xref: /illumos-gate/usr/src/cmd/zpool/zpool_vdev.c (revision d8ab6e129d75d7c3f21a7909bf811a3de65faea8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2016, 2017 Intel Corporation.
26  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
27  */
28 
29 /*
30  * Functions to convert between a list of vdevs and an nvlist representing the
31  * configuration.  Each entry in the list can be one of:
32  *
33  *	Device vdevs
34  *		disk=(path=..., devid=...)
35  *		file=(path=...)
36  *
37  *	Group vdevs
38  *		raidz[1|2]=(...)
39  *		mirror=(...)
40  *
41  *	Hot spares
42  *
43  * While the underlying implementation supports it, group vdevs cannot contain
44  * other group vdevs.  All userland verification of devices is contained within
45  * this file.  If successful, the nvlist returned can be passed directly to the
46  * kernel; we've done as much verification as possible in userland.
47  *
48  * Hot spares are a special case, and passed down as an array of disk vdevs, at
49  * the same level as the root of the vdev tree.
50  *
51  * The only function exported by this file is 'make_root_vdev'.  The
52  * function performs several passes:
53  *
54  *	1. Construct the vdev specification.  Performs syntax validation and
55  *         makes sure each device is valid.
56  *	2. Check for devices in use.  Using libdiskmgt, makes sure that no
57  *         devices are also in use.  Some can be overridden using the 'force'
58  *         flag, others cannot.
59  *	3. Check for replication errors if the 'force' flag is not specified.
60  *         validates that the replication level is consistent across the
61  *         entire pool.
62  *	4. Call libzfs to label any whole disks with an EFI label.
63  */
64 
65 #include <assert.h>
66 #include <devid.h>
67 #include <errno.h>
68 #include <fcntl.h>
69 #include <libdiskmgt.h>
70 #include <libintl.h>
71 #include <libnvpair.h>
72 #include <libzutil.h>
73 #include <limits.h>
74 #include <sys/spa.h>
75 #include <stdio.h>
76 #include <string.h>
77 #include <unistd.h>
78 #include <sys/efi_partition.h>
79 #include <sys/stat.h>
80 #include <sys/vtoc.h>
81 #include <sys/mntent.h>
82 
83 #include "zpool_util.h"
84 
85 #define	BACKUP_SLICE	"s2"
86 
87 /*
88  * For any given vdev specification, we can have multiple errors.  The
89  * vdev_error() function keeps track of whether we have seen an error yet, and
90  * prints out a header if its the first error we've seen.
91  */
92 boolean_t error_seen;
93 boolean_t is_force;
94 
95 /*PRINTFLIKE1*/
96 static void
97 vdev_error(const char *fmt, ...)
98 {
99 	va_list ap;
100 
101 	if (!error_seen) {
102 		(void) fprintf(stderr, gettext("invalid vdev specification\n"));
103 		if (!is_force)
104 			(void) fprintf(stderr, gettext("use '-f' to override "
105 			    "the following errors:\n"));
106 		else
107 			(void) fprintf(stderr, gettext("the following errors "
108 			    "must be manually repaired:\n"));
109 		error_seen = B_TRUE;
110 	}
111 
112 	va_start(ap, fmt);
113 	(void) vfprintf(stderr, fmt, ap);
114 	va_end(ap);
115 }
116 
117 static void
118 libdiskmgt_error(int error)
119 {
120 	/*
121 	 * ENXIO/ENODEV is a valid error message if the device doesn't live in
122 	 * /dev/dsk.  Don't bother printing an error message in this case.
123 	 */
124 	if (error == ENXIO || error == ENODEV)
125 		return;
126 
127 	(void) fprintf(stderr, gettext("warning: device in use checking "
128 	    "failed: %s\n"), strerror(error));
129 }
130 
131 /*
132  * Validate a device, passing the bulk of the work off to libdiskmgt.
133  */
134 static int
135 check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare)
136 {
137 	char *msg;
138 	int error = 0;
139 	dm_who_type_t who;
140 
141 	if (force)
142 		who = DM_WHO_ZPOOL_FORCE;
143 	else if (isspare)
144 		who = DM_WHO_ZPOOL_SPARE;
145 	else
146 		who = DM_WHO_ZPOOL;
147 
148 	if (dm_inuse((char *)path, &msg, who, &error) || error) {
149 		if (error != 0) {
150 			libdiskmgt_error(error);
151 			return (0);
152 		} else {
153 			vdev_error("%s", msg);
154 			free(msg);
155 			return (-1);
156 		}
157 	}
158 
159 	/*
160 	 * If we're given a whole disk, ignore overlapping slices since we're
161 	 * about to label it anyway.
162 	 */
163 	error = 0;
164 	if (!wholedisk && !force &&
165 	    (dm_isoverlapping((char *)path, &msg, &error) || error)) {
166 		if (error == 0) {
167 			/* dm_isoverlapping returned -1 */
168 			vdev_error(gettext("%s overlaps with %s\n"), path, msg);
169 			free(msg);
170 			return (-1);
171 		} else if (error != ENODEV) {
172 			/* libdiskmgt's devcache only handles physical drives */
173 			libdiskmgt_error(error);
174 			return (0);
175 		}
176 	}
177 
178 	return (0);
179 }
180 
181 
182 /*
183  * Validate a whole disk.  Iterate over all slices on the disk and make sure
184  * that none is in use by calling check_slice().
185  */
186 static int
187 check_disk(const char *name, dm_descriptor_t disk, int force, int isspare)
188 {
189 	dm_descriptor_t *drive, *media, *slice;
190 	int err = 0;
191 	int i;
192 	int ret;
193 
194 	/*
195 	 * Get the drive associated with this disk.  This should never fail,
196 	 * because we already have an alias handle open for the device.
197 	 */
198 	if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE,
199 	    &err)) == NULL || *drive == 0) {
200 		if (err)
201 			libdiskmgt_error(err);
202 		return (0);
203 	}
204 
205 	if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA,
206 	    &err)) == NULL) {
207 		dm_free_descriptors(drive);
208 		if (err)
209 			libdiskmgt_error(err);
210 		return (0);
211 	}
212 
213 	dm_free_descriptors(drive);
214 
215 	/*
216 	 * It is possible that the user has specified a removable media drive,
217 	 * and the media is not present.
218 	 */
219 	if (*media == 0) {
220 		dm_free_descriptors(media);
221 		vdev_error(gettext("'%s' has no media in drive\n"), name);
222 		return (-1);
223 	}
224 
225 	if ((slice = dm_get_associated_descriptors(*media, DM_SLICE,
226 	    &err)) == NULL) {
227 		dm_free_descriptors(media);
228 		if (err)
229 			libdiskmgt_error(err);
230 		return (0);
231 	}
232 
233 	dm_free_descriptors(media);
234 
235 	ret = 0;
236 
237 	/*
238 	 * Iterate over all slices and report any errors.  We don't care about
239 	 * overlapping slices because we are using the whole disk.
