xref: /illumos-gate/usr/src/cmd/zpool/zpool_vdev.c (revision fb3b6bbf2c922827ddf076fbf2172d96c58a71de)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
25  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
26  */
27 
28 /*
29  * Functions to convert between a list of vdevs and an nvlist representing the
30  * configuration.  Each entry in the list can be one of:
31  *
32  * 	Device vdevs
33  * 		disk=(path=..., devid=...)
34  * 		file=(path=...)
35  *
36  * 	Group vdevs
37  * 		raidz[1|2]=(...)
38  * 		mirror=(...)
39  *
40  * 	Hot spares
41  *
42  * While the underlying implementation supports it, group vdevs cannot contain
43  * other group vdevs.  All userland verification of devices is contained within
44  * this file.  If successful, the nvlist returned can be passed directly to the
45  * kernel; we've done as much verification as possible in userland.
46  *
47  * Hot spares are a special case, and passed down as an array of disk vdevs, at
48  * the same level as the root of the vdev tree.
49  *
50  * The only function exported by this file is 'make_root_vdev'.  The
51  * function performs several passes:
52  *
53  * 	1. Construct the vdev specification.  Performs syntax validation and
54  *         makes sure each device is valid.
55  * 	2. Check for devices in use.  Using libdiskmgt, makes sure that no
56  *         devices are also in use.  Some can be overridden using the 'force'
57  *         flag, others cannot.
58  * 	3. Check for replication errors if the 'force' flag is not specified.
59  *         validates that the replication level is consistent across the
60  *         entire pool.
61  * 	4. Call libzfs to label any whole disks with an EFI label.
62  */
63 
64 #include <assert.h>
65 #include <devid.h>
66 #include <errno.h>
67 #include <fcntl.h>
68 #include <libdiskmgt.h>
69 #include <libintl.h>
70 #include <libnvpair.h>
71 #include <limits.h>
72 #include <stdio.h>
73 #include <string.h>
74 #include <unistd.h>
75 #include <sys/efi_partition.h>
76 #include <sys/stat.h>
77 #include <sys/vtoc.h>
78 #include <sys/mntent.h>
79 
80 #include "zpool_util.h"
81 
82 #define	BACKUP_SLICE	"s2"
83 
84 /*
85  * For any given vdev specification, we can have multiple errors.  The
86  * vdev_error() function keeps track of whether we have seen an error yet, and
87  * prints out a header if its the first error we've seen.
88  */
89 boolean_t error_seen;
90 boolean_t is_force;
91 
92 /*PRINTFLIKE1*/
93 static void
94 vdev_error(const char *fmt, ...)
95 {
96 	va_list ap;
97 
98 	if (!error_seen) {
99 		(void) fprintf(stderr, gettext("invalid vdev specification\n"));
100 		if (!is_force)
101 			(void) fprintf(stderr, gettext("use '-f' to override "
102 			    "the following errors:\n"));
103 		else
104 			(void) fprintf(stderr, gettext("the following errors "
105 			    "must be manually repaired:\n"));
106 		error_seen = B_TRUE;
107 	}
108 
109 	va_start(ap, fmt);
110 	(void) vfprintf(stderr, fmt, ap);
111 	va_end(ap);
112 }
113 
114 static void
115 libdiskmgt_error(int error)
116 {
117 	/*
118 	 * ENXIO/ENODEV is a valid error message if the device doesn't live in
119 	 * /dev/dsk.  Don't bother printing an error message in this case.
120 	 */
121 	if (error == ENXIO || error == ENODEV)
122 		return;
123 
124 	(void) fprintf(stderr, gettext("warning: device in use checking "
125 	    "failed: %s\n"), strerror(error));
126 }
127 
128 /*
129  * Validate a device, passing the bulk of the work off to libdiskmgt.
130  */
131 static int
132 check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare)
133 {
134 	char *msg;
135 	int error = 0;
136 	dm_who_type_t who;
137 
138 	if (force)
139 		who = DM_WHO_ZPOOL_FORCE;
140 	else if (isspare)
141 		who = DM_WHO_ZPOOL_SPARE;
142 	else
143 		who = DM_WHO_ZPOOL;
144 
145 	if (dm_inuse((char *)path, &msg, who, &error) || error) {
146 		if (error != 0) {
147 			libdiskmgt_error(error);
148 			return (0);
149 		} else {
150 			vdev_error("%s", msg);
151 			free(msg);
152 			return (-1);
153 		}
154 	}
155 
156 	/*
157 	 * If we're given a whole disk, ignore overlapping slices since we're
158 	 * about to label it anyway.
159 	 */
160 	error = 0;
161 	if (!wholedisk && !force &&
162 	    (dm_isoverlapping((char *)path, &msg, &error) || error)) {
163 		if (error == 0) {
164 			/* dm_isoverlapping returned -1 */
165 			vdev_error(gettext("%s overlaps with %s\n"), path, msg);
166 			free(msg);
167 			return (-1);
168 		} else if (error != ENODEV) {
169 			/* libdiskmgt's devcache only handles physical drives */
170 			libdiskmgt_error(error);
171 			return (0);
172 		}
173 	}
174 
175 	return (0);
176 }
177 
178 
179 /*
180  * Validate a whole disk.  Iterate over all slices on the disk and make sure
181  * that none is in use by calling check_slice().
182  */
183 static int
184 check_disk(const char *name, dm_descriptor_t disk, int force, int isspare)
185 {
186 	dm_descriptor_t *drive, *media, *slice;
187 	int err = 0;
188 	int i;
189 	int ret;
190 
191 	/*
192 	 * Get the drive associated with this disk.  This should never fail,
193 	 * because we already have an alias handle open for the device.
194 	 */
195 	if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE,
196 	    &err)) == NULL || *drive == NULL) {
197 		if (err)
198 			libdiskmgt_error(err);
199 		return (0);
200 	}
201 
202 	if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA,
203 	    &err)) == NULL) {
204 		dm_free_descriptors(drive);
205 		if (err)
206 			libdiskmgt_error(err);
207 		return (0);
208 	}
209 
210 	dm_free_descriptors(drive);
211 
212 	/*
213 	 * It is possible that the user has specified a removable media drive,
214 	 * and the media is not present.
