1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, 2015 by Delphix. All rights reserved. 25 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>. 26 */ 27 28 /* 29 * Functions to convert between a list of vdevs and an nvlist representing the 30 * configuration. Each entry in the list can be one of: 31 * 32 * Device vdevs 33 * disk=(path=..., devid=...) 34 * file=(path=...) 35 * 36 * Group vdevs 37 * raidz[1|2]=(...) 38 * mirror=(...) 39 * 40 * Hot spares 41 * 42 * While the underlying implementation supports it, group vdevs cannot contain 43 * other group vdevs. All userland verification of devices is contained within 44 * this file. If successful, the nvlist returned can be passed directly to the 45 * kernel; we've done as much verification as possible in userland. 46 * 47 * Hot spares are a special case, and passed down as an array of disk vdevs, at 48 * the same level as the root of the vdev tree. 49 * 50 * The only function exported by this file is 'make_root_vdev'. The 51 * function performs several passes: 52 * 53 * 1. Construct the vdev specification. Performs syntax validation and 54 * makes sure each device is valid. 55 * 2. Check for devices in use. Using libdiskmgt, makes sure that no 56 * devices are also in use. Some can be overridden using the 'force' 57 * flag, others cannot. 58 * 3. Check for replication errors if the 'force' flag is not specified. 59 * validates that the replication level is consistent across the 60 * entire pool. 61 * 4. Call libzfs to label any whole disks with an EFI label. 62 */ 63 64 #include <assert.h> 65 #include <devid.h> 66 #include <errno.h> 67 #include <fcntl.h> 68 #include <libdiskmgt.h> 69 #include <libintl.h> 70 #include <libnvpair.h> 71 #include <limits.h> 72 #include <stdio.h> 73 #include <string.h> 74 #include <unistd.h> 75 #include <sys/efi_partition.h> 76 #include <sys/stat.h> 77 #include <sys/vtoc.h> 78 #include <sys/mntent.h> 79 80 #include "zpool_util.h" 81 82 #define BACKUP_SLICE "s2" 83 84 /* 85 * For any given vdev specification, we can have multiple errors. The 86 * vdev_error() function keeps track of whether we have seen an error yet, and 87 * prints out a header if its the first error we've seen. 88 */ 89 boolean_t error_seen; 90 boolean_t is_force; 91 92 /*PRINTFLIKE1*/ 93 static void 94 vdev_error(const char *fmt, ...) 95 { 96 va_list ap; 97 98 if (!error_seen) { 99 (void) fprintf(stderr, gettext("invalid vdev specification\n")); 100 if (!is_force) 101 (void) fprintf(stderr, gettext("use '-f' to override " 102 "the following errors:\n")); 103 else 104 (void) fprintf(stderr, gettext("the following errors " 105 "must be manually repaired:\n")); 106 error_seen = B_TRUE; 107 } 108 109 va_start(ap, fmt); 110 (void) vfprintf(stderr, fmt, ap); 111 va_end(ap); 112 } 113 114 static void 115 libdiskmgt_error(int error) 116 { 117 /* 118 * ENXIO/ENODEV is a valid error message if the device doesn't live in 119 * /dev/dsk. Don't bother printing an error message in this case. 120 */ 121 if (error == ENXIO || error == ENODEV) 122 return; 123 124 (void) fprintf(stderr, gettext("warning: device in use checking " 125 "failed: %s\n"), strerror(error)); 126 } 127 128 /* 129 * Validate a device, passing the bulk of the work off to libdiskmgt. 130 */ 131 static int 132 check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare) 133 { 134 char *msg; 135 int error = 0; 136 dm_who_type_t who; 137 138 if (force) 139 who = DM_WHO_ZPOOL_FORCE; 140 else if (isspare) 141 who = DM_WHO_ZPOOL_SPARE; 142 else 143 who = DM_WHO_ZPOOL; 144 145 if (dm_inuse((char *)path, &msg, who, &error) || error) { 146 if (error != 0) { 147 libdiskmgt_error(error); 148 return (0); 149 } else { 150 vdev_error("%s", msg); 151 free(msg); 152 return (-1); 153 } 154 } 155 156 /* 157 * If we're given a whole disk, ignore overlapping slices since we're 158 * about to label it anyway. 159 */ 160 error = 0; 161 if (!wholedisk && !force && 162 (dm_isoverlapping((char *)path, &msg, &error) || error)) { 163 if (error == 0) { 164 /* dm_isoverlapping returned -1 */ 165 vdev_error(gettext("%s overlaps with %s\n"), path, msg); 166 free(msg); 167 return (-1); 168 } else if (error != ENODEV) { 169 /* libdiskmgt's devcache only handles physical drives */ 170 libdiskmgt_error(error); 171 return (0); 172 } 173 } 174 175 return (0); 176 } 177 178 179 /* 180 * Validate a whole disk. Iterate over all slices on the disk and make sure 181 * that none is in use by calling check_slice(). 182 */ 183 static int 184 check_disk(const char *name, dm_descriptor_t disk, int force, int isspare) 185 { 186 dm_descriptor_t *drive, *media, *slice; 187 int err = 0; 188 int i; 189 int ret; 190 191 /* 192 * Get the drive associated with this disk. This should never fail, 193 * because we already have an alias handle open for the device. 