xref: /illumos-gate/usr/src/cmd/zpool/zpool_vdev.c (revision 7f7322febbcfe774b7270abc3b191c094bfcc517)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Functions to convert between a list of vdevs and an nvlist representing the
31  * configuration.  Each entry in the list can be one of:
32  *
33  * 	Device vdevs
34  * 		disk=(path=..., devid=...)
35  * 		file=(path=...)
36  *
37  * 	Group vdevs
38  * 		raidz=(...)
39  * 		mirror=(...)
40  *
41  * While the underlying implementation supports it, group vdevs cannot contain
42  * other group vdevs.  All userland verification of devices is contained within
43  * this file.  If successful, the nvlist returned can be passed directly to the
44  * kernel; we've done as much verification as possible in userland.
45  *
46  * The only function exported by this file is 'get_vdev_spec'.  The function
47  * performs several passes:
48  *
49  * 	1. Construct the vdev specification.  Performs syntax validation and
50  *         makes sure each device is valid.
51  * 	2. Check for devices in use.  Using libdiskmgt, makes sure that no
52  *         devices are also in use.  Some can be overridden using the 'force'
53  *         flag, others cannot.
54  * 	3. Check for replication errors if the 'force' flag is not specified.
55  *         validates that the replication level is consistent across the
56  *         entire pool.
57  * 	4. Label any whole disks with an EFI label.
58  */
59 
60 #include <assert.h>
61 #include <devid.h>
62 #include <errno.h>
63 #include <fcntl.h>
64 #include <libdiskmgt.h>
65 #include <libintl.h>
66 #include <libnvpair.h>
67 #include <stdio.h>
68 #include <string.h>
69 #include <unistd.h>
70 #include <sys/efi_partition.h>
71 #include <sys/stat.h>
72 #include <sys/vtoc.h>
73 #include <sys/mntent.h>
74 
75 #include <libzfs.h>
76 
77 #include "zpool_util.h"
78 
79 #define	DISK_ROOT	"/dev/dsk"
80 #define	RDISK_ROOT	"/dev/rdsk"
81 #define	BACKUP_SLICE	"s2"
82 
83 /*
84  * For any given vdev specification, we can have multiple errors.  The
85  * vdev_error() function keeps track of whether we have seen an error yet, and
86  * prints out a header if its the first error we've seen.
87  */
88 int error_seen;
89 int is_force;
90 
91 void
92 vdev_error(const char *fmt, ...)
93 {
94 	va_list ap;
95 
96 	if (!error_seen) {
97 		(void) fprintf(stderr, gettext("invalid vdev specification\n"));
98 		if (!is_force)
99 			(void) fprintf(stderr, gettext("use '-f' to override "
100 			    "the following errors:\n"));
101 		else
102 			(void) fprintf(stderr, gettext("the following errors "
103 			    "must be manually repaired:\n"));
104 		error_seen = TRUE;
105 	}
106 
107 	va_start(ap, fmt);
108 	(void) vfprintf(stderr, fmt, ap);
109 	va_end(ap);
110 }
111 
112 static void
113 libdiskmgt_error(int error)
114 {
115 	(void) fprintf(stderr, gettext("warning: device in use checking "
116 	    "failed: %s\n"), strerror(error));
117 }
118 
119 /*
120  * Validate a device, passing the bulk of the work off to libdiskmgt.
121  */
122 int
123 check_slice(const char *path, int force, int wholedisk)
124 {
125 	char *msg;
126 	int error = 0;
127 	int ret = 0;
128 
129 	if (dm_inuse((char *)path, &msg,
130 	    force ? DM_WHO_ZPOOL_FORCE : DM_WHO_ZPOOL, &error) || error) {
131 		if (error != 0) {
132 			libdiskmgt_error(error);
133 			return (0);
134 		} else {
135 			vdev_error("%s", msg);
136 			free(msg);
137 		}
138 
139 		ret = -1;
140 	}
141 
142 	/*
143 	 * If we're given a whole disk, ignore overlapping slices since we're
144 	 * about to label it anyway.
