t * 943 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 944 int log, int r, int m, int t) 945 { 946 nvlist_t *root, **child; 947 int c; 948 949 ASSERT(t > 0); 950 951 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 952 953 for (c = 0; c < t; c++) { 954 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 955 r, m); 956 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 957 log) == 0); 958 } 959 960 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 961 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 962 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 963 child, t) == 0); 964 965 for (c = 0; c < t; c++) 966 nvlist_free(child[c]); 967 968 umem_free(child, t * sizeof (nvlist_t *)); 969 970 return (root); 971 } 972 973 /* 974 * Find a random spa version. Returns back a random spa version in the 975 * range [initial_version, SPA_VERSION_FEATURES]. 976 */ 977 static uint64_t 978 ztest_random_spa_version(uint64_t initial_version) 979 { 980 uint64_t version = initial_version; 981 982 if (version <= SPA_VERSION_BEFORE_FEATURES) { 983 version = version + 984 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 985 } 986 987 if (version > SPA_VERSION_BEFORE_FEATURES) 988 version = SPA_VERSION_FEATURES; 989 990 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 991 return (version); 992 } 993 994 static int 995 ztest_random_blocksize(void) 996 { 997 uint64_t block_shift; 998 /* 999 * Choose a block size >= the ashift. 1000 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. 1001 */ 1002 int maxbs = SPA_OLD_MAXBLOCKSHIFT; 1003 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) 1004 maxbs = 20; 1005 block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1); 1006 return (1 << (SPA_MINBLOCKSHIFT + block_shift)); 1007 } 1008 1009 static int 1010 ztest_random_ibshift(void) 1011 { 1012 return (DN_MIN_INDBLKSHIFT + 1013 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 1014 } 1015 1016 static uint64_t 1017 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 1018 { 1019 uint64_t top; 1020 vdev_t *rvd = spa->spa_root_vdev; 1021 vdev_t *tvd; 1022 1023 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1024 1025 do { 1026 top = ztest_random(rvd->vdev_children); 1027 tvd = rvd->vdev_child[top]; 1028 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) || 1029 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 1030 1031 return (top); 1032 } 1033 1034 static uint64_t 1035 ztest_random_dsl_prop(zfs_prop_t prop) 1036 { 1037 uint64_t value; 1038 1039 do { 1040 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 1041 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 1042 1043 return (value); 1044 } 1045 1046 static int 1047 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1048 boolean_t inherit) 1049 { 1050 const char *propname = zfs_prop_to_name(prop); 1051 const char *valname; 1052 char setpoint[MAXPATHLEN]; 1053 uint64_t curval; 1054 int error; 1055 1056 error = dsl_prop_set_int(osname, propname, 1057 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1058 1059 if (error == ENOSPC) { 1060 ztest_record_enospc(FTAG); 1061 return (error); 1062 } 1063 ASSERT0(error); 1064 1065 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1066 1067 if (ztest_opts.zo_verbose >= 6) { 1068 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1069 (void) printf("%s %s = %s at '%s'\n", 1070 osname, propname, valname, setpoint); 1071 } 1072 1073 return (error); 1074 } 1075 1076 static int 1077 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1078 { 1079 spa_t *spa = ztest_spa; 1080 nvlist_t *props = NULL; 1081 int error; 1082 1083 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1084 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1085 1086 error = spa_prop_set(spa, props); 1087 1088 nvlist_free(props); 1089 1090 if (error == ENOSPC) { 1091 ztest_record_enospc(FTAG); 1092 return (error); 1093 } 1094 ASSERT0(error); 1095 1096 return (error); 1097 } 1098 1099 static void 1100 ztest_rll_init(rll_t *rll) 1101 { 1102 rll->rll_writer = NULL; 1103 rll->rll_readers = 0; 1104 mutex_init(&rll->rll_lock, NULL, USYNC_THREAD, NULL); 1105 cv_init(&rll->rll_cv, NULL, USYNC_THREAD, NULL); 1106 } 1107 1108 static void 1109 ztest_rll_destroy(rll_t *rll) 1110 { 1111 ASSERT(rll->rll_writer == NULL); 1112 ASSERT(rll->rll_readers == 0); 1113 mutex_destroy(&rll->rll_lock); 1114 cv_destroy(&rll->rll_cv); 1115 } 1116 1117 static void 1118 ztest_rll_lock(rll_t *rll, rl_type_t type) 1119 { 1120 mutex_enter(&rll->rll_lock); 1121 1122 if (type == RL_READER) { 1123 while (rll->rll_writer != NULL) 1124 cv_wait(&rll->rll_cv, &rll->rll_lock); 1125 rll->rll_readers++; 1126 } else { 1127 while (rll->rll_writer != NULL || rll->rll_readers) 1128 cv_wait(&rll->rll_cv, &rll->rll_lock); 1129 rll->rll_writer = curthread; 1130 } 1131 1132 mutex_exit(&rll->rll_lock); 1133 } 1134 1135 static void 1136 ztest_rll_unlock(rll_t *rll) 1137 { 1138 mutex_enter(&rll->rll_lock); 1139 1140 if (rll->rll_writer) { 1141 ASSERT(rll->rll_readers == 0); 1142 rll->rll_writer = NULL; 1143 } else { 1144 ASSERT(rll->rll_readers != 0); 1145 ASSERT(rll->rll_writer == NULL); 1146 rll->rll_readers--; 1147 } 1148 1149 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1150 cv_broadcast(&rll->rll_cv); 1151 1152 mutex_exit(&rll->rll_lock); 1153 } 1154 1155 static void 1156 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1157 { 1158 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1159 1160 ztest_rll_lock(rll, type); 1161 } 1162 1163 static void 1164 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1165 { 1166 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1167 1168 ztest_rll_unlock(rll); 1169 } 1170 1171 static rl_t * 1172 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1173 uint64_t size, rl_type_t type) 1174 { 1175 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1176 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1177 rl_t *rl; 1178 1179 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1180 rl->rl_object = object; 1181 rl->rl_offset = offset; 1182 rl->rl_size = size; 1183 rl->rl_lock = rll; 1184 1185 ztest_rll_lock(rll, type); 1186 1187 return (rl); 1188 } 1189 1190 static void 1191 ztest_range_unlock(rl_t *rl) 1192 { 1193 rll_t *rll = rl->rl_lock; 1194 1195 ztest_rll_unlock(rll); 1196 1197 umem_free(rl, sizeof (*rl)); 1198 } 1199 1200 static void 1201 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1202 { 1203 zd->zd_os = os; 1204 zd->zd_zilog = dmu_objset_zil(os); 1205 zd->zd_shared = szd; 1206 dmu_objset_name(os, zd->zd_name); 1207 1208 if (zd->zd_shared != NULL) 1209 zd->zd_shared->zd_seq = 0; 1210 1211 rw_init(&zd->zd_zilog_lock, NULL, USYNC_THREAD, NULL); 1212 mutex_init(&zd->zd_dirobj_lock, NULL, USYNC_THREAD, NULL); 1213 1214 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1215 ztest_rll_init(&zd->zd_object_lock[l]); 1216 1217 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1218 ztest_rll_init(&zd->zd_range_lock[l]); 1219 } 1220 1221 static void 1222 ztest_zd_fini(ztest_ds_t *zd) 1223 { 1224 mutex_destroy(&zd->zd_dirobj_lock); 1225 1226 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1227 ztest_rll_destroy(&zd->zd_object_lock[l]); 1228 1229 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1230 ztest_rll_destroy(&zd->zd_range_lock[l]); 1231 } 1232 1233 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1234 1235 static uint64_t 1236 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1237 { 1238 uint64_t txg; 1239 int error; 1240 1241 /* 1242 * Attempt to assign tx to some transaction group. 1243 */ 1244 error = dmu_tx_assign(tx, txg_how); 1245 if (error) { 1246 if (error == ERESTART) { 1247 ASSERT(txg_how == TXG_NOWAIT); 1248 dmu_tx_wait(tx); 1249 } else { 1250 ASSERT3U(error, ==, ENOSPC); 1251 ztest_record_enospc(tag); 1252 } 1253 dmu_tx_abort(tx); 1254 return (0); 1255 } 1256 txg = dmu_tx_get_txg(tx); 1257 ASSERT(txg != 0); 1258 return (txg); 1259 } 1260 1261 static void 1262 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1263 { 1264 uint64_t *ip = buf; 1265 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1266 1267 while (ip < ip_end) 1268 *ip++ = value; 1269 } 1270 1271 static boolean_t 1272 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1273 { 1274 uint64_t *ip = buf; 1275 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1276 uint64_t diff = 0; 1277 1278 while (ip < ip_end) 1279 diff |= (value - *ip++); 1280 1281 return (diff == 0); 1282 } 1283 1284 static void 1285 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1286 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1287 { 1288 bt->bt_magic = BT_MAGIC; 1289 bt->bt_objset = dmu_objset_id(os); 1290 bt->bt_object = object; 1291 bt->bt_offset = offset; 1292 bt->bt_gen = gen; 1293 bt->bt_txg = txg; 1294 bt->bt_crtxg = crtxg; 1295 } 1296 1297 static void 1298 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1299 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1300 { 1301 ASSERT3U(bt->bt_magic, ==, BT_MAGIC); 1302 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1303 ASSERT3U(bt->bt_object, ==, object); 1304 ASSERT3U(bt->bt_offset, ==, offset); 1305 ASSERT3U(bt->bt_gen, <=, gen); 1306 ASSERT3U(bt->bt_txg, <=, txg); 1307 ASSERT3U(bt->bt_crtxg, ==, crtxg); 1308 } 1309 1310 static ztest_block_tag_t * 1311 ztest_bt_bonus(dmu_buf_t *db) 1312 { 1313 dmu_object_info_t doi; 1314 ztest_block_tag_t *bt; 1315 1316 dmu_object_info_from_db(db, &doi); 1317 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1318 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1319 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1320 1321 return (bt); 1322 } 1323 1324 /* 1325 * ZIL logging ops 1326 */ 1327 1328 #define lrz_type lr_mode 1329 #define lrz_blocksize lr_uid 1330 #define lrz_ibshift lr_gid 1331 #define lrz_bonustype lr_rdev 1332 #define lrz_bonuslen lr_crtime[1] 1333 1334 static void 1335 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1336 { 1337 char *name = (void *)(lr + 1); /* name follows lr */ 1338 size_t namesize = strlen(name) + 1; 1339 itx_t *itx; 1340 1341 if (zil_replaying(zd->zd_zilog, tx)) 1342 return; 1343 1344 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1345 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1346 sizeof (*lr) + namesize - sizeof (lr_t)); 1347 1348 zil_itx_assign(zd->zd_zilog, itx, tx); 1349 } 1350 1351 static void 1352 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1353 { 1354 char *name = (void *)(lr + 1); /* name follows lr */ 1355 size_t namesize = strlen(name) + 1; 1356 itx_t *itx; 1357 1358 if (zil_replaying(zd->zd_zilog, tx)) 1359 return; 1360 1361 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1362 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1363 sizeof (*lr) + namesize - sizeof (lr_t)); 1364 1365 itx->itx_oid = object; 1366 zil_itx_assign(zd->zd_zilog, itx, tx); 1367 } 1368 1369 static void 1370 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1371 { 1372 itx_t *itx; 1373 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1374 1375 if (zil_replaying(zd->zd_zilog, tx)) 1376 return; 1377 1378 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1379 write_state = WR_INDIRECT; 1380 1381 itx = zil_itx_create(TX_WRITE, 1382 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1383 1384 if (write_state == WR_COPIED && 1385 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1386 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1387 zil_itx_destroy(itx); 1388 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1389 write_state = WR_NEED_COPY; 1390 } 1391 itx->itx_private = zd; 1392 itx->itx_wr_state = write_state; 1393 itx->itx_sync = (ztest_random(8) == 0); 1394 1395 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1396 sizeof (*lr) - sizeof (lr_t)); 1397 1398 zil_itx_assign(zd->zd_zilog, itx, tx); 1399 } 1400 1401 static void 1402 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1403 { 1404 itx_t *itx; 1405 1406 if (zil_replaying(zd->zd_zilog, tx)) 1407 return; 1408 1409 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1410 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1411 sizeof (*lr) - sizeof (lr_t)); 1412 1413 itx->itx_sync = B_FALSE; 1414 zil_itx_assign(zd->zd_zilog, itx, tx); 1415 } 1416 1417 static void 1418 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1419 { 1420 itx_t *itx; 1421 1422 if (zil_replaying(zd->zd_zilog, tx)) 1423 return; 1424 1425 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1426 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1427 sizeof (*lr) - sizeof (lr_t)); 1428 1429 itx->itx_sync = B_FALSE; 1430 zil_itx_assign(zd->zd_zilog, itx, tx); 1431 } 1432 1433 /* 1434 * ZIL replay ops 1435 */ 1436 static int 1437 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap) 1438 { 1439 ztest_ds_t *zd = arg1; 1440 lr_create_t *lr = arg2; 1441 char *name = (void *)(lr + 1); /* name follows lr */ 1442 objset_t *os = zd->zd_os; 1443 ztest_block_tag_t *bbt; 1444 dmu_buf_t *db; 1445 dmu_tx_t *tx; 1446 uint64_t txg; 1447 int error = 0; 1448 1449 if (byteswap) 1450 byteswap_uint64_array(lr, sizeof (*lr)); 1451 1452 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1453 ASSERT(name[0] != '\0'); 1454 1455 tx = dmu_tx_create(os); 1456 1457 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1458 1459 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1460 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1461 } else { 1462 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1463 } 1464 1465 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1466 if (txg == 0) 1467 return (ENOSPC); 1468 1469 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1470 1471 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1472 if (lr->lr_foid == 0) { 1473 lr->lr_foid = zap_create(os, 1474 lr->lrz_type, lr->lrz_bonustype, 1475 lr->lrz_bonuslen, tx); 1476 } else { 1477 error = zap_create_claim(os, lr->lr_foid, 1478 lr->lrz_type, lr->lrz_bonustype, 1479 lr->lrz_bonuslen, tx); 1480 } 1481 } else { 1482 if (lr->lr_foid == 0) { 1483 lr->lr_foid = dmu_object_alloc(os, 1484 lr->lrz_type, 0, lr->lrz_bonustype, 1485 lr->lrz_bonuslen, tx); 1486 } else { 1487 error = dmu_object_claim(os, lr->lr_foid, 1488 lr->lrz_type, 0, lr->lrz_bonustype, 1489 lr->lrz_bonuslen, tx); 1490 } 1491 } 1492 1493 if (error) { 1494 ASSERT3U(error, ==, EEXIST); 1495 ASSERT(zd->zd_zilog->zl_replay); 1496 dmu_tx_commit(tx); 1497 return (error); 1498 } 1499 1500 ASSERT(lr->lr_foid != 0); 1501 1502 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1503 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1504 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1505 1506 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1507 bbt = ztest_bt_bonus(db); 1508 dmu_buf_will_dirty(db, tx); 1509 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1510 dmu_buf_rele(db, FTAG); 1511 1512 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1513 &lr->lr_foid, tx)); 1514 1515 (void) ztest_log_create(zd, tx, lr); 1516 1517 dmu_tx_commit(tx); 1518 1519 return (0); 1520 } 1521 1522 static int 1523 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap) 1524 { 1525 ztest_ds_t *zd = arg1; 1526 lr_remove_t *lr = arg2; 1527 char *name = (void *)(lr + 1); /* name follows lr */ 1528 objset_t *os = zd->zd_os; 1529 dmu_object_info_t doi; 1530 dmu_tx_t *tx; 1531 uint64_t object, txg; 1532 1533 if (byteswap) 1534 byteswap_uint64_array(lr, sizeof (*lr)); 1535 1536 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1537 ASSERT(name[0] != '\0'); 1538 1539 VERIFY3U(0, ==, 1540 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1541 ASSERT(object != 0); 1542 1543 ztest_object_lock(zd, object, RL_WRITER); 1544 1545 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1546 1547 tx = dmu_tx_create(os); 1548 1549 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1550 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1551 1552 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1553 if (txg == 0) { 1554 ztest_object_unlock(zd, object); 1555 return (ENOSPC); 1556 } 1557 1558 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1559 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1560 } else { 1561 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1562 } 1563 1564 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1565 1566 (void) ztest_log_remove(zd, tx, lr, object); 1567 1568 dmu_tx_commit(tx); 1569 1570 ztest_object_unlock(zd, object); 1571 1572 return (0); 1573 } 1574 1575 static int 1576 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap) 1577 { 1578 ztest_ds_t *zd = arg1; 1579 lr_write_t *lr = arg2; 1580 objset_t *os = zd->zd_os; 1581 void *data = lr + 1; /* data follows lr */ 1582 uint64_t offset, length; 1583 ztest_block_tag_t *bt = data; 1584 ztest_block_tag_t *bbt; 1585 uint64_t gen, txg, lrtxg, crtxg; 1586 dmu_object_info_t doi; 1587 dmu_tx_t *tx; 1588 dmu_buf_t *db; 1589 arc_buf_t *abuf = NULL; 1590 rl_t *rl; 1591 1592 if (byteswap) 1593 byteswap_uint64_array(lr, sizeof (*lr)); 1594 1595 offset = lr->lr_offset; 1596 length = lr->lr_length; 1597 1598 /* If it's a dmu_sync() block, write the whole block */ 1599 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1600 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1601 if (length < blocksize) { 1602 offset -= offset % blocksize; 1603 length = blocksize; 1604 } 1605 } 1606 1607 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1608 byteswap_uint64_array(bt, sizeof (*bt)); 1609 1610 if (bt->bt_magic != BT_MAGIC) 1611 bt = NULL; 1612 1613 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1614 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1615 1616 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1617 1618 dmu_object_info_from_db(db, &doi); 1619 1620 bbt = ztest_bt_bonus(db); 1621 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1622 gen = bbt->bt_gen; 1623 crtxg = bbt->bt_crtxg; 1624 lrtxg = lr->lr_common.lrc_txg; 1625 1626 tx = dmu_tx_create(os); 1627 1628 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1629 1630 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1631 P2PHASE(offset, length) == 0) 1632 abuf = dmu_request_arcbuf(db, length); 1633 1634 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1635 if (txg == 0) { 1636 if (abuf != NULL) 1637 dmu_return_arcbuf(abuf); 1638 dmu_buf_rele(db, FTAG); 1639 ztest_range_unlock(rl); 1640 ztest_object_unlock(zd, lr->lr_foid); 1641 return (ENOSPC); 1642 } 1643 1644 if (bt != NULL) { 1645 /* 1646 * Usually, verify the old data before writing new data -- 1647 * but not always, because we also want to verify correct 1648 * behavior when the data was not recently read into cache. 1649 */ 1650 ASSERT(offset % doi.doi_data_block_size == 0); 1651 if (ztest_random(4) != 0) { 1652 int prefetch = ztest_random(2) ? 1653 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1654 ztest_block_tag_t rbt; 1655 1656 VERIFY(dmu_read(os, lr->lr_foid, offset, 1657 sizeof (rbt), &rbt, prefetch) == 0); 1658 if (rbt.bt_magic == BT_MAGIC) { 1659 ztest_bt_verify(&rbt, os, lr->lr_foid, 1660 offset, gen, txg, crtxg); 1661 } 1662 } 1663 1664 /* 1665 * Writes can appear to be newer than the bonus buffer because 1666 * the ztest_get_data() callback does a dmu_read() of the 1667 * open-context data, which may be different than the data 1668 * as it was when the write was generated. 