194 */ 195 if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE, 196 &err)) == NULL || *drive == NULL) { 197 if (err) 198 libdiskmgt_error(err); 199 return (0); 200 } 201 202 if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA, 203 &err)) == NULL) { 204 dm_free_descriptors(drive); 205 if (err) 206 libdiskmgt_error(err); 207 return (0); 208 } 209 210 dm_free_descriptors(drive); 211 212 /* 213 * It is possible that the user has specified a removable media drive, 214 * and the media is not present. 215 */ 216 if (*media == NULL) { 217 dm_free_descriptors(media); 218 vdev_error(gettext("'%s' has no media in drive\n"), name); 219 return (-1); 220 } 221 222 if ((slice = dm_get_associated_descriptors(*media, DM_SLICE, 223 &err)) == NULL) { 224 dm_free_descriptors(media); 225 if (err) 226 libdiskmgt_error(err); 227 return (0); 228 } 229 230 dm_free_descriptors(media); 231 232 ret = 0; 233 234 /* 235 * Iterate over all slices and report any errors. We don't care about 236 * overlapping slices because we are using the whole disk. 237 */ 238 for (i = 0; slice[i] != NULL; i++) { 239 char *name = dm_get_name(slice[i], &err); 240 241 if (check_slice(name, force, B_TRUE, isspare) != 0) 242 ret = -1; 243 244 dm_free_name(name); 245 } 246 247 dm_free_descriptors(slice); 248 return (ret); 249 } 250 251 /* 252 * Validate a device. 253 */ 254 static int 255 check_device(const char *path, boolean_t force, boolean_t isspare) 256 { 257 dm_descriptor_t desc; 258 int err; 259 char *dev; 260 261 /* 262 * For whole disks, libdiskmgt does not include the leading dev path. 263 */ 264 dev = strrchr(path, '/'); 265 assert(dev != NULL); 266 dev++; 267 if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) { 268 err = check_disk(path, desc, force, isspare); 269 dm_free_descriptor(desc); 270 return (err); 271 } 272 273 return (check_slice(path, force, B_FALSE, isspare)); 274 } 275 276 /* 277 * Check that a file is valid. All we can do in this case is check that it's 278 * not in use by another pool, and not in use by swap. 279 */ 280 static int 281 check_file(const char *file, boolean_t force, boolean_t isspare) 282 { 283 char *name; 284 int fd; 285 int ret = 0; 286 int err; 287 pool_state_t state; 288 boolean_t inuse; 289 290 if (dm_inuse_swap(file, &err)) { 291 if (err) 292 libdiskmgt_error(err); 293 else 294 vdev_error(gettext("%s is currently used by swap. " 295 "Please see swap(1M).\n"), file); 296 return (-1); 297 } 298 299 if ((fd = open(file, O_RDONLY)) < 0) 300 return (0); 301 302 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) { 303 const char *desc; 304 305 switch (state) { 306 case POOL_STATE_ACTIVE: 307 desc = gettext("active"); 308 break; 309 310 case POOL_STATE_EXPORTED: 311 desc = gettext("exported"); 312 break; 313 314 case POOL_STATE_POTENTIALLY_ACTIVE: 315 desc = gettext("potentially active"); 316 break; 317 318 default: 319 desc = gettext("unknown"); 320 break; 321 } 322 323 /* 324 * Allow hot spares to be shared between pools. 325 */ 326 if (state == POOL_STATE_SPARE && isspare) 327 return (0); 328 329 if (state == POOL_STATE_ACTIVE || 330 state == POOL_STATE_SPARE || !force) { 331 switch (state) { 332 case POOL_STATE_SPARE: 333 vdev_error(gettext("%s is reserved as a hot " 334 "spare for pool %s\n"), file, name); 335 break; 336 default: 337 vdev_error(gettext("%s is part of %s pool " 338 "'%s'\n"), file, desc, name); 339 break; 340 } 341 ret = -1; 342 } 343 344 free(name); 345 } 346 347 (void) close(fd); 348 return (ret); 349 } 350 351 352 /* 353 * By "whole disk" we mean an entire physical disk (something we can 354 * label, toggle the write cache on, etc.) as opposed to the full 355 * capacity of a pseudo-device such as lofi or did. We act as if we 356 * are labeling the disk, which should be a pretty good test of whether 357 * it's a viable device or not. Returns B_TRUE if it is and B_FALSE if 358 * it isn't. 359 */ 360 static boolean_t 361 is_whole_disk(const char *arg) 362 { 363 struct dk_gpt *label; 364 int fd; 365 char path[MAXPATHLEN]; 366 367 (void) snprintf(path, sizeof (path), "%s%s%s", 368 ZFS_RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE); 369 if ((fd = open(path, O_RDWR | O_NDELAY)) < 0) 370 return (B_FALSE); 371 if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) { 372 (void) close(fd); 373 return (B_FALSE); 374 } 375 efi_free(label); 376 (void) close(fd); 377 return (B_TRUE); 378 } 379 380 /* 381 * Create a leaf vdev. Determine if this is a file or a device. If it's a 382 * device, fill in the device id to make a complete nvlist. Valid forms for a 383 * leaf vdev are: 384 * 385 * /dev/dsk/xxx Complete disk path 386 * /xxx Full path to file 387 * xxx Shorthand for /dev/dsk/xxx 388 */ 389 static nvlist_t * 390 make_leaf_vdev(const char *arg, uint64_t is_log) 391 { 392 char path[MAXPATHLEN]; 393 struct stat64 statbuf; 394 nvlist_t *vdev = NULL; 395 char *type = NULL; 396 boolean_t wholedisk = B_FALSE; 397 398 /* 399 * Determine what type of vdev this is, and put the full path into 400 * 'path'. We detect whether this is a device of file afterwards by 401 * checking the st_mode of the file. 402 */ 403 if (arg[0] == '/') { 404 /* 405 * Complete device or file path. Exact type is determined by 406 * examining the file descriptor afterwards. 