145 	 */
146 	error = 0;
147 	if (!wholedisk && !force &&
148 	    (dm_isoverlapping((char *)path, &msg, &error) || error)) {
149 		if (error != 0) {
150 			libdiskmgt_error(error);
151 			return (0);
152 		} else {
153 			vdev_error("%s overlaps with %s\n", path, msg);
154 			free(msg);
155 		}
156 
157 		ret = -1;
158 	}
159 
160 	return (ret);
161 }
162 
163 /*
164  * Validate a whole disk.  Iterate over all slices on the disk and make sure
165  * that none is in use by calling check_slice().
166  */
167 /* ARGSUSED */
168 int
169 check_disk(const char *name, dm_descriptor_t disk, int force)
170 {
171 	dm_descriptor_t *drive, *media, *slice;
172 	int err = 0;
173 	int i;
174 	int ret;
175 
176 	/*
177 	 * Get the drive associated with this disk.  This should never fail,
178 	 * because we already have an alias handle open for the device.
179 	 */
180 	if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE,
181 	    &err)) == NULL || *drive == NULL) {
182 		if (err)
183 			libdiskmgt_error(err);
184 		return (0);
185 	}
186 
187 	if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA,
188 	    &err)) == NULL) {
189 		dm_free_descriptors(drive);
190 		if (err)
191 			libdiskmgt_error(err);
192 		return (0);
193 	}
194 
195 	dm_free_descriptors(drive);
196 
197 	/*
198 	 * It is possible that the user has specified a removable media drive,
199 	 * and the media is not present.
200 	 */
201 	if (*media == NULL) {
202 		dm_free_descriptors(media);
203 		vdev_error(gettext("'%s' has no media in drive\n"), name);
204 		return (-1);
205 	}
206 
207 	if ((slice = dm_get_associated_descriptors(*media, DM_SLICE,
208 	    &err)) == NULL) {
209 		dm_free_descriptors(media);
210 		if (err)
211 			libdiskmgt_error(err);
212 		return (0);
213 	}
214 
215 	dm_free_descriptors(media);
216 
217 	ret = 0;
218 
219 	/*
220 	 * Iterate over all slices and report any errors.  We don't care about
221 	 * overlapping slices because we are using the whole disk.
222 	 */
223 	for (i = 0; slice[i] != NULL; i++) {
224 		if (check_slice(dm_get_name(slice[i], &err), force, TRUE) != 0)
225 			ret = -1;
226 	}
227 
228 	dm_free_descriptors(slice);
229 	return (ret);
230 }
231 
232 /*
233  * Validate a device.
234  */
235 int
236 check_device(const char *path, int force)
237 {
238 	dm_descriptor_t desc;
239 	int err;
240 	char *dev;
241 
242 	/*
243 	 * For whole disks, libdiskmgt does not include the leading dev path.
244 	 */
245 	dev = strrchr(path, '/');
246 	assert(dev != NULL);
247 	dev++;
248 	if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) {
249 		err = check_disk(path, desc, force);
250 		dm_free_descriptor(desc);
251 		return (err);
252 	}
253 
254 	return (check_slice(path, force, FALSE));
255 }
256 
257 /*
258  * Check that a file is valid.  All we can do in this case is check that it's
259  * not in use by another pool.
260  */
261 int
262 check_file(const char *file, int force)
263 {
264 	char  *name;
265 	int fd;
266 	int ret = 0;
267 	pool_state_t state;
268 
269 	if ((fd = open(file, O_RDONLY)) < 0)
270 		return (0);
271 
272 	if (zpool_in_use(fd, &state, &name)) {
273 		const char *desc;
274 
275 		switch (state) {
276 		case POOL_STATE_ACTIVE:
277 			desc = gettext("active");
278 			break;
279 
280 		case POOL_STATE_EXPORTED:
281 			desc = gettext("exported");
282 			break;
283 
284 		case POOL_STATE_POTENTIALLY_ACTIVE:
285 			desc = gettext("potentially active");
286 			break;
287 
288 		default:
289 			desc = gettext("unknown");
290 			break;
291 		}
292 
293 		if (state == POOL_STATE_ACTIVE || !force) {
294 			vdev_error(gettext("%s is part of %s pool '%s'\n"),
295 			    file, desc, name);
296 			ret = -1;
297 		}
298 
299 		free(name);
300 	}
301 
302 	(void) close(fd);
303 	return (ret);
304 }
305 
306 static int
307 is_whole_disk(const char *arg, struct stat64 *statbuf)
308 {
309 	char path[MAXPATHLEN];
310 
311 	(void) snprintf(path, sizeof (path), "%s%s", arg, BACKUP_SLICE);
312 	if (stat64(path, statbuf) == 0)
313 		return (TRUE);
314 
315 	return (FALSE);
316 }
317 
318 /*
319  * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
320  * device, fill in the device id to make a complete nvlist.  Valid forms for a
321  * leaf vdev are:
322  *
323  * 	/dev/dsk/xxx	Complete disk path
324  * 	/xxx		Full path to file
325  * 	xxx		Shorthand for /dev/dsk/xxx
326  */
327 nvlist_t *
328 make_leaf_vdev(const char *arg)
329 {
330 	char path[MAXPATHLEN];
331 	struct stat64 statbuf;
332 	nvlist_t *vdev = NULL;
333 	char *type = NULL;
334 	int wholedisk = FALSE;
335 
336 	/*
337 	 * Determine what type of vdev this is, and put the full path into
338 	 * 'path'.  We detect whether this is a device of file afterwards by
339 	 * checking the st_mode of the file.
