1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Functions to convert between a list of vdevs and an nvlist representing the 31 * configuration. Each entry in the list can be one of: 32 * 33 * Device vdevs 34 * disk=(path=..., devid=...) 35 * file=(path=...) 36 * 37 * Group vdevs 38 * raidz[1|2]=(...) 39 * mirror=(...) 40 * 41 * Hot spares 42 * 43 * While the underlying implementation supports it, group vdevs cannot contain 44 * other group vdevs. All userland verification of devices is contained within 45 * this file. If successful, the nvlist returned can be passed directly to the 46 * kernel; we've done as much verification as possible in userland. 47 * 48 * Hot spares are a special case, and passed down as an array of disk vdevs, at 49 * the same level as the root of the vdev tree. 50 * 51 * The only function exported by this file is 'make_root_vdev'. The 52 * function performs several passes: 53 * 54 * 1. Construct the vdev specification. Performs syntax validation and 55 * makes sure each device is valid. 56 * 2. Check for devices in use. Using libdiskmgt, makes sure that no 57 * devices are also in use. Some can be overridden using the 'force' 58 * flag, others cannot. 59 * 3. Check for replication errors if the 'force' flag is not specified. 60 * validates that the replication level is consistent across the 61 * entire pool. 62 * 4. Call libzfs to label any whole disks with an EFI label. 63 */ 64 65 #include <assert.h> 66 #include <devid.h> 67 #include <errno.h> 68 #include <fcntl.h> 69 #include <libdiskmgt.h> 70 #include <libintl.h> 71 #include <libnvpair.h> 72 #include <stdio.h> 73 #include <string.h> 74 #include <unistd.h> 75 #include <sys/efi_partition.h> 76 #include <sys/stat.h> 77 #include <sys/vtoc.h> 78 #include <sys/mntent.h> 79 80 #include "zpool_util.h" 81 82 #define DISK_ROOT "/dev/dsk" 83 #define RDISK_ROOT "/dev/rdsk" 84 #define BACKUP_SLICE "s2" 85 86 /* 87 * For any given vdev specification, we can have multiple errors. The 88 * vdev_error() function keeps track of whether we have seen an error yet, and 89 * prints out a header if its the first error we've seen. 90 */ 91 boolean_t error_seen; 92 boolean_t is_force; 93 94 /*PRINTFLIKE1*/ 95 static void 96 vdev_error(const char *fmt, ...) 97 { 98 va_list ap; 99 100 if (!error_seen) { 101 (void) fprintf(stderr, gettext("invalid vdev specification\n")); 102 if (!is_force) 103 (void) fprintf(stderr, gettext("use '-f' to override " 104 "the following errors:\n")); 105 else 106 (void) fprintf(stderr, gettext("the following errors " 107 "must be manually repaired:\n")); 108 error_seen = B_TRUE; 109 } 110 111 va_start(ap, fmt); 112 (void) vfprintf(stderr, fmt, ap); 113 va_end(ap); 114 } 115 116 static void 117 libdiskmgt_error(int error) 118 { 119 /* 120 * ENXIO/ENODEV is a valid error message if the device doesn't live in 121 * /dev/dsk. Don't bother printing an error message in this case. 122 */ 123 if (error == ENXIO || error == ENODEV) 124 return; 125 126 (void) fprintf(stderr, gettext("warning: device in use checking " 127 "failed: %s\n"), strerror(error)); 128 } 129 130 /* 131 * Validate a device, passing the bulk of the work off to libdiskmgt. 132 */ 133 static int 134 check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare) 135 { 136 char *msg; 137 int error = 0; 138 139 if (dm_inuse((char *)path, &msg, isspare ? DM_WHO_ZPOOL_SPARE : 140 (force ? DM_WHO_ZPOOL_FORCE : DM_WHO_ZPOOL), &error) || error) { 141 if (error != 0) { 142 libdiskmgt_error(error); 143 return (0); 144 } else { 145 vdev_error("%s", msg); 146 free(msg); 147 return (-1); 148 } 149 } 150 151 /* 152 * If we're given a whole disk, ignore overlapping slices since we're 153 * about to label it anyway. 154 */ 155 error = 0; 156 if (!wholedisk && !force && 157 (dm_isoverlapping((char *)path, &msg, &error) || error)) { 158 if (error == 0) { 159 /* dm_isoverlapping returned -1 */ 160 vdev_error(gettext("%s overlaps with %s\n"), path, msg); 161 free(msg); 162 return (-1); 163 } else if (error != ENODEV) { 164 /* libdiskmgt's devcache only handles physical drives */ 165 libdiskmgt_error(error); 166 return (0); 167 } 168 } 169 170 return (0); 171 } 172 173 174 /* 175 * Validate a whole disk. Iterate over all slices on the disk and make sure 176 * that none is in use by calling check_slice(). 177 */ 178 static int 179 check_disk(const char *name, dm_descriptor_t disk, int force, int isspare) 180 { 181 dm_descriptor_t *drive, *media, *slice; 182 int err = 0; 183 int i; 184 int ret; 185 186 /* 187 * Get the drive associated with this disk. This should never fail, 188 * because we already have an alias handle open for the device. 