215 	 */
216 	if (*media == NULL) {
217 		dm_free_descriptors(media);
218 		vdev_error(gettext("'%s' has no media in drive\n"), name);
219 		return (-1);
220 	}
221 
222 	if ((slice = dm_get_associated_descriptors(*media, DM_SLICE,
223 	    &err)) == NULL) {
224 		dm_free_descriptors(media);
225 		if (err)
226 			libdiskmgt_error(err);
227 		return (0);
228 	}
229 
230 	dm_free_descriptors(media);
231 
232 	ret = 0;
233 
234 	/*
235 	 * Iterate over all slices and report any errors.  We don't care about
236 	 * overlapping slices because we are using the whole disk.
237 	 */
238 	for (i = 0; slice[i] != NULL; i++) {
239 		char *name = dm_get_name(slice[i], &err);
240 
241 		if (check_slice(name, force, B_TRUE, isspare) != 0)
242 			ret = -1;
243 
244 		dm_free_name(name);
245 	}
246 
247 	dm_free_descriptors(slice);
248 	return (ret);
249 }
250 
251 /*
252  * Validate a device.
253  */
254 static int
255 check_device(const char *path, boolean_t force, boolean_t isspare)
256 {
257 	dm_descriptor_t desc;
258 	int err;
259 	char *dev;
260 
261 	/*
262 	 * For whole disks, libdiskmgt does not include the leading dev path.
263 	 */
264 	dev = strrchr(path, '/');
265 	assert(dev != NULL);
266 	dev++;
267 	if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) {
268 		err = check_disk(path, desc, force, isspare);
269 		dm_free_descriptor(desc);
270 		return (err);
271 	}
272 
273 	return (check_slice(path, force, B_FALSE, isspare));
274 }
275 
276 /*
277  * Check that a file is valid.  All we can do in this case is check that it's
278  * not in use by another pool, and not in use by swap.
279  */
280 static int
281 check_file(const char *file, boolean_t force, boolean_t isspare)
282 {
283 	char  *name;
284 	int fd;
285 	int ret = 0;
286 	int err;
287 	pool_state_t state;
288 	boolean_t inuse;
289 
290 	if (dm_inuse_swap(file, &err)) {
291 		if (err)
292 			libdiskmgt_error(err);
293 		else
294 			vdev_error(gettext("%s is currently used by swap. "
295 			    "Please see swap(1M).\n"), file);
296 		return (-1);
297 	}
298 
299 	if ((fd = open(file, O_RDONLY)) < 0)
300 		return (0);
301 
302 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
303 		const char *desc;
304 
305 		switch (state) {
306 		case POOL_STATE_ACTIVE:
307 			desc = gettext("active");
308 			break;
309 
310 		case POOL_STATE_EXPORTED:
311 			desc = gettext("exported");
312 			break;
313 
314 		case POOL_STATE_POTENTIALLY_ACTIVE:
315 			desc = gettext("potentially active");
316 			break;
317 
318 		default:
319 			desc = gettext("unknown");
320 			break;
321 		}
322 
323 		/*
324 		 * Allow hot spares to be shared between pools.
325 		 */
326 		if (state == POOL_STATE_SPARE && isspare)
327 			return (0);
328 
329 		if (state == POOL_STATE_ACTIVE ||
330 		    state == POOL_STATE_SPARE || !force) {
331 			switch (state) {
332 			case POOL_STATE_SPARE:
333 				vdev_error(gettext("%s is reserved as a hot "
334 				    "spare for pool %s\n"), file, name);
335 				break;
336 			default:
337 				vdev_error(gettext("%s is part of %s pool "
338 				    "'%s'\n"), file, desc, name);
339 				break;
340 			}
341 			ret = -1;
342 		}
343 
344 		free(name);
345 	}
346 
347 	(void) close(fd);
348 	return (ret);
349 }
350 
351 
352 /*
353  * By "whole disk" we mean an entire physical disk (something we can
354  * label, toggle the write cache on, etc.) as opposed to the full
355  * capacity of a pseudo-device such as lofi or did.  We act as if we
356  * are labeling the disk, which should be a pretty good test of whether
357  * it's a viable device or not.  Returns B_TRUE if it is and B_FALSE if
358  * it isn't.
359  */
360 static boolean_t
361 is_whole_disk(const char *arg)
362 {
363 	struct dk_gpt *label;
364 	int	fd;
365 	char	path[MAXPATHLEN];
366 
367 	(void) snprintf(path, sizeof (path), "%s%s%s",
368 	    ZFS_RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE);
369 	if ((fd = open(path, O_RDWR | O_NDELAY)) < 0)
370 		return (B_FALSE);
371 	if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
372 		(void) close(fd);
373 		return (B_FALSE);
374 	}
375 	efi_free(label);
376 	(void) close(fd);
377 	return (B_TRUE);
378 }
379 
380 /*
381  * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
382  * device, fill in the device id to make a complete nvlist.  Valid forms for a
383  * leaf vdev are:
384  *
385  * 	/dev/dsk/xxx	Complete disk path
386  * 	/xxx		Full path to file
387  * 	xxx		Shorthand for /dev/dsk/xxx
388  */
389 static nvlist_t *
390 make_leaf_vdev(const char *arg, uint64_t is_log)
391 {
392 	char path[MAXPATHLEN];
393 	struct stat64 statbuf;
394 	nvlist_t *vdev = NULL;
395 	char *type = NULL;
396 	boolean_t wholedisk = B_FALSE;
397 
398 	/*
399 	 * Determine what type of vdev this is, and put the full path into
400 	 * 'path'.  We detect whether this is a device of file afterwards by
401 	 * checking the st_mode of the file.
402 	 */
403 	if (arg[0] == '/') {
404 		/*
405 		 * Complete device or file path.  Exact type is determined by
406 		 * examining the file descriptor afterwards.