340 	 */
341 	if (arg[0] == '/') {
342 		/*
343 		 * Complete device or file path.  Exact type is determined by
344 		 * examining the file descriptor afterwards.
345 		 */
346 		if (is_whole_disk(arg, &statbuf)) {
347 			wholedisk = TRUE;
348 		} else if (stat64(arg, &statbuf) != 0) {
349 			(void) fprintf(stderr,
350 			    gettext("cannot open '%s': %s\n"),
351 			    arg, strerror(errno));
352 			return (NULL);
353 		}
354 
355 		(void) strlcpy(path, arg, sizeof (path));
356 	} else {
357 		/*
358 		 * This may be a short path for a device, or it could be total
359 		 * gibberish.  Check to see if it's a known device in
360 		 * /dev/dsk/.  As part of this check, see if we've been given a
361 		 * an entire disk (minus the slice number).
362 		 */
363 		(void) snprintf(path, sizeof (path), "%s/%s", DISK_ROOT,
364 		    arg);
365 		if (is_whole_disk(path, &statbuf)) {
366 			wholedisk = TRUE;
367 		} else if (stat64(path, &statbuf) != 0) {
368 			/*
369 			 * If we got ENOENT, then the user gave us
370 			 * gibberish, so try to direct them with a
371 			 * reasonable error message.  Otherwise,
372 			 * regurgitate strerror() since it's the best we
373 			 * can do.
374 			 */
375 			if (errno == ENOENT) {
376 				(void) fprintf(stderr,
377 				    gettext("cannot open '%s': no such "
378 				    "device in %s\n"), arg, DISK_ROOT);
379 				(void) fprintf(stderr,
380 				    gettext("must be a full path or "
381 				    "shorthand device name\n"));
382 				return (NULL);
383 			} else {
384 				(void) fprintf(stderr,
385 				    gettext("cannot open '%s': %s\n"),
386 				    path, strerror(errno));
387 				return (NULL);
388 			}
389 		}
390 	}
391 
392 	/*
393 	 * Determine whether this is a device or a file.
394 	 */
395 	if (S_ISBLK(statbuf.st_mode)) {
396 		type = VDEV_TYPE_DISK;
397 	} else if (S_ISREG(statbuf.st_mode)) {
398 		type = VDEV_TYPE_FILE;
399 	} else {
400 		(void) fprintf(stderr, gettext("cannot use '%s': must be a "
401 		    "block device or regular file\n"), path);
402 		return (NULL);
403 	}
404 
405 	/*
406 	 * Finally, we have the complete device or file, and we know that it is
407 	 * acceptable to use.  Construct the nvlist to describe this vdev.  All
408 	 * vdevs have a 'path' element, and devices also have a 'devid' element.
409 	 */
410 	verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
411 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
412 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
413 	if (strcmp(type, VDEV_TYPE_DISK) == 0)
414 		verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
415 		    (uint64_t)wholedisk) == 0);
416 
417 	/*
418 	 * For a whole disk, defer getting its devid until after labeling it.
419 	 */
420 	if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
421 		/*
422 		 * Get the devid for the device.