189 */ 190 if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE, 191 &err)) == NULL || *drive == NULL) { 192 if (err) 193 libdiskmgt_error(err); 194 return (0); 195 } 196 197 if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA, 198 &err)) == NULL) { 199 dm_free_descriptors(drive); 200 if (err) 201 libdiskmgt_error(err); 202 return (0); 203 } 204 205 dm_free_descriptors(drive); 206 207 /* 208 * It is possible that the user has specified a removable media drive, 209 * and the media is not present. 210 */ 211 if (*media == NULL) { 212 dm_free_descriptors(media); 213 vdev_error(gettext("'%s' has no media in drive\n"), name); 214 return (-1); 215 } 216 217 if ((slice = dm_get_associated_descriptors(*media, DM_SLICE, 218 &err)) == NULL) { 219 dm_free_descriptors(media); 220 if (err) 221 libdiskmgt_error(err); 222 return (0); 223 } 224 225 dm_free_descriptors(media); 226 227 ret = 0; 228 229 /* 230 * Iterate over all slices and report any errors. We don't care about 231 * overlapping slices because we are using the whole disk. 232 */ 233 for (i = 0; slice[i] != NULL; i++) { 234 char *name = dm_get_name(slice[i], &err); 235 236 if (check_slice(name, force, B_TRUE, isspare) != 0) 237 ret = -1; 238 239 dm_free_name(name); 240 } 241 242 dm_free_descriptors(slice); 243 return (ret); 244 } 245 246 /* 247 * Validate a device. 248 */ 249 static int 250 check_device(const char *path, boolean_t force, boolean_t isspare) 251 { 252 dm_descriptor_t desc; 253 int err; 254 char *dev; 255 256 /* 257 * For whole disks, libdiskmgt does not include the leading dev path. 258 */ 259 dev = strrchr(path, '/'); 260 assert(dev != NULL); 261 dev++; 262 if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) { 263 err = check_disk(path, desc, force, isspare); 264 dm_free_descriptor(desc); 265 return (err); 266 } 267 268 return (check_slice(path, force, B_FALSE, isspare)); 269 } 270 271 /* 272 * Check that a file is valid. All we can do in this case is check that it's 273 * not in use by another pool, and not in use by swap. 274 */ 275 static int 276 check_file(const char *file, boolean_t force, boolean_t isspare) 277 { 278 char *name; 279 int fd; 280 int ret = 0; 281 int err; 282 pool_state_t state; 283 boolean_t inuse; 284 285 if (dm_inuse_swap(file, &err)) { 286 if (err) 287 libdiskmgt_error(err); 288 else 289 vdev_error(gettext("%s is currently used by swap. " 290 "Please see swap(1M).\n"), file); 291 return (-1); 292 } 293 294 if ((fd = open(file, O_RDONLY)) < 0) 295 return (0); 296 297 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) { 298 const char *desc; 299 300 switch (state) { 301 case POOL_STATE_ACTIVE: 302 desc = gettext("active"); 303 break; 304 305 case POOL_STATE_EXPORTED: 306 desc = gettext("exported"); 307 break; 308 309 case POOL_STATE_POTENTIALLY_ACTIVE: 310 desc = gettext("potentially active"); 311 break; 312 313 default: 314 desc = gettext("unknown"); 315 break; 316 } 317 318 /* 319 * Allow hot spares to be shared between pools. 320 */ 321 if (state == POOL_STATE_SPARE && isspare) 322 return (0); 323 324 if (state == POOL_STATE_ACTIVE || 325 state == POOL_STATE_SPARE || !force) { 326 switch (state) { 327 case POOL_STATE_SPARE: 328 vdev_error(gettext("%s is reserved as a hot " 329 "spare for pool %s\n"), file, name); 330 break; 331 default: 332 vdev_error(gettext("%s is part of %s pool " 333 "'%s'\n"), file, desc, name); 334 break; 335 } 336 ret = -1; 337 } 338 339 free(name); 340 } 341 342 (void) close(fd); 343 return (ret); 344 } 345 346 347 /* 348 * By "whole disk" we mean an entire physical disk (something we can 349 * label, toggle the write cache on, etc.) as opposed to the full 350 * capacity of a pseudo-device such as lofi or did. We act as if we 351 * are labeling the disk, which should be a pretty good test of whether 352 * it's a viable device or not. Returns B_TRUE if it is and B_FALSE if 353 * it isn't. 354 */ 355 static boolean_t 356 is_whole_disk(const char *arg) 357 { 358 struct dk_gpt *label; 359 int fd; 360 char path[MAXPATHLEN]; 361 362 (void) snprintf(path, sizeof (path), "%s%s%s", 363 RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE); 364 if ((fd = open(path, O_RDWR | O_NDELAY)) < 0) 365 return (B_FALSE); 366 if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) { 367 (void) close(fd); 368 return (B_FALSE); 