407 		 */
408 		wholedisk = is_whole_disk(arg);
409 		if (!wholedisk && (stat64(arg, &statbuf) != 0)) {
410 			(void) fprintf(stderr,
411 			    gettext("cannot open '%s': %s\n"),
412 			    arg, strerror(errno));
413 			return (NULL);
414 		}
415 
416 		(void) strlcpy(path, arg, sizeof (path));
417 	} else {
418 		/*
419 		 * This may be a short path for a device, or it could be total
420 		 * gibberish.  Check to see if it's a known device in
421 		 * /dev/dsk/.  As part of this check, see if we've been given a
422 		 * an entire disk (minus the slice number).
423 		 */
424 		(void) snprintf(path, sizeof (path), "%s/%s", ZFS_DISK_ROOT,
425 		    arg);
426 		wholedisk = is_whole_disk(path);
427 		if (!wholedisk && (stat64(path, &statbuf) != 0)) {
428 			/*
429 			 * If we got ENOENT, then the user gave us
430 			 * gibberish, so try to direct them with a
431 			 * reasonable error message.  Otherwise,
432 			 * regurgitate strerror() since it's the best we
433 			 * can do.
434 			 */
435 			if (errno == ENOENT) {
436 				(void) fprintf(stderr,
437 				    gettext("cannot open '%s': no such "
438 				    "device in %s\n"), arg, ZFS_DISK_ROOT);
439 				(void) fprintf(stderr,
440 				    gettext("must be a full path or "
441 				    "shorthand device name\n"));
442 				return (NULL);
443 			} else {
444 				(void) fprintf(stderr,
445 				    gettext("cannot open '%s': %s\n"),
446 				    path, strerror(errno));
447 				return (NULL);
448 			}
449 		}
450 	}
451 
452 	/*
453 	 * Determine whether this is a device or a file.
454 	 */
455 	if (wholedisk || S_ISBLK(statbuf.st_mode)) {
456 		type = VDEV_TYPE_DISK;
457 	} else if (S_ISREG(statbuf.st_mode)) {
458 		type = VDEV_TYPE_FILE;
459 	} else {
460 		(void) fprintf(stderr, gettext("cannot use '%s': must be a "
461 		    "block device or regular file\n"), path);
462 		return (NULL);
463 	}
464 
465 	/*
466 	 * Finally, we have the complete device or file, and we know that it is
467 	 * acceptable to use.  Construct the nvlist to describe this vdev.  All
468 	 * vdevs have a 'path' element, and devices also have a 'devid' element.
469 	 */
470 	verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
471 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
472 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
473 	verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
474 	if (strcmp(type, VDEV_TYPE_DISK) == 0)
475 		verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
476 		    (uint64_t)wholedisk) == 0);
477 
478 	/*
479 	 * For a whole disk, defer getting its devid until after labeling it.
480 	 */
481 	if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
482 		/*
483 		 * Get the devid for the device.
484 		 */
485 		int fd;
486 		ddi_devid_t devid;
487 		char *minor = NULL, *devid_str = NULL;
488 
489 		if ((fd = open(path, O_RDONLY)) < 0) {
490 			(void) fprintf(stderr, gettext("cannot open '%s': "
491 			    "%s\n"), path, strerror(errno));
492 			nvlist_free(vdev);
493 			return (NULL);
494 		}
495 
496 		if (devid_get(fd, &devid) == 0) {
497 			if (devid_get_minor_name(fd, &minor) == 0 &&
498 			    (devid_str = devid_str_encode(devid, minor)) !=
499 			    NULL) {
500 				verify(nvlist_add_string(vdev,
501 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
502 			}
503 			if (devid_str != NULL)
504 				devid_str_free(devid_str);
505 			if (minor != NULL)
506 				devid_str_free(minor);
507 			devid_free(devid);
508 		}
509 
510 		(void) close(fd);
511 	}
512 
513 	return (vdev);
514 }
515 
516 /*
517  * Go through and verify the replication level of the pool is consistent.
518  * Performs the following checks:
519  *
520  * 	For the new spec, verifies that devices in mirrors and raidz are the
521  * 	same size.
522  *
523  * 	If the current configuration already has inconsistent replication
524  * 	levels, ignore any other potential problems in the new spec.
525  *
526  * 	Otherwise, make sure that the current spec (if there is one) and the new
527  * 	spec have consistent replication levels.
528  */
529 typedef struct replication_level {
530 	char *zprl_type;
531 	uint64_t zprl_children;
532 	uint64_t zprl_parity;
533 } replication_level_t;
534 
535 #define	ZPOOL_FUZZ	(16 * 1024 * 1024)
536 
537 /*
538  * Given a list of toplevel vdevs, return the current replication level.  If
539  * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
540  * an error message will be displayed for each self-inconsistent vdev.
541  */
542 static replication_level_t *
543 get_replication(nvlist_t *nvroot, boolean_t fatal)
544 {
545 	nvlist_t **top;
546 	uint_t t, toplevels;
547 	nvlist_t **child;
548 	uint_t c, children;
549 	nvlist_t *nv;
550 	char *type;
551 	replication_level_t lastrep = {0};
552 	replication_level_t rep;
553 	replication_level_t *ret;
554 	boolean_t dontreport;
555 
556 	ret = safe_malloc(sizeof (replication_level_t));
557 
558 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
559 	    &top, &toplevels) == 0);
560 
561 	for (t = 0; t < toplevels; t++) {
562 		uint64_t is_log = B_FALSE;
563 
564 		nv = top[t];
565 
566 		/*
567 		 * For separate logs we ignore the top level vdev replication
568 		 * constraints.
569 		 */
570 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
571 		if (is_log)
572 			continue;
573 
574 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
575 		    &type) == 0);
576 		if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
577 		    &child, &children) != 0) {
578 			/*
579 			 * This is a 'file' or 'disk' vdev.
580 			 */
581 			rep.zprl_type = type;
582 			rep.zprl_children = 1;
583 			rep.zprl_parity = 0;
584 		} else {
585 			uint64_t vdev_size;
586 
587 			/*
588 			 * This is a mirror or RAID-Z vdev.  Go through and make
589 			 * sure the contents are all the same (files vs. disks),
590 			 * keeping track of the number of elements in the
591 			 * process.