423 		 */
424 		int fd;
425 		ddi_devid_t devid;
426 		char *minor = NULL, *devid_str = NULL;
427 
428 		if ((fd = open(path, O_RDONLY)) < 0) {
429 			(void) fprintf(stderr, gettext("cannot open '%s': "
430 			    "%s\n"), path, strerror(errno));
431 			nvlist_free(vdev);
432 			return (NULL);
433 		}
434 
435 		if (devid_get(fd, &devid) == 0) {
436 			if (devid_get_minor_name(fd, &minor) == 0 &&
437 			    (devid_str = devid_str_encode(devid, minor)) !=
438 			    NULL) {
439 				verify(nvlist_add_string(vdev,
440 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
441 			}
442 			if (devid_str != NULL)
443 				devid_str_free(devid_str);
444 			if (minor != NULL)
445 				devid_str_free(minor);
446 			devid_free(devid);
447 		}
448 
449 		(void) close(fd);
450 	}
451 
452 	return (vdev);
453 }
454 
455 /*
456  * Go through and verify the replication level of the pool is consistent.
457  * Performs the following checks:
458  *
459  * 	For the new spec, verifies that devices in mirrors and raidz are the
460  * 	same size.
461  *
462  * 	If the current configuration already has inconsistent replication
463  * 	levels, ignore any other potential problems in the new spec.
464  *
465  * 	Otherwise, make sure that the current spec (if there is one) and the new
466  * 	spec have consistent replication levels.
467  */
468 typedef struct replication_level {
469 	char	*type;
470 	int	level;
471 } replication_level_t;
472 
473 /*
474  * Given a list of toplevel vdevs, return the current replication level.  If
475  * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
476  * an error message will be displayed for each self-inconsistent vdev.
477  */
478 replication_level_t *
479 get_replication(nvlist_t *nvroot, int fatal)
480 {
481 	nvlist_t **top;
482 	uint_t t, toplevels;
483 	nvlist_t **child;
484 	uint_t c, children;
485 	nvlist_t *nv;
486 	char *type;
487 	replication_level_t lastrep, rep, *ret;
488 	int dontreport;
489 
490 	ret = safe_malloc(sizeof (replication_level_t));
491 
492 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
493 	    &top, &toplevels) == 0);
494 
495 	lastrep.type = NULL;
496 	for (t = 0; t < toplevels; t++) {
497 		nv = top[t];
498 
499 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
500 
501 		if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
502 		    &child, &children) != 0) {
503 			/*
504 			 * This is a 'file' or 'disk' vdev.
505 			 */
506 			rep.type = type;
507 			rep.level = 1;
508 		} else {
509 			uint64_t vdev_size;
510 
511 			/*
512 			 * This is a mirror or RAID-Z vdev.  Go through and make
513 			 * sure the contents are all the same (files vs. disks),
514 			 * keeping track of the number of elements in the
515 			 * process.
516 			 *
517 			 * We also check that the size of each vdev (if it can
518 			 * be determined) is the same.
519 			 */
520 			rep.type = type;
521 			rep.level = 0;
522 
523 			/*
524 			 * The 'dontreport' variable indicatest that we've
525 			 * already reported an error for this spec, so don't
526 			 * bother doing it again.
527 			 */
528 			type = NULL;
529 			dontreport = 0;
530 			vdev_size = -1ULL;
531 			for (c = 0; c < children; c++) {
532 				nvlist_t *cnv = child[c];
533 				char *path;
534 				struct stat64 statbuf;
535 				uint64_t size = -1ULL;
536 				char *childtype;
537 				int fd, err;
538 
539 				rep.level++;
540 
541 				verify(nvlist_lookup_string(cnv,
542 				    ZPOOL_CONFIG_TYPE, &childtype) == 0);
543 				verify(nvlist_lookup_string(cnv,
544 				    ZPOOL_CONFIG_PATH, &path) == 0);
545 
546 				/*
547 				 * If we have a raidz/mirror that combines disks
548 				 * with files, report it as an error.
549 				 */
550 				if (!dontreport && type != NULL &&
551 				    strcmp(type, childtype) != 0) {
552 					if (ret != NULL)
553 						free(ret);
554 					ret = NULL;
555 					if (fatal)
556 						vdev_error(gettext(
557 						    "mismatched replication "
558 						    "level: %s contains both "
559 						    "files and devices\n"),
560 						    rep.type);
561 					else
562 						return (NULL);
563 					dontreport = TRUE;
564 				}
565 
566 				/*
567 				 * According to stat(2), the value of 'st_size'
568 				 * is undefined for block devices and character
569 				 * devices.  But there is no effective way to
570 				 * determine the real size in userland.