1669 */ 1670 if (zd->zd_zilog->zl_replay) { 1671 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1672 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1673 bt->bt_crtxg); 1674 } 1675 1676 /* 1677 * Set the bt's gen/txg to the bonus buffer's gen/txg 1678 * so that all of the usual ASSERTs will work. 1679 */ 1680 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1681 } 1682 1683 if (abuf == NULL) { 1684 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1685 } else { 1686 bcopy(data, abuf->b_data, length); 1687 dmu_assign_arcbuf(db, offset, abuf, tx); 1688 } 1689 1690 (void) ztest_log_write(zd, tx, lr); 1691 1692 dmu_buf_rele(db, FTAG); 1693 1694 dmu_tx_commit(tx); 1695 1696 ztest_range_unlock(rl); 1697 ztest_object_unlock(zd, lr->lr_foid); 1698 1699 return (0); 1700 } 1701 1702 static int 1703 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) 1704 { 1705 ztest_ds_t *zd = arg1; 1706 lr_truncate_t *lr = arg2; 1707 objset_t *os = zd->zd_os; 1708 dmu_tx_t *tx; 1709 uint64_t txg; 1710 rl_t *rl; 1711 1712 if (byteswap) 1713 byteswap_uint64_array(lr, sizeof (*lr)); 1714 1715 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1716 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1717 RL_WRITER); 1718 1719 tx = dmu_tx_create(os); 1720 1721 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1722 1723 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1724 if (txg == 0) { 1725 ztest_range_unlock(rl); 1726 ztest_object_unlock(zd, lr->lr_foid); 1727 return (ENOSPC); 1728 } 1729 1730 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1731 lr->lr_length, tx) == 0); 1732 1733 (void) ztest_log_truncate(zd, tx, lr); 1734 1735 dmu_tx_commit(tx); 1736 1737 ztest_range_unlock(rl); 1738 ztest_object_unlock(zd, lr->lr_foid); 1739 1740 return (0); 1741 } 1742 1743 static int 1744 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap) 1745 { 1746 ztest_ds_t *zd = arg1; 1747 lr_setattr_t *lr = arg2; 1748 objset_t *os = zd->zd_os; 1749 dmu_tx_t *tx; 1750 dmu_buf_t *db; 1751 ztest_block_tag_t *bbt; 1752 uint64_t txg, lrtxg, crtxg; 1753 1754 if (byteswap) 1755 byteswap_uint64_array(lr, sizeof (*lr)); 1756 1757 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1758 1759 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1760 1761 tx = dmu_tx_create(os); 1762 dmu_tx_hold_bonus(tx, lr->lr_foid); 1763 1764 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1765 if (txg == 0) { 1766 dmu_buf_rele(db, FTAG); 1767 ztest_object_unlock(zd, lr->lr_foid); 1768 return (ENOSPC); 1769 } 1770 1771 bbt = ztest_bt_bonus(db); 1772 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1773 crtxg = bbt->bt_crtxg; 1774 lrtxg = lr->lr_common.lrc_txg; 1775 1776 if (zd->zd_zilog->zl_replay) { 1777 ASSERT(lr->lr_size != 0); 1778 ASSERT(lr->lr_mode != 0); 1779 ASSERT(lrtxg != 0); 1780 } else { 1781 /* 1782 * Randomly change the size and increment the generation. 1783 */ 1784 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1785 sizeof (*bbt); 1786 lr->lr_mode = bbt->bt_gen + 1; 1787 ASSERT(lrtxg == 0); 1788 } 1789 1790 /* 1791 * Verify that the current bonus buffer is not newer than our txg. 1792 */ 1793 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1794 MAX(txg, lrtxg), crtxg); 1795 1796 dmu_buf_will_dirty(db, tx); 1797 1798 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1799 ASSERT3U(lr->lr_size, <=, db->db_size); 1800 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1801 bbt = ztest_bt_bonus(db); 1802 1803 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1804 1805 dmu_buf_rele(db, FTAG); 1806 1807 (void) ztest_log_setattr(zd, tx, lr); 1808 1809 dmu_tx_commit(tx); 1810 1811 ztest_object_unlock(zd, lr->lr_foid); 1812 1813 return (0); 1814 } 1815 1816 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1817 NULL, /* 0 no such transaction type */ 1818 ztest_replay_create, /* TX_CREATE */ 1819 NULL, /* TX_MKDIR */ 1820 NULL, /* TX_MKXATTR */ 1821 NULL, /* TX_SYMLINK */ 1822 ztest_replay_remove, /* TX_REMOVE */ 1823 NULL, /* TX_RMDIR */ 1824 NULL, /* TX_LINK */ 1825 NULL, /* TX_RENAME */ 1826 ztest_replay_write, /* TX_WRITE */ 1827 ztest_replay_truncate, /* TX_TRUNCATE */ 1828 ztest_replay_setattr, /* TX_SETATTR */ 1829 NULL, /* TX_ACL */ 1830 NULL, /* TX_CREATE_ACL */ 1831 NULL, /* TX_CREATE_ATTR */ 1832 NULL, /* TX_CREATE_ACL_ATTR */ 1833 NULL, /* TX_MKDIR_ACL */ 1834 NULL, /* TX_MKDIR_ATTR */ 1835 NULL, /* TX_MKDIR_ACL_ATTR */ 1836 NULL, /* TX_WRITE2 */ 1837 }; 1838 1839 /* 1840 * ZIL get_data callbacks 1841 */ 1842 1843 /* ARGSUSED */ 1844 static void 1845 ztest_get_done(zgd_t *zgd, int error) 1846 { 1847 ztest_ds_t *zd = zgd->zgd_private; 1848 uint64_t object = zgd->zgd_rl->rl_object; 1849 1850 if (zgd->zgd_db) 1851 dmu_buf_rele(zgd->zgd_db, zgd); 1852 1853 ztest_range_unlock(zgd->zgd_rl); 1854 ztest_object_unlock(zd, object); 1855 1856 umem_free(zgd, sizeof (*zgd)); 1857 } 1858 1859 static int 1860 ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, 1861 zio_t *zio) 1862 { 1863 ztest_ds_t *zd = arg; 1864 objset_t *os = zd->zd_os; 1865 uint64_t object = lr->lr_foid; 1866 uint64_t offset = lr->lr_offset; 1867 uint64_t size = lr->lr_length; 1868 uint64_t txg = lr->lr_common.lrc_txg; 1869 uint64_t crtxg; 1870 dmu_object_info_t doi; 1871 dmu_buf_t *db; 1872 zgd_t *zgd; 1873 int error; 1874 1875 ASSERT3P(lwb, !=, NULL); 1876 ASSERT3P(zio, !=, NULL); 1877 ASSERT3U(size, !=, 0); 1878 1879 ztest_object_lock(zd, object, RL_READER); 1880 error = dmu_bonus_hold(os, object, FTAG, &db); 1881 if (error) { 1882 ztest_object_unlock(zd, object); 1883 return (error); 1884 } 1885 1886 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1887 1888 if (crtxg == 0 || crtxg > txg) { 1889 dmu_buf_rele(db, FTAG); 1890 ztest_object_unlock(zd, object); 1891 return (ENOENT); 1892 } 1893 1894 dmu_object_info_from_db(db, &doi); 1895 dmu_buf_rele(db, FTAG); 1896 db = NULL; 1897 1898 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1899 zgd->zgd_lwb = lwb; 1900 zgd->zgd_private = zd; 1901 1902 if (buf != NULL) { /* immediate write */ 1903 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1904 RL_READER); 1905 1906 error = dmu_read(os, object, offset, size, buf, 1907 DMU_READ_NO_PREFETCH); 1908 ASSERT(error == 0); 1909 } else { 1910 size = doi.doi_data_block_size; 1911 if (ISP2(size)) { 1912 offset = P2ALIGN(offset, size); 1913 } else { 1914 ASSERT(offset < size); 1915 offset = 0; 1916 } 1917 1918 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1919 RL_READER); 1920 1921 error = dmu_buf_hold(os, object, offset, zgd, &db, 1922 DMU_READ_NO_PREFETCH); 1923 1924 if (error == 0) { 1925 blkptr_t *bp = &lr->lr_blkptr; 1926 1927 zgd->zgd_db = db; 1928 zgd->zgd_bp = bp; 1929 1930 ASSERT(db->db_offset == offset); 1931 ASSERT(db->db_size == size); 1932 1933 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1934 ztest_get_done, zgd); 1935 1936 if (error == 0) 1937 return (0); 1938 } 1939 } 1940 1941 ztest_get_done(zgd, error); 1942 1943 return (error); 1944 } 1945 1946 static void * 1947 ztest_lr_alloc(size_t lrsize, char *name) 1948 { 1949 char *lr; 1950 size_t namesize = name ? strlen(name) + 1 : 0; 1951 1952 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1953 1954 if (name) 1955 bcopy(name, lr + lrsize, namesize); 1956 1957 return (lr); 1958 } 1959 1960 void 1961 ztest_lr_free(void *lr, size_t lrsize, char *name) 1962 { 1963 size_t namesize = name ? strlen(name) + 1 : 0; 1964 1965 umem_free(lr, lrsize + namesize); 1966 } 1967 1968 /* 1969 * Lookup a bunch of objects. Returns the number of objects not found. 1970 */ 1971 static int 1972 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1973 { 1974 int missing = 0; 1975 int error; 1976 1977 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 1978 1979 for (int i = 0; i < count; i++, od++) { 1980 od->od_object = 0; 1981 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1982 sizeof (uint64_t), 1, &od->od_object); 1983 if (error) { 1984 ASSERT(error == ENOENT); 1985 ASSERT(od->od_object == 0); 1986 missing++; 1987 } else { 1988 dmu_buf_t *db; 1989 ztest_block_tag_t *bbt; 1990 dmu_object_info_t doi; 1991 1992 ASSERT(od->od_object != 0); 1993 ASSERT(missing == 0); /* there should be no gaps */ 1994 1995 ztest_object_lock(zd, od->od_object, RL_READER); 1996 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1997 od->od_object, FTAG, &db)); 1998 dmu_object_info_from_db(db, &doi); 1999 bbt = ztest_bt_bonus(db); 2000 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 2001 od->od_type = doi.doi_type; 2002 od->od_blocksize = doi.doi_data_block_size; 2003 od->od_gen = bbt->bt_gen; 2004 dmu_buf_rele(db, FTAG); 2005 ztest_object_unlock(zd, od->od_object); 2006 } 2007 } 2008 2009 return (missing); 2010 } 2011 2012 static int 2013 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 2014 { 2015 int missing = 0; 2016 2017 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2018 2019 for (int i = 0; i < count; i++, od++) { 2020 if (missing) { 2021 od->od_object = 0; 2022 missing++; 2023 continue; 2024 } 2025 2026 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2027 2028 lr->lr_doid = od->od_dir; 2029 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 2030 lr->lrz_type = od->od_crtype; 2031 lr->lrz_blocksize = od->od_crblocksize; 2032 lr->lrz_ibshift = ztest_random_ibshift(); 2033 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 2034 lr->lrz_bonuslen = dmu_bonus_max(); 2035 lr->lr_gen = od->od_crgen; 2036 lr->lr_crtime[0] = time(NULL); 2037 2038 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 2039 ASSERT(missing == 0); 2040 od->od_object = 0; 2041 missing++; 2042 } else { 2043 od->od_object = lr->lr_foid; 2044 od->od_type = od->od_crtype; 2045 od->od_blocksize = od->od_crblocksize; 2046 od->od_gen = od->od_crgen; 2047 ASSERT(od->od_object != 0); 2048 } 2049 2050 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2051 } 2052 2053 return (missing); 2054 } 2055 2056 static int 2057 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2058 { 2059 int missing = 0; 2060 int error; 2061 2062 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2063 2064 od += count - 1; 2065 2066 for (int i = count - 1; i >= 0; i--, od--) { 2067 if (missing) { 2068 missing++; 2069 continue; 2070 } 2071 2072 /* 2073 * No object was found. 2074 */ 2075 if (od->od_object == 0) 2076 continue; 2077 2078 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2079 2080 lr->lr_doid = od->od_dir; 2081 2082 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2083 ASSERT3U(error, ==, ENOSPC); 2084 missing++; 2085 } else { 2086 od->od_object = 0; 2087 } 2088 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2089 } 2090 2091 return (missing); 2092 } 2093 2094 static int 2095 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2096 void *data) 2097 { 2098 lr_write_t *lr; 2099 int error; 2100 2101 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2102 2103 lr->lr_foid = object; 2104 lr->lr_offset = offset; 2105 lr->lr_length = size; 2106 lr->lr_blkoff = 0; 2107 BP_ZERO(&lr->lr_blkptr); 2108 2109 bcopy(data, lr + 1, size); 2110 2111 error = ztest_replay_write(zd, lr, B_FALSE); 2112 2113 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2114 2115 return (error); 2116 } 2117 2118 static int 2119 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2120 { 2121 lr_truncate_t *lr; 2122 int error; 2123 2124 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2125 2126 lr->lr_foid = object; 2127 lr->lr_offset = offset; 2128 lr->lr_length = size; 2129 2130 error = ztest_replay_truncate(zd, lr, B_FALSE); 2131 2132 ztest_lr_free(lr, sizeof (*lr), NULL); 2133 2134 return (error); 2135 } 2136 2137 static int 2138 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2139 { 2140 lr_setattr_t *lr; 2141 int error; 2142 2143 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2144 2145 lr->lr_foid = object; 2146 lr->lr_size = 0; 2147 lr->lr_mode = 0; 2148 2149 error = ztest_replay_setattr(zd, lr, B_FALSE); 2150 2151 ztest_lr_free(lr, sizeof (*lr), NULL); 2152 2153 return (error); 2154 } 2155 2156 static void 2157 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2158 { 2159 objset_t *os = zd->zd_os; 2160 dmu_tx_t *tx; 2161 uint64_t txg; 2162 rl_t *rl; 2163 2164 txg_wait_synced(dmu_objset_pool(os), 0); 2165 2166 ztest_object_lock(zd, object, RL_READER); 2167 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2168 2169 tx = dmu_tx_create(os); 2170 2171 dmu_tx_hold_write(tx, object, offset, size); 2172 2173 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2174 2175 if (txg != 0) { 2176 dmu_prealloc(os, object, offset, size, tx); 2177 dmu_tx_commit(tx); 2178 txg_wait_synced(dmu_objset_pool(os), txg); 2179 } else { 2180 (void) dmu_free_long_range(os, object, offset, size); 2181 } 2182 2183 ztest_range_unlock(rl); 2184 ztest_object_unlock(zd, object); 2185 } 2186 2187 static void 2188 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2189 { 2190 int err; 2191 ztest_block_tag_t wbt; 2192 dmu_object_info_t doi; 2193 enum ztest_io_type io_type; 2194 uint64_t blocksize; 2195 void *data; 2196 2197 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2198 blocksize = doi.doi_data_block_size; 2199 data = umem_alloc(blocksize, UMEM_NOFAIL); 2200 2201 /* 2202 * Pick an i/o type at random, biased toward writing block tags. 2203 */ 2204 io_type = ztest_random(ZTEST_IO_TYPES); 2205 if (ztest_random(2) == 0) 2206 io_type = ZTEST_IO_WRITE_TAG; 2207 2208 rw_enter(&zd->zd_zilog_lock, RW_READER); 2209 2210 switch (io_type) { 2211 2212 case ZTEST_IO_WRITE_TAG: 2213 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2214 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2215 break; 2216 2217 case ZTEST_IO_WRITE_PATTERN: 2218 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2219 if (ztest_random(2) == 0) { 2220 /* 2221 * Induce fletcher2 collisions to ensure that 2222 * zio_ddt_collision() detects and resolves them 2223 * when using fletcher2-verify for deduplication. 2224 */ 2225 ((uint64_t *)data)[0] ^= 1ULL << 63; 2226 ((uint64_t *)data)[4] ^= 1ULL << 63; 2227 } 2228 (void) ztest_write(zd, object, offset, blocksize, data); 2229 break; 2230 2231 case ZTEST_IO_WRITE_ZEROES: 2232 bzero(data, blocksize); 2233 (void) ztest_write(zd, object, offset, blocksize, data); 2234 break; 2235 2236 case ZTEST_IO_TRUNCATE: 2237 (void) ztest_truncate(zd, object, offset, blocksize); 2238 break; 2239 2240 case ZTEST_IO_SETATTR: 2241 (void) ztest_setattr(zd, object); 2242 break; 2243 2244 case ZTEST_IO_REWRITE: 2245 rw_enter(&ztest_name_lock, RW_READER); 2246 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2247 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2248 B_FALSE); 2249 VERIFY(err == 0 || err == ENOSPC); 2250 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2251 ZFS_PROP_COMPRESSION, 2252 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2253 B_FALSE); 2254 VERIFY(err == 0 || err == ENOSPC); 2255 rw_exit(&ztest_name_lock); 2256 2257 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2258 DMU_READ_NO_PREFETCH)); 2259 2260 (void) ztest_write(zd, object, offset, blocksize, data); 2261 break; 2262 } 2263 2264 rw_exit(&zd->zd_zilog_lock); 2265 2266 umem_free(data, blocksize); 2267 } 2268 2269 /* 2270 * Initialize an object description template. 2271 */ 2272 static void 2273 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2274 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2275 { 2276 od->od_dir = ZTEST_DIROBJ; 2277 od->od_object = 0; 2278 2279 od->od_crtype = type; 2280 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2281 od->od_crgen = gen; 2282 2283 od->od_type = DMU_OT_NONE; 2284 od->od_blocksize = 0; 2285 od->od_gen = 0; 2286 2287 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2288 tag, (int64_t)id, index); 2289 } 2290 2291 /* 2292 * Lookup or create the objects for a test using the od template. 2293 * If the objects do not all exist, or if 'remove' is specified, 2294 * remove any existing objects and create new ones. Otherwise, 2295 * use the existing objects. 2296 */ 2297 static int 2298 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2299 { 2300 int count = size / sizeof (*od); 2301 int rv = 0; 2302 2303 mutex_enter(&zd->zd_dirobj_lock); 2304 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2305 (ztest_remove(zd, od, count) != 0 || 2306 ztest_create(zd, od, count) != 0)) 2307 rv = -1; 2308 zd->zd_od = od; 2309 mutex_exit(&zd->zd_dirobj_lock); 2310 2311 return (rv); 2312 } 2313 2314 /* ARGSUSED */ 2315 void 2316 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2317 { 2318 zilog_t *zilog = zd->zd_zilog; 2319 2320 rw_enter(&zd->zd_zilog_lock, RW_READER); 2321 2322 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2323 2324 /* 2325 * Remember the committed values in zd, which is in parent/child 2326 * shared memory. If we die, the next iteration of ztest_run() 2327 * will verify that the log really does contain this record. 2328 */ 2329 mutex_enter(&zilog->zl_lock); 2330 ASSERT(zd->zd_shared != NULL); 2331 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2332 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2333 mutex_exit(&zilog->zl_lock); 2334 2335 rw_exit(&zd->zd_zilog_lock); 2336 } 2337 2338 /* 2339 * This function is designed to simulate the operations that occur during a 2340 * mount/unmount operation. We hold the dataset across these operations in an 2341 * attempt to expose any implicit assumptions about ZIL management. 2342 */ 2343 /* ARGSUSED */ 2344 void 2345 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2346 { 2347 objset_t *os = zd->zd_os; 2348 2349 /* 2350 * We grab the zd_dirobj_lock to ensure that no other thread is 2351 * updating the zil (i.e. adding in-memory log records) and the 2352 * zd_zilog_lock to block any I/O. 2353 */ 2354 mutex_enter(&zd->zd_dirobj_lock); 2355 rw_enter(&zd->zd_zilog_lock, RW_WRITER); 2356 2357 /* zfsvfs_teardown() */ 2358 zil_close(zd->zd_zilog); 2359 2360 /* zfsvfs_setup() */ 2361 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2362 zil_replay(os, zd, ztest_replay_vector); 2363 2364 rw_exit(&zd->zd_zilog_lock); 2365 mutex_exit(&zd->zd_dirobj_lock); 2366 } 2367 2368 /* 2369 * Verify that we can't destroy an active pool, create an existing pool, 2370 * or create a pool with a bad vdev spec. 2371 */ 2372 /* ARGSUSED */ 2373 void 2374 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2375 { 2376 ztest_shared_opts_t *zo = &ztest_opts; 2377 spa_t *spa; 2378 nvlist_t *nvroot; 2379 2380 /* 2381 * Attempt to create using a bad file. 2382 */ 2383 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2384 VERIFY3U(ENOENT, ==, 2385 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2386 nvlist_free(nvroot); 2387 2388 /* 2389 * Attempt to create using a bad mirror. 2390 */ 2391 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2392 VERIFY3U(ENOENT, ==, 2393 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2394 nvlist_free(nvroot); 2395 2396 /* 2397 * Attempt to create an existing pool. It shouldn't matter 2398 * what's in the nvroot; we should fail with EEXIST. 2399 */ 2400 rw_enter(&ztest_name_lock, RW_READER); 2401 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2402 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2403 nvlist_free(nvroot); 2404 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2405 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2406 spa_close(spa, FTAG); 2407 2408 rw_exit(&ztest_name_lock); 2409 } 2410 2411 /* ARGSUSED */ 2412 void 2413 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2414 { 2415 spa_t *spa; 2416 uint64_t initial_version = SPA_VERSION_INITIAL; 2417 uint64_t version, newversion; 2418 nvlist_t *nvroot, *props; 2419 char *name; 2420 2421 mutex_enter(&ztest_vdev_lock); 2422 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2423 2424 /* 2425 * Clean up from previous runs. 2426 */ 2427 (void) spa_destroy(name); 2428 2429 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2430 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2431 2432 /* 2433 * If we're configuring a RAIDZ device then make sure that the 2434 * the initial version is capable of supporting that feature. 