592 			 *
593 			 * We also check that the size of each vdev (if it can
594 			 * be determined) is the same.
595 			 */
596 			rep.zprl_type = type;
597 			rep.zprl_children = 0;
598 
599 			if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
600 				verify(nvlist_lookup_uint64(nv,
601 				    ZPOOL_CONFIG_NPARITY,
602 				    &rep.zprl_parity) == 0);
603 				assert(rep.zprl_parity != 0);
604 			} else {
605 				rep.zprl_parity = 0;
606 			}
607 
608 			/*
609 			 * The 'dontreport' variable indicates that we've
610 			 * already reported an error for this spec, so don't
611 			 * bother doing it again.
612 			 */
613 			type = NULL;
614 			dontreport = 0;
615 			vdev_size = -1ULL;
616 			for (c = 0; c < children; c++) {
617 				nvlist_t *cnv = child[c];
618 				char *path;
619 				struct stat64 statbuf;
620 				uint64_t size = -1ULL;
621 				char *childtype;
622 				int fd, err;
623 
624 				rep.zprl_children++;
625 
626 				verify(nvlist_lookup_string(cnv,
627 				    ZPOOL_CONFIG_TYPE, &childtype) == 0);
628 
629 				/*
630 				 * If this is a replacing or spare vdev, then
631 				 * get the real first child of the vdev.
632 				 */
633 				if (strcmp(childtype,
634 				    VDEV_TYPE_REPLACING) == 0 ||
635 				    strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
636 					nvlist_t **rchild;
637 					uint_t rchildren;
638 
639 					verify(nvlist_lookup_nvlist_array(cnv,
640 					    ZPOOL_CONFIG_CHILDREN, &rchild,
641 					    &rchildren) == 0);
642 					assert(rchildren == 2);
643 					cnv = rchild[0];
644 
645 					verify(nvlist_lookup_string(cnv,
646 					    ZPOOL_CONFIG_TYPE,
647 					    &childtype) == 0);
648 				}
649 
650 				verify(nvlist_lookup_string(cnv,
651 				    ZPOOL_CONFIG_PATH, &path) == 0);
652 
653 				/*
654 				 * If we have a raidz/mirror that combines disks
655 				 * with files, report it as an error.
656 				 */
657 				if (!dontreport && type != NULL &&
658 				    strcmp(type, childtype) != 0) {
659 					if (ret != NULL)
660 						free(ret);
661 					ret = NULL;
662 					if (fatal)
663 						vdev_error(gettext(
664 						    "mismatched replication "
665 						    "level: %s contains both "
666 						    "files and devices\n"),
667 						    rep.zprl_type);
668 					else
669 						return (NULL);
670 					dontreport = B_TRUE;
671 				}
672 
673 				/*
674 				 * According to stat(2), the value of 'st_size'
675 				 * is undefined for block devices and character
676 				 * devices.  But there is no effective way to
677 				 * determine the real size in userland.
678 				 *
679 				 * Instead, we'll take advantage of an
680 				 * implementation detail of spec_size().  If the
681 				 * device is currently open, then we (should)
682 				 * return a valid size.
683 				 *
684 				 * If we still don't get a valid size (indicated
685 				 * by a size of 0 or MAXOFFSET_T), then ignore
686 				 * this device altogether.
687 				 */
688 				if ((fd = open(path, O_RDONLY)) >= 0) {
689 					err = fstat64(fd, &statbuf);
690 					(void) close(fd);
691 				} else {
692 					err = stat64(path, &statbuf);
693 				}
694 
695 				if (err != 0 ||
696 				    statbuf.st_size == 0 ||
697 				    statbuf.st_size == MAXOFFSET_T)
698 					continue;
699 
700 				size = statbuf.st_size;
701 
702 				/*
703 				 * Also make sure that devices and
704 				 * slices have a consistent size.  If
705 				 * they differ by a significant amount
706 				 * (~16MB) then report an error.
707 				 */
708 				if (!dontreport &&
709 				    (vdev_size != -1ULL &&
710 				    (labs(size - vdev_size) >
711 				    ZPOOL_FUZZ))) {
712 					if (ret != NULL)
713 						free(ret);
714 					ret = NULL;
715 					if (fatal)
716 						vdev_error(gettext(
717 						    "%s contains devices of "
718 						    "different sizes\n"),
719 						    rep.zprl_type);
720 					else
721 						return (NULL);
722 					dontreport = B_TRUE;
723 				}
724 
725 				type = childtype;
726 				vdev_size = size;
727 			}
728 		}
729 
730 		/*
731 		 * At this point, we have the replication of the last toplevel
732 		 * vdev in 'rep'.  Compare it to 'lastrep' to see if its
733 		 * different.
734 		 */
735 		if (lastrep.zprl_type != NULL) {
736 			if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
737 				if (ret != NULL)
738 					free(ret);
739 				ret = NULL;
740 				if (fatal)
741 					vdev_error(gettext(
742 					    "mismatched replication level: "
743 					    "both %s and %s vdevs are "
744 					    "present\n"),
745 					    lastrep.zprl_type, rep.zprl_type);
746 				else
747 					return (NULL);
748 			} else if (lastrep.zprl_parity != rep.zprl_parity) {
749 				if (ret)
750 					free(ret);
751 				ret = NULL;
752 				if (fatal)
753 					vdev_error(gettext(
754 					    "mismatched replication level: "
755 					    "both %llu and %llu device parity "
756 					    "%s vdevs are present\n"),
757 					    lastrep.zprl_parity,
758 					    rep.zprl_parity,
759 					    rep.zprl_type);
760 				else
761 					return (NULL);
762 			} else if (lastrep.zprl_children != rep.zprl_children) {
763 				if (ret)
764 					free(ret);
765 				ret = NULL;
766 				if (fatal)
767 					vdev_error(gettext(
768 					    "mismatched replication level: "
769 					    "both %llu-way and %llu-way %s "
770 					    "vdevs are present\n"),
771 					    lastrep.zprl_children,
772 					    rep.zprl_children,
773 					    rep.zprl_type);
774 				else
775 					return (NULL);
776 			}
777 		}
778 		lastrep = rep;
779 	}
780 
781 	if (ret != NULL)
782 		*ret = rep;
783 
784 	return (ret);
785 }
786 
787 /*
788  * Check the replication level of the vdev spec against the current pool.  Calls
789  * get_replication() to make sure the new spec is self-consistent.  If the pool
790  * has a consistent replication level, then we ignore any errors.  Otherwise,
791  * report any difference between the two.