407 */ 408 wholedisk = is_whole_disk(arg); 409 if (!wholedisk && (stat64(arg, &statbuf) != 0)) { 410 (void) fprintf(stderr, 411 gettext("cannot open '%s': %s\n"), 412 arg, strerror(errno)); 413 return (NULL); 414 } 415 416 (void) strlcpy(path, arg, sizeof (path)); 417 } else { 418 /* 419 * This may be a short path for a device, or it could be total 420 * gibberish. Check to see if it's a known device in 421 * /dev/dsk/. As part of this check, see if we've been given a 422 * an entire disk (minus the slice number). 423 */ 424 (void) snprintf(path, sizeof (path), "%s/%s", ZFS_DISK_ROOT, 425 arg); 426 wholedisk = is_whole_disk(path); 427 if (!wholedisk && (stat64(path, &statbuf) != 0)) { 428 /* 429 * If we got ENOENT, then the user gave us 430 * gibberish, so try to direct them with a 431 * reasonable error message. Otherwise, 432 * regurgitate strerror() since it's the best we 433 * can do. 434 */ 435 if (errno == ENOENT) { 436 (void) fprintf(stderr, 437 gettext("cannot open '%s': no such " 438 "device in %s\n"), arg, ZFS_DISK_ROOT); 439 (void) fprintf(stderr, 440 gettext("must be a full path or " 441 "shorthand device name\n")); 442 return (NULL); 443 } else { 444 (void) fprintf(stderr, 445 gettext("cannot open '%s': %s\n"), 446 path, strerror(errno)); 447 return (NULL); 448 } 449 } 450 } 451 452 /* 453 * Determine whether this is a device or a file. 454 */ 455 if (wholedisk || S_ISBLK(statbuf.st_mode)) { 456 type = VDEV_TYPE_DISK; 457 } else if (S_ISREG(statbuf.st_mode)) { 458 type = VDEV_TYPE_FILE; 459 } else { 460 (void) fprintf(stderr, gettext("cannot use '%s': must be a " 461 "block device or regular file\n"), path); 462 return (NULL); 463 } 464 465 /* 466 * Finally, we have the complete device or file, and we know that it is 467 * acceptable to use. Construct the nvlist to describe this vdev. All 468 * vdevs have a 'path' element, and devices also have a 'devid' element. 469 */ 470 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0); 471 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0); 472 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0); 473 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0); 474 if (strcmp(type, VDEV_TYPE_DISK) == 0) 475 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, 476 (uint64_t)wholedisk) == 0); 477 478 /* 479 * For a whole disk, defer getting its devid until after labeling it. 480 */ 481 if (S_ISBLK(statbuf.st_mode) && !wholedisk) { 482 /* 483 * Get the devid for the device. 484 */ 485 int fd; 486 ddi_devid_t devid; 487 char *minor = NULL, *devid_str = NULL; 488 489 if ((fd = open(path, O_RDONLY)) < 0) { 490 (void) fprintf(stderr, gettext("cannot open '%s': " 491 "%s\n"), path, strerror(errno)); 492 nvlist_free(vdev); 493 return (NULL); 494 } 495 496 if (devid_get(fd, &devid) == 0) { 497 if (devid_get_minor_name(fd, &minor) == 0 && 498 (devid_str = devid_str_encode(devid, minor)) != 499 NULL) { 500 verify(nvlist_add_string(vdev, 501 ZPOOL_CONFIG_DEVID, devid_str) == 0); 502 } 503 if (devid_str != NULL) 504 devid_str_free(devid_str); 505 if (minor != NULL) 506 devid_str_free(minor); 507 devid_free(devid); 508 } 509 510 (void) close(fd); 511 } 512 513 return (vdev); 514 } 515 516 /* 517 * Go through and verify the replication level of the pool is consistent. 518 * Performs the following checks: 519 * 520 * For the new spec, verifies that devices in mirrors and raidz are the 521 * same size. 522 * 523 * If the current configuration already has inconsistent replication 524 * levels, ignore any other potential problems in the new spec. 525 * 526 * Otherwise, make sure that the current spec (if there is one) and the new 527 * spec have consistent replication levels. 528 */ 529 typedef struct replication_level { 530 char *zprl_type; 531 uint64_t zprl_children; 532 uint64_t zprl_parity; 533 } replication_level_t; 534 535 #define ZPOOL_FUZZ (16 * 1024 * 1024) 536 537 /* 538 * Given a list of toplevel vdevs, return the current replication level. If 539 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then 540 * an error message will be displayed for each self-inconsistent vdev. 541 */ 542 static replication_level_t * 543 get_replication(nvlist_t *nvroot, boolean_t fatal) 544 { 545 nvlist_t **top; 546 uint_t t, toplevels; 547 nvlist_t **child; 548 uint_t c, children; 549 nvlist_t *nv; 550 char *type; 551 replication_level_t lastrep = {0}; 552 replication_level_t rep; 553 replication_level_t *ret; 554 boolean_t dontreport; 555 556 ret = safe_malloc(sizeof (replication_level_t)); 557 558 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 559 &top, &toplevels) == 0); 560 561 for (t = 0; t < toplevels; t++) { 562 uint64_t is_log = B_FALSE; 563 564 nv = top[t]; 565 566 /* 567 * For separate logs we ignore the top level vdev replication 568 * constraints. 