2435 */ 2436 switch (ztest_opts.zo_raidz_parity) { 2437 case 0: 2438 case 1: 2439 initial_version = SPA_VERSION_INITIAL; 2440 break; 2441 case 2: 2442 initial_version = SPA_VERSION_RAIDZ2; 2443 break; 2444 case 3: 2445 initial_version = SPA_VERSION_RAIDZ3; 2446 break; 2447 } 2448 2449 /* 2450 * Create a pool with a spa version that can be upgraded. Pick 2451 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2452 */ 2453 do { 2454 version = ztest_random_spa_version(initial_version); 2455 } while (version > SPA_VERSION_BEFORE_FEATURES); 2456 2457 props = fnvlist_alloc(); 2458 fnvlist_add_uint64(props, 2459 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2460 VERIFY0(spa_create(name, nvroot, props, NULL)); 2461 fnvlist_free(nvroot); 2462 fnvlist_free(props); 2463 2464 VERIFY0(spa_open(name, &spa, FTAG)); 2465 VERIFY3U(spa_version(spa), ==, version); 2466 newversion = ztest_random_spa_version(version + 1); 2467 2468 if (ztest_opts.zo_verbose >= 4) { 2469 (void) printf("upgrading spa version from %llu to %llu\n", 2470 (u_longlong_t)version, (u_longlong_t)newversion); 2471 } 2472 2473 spa_upgrade(spa, newversion); 2474 VERIFY3U(spa_version(spa), >, version); 2475 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2476 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2477 spa_close(spa, FTAG); 2478 2479 strfree(name); 2480 mutex_exit(&ztest_vdev_lock); 2481 } 2482 2483 static void 2484 ztest_spa_checkpoint(spa_t *spa) 2485 { 2486 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); 2487 2488 int error = spa_checkpoint(spa->spa_name); 2489 2490 switch (error) { 2491 case 0: 2492 case ZFS_ERR_DEVRM_IN_PROGRESS: 2493 case ZFS_ERR_DISCARDING_CHECKPOINT: 2494 case ZFS_ERR_CHECKPOINT_EXISTS: 2495 break; 2496 case ENOSPC: 2497 ztest_record_enospc(FTAG); 2498 break; 2499 default: 2500 fatal(0, "spa_checkpoint(%s) = %d", spa->spa_name, error); 2501 } 2502 } 2503 2504 static void 2505 ztest_spa_discard_checkpoint(spa_t *spa) 2506 { 2507 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock)); 2508 2509 int error = spa_checkpoint_discard(spa->spa_name); 2510 2511 switch (error) { 2512 case 0: 2513 case ZFS_ERR_DISCARDING_CHECKPOINT: 2514 case ZFS_ERR_NO_CHECKPOINT: 2515 break; 2516 default: 2517 fatal(0, "spa_discard_checkpoint(%s) = %d", 2518 spa->spa_name, error); 2519 } 2520 2521 } 2522 2523 /* ARGSUSED */ 2524 void 2525 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id) 2526 { 2527 spa_t *spa = ztest_spa; 2528 2529 mutex_enter(&ztest_checkpoint_lock); 2530 if (ztest_random(2) == 0) { 2531 ztest_spa_checkpoint(spa); 2532 } else { 2533 ztest_spa_discard_checkpoint(spa); 2534 } 2535 mutex_exit(&ztest_checkpoint_lock); 2536 } 2537 2538 2539 static vdev_t * 2540 vdev_lookup_by_path(vdev_t *vd, const char *path) 2541 { 2542 vdev_t *mvd; 2543 2544 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2545 return (vd); 2546 2547 for (int c = 0; c < vd->vdev_children; c++) 2548 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2549 NULL) 2550 return (mvd); 2551 2552 return (NULL); 2553 } 2554 2555 /* 2556 * Find the first available hole which can be used as a top-level. 2557 */ 2558 int 2559 find_vdev_hole(spa_t *spa) 2560 { 2561 vdev_t *rvd = spa->spa_root_vdev; 2562 int c; 2563 2564 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2565 2566 for (c = 0; c < rvd->vdev_children; c++) { 2567 vdev_t *cvd = rvd->vdev_child[c]; 2568 2569 if (cvd->vdev_ishole) 2570 break; 2571 } 2572 return (c); 2573 } 2574 2575 /* 2576 * Verify that vdev_add() works as expected. 2577 */ 2578 /* ARGSUSED */ 2579 void 2580 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2581 { 2582 ztest_shared_t *zs = ztest_shared; 2583 spa_t *spa = ztest_spa; 2584 uint64_t leaves; 2585 uint64_t guid; 2586 nvlist_t *nvroot; 2587 int error; 2588 2589 mutex_enter(&ztest_vdev_lock); 2590 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2591 2592 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2593 2594 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2595 2596 /* 2597 * If we have slogs then remove them 1/4 of the time. 2598 */ 2599 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2600 /* 2601 * Grab the guid from the head of the log class rotor. 2602 */ 2603 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2604 2605 spa_config_exit(spa, SCL_VDEV, FTAG); 2606 2607 /* 2608 * We have to grab the zs_name_lock as writer to 2609 * prevent a race between removing a slog (dmu_objset_find) 2610 * and destroying a dataset. Removing the slog will 2611 * grab a reference on the dataset which may cause 2612 * dmu_objset_destroy() to fail with EBUSY thus 2613 * leaving the dataset in an inconsistent state. 2614 */ 2615 rw_enter(&ztest_name_lock, RW_WRITER); 2616 error = spa_vdev_remove(spa, guid, B_FALSE); 2617 rw_exit(&ztest_name_lock); 2618 2619 switch (error) { 2620 case 0: 2621 case EEXIST: 2622 case ZFS_ERR_CHECKPOINT_EXISTS: 2623 case ZFS_ERR_DISCARDING_CHECKPOINT: 2624 break; 2625 default: 2626 fatal(0, "spa_vdev_remove() = %d", error); 2627 } 2628 } else { 2629 spa_config_exit(spa, SCL_VDEV, FTAG); 2630 2631 /* 2632 * Make 1/4 of the devices be log devices. 2633 */ 2634 nvroot = make_vdev_root(NULL, NULL, NULL, 2635 ztest_opts.zo_vdev_size, 0, 2636 ztest_random(4) == 0, ztest_opts.zo_raidz, 2637 zs->zs_mirrors, 1); 2638 2639 error = spa_vdev_add(spa, nvroot); 2640 nvlist_free(nvroot); 2641 2642 switch (error) { 2643 case 0: 2644 break; 2645 case ENOSPC: 2646 ztest_record_enospc("spa_vdev_add"); 2647 break; 2648 default: 2649 fatal(0, "spa_vdev_add() = %d", error); 2650 } 2651 } 2652 2653 mutex_exit(&ztest_vdev_lock); 2654 } 2655 2656 /* 2657 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2658 */ 2659 /* ARGSUSED */ 2660 void 2661 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2662 { 2663 ztest_shared_t *zs = ztest_shared; 2664 spa_t *spa = ztest_spa; 2665 vdev_t *rvd = spa->spa_root_vdev; 2666 spa_aux_vdev_t *sav; 2667 char *aux; 2668 uint64_t guid = 0; 2669 int error; 2670 2671 if (ztest_random(2) == 0) { 2672 sav = &spa->spa_spares; 2673 aux = ZPOOL_CONFIG_SPARES; 2674 } else { 2675 sav = &spa->spa_l2cache; 2676 aux = ZPOOL_CONFIG_L2CACHE; 2677 } 2678 2679 mutex_enter(&ztest_vdev_lock); 2680 2681 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2682 2683 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2684 /* 2685 * Pick a random device to remove. 2686 */ 2687 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2688 } else { 2689 /* 2690 * Find an unused device we can add. 2691 */ 2692 zs->zs_vdev_aux = 0; 2693 for (;;) { 2694 char path[MAXPATHLEN]; 2695 int c; 2696 (void) snprintf(path, sizeof (path), ztest_aux_template, 2697 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2698 zs->zs_vdev_aux); 2699 for (c = 0; c < sav->sav_count; c++) 2700 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2701 path) == 0) 2702 break; 2703 if (c == sav->sav_count && 2704 vdev_lookup_by_path(rvd, path) == NULL) 2705 break; 2706 zs->zs_vdev_aux++; 2707 } 2708 } 2709 2710 spa_config_exit(spa, SCL_VDEV, FTAG); 2711 2712 if (guid == 0) { 2713 /* 2714 * Add a new device. 2715 */ 2716 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2717 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2718 error = spa_vdev_add(spa, nvroot); 2719 2720 switch (error) { 2721 case 0: 2722 break; 2723 default: 2724 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2725 } 2726 nvlist_free(nvroot); 2727 } else { 2728 /* 2729 * Remove an existing device. Sometimes, dirty its 2730 * vdev state first to make sure we handle removal 2731 * of devices that have pending state changes. 2732 */ 2733 if (ztest_random(2) == 0) 2734 (void) vdev_online(spa, guid, 0, NULL); 2735 2736 error = spa_vdev_remove(spa, guid, B_FALSE); 2737 2738 switch (error) { 2739 case 0: 2740 case EBUSY: 2741 case ZFS_ERR_CHECKPOINT_EXISTS: 2742 case ZFS_ERR_DISCARDING_CHECKPOINT: 2743 break; 2744 default: 2745 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2746 } 2747 } 2748 2749 mutex_exit(&ztest_vdev_lock); 2750 } 2751 2752 /* 2753 * split a pool if it has mirror tlvdevs 2754 */ 2755 /* ARGSUSED */ 2756 void 2757 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2758 { 2759 ztest_shared_t *zs = ztest_shared; 2760 spa_t *spa = ztest_spa; 2761 vdev_t *rvd = spa->spa_root_vdev; 2762 nvlist_t *tree, **child, *config, *split, **schild; 2763 uint_t c, children, schildren = 0, lastlogid = 0; 2764 int error = 0; 2765 2766 mutex_enter(&ztest_vdev_lock); 2767 2768 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2769 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2770 mutex_exit(&ztest_vdev_lock); 2771 return; 2772 } 2773 2774 /* clean up the old pool, if any */ 2775 (void) spa_destroy("splitp"); 2776 2777 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2778 2779 /* generate a config from the existing config */ 2780 mutex_enter(&spa->spa_props_lock); 2781 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2782 &tree) == 0); 2783 mutex_exit(&spa->spa_props_lock); 2784 2785 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2786 &children) == 0); 2787 2788 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2789 for (c = 0; c < children; c++) { 2790 vdev_t *tvd = rvd->vdev_child[c]; 2791 nvlist_t **mchild; 2792 uint_t mchildren; 2793 2794 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2795 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2796 0) == 0); 2797 VERIFY(nvlist_add_string(schild[schildren], 2798 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2799 VERIFY(nvlist_add_uint64(schild[schildren], 2800 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2801 if (lastlogid == 0) 2802 lastlogid = schildren; 2803 ++schildren; 2804 continue; 2805 } 2806 lastlogid = 0; 2807 VERIFY(nvlist_lookup_nvlist_array(child[c], 2808 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2809 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2810 } 2811 2812 /* OK, create a config that can be used to split */ 2813 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2814 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2815 VDEV_TYPE_ROOT) == 0); 2816 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2817 lastlogid != 0 ? lastlogid : schildren) == 0); 2818 2819 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2820 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2821 2822 for (c = 0; c < schildren; c++) 2823 nvlist_free(schild[c]); 2824 free(schild); 2825 nvlist_free(split); 2826 2827 spa_config_exit(spa, SCL_VDEV, FTAG); 2828 2829 rw_enter(&ztest_name_lock, RW_WRITER); 2830 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2831 rw_exit(&ztest_name_lock); 2832 2833 nvlist_free(config); 2834 2835 if (error == 0) { 2836 (void) printf("successful split - results:\n"); 2837 mutex_enter(&spa_namespace_lock); 2838 show_pool_stats(spa); 2839 show_pool_stats(spa_lookup("splitp")); 2840 mutex_exit(&spa_namespace_lock); 2841 ++zs->zs_splits; 2842 --zs->zs_mirrors; 2843 } 2844 mutex_exit(&ztest_vdev_lock); 2845 } 2846 2847 /* 2848 * Verify that we can attach and detach devices. 2849 */ 2850 /* ARGSUSED */ 2851 void 2852 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2853 { 2854 ztest_shared_t *zs = ztest_shared; 2855 spa_t *spa = ztest_spa; 2856 spa_aux_vdev_t *sav = &spa->spa_spares; 2857 vdev_t *rvd = spa->spa_root_vdev; 2858 vdev_t *oldvd, *newvd, *pvd; 2859 nvlist_t *root; 2860 uint64_t leaves; 2861 uint64_t leaf, top; 2862 uint64_t ashift = ztest_get_ashift(); 2863 uint64_t oldguid, pguid; 2864 uint64_t oldsize, newsize; 2865 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2866 int replacing; 2867 int oldvd_has_siblings = B_FALSE; 2868 int newvd_is_spare = B_FALSE; 2869 int oldvd_is_log; 2870 int error, expected_error; 2871 2872 mutex_enter(&ztest_vdev_lock); 2873 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2874 2875 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2876 2877 /* 2878 * If a vdev is in the process of being removed, its removal may 2879 * finish while we are in progress, leading to an unexpected error 2880 * value. Don't bother trying to attach while we are in the middle 2881 * of removal. 2882 */ 2883 if (ztest_device_removal_active) { 2884 spa_config_exit(spa, SCL_ALL, FTAG); 2885 mutex_exit(&ztest_vdev_lock); 2886 return; 2887 } 2888 2889 /* 2890 * Decide whether to do an attach or a replace. 2891 */ 2892 replacing = ztest_random(2); 2893 2894 /* 2895 * Pick a random top-level vdev. 2896 */ 2897 top = ztest_random_vdev_top(spa, B_TRUE); 2898 2899 /* 2900 * Pick a random leaf within it. 2901 */ 2902 leaf = ztest_random(leaves); 2903 2904 /* 2905 * Locate this vdev. 2906 */ 2907 oldvd = rvd->vdev_child[top]; 2908 if (zs->zs_mirrors >= 1) { 2909 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2910 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2911 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2912 } 2913 if (ztest_opts.zo_raidz > 1) { 2914 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2915 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2916 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2917 } 2918 2919 /* 2920 * If we're already doing an attach or replace, oldvd may be a 2921 * mirror vdev -- in which case, pick a random child. 2922 */ 2923 while (oldvd->vdev_children != 0) { 2924 oldvd_has_siblings = B_TRUE; 2925 ASSERT(oldvd->vdev_children >= 2); 2926 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2927 } 2928 2929 oldguid = oldvd->vdev_guid; 2930 oldsize = vdev_get_min_asize(oldvd); 2931 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2932 (void) strcpy(oldpath, oldvd->vdev_path); 2933 pvd = oldvd->vdev_parent; 2934 pguid = pvd->vdev_guid; 2935 2936 /* 2937 * If oldvd has siblings, then half of the time, detach it. 2938 */ 2939 if (oldvd_has_siblings && ztest_random(2) == 0) { 2940 spa_config_exit(spa, SCL_ALL, FTAG); 2941 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2942 if (error != 0 && error != ENODEV && error != EBUSY && 2943 error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS && 2944 error != ZFS_ERR_DISCARDING_CHECKPOINT) 2945 fatal(0, "detach (%s) returned %d", oldpath, error); 2946 mutex_exit(&ztest_vdev_lock); 2947 return; 2948 } 2949 2950 /* 2951 * For the new vdev, choose with equal probability between the two 2952 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2953 */ 2954 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2955 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2956 newvd_is_spare = B_TRUE; 2957 (void) strcpy(newpath, newvd->vdev_path); 2958 } else { 2959 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2960 ztest_opts.zo_dir, ztest_opts.zo_pool, 2961 top * leaves + leaf); 2962 if (ztest_random(2) == 0) 2963 newpath[strlen(newpath) - 1] = 'b'; 2964 newvd = vdev_lookup_by_path(rvd, newpath); 2965 } 2966 2967 if (newvd) { 2968 /* 2969 * Reopen to ensure the vdev's asize field isn't stale. 2970 */ 2971 vdev_reopen(newvd); 2972 newsize = vdev_get_min_asize(newvd); 2973 } else { 2974 /* 2975 * Make newsize a little bigger or smaller than oldsize. 2976 * If it's smaller, the attach should fail. 2977 * If it's larger, and we're doing a replace, 2978 * we should get dynamic LUN growth when we're done. 2979 */ 2980 newsize = 10 * oldsize / (9 + ztest_random(3)); 2981 } 2982 2983 /* 2984 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2985 * unless it's a replace; in that case any non-replacing parent is OK. 2986 * 2987 * If newvd is already part of the pool, it should fail with EBUSY. 2988 * 2989 * If newvd is too small, it should fail with EOVERFLOW. 2990 */ 2991 if (pvd->vdev_ops != &vdev_mirror_ops && 2992 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2993 pvd->vdev_ops == &vdev_replacing_ops || 2994 pvd->vdev_ops == &vdev_spare_ops)) 2995 expected_error = ENOTSUP; 2996 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2997 expected_error = ENOTSUP; 2998 else if (newvd == oldvd) 2999 expected_error = replacing ? 0 : EBUSY; 3000 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 3001 expected_error = EBUSY; 3002 else if (newsize < oldsize) 3003 expected_error = EOVERFLOW; 3004 else if (ashift > oldvd->vdev_top->vdev_ashift) 3005 expected_error = EDOM; 3006 else 3007 expected_error = 0; 3008 3009 spa_config_exit(spa, SCL_ALL, FTAG); 3010 3011 /* 3012 * Build the nvlist describing newpath. 3013 */ 3014 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 3015 ashift, 0, 0, 0, 1); 3016 3017 error = spa_vdev_attach(spa, oldguid, root, replacing); 3018 3019 nvlist_free(root); 3020 3021 /* 3022 * If our parent was the replacing vdev, but the replace completed, 3023 * then instead of failing with ENOTSUP we may either succeed, 3024 * fail with ENODEV, or fail with EOVERFLOW. 3025 */ 3026 if (expected_error == ENOTSUP && 3027 (error == 0 || error == ENODEV || error == EOVERFLOW)) 3028 expected_error = error; 3029 3030 /* 3031 * If someone grew the LUN, the replacement may be too small. 3032 */ 3033 if (error == EOVERFLOW || error == EBUSY) 3034 expected_error = error; 3035 3036 if (error == ZFS_ERR_CHECKPOINT_EXISTS || 3037 error == ZFS_ERR_DISCARDING_CHECKPOINT) 3038 expected_error = error; 3039 3040 /* XXX workaround 6690467 */ 3041 if (error != expected_error && expected_error != EBUSY) { 3042 fatal(0, "attach (%s %llu, %s %llu, %d) " 3043 "returned %d, expected %d", 3044 oldpath, oldsize, newpath, 3045 newsize, replacing, error, expected_error); 3046 } 3047 3048 mutex_exit(&ztest_vdev_lock); 3049 } 3050 3051 /* ARGSUSED */ 3052 void 3053 ztest_device_removal(ztest_ds_t *zd, uint64_t id) 3054 { 3055 spa_t *spa = ztest_spa; 3056 vdev_t *vd; 3057 uint64_t guid; 3058 int error; 3059 3060 mutex_enter(&ztest_vdev_lock); 3061 3062 if (ztest_device_removal_active) { 3063 mutex_exit(&ztest_vdev_lock); 3064 return; 3065 } 3066 3067 /* 3068 * Remove a random top-level vdev and wait for removal to finish. 3069 */ 3070 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3071 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE)); 3072 guid = vd->vdev_guid; 3073 spa_config_exit(spa, SCL_VDEV, FTAG); 3074 3075 error = spa_vdev_remove(spa, guid, B_FALSE); 3076 if (error == 0) { 3077 ztest_device_removal_active = B_TRUE; 3078 mutex_exit(&ztest_vdev_lock); 3079 3080 while (spa->spa_vdev_removal != NULL) 3081 txg_wait_synced(spa_get_dsl(spa), 0); 3082 } else { 3083 mutex_exit(&ztest_vdev_lock); 3084 return; 3085 } 3086 3087 /* 3088 * The pool needs to be scrubbed after completing device removal. 3089 * Failure to do so may result in checksum errors due to the 3090 * strategy employed by ztest_fault_inject() when selecting which 3091 * offset are redundant and can be damaged. 3092 */ 3093 error = spa_scan(spa, POOL_SCAN_SCRUB); 3094 if (error == 0) { 3095 while (dsl_scan_scrubbing(spa_get_dsl(spa))) 3096 txg_wait_synced(spa_get_dsl(spa), 0); 3097 } 3098 3099 mutex_enter(&ztest_vdev_lock); 3100 ztest_device_removal_active = B_FALSE; 3101 mutex_exit(&ztest_vdev_lock); 3102 } 3103 3104 /* 3105 * Callback function which expands the physical size of the vdev. 3106 */ 3107 vdev_t * 3108 grow_vdev(vdev_t *vd, void *arg) 3109 { 3110 spa_t *spa = vd->vdev_spa; 3111 size_t *newsize = arg; 3112 size_t fsize; 3113 int fd; 3114 3115 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 3116 ASSERT(vd->vdev_ops->vdev_op_leaf); 3117 3118 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 3119 return (vd); 3120 3121 fsize = lseek(fd, 0, SEEK_END); 3122 (void) ftruncate(fd, *newsize); 3123 3124 if (ztest_opts.zo_verbose >= 6) { 3125 (void) printf("%s grew from %lu to %lu bytes\n", 3126 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 3127 } 3128 (void) close(fd); 3129 return (NULL); 3130 } 3131 3132 /* 3133 * Callback function which expands a given vdev by calling vdev_online(). 3134 */ 3135 /* ARGSUSED */ 3136 vdev_t * 3137 online_vdev(vdev_t *vd, void *arg) 3138 { 3139 spa_t *spa = vd->vdev_spa; 3140 vdev_t *tvd = vd->vdev_top; 3141 uint64_t guid = vd->vdev_guid; 3142 uint64_t generation = spa->spa_config_generation + 1; 3143 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 3144 int error; 3145 3146 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 3147 ASSERT(vd->vdev_ops->vdev_op_leaf); 3148 3149 /* Calling vdev_online will initialize the new metaslabs */ 3150 spa_config_exit(spa, SCL_STATE, spa); 3151 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 3152 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3153 3154 /* 3155 * If vdev_online returned an error or the underlying vdev_open 3156 * failed then we abort the expand. The only way to know that 3157 * vdev_open fails is by checking the returned newstate. 3158 */ 3159 if (error || newstate != VDEV_STATE_HEALTHY) { 3160 if (ztest_opts.zo_verbose >= 5) { 3161 (void) printf("Unable to expand vdev, state %llu, " 3162 "error %d\n", (u_longlong_t)newstate, error); 3163 } 3164 return (vd); 3165 } 3166 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 3167 3168 /* 3169 * Since we dropped the lock we need to ensure that we're 3170 * still talking to the original vdev. It's possible this 3171 * vdev may have been detached/replaced while we were 3172 * trying to online it. 3173 */ 3174 if (generation != spa->spa_config_generation) { 3175 if (ztest_opts.zo_verbose >= 5) { 3176 (void) printf("vdev configuration has changed, " 3177 "guid %llu, state %llu, expected gen %llu, " 3178 "got gen %llu\n", 3179 (u_longlong_t)guid, 3180 (u_longlong_t)tvd->vdev_state, 3181 (u_longlong_t)generation, 3182 (u_longlong_t)spa->spa_config_generation); 3183 } 3184 return (vd); 3185 } 3186 return (NULL); 3187 } 3188 3189 /* 3190 * Traverse the vdev tree calling the supplied function. 3191 * We continue to walk the tree until we either have walked all 3192 * children or we receive a non-NULL return from the callback. 