240 	 */
241 	for (i = 0; slice[i] != 0; i++) {
242 		char *name = dm_get_name(slice[i], &err);
243 
244 		if (check_slice(name, force, B_TRUE, isspare) != 0)
245 			ret = -1;
246 
247 		dm_free_name(name);
248 	}
249 
250 	dm_free_descriptors(slice);
251 	return (ret);
252 }
253 
254 /*
255  * Validate a device.
256  */
257 static int
258 check_device(const char *path, boolean_t force, boolean_t isspare)
259 {
260 	dm_descriptor_t desc;
261 	int err;
262 	char *dev;
263 
264 	/*
265 	 * For whole disks, libdiskmgt does not include the leading dev path.
266 	 */
267 	dev = strrchr(path, '/');
268 	assert(dev != NULL);
269 	dev++;
270 	if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != 0) {
271 		err = check_disk(path, desc, force, isspare);
272 		dm_free_descriptor(desc);
273 		return (err);
274 	}
275 
276 	return (check_slice(path, force, B_FALSE, isspare));
277 }
278 
279 /*
280  * Check that a file is valid.  All we can do in this case is check that it's
281  * not in use by another pool, and not in use by swap.
282  */
283 static int
284 check_file(const char *file, boolean_t force, boolean_t isspare)
285 {
286 	char  *name;
287 	int fd;
288 	int ret = 0;
289 	int err;
290 	pool_state_t state;
291 	boolean_t inuse;
292 
293 	if (dm_inuse_swap(file, &err)) {
294 		if (err)
295 			libdiskmgt_error(err);
296 		else
297 			vdev_error(gettext("%s is currently used by swap. "
298 			    "Please see swap(1M).\n"), file);
299 		return (-1);
300 	}
301 
302 	if ((fd = open(file, O_RDONLY)) < 0)
303 		return (0);
304 
305 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
306 		const char *desc;
307 
308 		switch (state) {
309 		case POOL_STATE_ACTIVE:
310 			desc = gettext("active");
311 			break;
312 
313 		case POOL_STATE_EXPORTED:
314 			desc = gettext("exported");
315 			break;
316 
317 		case POOL_STATE_POTENTIALLY_ACTIVE:
318 			desc = gettext("potentially active");
319 			break;
320 
321 		default:
322 			desc = gettext("unknown");
323 			break;
324 		}
325 
326 		/*
327 		 * Allow hot spares to be shared between pools.
328 		 */
329 		if (state == POOL_STATE_SPARE && isspare)
330 			return (0);
331 
332 		if (state == POOL_STATE_ACTIVE ||
333 		    state == POOL_STATE_SPARE || !force) {
334 			switch (state) {
335 			case POOL_STATE_SPARE:
336 				vdev_error(gettext("%s is reserved as a hot "
337 				    "spare for pool %s\n"), file, name);
338 				break;
339 			default:
340 				vdev_error(gettext("%s is part of %s pool "
341 				    "'%s'\n"), file, desc, name);
342 				break;
343 			}
344 			ret = -1;
345 		}
346 
347 		free(name);
348 	}
349 
350 	(void) close(fd);
351 	return (ret);
352 }
353 
354 
355 /*
356  * By "whole disk" we mean an entire physical disk (something we can
357  * label, toggle the write cache on, etc.) as opposed to the full
358  * capacity of a pseudo-device such as lofi or did.  We act as if we
359  * are labeling the disk, which should be a pretty good test of whether
360  * it's a viable device or not.  Returns B_TRUE if it is and B_FALSE if
361  * it isn't.
362  */
363 static boolean_t
364 is_whole_disk(const char *arg)
365 {
366 	struct dk_gpt *label;
367 	int	fd;
368 	char	path[MAXPATHLEN];
369 
370 	(void) snprintf(path, sizeof (path), "%s%s%s",
371 	    ZFS_RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE);
372 	if ((fd = open(path, O_RDWR | O_NDELAY)) < 0)
373 		return (B_FALSE);
374 	if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
375 		(void) close(fd);
376 		return (B_FALSE);
377 	}
378 	efi_free(label);
379 	(void) close(fd);
380 	return (B_TRUE);
381 }
382 
383 /*
384  * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
385  * device, fill in the device id to make a complete nvlist.  Valid forms for a
386  * leaf vdev are:
387  *
388  *	/dev/dsk/xxx	Complete disk path
389  *	/xxx		Full path to file
390  *	xxx		Shorthand for /dev/dsk/xxx
391  */
392 static nvlist_t *
393 make_leaf_vdev(nvlist_t *props, const char *arg, uint64_t is_log)
394 {
395 	char path[MAXPATHLEN];
396 	struct stat64 statbuf;
397 	nvlist_t *vdev = NULL;
398 	char *type = NULL;
399 	boolean_t wholedisk = B_FALSE;
400 	uint64_t ashift = 0;
401 
402 	/*
403 	 * Determine what type of vdev this is, and put the full path into
404 	 * 'path'.  We detect whether this is a device of file afterwards by
405 	 * checking the st_mode of the file.
406 	 */
407 	if (arg[0] == '/') {
408 		/*
409 		 * Complete device or file path.  Exact type is determined by
410 		 * examining the file descriptor afterwards.
411 		 */
412 		wholedisk = is_whole_disk(arg);
413 		if (!wholedisk && (stat64(arg, &statbuf) != 0)) {
414 			(void) fprintf(stderr,
415 			    gettext("cannot open '%s': %s\n"),
416 			    arg, strerror(errno));
417 			return (NULL);
418 		}
419 
420 		(void) strlcpy(path, arg, sizeof (path));
421 	} else {
422 		/*
423 		 * This may be a short path for a device, or it could be total
424 		 * gibberish.  Check to see if it's a known device in
425 		 * /dev/dsk/.  As part of this check, see if we've been given a
426 		 * an entire disk (minus the slice number).
427 		 */
428 		(void) snprintf(path, sizeof (path), "%s/%s", ZFS_DISK_ROOT,
429 		    arg);
430 		wholedisk = is_whole_disk(path);
431 		if (!wholedisk && (stat64(path, &statbuf) != 0)) {
432 			/*
433 			 * If we got ENOENT, then the user gave us
434 			 * gibberish, so try to direct them with a
435 			 * reasonable error message.  Otherwise,
436 			 * regurgitate strerror() since it's the best we
437 			 * can do.
438 			 */
439 			if (errno == ENOENT) {
440 				(void) fprintf(stderr,
441 				    gettext("cannot open '%s': no such "
442 				    "device in %s\n"), arg, ZFS_DISK_ROOT);
443 				(void) fprintf(stderr,
444 				    gettext("must be a full path or "
445 				    "shorthand device name\n"));
446 				return (NULL);
447 			} else {
448 				(void) fprintf(stderr,
449 				    gettext("cannot open '%s': %s\n"),
450 				    path, strerror(errno));
451 				return (NULL);
452 			}
453 		}
454 	}
455 
456 	/*
457 	 * Determine whether this is a device or a file.