792  */
793 static int
794 check_replication(nvlist_t *config, nvlist_t *newroot)
795 {
796 	nvlist_t **child;
797 	uint_t	children;
798 	replication_level_t *current = NULL, *new;
799 	int ret;
800 
801 	/*
802 	 * If we have a current pool configuration, check to see if it's
803 	 * self-consistent.  If not, simply return success.
804 	 */
805 	if (config != NULL) {
806 		nvlist_t *nvroot;
807 
808 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
809 		    &nvroot) == 0);
810 		if ((current = get_replication(nvroot, B_FALSE)) == NULL)
811 			return (0);
812 	}
813 	/*
814 	 * for spares there may be no children, and therefore no
815 	 * replication level to check
816 	 */
817 	if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
818 	    &child, &children) != 0) || (children == 0)) {
819 		free(current);
820 		return (0);
821 	}
822 
823 	/*
824 	 * If all we have is logs then there's no replication level to check.
825 	 */
826 	if (num_logs(newroot) == children) {
827 		free(current);
828 		return (0);
829 	}
830 
831 	/*
832 	 * Get the replication level of the new vdev spec, reporting any
833 	 * inconsistencies found.
834 	 */
835 	if ((new = get_replication(newroot, B_TRUE)) == NULL) {
836 		free(current);
837 		return (-1);
838 	}
839 
840 	/*
841 	 * Check to see if the new vdev spec matches the replication level of
842 	 * the current pool.
843 	 */
844 	ret = 0;
845 	if (current != NULL) {
846 		if (strcmp(current->zprl_type, new->zprl_type) != 0) {
847 			vdev_error(gettext(
848 			    "mismatched replication level: pool uses %s "
849 			    "and new vdev is %s\n"),
850 			    current->zprl_type, new->zprl_type);
851 			ret = -1;
852 		} else if (current->zprl_parity != new->zprl_parity) {
853 			vdev_error(gettext(
854 			    "mismatched replication level: pool uses %llu "
855 			    "device parity and new vdev uses %llu\n"),
856 			    current->zprl_parity, new->zprl_parity);
857 			ret = -1;
858 		} else if (current->zprl_children != new->zprl_children) {
859 			vdev_error(gettext(
860 			    "mismatched replication level: pool uses %llu-way "
861 			    "%s and new vdev uses %llu-way %s\n"),
862 			    current->zprl_children, current->zprl_type,
863 			    new->zprl_children, new->zprl_type);
864 			ret = -1;
865 		}
866 	}
867 
868 	free(new);
869 	if (current != NULL)
870 		free(current);
871 
872 	return (ret);
873 }
874 
875 /*
876  * Go through and find any whole disks in the vdev specification, labelling them
877  * as appropriate.  When constructing the vdev spec, we were unable to open this
878  * device in order to provide a devid.  Now that we have labelled the disk and
879  * know the pool slice is valid, we can construct the devid now.
880  *
881  * If the disk was already labeled with an EFI label, we will have gotten the
882  * devid already (because we were able to open the whole disk).  Otherwise, we
883  * need to get the devid after we label the disk.
884  */
885 static int
886 make_disks(zpool_handle_t *zhp, nvlist_t *nv, zpool_boot_label_t boot_type,
887     uint64_t boot_size)
888 {
889 	nvlist_t **child;
890 	uint_t c, children;
891 	char *type, *path, *diskname;
892 	char buf[MAXPATHLEN];
893 	uint64_t wholedisk;
894 	int fd;
895 	int ret;
896 	int slice;
897 	ddi_devid_t devid;
898 	char *minor = NULL, *devid_str = NULL;
899 
900 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
901 
902 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
903 	    &child, &children) != 0) {
904 
905 		if (strcmp(type, VDEV_TYPE_DISK) != 0)
906 			return (0);
907 
908 		/*
909 		 * We have a disk device.  Get the path to the device
910 		 * and see if it's a whole disk by appending the backup
911 		 * slice and stat()ing the device.
912 		 */
913 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
914 
915 		diskname = strrchr(path, '/');
916 		assert(diskname != NULL);
917 		diskname++;
918 
919 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
920 		    &wholedisk) != 0 || !wholedisk) {
921 			/*
922 			 * This is not whole disk, return error if
923 			 * boot partition creation was requested
924 			 */
925 			if (boot_type == ZPOOL_CREATE_BOOT_LABEL) {
926 				(void) fprintf(stderr,
927 				    gettext("creating boot partition is only "
928 				    "supported on whole disk vdevs: %s\n"),
929 				    diskname);
930 				return (-1);
931 			}
932 			return (0);
933 		}
934 
935 		ret = zpool_label_disk(g_zfs, zhp, diskname, boot_type,
936 		    boot_size, &slice);
937 		if (ret == -1)
938 			return (ret);
939 
940 		/*
941 		 * Fill in the devid, now that we've labeled the disk.
942 		 */
943 		(void) snprintf(buf, sizeof (buf), "%ss%d", path, slice);
944 		if ((fd = open(buf, O_RDONLY)) < 0) {
945 			(void) fprintf(stderr,
946 			    gettext("cannot open '%s': %s\n"),
947 			    buf, strerror(errno));
948 			return (-1);
949 		}
950 
951 		if (devid_get(fd, &devid) == 0) {
952 			if (devid_get_minor_name(fd, &minor) == 0 &&
953 			    (devid_str = devid_str_encode(devid, minor)) !=
954 			    NULL) {
955 				verify(nvlist_add_string(nv,
956 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
957 			}
958 			if (devid_str != NULL)
959 				devid_str_free(devid_str);
960 			if (minor != NULL)
961 				devid_str_free(minor);
962 			devid_free(devid);
963 		}
964 
965 		/*
966 		 * Update the path to refer to the pool slice.  The presence of
967 		 * the 'whole_disk' field indicates to the CLI that we should
968 		 * chop off the slice number when displaying the device in
969 		 * future output.