3193 * If a NULL callback is passed, then we just return back the first 3194 * leaf vdev we encounter. 3195 */ 3196 vdev_t * 3197 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 3198 { 3199 if (vd->vdev_ops->vdev_op_leaf) { 3200 if (func == NULL) 3201 return (vd); 3202 else 3203 return (func(vd, arg)); 3204 } 3205 3206 for (uint_t c = 0; c < vd->vdev_children; c++) { 3207 vdev_t *cvd = vd->vdev_child[c]; 3208 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3209 return (cvd); 3210 } 3211 return (NULL); 3212 } 3213 3214 /* 3215 * Verify that dynamic LUN growth works as expected. 3216 */ 3217 /* ARGSUSED */ 3218 void 3219 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3220 { 3221 spa_t *spa = ztest_spa; 3222 vdev_t *vd, *tvd; 3223 metaslab_class_t *mc; 3224 metaslab_group_t *mg; 3225 size_t psize, newsize; 3226 uint64_t top; 3227 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3228 3229 mutex_enter(&ztest_checkpoint_lock); 3230 mutex_enter(&ztest_vdev_lock); 3231 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3232 3233 /* 3234 * If there is a vdev removal in progress, it could complete while 3235 * we are running, in which case we would not be able to verify 3236 * that the metaslab_class space increased (because it decreases 3237 * when the device removal completes). 3238 */ 3239 if (ztest_device_removal_active) { 3240 spa_config_exit(spa, SCL_STATE, spa); 3241 mutex_exit(&ztest_vdev_lock); 3242 mutex_exit(&ztest_checkpoint_lock); 3243 return; 3244 } 3245 3246 top = ztest_random_vdev_top(spa, B_TRUE); 3247 3248 tvd = spa->spa_root_vdev->vdev_child[top]; 3249 mg = tvd->vdev_mg; 3250 mc = mg->mg_class; 3251 old_ms_count = tvd->vdev_ms_count; 3252 old_class_space = metaslab_class_get_space(mc); 3253 3254 /* 3255 * Determine the size of the first leaf vdev associated with 3256 * our top-level device. 3257 */ 3258 vd = vdev_walk_tree(tvd, NULL, NULL); 3259 ASSERT3P(vd, !=, NULL); 3260 ASSERT(vd->vdev_ops->vdev_op_leaf); 3261 3262 psize = vd->vdev_psize; 3263 3264 /* 3265 * We only try to expand the vdev if it's healthy, less than 4x its 3266 * original size, and it has a valid psize. 3267 */ 3268 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3269 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3270 spa_config_exit(spa, SCL_STATE, spa); 3271 mutex_exit(&ztest_vdev_lock); 3272 mutex_exit(&ztest_checkpoint_lock); 3273 return; 3274 } 3275 ASSERT(psize > 0); 3276 newsize = psize + psize / 8; 3277 ASSERT3U(newsize, >, psize); 3278 3279 if (ztest_opts.zo_verbose >= 6) { 3280 (void) printf("Expanding LUN %s from %lu to %lu\n", 3281 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3282 } 3283 3284 /* 3285 * Growing the vdev is a two step process: 3286 * 1). expand the physical size (i.e. relabel) 3287 * 2). online the vdev to create the new metaslabs 3288 */ 3289 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3290 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3291 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3292 if (ztest_opts.zo_verbose >= 5) { 3293 (void) printf("Could not expand LUN because " 3294 "the vdev configuration changed.\n"); 3295 } 3296 spa_config_exit(spa, SCL_STATE, spa); 3297 mutex_exit(&ztest_vdev_lock); 3298 mutex_exit(&ztest_checkpoint_lock); 3299 return; 3300 } 3301 3302 spa_config_exit(spa, SCL_STATE, spa); 3303 3304 /* 3305 * Expanding the LUN will update the config asynchronously, 3306 * thus we must wait for the async thread to complete any 3307 * pending tasks before proceeding. 3308 */ 3309 for (;;) { 3310 boolean_t done; 3311 mutex_enter(&spa->spa_async_lock); 3312 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3313 mutex_exit(&spa->spa_async_lock); 3314 if (done) 3315 break; 3316 txg_wait_synced(spa_get_dsl(spa), 0); 3317 (void) poll(NULL, 0, 100); 3318 } 3319 3320 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3321 3322 tvd = spa->spa_root_vdev->vdev_child[top]; 3323 new_ms_count = tvd->vdev_ms_count; 3324 new_class_space = metaslab_class_get_space(mc); 3325 3326 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3327 if (ztest_opts.zo_verbose >= 5) { 3328 (void) printf("Could not verify LUN expansion due to " 3329 "intervening vdev offline or remove.\n"); 3330 } 3331 spa_config_exit(spa, SCL_STATE, spa); 3332 mutex_exit(&ztest_vdev_lock); 3333 mutex_exit(&ztest_checkpoint_lock); 3334 return; 3335 } 3336 3337 /* 3338 * Make sure we were able to grow the vdev. 3339 */ 3340 if (new_ms_count <= old_ms_count) { 3341 fatal(0, "LUN expansion failed: ms_count %llu < %llu\n", 3342 old_ms_count, new_ms_count); 3343 } 3344 3345 /* 3346 * Make sure we were able to grow the pool. 3347 */ 3348 if (new_class_space <= old_class_space) { 3349 fatal(0, "LUN expansion failed: class_space %llu < %llu\n", 3350 old_class_space, new_class_space); 3351 } 3352 3353 if (ztest_opts.zo_verbose >= 5) { 3354 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ]; 3355 3356 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf)); 3357 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf)); 3358 (void) printf("%s grew from %s to %s\n", 3359 spa->spa_name, oldnumbuf, newnumbuf); 3360 } 3361 3362 spa_config_exit(spa, SCL_STATE, spa); 3363 mutex_exit(&ztest_vdev_lock); 3364 mutex_exit(&ztest_checkpoint_lock); 3365 } 3366 3367 /* 3368 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3369 */ 3370 /* ARGSUSED */ 3371 static void 3372 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3373 { 3374 /* 3375 * Create the objects common to all ztest datasets. 3376 */ 3377 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3378 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3379 } 3380 3381 static int 3382 ztest_dataset_create(char *dsname) 3383 { 3384 uint64_t zilset = ztest_random(100); 3385 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3386 ztest_objset_create_cb, NULL); 3387 3388 if (err || zilset < 80) 3389 return (err); 3390 3391 if (ztest_opts.zo_verbose >= 6) 3392 (void) printf("Setting dataset %s to sync always\n", dsname); 3393 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3394 ZFS_SYNC_ALWAYS, B_FALSE)); 3395 } 3396 3397 /* ARGSUSED */ 3398 static int 3399 ztest_objset_destroy_cb(const char *name, void *arg) 3400 { 3401 objset_t *os; 3402 dmu_object_info_t doi; 3403 int error; 3404 3405 /* 3406 * Verify that the dataset contains a directory object. 3407 */ 3408 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); 3409 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3410 if (error != ENOENT) { 3411 /* We could have crashed in the middle of destroying it */ 3412 ASSERT0(error); 3413 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3414 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3415 } 3416 dmu_objset_disown(os, FTAG); 3417 3418 /* 3419 * Destroy the dataset. 3420 */ 3421 if (strchr(name, '@') != NULL) { 3422 VERIFY0(dsl_destroy_snapshot(name, B_TRUE)); 3423 } else { 3424 error = dsl_destroy_head(name); 3425 /* There could be a hold on this dataset */ 3426 if (error != EBUSY) 3427 ASSERT0(error); 3428 } 3429 return (0); 3430 } 3431 3432 static boolean_t 3433 ztest_snapshot_create(char *osname, uint64_t id) 3434 { 3435 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3436 int error; 3437 3438 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3439 3440 error = dmu_objset_snapshot_one(osname, snapname); 3441 if (error == ENOSPC) { 3442 ztest_record_enospc(FTAG); 3443 return (B_FALSE); 3444 } 3445 if (error != 0 && error != EEXIST) { 3446 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3447 snapname, error); 3448 } 3449 return (B_TRUE); 3450 } 3451 3452 static boolean_t 3453 ztest_snapshot_destroy(char *osname, uint64_t id) 3454 { 3455 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3456 int error; 3457 3458 (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname, 3459 (u_longlong_t)id); 3460 3461 error = dsl_destroy_snapshot(snapname, B_FALSE); 3462 if (error != 0 && error != ENOENT) 3463 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3464 return (B_TRUE); 3465 } 3466 3467 /* ARGSUSED */ 3468 void 3469 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3470 { 3471 ztest_ds_t zdtmp; 3472 int iters; 3473 int error; 3474 objset_t *os, *os2; 3475 char name[ZFS_MAX_DATASET_NAME_LEN]; 3476 zilog_t *zilog; 3477 3478 rw_enter(&ztest_name_lock, RW_READER); 3479 3480 (void) snprintf(name, sizeof (name), "%s/temp_%llu", 3481 ztest_opts.zo_pool, (u_longlong_t)id); 3482 3483 /* 3484 * If this dataset exists from a previous run, process its replay log 3485 * half of the time. If we don't replay it, then dmu_objset_destroy() 3486 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3487 */ 3488 if (ztest_random(2) == 0 && 3489 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3490 ztest_zd_init(&zdtmp, NULL, os); 3491 zil_replay(os, &zdtmp, ztest_replay_vector); 3492 ztest_zd_fini(&zdtmp); 3493 dmu_objset_disown(os, FTAG); 3494 } 3495 3496 /* 3497 * There may be an old instance of the dataset we're about to 3498 * create lying around from a previous run. If so, destroy it 3499 * and all of its snapshots. 3500 */ 3501 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3502 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3503 3504 /* 3505 * Verify that the destroyed dataset is no longer in the namespace. 3506 */ 3507 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3508 FTAG, &os)); 3509 3510 /* 3511 * Verify that we can create a new dataset. 3512 */ 3513 error = ztest_dataset_create(name); 3514 if (error) { 3515 if (error == ENOSPC) { 3516 ztest_record_enospc(FTAG); 3517 rw_exit(&ztest_name_lock); 3518 return; 3519 } 3520 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3521 } 3522 3523 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3524 3525 ztest_zd_init(&zdtmp, NULL, os); 3526 3527 /* 3528 * Open the intent log for it. 3529 */ 3530 zilog = zil_open(os, ztest_get_data); 3531 3532 /* 3533 * Put some objects in there, do a little I/O to them, 3534 * and randomly take a couple of snapshots along the way. 3535 */ 3536 iters = ztest_random(5); 3537 for (int i = 0; i < iters; i++) { 3538 ztest_dmu_object_alloc_free(&zdtmp, id); 3539 if (ztest_random(iters) == 0) 3540 (void) ztest_snapshot_create(name, i); 3541 } 3542 3543 /* 3544 * Verify that we cannot create an existing dataset. 3545 */ 3546 VERIFY3U(EEXIST, ==, 3547 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3548 3549 /* 3550 * Verify that we can hold an objset that is also owned. 3551 */ 3552 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3553 dmu_objset_rele(os2, FTAG); 3554 3555 /* 3556 * Verify that we cannot own an objset that is already owned. 3557 */ 3558 VERIFY3U(EBUSY, ==, 3559 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3560 3561 zil_close(zilog); 3562 dmu_objset_disown(os, FTAG); 3563 ztest_zd_fini(&zdtmp); 3564 3565 rw_exit(&ztest_name_lock); 3566 } 3567 3568 /* 3569 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3570 */ 3571 void 3572 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3573 { 3574 rw_enter(&ztest_name_lock, RW_READER); 3575 (void) ztest_snapshot_destroy(zd->zd_name, id); 3576 (void) ztest_snapshot_create(zd->zd_name, id); 3577 rw_exit(&ztest_name_lock); 3578 } 3579 3580 /* 3581 * Cleanup non-standard snapshots and clones. 3582 */ 3583 void 3584 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3585 { 3586 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 3587 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 3588 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 3589 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 3590 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 3591 int error; 3592 3593 (void) snprintf(snap1name, sizeof (snap1name), 3594 "%s@s1_%llu", osname, id); 3595 (void) snprintf(clone1name, sizeof (clone1name), 3596 "%s/c1_%llu", osname, id); 3597 (void) snprintf(snap2name, sizeof (snap2name), 3598 "%s@s2_%llu", clone1name, id); 3599 (void) snprintf(clone2name, sizeof (clone2name), 3600 "%s/c2_%llu", osname, id); 3601 (void) snprintf(snap3name, sizeof (snap3name), 3602 "%s@s3_%llu", clone1name, id); 3603 3604 error = dsl_destroy_head(clone2name); 3605 if (error && error != ENOENT) 3606 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 3607 error = dsl_destroy_snapshot(snap3name, B_FALSE); 3608 if (error && error != ENOENT) 3609 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 3610 error = dsl_destroy_snapshot(snap2name, B_FALSE); 3611 if (error && error != ENOENT) 3612 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 3613 error = dsl_destroy_head(clone1name); 3614 if (error && error != ENOENT) 3615 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 3616 error = dsl_destroy_snapshot(snap1name, B_FALSE); 3617 if (error && error != ENOENT) 3618 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 3619 } 3620 3621 /* 3622 * Verify dsl_dataset_promote handles EBUSY 3623 */ 3624 void 3625 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3626 { 3627 objset_t *os; 3628 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 3629 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 3630 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 3631 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 3632 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 3633 char *osname = zd->zd_name; 3634 int error; 3635 3636 rw_enter(&ztest_name_lock, RW_READER); 3637 3638 ztest_dsl_dataset_cleanup(osname, id); 3639 3640 (void) snprintf(snap1name, sizeof (snap1name), 3641 "%s@s1_%llu", osname, id); 3642 (void) snprintf(clone1name, sizeof (clone1name), 3643 "%s/c1_%llu", osname, id); 3644 (void) snprintf(snap2name, sizeof (snap2name), 3645 "%s@s2_%llu", clone1name, id); 3646 (void) snprintf(clone2name, sizeof (clone2name), 3647 "%s/c2_%llu", osname, id); 3648 (void) snprintf(snap3name, sizeof (snap3name), 3649 "%s@s3_%llu", clone1name, id); 3650 3651 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3652 if (error && error != EEXIST) { 3653 if (error == ENOSPC) { 3654 ztest_record_enospc(FTAG); 3655 goto out; 3656 } 3657 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3658 } 3659 3660 error = dmu_objset_clone(clone1name, snap1name); 3661 if (error) { 3662 if (error == ENOSPC) { 3663 ztest_record_enospc(FTAG); 3664 goto out; 3665 } 3666 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3667 } 3668 3669 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3670 if (error && error != EEXIST) { 3671 if (error == ENOSPC) { 3672 ztest_record_enospc(FTAG); 3673 goto out; 3674 } 3675 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3676 } 3677 3678 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3679 if (error && error != EEXIST) { 3680 if (error == ENOSPC) { 3681 ztest_record_enospc(FTAG); 3682 goto out; 3683 } 3684 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3685 } 3686 3687 error = dmu_objset_clone(clone2name, snap3name); 3688 if (error) { 3689 if (error == ENOSPC) { 3690 ztest_record_enospc(FTAG); 3691 goto out; 3692 } 3693 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3694 } 3695 3696 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); 3697 if (error) 3698 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 3699 error = dsl_dataset_promote(clone2name, NULL); 3700 if (error == ENOSPC) { 3701 dmu_objset_disown(os, FTAG); 3702 ztest_record_enospc(FTAG); 3703 goto out; 3704 } 3705 if (error != EBUSY) 3706 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3707 error); 3708 dmu_objset_disown(os, FTAG); 3709 3710 out: 3711 ztest_dsl_dataset_cleanup(osname, id); 3712 3713 rw_exit(&ztest_name_lock); 3714 } 3715 3716 /* 3717 * Verify that dmu_object_{alloc,free} work as expected. 3718 */ 3719 void 3720 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3721 { 3722 ztest_od_t od[4]; 3723 int batchsize = sizeof (od) / sizeof (od[0]); 3724 3725 for (int b = 0; b < batchsize; b++) 3726 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3727 3728 /* 3729 * Destroy the previous batch of objects, create a new batch, 3730 * and do some I/O on the new objects. 3731 */ 3732 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3733 return; 3734 3735 while (ztest_random(4 * batchsize) != 0) 3736 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3737 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3738 } 3739 3740 /* 3741 * Verify that dmu_{read,write} work as expected. 3742 */ 3743 void 3744 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3745 { 3746 objset_t *os = zd->zd_os; 3747 ztest_od_t od[2]; 3748 dmu_tx_t *tx; 3749 int i, freeit, error; 3750 uint64_t n, s, txg; 3751 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3752 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3753 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3754 uint64_t regions = 997; 3755 uint64_t stride = 123456789ULL; 3756 uint64_t width = 40; 3757 int free_percent = 5; 3758 3759 /* 3760 * This test uses two objects, packobj and bigobj, that are always 3761 * updated together (i.e. in the same tx) so that their contents are 3762 * in sync and can be compared. Their contents relate to each other 3763 * in a simple way: packobj is a dense array of 'bufwad' structures, 3764 * while bigobj is a sparse array of the same bufwads. Specifically, 3765 * for any index n, there are three bufwads that should be identical: 3766 * 3767 * packobj, at offset n * sizeof (bufwad_t) 3768 * bigobj, at the head of the nth chunk 3769 * bigobj, at the tail of the nth chunk 3770 * 3771 * The chunk size is arbitrary. It doesn't have to be a power of two, 3772 * and it doesn't have any relation to the object blocksize. 3773 * The only requirement is that it can hold at least two bufwads. 3774 * 3775 * Normally, we write the bufwad to each of these locations. 3776 * However, free_percent of the time we instead write zeroes to 3777 * packobj and perform a dmu_free_range() on bigobj. By comparing 3778 * bigobj to packobj, we can verify that the DMU is correctly 3779 * tracking which parts of an object are allocated and free, 3780 * and that the contents of the allocated blocks are correct. 3781 */ 3782 3783 /* 3784 * Read the directory info. If it's the first time, set things up. 3785 */ 3786 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3787 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3788 3789 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3790 return; 3791 3792 bigobj = od[0].od_object; 3793 packobj = od[1].od_object; 3794 chunksize = od[0].od_gen; 3795 ASSERT(chunksize == od[1].od_gen); 3796 3797 /* 3798 * Prefetch a random chunk of the big object. 3799 * Our aim here is to get some async reads in flight 3800 * for blocks that we may free below; the DMU should 3801 * handle this race correctly. 3802 */ 3803 n = ztest_random(regions) * stride + ztest_random(width); 3804 s = 1 + ztest_random(2 * width - 1); 3805 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize, 3806 ZIO_PRIORITY_SYNC_READ); 3807 3808 /* 3809 * Pick a random index and compute the offsets into packobj and bigobj. 3810 */ 3811 n = ztest_random(regions) * stride + ztest_random(width); 3812 s = 1 + ztest_random(width - 1); 3813 3814 packoff = n * sizeof (bufwad_t); 3815 packsize = s * sizeof (bufwad_t); 3816 3817 bigoff = n * chunksize; 3818 bigsize = s * chunksize; 3819 3820 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3821 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3822 3823 /* 3824 * free_percent of the time, free a range of bigobj rather than 3825 * overwriting it. 3826 */ 3827 freeit = (ztest_random(100) < free_percent); 3828 3829 /* 3830 * Read the current contents of our objects. 3831 */ 3832 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3833 DMU_READ_PREFETCH); 3834 ASSERT0(error); 3835 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3836 DMU_READ_PREFETCH); 3837 ASSERT0(error); 3838 3839 /* 3840 * Get a tx for the mods to both packobj and bigobj. 