458 	 */
459 	if (wholedisk || S_ISBLK(statbuf.st_mode)) {
460 		type = VDEV_TYPE_DISK;
461 	} else if (S_ISREG(statbuf.st_mode)) {
462 		type = VDEV_TYPE_FILE;
463 	} else {
464 		(void) fprintf(stderr, gettext("cannot use '%s': must be a "
465 		    "block device or regular file\n"), path);
466 		return (NULL);
467 	}
468 
469 	/*
470 	 * Finally, we have the complete device or file, and we know that it is
471 	 * acceptable to use.  Construct the nvlist to describe this vdev.  All
472 	 * vdevs have a 'path' element, and devices also have a 'devid' element.
473 	 */
474 	verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
475 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
476 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
477 	verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
478 	if (is_log)
479 		verify(nvlist_add_string(vdev, ZPOOL_CONFIG_ALLOCATION_BIAS,
480 		    VDEV_ALLOC_BIAS_LOG) == 0);
481 	if (strcmp(type, VDEV_TYPE_DISK) == 0)
482 		verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
483 		    (uint64_t)wholedisk) == 0);
484 
485 	if (props != NULL) {
486 		char *value = NULL;
487 
488 		if (nvlist_lookup_string(props,
489 		    zpool_prop_to_name(ZPOOL_PROP_ASHIFT), &value) == 0) {
490 			if (zfs_nicestrtonum(NULL, value, &ashift) != 0) {
491 				(void) fprintf(stderr,
492 				    gettext("ashift must be a number.\n"));
493 				return (NULL);
494 			}
495 			if (ashift != 0 &&
496 			    (ashift < ASHIFT_MIN || ashift > ASHIFT_MAX)) {
497 				(void) fprintf(stderr,
498 				    gettext("invalid 'ashift=%" PRIu64 "' "
499 				    "property: only values between %" PRId32 " "
500 				    "and %" PRId32 " are allowed.\n"),
501 				    ashift, ASHIFT_MIN, ASHIFT_MAX);
502 				return (NULL);
503 			}
504 		}
505 	}
506 
507 	/*
508 	 * For a whole disk, defer getting its devid until after labeling it.
509 	 */
510 	if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
511 		/*
512 		 * Get the devid for the device.
513 		 */
514 		int fd;
515 		ddi_devid_t devid;
516 		char *minor = NULL, *devid_str = NULL;
517 
518 		if ((fd = open(path, O_RDONLY)) < 0) {
519 			(void) fprintf(stderr, gettext("cannot open '%s': "
520 			    "%s\n"), path, strerror(errno));
521 			nvlist_free(vdev);
522 			return (NULL);
523 		}
524 
525 		if (devid_get(fd, &devid) == 0) {
526 			if (devid_get_minor_name(fd, &minor) == 0 &&
527 			    (devid_str = devid_str_encode(devid, minor)) !=
528 			    NULL) {
529 				verify(nvlist_add_string(vdev,
530 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
531 			}
532 			if (devid_str != NULL)
533 				devid_str_free(devid_str);
534 			if (minor != NULL)
535 				devid_str_free(minor);
536 			devid_free(devid);
537 		}
538 
539 		(void) close(fd);
540 	}
541 
542 	if (ashift > 0)
543 		(void) nvlist_add_uint64(vdev, ZPOOL_CONFIG_ASHIFT, ashift);
544 
545 	return (vdev);
546 }
547 
548 /*
549  * Go through and verify the replication level of the pool is consistent.
550  * Performs the following checks:
551  *
552  *	For the new spec, verifies that devices in mirrors and raidz are the
553  *	same size.
554  *
555  *	If the current configuration already has inconsistent replication
556  *	levels, ignore any other potential problems in the new spec.
557  *
558  *	Otherwise, make sure that the current spec (if there is one) and the new
559  *	spec have consistent replication levels.
560  *
561  *	If there is no current spec (create), make sure new spec has at least
562  *	one general purpose vdev.
563  */
564 typedef struct replication_level {
565 	char *zprl_type;
566 	uint64_t zprl_children;
567 	uint64_t zprl_parity;
568 } replication_level_t;
569 
570 #define	ZPOOL_FUZZ	(16 * 1024 * 1024)
571 
572 static boolean_t
573 is_raidz_mirror(replication_level_t *a, replication_level_t *b,
574     replication_level_t **raidz, replication_level_t **mirror)
575 {
576 	if (strcmp(a->zprl_type, "raidz") == 0 &&
577 	    strcmp(b->zprl_type, "mirror") == 0) {
578 		*raidz = a;
579 		*mirror = b;
580 		return (B_TRUE);
581 	}
582 	return (B_FALSE);
583 }
584 
585 /*
586  * Given a list of toplevel vdevs, return the current replication level.  If
587  * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
588  * an error message will be displayed for each self-inconsistent vdev.
589  */
590 static replication_level_t *
591 get_replication(nvlist_t *nvroot, boolean_t fatal)
592 {
593 	nvlist_t **top;
594 	uint_t t, toplevels;
595 	nvlist_t **child;
596 	uint_t c, children;
597 	nvlist_t *nv;
598 	char *type;
599 	replication_level_t lastrep = {0};
600 	replication_level_t rep;
601 	replication_level_t *ret;
602 	replication_level_t *raidz, *mirror;
603 	boolean_t dontreport;
604 
605 	ret = safe_malloc(sizeof (replication_level_t));
606 
607 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
608 	    &top, &toplevels) == 0);
609 
610 	for (t = 0; t < toplevels; t++) {
611 		uint64_t is_log = B_FALSE;
612 
613 		nv = top[t];
614 
615 		/*
616 		 * For separate logs we ignore the top level vdev replication
617 		 * constraints.
618 		 */
619 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
620 		if (is_log)
621 			continue;
622 
623 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
624 		    &type) == 0);
625 		if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
626 		    &child, &children) != 0) {
627 			/*
628 			 * This is a 'file' or 'disk' vdev.
629 			 */
630 			rep.zprl_type = type;
631 			rep.zprl_children = 1;
632 			rep.zprl_parity = 0;
633 		} else {
634 			uint64_t vdev_size;
635 
636 			/*
637 			 * This is a mirror or RAID-Z vdev.  Go through and make
638 			 * sure the contents are all the same (files vs. disks),
639 			 * keeping track of the number of elements in the
640 			 * process.
641 			 *
642 			 * We also check that the size of each vdev (if it can
643 			 * be determined) is the same.
644 			 */
645 			rep.zprl_type = type;
646 			rep.zprl_children = 0;
647 
648 			if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
649 				verify(nvlist_lookup_uint64(nv,
650 				    ZPOOL_CONFIG_NPARITY,
651 				    &rep.zprl_parity) == 0);
652 				assert(rep.zprl_parity != 0);
653 			} else {
654 				rep.zprl_parity = 0;
655 			}
656 
657 			/*
658 			 * The 'dontreport' variable indicates that we've
659 			 * already reported an error for this spec, so don't
660 			 * bother doing it again.