569 */ 570 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log); 571 if (is_log) 572 continue; 573 574 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, 575 &type) == 0); 576 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 577 &child, &children) != 0) { 578 /* 579 * This is a 'file' or 'disk' vdev. 580 */ 581 rep.zprl_type = type; 582 rep.zprl_children = 1; 583 rep.zprl_parity = 0; 584 } else { 585 uint64_t vdev_size; 586 587 /* 588 * This is a mirror or RAID-Z vdev. Go through and make 589 * sure the contents are all the same (files vs. disks), 590 * keeping track of the number of elements in the 591 * process. 592 * 593 * We also check that the size of each vdev (if it can 594 * be determined) is the same. 595 */ 596 rep.zprl_type = type; 597 rep.zprl_children = 0; 598 599 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) { 600 verify(nvlist_lookup_uint64(nv, 601 ZPOOL_CONFIG_NPARITY, 602 &rep.zprl_parity) == 0); 603 assert(rep.zprl_parity != 0); 604 } else { 605 rep.zprl_parity = 0; 606 } 607 608 /* 609 * The 'dontreport' variable indicates that we've 610 * already reported an error for this spec, so don't 611 * bother doing it again. 612 */ 613 type = NULL; 614 dontreport = 0; 615 vdev_size = -1ULL; 616 for (c = 0; c < children; c++) { 617 nvlist_t *cnv = child[c]; 618 char *path; 619 struct stat64 statbuf; 620 uint64_t size = -1ULL; 621 char *childtype; 622 int fd, err; 623 624 rep.zprl_children++; 625 626 verify(nvlist_lookup_string(cnv, 627 ZPOOL_CONFIG_TYPE, &childtype) == 0); 628 629 /* 630 * If this is a replacing or spare vdev, then 631 * get the real first child of the vdev. 632 */ 633 if (strcmp(childtype, 634 VDEV_TYPE_REPLACING) == 0 || 635 strcmp(childtype, VDEV_TYPE_SPARE) == 0) { 636 nvlist_t **rchild; 637 uint_t rchildren; 638 639 verify(nvlist_lookup_nvlist_array(cnv, 640 ZPOOL_CONFIG_CHILDREN, &rchild, 641 &rchildren) == 0); 642 assert(rchildren == 2); 643 cnv = rchild[0]; 644 645 verify(nvlist_lookup_string(cnv, 646 ZPOOL_CONFIG_TYPE, 647 &childtype) == 0); 648 } 649 650 verify(nvlist_lookup_string(cnv, 651 ZPOOL_CONFIG_PATH, &path) == 0); 652 653 /* 654 * If we have a raidz/mirror that combines disks 655 * with files, report it as an error. 656 */ 657 if (!dontreport && type != NULL && 658 strcmp(type, childtype) != 0) { 659 if (ret != NULL) 660 free(ret); 661 ret = NULL; 662 if (fatal) 663 vdev_error(gettext( 664 "mismatched replication " 665 "level: %s contains both " 666 "files and devices\n"), 667 rep.zprl_type); 668 else 669 return (NULL); 670 dontreport = B_TRUE; 671 } 672 673 /* 674 * According to stat(2), the value of 'st_size' 675 * is undefined for block devices and character 676 * devices. But there is no effective way to 677 * determine the real size in userland. 678 * 679 * Instead, we'll take advantage of an 680 * implementation detail of spec_size(). If the 681 * device is currently open, then we (should) 682 * return a valid size. 683 * 684 * If we still don't get a valid size (indicated 685 * by a size of 0 or MAXOFFSET_T), then ignore 686 * this device altogether. 687 */ 688 if ((fd = open(path, O_RDONLY)) >= 0) { 689 err = fstat64(fd, &statbuf); 690 (void) close(fd); 691 } else { 692 err = stat64(path, &statbuf); 693 } 694 695 if (err != 0 || 696 statbuf.st_size == 0 || 697 statbuf.st_size == MAXOFFSET_T) 698 continue; 699 700 size = statbuf.st_size; 701 702 /* 703 * Also make sure that devices and 704 * slices have a consistent size. If 705 * they differ by a significant amount 706 * (~16MB) then report an error. 707 */ 708 if (!dontreport && 709 (vdev_size != -1ULL && 710 (labs(size - vdev_size) > 711 ZPOOL_FUZZ))) { 712 if (ret != NULL) 713 free(ret); 714 ret = NULL; 715 if (fatal) 716 vdev_error(gettext( 717 "%s contains devices of " 718 "different sizes\n"), 719 rep.zprl_type); 720 else 721 return (NULL); 722 dontreport = B_TRUE; 723 } 724 725 type = childtype; 726 vdev_size = size; 727 } 728 } 729 730 /* 731 * At this point, we have the replication of the last toplevel 732 * vdev in 'rep'. Compare it to 'lastrep' to see if its 733 * different. 734 */ 735 if (lastrep.zprl_type != NULL) { 736 if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) { 737 if (ret != NULL) 738 free(ret); 739 ret = NULL; 740 if (fatal) 741 vdev_error(gettext( 742 "mismatched replication level: " 743 "both %s and %s vdevs are " 744 "present\n"), 745 lastrep.zprl_type, rep.zprl_type); 746 else 747 return (NULL); 748 } else if (lastrep.zprl_parity != rep.zprl_parity) { 749 if (ret) 750 free(ret); 751 ret = NULL; 752 if (fatal) 753 vdev_error(gettext( 754 "mismatched replication level: " 755 "both %llu and %llu device parity " 756 "%s vdevs are present\n"), 757 lastrep.zprl_parity, 758 rep.zprl_parity, 759 rep.zprl_type); 760 else 761 return (NULL); 762 } else if (lastrep.zprl_children != rep.zprl_children) { 763 if (ret) 764 free(ret); 765 ret = NULL; 766 if (fatal) 767 vdev_error(gettext( 768 "mismatched replication level: " 769 "both %llu-way and %llu-way %s " 770 "vdevs are present\n"), 771 lastrep.zprl_children, 772 rep.zprl_children, 773 rep.zprl_type); 774 else 775 return (NULL); 776 } 777 } 778 lastrep = rep; 779 } 780 781 if (ret != NULL) 782 *ret = rep; 783 784 return (ret); 785 } 786 787 /* 788 * Check the replication level of the vdev spec against the current pool. Calls 789 * get_replication() to make sure the new spec is self-consistent. If the pool 790 * has a consistent replication level, then we ignore any errors. Otherwise, 791 * report any difference between the two. 792 */ 793 static int 794 check_replication(nvlist_t *config, nvlist_t *newroot) 795 { 796 nvlist_t **child; 797 uint_t children; 798 replication_level_t *current = NULL, *new; 799 int ret; 800 801 /* 802 * If we have a current pool configuration, check to see if it's 803 * self-consistent. If not, simply return success. 