970 		 */
971 		verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
972 
973 		(void) close(fd);
974 
975 		return (0);
976 	}
977 
978 	/* illumos kernel does not support booting from multi-vdev pools. */
979 	if ((boot_type == ZPOOL_CREATE_BOOT_LABEL)) {
980 		if ((strcmp(type, VDEV_TYPE_ROOT) == 0) && children > 1) {
981 			(void) fprintf(stderr, gettext("boot pool "
982 			    "can not have more than one vdev\n"));
983 			return (-1);
984 		}
985 	}
986 
987 	for (c = 0; c < children; c++) {
988 		ret = make_disks(zhp, child[c], boot_type, boot_size);
989 		if (ret != 0)
990 			return (ret);
991 	}
992 
993 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
994 	    &child, &children) == 0)
995 		for (c = 0; c < children; c++) {
996 			ret = make_disks(zhp, child[c], boot_type, boot_size);
997 			if (ret != 0)
998 				return (ret);
999 		}
1000 
1001 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1002 	    &child, &children) == 0)
1003 		for (c = 0; c < children; c++) {
1004 			ret = make_disks(zhp, child[c], boot_type, boot_size);
1005 			if (ret != 0)
1006 				return (ret);
1007 		}
1008 
1009 	return (0);
1010 }
1011 
1012 /*
1013  * Determine if the given path is a hot spare within the given configuration.
1014  */
1015 static boolean_t
1016 is_spare(nvlist_t *config, const char *path)
1017 {
1018 	int fd;
1019 	pool_state_t state;
1020 	char *name = NULL;
1021 	nvlist_t *label;
1022 	uint64_t guid, spareguid;
1023 	nvlist_t *nvroot;
1024 	nvlist_t **spares;
1025 	uint_t i, nspares;
1026 	boolean_t inuse;
1027 
1028 	if ((fd = open(path, O_RDONLY)) < 0)
1029 		return (B_FALSE);
1030 
1031 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
1032 	    !inuse ||
1033 	    state != POOL_STATE_SPARE ||
1034 	    zpool_read_label(fd, &label) != 0) {
1035 		free(name);
1036 		(void) close(fd);
1037 		return (B_FALSE);
1038 	}
1039 	free(name);
1040 	(void) close(fd);
1041 
1042 	verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
1043 	nvlist_free(label);
1044 
1045 	verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1046 	    &nvroot) == 0);
1047 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1048 	    &spares, &nspares) == 0) {
1049 		for (i = 0; i < nspares; i++) {
1050 			verify(nvlist_lookup_uint64(spares[i],
1051 			    ZPOOL_CONFIG_GUID, &spareguid) == 0);
1052 			if (spareguid == guid)
1053 				return (B_TRUE);
1054 		}
1055 	}
1056 
1057 	return (B_FALSE);
1058 }
1059 
1060 /*
1061  * Go through and find any devices that are in use.  We rely on libdiskmgt for
1062  * the majority of this task.
1063  */
1064 static boolean_t
1065 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1066     boolean_t replacing, boolean_t isspare)
1067 {
1068 	nvlist_t **child;
1069 	uint_t c, children;
1070 	char *type, *path;
1071 	int ret = 0;
1072 	char buf[MAXPATHLEN];
1073 	uint64_t wholedisk;
1074 	boolean_t anyinuse = B_FALSE;
1075 
1076 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1077 
1078 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1079 	    &child, &children) != 0) {
1080 
1081 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1082 
1083 		/*
1084 		 * As a generic check, we look to see if this is a replace of a
1085 		 * hot spare within the same pool.  If so, we allow it
1086 		 * regardless of what libdiskmgt or zpool_in_use() says.
1087 		 */
1088 		if (replacing) {
1089 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1090 			    &wholedisk) == 0 && wholedisk)
1091 				(void) snprintf(buf, sizeof (buf), "%ss0",
1092 				    path);
1093 			else
1094 				(void) strlcpy(buf, path, sizeof (buf));
1095 
1096 			if (is_spare(config, buf))
1097 				return (B_FALSE);
1098 		}
1099 
1100 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1101 			ret = check_device(path, force, isspare);
1102 		else if (strcmp(type, VDEV_TYPE_FILE) == 0)
1103 			ret = check_file(path, force, isspare);
1104 
1105 		return (ret != 0);
1106 	}
1107 
1108 	for (c = 0; c < children; c++)
1109 		if (is_device_in_use(config, child[c], force, replacing,
1110 		    B_FALSE))
1111 			anyinuse = B_TRUE;
1112 
1113 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1114 	    &child, &children) == 0)
1115 		for (c = 0; c < children; c++)
1116 			if (is_device_in_use(config, child[c], force, replacing,
1117 			    B_TRUE))
1118 				anyinuse = B_TRUE;
1119 
1120 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1121 	    &child, &children) == 0)
1122 		for (c = 0; c < children; c++)
1123 			if (is_device_in_use(config, child[c], force, replacing,
1124 			    B_FALSE))
1125 				anyinuse = B_TRUE;
1126 
1127 	return (anyinuse);
1128 }
1129 
1130 static const char *
1131 is_grouping(const char *type, int *mindev, int *maxdev)
1132 {
1133 	if (strncmp(type, "raidz", 5) == 0) {
1134 		const char *p = type + 5;
1135 		char *end;
1136 		long nparity;
1137 
1138 		if (*p == '\0') {
1139 			nparity = 1;
1140 		} else if (*p == '0') {
1141 			return (NULL); /* no zero prefixes allowed */
1142 		} else {
1143 			errno = 0;
1144 			nparity = strtol(p, &end, 10);
1145 			if (errno != 0 || nparity < 1 || nparity >= 255 ||
1146 			    *end != '\0')
1147 				return (NULL);
1148 		}
1149 
1150 		if (mindev != NULL)
1151 			*mindev = nparity + 1;
1152 		if (maxdev != NULL)
1153 			*maxdev = 255;
1154 		return (VDEV_TYPE_RAIDZ);
1155 	}
1156 
1157 	if (maxdev != NULL)
1158 		*maxdev = INT_MAX;
1159 
1160 	if (strcmp(type, "mirror") == 0) {
1161 		if (mindev != NULL)
1162 			*mindev = 2;
1163 		return (VDEV_TYPE_MIRROR);
1164 	}
1165 
1166 	if (strcmp(type, "spare") == 0) {
1167 		if (mindev != NULL)
1168 			*mindev = 1;
1169 		return (VDEV_TYPE_SPARE);
1170 	}
1171 
1172 	if (strcmp(type, "log") == 0) {
1173 		if (mindev != NULL)
1174 			*mindev = 1;
1175 		return (VDEV_TYPE_LOG);
1176 	}
1177 
1178 	if (strcmp(type, "cache") == 0) {
1179 		if (mindev != NULL)
1180 			*mindev = 1;
1181 		return (VDEV_TYPE_L2CACHE);
1182 	}
1183 
1184 	return (NULL);
1185 }
1186 
1187 /*
1188  * Construct a syntactically valid vdev specification,
1189  * and ensure that all devices and files exist and can be opened.