661 			 */
662 			type = NULL;
663 			dontreport = 0;
664 			vdev_size = -1ULL;
665 			for (c = 0; c < children; c++) {
666 				nvlist_t *cnv = child[c];
667 				char *path;
668 				struct stat64 statbuf;
669 				uint64_t size = -1ULL;
670 				char *childtype;
671 				int fd, err;
672 
673 				rep.zprl_children++;
674 
675 				verify(nvlist_lookup_string(cnv,
676 				    ZPOOL_CONFIG_TYPE, &childtype) == 0);
677 
678 				/*
679 				 * If this is a replacing or spare vdev, then
680 				 * get the real first child of the vdev: do this
681 				 * in a loop because replacing and spare vdevs
682 				 * can be nested.
683 				 */
684 				while (strcmp(childtype,
685 				    VDEV_TYPE_REPLACING) == 0 ||
686 				    strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
687 					nvlist_t **rchild;
688 					uint_t rchildren;
689 
690 					verify(nvlist_lookup_nvlist_array(cnv,
691 					    ZPOOL_CONFIG_CHILDREN, &rchild,
692 					    &rchildren) == 0);
693 					assert(rchildren == 2);
694 					cnv = rchild[0];
695 
696 					verify(nvlist_lookup_string(cnv,
697 					    ZPOOL_CONFIG_TYPE,
698 					    &childtype) == 0);
699 				}
700 
701 				verify(nvlist_lookup_string(cnv,
702 				    ZPOOL_CONFIG_PATH, &path) == 0);
703 
704 				/*
705 				 * If we have a raidz/mirror that combines disks
706 				 * with files, report it as an error.
707 				 */
708 				if (!dontreport && type != NULL &&
709 				    strcmp(type, childtype) != 0) {
710 					if (ret != NULL)
711 						free(ret);
712 					ret = NULL;
713 					if (fatal)
714 						vdev_error(gettext(
715 						    "mismatched replication "
716 						    "level: %s contains both "
717 						    "files and devices\n"),
718 						    rep.zprl_type);
719 					else
720 						return (NULL);
721 					dontreport = B_TRUE;
722 				}
723 
724 				/*
725 				 * According to stat(2), the value of 'st_size'
726 				 * is undefined for block devices and character
727 				 * devices.  But there is no effective way to
728 				 * determine the real size in userland.
729 				 *
730 				 * Instead, we'll take advantage of an
731 				 * implementation detail of spec_size().  If the
732 				 * device is currently open, then we (should)
733 				 * return a valid size.
734 				 *
735 				 * If we still don't get a valid size (indicated
736 				 * by a size of 0 or MAXOFFSET_T), then ignore
737 				 * this device altogether.
738 				 */
739 				if ((fd = open(path, O_RDONLY)) >= 0) {
740 					err = fstat64(fd, &statbuf);
741 					(void) close(fd);
742 				} else {
743 					err = stat64(path, &statbuf);
744 				}
745 
746 				if (err != 0 ||
747 				    statbuf.st_size == 0 ||
748 				    statbuf.st_size == MAXOFFSET_T)
749 					continue;
750 
751 				size = statbuf.st_size;
752 
753 				/*
754 				 * Also make sure that devices and
755 				 * slices have a consistent size.  If
756 				 * they differ by a significant amount
757 				 * (~16MB) then report an error.
758 				 */
759 				if (!dontreport &&
760 				    (vdev_size != -1ULL &&
761 				    (labs(size - vdev_size) >
762 				    ZPOOL_FUZZ))) {
763 					if (ret != NULL)
764 						free(ret);
765 					ret = NULL;
766 					if (fatal)
767 						vdev_error(gettext(
768 						    "%s contains devices of "
769 						    "different sizes\n"),
770 						    rep.zprl_type);
771 					else
772 						return (NULL);
773 					dontreport = B_TRUE;
774 				}
775 
776 				type = childtype;
777 				vdev_size = size;
778 			}
779 		}
780 
781 		/*
782 		 * At this point, we have the replication of the last toplevel
783 		 * vdev in 'rep'.  Compare it to 'lastrep' to see if it is
784 		 * different.
785 		 */
786 		if (lastrep.zprl_type != NULL) {
787 			if (is_raidz_mirror(&lastrep, &rep, &raidz, &mirror) ||
788 			    is_raidz_mirror(&rep, &lastrep, &raidz, &mirror)) {
789 				/*
790 				 * Accepted raidz and mirror when they can
791 				 * handle the same number of disk failures.
792 				 */
793 				if (raidz->zprl_parity !=
794 				    mirror->zprl_children - 1) {
795 					if (ret != NULL)
796 						free(ret);
797 					ret = NULL;
798 					if (fatal)
799 						vdev_error(gettext(
800 						    "mismatched replication "
801 						    "level: "
802 						    "%s and %s vdevs with "
803 						    "different redundancy, "
804 						    "%llu vs. %llu (%llu-way) "
805 						    "are present\n"),
806 						    raidz->zprl_type,
807 						    mirror->zprl_type,
808 						    raidz->zprl_parity,
809 						    mirror->zprl_children - 1,
810 						    mirror->zprl_children);
811 					else
812 						return (NULL);
813 				}
814 			} else if (strcmp(lastrep.zprl_type, rep.zprl_type) !=
815 			    0) {
816 				if (ret != NULL)
817 					free(ret);
818 				ret = NULL;
819 				if (fatal)
820 					vdev_error(gettext(
821 					    "mismatched replication level: "
822 					    "both %s and %s vdevs are "
823 					    "present\n"),
824 					    lastrep.zprl_type, rep.zprl_type);
825 				else
826 					return (NULL);
827 			} else if (lastrep.zprl_parity != rep.zprl_parity) {
828 				if (ret)
829 					free(ret);
830 				ret = NULL;
831 				if (fatal)
832 					vdev_error(gettext(
833 					    "mismatched replication level: "
834 					    "both %llu and %llu device parity "
835 					    "%s vdevs are present\n"),
836 					    lastrep.zprl_parity,
837 					    rep.zprl_parity,
838 					    rep.zprl_type);
839 				else
840 					return (NULL);
841 			} else if (lastrep.zprl_children != rep.zprl_children) {
842 				if (ret)
843 					free(ret);
844 				ret = NULL;
845 				if (fatal)
846 					vdev_error(gettext(
847 					    "mismatched replication level: "
848 					    "both %llu-way and %llu-way %s "
849 					    "vdevs are present\n"),
850 					    lastrep.zprl_children,
851 					    rep.zprl_children,
852 					    rep.zprl_type);
853 				else
854 					return (NULL);
855 			}
856 		}
857 		lastrep = rep;
858 	}
859 
860 	if (ret != NULL)
861 		*ret = rep;
862 
863 	return (ret);
864 }
865 
866 /*
867  * Check the replication level of the vdev spec against the current pool.  Calls
868  * get_replication() to make sure the new spec is self-consistent.  If the pool
869  * has a consistent replication level, then we ignore any errors.  Otherwise,
870  * report any difference between the two.