369 } 370 efi_free(label); 371 (void) close(fd); 372 return (B_TRUE); 373 } 374 375 /* 376 * Create a leaf vdev. Determine if this is a file or a device. If it's a 377 * device, fill in the device id to make a complete nvlist. Valid forms for a 378 * leaf vdev are: 379 * 380 * /dev/dsk/xxx Complete disk path 381 * /xxx Full path to file 382 * xxx Shorthand for /dev/dsk/xxx 383 */ 384 static nvlist_t * 385 make_leaf_vdev(const char *arg, uint64_t is_log) 386 { 387 char path[MAXPATHLEN]; 388 struct stat64 statbuf; 389 nvlist_t *vdev = NULL; 390 char *type = NULL; 391 boolean_t wholedisk = B_FALSE; 392 393 /* 394 * Determine what type of vdev this is, and put the full path into 395 * 'path'. We detect whether this is a device of file afterwards by 396 * checking the st_mode of the file. 397 */ 398 if (arg[0] == '/') { 399 /* 400 * Complete device or file path. Exact type is determined by 401 * examining the file descriptor afterwards. 402 */ 403 wholedisk = is_whole_disk(arg); 404 if (!wholedisk && (stat64(arg, &statbuf) != 0)) { 405 (void) fprintf(stderr, 406 gettext("cannot open '%s': %s\n"), 407 arg, strerror(errno)); 408 return (NULL); 409 } 410 411 (void) strlcpy(path, arg, sizeof (path)); 412 } else { 413 /* 414 * This may be a short path for a device, or it could be total 415 * gibberish. Check to see if it's a known device in 416 * /dev/dsk/. As part of this check, see if we've been given a 417 * an entire disk (minus the slice number). 418 */ 419 (void) snprintf(path, sizeof (path), "%s/%s", DISK_ROOT, 420 arg); 421 wholedisk = is_whole_disk(path); 422 if (!wholedisk && (stat64(path, &statbuf) != 0)) { 423 /* 424 * If we got ENOENT, then the user gave us 425 * gibberish, so try to direct them with a 426 * reasonable error message. Otherwise, 427 * regurgitate strerror() since it's the best we 428 * can do. 429 */ 430 if (errno == ENOENT) { 431 (void) fprintf(stderr, 432 gettext("cannot open '%s': no such " 433 "device in %s\n"), arg, DISK_ROOT); 434 (void) fprintf(stderr, 435 gettext("must be a full path or " 436 "shorthand device name\n")); 437 return (NULL); 438 } else { 439 (void) fprintf(stderr, 440 gettext("cannot open '%s': %s\n"), 441 path, strerror(errno)); 442 return (NULL); 443 } 444 } 445 } 446 447 /* 448 * Determine whether this is a device or a file. 449 */ 450 if (wholedisk || S_ISBLK(statbuf.st_mode)) { 451 type = VDEV_TYPE_DISK; 452 } else if (S_ISREG(statbuf.st_mode)) { 453 type = VDEV_TYPE_FILE; 454 } else { 455 (void) fprintf(stderr, gettext("cannot use '%s': must be a " 456 "block device or regular file\n"), path); 457 return (NULL); 458 } 459 460 /* 461 * Finally, we have the complete device or file, and we know that it is 462 * acceptable to use. Construct the nvlist to describe this vdev. All 463 * vdevs have a 'path' element, and devices also have a 'devid' element. 464 */ 465 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0); 466 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0); 467 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0); 468 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0); 469 if (strcmp(type, VDEV_TYPE_DISK) == 0) 470 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, 471 (uint64_t)wholedisk) == 0); 472 473 /* 474 * For a whole disk, defer getting its devid until after labeling it. 475 */ 476 if (S_ISBLK(statbuf.st_mode) && !wholedisk) { 477 /* 478 * Get the devid for the device. 479 */ 480 int fd; 481 ddi_devid_t devid; 482 char *minor = NULL, *devid_str = NULL; 483 484 if ((fd = open(path, O_RDONLY)) < 0) { 485 (void) fprintf(stderr, gettext("cannot open '%s': " 486 "%s\n"), path, strerror(errno)); 487 nvlist_free(vdev); 488 return (NULL); 489 } 490 491 if (devid_get(fd, &devid) == 0) { 492 if (devid_get_minor_name(fd, &minor) == 0 && 493 (devid_str = devid_str_encode(devid, minor)) != 494 NULL) { 495 verify(nvlist_add_string(vdev, 496 ZPOOL_CONFIG_DEVID, devid_str) == 0); 497 } 498 if (devid_str != NULL) 499 devid_str_free(devid_str); 500 if (minor != NULL) 501 devid_str_free(minor); 502 devid_free(devid); 503 } 504 505 (void) close(fd); 506 } 507 508 return (vdev); 509 } 510 511 /* 512 * Go through and verify the replication level of the pool is consistent. 513 * Performs the following checks: 514 * 515 * For the new spec, verifies that devices in mirrors and raidz are the 516 * same size. 517 * 518 * If the current configuration already has inconsistent replication 519 * levels, ignore any other potential problems in the new spec. 520 * 521 * Otherwise, make sure that the current spec (if there is one) and the new 522 * spec have consistent replication levels. 