3841 */ 3842 tx = dmu_tx_create(os); 3843 3844 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3845 3846 if (freeit) 3847 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3848 else 3849 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3850 3851 /* This accounts for setting the checksum/compression. */ 3852 dmu_tx_hold_bonus(tx, bigobj); 3853 3854 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3855 if (txg == 0) { 3856 umem_free(packbuf, packsize); 3857 umem_free(bigbuf, bigsize); 3858 return; 3859 } 3860 3861 enum zio_checksum cksum; 3862 do { 3863 cksum = (enum zio_checksum) 3864 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); 3865 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); 3866 dmu_object_set_checksum(os, bigobj, cksum, tx); 3867 3868 enum zio_compress comp; 3869 do { 3870 comp = (enum zio_compress) 3871 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); 3872 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); 3873 dmu_object_set_compress(os, bigobj, comp, tx); 3874 3875 /* 3876 * For each index from n to n + s, verify that the existing bufwad 3877 * in packobj matches the bufwads at the head and tail of the 3878 * corresponding chunk in bigobj. Then update all three bufwads 3879 * with the new values we want to write out. 3880 */ 3881 for (i = 0; i < s; i++) { 3882 /* LINTED */ 3883 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3884 /* LINTED */ 3885 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3886 /* LINTED */ 3887 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3888 3889 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3890 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3891 3892 if (pack->bw_txg > txg) 3893 fatal(0, "future leak: got %llx, open txg is %llx", 3894 pack->bw_txg, txg); 3895 3896 if (pack->bw_data != 0 && pack->bw_index != n + i) 3897 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3898 pack->bw_index, n, i); 3899 3900 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3901 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3902 3903 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3904 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3905 3906 if (freeit) { 3907 bzero(pack, sizeof (bufwad_t)); 3908 } else { 3909 pack->bw_index = n + i; 3910 pack->bw_txg = txg; 3911 pack->bw_data = 1 + ztest_random(-2ULL); 3912 } 3913 *bigH = *pack; 3914 *bigT = *pack; 3915 } 3916 3917 /* 3918 * We've verified all the old bufwads, and made new ones. 3919 * Now write them out. 3920 */ 3921 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3922 3923 if (freeit) { 3924 if (ztest_opts.zo_verbose >= 7) { 3925 (void) printf("freeing offset %llx size %llx" 3926 " txg %llx\n", 3927 (u_longlong_t)bigoff, 3928 (u_longlong_t)bigsize, 3929 (u_longlong_t)txg); 3930 } 3931 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3932 } else { 3933 if (ztest_opts.zo_verbose >= 7) { 3934 (void) printf("writing offset %llx size %llx" 3935 " txg %llx\n", 3936 (u_longlong_t)bigoff, 3937 (u_longlong_t)bigsize, 3938 (u_longlong_t)txg); 3939 } 3940 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3941 } 3942 3943 dmu_tx_commit(tx); 3944 3945 /* 3946 * Sanity check the stuff we just wrote. 3947 */ 3948 { 3949 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3950 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3951 3952 VERIFY(0 == dmu_read(os, packobj, packoff, 3953 packsize, packcheck, DMU_READ_PREFETCH)); 3954 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3955 bigsize, bigcheck, DMU_READ_PREFETCH)); 3956 3957 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3958 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3959 3960 umem_free(packcheck, packsize); 3961 umem_free(bigcheck, bigsize); 3962 } 3963 3964 umem_free(packbuf, packsize); 3965 umem_free(bigbuf, bigsize); 3966 } 3967 3968 void 3969 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3970 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3971 { 3972 uint64_t i; 3973 bufwad_t *pack; 3974 bufwad_t *bigH; 3975 bufwad_t *bigT; 3976 3977 /* 3978 * For each index from n to n + s, verify that the existing bufwad 3979 * in packobj matches the bufwads at the head and tail of the 3980 * corresponding chunk in bigobj. Then update all three bufwads 3981 * with the new values we want to write out. 3982 */ 3983 for (i = 0; i < s; i++) { 3984 /* LINTED */ 3985 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3986 /* LINTED */ 3987 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3988 /* LINTED */ 3989 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3990 3991 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3992 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3993 3994 if (pack->bw_txg > txg) 3995 fatal(0, "future leak: got %llx, open txg is %llx", 3996 pack->bw_txg, txg); 3997 3998 if (pack->bw_data != 0 && pack->bw_index != n + i) 3999 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 4000 pack->bw_index, n, i); 4001 4002 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 4003 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 4004 4005 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 4006 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 4007 4008 pack->bw_index = n + i; 4009 pack->bw_txg = txg; 4010 pack->bw_data = 1 + ztest_random(-2ULL); 4011 4012 *bigH = *pack; 4013 *bigT = *pack; 4014 } 4015 } 4016 4017 void 4018 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 4019 { 4020 objset_t *os = zd->zd_os; 4021 ztest_od_t od[2]; 4022 dmu_tx_t *tx; 4023 uint64_t i; 4024 int error; 4025 uint64_t n, s, txg; 4026 bufwad_t *packbuf, *bigbuf; 4027 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 4028 uint64_t blocksize = ztest_random_blocksize(); 4029 uint64_t chunksize = blocksize; 4030 uint64_t regions = 997; 4031 uint64_t stride = 123456789ULL; 4032 uint64_t width = 9; 4033 dmu_buf_t *bonus_db; 4034 arc_buf_t **bigbuf_arcbufs; 4035 dmu_object_info_t doi; 4036 4037 /* 4038 * This test uses two objects, packobj and bigobj, that are always 4039 * updated together (i.e. in the same tx) so that their contents are 4040 * in sync and can be compared. Their contents relate to each other 4041 * in a simple way: packobj is a dense array of 'bufwad' structures, 4042 * while bigobj is a sparse array of the same bufwads. Specifically, 4043 * for any index n, there are three bufwads that should be identical: 4044 * 4045 * packobj, at offset n * sizeof (bufwad_t) 4046 * bigobj, at the head of the nth chunk 4047 * bigobj, at the tail of the nth chunk 4048 * 4049 * The chunk size is set equal to bigobj block size so that 4050 * dmu_assign_arcbuf() can be tested for object updates. 4051 */ 4052 4053 /* 4054 * Read the directory info. If it's the first time, set things up. 4055 */ 4056 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4057 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 4058 4059 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4060 return; 4061 4062 bigobj = od[0].od_object; 4063 packobj = od[1].od_object; 4064 blocksize = od[0].od_blocksize; 4065 chunksize = blocksize; 4066 ASSERT(chunksize == od[1].od_gen); 4067 4068 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 4069 VERIFY(ISP2(doi.doi_data_block_size)); 4070 VERIFY(chunksize == doi.doi_data_block_size); 4071 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 4072 4073 /* 4074 * Pick a random index and compute the offsets into packobj and bigobj. 4075 */ 4076 n = ztest_random(regions) * stride + ztest_random(width); 4077 s = 1 + ztest_random(width - 1); 4078 4079 packoff = n * sizeof (bufwad_t); 4080 packsize = s * sizeof (bufwad_t); 4081 4082 bigoff = n * chunksize; 4083 bigsize = s * chunksize; 4084 4085 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 4086 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 4087 4088 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 4089 4090 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 4091 4092 /* 4093 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 4094 * Iteration 1 test zcopy to already referenced dbufs. 4095 * Iteration 2 test zcopy to dirty dbuf in the same txg. 4096 * Iteration 3 test zcopy to dbuf dirty in previous txg. 4097 * Iteration 4 test zcopy when dbuf is no longer dirty. 4098 * Iteration 5 test zcopy when it can't be done. 4099 * Iteration 6 one more zcopy write. 4100 */ 4101 for (i = 0; i < 7; i++) { 4102 uint64_t j; 4103 uint64_t off; 4104 4105 /* 4106 * In iteration 5 (i == 5) use arcbufs 4107 * that don't match bigobj blksz to test 4108 * dmu_assign_arcbuf() when it can't directly 4109 * assign an arcbuf to a dbuf. 4110 */ 4111 for (j = 0; j < s; j++) { 4112 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 4113 bigbuf_arcbufs[j] = 4114 dmu_request_arcbuf(bonus_db, chunksize); 4115 } else { 4116 bigbuf_arcbufs[2 * j] = 4117 dmu_request_arcbuf(bonus_db, chunksize / 2); 4118 bigbuf_arcbufs[2 * j + 1] = 4119 dmu_request_arcbuf(bonus_db, chunksize / 2); 4120 } 4121 } 4122 4123 /* 4124 * Get a tx for the mods to both packobj and bigobj. 4125 */ 4126 tx = dmu_tx_create(os); 4127 4128 dmu_tx_hold_write(tx, packobj, packoff, packsize); 4129 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 4130 4131 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4132 if (txg == 0) { 4133 umem_free(packbuf, packsize); 4134 umem_free(bigbuf, bigsize); 4135 for (j = 0; j < s; j++) { 4136 if (i != 5 || 4137 chunksize < (SPA_MINBLOCKSIZE * 2)) { 4138 dmu_return_arcbuf(bigbuf_arcbufs[j]); 4139 } else { 4140 dmu_return_arcbuf( 4141 bigbuf_arcbufs[2 * j]); 4142 dmu_return_arcbuf( 4143 bigbuf_arcbufs[2 * j + 1]); 4144 } 4145 } 4146 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4147 dmu_buf_rele(bonus_db, FTAG); 4148 return; 4149 } 4150 4151 /* 4152 * 50% of the time don't read objects in the 1st iteration to 4153 * test dmu_assign_arcbuf() for the case when there're no 4154 * existing dbufs for the specified offsets. 4155 */ 4156 if (i != 0 || ztest_random(2) != 0) { 4157 error = dmu_read(os, packobj, packoff, 4158 packsize, packbuf, DMU_READ_PREFETCH); 4159 ASSERT0(error); 4160 error = dmu_read(os, bigobj, bigoff, bigsize, 4161 bigbuf, DMU_READ_PREFETCH); 4162 ASSERT0(error); 4163 } 4164 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 4165 n, chunksize, txg); 4166 4167 /* 4168 * We've verified all the old bufwads, and made new ones. 4169 * Now write them out. 4170 */ 4171 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 4172 if (ztest_opts.zo_verbose >= 7) { 4173 (void) printf("writing offset %llx size %llx" 4174 " txg %llx\n", 4175 (u_longlong_t)bigoff, 4176 (u_longlong_t)bigsize, 4177 (u_longlong_t)txg); 4178 } 4179 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 4180 dmu_buf_t *dbt; 4181 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 4182 bcopy((caddr_t)bigbuf + (off - bigoff), 4183 bigbuf_arcbufs[j]->b_data, chunksize); 4184 } else { 4185 bcopy((caddr_t)bigbuf + (off - bigoff), 4186 bigbuf_arcbufs[2 * j]->b_data, 4187 chunksize / 2); 4188 bcopy((caddr_t)bigbuf + (off - bigoff) + 4189 chunksize / 2, 4190 bigbuf_arcbufs[2 * j + 1]->b_data, 4191 chunksize / 2); 4192 } 4193 4194 if (i == 1) { 4195 VERIFY(dmu_buf_hold(os, bigobj, off, 4196 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 4197 } 4198 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 4199 dmu_assign_arcbuf(bonus_db, off, 4200 bigbuf_arcbufs[j], tx); 4201 } else { 4202 dmu_assign_arcbuf(bonus_db, off, 4203 bigbuf_arcbufs[2 * j], tx); 4204 dmu_assign_arcbuf(bonus_db, 4205 off + chunksize / 2, 4206 bigbuf_arcbufs[2 * j + 1], tx); 4207 } 4208 if (i == 1) { 4209 dmu_buf_rele(dbt, FTAG); 4210 } 4211 } 4212 dmu_tx_commit(tx); 4213 4214 /* 4215 * Sanity check the stuff we just wrote. 4216 */ 4217 { 4218 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 4219 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 4220 4221 VERIFY(0 == dmu_read(os, packobj, packoff, 4222 packsize, packcheck, DMU_READ_PREFETCH)); 4223 VERIFY(0 == dmu_read(os, bigobj, bigoff, 4224 bigsize, bigcheck, DMU_READ_PREFETCH)); 4225 4226 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 4227 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 4228 4229 umem_free(packcheck, packsize); 4230 umem_free(bigcheck, bigsize); 4231 } 4232 if (i == 2) { 4233 txg_wait_open(dmu_objset_pool(os), 0); 4234 } else if (i == 3) { 4235 txg_wait_synced(dmu_objset_pool(os), 0); 4236 } 4237 } 4238 4239 dmu_buf_rele(bonus_db, FTAG); 4240 umem_free(packbuf, packsize); 4241 umem_free(bigbuf, bigsize); 4242 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4243 } 4244 4245 /* ARGSUSED */ 4246 void 4247 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 4248 { 4249 ztest_od_t od[1]; 4250 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 4251 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4252 4253 /* 4254 * Have multiple threads write to large offsets in an object 4255 * to verify that parallel writes to an object -- even to the 4256 * same blocks within the object -- doesn't cause any trouble. 4257 */ 4258 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4259 4260 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4261 return; 4262 4263 while (ztest_random(10) != 0) 4264 ztest_io(zd, od[0].od_object, offset); 4265 } 4266 4267 void 4268 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4269 { 4270 ztest_od_t od[1]; 4271 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4272 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4273 uint64_t count = ztest_random(20) + 1; 4274 uint64_t blocksize = ztest_random_blocksize(); 4275 void *data; 4276 4277 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4278 4279 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4280 return; 4281 4282 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4283 return; 4284 4285 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4286 4287 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4288 4289 while (ztest_random(count) != 0) { 4290 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4291 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4292 data) != 0) 4293 break; 4294 while (ztest_random(4) != 0) 4295 ztest_io(zd, od[0].od_object, randoff); 4296 } 4297 4298 umem_free(data, blocksize); 4299 } 4300 4301 /* 4302 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4303 */ 4304 #define ZTEST_ZAP_MIN_INTS 1 4305 #define ZTEST_ZAP_MAX_INTS 4 4306 #define ZTEST_ZAP_MAX_PROPS 1000 4307 4308 void 4309 ztest_zap(ztest_ds_t *zd, uint64_t id) 4310 { 4311 objset_t *os = zd->zd_os; 4312 ztest_od_t od[1]; 4313 uint64_t object; 4314 uint64_t txg, last_txg; 4315 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4316 uint64_t zl_ints, zl_intsize, prop; 4317 int i, ints; 4318 dmu_tx_t *tx; 4319 char propname[100], txgname[100]; 4320 int error; 4321 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4322 4323 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4324 4325 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4326 return; 4327 4328 object = od[0].od_object; 4329 4330 /* 4331 * Generate a known hash collision, and verify that 4332 * we can lookup and remove both entries. 4333 */ 4334 tx = dmu_tx_create(os); 4335 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4336 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4337 if (txg == 0) 4338 return; 4339 for (i = 0; i < 2; i++) { 4340 value[i] = i; 4341 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4342 1, &value[i], tx)); 4343 } 4344 for (i = 0; i < 2; i++) { 4345 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4346 sizeof (uint64_t), 1, &value[i], tx)); 4347 VERIFY3U(0, ==, 4348 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4349 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4350 ASSERT3U(zl_ints, ==, 1); 4351 } 4352 for (i = 0; i < 2; i++) { 4353 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4354 } 4355 dmu_tx_commit(tx); 4356 4357 /* 4358 * Generate a buch of random entries. 4359 */ 4360 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4361 4362 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4363 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4364 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4365 bzero(value, sizeof (value)); 4366 last_txg = 0; 4367 4368 /* 4369 * If these zap entries already exist, validate their contents. 4370 */ 4371 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4372 if (error == 0) { 4373 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4374 ASSERT3U(zl_ints, ==, 1); 4375 4376 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4377 zl_ints, &last_txg) == 0); 4378 4379 VERIFY(zap_length(os, object, propname, &zl_intsize, 4380 &zl_ints) == 0); 4381 4382 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4383 ASSERT3U(zl_ints, ==, ints); 4384 4385 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4386 zl_ints, value) == 0); 4387 4388 for (i = 0; i < ints; i++) { 4389 ASSERT3U(value[i], ==, last_txg + object + i); 4390 } 4391 } else { 4392 ASSERT3U(error, ==, ENOENT); 4393 } 4394 4395 /* 4396 * Atomically update two entries in our zap object. 4397 * The first is named txg_%llu, and contains the txg 4398 * in which the property was last updated. The second 4399 * is named prop_%llu, and the nth element of its value 4400 * should be txg + object + n. 4401 */ 4402 tx = dmu_tx_create(os); 4403 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4404 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4405 if (txg == 0) 4406 return; 4407 4408 if (last_txg > txg) 4409 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4410 4411 for (i = 0; i < ints; i++) 4412 value[i] = txg + object + i; 4413 4414 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4415 1, &txg, tx)); 4416 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4417 ints, value, tx)); 4418 4419 dmu_tx_commit(tx); 4420 4421 /* 4422 * Remove a random pair of entries. 4423 */ 4424 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4425 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4426 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4427 4428 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4429 4430 if (error == ENOENT) 4431 return; 4432 4433 ASSERT0(error); 4434 4435 tx = dmu_tx_create(os); 4436 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4437 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4438 if (txg == 0) 4439 return; 4440 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4441 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4442 dmu_tx_commit(tx); 4443 } 4444 4445 /* 4446 * Testcase to test the upgrading of a microzap to fatzap. 4447 */ 4448 void 4449 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4450 { 4451 objset_t *os = zd->zd_os; 4452 ztest_od_t od[1]; 4453 uint64_t object, txg; 4454 4455 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4456 4457 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4458 return; 4459 4460 object = od[0].od_object; 4461 4462 /* 4463 * Add entries to this ZAP and make sure it spills over 4464 * and gets upgraded to a fatzap. Also, since we are adding 4465 * 2050 entries we should see ptrtbl growth and leaf-block split. 4466 */ 4467 for (int i = 0; i < 2050; i++) { 4468 char name[ZFS_MAX_DATASET_NAME_LEN]; 4469 uint64_t value = i; 4470 dmu_tx_t *tx; 4471 int error; 4472 4473 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4474 id, value); 4475 4476 tx = dmu_tx_create(os); 4477 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4478 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4479 if (txg == 0) 4480 return; 4481 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4482 &value, tx); 4483 ASSERT(error == 0 || error == EEXIST); 4484 dmu_tx_commit(tx); 4485 } 4486 } 4487 4488 /* ARGSUSED */ 4489 void 4490 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4491 { 4492 objset_t *os = zd->zd_os; 4493 ztest_od_t od[1]; 4494 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4495 dmu_tx_t *tx; 4496 int i, namelen, error; 4497 int micro = ztest_random(2); 4498 char name[20], string_value[20]; 4499 void *data; 4500 4501 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4502 4503 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4504 return; 4505 4506 object = od[0].od_object; 4507 4508 /* 4509 * Generate a random name of the form 'xxx.....' where each 4510 * x is a random printable character and the dots are dots. 4511 * There are 94 such characters, and the name length goes from 4512 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4513 */ 4514 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4515 4516 for (i = 0; i < 3; i++) 4517 name[i] = '!' + ztest_random('~' - '!' + 1); 4518 for (; i < namelen - 1; i++) 4519 name[i] = '.'; 4520 name[i] = '\0'; 4521 4522 if ((namelen & 1) || micro) { 4523 wsize = sizeof (txg); 4524 wc = 1; 4525 data = &txg; 4526 } else { 4527 wsize = 1; 4528 wc = namelen; 4529 data = string_value; 4530 } 4531 4532 count = -1ULL; 4533 VERIFY0(zap_count(os, object, &count)); 4534 ASSERT(count != -1ULL); 4535 4536 /* 4537 * Select an operation: length, lookup, add, update, remove. 