1190  * Note: we don't bother freeing anything in the error paths
1191  * because the program is just going to exit anyway.
1192  */
1193 nvlist_t *
1194 construct_spec(int argc, char **argv)
1195 {
1196 	nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1197 	int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1198 	const char *type;
1199 	uint64_t is_log;
1200 	boolean_t seen_logs;
1201 
1202 	top = NULL;
1203 	toplevels = 0;
1204 	spares = NULL;
1205 	l2cache = NULL;
1206 	nspares = 0;
1207 	nlogs = 0;
1208 	nl2cache = 0;
1209 	is_log = B_FALSE;
1210 	seen_logs = B_FALSE;
1211 
1212 	while (argc > 0) {
1213 		nv = NULL;
1214 
1215 		/*
1216 		 * If it's a mirror or raidz, the subsequent arguments are
1217 		 * its leaves -- until we encounter the next mirror or raidz.
1218 		 */
1219 		if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) {
1220 			nvlist_t **child = NULL;
1221 			int c, children = 0;
1222 
1223 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1224 				if (spares != NULL) {
1225 					(void) fprintf(stderr,
1226 					    gettext("invalid vdev "
1227 					    "specification: 'spare' can be "
1228 					    "specified only once\n"));
1229 					return (NULL);
1230 				}
1231 				is_log = B_FALSE;
1232 			}
1233 
1234 			if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1235 				if (seen_logs) {
1236 					(void) fprintf(stderr,
1237 					    gettext("invalid vdev "
1238 					    "specification: 'log' can be "
1239 					    "specified only once\n"));
1240 					return (NULL);
1241 				}
1242 				seen_logs = B_TRUE;
1243 				is_log = B_TRUE;
1244 				argc--;
1245 				argv++;
1246 				/*
1247 				 * A log is not a real grouping device.
1248 				 * We just set is_log and continue.
1249 				 */
1250 				continue;
1251 			}
1252 
1253 			if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1254 				if (l2cache != NULL) {
1255 					(void) fprintf(stderr,
1256 					    gettext("invalid vdev "
1257 					    "specification: 'cache' can be "
1258 					    "specified only once\n"));
1259 					return (NULL);
1260 				}
1261 				is_log = B_FALSE;
1262 			}
1263 
1264 			if (is_log) {
1265 				if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1266 					(void) fprintf(stderr,
1267 					    gettext("invalid vdev "
1268 					    "specification: unsupported 'log' "
1269 					    "device: %s\n"), type);
1270 					return (NULL);
1271 				}
1272 				nlogs++;
1273 			}
1274 
1275 			for (c = 1; c < argc; c++) {
1276 				if (is_grouping(argv[c], NULL, NULL) != NULL)
1277 					break;
1278 				children++;
1279 				child = realloc(child,
1280 				    children * sizeof (nvlist_t *));
1281 				if (child == NULL)
1282 					zpool_no_memory();
1283 				if ((nv = make_leaf_vdev(argv[c], B_FALSE))
1284 				    == NULL)
1285 					return (NULL);
1286 				child[children - 1] = nv;
1287 			}
1288 
1289 			if (children < mindev) {
1290 				(void) fprintf(stderr, gettext("invalid vdev "
1291 				    "specification: %s requires at least %d "
1292 				    "devices\n"), argv[0], mindev);
1293 				return (NULL);
1294 			}
1295 
1296 			if (children > maxdev) {
1297 				(void) fprintf(stderr, gettext("invalid vdev "
1298 				    "specification: %s supports no more than "
1299 				    "%d devices\n"), argv[0], maxdev);
1300 				return (NULL);
1301 			}
1302 
1303 			argc -= c;
1304 			argv += c;
1305 
1306 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1307 				spares = child;
1308 				nspares = children;
1309 				continue;
1310 			} else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1311 				l2cache = child;
1312 				nl2cache = children;
1313 				continue;
1314 			} else {
1315 				verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1316 				    0) == 0);
1317 				verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1318 				    type) == 0);
1319 				verify(nvlist_add_uint64(nv,
1320 				    ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1321 				if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1322 					verify(nvlist_add_uint64(nv,
1323 					    ZPOOL_CONFIG_NPARITY,
1324 					    mindev - 1) == 0);
1325 				}
1326 				verify(nvlist_add_nvlist_array(nv,
1327 				    ZPOOL_CONFIG_CHILDREN, child,
1328 				    children) == 0);
1329 
1330 				for (c = 0; c < children; c++)
1331 					nvlist_free(child[c]);
1332 				free(child);
1333 			}
1334 		} else {
1335 			/*
1336 			 * We have a device.  Pass off to make_leaf_vdev() to
1337 			 * construct the appropriate nvlist describing the vdev.