523 */ 524 typedef struct replication_level { 525 char *zprl_type; 526 uint64_t zprl_children; 527 uint64_t zprl_parity; 528 } replication_level_t; 529 530 #define ZPOOL_FUZZ (16 * 1024 * 1024) 531 532 /* 533 * Given a list of toplevel vdevs, return the current replication level. If 534 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then 535 * an error message will be displayed for each self-inconsistent vdev. 536 */ 537 static replication_level_t * 538 get_replication(nvlist_t *nvroot, boolean_t fatal) 539 { 540 nvlist_t **top; 541 uint_t t, toplevels; 542 nvlist_t **child; 543 uint_t c, children; 544 nvlist_t *nv; 545 char *type; 546 replication_level_t lastrep, rep, *ret; 547 boolean_t dontreport; 548 549 ret = safe_malloc(sizeof (replication_level_t)); 550 551 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 552 &top, &toplevels) == 0); 553 554 lastrep.zprl_type = NULL; 555 for (t = 0; t < toplevels; t++) { 556 uint64_t is_log = B_FALSE; 557 558 nv = top[t]; 559 560 /* 561 * For separate logs we ignore the top level vdev replication 562 * constraints. 563 */ 564 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log); 565 if (is_log) 566 continue; 567 568 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, 569 &type) == 0); 570 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 571 &child, &children) != 0) { 572 /* 573 * This is a 'file' or 'disk' vdev. 574 */ 575 rep.zprl_type = type; 576 rep.zprl_children = 1; 577 rep.zprl_parity = 0; 578 } else { 579 uint64_t vdev_size; 580 581 /* 582 * This is a mirror or RAID-Z vdev. Go through and make 583 * sure the contents are all the same (files vs. disks), 584 * keeping track of the number of elements in the 585 * process. 586 * 587 * We also check that the size of each vdev (if it can 588 * be determined) is the same. 589 */ 590 rep.zprl_type = type; 591 rep.zprl_children = 0; 592 593 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) { 594 verify(nvlist_lookup_uint64(nv, 595 ZPOOL_CONFIG_NPARITY, 596 &rep.zprl_parity) == 0); 597 assert(rep.zprl_parity != 0); 598 } else { 599 rep.zprl_parity = 0; 600 } 601 602 /* 603 * The 'dontreport' variable indicates that we've 604 * already reported an error for this spec, so don't 605 * bother doing it again. 606 */ 607 type = NULL; 608 dontreport = 0; 609 vdev_size = -1ULL; 610 for (c = 0; c < children; c++) { 611 nvlist_t *cnv = child[c]; 612 char *path; 613 struct stat64 statbuf; 614 uint64_t size = -1ULL; 615 char *childtype; 616 int fd, err; 617 618 rep.zprl_children++; 619 620 verify(nvlist_lookup_string(cnv, 621 ZPOOL_CONFIG_TYPE, &childtype) == 0); 622 623 /* 624 * If this is a replacing or spare vdev, then 625 * get the real first child of the vdev. 626 */ 627 if (strcmp(childtype, 628 VDEV_TYPE_REPLACING) == 0 || 629 strcmp(childtype, VDEV_TYPE_SPARE) == 0) { 630 nvlist_t **rchild; 631 uint_t rchildren; 632 633 verify(nvlist_lookup_nvlist_array(cnv, 634 ZPOOL_CONFIG_CHILDREN, &rchild, 635 &rchildren) == 0); 636 assert(rchildren == 2); 637 cnv = rchild[0]; 638 639 verify(nvlist_lookup_string(cnv, 640 ZPOOL_CONFIG_TYPE, 641 &childtype) == 0); 642 } 643 644 verify(nvlist_lookup_string(cnv, 645 ZPOOL_CONFIG_PATH, &path) == 0); 646 647 /* 648 * If we have a raidz/mirror that combines disks 649 * with files, report it as an error. 650 */ 651 if (!dontreport && type != NULL && 652 strcmp(type, childtype) != 0) { 653 if (ret != NULL) 654 free(ret); 655 ret = NULL; 656 if (fatal) 657 vdev_error(gettext( 658 "mismatched replication " 659 "level: %s contains both " 660 "files and devices\n"), 661 rep.zprl_type); 662 else 663 return (NULL); 664 dontreport = B_TRUE; 665 } 666 667 /* 668 * According to stat(2), the value of 'st_size' 669 * is undefined for block devices and character 670 * devices. But there is no effective way to 671 * determine the real size in userland. 672 * 673 * Instead, we'll take advantage of an 674 * implementation detail of spec_size(). If the 675 * device is currently open, then we (should) 676 * return a valid size. 677 * 678 * If we still don't get a valid size (indicated 679 * by a size of 0 or MAXOFFSET_T), then ignore 680 * this device altogether. 