4538 */ 4539 i = ztest_random(5); 4540 4541 if (i >= 2) { 4542 tx = dmu_tx_create(os); 4543 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4544 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4545 if (txg == 0) 4546 return; 4547 bcopy(name, string_value, namelen); 4548 } else { 4549 tx = NULL; 4550 txg = 0; 4551 bzero(string_value, namelen); 4552 } 4553 4554 switch (i) { 4555 4556 case 0: 4557 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4558 if (error == 0) { 4559 ASSERT3U(wsize, ==, zl_wsize); 4560 ASSERT3U(wc, ==, zl_wc); 4561 } else { 4562 ASSERT3U(error, ==, ENOENT); 4563 } 4564 break; 4565 4566 case 1: 4567 error = zap_lookup(os, object, name, wsize, wc, data); 4568 if (error == 0) { 4569 if (data == string_value && 4570 bcmp(name, data, namelen) != 0) 4571 fatal(0, "name '%s' != val '%s' len %d", 4572 name, data, namelen); 4573 } else { 4574 ASSERT3U(error, ==, ENOENT); 4575 } 4576 break; 4577 4578 case 2: 4579 error = zap_add(os, object, name, wsize, wc, data, tx); 4580 ASSERT(error == 0 || error == EEXIST); 4581 break; 4582 4583 case 3: 4584 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4585 break; 4586 4587 case 4: 4588 error = zap_remove(os, object, name, tx); 4589 ASSERT(error == 0 || error == ENOENT); 4590 break; 4591 } 4592 4593 if (tx != NULL) 4594 dmu_tx_commit(tx); 4595 } 4596 4597 /* 4598 * Commit callback data. 4599 */ 4600 typedef struct ztest_cb_data { 4601 list_node_t zcd_node; 4602 uint64_t zcd_txg; 4603 int zcd_expected_err; 4604 boolean_t zcd_added; 4605 boolean_t zcd_called; 4606 spa_t *zcd_spa; 4607 } ztest_cb_data_t; 4608 4609 /* This is the actual commit callback function */ 4610 static void 4611 ztest_commit_callback(void *arg, int error) 4612 { 4613 ztest_cb_data_t *data = arg; 4614 uint64_t synced_txg; 4615 4616 VERIFY(data != NULL); 4617 VERIFY3S(data->zcd_expected_err, ==, error); 4618 VERIFY(!data->zcd_called); 4619 4620 synced_txg = spa_last_synced_txg(data->zcd_spa); 4621 if (data->zcd_txg > synced_txg) 4622 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4623 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4624 synced_txg); 4625 4626 data->zcd_called = B_TRUE; 4627 4628 if (error == ECANCELED) { 4629 ASSERT0(data->zcd_txg); 4630 ASSERT(!data->zcd_added); 4631 4632 /* 4633 * The private callback data should be destroyed here, but 4634 * since we are going to check the zcd_called field after 4635 * dmu_tx_abort(), we will destroy it there. 4636 */ 4637 return; 4638 } 4639 4640 /* Was this callback added to the global callback list? */ 4641 if (!data->zcd_added) 4642 goto out; 4643 4644 ASSERT3U(data->zcd_txg, !=, 0); 4645 4646 /* Remove our callback from the list */ 4647 mutex_enter(&zcl.zcl_callbacks_lock); 4648 list_remove(&zcl.zcl_callbacks, data); 4649 mutex_exit(&zcl.zcl_callbacks_lock); 4650 4651 out: 4652 umem_free(data, sizeof (ztest_cb_data_t)); 4653 } 4654 4655 /* Allocate and initialize callback data structure */ 4656 static ztest_cb_data_t * 4657 ztest_create_cb_data(objset_t *os, uint64_t txg) 4658 { 4659 ztest_cb_data_t *cb_data; 4660 4661 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4662 4663 cb_data->zcd_txg = txg; 4664 cb_data->zcd_spa = dmu_objset_spa(os); 4665 4666 return (cb_data); 4667 } 4668 4669 /* 4670 * If a number of txgs equal to this threshold have been created after a commit 4671 * callback has been registered but not called, then we assume there is an 4672 * implementation bug. 4673 */ 4674 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4675 4676 /* 4677 * Commit callback test. 4678 */ 4679 void 4680 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4681 { 4682 objset_t *os = zd->zd_os; 4683 ztest_od_t od[1]; 4684 dmu_tx_t *tx; 4685 ztest_cb_data_t *cb_data[3], *tmp_cb; 4686 uint64_t old_txg, txg; 4687 int i, error; 4688 4689 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4690 4691 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4692 return; 4693 4694 tx = dmu_tx_create(os); 4695 4696 cb_data[0] = ztest_create_cb_data(os, 0); 4697 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4698 4699 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4700 4701 /* Every once in a while, abort the transaction on purpose */ 4702 if (ztest_random(100) == 0) 4703 error = -1; 4704 4705 if (!error) 4706 error = dmu_tx_assign(tx, TXG_NOWAIT); 4707 4708 txg = error ? 0 : dmu_tx_get_txg(tx); 4709 4710 cb_data[0]->zcd_txg = txg; 4711 cb_data[1] = ztest_create_cb_data(os, txg); 4712 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4713 4714 if (error) { 4715 /* 4716 * It's not a strict requirement to call the registered 4717 * callbacks from inside dmu_tx_abort(), but that's what 4718 * it's supposed to happen in the current implementation 4719 * so we will check for that. 4720 */ 4721 for (i = 0; i < 2; i++) { 4722 cb_data[i]->zcd_expected_err = ECANCELED; 4723 VERIFY(!cb_data[i]->zcd_called); 4724 } 4725 4726 dmu_tx_abort(tx); 4727 4728 for (i = 0; i < 2; i++) { 4729 VERIFY(cb_data[i]->zcd_called); 4730 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4731 } 4732 4733 return; 4734 } 4735 4736 cb_data[2] = ztest_create_cb_data(os, txg); 4737 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4738 4739 /* 4740 * Read existing data to make sure there isn't a future leak. 4741 */ 4742 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4743 &old_txg, DMU_READ_PREFETCH)); 4744 4745 if (old_txg > txg) 4746 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4747 old_txg, txg); 4748 4749 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4750 4751 mutex_enter(&zcl.zcl_callbacks_lock); 4752 4753 /* 4754 * Since commit callbacks don't have any ordering requirement and since 4755 * it is theoretically possible for a commit callback to be called 4756 * after an arbitrary amount of time has elapsed since its txg has been 4757 * synced, it is difficult to reliably determine whether a commit 4758 * callback hasn't been called due to high load or due to a flawed 4759 * implementation. 4760 * 4761 * In practice, we will assume that if after a certain number of txgs a 4762 * commit callback hasn't been called, then most likely there's an 4763 * implementation bug.. 4764 */ 4765 tmp_cb = list_head(&zcl.zcl_callbacks); 4766 if (tmp_cb != NULL && 4767 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { 4768 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4769 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4770 } 4771 4772 /* 4773 * Let's find the place to insert our callbacks. 4774 * 4775 * Even though the list is ordered by txg, it is possible for the 4776 * insertion point to not be the end because our txg may already be 4777 * quiescing at this point and other callbacks in the open txg 4778 * (from other objsets) may have sneaked in. 4779 */ 4780 tmp_cb = list_tail(&zcl.zcl_callbacks); 4781 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4782 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4783 4784 /* Add the 3 callbacks to the list */ 4785 for (i = 0; i < 3; i++) { 4786 if (tmp_cb == NULL) 4787 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4788 else 4789 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4790 cb_data[i]); 4791 4792 cb_data[i]->zcd_added = B_TRUE; 4793 VERIFY(!cb_data[i]->zcd_called); 4794 4795 tmp_cb = cb_data[i]; 4796 } 4797 4798 mutex_exit(&zcl.zcl_callbacks_lock); 4799 4800 dmu_tx_commit(tx); 4801 } 4802 4803 /* ARGSUSED */ 4804 void 4805 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4806 { 4807 zfs_prop_t proplist[] = { 4808 ZFS_PROP_CHECKSUM, 4809 ZFS_PROP_COMPRESSION, 4810 ZFS_PROP_COPIES, 4811 ZFS_PROP_DEDUP 4812 }; 4813 4814 rw_enter(&ztest_name_lock, RW_READER); 4815 4816 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4817 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4818 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4819 4820 rw_exit(&ztest_name_lock); 4821 } 4822 4823 /* ARGSUSED */ 4824 void 4825 ztest_remap_blocks(ztest_ds_t *zd, uint64_t id) 4826 { 4827 rw_enter(&ztest_name_lock, RW_READER); 4828 4829 int error = dmu_objset_remap_indirects(zd->zd_name); 4830 if (error == ENOSPC) 4831 error = 0; 4832 ASSERT0(error); 4833 4834 rw_exit(&ztest_name_lock); 4835 } 4836 4837 /* ARGSUSED */ 4838 void 4839 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4840 { 4841 nvlist_t *props = NULL; 4842 4843 rw_enter(&ztest_name_lock, RW_READER); 4844 4845 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4846 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4847 4848 VERIFY0(spa_prop_get(ztest_spa, &props)); 4849 4850 if (ztest_opts.zo_verbose >= 6) 4851 dump_nvlist(props, 4); 4852 4853 nvlist_free(props); 4854 4855 rw_exit(&ztest_name_lock); 4856 } 4857 4858 static int 4859 user_release_one(const char *snapname, const char *holdname) 4860 { 4861 nvlist_t *snaps, *holds; 4862 int error; 4863 4864 snaps = fnvlist_alloc(); 4865 holds = fnvlist_alloc(); 4866 fnvlist_add_boolean(holds, holdname); 4867 fnvlist_add_nvlist(snaps, snapname, holds); 4868 fnvlist_free(holds); 4869 error = dsl_dataset_user_release(snaps, NULL); 4870 fnvlist_free(snaps); 4871 return (error); 4872 } 4873 4874 /* 4875 * Test snapshot hold/release and deferred destroy. 4876 */ 4877 void 4878 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4879 { 4880 int error; 4881 objset_t *os = zd->zd_os; 4882 objset_t *origin; 4883 char snapname[100]; 4884 char fullname[100]; 4885 char clonename[100]; 4886 char tag[100]; 4887 char osname[ZFS_MAX_DATASET_NAME_LEN]; 4888 nvlist_t *holds; 4889 4890 rw_enter(&ztest_name_lock, RW_READER); 4891 4892 dmu_objset_name(os, osname); 4893 4894 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 4895 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 4896 (void) snprintf(clonename, sizeof (clonename), 4897 "%s/ch1_%llu", osname, id); 4898 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 4899 4900 /* 4901 * Clean up from any previous run. 4902 */ 4903 error = dsl_destroy_head(clonename); 4904 if (error != ENOENT) 4905 ASSERT0(error); 4906 error = user_release_one(fullname, tag); 4907 if (error != ESRCH && error != ENOENT) 4908 ASSERT0(error); 4909 error = dsl_destroy_snapshot(fullname, B_FALSE); 4910 if (error != ENOENT) 4911 ASSERT0(error); 4912 4913 /* 4914 * Create snapshot, clone it, mark snap for deferred destroy, 4915 * destroy clone, verify snap was also destroyed. 4916 */ 4917 error = dmu_objset_snapshot_one(osname, snapname); 4918 if (error) { 4919 if (error == ENOSPC) { 4920 ztest_record_enospc("dmu_objset_snapshot"); 4921 goto out; 4922 } 4923 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4924 } 4925 4926 error = dmu_objset_clone(clonename, fullname); 4927 if (error) { 4928 if (error == ENOSPC) { 4929 ztest_record_enospc("dmu_objset_clone"); 4930 goto out; 4931 } 4932 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4933 } 4934 4935 error = dsl_destroy_snapshot(fullname, B_TRUE); 4936 if (error) { 4937 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4938 fullname, error); 4939 } 4940 4941 error = dsl_destroy_head(clonename); 4942 if (error) 4943 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 4944 4945 error = dmu_objset_hold(fullname, FTAG, &origin); 4946 if (error != ENOENT) 4947 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4948 4949 /* 4950 * Create snapshot, add temporary hold, verify that we can't 4951 * destroy a held snapshot, mark for deferred destroy, 4952 * release hold, verify snapshot was destroyed. 4953 */ 4954 error = dmu_objset_snapshot_one(osname, snapname); 4955 if (error) { 4956 if (error == ENOSPC) { 4957 ztest_record_enospc("dmu_objset_snapshot"); 4958 goto out; 4959 } 4960 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4961 } 4962 4963 holds = fnvlist_alloc(); 4964 fnvlist_add_string(holds, fullname, tag); 4965 error = dsl_dataset_user_hold(holds, 0, NULL); 4966 fnvlist_free(holds); 4967 4968 if (error == ENOSPC) { 4969 ztest_record_enospc("dsl_dataset_user_hold"); 4970 goto out; 4971 } else if (error) { 4972 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", 4973 fullname, tag, error); 4974 } 4975 4976 error = dsl_destroy_snapshot(fullname, B_FALSE); 4977 if (error != EBUSY) { 4978 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 4979 fullname, error); 4980 } 4981 4982 error = dsl_destroy_snapshot(fullname, B_TRUE); 4983 if (error) { 4984 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4985 fullname, error); 4986 } 4987 4988 error = user_release_one(fullname, tag); 4989 if (error) 4990 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); 4991 4992 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 4993 4994 out: 4995 rw_exit(&ztest_name_lock); 4996 } 4997 4998 /* 4999 * Inject random faults into the on-disk data. 5000 */ 5001 /* ARGSUSED */ 5002 void 5003 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 5004 { 5005 ztest_shared_t *zs = ztest_shared; 5006 spa_t *spa = ztest_spa; 5007 int fd; 5008 uint64_t offset; 5009 uint64_t leaves; 5010 uint64_t bad = 0x1990c0ffeedecade; 5011 uint64_t top, leaf; 5012 char path0[MAXPATHLEN]; 5013 char pathrand[MAXPATHLEN]; 5014 size_t fsize; 5015 int bshift = SPA_MAXBLOCKSHIFT + 2; 5016 int iters = 1000; 5017 int maxfaults; 5018 int mirror_save; 5019 vdev_t *vd0 = NULL; 5020 uint64_t guid0 = 0; 5021 boolean_t islog = B_FALSE; 5022 5023 mutex_enter(&ztest_vdev_lock); 5024 5025 /* 5026 * Device removal is in progress, fault injection must be disabled 5027 * until it completes and the pool is scrubbed. The fault injection 5028 * strategy for damaging blocks does not take in to account evacuated 5029 * blocks which may have already been damaged. 5030 */ 5031 if (ztest_device_removal_active) { 5032 mutex_exit(&ztest_vdev_lock); 5033 return; 5034 } 5035 5036 maxfaults = MAXFAULTS(); 5037 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 5038 mirror_save = zs->zs_mirrors; 5039 mutex_exit(&ztest_vdev_lock); 5040 5041 ASSERT(leaves >= 1); 5042 5043 /* 5044 * Grab the name lock as reader. There are some operations 5045 * which don't like to have their vdevs changed while 5046 * they are in progress (i.e. spa_change_guid). Those 5047 * operations will have grabbed the name lock as writer. 5048 */ 5049 rw_enter(&ztest_name_lock, RW_READER); 5050 5051 /* 5052 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 5053 */ 5054 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5055 5056 if (ztest_random(2) == 0) { 5057 /* 5058 * Inject errors on a normal data device or slog device. 5059 */ 5060 top = ztest_random_vdev_top(spa, B_TRUE); 5061 leaf = ztest_random(leaves) + zs->zs_splits; 5062 5063 /* 5064 * Generate paths to the first leaf in this top-level vdev, 5065 * and to the random leaf we selected. We'll induce transient 5066 * write failures and random online/offline activity on leaf 0, 5067 * and we'll write random garbage to the randomly chosen leaf. 5068 */ 5069 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 5070 ztest_opts.zo_dir, ztest_opts.zo_pool, 5071 top * leaves + zs->zs_splits); 5072 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 5073 ztest_opts.zo_dir, ztest_opts.zo_pool, 5074 top * leaves + leaf); 5075 5076 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 5077 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 5078 islog = B_TRUE; 5079 5080 /* 5081 * If the top-level vdev needs to be resilvered 5082 * then we only allow faults on the device that is 5083 * resilvering. 5084 */ 5085 if (vd0 != NULL && maxfaults != 1 && 5086 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 5087 vd0->vdev_resilver_txg != 0)) { 5088 /* 5089 * Make vd0 explicitly claim to be unreadable, 5090 * or unwriteable, or reach behind its back 5091 * and close the underlying fd. We can do this if 5092 * maxfaults == 0 because we'll fail and reexecute, 5093 * and we can do it if maxfaults >= 2 because we'll 5094 * have enough redundancy. If maxfaults == 1, the 5095 * combination of this with injection of random data 5096 * corruption below exceeds the pool's fault tolerance. 5097 */ 5098 vdev_file_t *vf = vd0->vdev_tsd; 5099 5100 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d", 5101 (long long)vd0->vdev_id, (int)maxfaults); 5102 5103 if (vf != NULL && ztest_random(3) == 0) { 5104 (void) close(vf->vf_vnode->v_fd); 5105 vf->vf_vnode->v_fd = -1; 5106 } else if (ztest_random(2) == 0) { 5107 vd0->vdev_cant_read = B_TRUE; 5108 } else { 5109 vd0->vdev_cant_write = B_TRUE; 5110 } 5111 guid0 = vd0->vdev_guid; 5112 } 5113 } else { 5114 /* 5115 * Inject errors on an l2cache device. 5116 */ 5117 spa_aux_vdev_t *sav = &spa->spa_l2cache; 5118 5119 if (sav->sav_count == 0) { 5120 spa_config_exit(spa, SCL_STATE, FTAG); 5121 rw_exit(&ztest_name_lock); 5122 return; 5123 } 5124 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 5125 guid0 = vd0->vdev_guid; 5126 (void) strcpy(path0, vd0->vdev_path); 5127 (void) strcpy(pathrand, vd0->vdev_path); 5128 5129 leaf = 0; 5130 leaves = 1; 5131 maxfaults = INT_MAX; /* no limit on cache devices */ 5132 } 5133 5134 spa_config_exit(spa, SCL_STATE, FTAG); 5135 rw_exit(&ztest_name_lock); 5136 5137 /* 5138 * If we can tolerate two or more faults, or we're dealing 5139 * with a slog, randomly online/offline vd0. 5140 */ 5141 if ((maxfaults >= 2 || islog) && guid0 != 0) { 5142 if (ztest_random(10) < 6) { 5143 int flags = (ztest_random(2) == 0 ? 5144 ZFS_OFFLINE_TEMPORARY : 0); 5145 5146 /* 5147 * We have to grab the zs_name_lock as writer to 5148 * prevent a race between offlining a slog and 5149 * destroying a dataset. Offlining the slog will 5150 * grab a reference on the dataset which may cause 5151 * dmu_objset_destroy() to fail with EBUSY thus 5152 * leaving the dataset in an inconsistent state. 5153 */ 5154 if (islog) 5155 rw_enter(&ztest_name_lock, RW_WRITER); 5156 5157 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 5158 5159 if (islog) 5160 rw_exit(&ztest_name_lock); 5161 } else { 5162 /* 5163 * Ideally we would like to be able to randomly 5164 * call vdev_[on|off]line without holding locks 5165 * to force unpredictable failures but the side 5166 * effects of vdev_[on|off]line prevent us from 5167 * doing so. We grab the ztest_vdev_lock here to 5168 * prevent a race between injection testing and 5169 * aux_vdev removal. 5170 */ 5171 mutex_enter(&ztest_vdev_lock); 5172 (void) vdev_online(spa, guid0, 0, NULL); 5173 mutex_exit(&ztest_vdev_lock); 5174 } 5175 } 5176 5177 if (maxfaults == 0) 5178 return; 5179 5180 /* 5181 * We have at least single-fault tolerance, so inject data corruption. 5182 */ 5183 fd = open(pathrand, O_RDWR); 5184 5185 if (fd == -1) /* we hit a gap in the device namespace */ 5186 return; 5187 5188 fsize = lseek(fd, 0, SEEK_END); 5189 5190 while (--iters != 0) { 5191 /* 5192 * The offset must be chosen carefully to ensure that 5193 * we do not inject a given logical block with errors 5194 * on two different leaf devices, because ZFS can not 5195 * tolerate that (if maxfaults==1). 5196 * 5197 * We divide each leaf into chunks of size 5198 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk 5199 * there is a series of ranges to which we can inject errors. 5200 * Each range can accept errors on only a single leaf vdev. 5201 * The error injection ranges are separated by ranges 5202 * which we will not inject errors on any device (DMZs). 5203 * Each DMZ must be large enough such that a single block 5204 * can not straddle it, so that a single block can not be 5205 * a target in two different injection ranges (on different 5206 * leaf vdevs). 5207 * 5208 * For example, with 3 leaves, each chunk looks like: 5209 * 0 to 32M: injection range for leaf 0 5210 * 32M to 64M: DMZ - no injection allowed 5211 * 64M to 96M: injection range for leaf 1 5212 * 96M to 128M: DMZ - no injection allowed 5213 * 128M to 160M: injection range for leaf 2 5214 * 160M to 192M: DMZ - no injection allowed 5215 */ 5216 offset = ztest_random(fsize / (leaves << bshift)) * 5217 (leaves << bshift) + (leaf << bshift) + 5218 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 5219 5220 /* 5221 * Only allow damage to the labels at one end of the vdev. 5222 * 5223 * If all labels are damaged, the device will be totally 5224 * inaccessible, which will result in loss of data, 5225 * because we also damage (parts of) the other side of 5226 * the mirror/raidz. 