871  */
872 static int
873 check_replication(nvlist_t *config, nvlist_t *newroot)
874 {
875 	nvlist_t **child;
876 	uint_t	children;
877 	replication_level_t *current = NULL, *new;
878 	replication_level_t *raidz, *mirror;
879 	int ret;
880 
881 	/*
882 	 * If we have a current pool configuration, check to see if it's
883 	 * self-consistent.  If not, simply return success.
884 	 */
885 	if (config != NULL) {
886 		nvlist_t *nvroot;
887 
888 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
889 		    &nvroot) == 0);
890 		if ((current = get_replication(nvroot, B_FALSE)) == NULL)
891 			return (0);
892 	}
893 	/*
894 	 * for spares there may be no children, and therefore no
895 	 * replication level to check
896 	 */
897 	if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
898 	    &child, &children) != 0) || (children == 0)) {
899 		free(current);
900 		return (0);
901 	}
902 
903 	/*
904 	 * If all we have is logs then there's no replication level to check.
905 	 */
906 	if (num_logs(newroot) == children) {
907 		free(current);
908 		return (0);
909 	}
910 
911 	/*
912 	 * Get the replication level of the new vdev spec, reporting any
913 	 * inconsistencies found.
914 	 */
915 	if ((new = get_replication(newroot, B_TRUE)) == NULL) {
916 		free(current);
917 		return (-1);
918 	}
919 
920 	/*
921 	 * Check to see if the new vdev spec matches the replication level of
922 	 * the current pool.
923 	 */
924 	ret = 0;
925 	if (current != NULL) {
926 		if (is_raidz_mirror(current, new, &raidz, &mirror) ||
927 		    is_raidz_mirror(new, current, &raidz, &mirror)) {
928 			if (raidz->zprl_parity != mirror->zprl_children - 1) {
929 				vdev_error(gettext(
930 				    "mismatched replication level: pool and "
931 				    "new vdev with different redundancy, %s "
932 				    "and %s vdevs, %llu vs. %llu (%llu-way)\n"),
933 				    raidz->zprl_type,
934 				    mirror->zprl_type,
935 				    raidz->zprl_parity,
936 				    mirror->zprl_children - 1,
937 				    mirror->zprl_children);
938 				ret = -1;
939 			}
940 		} else if (strcmp(current->zprl_type, new->zprl_type) != 0) {
941 			vdev_error(gettext(
942 			    "mismatched replication level: pool uses %s "
943 			    "and new vdev is %s\n"),
944 			    current->zprl_type, new->zprl_type);
945 			ret = -1;
946 		} else if (current->zprl_parity != new->zprl_parity) {
947 			vdev_error(gettext(
948 			    "mismatched replication level: pool uses %llu "
949 			    "device parity and new vdev uses %llu\n"),
950 			    current->zprl_parity, new->zprl_parity);
951 			ret = -1;
952 		} else if (current->zprl_children != new->zprl_children) {
953 			vdev_error(gettext(
954 			    "mismatched replication level: pool uses %llu-way "
955 			    "%s and new vdev uses %llu-way %s\n"),
956 			    current->zprl_children, current->zprl_type,
957 			    new->zprl_children, new->zprl_type);
958 			ret = -1;
959 		}
960 	}
961 
962 	free(new);
963 	if (current != NULL)
964 		free(current);
965 
966 	return (ret);
967 }
968 
969 /*
970  * Go through and find any whole disks in the vdev specification, labelling them
971  * as appropriate.  When constructing the vdev spec, we were unable to open this
972  * device in order to provide a devid.  Now that we have labelled the disk and
973  * know the pool slice is valid, we can construct the devid now.
974  *
975  * If the disk was already labeled with an EFI label, we will have gotten the
976  * devid already (because we were able to open the whole disk).  Otherwise, we
977  * need to get the devid after we label the disk.
978  */
979 static int
980 make_disks(zpool_handle_t *zhp, nvlist_t *nv, zpool_boot_label_t boot_type,
981     uint64_t boot_size)
982 {
983 	nvlist_t **child;
984 	uint_t c, children;
985 	char *type, *path, *diskname;
986 	char buf[MAXPATHLEN];
987 	uint64_t wholedisk;
988 	int fd;
989 	int ret;
990 	int slice;
991 	ddi_devid_t devid;
992 	char *minor = NULL, *devid_str = NULL;
993 
994 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
995 
996 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
997 	    &child, &children) != 0) {
998 
999 		if (strcmp(type, VDEV_TYPE_DISK) != 0)
1000 			return (0);
1001 
1002 		/*
1003 		 * We have a disk device.  Get the path to the device
1004 		 * and see if it's a whole disk by appending the backup
1005 		 * slice and stat()ing the device.
1006 		 */
1007 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1008 
1009 		diskname = strrchr(path, '/');
1010 		assert(diskname != NULL);
1011 		diskname++;
1012 
1013 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1014 		    &wholedisk) != 0 || !wholedisk) {
1015 			/*
1016 			 * This is not whole disk, return error if
1017 			 * boot partition creation was requested
1018 			 */
1019 			if (boot_type == ZPOOL_CREATE_BOOT_LABEL) {
1020 				(void) fprintf(stderr,
1021 				    gettext("creating boot partition is only "
1022 				    "supported on whole disk vdevs: %s\n"),
1023 				    diskname);
1024 				return (-1);
1025 			}
1026 			return (0);
1027 		}
1028 
1029 		ret = zpool_label_disk(g_zfs, zhp, diskname, boot_type,
1030 		    boot_size, &slice);
1031 		if (ret == -1)
1032 			return (ret);
1033 
1034 		/*
1035 		 * Fill in the devid, now that we've labeled the disk.
1036 		 */
1037 		(void) snprintf(buf, sizeof (buf), "%ss%d", path, slice);
1038 		if ((fd = open(buf, O_RDONLY)) < 0) {
1039 			(void) fprintf(stderr,
1040 			    gettext("cannot open '%s': %s\n"),
1041 			    buf, strerror(errno));
1042 			return (-1);
1043 		}
1044 
1045 		if (devid_get(fd, &devid) == 0) {
1046 			if (devid_get_minor_name(fd, &minor) == 0 &&
1047 			    (devid_str = devid_str_encode(devid, minor)) !=
1048 			    NULL) {
1049 				verify(nvlist_add_string(nv,
1050 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
1051 			}
1052 			if (devid_str != NULL)
1053 				devid_str_free(devid_str);
1054 			if (minor != NULL)
1055 				devid_str_free(minor);
1056 			devid_free(devid);
1057 		}
1058 
1059 		/*
1060 		 * Update the path to refer to the pool slice.  The presence of
1061 		 * the 'whole_disk' field indicates to the CLI that we should
1062 		 * chop off the slice number when displaying the device in
1063 		 * future output.