804 */ 805 if (config != NULL) { 806 nvlist_t *nvroot; 807 808 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 809 &nvroot) == 0); 810 if ((current = get_replication(nvroot, B_FALSE)) == NULL) 811 return (0); 812 } 813 /* 814 * for spares there may be no children, and therefore no 815 * replication level to check 816 */ 817 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN, 818 &child, &children) != 0) || (children == 0)) { 819 free(current); 820 return (0); 821 } 822 823 /* 824 * If all we have is logs then there's no replication level to check. 825 */ 826 if (num_logs(newroot) == children) { 827 free(current); 828 return (0); 829 } 830 831 /* 832 * Get the replication level of the new vdev spec, reporting any 833 * inconsistencies found. 834 */ 835 if ((new = get_replication(newroot, B_TRUE)) == NULL) { 836 free(current); 837 return (-1); 838 } 839 840 /* 841 * Check to see if the new vdev spec matches the replication level of 842 * the current pool. 843 */ 844 ret = 0; 845 if (current != NULL) { 846 if (strcmp(current->zprl_type, new->zprl_type) != 0) { 847 vdev_error(gettext( 848 "mismatched replication level: pool uses %s " 849 "and new vdev is %s\n"), 850 current->zprl_type, new->zprl_type); 851 ret = -1; 852 } else if (current->zprl_parity != new->zprl_parity) { 853 vdev_error(gettext( 854 "mismatched replication level: pool uses %llu " 855 "device parity and new vdev uses %llu\n"), 856 current->zprl_parity, new->zprl_parity); 857 ret = -1; 858 } else if (current->zprl_children != new->zprl_children) { 859 vdev_error(gettext( 860 "mismatched replication level: pool uses %llu-way " 861 "%s and new vdev uses %llu-way %s\n"), 862 current->zprl_children, current->zprl_type, 863 new->zprl_children, new->zprl_type); 864 ret = -1; 865 } 866 } 867 868 free(new); 869 if (current != NULL) 870 free(current); 871 872 return (ret); 873 } 874 875 /* 876 * Go through and find any whole disks in the vdev specification, labelling them 877 * as appropriate. When constructing the vdev spec, we were unable to open this 878 * device in order to provide a devid. Now that we have labelled the disk and 879 * know the pool slice is valid, we can construct the devid now. 880 * 881 * If the disk was already labeled with an EFI label, we will have gotten the 882 * devid already (because we were able to open the whole disk). Otherwise, we 883 * need to get the devid after we label the disk. 884 */ 885 static int 886 make_disks(zpool_handle_t *zhp, nvlist_t *nv, zpool_boot_label_t boot_type, 887 uint64_t boot_size) 888 { 889 nvlist_t **child; 890 uint_t c, children; 891 char *type, *path, *diskname; 892 char buf[MAXPATHLEN]; 893 uint64_t wholedisk; 894 int fd; 895 int ret; 896 int slice; 897 ddi_devid_t devid; 898 char *minor = NULL, *devid_str = NULL; 899 900 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); 901 902 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 903 &child, &children) != 0) { 904 905 if (strcmp(type, VDEV_TYPE_DISK) != 0) 906 return (0); 907 908 /* 909 * We have a disk device. Get the path to the device 910 * and see if it's a whole disk by appending the backup 911 * slice and stat()ing the device. 912 */ 913 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0); 914 915 diskname = strrchr(path, '/'); 916 assert(diskname != NULL); 917 diskname++; 918 919 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 920 &wholedisk) != 0 || !wholedisk) { 921 /* 922 * This is not whole disk, return error if 923 * boot partition creation was requested 924 */ 925 if (boot_type == ZPOOL_CREATE_BOOT_LABEL) { 926 (void) fprintf(stderr, 927 gettext("creating boot partition is only " 928 "supported on whole disk vdevs: %s\n"), 929 diskname); 930 return (-1); 931 } 932 return (0); 933 } 934 935 ret = zpool_label_disk(g_zfs, zhp, diskname, boot_type, 936 boot_size, &slice); 937 if (ret == -1) 938 return (ret); 939 940 /* 941 * Fill in the devid, now that we've labeled the disk. 942 */ 943 (void) snprintf(buf, sizeof (buf), "%ss%d", path, slice); 944 if ((fd = open(buf, O_RDONLY)) < 0) { 945 (void) fprintf(stderr, 946 gettext("cannot open '%s': %s\n"), 947 buf, strerror(errno)); 948 return (-1); 949 } 950 951 if (devid_get(fd, &devid) == 0) { 952 if (devid_get_minor_name(fd, &minor) == 0 && 953 (devid_str = devid_str_encode(devid, minor)) != 954 NULL) { 955 verify(nvlist_add_string(nv, 956 ZPOOL_CONFIG_DEVID, devid_str) == 0); 957 } 958 if (devid_str != NULL) 959 devid_str_free(devid_str); 960 if (minor != NULL) 961 devid_str_free(minor); 962 devid_free(devid); 963 } 964 965 /* 966 * Update the path to refer to the pool slice. The presence of 967 * the 'whole_disk' field indicates to the CLI that we should 968 * chop off the slice number when displaying the device in 969 * future output. 