5227 * 5228 * Additionally, we will always have both an even and an 5229 * odd label, so that we can handle crashes in the 5230 * middle of vdev_config_sync(). 5231 */ 5232 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE) 5233 continue; 5234 5235 /* 5236 * The two end labels are stored at the "end" of the disk, but 5237 * the end of the disk (vdev_psize) is aligned to 5238 * sizeof (vdev_label_t). 5239 */ 5240 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t)); 5241 if ((leaf & 1) == 1 && 5242 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE) 5243 continue; 5244 5245 mutex_enter(&ztest_vdev_lock); 5246 if (mirror_save != zs->zs_mirrors) { 5247 mutex_exit(&ztest_vdev_lock); 5248 (void) close(fd); 5249 return; 5250 } 5251 5252 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 5253 fatal(1, "can't inject bad word at 0x%llx in %s", 5254 offset, pathrand); 5255 5256 mutex_exit(&ztest_vdev_lock); 5257 5258 if (ztest_opts.zo_verbose >= 7) 5259 (void) printf("injected bad word into %s," 5260 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 5261 } 5262 5263 (void) close(fd); 5264 } 5265 5266 /* 5267 * Verify that DDT repair works as expected. 5268 */ 5269 void 5270 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 5271 { 5272 ztest_shared_t *zs = ztest_shared; 5273 spa_t *spa = ztest_spa; 5274 objset_t *os = zd->zd_os; 5275 ztest_od_t od[1]; 5276 uint64_t object, blocksize, txg, pattern, psize; 5277 enum zio_checksum checksum = spa_dedup_checksum(spa); 5278 dmu_buf_t *db; 5279 dmu_tx_t *tx; 5280 abd_t *abd; 5281 blkptr_t blk; 5282 int copies = 2 * ZIO_DEDUPDITTO_MIN; 5283 5284 blocksize = ztest_random_blocksize(); 5285 blocksize = MIN(blocksize, 2048); /* because we write so many */ 5286 5287 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 5288 5289 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 5290 return; 5291 5292 /* 5293 * Take the name lock as writer to prevent anyone else from changing 5294 * the pool and dataset properies we need to maintain during this test. 5295 */ 5296 rw_enter(&ztest_name_lock, RW_WRITER); 5297 5298 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 5299 B_FALSE) != 0 || 5300 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 5301 B_FALSE) != 0) { 5302 rw_exit(&ztest_name_lock); 5303 return; 5304 } 5305 5306 dmu_objset_stats_t dds; 5307 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 5308 dmu_objset_fast_stat(os, &dds); 5309 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 5310 5311 object = od[0].od_object; 5312 blocksize = od[0].od_blocksize; 5313 pattern = zs->zs_guid ^ dds.dds_guid; 5314 5315 ASSERT(object != 0); 5316 5317 tx = dmu_tx_create(os); 5318 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 5319 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 5320 if (txg == 0) { 5321 rw_exit(&ztest_name_lock); 5322 return; 5323 } 5324 5325 /* 5326 * Write all the copies of our block. 5327 */ 5328 for (int i = 0; i < copies; i++) { 5329 uint64_t offset = i * blocksize; 5330 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 5331 DMU_READ_NO_PREFETCH); 5332 if (error != 0) { 5333 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 5334 os, (long long)object, (long long) offset, error); 5335 } 5336 ASSERT(db->db_offset == offset); 5337 ASSERT(db->db_size == blocksize); 5338 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 5339 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 5340 dmu_buf_will_fill(db, tx); 5341 ztest_pattern_set(db->db_data, db->db_size, pattern); 5342 dmu_buf_rele(db, FTAG); 5343 } 5344 5345 dmu_tx_commit(tx); 5346 txg_wait_synced(spa_get_dsl(spa), txg); 5347 5348 /* 5349 * Find out what block we got. 5350 */ 5351 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 5352 DMU_READ_NO_PREFETCH)); 5353 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 5354 dmu_buf_rele(db, FTAG); 5355 5356 /* 5357 * Damage the block. Dedup-ditto will save us when we read it later. 5358 */ 5359 psize = BP_GET_PSIZE(&blk); 5360 abd = abd_alloc_linear(psize, B_TRUE); 5361 ztest_pattern_set(abd_to_buf(abd), psize, ~pattern); 5362 5363 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5364 abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5365 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5366 5367 abd_free(abd); 5368 5369 rw_exit(&ztest_name_lock); 5370 } 5371 5372 /* 5373 * Scrub the pool. 5374 */ 5375 /* ARGSUSED */ 5376 void 5377 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5378 { 5379 spa_t *spa = ztest_spa; 5380 5381 /* 5382 * Scrub in progress by device removal. 5383 */ 5384 if (ztest_device_removal_active) 5385 return; 5386 5387 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5388 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5389 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5390 } 5391 5392 /* 5393 * Change the guid for the pool. 5394 */ 5395 /* ARGSUSED */ 5396 void 5397 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5398 { 5399 spa_t *spa = ztest_spa; 5400 uint64_t orig, load; 5401 int error; 5402 5403 orig = spa_guid(spa); 5404 load = spa_load_guid(spa); 5405 5406 rw_enter(&ztest_name_lock, RW_WRITER); 5407 error = spa_change_guid(spa); 5408 rw_exit(&ztest_name_lock); 5409 5410 if (error != 0) 5411 return; 5412 5413 if (ztest_opts.zo_verbose >= 4) { 5414 (void) printf("Changed guid old %llu -> %llu\n", 5415 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5416 } 5417 5418 VERIFY3U(orig, !=, spa_guid(spa)); 5419 VERIFY3U(load, ==, spa_load_guid(spa)); 5420 } 5421 5422 static vdev_t * 5423 ztest_random_concrete_vdev_leaf(vdev_t *vd) 5424 { 5425 if (vd == NULL) 5426 return (NULL); 5427 5428 if (vd->vdev_children == 0) 5429 return (vd); 5430 5431 vdev_t *eligible[vd->vdev_children]; 5432 int eligible_idx = 0, i; 5433 for (i = 0; i < vd->vdev_children; i++) { 5434 vdev_t *cvd = vd->vdev_child[i]; 5435 if (cvd->vdev_top->vdev_removing) 5436 continue; 5437 if (cvd->vdev_children > 0 || 5438 (vdev_is_concrete(cvd) && !cvd->vdev_detached)) { 5439 eligible[eligible_idx++] = cvd; 5440 } 5441 } 5442 VERIFY(eligible_idx > 0); 5443 5444 uint64_t child_no = ztest_random(eligible_idx); 5445 return (ztest_random_concrete_vdev_leaf(eligible[child_no])); 5446 } 5447 5448 /* ARGSUSED */ 5449 void 5450 ztest_initialize(ztest_ds_t *zd, uint64_t id) 5451 { 5452 spa_t *spa = ztest_spa; 5453 int error = 0; 5454 5455 mutex_enter(&ztest_vdev_lock); 5456 5457 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5458 5459 /* Random leaf vdev */ 5460 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev); 5461 if (rand_vd == NULL) { 5462 spa_config_exit(spa, SCL_VDEV, FTAG); 5463 mutex_exit(&ztest_vdev_lock); 5464 return; 5465 } 5466 5467 /* 5468 * The random vdev we've selected may change as soon as we 5469 * drop the spa_config_lock. We create local copies of things 5470 * we're interested in. 5471 */ 5472 uint64_t guid = rand_vd->vdev_guid; 5473 char *path = strdup(rand_vd->vdev_path); 5474 boolean_t active = rand_vd->vdev_initialize_thread != NULL; 5475 5476 zfs_dbgmsg("vd %p, guid %llu", rand_vd, guid); 5477 spa_config_exit(spa, SCL_VDEV, FTAG); 5478 5479 uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS); 5480 error = spa_vdev_initialize(spa, guid, cmd); 5481 switch (cmd) { 5482 case POOL_INITIALIZE_CANCEL: 5483 if (ztest_opts.zo_verbose >= 4) { 5484 (void) printf("Cancel initialize %s", path); 5485 if (!active) 5486 (void) printf(" failed (no initialize active)"); 5487 (void) printf("\n"); 5488 } 5489 break; 5490 case POOL_INITIALIZE_DO: 5491 if (ztest_opts.zo_verbose >= 4) { 5492 (void) printf("Start initialize %s", path); 5493 if (active && error == 0) 5494 (void) printf(" failed (already active)"); 5495 else if (error != 0) 5496 (void) printf(" failed (error %d)", error); 5497 (void) printf("\n"); 5498 } 5499 break; 5500 case POOL_INITIALIZE_SUSPEND: 5501 if (ztest_opts.zo_verbose >= 4) { 5502 (void) printf("Suspend initialize %s", path); 5503 if (!active) 5504 (void) printf(" failed (no initialize active)"); 5505 (void) printf("\n"); 5506 } 5507 break; 5508 } 5509 free(path); 5510 mutex_exit(&ztest_vdev_lock); 5511 } 5512 5513 /* 5514 * Verify pool integrity by running zdb. 5515 */ 5516 static void 5517 ztest_run_zdb(char *pool) 5518 { 5519 int status; 5520 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5521 char zbuf[1024]; 5522 char *bin; 5523 char *ztest; 5524 char *isa; 5525 int isalen; 5526 FILE *fp; 5527 5528 (void) realpath(getexecname(), zdb); 5529 5530 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 5531 bin = strstr(zdb, "/usr/bin/"); 5532 ztest = strstr(bin, "/ztest"); 5533 isa = bin + 8; 5534 isalen = ztest - isa; 5535 isa = strdup(isa); 5536 /* LINTED */ 5537 (void) sprintf(bin, 5538 "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s %s", 5539 isalen, 5540 isa, 5541 ztest_opts.zo_verbose >= 3 ? "s" : "", 5542 ztest_opts.zo_verbose >= 4 ? "v" : "", 5543 spa_config_path, 5544 pool); 5545 free(isa); 5546 5547 if (ztest_opts.zo_verbose >= 5) 5548 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5549 5550 fp = popen(zdb, "r"); 5551 5552 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5553 if (ztest_opts.zo_verbose >= 3) 5554 (void) printf("%s", zbuf); 5555 5556 status = pclose(fp); 5557 5558 if (status == 0) 5559 return; 5560 5561 ztest_dump_core = 0; 5562 if (WIFEXITED(status)) 5563 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5564 else 5565 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5566 } 5567 5568 static void 5569 ztest_walk_pool_directory(char *header) 5570 { 5571 spa_t *spa = NULL; 5572 5573 if (ztest_opts.zo_verbose >= 6) 5574 (void) printf("%s\n", header); 5575 5576 mutex_enter(&spa_namespace_lock); 5577 while ((spa = spa_next(spa)) != NULL) 5578 if (ztest_opts.zo_verbose >= 6) 5579 (void) printf("\t%s\n", spa_name(spa)); 5580 mutex_exit(&spa_namespace_lock); 5581 } 5582 5583 static void 5584 ztest_spa_import_export(char *oldname, char *newname) 5585 { 5586 nvlist_t *config, *newconfig; 5587 uint64_t pool_guid; 5588 spa_t *spa; 5589 int error; 5590 5591 if (ztest_opts.zo_verbose >= 4) { 5592 (void) printf("import/export: old = %s, new = %s\n", 5593 oldname, newname); 5594 } 5595 5596 /* 5597 * Clean up from previous runs. 5598 */ 5599 (void) spa_destroy(newname); 5600 5601 /* 5602 * Get the pool's configuration and guid. 5603 */ 5604 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5605 5606 /* 5607 * Kick off a scrub to tickle scrub/export races. 5608 */ 5609 if (ztest_random(2) == 0) 5610 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5611 5612 pool_guid = spa_guid(spa); 5613 spa_close(spa, FTAG); 5614 5615 ztest_walk_pool_directory("pools before export"); 5616 5617 /* 5618 * Export it. 5619 */ 5620 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5621 5622 ztest_walk_pool_directory("pools after export"); 5623 5624 /* 5625 * Try to import it. 5626 */ 5627 newconfig = spa_tryimport(config); 5628 ASSERT(newconfig != NULL); 5629 nvlist_free(newconfig); 5630 5631 /* 5632 * Import it under the new name. 5633 */ 5634 error = spa_import(newname, config, NULL, 0); 5635 if (error != 0) { 5636 dump_nvlist(config, 0); 5637 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 5638 oldname, newname, error); 5639 } 5640 5641 ztest_walk_pool_directory("pools after import"); 5642 5643 /* 5644 * Try to import it again -- should fail with EEXIST. 5645 */ 5646 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5647 5648 /* 5649 * Try to import it under a different name -- should fail with EEXIST. 5650 */ 5651 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5652 5653 /* 5654 * Verify that the pool is no longer visible under the old name. 5655 */ 5656 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5657 5658 /* 5659 * Verify that we can open and close the pool using the new name. 5660 */ 5661 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5662 ASSERT(pool_guid == spa_guid(spa)); 5663 spa_close(spa, FTAG); 5664 5665 nvlist_free(config); 5666 } 5667 5668 static void 5669 ztest_resume(spa_t *spa) 5670 { 5671 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5672 (void) printf("resuming from suspended state\n"); 5673 spa_vdev_state_enter(spa, SCL_NONE); 5674 vdev_clear(spa, NULL); 5675 (void) spa_vdev_state_exit(spa, NULL, 0); 5676 (void) zio_resume(spa); 5677 } 5678 5679 static void * 5680 ztest_resume_thread(void *arg) 5681 { 5682 spa_t *spa = arg; 5683 5684 while (!ztest_exiting) { 5685 if (spa_suspended(spa)) 5686 ztest_resume(spa); 5687 (void) poll(NULL, 0, 100); 5688 5689 /* 5690 * Periodically change the zfs_compressed_arc_enabled setting. 5691 */ 5692 if (ztest_random(10) == 0) 5693 zfs_compressed_arc_enabled = ztest_random(2); 5694 5695 /* 5696 * Periodically change the zfs_abd_scatter_enabled setting. 5697 */ 5698 if (ztest_random(10) == 0) 5699 zfs_abd_scatter_enabled = ztest_random(2); 5700 } 5701 return (NULL); 5702 } 5703 5704 static void * 5705 ztest_deadman_thread(void *arg) 5706 { 5707 ztest_shared_t *zs = arg; 5708 spa_t *spa = ztest_spa; 5709 hrtime_t delta, total = 0; 5710 5711 for (;;) { 5712 delta = zs->zs_thread_stop - zs->zs_thread_start + 5713 MSEC2NSEC(zfs_deadman_synctime_ms); 5714 5715 (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); 5716 5717 /* 5718 * If the pool is suspended then fail immediately. Otherwise, 5719 * check to see if the pool is making any progress. If 5720 * vdev_deadman() discovers that there hasn't been any recent 5721 * I/Os then it will end up aborting the tests. 5722 */ 5723 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { 5724 fatal(0, "aborting test after %llu seconds because " 5725 "pool has transitioned to a suspended state.", 5726 zfs_deadman_synctime_ms / 1000); 5727 return (NULL); 5728 } 5729 vdev_deadman(spa->spa_root_vdev); 5730 5731 total += zfs_deadman_synctime_ms/1000; 5732 (void) printf("ztest has been running for %lld seconds\n", 5733 total); 5734 } 5735 } 5736 5737 static void 5738 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5739 { 5740 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5741 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5742 hrtime_t functime = gethrtime(); 5743 5744 for (int i = 0; i < zi->zi_iters; i++) 5745 zi->zi_func(zd, id); 5746 5747 functime = gethrtime() - functime; 5748 5749 atomic_add_64(&zc->zc_count, 1); 5750 atomic_add_64(&zc->zc_time, functime); 5751 5752 if (ztest_opts.zo_verbose >= 4) { 5753 Dl_info dli; 5754 (void) dladdr((void *)zi->zi_func, &dli); 5755 (void) printf("%6.2f sec in %s\n", 5756 (double)functime / NANOSEC, dli.dli_sname); 5757 } 5758 } 5759 5760 static void * 5761 ztest_thread(void *arg) 5762 { 5763 int rand; 5764 uint64_t id = (uintptr_t)arg; 5765 ztest_shared_t *zs = ztest_shared; 5766 uint64_t call_next; 5767 hrtime_t now; 5768 ztest_info_t *zi; 5769 ztest_shared_callstate_t *zc; 5770 5771 while ((now = gethrtime()) < zs->zs_thread_stop) { 5772 /* 5773 * See if it's time to force a crash. 5774 */ 5775 if (now > zs->zs_thread_kill) 5776 ztest_kill(zs); 5777 5778 /* 5779 * If we're getting ENOSPC with some regularity, stop. 5780 */ 5781 if (zs->zs_enospc_count > 10) 5782 break; 5783 5784 /* 5785 * Pick a random function to execute. 5786 */ 5787 rand = ztest_random(ZTEST_FUNCS); 5788 zi = &ztest_info[rand]; 5789 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5790 call_next = zc->zc_next; 5791 5792 if (now >= call_next && 5793 atomic_cas_64(&zc->zc_next, call_next, call_next + 5794 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5795 ztest_execute(rand, zi, id); 5796 } 5797 } 5798 5799 return (NULL); 5800 } 5801 5802 static void 5803 ztest_dataset_name(char *dsname, char *pool, int d) 5804 { 5805 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d); 5806 } 5807 5808 static void 5809 ztest_dataset_destroy(int d) 5810 { 5811 char name[ZFS_MAX_DATASET_NAME_LEN]; 5812 5813 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5814 5815 if (ztest_opts.zo_verbose >= 3) 5816 (void) printf("Destroying %s to free up space\n", name); 5817 5818 /* 5819 * Cleanup any non-standard clones and snapshots. In general, 5820 * ztest thread t operates on dataset (t % zopt_datasets), 5821 * so there may be more than one thing to clean up. 5822 */ 5823 for (int t = d; t < ztest_opts.zo_threads; 5824 t += ztest_opts.zo_datasets) { 5825 ztest_dsl_dataset_cleanup(name, t); 5826 } 5827 5828 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5829 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5830 } 5831 5832 static void 5833 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5834 { 5835 uint64_t usedobjs, dirobjs, scratch; 5836 5837 /* 5838 * ZTEST_DIROBJ is the object directory for the entire dataset. 5839 * Therefore, the number of objects in use should equal the 5840 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5841 * If not, we have an object leak. 5842 * 5843 * Note that we can only check this in ztest_dataset_open(), 5844 * when the open-context and syncing-context values agree. 5845 * That's because zap_count() returns the open-context value, 5846 * while dmu_objset_space() returns the rootbp fill count. 5847 */ 5848 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5849 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5850 ASSERT3U(dirobjs + 1, ==, usedobjs); 5851 } 5852 5853 static int 5854 ztest_dataset_open(int d) 5855 { 5856 ztest_ds_t *zd = &ztest_ds[d]; 5857 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5858 objset_t *os; 5859 zilog_t *zilog; 5860 char name[ZFS_MAX_DATASET_NAME_LEN]; 5861 int error; 5862 5863 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5864 5865 rw_enter(&ztest_name_lock, RW_READER); 5866 5867 error = ztest_dataset_create(name); 5868 if (error == ENOSPC) { 5869 rw_exit(&ztest_name_lock); 5870 ztest_record_enospc(FTAG); 5871 return (error); 5872 } 5873 ASSERT(error == 0 || error == EEXIST); 5874 5875 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); 5876 rw_exit(&ztest_name_lock); 5877 5878 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5879 5880 zilog = zd->zd_zilog; 5881 5882 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5883 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5884 fatal(0, "missing log records: claimed %llu < committed %llu", 5885 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5886 5887 ztest_dataset_dirobj_verify(zd); 5888 5889 zil_replay(os, zd, ztest_replay_vector); 5890 5891 ztest_dataset_dirobj_verify(zd); 5892 5893 if (ztest_opts.zo_verbose >= 6) 5894 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5895 zd->zd_name, 5896 (u_longlong_t)zilog->zl_parse_blk_count, 5897 (u_longlong_t)zilog->zl_parse_lr_count, 5898 (u_longlong_t)zilog->zl_replaying_seq); 5899 5900 zilog = zil_open(os, ztest_get_data); 5901 5902 if (zilog->zl_replaying_seq != 0 && 5903 zilog->zl_replaying_seq < committed_seq) 5904 fatal(0, "missing log records: replayed %llu < committed %llu", 5905 zilog->zl_replaying_seq, committed_seq); 5906 5907 return (0); 5908 } 5909 5910 static void 5911 ztest_dataset_close(int d) 5912 { 5913 ztest_ds_t *zd = &ztest_ds[d]; 5914 5915 zil_close(zd->zd_zilog); 5916 dmu_objset_disown(zd->zd_os, zd); 5917 5918 ztest_zd_fini(zd); 5919 } 5920 5921 /* 5922 * Kick off threads to run tests on all datasets in parallel. 5923 */ 5924 static void 5925 ztest_run(ztest_shared_t *zs) 5926 { 5927 thread_t *tid; 5928 spa_t *spa; 5929 objset_t *os; 5930 thread_t resume_tid; 5931 int error; 5932 5933 ztest_exiting = B_FALSE; 5934 5935 /* 5936 * Initialize parent/child shared state. 5937 */ 5938 mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL); 5939 mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL); 5940 rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL); 5941 5942 zs->zs_thread_start = gethrtime(); 5943 zs->zs_thread_stop = 5944 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5945 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5946 zs->zs_thread_kill = zs->zs_thread_stop; 5947 if (ztest_random(100) < ztest_opts.zo_killrate) { 5948 zs->zs_thread_kill -= 5949 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5950 } 5951 5952 mutex_init(&zcl.zcl_callbacks_lock, NULL, USYNC_THREAD, NULL); 5953 5954 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5955 offsetof(ztest_cb_data_t, zcd_node)); 5956 5957 /* 5958 * Open our pool. 5959 */ 5960 kernel_init(FREAD | FWRITE); 5961 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5962 metaslab_preload_limit = ztest_random(20) + 1; 5963 ztest_spa = spa; 5964 5965 dmu_objset_stats_t dds; 5966 VERIFY0(dmu_objset_own(ztest_opts.zo_pool, 5967 DMU_OST_ANY, B_TRUE, FTAG, &os)); 5968 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 5969 dmu_objset_fast_stat(os, &dds); 5970 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 5971 zs->zs_guid = dds.dds_guid; 5972 dmu_objset_disown(os, FTAG); 5973 5974 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5975 5976 /* 5977 * We don't expect the pool to suspend unless maxfaults == 0, 5978 * in which case ztest_fault_inject() temporarily takes away 5979 * the only valid replica. 