571 				 *
572 				 * Instead, we'll take advantage of an
573 				 * implementation detail of spec_size().  If the
574 				 * device is currently open, then we (should)
575 				 * return a valid size.
576 				 *
577 				 * If we still don't get a valid size (indicated
578 				 * by a size of 0 or MAXOFFSET_T), then ignore
579 				 * this device altogether.
580 				 */
581 				if ((fd = open(path, O_RDONLY)) >= 0) {
582 					err = fstat64(fd, &statbuf);
583 					(void) close(fd);
584 				} else {
585 					err = stat64(path, &statbuf);
586 				}
587 
588 				if (err != 0 ||
589 				    statbuf.st_size == 0 ||
590 				    statbuf.st_size == MAXOFFSET_T)
591 					continue;
592 
593 				size = statbuf.st_size;
594 
595 				/*
596 				 * Also check the size of each device.  If they
597 				 * differ, then report an error.
598 				 */
599 				if (!dontreport && vdev_size != -1ULL &&
600 				    size != vdev_size) {
601 					if (ret != NULL)
602 						free(ret);
603 					ret = NULL;
604 					if (fatal)
605 						vdev_error(gettext(
606 						    "%s contains devices of "
607 						    "different sizes\n"),
608 						    rep.type);
609 					else
610 						return (NULL);
611 					dontreport = TRUE;
612 				}
613 
614 				type = childtype;
615 				vdev_size = size;
616 			}
617 		}
618 
619 		/*
620 		 * At this point, we have the replication of the last toplevel
621 		 * vdev in 'rep'.  Compare it to 'lastrep' to see if its
622 		 * different.
623 		 */
624 		if (lastrep.type != NULL) {
625 			if (strcmp(lastrep.type, rep.type) != 0) {
626 				if (ret != NULL)
627 					free(ret);
628 				ret = NULL;
629 				if (fatal)
630 					vdev_error(gettext(
631 					    "mismatched replication "
632 					    "level: both %s and %s vdevs are "
633 					    "present\n"),
634 					    lastrep.type, rep.type);
635 				else
636 					return (NULL);
637 			} else if (lastrep.level != rep.level) {
638 				if (ret)
639 					free(ret);
640 				ret = NULL;
641 				if (fatal)
642 					vdev_error(gettext(
643 					    "mismatched replication "
644 					    "level: %d-way %s and %d-way %s "
645 					    "vdevs are present\n"),
646 					    lastrep.level, lastrep.type,
647 					    rep.level, rep.type);
648 				else
649 					return (NULL);
650 			}
651 		}
652 		lastrep = rep;
653 	}
654 
655 	if (ret != NULL) {
656 		ret->type = rep.type;
657 		ret->level = rep.level;
658 	}
659 
660 	return (ret);
661 }
662 
663 /*
664  * Check the replication level of the vdev spec against the current pool.  Calls
665  * get_replication() to make sure the new spec is self-consistent.  If the pool
666  * has a consistent replication level, then we ignore any errors.  Otherwise,
667  * report any difference between the two.
668  */
669 int
670 check_replication(nvlist_t *config, nvlist_t *newroot)
671 {
672 	replication_level_t *current = NULL, *new;
673 	int ret;
674 
675 	/*
676 	 * If we have a current pool configuration, check to see if it's
677 	 * self-consistent.  If not, simply return success.
678 	 */
679 	if (config != NULL) {
680 		nvlist_t *nvroot;
681 
682 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
683 		    &nvroot) == 0);
684 		if ((current = get_replication(nvroot, FALSE)) == NULL)
685 			return (0);
686 	}
687 
688 	/*
689 	 * Get the replication level of the new vdev spec, reporting any
690 	 * inconsistencies found.
691 	 */
692 	if ((new = get_replication(newroot, TRUE)) == NULL) {
693 		free(current);
694 		return (-1);
695 	}
696 
697 	/*
698 	 * Check to see if the new vdev spec matches the replication level of
699 	 * the current pool.