970 */ 971 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0); 972 973 (void) close(fd); 974 975 return (0); 976 } 977 978 /* illumos kernel does not support booting from multi-vdev pools. */ 979 if ((boot_type == ZPOOL_CREATE_BOOT_LABEL)) { 980 if ((strcmp(type, VDEV_TYPE_ROOT) == 0) && children > 1) { 981 (void) fprintf(stderr, gettext("boot pool " 982 "can not have more than one vdev\n")); 983 return (-1); 984 } 985 } 986 987 for (c = 0; c < children; c++) { 988 ret = make_disks(zhp, child[c], boot_type, boot_size); 989 if (ret != 0) 990 return (ret); 991 } 992 993 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, 994 &child, &children) == 0) 995 for (c = 0; c < children; c++) { 996 ret = make_disks(zhp, child[c], boot_type, boot_size); 997 if (ret != 0) 998 return (ret); 999 } 1000 1001 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, 1002 &child, &children) == 0) 1003 for (c = 0; c < children; c++) { 1004 ret = make_disks(zhp, child[c], boot_type, boot_size); 1005 if (ret != 0) 1006 return (ret); 1007 } 1008 1009 return (0); 1010 } 1011 1012 /* 1013 * Determine if the given path is a hot spare within the given configuration. 1014 */ 1015 static boolean_t 1016 is_spare(nvlist_t *config, const char *path) 1017 { 1018 int fd; 1019 pool_state_t state; 1020 char *name = NULL; 1021 nvlist_t *label; 1022 uint64_t guid, spareguid; 1023 nvlist_t *nvroot; 1024 nvlist_t **spares; 1025 uint_t i, nspares; 1026 boolean_t inuse; 1027 1028 if ((fd = open(path, O_RDONLY)) < 0) 1029 return (B_FALSE); 1030 1031 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 || 1032 !inuse || 1033 state != POOL_STATE_SPARE || 1034 zpool_read_label(fd, &label) != 0) { 1035 free(name); 1036 (void) close(fd); 1037 return (B_FALSE); 1038 } 1039 free(name); 1040 (void) close(fd); 1041 1042 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0); 1043 nvlist_free(label); 1044 1045 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 1046 &nvroot) == 0); 1047 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1048 &spares, &nspares) == 0) { 1049 for (i = 0; i < nspares; i++) { 1050 verify(nvlist_lookup_uint64(spares[i], 1051 ZPOOL_CONFIG_GUID, &spareguid) == 0); 1052 if (spareguid == guid) 1053 return (B_TRUE); 1054 } 1055 } 1056 1057 return (B_FALSE); 1058 } 1059 1060 /* 1061 * Go through and find any devices that are in use. We rely on libdiskmgt for 1062 * the majority of this task. 1063 */ 1064 static boolean_t 1065 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force, 1066 boolean_t replacing, boolean_t isspare) 1067 { 1068 nvlist_t **child; 1069 uint_t c, children; 1070 char *type, *path; 1071 int ret = 0; 1072 char buf[MAXPATHLEN]; 1073 uint64_t wholedisk; 1074 boolean_t anyinuse = B_FALSE; 1075 1076 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); 1077 1078 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1079 &child, &children) != 0) { 1080 1081 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0); 1082 1083 /* 1084 * As a generic check, we look to see if this is a replace of a 1085 * hot spare within the same pool. If so, we allow it 1086 * regardless of what libdiskmgt or zpool_in_use() says. 1087 */ 1088 if (replacing) { 1089 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 1090 &wholedisk) == 0 && wholedisk) 1091 (void) snprintf(buf, sizeof (buf), "%ss0", 1092 path); 1093 else 1094 (void) strlcpy(buf, path, sizeof (buf)); 1095 1096 if (is_spare(config, buf)) 1097 return (B_FALSE); 1098 } 1099 1100 if (strcmp(type, VDEV_TYPE_DISK) == 0) 1101 ret = check_device(path, force, isspare); 1102 else if (strcmp(type, VDEV_TYPE_FILE) == 0) 1103 ret = check_file(path, force, isspare); 1104 1105 return (ret != 0); 1106 } 1107 1108 for (c = 0; c < children; c++) 1109 if (is_device_in_use(config, child[c], force, replacing, 1110 B_FALSE)) 1111 anyinuse = B_TRUE; 1112 1113 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, 1114 &child, &children) == 0) 1115 for (c = 0; c < children; c++) 1116 if (is_device_in_use(config, child[c], force, replacing, 1117 B_TRUE)) 1118 anyinuse = B_TRUE; 1119 1120 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, 1121 &child, &children) == 0) 1122 for (c = 0; c < children; c++) 1123 if (is_device_in_use(config, child[c], force, replacing, 1124 B_FALSE)) 1125 anyinuse = B_TRUE; 1126 1127 return (anyinuse); 1128 } 1129 1130 static const char * 1131 is_grouping(const char *type, int *mindev, int *maxdev) 1132 { 1133 if (strncmp(type, "raidz", 5) == 0) { 1134 const char *p = type + 5; 1135 char *end; 1136 long nparity; 1137 1138 if (*p == '\0') { 1139 nparity = 1; 1140 } else if (*p == '0') { 1141 return (NULL); /* no zero prefixes allowed */ 1142 } else { 1143 errno = 0; 1144 nparity = strtol(p, &end, 10); 1145 if (errno != 0 || nparity < 1 || nparity >= 255 || 1146 *end != '\0') 1147 return (NULL); 1148 } 1149 1150 if (mindev != NULL) 1151 *mindev = nparity + 1; 1152 if (maxdev != NULL) 1153 *maxdev = 255; 1154 return (VDEV_TYPE_RAIDZ); 1155 } 1156 1157 if (maxdev != NULL) 1158 *maxdev = INT_MAX; 1159 1160 if (strcmp(type, "mirror") == 0) { 1161 if (mindev != NULL) 1162 *mindev = 2; 1163 return (VDEV_TYPE_MIRROR); 1164 } 1165 1166 if (strcmp(type, "spare") == 0) { 1167 if (mindev != NULL) 1168 *mindev = 1; 1169 return (VDEV_TYPE_SPARE); 1170 } 1171 1172 if (strcmp(type, "log") == 0) { 1173 if (mindev != NULL) 1174 *mindev = 1; 1175 return (VDEV_TYPE_LOG); 1176 } 1177 1178 if (strcmp(type, "cache") == 0) { 1179 if (mindev != NULL) 1180 *mindev = 1; 1181 return (VDEV_TYPE_L2CACHE); 1182 } 1183 1184 return (NULL); 1185 } 1186 1187 /* 1188 * Construct a syntactically valid vdev specification, 1189 * and ensure that all devices and files exist and can be opened. 1190 * Note: we don't bother freeing anything in the error paths 1191 * because the program is just going to exit anyway. 1192 */ 1193 nvlist_t * 1194 construct_spec(int argc, char **argv) 1195 { 1196 nvlist_t *nvroot, *nv, **top, **spares, **l2cache; 1197 int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache; 1198 const char *type; 1199 uint64_t is_log; 1200 boolean_t seen_logs; 1201 1202 top = NULL; 1203 toplevels = 0; 1204 spares = NULL; 1205 l2cache = NULL; 1206 nspares = 0; 1207 nlogs = 0; 1208 nl2cache = 0; 1209 is_log = B_FALSE; 1210 seen_logs = B_FALSE; 1211 1212 while (argc > 0) { 1213 nv = NULL; 1214 1215 /* 1216 * If it's a mirror or raidz, the subsequent arguments are 1217 * its leaves -- until we encounter the next mirror or raidz. 1218 */ 1219 if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) { 1220 nvlist_t **child = NULL; 1221 int c, children = 0; 1222 1223 if (strcmp(type, VDEV_TYPE_SPARE) == 0) { 1224 if (spares != NULL) { 1225 (void) fprintf(stderr, 1226 gettext("invalid vdev " 1227 "specification: 'spare' can be " 1228 "specified only once\n")); 1229 return (NULL); 1230 } 1231 is_log = B_FALSE; 1232 } 1233 1234 if (strcmp(type, VDEV_TYPE_LOG) == 0) { 1235 if (seen_logs) { 1236 (void) fprintf(stderr, 1237 gettext("invalid vdev " 1238 "specification: 'log' can be " 1239 "specified only once\n")); 1240 return (NULL); 1241 } 1242 seen_logs = B_TRUE; 1243 is_log = B_TRUE; 1244 argc--; 1245 argv++; 1246 /* 1247 * A log is not a real grouping device. 1248 * We just set is_log and continue. 1249 */ 1250 continue; 1251 } 1252 1253 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) { 1254 if (l2cache != NULL) { 1255 (void) fprintf(stderr, 1256 gettext("invalid vdev " 1257 "specification: 'cache' can be " 1258 "specified only once\n")); 1259 return (NULL); 1260 } 1261 is_log = B_FALSE; 1262 } 1263 1264 if (is_log) { 1265 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) { 1266 (void) fprintf(stderr, 1267 gettext("invalid vdev " 1268 "specification: unsupported 'log' " 1269 "device: %s\n"), type); 1270 return (NULL); 1271 } 1272 nlogs++; 1273 } 1274 1275 for (c = 1; c < argc; c++) { 1276 if (is_grouping(argv[c], NULL, NULL) != NULL) 1277 break; 1278 children++; 1279 child = realloc(child, 1280 children * sizeof (nvlist_t *)); 1281 if (child == NULL) 1282 zpool_no_memory(); 1283 if ((nv = make_leaf_vdev(argv[c], B_FALSE)) 1284 == NULL) 1285 return (NULL); 1286 child[children - 1] = nv; 1287 } 1288 1289 if (children < mindev) { 1290 (void) fprintf(stderr, gettext("invalid vdev " 1291 "specification: %s requires at least %d " 1292 "devices\n"), argv[0], mindev); 1293 return (NULL); 1294 } 1295 1296 if (children > maxdev) { 1297 (void) fprintf(stderr, gettext("invalid vdev " 1298 "specification: %s supports no more than " 1299 "%d devices\n"), argv[0], maxdev); 1300 return (NULL); 1301 } 1302 1303 argc -= c; 1304 argv += c; 1305 1306 if (strcmp(type, VDEV_TYPE_SPARE) == 0) { 1307 spares = child; 1308 nspares = children; 1309 continue; 1310 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) { 1311 l2cache = child; 1312 nl2cache = children; 1313 continue; 1314 } else { 1315 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME, 1316 0) == 0); 1317 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 1318 type) == 0); 1319 verify(nvlist_add_uint64(nv, 1320 ZPOOL_CONFIG_IS_LOG, is_log) == 0); 1321 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) { 1322 verify(nvlist_add_uint64(nv, 1323 ZPOOL_CONFIG_NPARITY, 1324 mindev - 1) == 0); 1325 } 1326 verify(nvlist_add_nvlist_array(nv, 1327 ZPOOL_CONFIG_CHILDREN, child, 1328 children) == 0); 1329 1330 for (c = 0; c < children; c++) 1331 nvlist_free(child[c]); 1332 free(child); 1333 } 1334 } else { 1335 /* 1336 * We have a device. Pass off to make_leaf_vdev() to 1337 * construct the appropriate nvlist describing the vdev. 1338 */ 1339 if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL) 1340 return (NULL); 1341 if (is_log) 1342 nlogs++; 1343 argc--; 1344 argv++; 1345 } 1346 1347 toplevels++; 1348 top = realloc(top, toplevels * sizeof (nvlist_t *)); 