5980 */ 5981 if (MAXFAULTS() == 0) 5982 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5983 else 5984 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5985 5986 /* 5987 * Create a thread to periodically resume suspended I/O. 5988 */ 5989 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5990 &resume_tid) == 0); 5991 5992 /* 5993 * Create a deadman thread to abort() if we hang. 5994 */ 5995 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5996 NULL) == 0); 5997 5998 /* 5999 * Verify that we can safely inquire about any object, 6000 * whether it's allocated or not. To make it interesting, 6001 * we probe a 5-wide window around each power of two. 6002 * This hits all edge cases, including zero and the max. 6003 */ 6004 for (int t = 0; t < 64; t++) { 6005 for (int d = -5; d <= 5; d++) { 6006 error = dmu_object_info(spa->spa_meta_objset, 6007 (1ULL << t) + d, NULL); 6008 ASSERT(error == 0 || error == ENOENT || 6009 error == EINVAL); 6010 } 6011 } 6012 6013 /* 6014 * If we got any ENOSPC errors on the previous run, destroy something. 6015 */ 6016 if (zs->zs_enospc_count != 0) { 6017 int d = ztest_random(ztest_opts.zo_datasets); 6018 ztest_dataset_destroy(d); 6019 } 6020 zs->zs_enospc_count = 0; 6021 6022 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 6023 UMEM_NOFAIL); 6024 6025 if (ztest_opts.zo_verbose >= 4) 6026 (void) printf("starting main threads...\n"); 6027 6028 /* 6029 * Kick off all the tests that run in parallel. 6030 */ 6031 for (int t = 0; t < ztest_opts.zo_threads; t++) { 6032 if (t < ztest_opts.zo_datasets && 6033 ztest_dataset_open(t) != 0) 6034 return; 6035 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 6036 THR_BOUND, &tid[t]) == 0); 6037 } 6038 6039 /* 6040 * Wait for all of the tests to complete. We go in reverse order 6041 * so we don't close datasets while threads are still using them. 6042 */ 6043 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 6044 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 6045 if (t < ztest_opts.zo_datasets) 6046 ztest_dataset_close(t); 6047 } 6048 6049 txg_wait_synced(spa_get_dsl(spa), 0); 6050 6051 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 6052 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 6053 zfs_dbgmsg_print(FTAG); 6054 6055 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 6056 6057 /* Kill the resume thread */ 6058 ztest_exiting = B_TRUE; 6059 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 6060 ztest_resume(spa); 6061 6062 /* 6063 * Right before closing the pool, kick off a bunch of async I/O; 6064 * spa_close() should wait for it to complete. 6065 */ 6066 for (uint64_t object = 1; object < 50; object++) { 6067 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20, 6068 ZIO_PRIORITY_SYNC_READ); 6069 } 6070 6071 spa_close(spa, FTAG); 6072 6073 /* 6074 * Verify that we can loop over all pools. 6075 */ 6076 mutex_enter(&spa_namespace_lock); 6077 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 6078 if (ztest_opts.zo_verbose > 3) 6079 (void) printf("spa_next: found %s\n", spa_name(spa)); 6080 mutex_exit(&spa_namespace_lock); 6081 6082 /* 6083 * Verify that we can export the pool and reimport it under a 6084 * different name. 6085 */ 6086 if (ztest_random(2) == 0) { 6087 char name[ZFS_MAX_DATASET_NAME_LEN]; 6088 (void) snprintf(name, sizeof (name), "%s_import", 6089 ztest_opts.zo_pool); 6090 ztest_spa_import_export(ztest_opts.zo_pool, name); 6091 ztest_spa_import_export(name, ztest_opts.zo_pool); 6092 } 6093 6094 kernel_fini(); 6095 6096 list_destroy(&zcl.zcl_callbacks); 6097 6098 mutex_destroy(&zcl.zcl_callbacks_lock); 6099 6100 rw_destroy(&ztest_name_lock); 6101 mutex_destroy(&ztest_vdev_lock); 6102 mutex_destroy(&ztest_checkpoint_lock); 6103 } 6104 6105 static void 6106 ztest_freeze(void) 6107 { 6108 ztest_ds_t *zd = &ztest_ds[0]; 6109 spa_t *spa; 6110 int numloops = 0; 6111 6112 if (ztest_opts.zo_verbose >= 3) 6113 (void) printf("testing spa_freeze()...\n"); 6114 6115 kernel_init(FREAD | FWRITE); 6116 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 6117 VERIFY3U(0, ==, ztest_dataset_open(0)); 6118 ztest_spa = spa; 6119 6120 /* 6121 * Force the first log block to be transactionally allocated. 6122 * We have to do this before we freeze the pool -- otherwise 6123 * the log chain won't be anchored. 6124 */ 6125 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 6126 ztest_dmu_object_alloc_free(zd, 0); 6127 zil_commit(zd->zd_zilog, 0); 6128 } 6129 6130 txg_wait_synced(spa_get_dsl(spa), 0); 6131 6132 /* 6133 * Freeze the pool. This stops spa_sync() from doing anything, 6134 * so that the only way to record changes from now on is the ZIL. 6135 */ 6136 spa_freeze(spa); 6137 6138 /* 6139 * Because it is hard to predict how much space a write will actually 6140 * require beforehand, we leave ourselves some fudge space to write over 6141 * capacity. 6142 */ 6143 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; 6144 6145 /* 6146 * Run tests that generate log records but don't alter the pool config 6147 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 6148 * We do a txg_wait_synced() after each iteration to force the txg 6149 * to increase well beyond the last synced value in the uberblock. 6150 * The ZIL should be OK with that. 6151 * 6152 * Run a random number of times less than zo_maxloops and ensure we do 6153 * not run out of space on the pool. 6154 */ 6155 while (ztest_random(10) != 0 && 6156 numloops++ < ztest_opts.zo_maxloops && 6157 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { 6158 ztest_od_t od; 6159 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 6160 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); 6161 ztest_io(zd, od.od_object, 6162 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 6163 txg_wait_synced(spa_get_dsl(spa), 0); 6164 } 6165 6166 /* 6167 * Commit all of the changes we just generated. 6168 */ 6169 zil_commit(zd->zd_zilog, 0); 6170 txg_wait_synced(spa_get_dsl(spa), 0); 6171 6172 /* 6173 * Close our dataset and close the pool. 6174 */ 6175 ztest_dataset_close(0); 6176 spa_close(spa, FTAG); 6177 kernel_fini(); 6178 6179 /* 6180 * Open and close the pool and dataset to induce log replay. 6181 */ 6182 kernel_init(FREAD | FWRITE); 6183 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 6184 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 6185 VERIFY3U(0, ==, ztest_dataset_open(0)); 6186 ztest_dataset_close(0); 6187 6188 ztest_spa = spa; 6189 txg_wait_synced(spa_get_dsl(spa), 0); 6190 ztest_reguid(NULL, 0); 6191 6192 spa_close(spa, FTAG); 6193 kernel_fini(); 6194 } 6195 6196 void 6197 print_time(hrtime_t t, char *timebuf) 6198 { 6199 hrtime_t s = t / NANOSEC; 6200 hrtime_t m = s / 60; 6201 hrtime_t h = m / 60; 6202 hrtime_t d = h / 24; 6203 6204 s -= m * 60; 6205 m -= h * 60; 6206 h -= d * 24; 6207 6208 timebuf[0] = '\0'; 6209 6210 if (d) 6211 (void) sprintf(timebuf, 6212 "%llud%02lluh%02llum%02llus", d, h, m, s); 6213 else if (h) 6214 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 6215 else if (m) 6216 (void) sprintf(timebuf, "%llum%02llus", m, s); 6217 else 6218 (void) sprintf(timebuf, "%llus", s); 6219 } 6220 6221 static nvlist_t * 6222 make_random_props() 6223 { 6224 nvlist_t *props; 6225 6226 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 6227 if (ztest_random(2) == 0) 6228 return (props); 6229 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 6230 6231 return (props); 6232 } 6233 6234 /* 6235 * Create a storage pool with the given name and initial vdev size. 6236 * Then test spa_freeze() functionality. 6237 */ 6238 static void 6239 ztest_init(ztest_shared_t *zs) 6240 { 6241 spa_t *spa; 6242 nvlist_t *nvroot, *props; 6243 6244 mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL); 6245 mutex_init(&ztest_checkpoint_lock, NULL, USYNC_THREAD, NULL); 6246 rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL); 6247 6248 kernel_init(FREAD | FWRITE); 6249 6250 /* 6251 * Create the storage pool. 6252 */ 6253 (void) spa_destroy(ztest_opts.zo_pool); 6254 ztest_shared->zs_vdev_next_leaf = 0; 6255 zs->zs_splits = 0; 6256 zs->zs_mirrors = ztest_opts.zo_mirrors; 6257 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 6258 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 6259 props = make_random_props(); 6260 for (int i = 0; i < SPA_FEATURES; i++) { 6261 char buf[1024]; 6262 (void) snprintf(buf, sizeof (buf), "feature@%s", 6263 spa_feature_table[i].fi_uname); 6264 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 6265 } 6266 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 6267 nvlist_free(nvroot); 6268 nvlist_free(props); 6269 6270 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 6271 zs->zs_metaslab_sz = 6272 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 6273 6274 spa_close(spa, FTAG); 6275 6276 kernel_fini(); 6277 6278 ztest_run_zdb(ztest_opts.zo_pool); 6279 6280 ztest_freeze(); 6281 6282 ztest_run_zdb(ztest_opts.zo_pool); 6283 6284 rw_destroy(&ztest_name_lock); 6285 mutex_destroy(&ztest_vdev_lock); 6286 mutex_destroy(&ztest_checkpoint_lock); 6287 } 6288 6289 static void 6290 setup_data_fd(void) 6291 { 6292 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 6293 6294 ztest_fd_data = mkstemp(ztest_name_data); 6295 ASSERT3S(ztest_fd_data, >=, 0); 6296 (void) unlink(ztest_name_data); 6297 } 6298 6299 6300 static int 6301 shared_data_size(ztest_shared_hdr_t *hdr) 6302 { 6303 int size; 6304 6305 size = hdr->zh_hdr_size; 6306 size += hdr->zh_opts_size; 6307 size += hdr->zh_size; 6308 size += hdr->zh_stats_size * hdr->zh_stats_count; 6309 size += hdr->zh_ds_size * hdr->zh_ds_count; 6310 6311 return (size); 6312 } 6313 6314 static void 6315 setup_hdr(void) 6316 { 6317 int size; 6318 ztest_shared_hdr_t *hdr; 6319 6320 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6321 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6322 ASSERT(hdr != MAP_FAILED); 6323 6324 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 6325 6326 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 6327 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 6328 hdr->zh_size = sizeof (ztest_shared_t); 6329 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 6330 hdr->zh_stats_count = ZTEST_FUNCS; 6331 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 6332 hdr->zh_ds_count = ztest_opts.zo_datasets; 6333 6334 size = shared_data_size(hdr); 6335 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 6336 6337 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6338 } 6339 6340 static void 6341 setup_data(void) 6342 { 6343 int size, offset; 6344 ztest_shared_hdr_t *hdr; 6345 uint8_t *buf; 6346 6347 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6348 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 6349 ASSERT(hdr != MAP_FAILED); 6350 6351 size = shared_data_size(hdr); 6352 6353 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6354 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 6355 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6356 ASSERT(hdr != MAP_FAILED); 6357 buf = (uint8_t *)hdr; 6358 6359 offset = hdr->zh_hdr_size; 6360 ztest_shared_opts = (void *)&buf[offset]; 6361 offset += hdr->zh_opts_size; 6362 ztest_shared = (void *)&buf[offset]; 6363 offset += hdr->zh_size; 6364 ztest_shared_callstate = (void *)&buf[offset]; 6365 offset += hdr->zh_stats_size * hdr->zh_stats_count; 6366 ztest_shared_ds = (void *)&buf[offset]; 6367 } 6368 6369 static boolean_t 6370 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 6371 { 6372 pid_t pid; 6373 int status; 6374 char *cmdbuf = NULL; 6375 6376 pid = fork(); 6377 6378 if (cmd == NULL) { 6379 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 6380 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 6381 cmd = cmdbuf; 6382 } 6383 6384 if (pid == -1) 6385 fatal(1, "fork failed"); 6386 6387 if (pid == 0) { /* child */ 6388 char *emptyargv[2] = { cmd, NULL }; 6389 char fd_data_str[12]; 6390 6391 struct rlimit rl = { 1024, 1024 }; 6392 (void) setrlimit(RLIMIT_NOFILE, &rl); 6393 6394 (void) close(ztest_fd_rand); 6395 VERIFY3U(11, >=, 6396 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 6397 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 6398 6399 (void) enable_extended_FILE_stdio(-1, -1); 6400 if (libpath != NULL) 6401 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 6402 (void) execv(cmd, emptyargv); 6403 ztest_dump_core = B_FALSE; 6404 fatal(B_TRUE, "exec failed: %s", cmd); 6405 } 6406 6407 if (cmdbuf != NULL) { 6408 umem_free(cmdbuf, MAXPATHLEN); 6409 cmd = NULL; 6410 } 6411 6412 while (waitpid(pid, &status, 0) != pid) 6413 continue; 6414 if (statusp != NULL) 6415 *statusp = status; 6416 6417 if (WIFEXITED(status)) { 6418 if (WEXITSTATUS(status) != 0) { 6419 (void) fprintf(stderr, "child exited with code %d\n", 6420 WEXITSTATUS(status)); 6421 exit(2); 6422 } 6423 return (B_FALSE); 6424 } else if (WIFSIGNALED(status)) { 6425 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 6426 (void) fprintf(stderr, "child died with signal %d\n", 6427 WTERMSIG(status)); 6428 exit(3); 6429 } 6430 return (B_TRUE); 6431 } else { 6432 (void) fprintf(stderr, "something strange happened to child\n"); 6433 exit(4); 6434 /* NOTREACHED */ 6435 } 6436 } 6437 6438 static void 6439 ztest_run_init(void) 6440 { 6441 ztest_shared_t *zs = ztest_shared; 6442 6443 ASSERT(ztest_opts.zo_init != 0); 6444 6445 /* 6446 * Blow away any existing copy of zpool.cache 6447 */ 6448 (void) remove(spa_config_path); 6449 6450 /* 6451 * Create and initialize our storage pool. 6452 */ 6453 for (int i = 1; i <= ztest_opts.zo_init; i++) { 6454 bzero(zs, sizeof (ztest_shared_t)); 6455 if (ztest_opts.zo_verbose >= 3 && 6456 ztest_opts.zo_init != 1) { 6457 (void) printf("ztest_init(), pass %d\n", i); 6458 } 6459 ztest_init(zs); 6460 } 6461 } 6462 6463 int 6464 main(int argc, char **argv) 6465 { 6466 int kills = 0; 6467 int iters = 0; 6468 int older = 0; 6469 int newer = 0; 6470 ztest_shared_t *zs; 6471 ztest_info_t *zi; 6472 ztest_shared_callstate_t *zc; 6473 char timebuf[100]; 6474 char numbuf[NN_NUMBUF_SZ]; 6475 char *cmd; 6476 boolean_t hasalt; 6477 char *fd_data_str = getenv("ZTEST_FD_DATA"); 6478 6479 (void) setvbuf(stdout, NULL, _IOLBF, 0); 6480 6481 dprintf_setup(&argc, argv); 6482 zfs_deadman_synctime_ms = 300000; 6483 /* 6484 * As two-word space map entries may not come up often (especially 6485 * if pool and vdev sizes are small) we want to force at least some 6486 * of them so the feature get tested. 6487 */ 6488 zfs_force_some_double_word_sm_entries = B_TRUE; 6489 6490 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6491 ASSERT3S(ztest_fd_rand, >=, 0); 6492 6493 if (!fd_data_str) { 6494 process_options(argc, argv); 6495 6496 setup_data_fd(); 6497 setup_hdr(); 6498 setup_data(); 6499 bcopy(&ztest_opts, ztest_shared_opts, 6500 sizeof (*ztest_shared_opts)); 6501 } else { 6502 ztest_fd_data = atoi(fd_data_str); 6503 setup_data(); 6504 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6505 } 6506 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6507 6508 /* Override location of zpool.cache */ 6509 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6510 ztest_opts.zo_dir), !=, -1); 6511 6512 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6513 UMEM_NOFAIL); 6514 zs = ztest_shared; 6515 6516 if (fd_data_str) { 6517 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging; 6518 metaslab_df_alloc_threshold = 6519 zs->zs_metaslab_df_alloc_threshold; 6520 6521 if (zs->zs_do_init) 6522 ztest_run_init(); 6523 else 6524 ztest_run(zs); 6525 exit(0); 6526 } 6527 6528 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6529 6530 if (ztest_opts.zo_verbose >= 1) { 6531 (void) printf("%llu vdevs, %d datasets, %d threads," 6532 " %llu seconds...\n", 6533 (u_longlong_t)ztest_opts.zo_vdevs, 6534 ztest_opts.zo_datasets, 6535 ztest_opts.zo_threads, 6536 (u_longlong_t)ztest_opts.zo_time); 6537 } 6538 6539 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6540 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6541 6542 zs->zs_do_init = B_TRUE; 6543 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6544 if (ztest_opts.zo_verbose >= 1) { 6545 (void) printf("Executing older ztest for " 6546 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6547 } 6548 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6549 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6550 } else { 6551 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6552 } 6553 zs->zs_do_init = B_FALSE; 6554 6555 zs->zs_proc_start = gethrtime(); 6556 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6557 6558 for (int f = 0; f < ZTEST_FUNCS; f++) { 6559 zi = &ztest_info[f]; 6560 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6561 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6562 zc->zc_next = UINT64_MAX; 6563 else 6564 zc->zc_next = zs->zs_proc_start + 6565 ztest_random(2 * zi->zi_interval[0] + 1); 6566 } 6567 6568 /* 6569 * Run the tests in a loop. These tests include fault injection 6570 * to verify that self-healing data works, and forced crashes 6571 * to verify that we never lose on-disk consistency. 6572 */ 6573 while (gethrtime() < zs->zs_proc_stop) { 6574 int status; 6575 boolean_t killed; 6576 6577 /* 6578 * Initialize the workload counters for each function. 6579 */ 6580 for (int f = 0; f < ZTEST_FUNCS; f++) { 6581 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6582 zc->zc_count = 0; 6583 zc->zc_time = 0; 6584 } 6585 6586 /* Set the allocation switch size */ 6587 zs->zs_metaslab_df_alloc_threshold = 6588 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6589 6590 if (!hasalt || ztest_random(2) == 0) { 6591 if (hasalt && ztest_opts.zo_verbose >= 1) { 6592 (void) printf("Executing newer ztest: %s\n", 6593 cmd); 6594 } 6595 newer++; 6596 killed = exec_child(cmd, NULL, B_TRUE, &status); 6597 } else { 6598 if (hasalt && ztest_opts.zo_verbose >= 1) { 6599 (void) printf("Executing older ztest: %s\n", 6600 ztest_opts.zo_alt_ztest); 6601 } 6602 older++; 6603 killed = exec_child(ztest_opts.zo_alt_ztest, 6604 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6605 } 6606 6607 if (killed) 6608 kills++; 6609 iters++; 6610 6611 if (ztest_opts.zo_verbose >= 1) { 6612 hrtime_t now = gethrtime(); 6613 6614 now = MIN(now, zs->zs_proc_stop); 6615 print_time(zs->zs_proc_stop - now, timebuf); 6616 nicenum(zs->zs_space, numbuf, sizeof (numbuf)); 6617 6618 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6619 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6620 iters, 6621 WIFEXITED(status) ? "Complete" : "SIGKILL", 6622 (u_longlong_t)zs->zs_enospc_count, 6623 100.0 * zs->zs_alloc / zs->zs_space, 6624 numbuf, 6625 100.0 * (now - zs->zs_proc_start) / 6626 (ztest_opts.zo_time * NANOSEC), timebuf); 6627 } 6628 6629 if (ztest_opts.zo_verbose >= 2) { 6630 (void) printf("\nWorkload summary:\n\n"); 6631 (void) printf("%7s %9s %s\n", 6632 "Calls", "Time", "Function"); 6633 (void) printf("%7s %9s %s\n", 6634 "-----", "----", "--------"); 6635 for (int f = 0; f < ZTEST_FUNCS; f++) { 6636 Dl_info dli; 6637 6638 zi = &ztest_info[f]; 6639 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6640 print_time(zc->zc_time, timebuf); 6641 (void) dladdr((void *)zi->zi_func, &dli); 6642 (void) printf("%7llu %9s %s\n", 6643 (u_longlong_t)zc->zc_count, timebuf, 6644 dli.dli_sname); 6645 } 6646 (void) printf("\n"); 6647 } 6648 6649 ztest_run_zdb(ztest_opts.zo_pool); 6650 } 6651 6652 if (ztest_opts.zo_verbose >= 1) { 6653 if (hasalt) { 6654 (void) printf("%d runs of older ztest: %s\n", older, 6655 ztest_opts.zo_alt_ztest); 6656 (void) printf("%d runs of newer ztest: %s\n", newer, 6657 cmd); 6658 } 6659 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6660 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6661 } 6662 6663 umem_free(cmd, MAXNAMELEN); 6664 6665 return (0); 6666 } 6667