681 */ 682 if ((fd = open(path, O_RDONLY)) >= 0) { 683 err = fstat64(fd, &statbuf); 684 (void) close(fd); 685 } else { 686 err = stat64(path, &statbuf); 687 } 688 689 if (err != 0 || 690 statbuf.st_size == 0 || 691 statbuf.st_size == MAXOFFSET_T) 692 continue; 693 694 size = statbuf.st_size; 695 696 /* 697 * Also make sure that devices and 698 * slices have a consistent size. If 699 * they differ by a significant amount 700 * (~16MB) then report an error. 701 */ 702 if (!dontreport && 703 (vdev_size != -1ULL && 704 (labs(size - vdev_size) > 705 ZPOOL_FUZZ))) { 706 if (ret != NULL) 707 free(ret); 708 ret = NULL; 709 if (fatal) 710 vdev_error(gettext( 711 "%s contains devices of " 712 "different sizes\n"), 713 rep.zprl_type); 714 else 715 return (NULL); 716 dontreport = B_TRUE; 717 } 718 719 type = childtype; 720 vdev_size = size; 721 } 722 } 723 724 /* 725 * At this point, we have the replication of the last toplevel 726 * vdev in 'rep'. Compare it to 'lastrep' to see if its 727 * different. 728 */ 729 if (lastrep.zprl_type != NULL) { 730 if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) { 731 if (ret != NULL) 732 free(ret); 733 ret = NULL; 734 if (fatal) 735 vdev_error(gettext( 736 "mismatched replication level: " 737 "both %s and %s vdevs are " 738 "present\n"), 739 lastrep.zprl_type, rep.zprl_type); 740 else 741 return (NULL); 742 } else if (lastrep.zprl_parity != rep.zprl_parity) { 743 if (ret) 744 free(ret); 745 ret = NULL; 746 if (fatal) 747 vdev_error(gettext( 748 "mismatched replication level: " 749 "both %llu and %llu device parity " 750 "%s vdevs are present\n"), 751 lastrep.zprl_parity, 752 rep.zprl_parity, 753 rep.zprl_type); 754 else 755 return (NULL); 756 } else if (lastrep.zprl_children != rep.zprl_children) { 757 if (ret) 758 free(ret); 759 ret = NULL; 760 if (fatal) 761 vdev_error(gettext( 762 "mismatched replication level: " 763 "both %llu-way and %llu-way %s " 764 "vdevs are present\n"), 765 lastrep.zprl_children, 766 rep.zprl_children, 767 rep.zprl_type); 768 else 769 return (NULL); 770 } 771 } 772 lastrep = rep; 773 } 774 775 if (ret != NULL) 776 *ret = rep; 777 778 return (ret); 779 } 780 781 /* 782 * Check the replication level of the vdev spec against the current pool. Calls 783 * get_replication() to make sure the new spec is self-consistent. If the pool 784 * has a consistent replication level, then we ignore any errors. Otherwise, 785 * report any difference between the two. 786 */ 787 static int 788 check_replication(nvlist_t *config, nvlist_t *newroot) 789 { 790 nvlist_t **child; 791 uint_t children; 792 replication_level_t *current = NULL, *new; 793 int ret; 794 795 /* 796 * If we have a current pool configuration, check to see if it's 797 * self-consistent. If not, simply return success. 798 */ 799 if (config != NULL) { 800 nvlist_t *nvroot; 801 802 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 803 &nvroot) == 0); 804 if ((current = get_replication(nvroot, B_FALSE)) == NULL) 805 return (0); 806 } 807 /* 808 * for spares there may be no children, and therefore no 809 * replication level to check 810 */ 811 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN, 812 &child, &children) != 0) || (children == 0)) { 813 free(current); 814 return (0); 815 } 816 817 /* 818 * If all we have is logs then there's no replication level to check. 819 */ 820 if (num_logs(newroot) == children) { 821 free(current); 822 return (0); 823 } 824 825 /* 826 * Get the replication level of the new vdev spec, reporting any 827 * inconsistencies found. 828 */ 829 if ((new = get_replication(newroot, B_TRUE)) == NULL) { 830 free(current); 831 return (-1); 832 } 833 834 /* 835 * Check to see if the new vdev spec matches the replication level of 836 * the current pool. 837 */ 838 ret = 0; 839 if (current != NULL) { 840 if (strcmp(current->zprl_type, new->zprl_type) != 0) { 841 vdev_error(gettext( 842 "mismatched replication level: pool uses %s " 843 "and new vdev is %s\n"), 844 current->zprl_type, new->zprl_type); 845 ret = -1; 846 } else if (current->zprl_parity != new->zprl_parity) { 847 vdev_error(gettext( 848 "mismatched replication level: pool uses %llu " 849 "device parity and new vdev uses %llu\n"), 850 current->zprl_parity, new->zprl_parity); 851 ret = -1; 852 } else if (current->zprl_children != new->zprl_children) { 853 vdev_error(gettext( 854 "mismatched replication level: pool uses %llu-way " 855 "%s and new vdev uses %llu-way %s\n"), 856 current->zprl_children, current->zprl_type, 857 new->zprl_children, new->zprl_type); 858 ret = -1; 859 } 860 } 861 862 free(new); 863 if (current != NULL) 864 free(current); 865 866 return (ret); 867 } 868 869 /* 870 * Go through and find any whole disks in the vdev specification, labelling them 871 * as appropriate. When constructing the vdev spec, we were unable to open this 872 * device in order to provide a devid. Now that we have labelled the disk and 873 * know that slice 0 is valid, we can construct the devid now. 874 * 875 * If the disk was already labeled with an EFI label, we will have gotten the 876 * devid already (because we were able to open the whole disk). Otherwise, we 877 * need to get the devid after we label the disk. 878 */ 879 static int 880 make_disks(zpool_handle_t *zhp, nvlist_t *nv) 881 { 882 nvlist_t **child; 883 uint_t c, children; 884 char *type, *path, *diskname; 885 char buf[MAXPATHLEN]; 886 uint64_t wholedisk; 887 int fd; 888 int ret; 889 ddi_devid_t devid; 890 char *minor = NULL, *devid_str = NULL; 891 892 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); 893 894 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 895 &child, &children) != 0) { 896 897 if (strcmp(type, VDEV_TYPE_DISK) != 0) 898 return (0); 899 900 /* 901 * We have a disk device. Get the path to the device 902 * and see if it's a whole disk by appending the backup 903 * slice and stat()ing the device. 904 */ 905 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0); 906 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 907 &wholedisk) != 0 || !wholedisk) 908 return (0); 909 910 diskname = strrchr(path, '/'); 911 assert(diskname != NULL); 912 diskname++; 913 if (zpool_label_disk(g_zfs, zhp, diskname) == -1) 914 return (-1); 915 916 /* 917 * Fill in the devid, now that we've labeled the disk. 918 */ 919 (void) snprintf(buf, sizeof (buf), "%ss0", path); 920 if ((fd = open(buf, O_RDONLY)) < 0) { 921 (void) fprintf(stderr, 922 gettext("cannot open '%s': %s\n"), 923 buf, strerror(errno)); 924 return (-1); 925 } 926 927 if (devid_get(fd, &devid) == 0) { 928 if (devid_get_minor_name(fd, &minor) == 0 && 929 (devid_str = devid_str_encode(devid, minor)) != 930 NULL) { 931 verify(nvlist_add_string(nv, 932 ZPOOL_CONFIG_DEVID, devid_str) == 0); 933 } 934 if (devid_str != NULL) 935 devid_str_free(devid_str); 936 if (minor != NULL) 937 devid_str_free(minor); 938 devid_free(devid); 939 } 940 941 /* 942 * Update the path to refer to the 's0' slice. The presence of 943 * the 'whole_disk' field indicates to the CLI that we should 944 * chop off the slice number when displaying the device in 945 * future output. 946 */ 947 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0); 948 949 (void) close(fd); 950 951 return (0); 952 } 953 954 for (c = 0; c < children; c++) 955 if ((ret = make_disks(zhp, child[c])) != 0) 956 return (ret); 957 958 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, 959 &child, &children) == 0) 960 for (c = 0; c < children; c++) 961 if ((ret = make_disks(zhp, child[c])) != 0) 962 return (ret); 963 964 return (0); 965 } 966 967 /* 968 * Determine if the given path is a hot spare within the given configuration. 969 */ 970 static boolean_t 971 is_spare(nvlist_t *config, const char *path) 972 { 973 int fd; 974 pool_state_t state; 975 char *name = NULL; 976 nvlist_t *label; 977 uint64_t guid, spareguid; 978 nvlist_t *nvroot; 979 nvlist_t **spares; 980 uint_t i, nspares; 981 boolean_t inuse; 982 983 if ((fd = open(path, O_RDONLY)) < 0) 984 return (B_FALSE); 985 986 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 || 987 !inuse || 988 state != POOL_STATE_SPARE || 989 zpool_read_label(fd, &label) != 0) { 990 free(name); 991 (void) close(fd); 992 return (B_FALSE); 993 } 994 free(name); 995 996 (void) close(fd); 997 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0); 998 nvlist_free(label); 999 1000 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 1001 &nvroot) == 0); 1002 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1003 &spares, &nspares) == 0) { 1004 for (i = 0; i < nspares; i++) { 1005 verify(nvlist_lookup_uint64(spares[i], 1006 ZPOOL_CONFIG_GUID, &spareguid) == 0); 1007 if (spareguid == guid) 1008 return (B_TRUE); 1009 } 1010 } 1011 1012 return (B_FALSE); 1013 } 1014 1015 /* 1016 * Go through and find any devices that are in use. We rely on libdiskmgt for 1017 * the majority of this task. 1018 */ 1019 static int 1020 check_in_use(nvlist_t *config, nvlist_t *nv, int force, int isreplacing, 1021 int isspare) 1022 { 1023 nvlist_t **child; 1024 uint_t c, children; 1025 char *type, *path; 1026 int ret; 1027 char buf[MAXPATHLEN]; 1028 uint64_t wholedisk; 1029 1030 