1064 		 */
1065 		verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
1066 
1067 		(void) close(fd);
1068 
1069 		return (0);
1070 	}
1071 
1072 	/* illumos kernel does not support booting from multi-vdev pools. */
1073 	if ((boot_type == ZPOOL_CREATE_BOOT_LABEL)) {
1074 		if ((strcmp(type, VDEV_TYPE_ROOT) == 0) && children > 1) {
1075 			(void) fprintf(stderr, gettext("boot pool "
1076 			    "can not have more than one vdev\n"));
1077 			return (-1);
1078 		}
1079 	}
1080 
1081 	for (c = 0; c < children; c++) {
1082 		ret = make_disks(zhp, child[c], boot_type, boot_size);
1083 		if (ret != 0)
1084 			return (ret);
1085 	}
1086 
1087 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1088 	    &child, &children) == 0)
1089 		for (c = 0; c < children; c++) {
1090 			ret = make_disks(zhp, child[c], boot_type, boot_size);
1091 			if (ret != 0)
1092 				return (ret);
1093 		}
1094 
1095 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1096 	    &child, &children) == 0)
1097 		for (c = 0; c < children; c++) {
1098 			ret = make_disks(zhp, child[c], boot_type, boot_size);
1099 			if (ret != 0)
1100 				return (ret);
1101 		}
1102 
1103 	return (0);
1104 }
1105 
1106 /*
1107  * Determine if the given path is a hot spare within the given configuration.
1108  */
1109 static boolean_t
1110 is_spare(nvlist_t *config, const char *path)
1111 {
1112 	int fd;
1113 	pool_state_t state;
1114 	char *name = NULL;
1115 	nvlist_t *label;
1116 	uint64_t guid, spareguid;
1117 	nvlist_t *nvroot;
1118 	nvlist_t **spares;
1119 	uint_t i, nspares;
1120 	boolean_t inuse;
1121 
1122 	if ((fd = open(path, O_RDONLY)) < 0)
1123 		return (B_FALSE);
1124 
1125 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
1126 	    !inuse ||
1127 	    state != POOL_STATE_SPARE ||
1128 	    zpool_read_label(fd, &label, NULL) != 0) {
1129 		free(name);
1130 		(void) close(fd);
1131 		return (B_FALSE);
1132 	}
1133 	free(name);
1134 	(void) close(fd);
1135 
1136 	verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
1137 	nvlist_free(label);
1138 
1139 	verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1140 	    &nvroot) == 0);
1141 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1142 	    &spares, &nspares) == 0) {
1143 		for (i = 0; i < nspares; i++) {
1144 			verify(nvlist_lookup_uint64(spares[i],
1145 			    ZPOOL_CONFIG_GUID, &spareguid) == 0);
1146 			if (spareguid == guid)
1147 				return (B_TRUE);
1148 		}
1149 	}
1150 
1151 	return (B_FALSE);
1152 }
1153 
1154 /*
1155  * Go through and find any devices that are in use.  We rely on libdiskmgt for
1156  * the majority of this task.
1157  */
1158 static boolean_t
1159 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1160     boolean_t replacing, boolean_t isspare)
1161 {
1162 	nvlist_t **child;
1163 	uint_t c, children;
1164 	char *type, *path;
1165 	int ret = 0;
1166 	char buf[MAXPATHLEN];
1167 	uint64_t wholedisk;
1168 	boolean_t anyinuse = B_FALSE;
1169 
1170 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1171 
1172 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1173 	    &child, &children) != 0) {
1174 
1175 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1176 
1177 		/*
1178 		 * As a generic check, we look to see if this is a replace of a
1179 		 * hot spare within the same pool.  If so, we allow it
1180 		 * regardless of what libdiskmgt or zpool_in_use() says.
1181 		 */
1182 		if (replacing) {
1183 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1184 			    &wholedisk) == 0 && wholedisk)
1185 				(void) snprintf(buf, sizeof (buf), "%ss0",
1186 				    path);
1187 			else
1188 				(void) strlcpy(buf, path, sizeof (buf));
1189 
1190 			if (is_spare(config, buf))
1191 				return (B_FALSE);
1192 		}
1193 
1194 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1195 			ret = check_device(path, force, isspare);
1196 		else if (strcmp(type, VDEV_TYPE_FILE) == 0)
1197 			ret = check_file(path, force, isspare);
1198 
1199 		return (ret != 0);
1200 	}
1201 
1202 	for (c = 0; c < children; c++)
1203 		if (is_device_in_use(config, child[c], force, replacing,
1204 		    B_FALSE))
1205 			anyinuse = B_TRUE;
1206 
1207 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1208 	    &child, &children) == 0)
1209 		for (c = 0; c < children; c++)
1210 			if (is_device_in_use(config, child[c], force, replacing,
1211 			    B_TRUE))
1212 				anyinuse = B_TRUE;
1213 
1214 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1215 	    &child, &children) == 0)
1216 		for (c = 0; c < children; c++)
1217 			if (is_device_in_use(config, child[c], force, replacing,
1218 			    B_FALSE))
1219 				anyinuse = B_TRUE;
1220 
1221 	return (anyinuse);
1222 }
1223 
1224 static const char *
1225 is_grouping(const char *type, int *mindev, int *maxdev)
1226 {
1227 	if (strncmp(type, "raidz", 5) == 0) {
1228 		const char *p = type + 5;
1229 		char *end;
1230 		long nparity;
1231 
1232 		if (*p == '\0') {
1233 			nparity = 1;
1234 		} else if (*p == '0') {
1235 			return (NULL); /* no zero prefixes allowed */
1236 		} else {
1237 			errno = 0;
1238 			nparity = strtol(p, &end, 10);
1239 			if (errno != 0 || nparity < 1 || nparity >= 255 ||
1240 			    *end != '\0')
1241 				return (NULL);
1242 		}
1243 
1244 		if (mindev != NULL)
1245 			*mindev = nparity + 1;
1246 		if (maxdev != NULL)
1247 			*maxdev = 255;
1248 		return (VDEV_TYPE_RAIDZ);
1249 	}
1250 
1251 	if (maxdev != NULL)
1252 		*maxdev = INT_MAX;
1253 
1254 	if (strcmp(type, "mirror") == 0) {
1255 		if (mindev != NULL)
1256 			*mindev = 2;
1257 		return (VDEV_TYPE_MIRROR);
1258 	}
1259 
1260 	if (strcmp(type, "spare") == 0) {
1261 		if (mindev != NULL)
1262 			*mindev = 1;
1263 		return (VDEV_TYPE_SPARE);
1264 	}
1265 
1266 	if (strcmp(type, "log") == 0) {
1267 		if (mindev != NULL)
1268 			*mindev = 1;
1269 		return (VDEV_TYPE_LOG);
1270 	}
1271 
1272 	if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0 ||
1273 	    strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1274 		if (mindev != NULL)
1275 			*mindev = 1;
1276 		return (type);
1277 	}
1278 
1279 	if (strcmp(type, "cache") == 0) {
1280 		if (mindev != NULL)
1281 			*mindev = 1;
1282 		return (VDEV_TYPE_L2CACHE);
1283 	}
1284 
1285 	return (NULL);
1286 }
1287 
1288 /*
1289  * Construct a syntactically valid vdev specification,
1290  * and ensure that all devices and files exist and can be opened.