700 	 */
701 	ret = 0;
702 	if (current != NULL) {
703 		if (strcmp(current->type, new->type) != 0 ||
704 		    current->level != new->level) {
705 			vdev_error(gettext(
706 			    "mismatched replication level: pool uses %d-way %s "
707 			    "and new vdev uses %d-way %s\n"),
708 			    current->level, current->type, new->level,
709 			    new->type);
710 			ret = -1;
711 		}
712 	}
713 
714 	free(new);
715 	if (current != NULL)
716 		free(current);
717 
718 	return (ret);
719 }
720 
721 /*
722  * Label an individual disk.  The name provided is the short name, stripped of
723  * any leading /dev path.
724  */
725 int
726 label_disk(char *name)
727 {
728 	char path[MAXPATHLEN];
729 	struct dk_gpt *vtoc;
730 	int fd;
731 	size_t resv = 16384;
732 
733 	(void) snprintf(path, sizeof (path), "%s/%s%s", RDISK_ROOT, name,
734 	    BACKUP_SLICE);
735 
736 	if ((fd = open(path, O_RDWR | O_NDELAY)) < 0) {
737 		/*
738 		 * This shouldn't happen.  We've long since verified that this
739 		 * is a valid device.
740 		 */
741 		(void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
742 		    path, strerror(errno));
743 		return (-1);
744 	}
745 
746 
747 	if (efi_alloc_and_init(fd, 9, &vtoc) != 0) {
748 		/*
749 		 * The only way this can fail is if we run out of memory, or we
750 		 * were unable to read the disk geometry.
751 		 */
752 		if (errno == ENOMEM)
753 			no_memory();
754 
755 		(void) fprintf(stderr, gettext("cannot label '%s': unable to "
756 		    "read disk geometry\n"), name);
757 		(void) close(fd);
758 		return (-1);
759 	}
760 
761 	vtoc->efi_parts[0].p_start = vtoc->efi_first_u_lba;
762 	vtoc->efi_parts[0].p_size = vtoc->efi_last_u_lba + 1 -
763 	    vtoc->efi_first_u_lba - resv;
764 
765 	/*
766 	 * Why we use V_USR: V_BACKUP confuses users, and is considered
767 	 * disposable by some EFI utilities (since EFI doesn't have a backup
768 	 * slice).  V_UNASSIGNED is supposed to be used only for zero size
769 	 * partitions, and efi_write() will fail if we use it.  V_ROOT, V_BOOT,
770 	 * etc. were all pretty specific.  V_USR is as close to reality as we
771 	 * can get, in the absence of V_OTHER.
772 	 */
773 	vtoc->efi_parts[0].p_tag = V_USR;
774 	(void) strcpy(vtoc->efi_parts[0].p_name, "zfs");
775 
776 	vtoc->efi_parts[8].p_start = vtoc->efi_last_u_lba + 1 - resv;
777 	vtoc->efi_parts[8].p_size = resv;
778 	vtoc->efi_parts[8].p_tag = V_RESERVED;
779 
780 	if (efi_write(fd, vtoc) != 0) {
781 		/*
782 		 * Currently, EFI labels are not supported for IDE disks, and it
783 		 * is likely that they will not be supported on other drives for
784 		 * some time.  Print out a helpful error message directing the
785 		 * user to manually label the disk and give a specific slice.
786 		 */
787 		(void) fprintf(stderr, gettext("cannot label '%s': failed to "
788 		    "write EFI label\n"), name);
789 		(void) fprintf(stderr, gettext("use fdisk(1M) to partition "
790 		    "the disk, and provide a specific slice\n"));
791 		(void) close(fd);
792 		return (-1);
793 	}
794 
795 	(void) close(fd);
796 	return (0);
797 }
798 
799 /*
800  * Go through and find any whole disks in the vdev specification, labelling them
801  * as appropriate.  When constructing the vdev spec, we were unable to open this
802  * device in order to provide a devid.  Now that we have labelled the disk and
803  * know that slice 0 is valid, we can construct the devid now.
804  *
805  * If the disk was already labelled with an EFI label, we will have gotten the
806  * devid already (because we were able to open the whole disk).  Otherwise, we
807  * need to get the devid after we label the disk.