1349 if (top == NULL) 1350 zpool_no_memory(); 1351 top[toplevels - 1] = nv; 1352 } 1353 1354 if (toplevels == 0 && nspares == 0 && nl2cache == 0) { 1355 (void) fprintf(stderr, gettext("invalid vdev " 1356 "specification: at least one toplevel vdev must be " 1357 "specified\n")); 1358 return (NULL); 1359 } 1360 1361 if (seen_logs && nlogs == 0) { 1362 (void) fprintf(stderr, gettext("invalid vdev specification: " 1363 "log requires at least 1 device\n")); 1364 return (NULL); 1365 } 1366 1367 /* 1368 * Finally, create nvroot and add all top-level vdevs to it. 1369 */ 1370 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0); 1371 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 1372 VDEV_TYPE_ROOT) == 0); 1373 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 1374 top, toplevels) == 0); 1375 if (nspares != 0) 1376 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1377 spares, nspares) == 0); 1378 if (nl2cache != 0) 1379 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 1380 l2cache, nl2cache) == 0); 1381 1382 for (t = 0; t < toplevels; t++) 1383 nvlist_free(top[t]); 1384 for (t = 0; t < nspares; t++) 1385 nvlist_free(spares[t]); 1386 for (t = 0; t < nl2cache; t++) 1387 nvlist_free(l2cache[t]); 1388 if (spares) 1389 free(spares); 1390 if (l2cache) 1391 free(l2cache); 1392 free(top); 1393 1394 return (nvroot); 1395 } 1396 1397 nvlist_t * 1398 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props, 1399 splitflags_t flags, int argc, char **argv) 1400 { 1401 nvlist_t *newroot = NULL, **child; 1402 uint_t c, children; 1403 zpool_boot_label_t boot_type; 1404 1405 if (argc > 0) { 1406 if ((newroot = construct_spec(argc, argv)) == NULL) { 1407 (void) fprintf(stderr, gettext("Unable to build a " 1408 "pool from the specified devices\n")); 1409 return (NULL); 1410 } 1411 1412 if (zpool_is_bootable(zhp)) 1413 boot_type = ZPOOL_COPY_BOOT_LABEL; 1414 else 1415 boot_type = ZPOOL_NO_BOOT_LABEL; 1416 1417 if (!flags.dryrun && 1418 make_disks(zhp, newroot, boot_type, 0) != 0) { 1419 nvlist_free(newroot); 1420 return (NULL); 1421 } 1422 1423 /* avoid any tricks in the spec */ 1424 verify(nvlist_lookup_nvlist_array(newroot, 1425 ZPOOL_CONFIG_CHILDREN, &child, &children) == 0); 1426 for (c = 0; c < children; c++) { 1427 char *path; 1428 const char *type; 1429 int min, max; 1430 1431 verify(nvlist_lookup_string(child[c], 1432 ZPOOL_CONFIG_PATH, &path) == 0); 1433 if ((type = is_grouping(path, &min, &max)) != NULL) { 1434 (void) fprintf(stderr, gettext("Cannot use " 1435 "'%s' as a device for splitting\n"), type); 1436 nvlist_free(newroot); 1437 return (NULL); 1438 } 1439 } 1440 } 1441 1442 if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) { 1443 nvlist_free(newroot); 1444 return (NULL); 1445 } 1446 1447 return (newroot); 1448 } 1449 1450 /* 1451 * Get and validate the contents of the given vdev specification. This ensures 1452 * that the nvlist returned is well-formed, that all the devices exist, and that 1453 * they are not currently in use by any other known consumer. The 'poolconfig' 1454 * parameter is the current configuration of the pool when adding devices 1455 * existing pool, and is used to perform additional checks, such as changing the 1456 * replication level of the pool. It can be 'NULL' to indicate that this is a 1457 * new pool. The 'force' flag controls whether devices should be forcefully 1458 * added, even if they appear in use. 1459 */ 1460 nvlist_t * 1461 make_root_vdev(zpool_handle_t *zhp, int force, int check_rep, 1462 boolean_t replacing, boolean_t dryrun, zpool_boot_label_t boot_type, 1463 uint64_t boot_size, int argc, char **argv) 1464 { 1465 nvlist_t *newroot; 1466 nvlist_t *poolconfig = NULL; 1467 is_force = force; 1468 1469 /* 1470 * Construct the vdev specification. If this is successful, we know 1471 * that we have a valid specification, and that all devices can be 1472 * opened. 1473 */ 1474 if ((newroot = construct_spec(argc, argv)) == NULL) 1475 return (NULL); 1476 1477 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) 1478 return (NULL); 1479 1480 /* 1481 * Validate each device to make sure that its not shared with another 1482 * subsystem. We do this even if 'force' is set, because there are some 1483 * uses (such as a dedicated dump device) that even '-f' cannot 1484 * override. 1485 */ 1486 if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) { 1487 nvlist_free(newroot); 1488 return (NULL); 1489 } 1490 1491 /* 1492 * Check the replication level of the given vdevs and report any errors 1493 * found. We include the existing pool spec, if any, as we need to 1494 * catch changes against the existing replication level. 1495 */ 1496 if (check_rep && check_replication(poolconfig, newroot) != 0) { 1497 nvlist_free(newroot); 1498 return (NULL); 1499 } 1500 1501 /* 1502 * Run through the vdev specification and label any whole disks found. 1503 */ 1504 if (!dryrun && make_disks(zhp, newroot, boot_type, boot_size) != 0) { 1505 nvlist_free(newroot); 1506 return (NULL); 1507 } 1508 1509 return (newroot); 1510 } 1511