1291  * Note: we don't bother freeing anything in the error paths
1292  * because the program is just going to exit anyway.
1293  */
1294 nvlist_t *
1295 construct_spec(nvlist_t *props, int argc, char **argv)
1296 {
1297 	nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1298 	int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1299 	const char *type;
1300 	uint64_t is_log, is_special, is_dedup;
1301 	boolean_t seen_logs;
1302 
1303 	top = NULL;
1304 	toplevels = 0;
1305 	spares = NULL;
1306 	l2cache = NULL;
1307 	nspares = 0;
1308 	nlogs = 0;
1309 	nl2cache = 0;
1310 	is_log = is_special = is_dedup = B_FALSE;
1311 	seen_logs = B_FALSE;
1312 
1313 	while (argc > 0) {
1314 		nv = NULL;
1315 
1316 		/*
1317 		 * If it's a mirror or raidz, the subsequent arguments are
1318 		 * its leaves -- until we encounter the next mirror or raidz.
1319 		 */
1320 		if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) {
1321 			nvlist_t **child = NULL;
1322 			int c, children = 0;
1323 
1324 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1325 				if (spares != NULL) {
1326 					(void) fprintf(stderr,
1327 					    gettext("invalid vdev "
1328 					    "specification: 'spare' can be "
1329 					    "specified only once\n"));
1330 					return (NULL);
1331 				}
1332 				is_log = is_special = is_dedup = B_FALSE;
1333 			}
1334 
1335 			if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1336 				if (seen_logs) {
1337 					(void) fprintf(stderr,
1338 					    gettext("invalid vdev "
1339 					    "specification: 'log' can be "
1340 					    "specified only once\n"));
1341 					return (NULL);
1342 				}
1343 				seen_logs = B_TRUE;
1344 				is_log = B_TRUE;
1345 				is_special = B_FALSE;
1346 				is_dedup = B_FALSE;
1347 				argc--;
1348 				argv++;
1349 				/*
1350 				 * A log is not a real grouping device.
1351 				 * We just set is_log and continue.
1352 				 */
1353 				continue;
1354 			}
1355 
1356 			if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0) {
1357 				is_special = B_TRUE;
1358 				is_log = B_FALSE;
1359 				is_dedup = B_FALSE;
1360 				argc--;
1361 				argv++;
1362 				continue;
1363 			}
1364 
1365 			if (strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1366 				is_dedup = B_TRUE;
1367 				is_log = B_FALSE;
1368 				is_special = B_FALSE;
1369 				argc--;
1370 				argv++;
1371 				continue;
1372 			}
1373 
1374 			if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1375 				if (l2cache != NULL) {
1376 					(void) fprintf(stderr,
1377 					    gettext("invalid vdev "
1378 					    "specification: 'cache' can be "
1379 					    "specified only once\n"));
1380 					return (NULL);
1381 				}
1382 				is_log = is_special = is_dedup = B_FALSE;
1383 			}
1384 
1385 			if (is_log || is_special || is_dedup) {
1386 				if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1387 					(void) fprintf(stderr,
1388 					    gettext("invalid vdev "
1389 					    "specification: unsupported '%s' "
1390 					    "device: %s\n"), is_log ? "log" :
1391 					    "special", type);
1392 					return (NULL);
1393 				}
1394 				nlogs++;
1395 			}
1396 
1397 			for (c = 1; c < argc; c++) {
1398 				if (is_grouping(argv[c], NULL, NULL) != NULL)
1399 					break;
1400 				children++;
1401 				child = realloc(child,
1402 				    children * sizeof (nvlist_t *));
1403 				if (child == NULL)
1404 					zpool_no_memory();
1405 				if ((nv = make_leaf_vdev(props, argv[c],
1406 				    B_FALSE)) == NULL)
1407 					return (NULL);
1408 				child[children - 1] = nv;
1409 			}
1410 
1411 			if (children < mindev) {
1412 				(void) fprintf(stderr, gettext("invalid vdev "
1413 				    "specification: %s requires at least %d "
1414 				    "devices\n"), argv[0], mindev);
1415 				return (NULL);
1416 			}
1417 
1418 			if (children > maxdev) {
1419 				(void) fprintf(stderr, gettext("invalid vdev "
1420 				    "specification: %s supports no more than "
1421 				    "%d devices\n"), argv[0], maxdev);
1422 				return (NULL);
1423 			}
1424 
1425 			argc -= c;
1426 			argv += c;
1427 
1428 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1429 				spares = child;
1430 				nspares = children;
1431 				continue;
1432 			} else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1433 				l2cache = child;
1434 				nl2cache = children;
1435 				continue;
1436 			} else {
1437 				/* create a top-level vdev with children */
1438 				verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1439 				    0) == 0);
1440 				verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1441 				    type) == 0);
1442 				verify(nvlist_add_uint64(nv,
1443 				    ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1444 				if (is_log)
1445 					verify(nvlist_add_string(nv,
1446 					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1447 					    VDEV_ALLOC_BIAS_LOG) == 0);
1448 				if (is_special) {
1449 					verify(nvlist_add_string(nv,
1450 					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1451 					    VDEV_ALLOC_BIAS_SPECIAL) == 0);
1452 				}
1453 				if (is_dedup) {
1454 					verify(nvlist_add_string(nv,
1455 					    ZPOOL_CONFIG_ALLOCATION_BIAS,
1456 					    VDEV_ALLOC_BIAS_DEDUP) == 0);
1457 				}
1458 				if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1459 					verify(nvlist_add_uint64(nv,
1460 					    ZPOOL_CONFIG_NPARITY,
1461 					    mindev - 1) == 0);
1462 				}
1463 				verify(nvlist_add_nvlist_array(nv,
1464 				    ZPOOL_CONFIG_CHILDREN, child,
1465 				    children) == 0);
1466 
1467 				for (c = 0; c < children; c++)
1468 					nvlist_free(child[c]);
1469 				free(child);
1470 			}
1471 		} else {
1472 			/*
1473 			 * We have a device.  Pass off to make_leaf_vdev() to
1474 			 * construct the appropriate nvlist describing the vdev.
1475 			 */
1476 			if ((nv = make_leaf_vdev(props, argv[0], is_log))
1477 			    == NULL)
1478 				return (NULL);
1479 			if (is_log)
1480 				nlogs++;
1481 			if (is_special) {
1482 				verify(nvlist_add_string(nv,
1483 				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1484 				    VDEV_ALLOC_BIAS_SPECIAL) == 0);
1485 			}
1486 			if (is_dedup) {
1487 				verify(nvlist_add_string(nv,
1488 				    ZPOOL_CONFIG_ALLOCATION_BIAS,
1489 				    VDEV_ALLOC_BIAS_DEDUP) == 0);
1490 			}
1491 			argc--;
1492 			argv++;
1493 		}
1494 
1495 		toplevels++;
1496 		top = realloc(top, toplevels * sizeof (nvlist_t *));
1497 		if (top == NULL)
1498 			zpool_no_memory();
1499 		top[toplevels - 1] = nv;
1500 	}
1501 
1502 	if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1503 		(void) fprintf(stderr, gettext("invalid vdev "
1504 		    "specification: at least one toplevel vdev must be "
1505 		    "specified\n"));
1506 		return (NULL);
1507 	}
1508 
1509 	if (seen_logs && nlogs == 0) {
1510 		(void) fprintf(stderr, gettext("invalid vdev specification: "
1511 		    "log requires at least 1 device\n"));
1512 		return (NULL);
1513 	}
1514 
1515 	/*
1516 	 * Finally, create nvroot and add all top-level vdevs to it.