808  */
809 int
810 make_disks(nvlist_t *nv)
811 {
812 	nvlist_t **child;
813 	uint_t c, children;
814 	char *type, *path, *diskname;
815 	char buf[MAXPATHLEN];
816 	uint64_t wholedisk;
817 	int fd;
818 	int ret;
819 	ddi_devid_t devid;
820 	char *minor = NULL, *devid_str = NULL;
821 
822 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
823 
824 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
825 	    &child, &children) != 0) {
826 
827 		if (strcmp(type, VDEV_TYPE_DISK) != 0)
828 			return (0);
829 
830 		/*
831 		 * We have a disk device.  Get the path to the device
832 		 * and see if its a whole disk by appending the backup
833 		 * slice and stat()ing the device.
834 		 */
835 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
836 
837 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
838 		    &wholedisk) != 0 || !wholedisk)
839 			return (0);
840 
841 		diskname = strrchr(path, '/');
842 		assert(diskname != NULL);
843 		diskname++;
844 		if (label_disk(diskname) != 0)
845 			return (-1);
846 
847 		/*
848 		 * Fill in the devid, now that we've labeled the disk.
849 		 */
850 		(void) snprintf(buf, sizeof (buf), "%ss0", path);
851 		if ((fd = open(buf, O_RDONLY)) < 0) {
852 			(void) fprintf(stderr,
853 			    gettext("cannot open '%s': %s\n"),
854 			    buf, strerror(errno));
855 			return (-1);
856 		}
857 
858 		if (devid_get(fd, &devid) == 0) {
859 			if (devid_get_minor_name(fd, &minor) == 0 &&
860 			    (devid_str = devid_str_encode(devid, minor)) !=
861 			    NULL) {
862 				verify(nvlist_add_string(nv,
863 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
864 			}
865 			if (devid_str != NULL)
866 				devid_str_free(devid_str);
867 			if (minor != NULL)
868 				devid_str_free(minor);
869 			devid_free(devid);
870 		}
871 
872 		/*
873 		 * Update the path to refer to the 's0' slice.  The presence of
874 		 * the 'whole_disk' field indicates to the CLI that we should
875 		 * chop off the slice number when displaying the device in
876 		 * future output.
877 		 */
878 		verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
879 
880 		(void) close(fd);
881 
882 		return (0);
883 	}
884 
885 	for (c = 0; c < children; c++)
886 		if ((ret = make_disks(child[c])) != 0)
887 			return (ret);
888 
889 	return (0);
890 }
891 
892 /*
893  * Go through and find any devices that are in use.  We rely on libdiskmgt for
894  * the majority of this task.
895  */
896 int
897 check_in_use(nvlist_t *nv, int force)
898 {
899 	nvlist_t **child;
900 	uint_t c, children;
901 	char *type, *path;
902 	int ret;
903 
904 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
905 
906 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
907 	    &child, &children) != 0) {
908 
909 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
910 
911 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
912 			ret = check_device(path, force);
913 
914 		if (strcmp(type, VDEV_TYPE_FILE) == 0)
915 			ret = check_file(path, force);
916 
917 		return (ret);
918 	}
919 
920 	for (c = 0; c < children; c++)
921 		if ((ret = check_in_use(child[c], force)) != 0)
922 			return (ret);
923 
924 	return (0);
925 }
926 
927 /*
928  * Construct a syntactically valid vdev specification,
929  * and ensure that all devices and files exist and can be opened.
930  * Note: we don't bother freeing anything in the error paths
931  * because the program is just going to exit anyway.
932  */
933 nvlist_t *
934 construct_spec(int argc, char **argv)
935 {
936 	nvlist_t *nvroot, *nv, **top;
937 	int t, toplevels;
938 
939 	top = NULL;
940 	toplevels = 0;
941 
942 	while (argc > 0) {
943 		nv = NULL;
944 
945 		/*
946 		 * If it's a mirror or raidz, the subsequent arguments are
947 		 * its leaves -- until we encounter the next mirror or raidz.
948 		 */
949 		if (strcmp(argv[0], VDEV_TYPE_MIRROR) == 0 ||
950 		    strcmp(argv[0], VDEV_TYPE_RAIDZ) == 0) {
951 
952 			char *type = argv[0];
953 			nvlist_t **child = NULL;
954 			int children = 0;
955 			int c;
956 
957 			for (c = 1; c < argc; c++) {
958 				if (strcmp(argv[c], VDEV_TYPE_MIRROR) == 0 ||
959 				    strcmp(argv[c], VDEV_TYPE_RAIDZ) == 0)
960 					break;
961 				children++;
962 				child = realloc(child,
963 				    children * sizeof (nvlist_t *));
964 				if (child == NULL)
965 					no_memory();
966 				if ((nv = make_leaf_vdev(argv[c])) == NULL)
967 					return (NULL);
968 				child[children - 1] = nv;
969 			}
970 
971 			argc -= c;
972 			argv += c;
973 
974 			/*
975 			 * Mirrors and RAID-Z devices require at least
976 			 * two components.