1338 			 */
1339 			if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL)
1340 				return (NULL);
1341 			if (is_log)
1342 				nlogs++;
1343 			argc--;
1344 			argv++;
1345 		}
1346 
1347 		toplevels++;
1348 		top = realloc(top, toplevels * sizeof (nvlist_t *));
1349 		if (top == NULL)
1350 			zpool_no_memory();
1351 		top[toplevels - 1] = nv;
1352 	}
1353 
1354 	if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1355 		(void) fprintf(stderr, gettext("invalid vdev "
1356 		    "specification: at least one toplevel vdev must be "
1357 		    "specified\n"));
1358 		return (NULL);
1359 	}
1360 
1361 	if (seen_logs && nlogs == 0) {
1362 		(void) fprintf(stderr, gettext("invalid vdev specification: "
1363 		    "log requires at least 1 device\n"));
1364 		return (NULL);
1365 	}
1366 
1367 	/*
1368 	 * Finally, create nvroot and add all top-level vdevs to it.
1369 	 */
1370 	verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1371 	verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1372 	    VDEV_TYPE_ROOT) == 0);
1373 	verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1374 	    top, toplevels) == 0);
1375 	if (nspares != 0)
1376 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1377 		    spares, nspares) == 0);
1378 	if (nl2cache != 0)
1379 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1380 		    l2cache, nl2cache) == 0);
1381 
1382 	for (t = 0; t < toplevels; t++)
1383 		nvlist_free(top[t]);
1384 	for (t = 0; t < nspares; t++)
1385 		nvlist_free(spares[t]);
1386 	for (t = 0; t < nl2cache; t++)
1387 		nvlist_free(l2cache[t]);
1388 	if (spares)
1389 		free(spares);
1390 	if (l2cache)
1391 		free(l2cache);
1392 	free(top);
1393 
1394 	return (nvroot);
1395 }
1396 
1397 nvlist_t *
1398 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1399     splitflags_t flags, int argc, char **argv)
1400 {
1401 	nvlist_t *newroot = NULL, **child;
1402 	uint_t c, children;
1403 	zpool_boot_label_t boot_type;
1404 
1405 	if (argc > 0) {
1406 		if ((newroot = construct_spec(argc, argv)) == NULL) {
1407 			(void) fprintf(stderr, gettext("Unable to build a "
1408 			    "pool from the specified devices\n"));
1409 			return (NULL);
1410 		}
1411 
1412 		if (zpool_is_bootable(zhp))
1413 			boot_type = ZPOOL_COPY_BOOT_LABEL;
1414 		else
1415 			boot_type = ZPOOL_NO_BOOT_LABEL;
1416 
1417 		if (!flags.dryrun &&
1418 		    make_disks(zhp, newroot, boot_type, 0) != 0) {
1419 			nvlist_free(newroot);
1420 			return (NULL);
1421 		}
1422 
1423 		/* avoid any tricks in the spec */
1424 		verify(nvlist_lookup_nvlist_array(newroot,
1425 		    ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1426 		for (c = 0; c < children; c++) {
1427 			char *path;
1428 			const char *type;
1429 			int min, max;
1430 
1431 			verify(nvlist_lookup_string(child[c],
1432 			    ZPOOL_CONFIG_PATH, &path) == 0);
1433 			if ((type = is_grouping(path, &min, &max)) != NULL) {
1434 				(void) fprintf(stderr, gettext("Cannot use "
1435 				    "'%s' as a device for splitting\n"), type);
1436 				nvlist_free(newroot);
1437 				return (NULL);
1438 			}
1439 		}
1440 	}
1441 
1442 	if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1443 		nvlist_free(newroot);
1444 		return (NULL);
1445 	}
1446 
1447 	return (newroot);
1448 }
1449 
1450 /*
1451  * Get and validate the contents of the given vdev specification.  This ensures
1452  * that the nvlist returned is well-formed, that all the devices exist, and that
1453  * they are not currently in use by any other known consumer.  The 'poolconfig'
1454  * parameter is the current configuration of the pool when adding devices
1455  * existing pool, and is used to perform additional checks, such as changing the
1456  * replication level of the pool.  It can be 'NULL' to indicate that this is a
1457  * new pool.  The 'force' flag controls whether devices should be forcefully
1458  * added, even if they appear in use.
1459  */
1460 nvlist_t *
1461 make_root_vdev(zpool_handle_t *zhp, int force, int check_rep,
1462     boolean_t replacing, boolean_t dryrun, zpool_boot_label_t boot_type,
1463     uint64_t boot_size, int argc, char **argv)
1464 {
1465 	nvlist_t *newroot;
1466 	nvlist_t *poolconfig = NULL;
1467 	is_force = force;
1468 
1469 	/*
1470 	 * Construct the vdev specification.  If this is successful, we know
1471 	 * that we have a valid specification, and that all devices can be
1472 	 * opened.
1473 	 */
1474 	if ((newroot = construct_spec(argc, argv)) == NULL)
1475 		return (NULL);
1476 
1477 	if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL))
1478 		return (NULL);
1479 
1480 	/*
1481 	 * Validate each device to make sure that its not shared with another
1482 	 * subsystem.  We do this even if 'force' is set, because there are some
1483 	 * uses (such as a dedicated dump device) that even '-f' cannot
1484 	 * override.
1485 	 */
1486 	if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
1487 		nvlist_free(newroot);
1488 		return (NULL);
1489 	}
1490 
1491 	/*
1492 	 * Check the replication level of the given vdevs and report any errors
1493 	 * found.  We include the existing pool spec, if any, as we need to
1494 	 * catch changes against the existing replication level.
1495 	 */
1496 	if (check_rep && check_replication(poolconfig, newroot) != 0) {
1497 		nvlist_free(newroot);
1498 		return (NULL);
1499 	}
1500 
1501 	/*
1502 	 * Run through the vdev specification and label any whole disks found.
1503 	 */
1504 	if (!dryrun && make_disks(zhp, newroot, boot_type, boot_size) != 0) {
1505 		nvlist_free(newroot);
1506 		return (NULL);
1507 	}
1508 
1509 	return (newroot);
1510 }
1511