1517 	 */
1518 	verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1519 	verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1520 	    VDEV_TYPE_ROOT) == 0);
1521 	verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1522 	    top, toplevels) == 0);
1523 	if (nspares != 0)
1524 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1525 		    spares, nspares) == 0);
1526 	if (nl2cache != 0)
1527 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1528 		    l2cache, nl2cache) == 0);
1529 
1530 	for (t = 0; t < toplevels; t++)
1531 		nvlist_free(top[t]);
1532 	for (t = 0; t < nspares; t++)
1533 		nvlist_free(spares[t]);
1534 	for (t = 0; t < nl2cache; t++)
1535 		nvlist_free(l2cache[t]);
1536 	if (spares)
1537 		free(spares);
1538 	if (l2cache)
1539 		free(l2cache);
1540 	free(top);
1541 
1542 	return (nvroot);
1543 }
1544 
1545 nvlist_t *
1546 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1547     splitflags_t flags, int argc, char **argv)
1548 {
1549 	nvlist_t *newroot = NULL, **child;
1550 	uint_t c, children;
1551 	zpool_boot_label_t boot_type;
1552 
1553 	if (argc > 0) {
1554 		if ((newroot = construct_spec(props, argc, argv)) == NULL) {
1555 			(void) fprintf(stderr, gettext("Unable to build a "
1556 			    "pool from the specified devices\n"));
1557 			return (NULL);
1558 		}
1559 
1560 		if (zpool_is_bootable(zhp))
1561 			boot_type = ZPOOL_COPY_BOOT_LABEL;
1562 		else
1563 			boot_type = ZPOOL_NO_BOOT_LABEL;
1564 
1565 		if (!flags.dryrun &&
1566 		    make_disks(zhp, newroot, boot_type, 0) != 0) {
1567 			nvlist_free(newroot);
1568 			return (NULL);
1569 		}
1570 
1571 		/* avoid any tricks in the spec */
1572 		verify(nvlist_lookup_nvlist_array(newroot,
1573 		    ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1574 		for (c = 0; c < children; c++) {
1575 			char *path;
1576 			const char *type;
1577 			int min, max;
1578 
1579 			verify(nvlist_lookup_string(child[c],
1580 			    ZPOOL_CONFIG_PATH, &path) == 0);
1581 			if ((type = is_grouping(path, &min, &max)) != NULL) {
1582 				(void) fprintf(stderr, gettext("Cannot use "
1583 				    "'%s' as a device for splitting\n"), type);
1584 				nvlist_free(newroot);
1585 				return (NULL);
1586 			}
1587 		}
1588 	}
1589 
1590 	if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1591 		nvlist_free(newroot);
1592 		return (NULL);
1593 	}
1594 
1595 	return (newroot);
1596 }
1597 
1598 static int
1599 num_normal_vdevs(nvlist_t *nvroot)
1600 {
1601 	nvlist_t **top;
1602 	uint_t t, toplevels, normal = 0;
1603 
1604 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1605 	    &top, &toplevels) == 0);
1606 
1607 	for (t = 0; t < toplevels; t++) {
1608 		uint64_t log = B_FALSE;
1609 
1610 		(void) nvlist_lookup_uint64(top[t], ZPOOL_CONFIG_IS_LOG, &log);
1611 		if (log)
1612 			continue;
1613 		if (nvlist_exists(top[t], ZPOOL_CONFIG_ALLOCATION_BIAS))
1614 			continue;
1615 
1616 		normal++;
1617 	}
1618 
1619 	return (normal);
1620 }
1621 
1622 /*
1623  * Get and validate the contents of the given vdev specification.  This ensures
1624  * that the nvlist returned is well-formed, that all the devices exist, and that
1625  * they are not currently in use by any other known consumer.  The 'poolconfig'
1626  * parameter is the current configuration of the pool when adding devices
1627  * existing pool, and is used to perform additional checks, such as changing the
1628  * replication level of the pool.  It can be 'NULL' to indicate that this is a
1629  * new pool.  The 'force' flag controls whether devices should be forcefully
1630  * added, even if they appear in use.
1631  */
1632 nvlist_t *
1633 make_root_vdev(zpool_handle_t *zhp, nvlist_t *props, int force, int check_rep,
1634     boolean_t replacing, boolean_t dryrun, zpool_boot_label_t boot_type,
1635     uint64_t boot_size, int argc, char **argv)
1636 {
1637 	nvlist_t *newroot;
1638 	nvlist_t *poolconfig = NULL;
1639 	is_force = force;
1640 
1641 	/*
1642 	 * Construct the vdev specification.  If this is successful, we know
1643 	 * that we have a valid specification, and that all devices can be
1644 	 * opened.
1645 	 */
1646 	if ((newroot = construct_spec(props, argc, argv)) == NULL)
1647 		return (NULL);
1648 
1649 	if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL))
1650 		return (NULL);
1651 
1652 	/*
1653 	 * Validate each device to make sure that its not shared with another
1654 	 * subsystem.  We do this even if 'force' is set, because there are some
1655 	 * uses (such as a dedicated dump device) that even '-f' cannot
1656 	 * override.
1657 	 */
1658 	if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
1659 		nvlist_free(newroot);
1660 		return (NULL);
1661 	}
1662 
1663 	/*
1664 	 * Check the replication level of the given vdevs and report any errors
1665 	 * found.  We include the existing pool spec, if any, as we need to
1666 	 * catch changes against the existing replication level.
1667 	 */
1668 	if (check_rep && check_replication(poolconfig, newroot) != 0) {
1669 		nvlist_free(newroot);
1670 		return (NULL);
1671 	}
1672 
1673 	/*
1674 	 * On pool create the new vdev spec must have one normal vdev.
1675 	 */
1676 	if (poolconfig == NULL && num_normal_vdevs(newroot) == 0) {
1677 		vdev_error(gettext("at least one general top-level vdev must "
1678 		    "be specified\n"));
1679 		nvlist_free(newroot);
1680 		return (NULL);
1681 	}
1682 
1683 	/*
1684 	 * Run through the vdev specification and label any whole disks found.
1685 	 */
1686 	if (!dryrun && make_disks(zhp, newroot, boot_type, boot_size) != 0) {
1687 		nvlist_free(newroot);
1688 		return (NULL);
1689 	}
1690 
1691 	return (newroot);
1692 }
1693