977 			 */
978 			if (children < 2) {
979 				(void) fprintf(stderr,
980 				    gettext("invalid vdev specification: "
981 				    "%s requires at least 2 devices\n"), type);
982 				return (NULL);
983 			}
984 
985 			verify(nvlist_alloc(&nv, NV_UNIQUE_NAME, 0) == 0);
986 			verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
987 			    type) == 0);
988 			verify(nvlist_add_nvlist_array(nv,
989 			    ZPOOL_CONFIG_CHILDREN, child, children) == 0);
990 
991 			for (c = 0; c < children; c++)
992 				nvlist_free(child[c]);
993 			free(child);
994 		} else {
995 			/*
996 			 * We have a device.  Pass off to make_leaf_vdev() to
997 			 * construct the appropriate nvlist describing the vdev.
998 			 */
999 			if ((nv = make_leaf_vdev(argv[0])) == NULL)
1000 				return (NULL);
1001 			argc--;
1002 			argv++;
1003 		}
1004 
1005 		toplevels++;
1006 		top = realloc(top, toplevels * sizeof (nvlist_t *));
1007 		if (top == NULL)
1008 			no_memory();
1009 		top[toplevels - 1] = nv;
1010 	}
1011 
1012 	/*
1013 	 * Finally, create nvroot and add all top-level vdevs to it.
1014 	 */
1015 	verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1016 	verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1017 	    VDEV_TYPE_ROOT) == 0);
1018 	verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1019 	    top, toplevels) == 0);
1020 
1021 	for (t = 0; t < toplevels; t++)
1022 		nvlist_free(top[t]);
1023 	free(top);
1024 
1025 	return (nvroot);
1026 }
1027 
1028 /*
1029  * Get and validate the contents of the given vdev specification.  This ensures
1030  * that the nvlist returned is well-formed, that all the devices exist, and that
1031  * they are not currently in use by any other known consumer.  The 'poolconfig'
1032  * parameter is the current configuration of the pool when adding devices
1033  * existing pool, and is used to perform additional checks, such as changing the
1034  * replication level of the pool.  It can be 'NULL' to indicate that this is a
1035  * new pool.  The 'force' flag controls whether devices should be forcefully
1036  * added, even if they appear in use.
1037  */
1038 nvlist_t *
1039 make_root_vdev(nvlist_t *poolconfig, int force, int check_rep,
1040     int argc, char **argv)
1041 {
1042 	nvlist_t *newroot;
1043 
1044 	is_force = force;
1045 
1046 	/*
1047 	 * Construct the vdev specification.  If this is successful, we know
1048 	 * that we have a valid specification, and that all devices can be
1049 	 * opened.
1050 	 */
1051 	if ((newroot = construct_spec(argc, argv)) == NULL)
1052 		return (NULL);
1053 
1054 	/*
1055 	 * Validate each device to make sure that its not shared with another
1056 	 * subsystem.  We do this even if 'force' is set, because there are some
1057 	 * uses (such as a dedicated dump device) that even '-f' cannot
1058 	 * override.
1059 	 */
1060 	if (check_in_use(newroot, force) != 0) {
1061 		nvlist_free(newroot);
1062 		return (NULL);
1063 	}
1064 
1065 	/*
1066 	 * Check the replication level of the given vdevs and report any errors
1067 	 * found.  We include the existing pool spec, if any, as we need to
1068 	 * catch changes against the existing replication level.
1069 	 */
1070 	if (check_rep && check_replication(poolconfig, newroot) != 0) {
1071 		nvlist_free(newroot);
1072 		return (NULL);
1073 	}
1074 
1075 	/*
1076 	 * Run through the vdev specification and label any whole disks found.
1077 	 */
1078 	if (make_disks(newroot) != 0) {
1079 		nvlist_free(newroot);
1080 		return (NULL);
1081 	}
1082 
1083 	return (newroot);
1084 }
1085