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); 1031 1032 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1033 &child, &children) != 0) { 1034 1035 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0); 1036 1037 /* 1038 * As a generic check, we look to see if this is a replace of a 1039 * hot spare within the same pool. If so, we allow it 1040 * regardless of what libdiskmgt or zpool_in_use() says. 1041 */ 1042 if (isreplacing) { 1043 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 1044 &wholedisk) == 0 && wholedisk) 1045 (void) snprintf(buf, sizeof (buf), "%ss0", 1046 path); 1047 else 1048 (void) strlcpy(buf, path, sizeof (buf)); 1049 if (is_spare(config, buf)) 1050 return (0); 1051 } 1052 1053 if (strcmp(type, VDEV_TYPE_DISK) == 0) 1054 ret = check_device(path, force, isspare); 1055 1056 if (strcmp(type, VDEV_TYPE_FILE) == 0) 1057 ret = check_file(path, force, isspare); 1058 1059 return (ret); 1060 } 1061 1062 for (c = 0; c < children; c++) 1063 if ((ret = check_in_use(config, child[c], force, 1064 isreplacing, B_FALSE)) != 0) 1065 return (ret); 1066 1067 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, 1068 &child, &children) == 0) 1069 for (c = 0; c < children; c++) 1070 if ((ret = check_in_use(config, child[c], force, 1071 isreplacing, B_TRUE)) != 0) 1072 return (ret); 1073 return (0); 1074 } 1075 1076 static const char * 1077 is_grouping(const char *type, int *mindev) 1078 { 1079 if (strcmp(type, "raidz") == 0 || strcmp(type, "raidz1") == 0) { 1080 if (mindev != NULL) 1081 *mindev = 2; 1082 return (VDEV_TYPE_RAIDZ); 1083 } 1084 1085 if (strcmp(type, "raidz2") == 0) { 1086 if (mindev != NULL) 1087 *mindev = 3; 1088 return (VDEV_TYPE_RAIDZ); 1089 } 1090 1091 if (strcmp(type, "mirror") == 0) { 1092 if (mindev != NULL) 1093 *mindev = 2; 1094 return (VDEV_TYPE_MIRROR); 1095 } 1096 1097 if (strcmp(type, "spare") == 0) { 1098 if (mindev != NULL) 1099 *mindev = 1; 1100 return (VDEV_TYPE_SPARE); 1101 } 1102 1103 if (strcmp(type, "log") == 0) { 1104 if (mindev != NULL) 1105 *mindev = 1; 1106 return (VDEV_TYPE_LOG); 1107 } 1108 1109 return (NULL); 1110 } 1111 1112 /* 1113 * Construct a syntactically valid vdev specification, 1114 * and ensure that all devices and files exist and can be opened. 1115 * Note: we don't bother freeing anything in the error paths 1116 * because the program is just going to exit anyway. 1117 */ 1118 nvlist_t * 1119 construct_spec(int argc, char **argv) 1120 { 1121 nvlist_t *nvroot, *nv, **top, **spares; 1122 int t, toplevels, mindev, nspares, nlogs; 1123 const char *type; 1124 uint64_t is_log; 1125 boolean_t seen_logs; 1126 1127 top = NULL; 1128 toplevels = 0; 1129 spares = NULL; 1130 nspares = 0; 1131 nlogs = 0; 1132 is_log = B_FALSE; 1133 seen_logs = B_FALSE; 1134 1135 while (argc > 0) { 1136 nv = NULL; 1137 1138 /* 1139 * If it's a mirror or raidz, the subsequent arguments are 1140 * its leaves -- until we encounter the next mirror or raidz. 1141 */ 1142 if ((type = is_grouping(argv[0], &mindev)) != NULL) { 1143 nvlist_t **child = NULL; 1144 int c, children = 0; 1145 1146 if (strcmp(type, VDEV_TYPE_SPARE) == 0) { 1147 if (spares != NULL) { 1148 (void) fprintf(stderr, 1149 gettext("invalid vdev " 1150 "specification: 'spare' can be " 1151 "specified only once\n")); 1152 return (NULL); 1153 } 1154 is_log = B_FALSE; 1155 } 1156 1157 if (strcmp(type, VDEV_TYPE_LOG) == 0) { 1158 if (seen_logs) { 1159 (void) fprintf(stderr, 1160 gettext("invalid vdev " 1161 "specification: 'log' can be " 1162 "specified only once\n")); 1163 return (NULL); 1164 } 1165 seen_logs = B_TRUE; 1166 is_log = B_TRUE; 1167 argc--; 1168 argv++; 1169 /* 1170 * A log is not a real grouping device. 1171 * We just set is_log and continue. 1172 */ 1173 continue; 1174 } 1175 1176 if (is_log) { 1177 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) { 1178 (void) fprintf(stderr, 1179 gettext("invalid vdev " 1180 "specification: unsupported 'log' " 1181 "device: %s\n"), type); 1182 return (NULL); 1183 } 1184 nlogs++; 1185 } 1186 1187 for (c = 1; c < argc; c++) { 1188 if (is_grouping(argv[c], NULL) != NULL) 1189 break; 1190 children++; 1191 child = realloc(child, 1192 children * sizeof (nvlist_t *)); 1193 if (child == NULL) 1194 zpool_no_memory(); 1195 if ((nv = make_leaf_vdev(argv[c], B_FALSE)) 1196 == NULL) 1197 return (NULL); 1198 child[children - 1] = nv; 1199 } 1200 1201 if (children < mindev) { 1202 (void) fprintf(stderr, gettext("invalid vdev " 1203 "specification: %s requires at least %d " 1204 "devices\n"), argv[0], mindev); 1205 return (NULL); 1206 } 1207 1208 argc -= c; 1209 argv += c; 1210 1211 if (strcmp(type, VDEV_TYPE_SPARE) == 0) { 1212 spares = child; 1213 nspares = children; 1214 continue; 1215 } else { 1216 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME, 1217 0) == 0); 1218 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 1219 type) == 0); 1220 verify(nvlist_add_uint64(nv, 1221 ZPOOL_CONFIG_IS_LOG, is_log) == 0); 1222 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) { 1223 verify(nvlist_add_uint64(nv, 1224 ZPOOL_CONFIG_NPARITY, 1225 mindev - 1) == 0); 1226 } 1227 verify(nvlist_add_nvlist_array(nv, 1228 ZPOOL_CONFIG_CHILDREN, child, 1229 children) == 0); 1230 1231 for (c = 0; c < children; c++) 1232 nvlist_free(child[c]); 1233 free(child); 1234 } 1235 } else { 1236 /* 1237 * We have a device. Pass off to make_leaf_vdev() to 1238 * construct the appropriate nvlist describing the vdev. 1239 */ 1240 if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL) 1241 return (NULL); 1242 if (is_log) 1243 nlogs++; 1244 argc--; 1245 argv++; 1246 } 1247 1248 toplevels++; 1249 top = realloc(top, toplevels * sizeof (nvlist_t *)); 1250 if (top == NULL) 1251 zpool_no_memory(); 1252 top[toplevels - 1] = nv; 1253 } 1254 1255 if (toplevels == 0 && nspares == 0) { 1256 (void) fprintf(stderr, gettext("invalid vdev " 1257 "specification: at least one toplevel vdev must be " 1258 "specified\n")); 1259 return (NULL); 1260 } 1261 1262 if (seen_logs && nlogs == 0) { 1263 (void) fprintf(stderr, gettext("invalid vdev specification: " 1264 "log requires at least 1 device\n")); 1265 return (NULL); 1266 } 1267 1268 /* 1269 * Finally, create nvroot and add all top-level vdevs to it. 1270 */ 1271 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0); 1272 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 1273 VDEV_TYPE_ROOT) == 0); 1274 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 1275 top, toplevels) == 0); 1276 if (nspares != 0) 1277 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1278 spares, nspares) == 0); 1279 1280 for (t = 0; t < toplevels; t++) 1281 nvlist_free(top[t]); 1282 for (t = 0; t < nspares; t++) 1283 nvlist_free(spares[t]); 1284 if (spares) 1285 free(spares); 1286 free(top); 1287 1288 return (nvroot); 1289 } 1290 1291 1292 /* 1293 * Get and validate the contents of the given vdev specification. This ensures 1294 * that the nvlist returned is well-formed, that all the devices exist, and that 1295 * they are not currently in use by any other known consumer. The 'poolconfig' 1296 * parameter is the current configuration of the pool when adding devices 1297 * existing pool, and is used to perform additional checks, such as changing the 1298 * replication level of the pool. It can be 'NULL' to indicate that this is a 1299 * new pool. The 'force' flag controls whether devices should be forcefully 1300 * added, even if they appear in use. 1301 */ 1302 nvlist_t * 1303 make_root_vdev(zpool_handle_t *zhp, int force, int check_rep, 1304 boolean_t isreplacing, int argc, char **argv) 1305 { 1306 nvlist_t *newroot; 1307 nvlist_t *poolconfig = NULL; 1308 is_force = force; 1309 1310 /* 1311 * Construct the vdev specification. If this is successful, we know 1312 * that we have a valid specification, and that all devices can be 1313 * opened. 1314 */ 1315 if ((newroot = construct_spec(argc, argv)) == NULL) 1316 return (NULL); 1317 1318 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) 1319 return (NULL); 1320 1321 /* 1322 * Validate each device to make sure that its not shared with another 1323 * subsystem. We do this even if 'force' is set, because there are some 1324 * uses (such as a dedicated dump device) that even '-f' cannot 1325 * override. 1326 */ 1327 if (check_in_use(poolconfig, newroot, force, isreplacing, 1328 B_FALSE) != 0) { 1329 nvlist_free(newroot); 1330 return (NULL); 1331 } 1332 1333 /* 1334 * Check the replication level of the given vdevs and report any errors 1335 * found. We include the existing pool spec, if any, as we need to 1336 * catch changes against the existing replication level. 1337 */ 1338 if (check_rep && check_replication(poolconfig, newroot) != 0) { 1339 nvlist_free(newroot); 1340 return (NULL); 1341 } 1342 1343 /* 1344 * Run through the vdev specification and label any whole disks found. 1345 */ 1346 if (make_disks(zhp, newroot) != 0) { 1347 nvlist_free(newroot); 1348 return (NULL); 1349 } 1350 1351 return (newroot); 1352 } 1353