1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, 2015 by Delphix. All rights reserved. 25 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>. 26 */ 27 28 /* 29 * Functions to convert between a list of vdevs and an nvlist representing the 30 * configuration. Each entry in the list can be one of: 31 * 32 * Device vdevs 33 * disk=(path=..., devid=...) 34 * file=(path=...) 35 * 36 * Group vdevs 37 * raidz[1|2]=(...) 38 * mirror=(...) 39 * 40 * Hot spares 41 * 42 * While the underlying implementation supports it, group vdevs cannot contain 43 * other group vdevs. All userland verification of devices is contained within 44 * this file. If successful, the nvlist returned can be passed directly to the 45 * kernel; we've done as much verification as possible in userland. 46 * 47 * Hot spares are a special case, and passed down as an array of disk vdevs, at 48 * the same level as the root of the vdev tree. 49 * 50 * The only function exported by this file is 'make_root_vdev'. The 51 * function performs several passes: 52 * 53 * 1. Construct the vdev specification. Performs syntax validation and 54 * makes sure each device is valid. 55 * 2. Check for devices in use. Using libdiskmgt, makes sure that no 56 * devices are also in use. Some can be overridden using the 'force' 57 * flag, others cannot. 58 * 3. Check for replication errors if the 'force' flag is not specified. 59 * validates that the replication level is consistent across the 60 * entire pool. 61 * 4. Call libzfs to label any whole disks with an EFI label. 62 */ 63 64 #include <assert.h> 65 #include <devid.h> 66 #include <errno.h> 67 #include <fcntl.h> 68 #include <libdiskmgt.h> 69 #include <libintl.h> 70 #include <libnvpair.h> 71 #include <limits.h> 72 #include <stdio.h> 73 #include <string.h> 74 #include <unistd.h> 75 #include <sys/efi_partition.h> 76 #include <sys/stat.h> 77 #include <sys/vtoc.h> 78 #include <sys/mntent.h> 79 80 #include "zpool_util.h" 81 82 #define BACKUP_SLICE "s2" 83 84 /* 85 * For any given vdev specification, we can have multiple errors. The 86 * vdev_error() function keeps track of whether we have seen an error yet, and 87 * prints out a header if its the first error we've seen. 88 */ 89 boolean_t error_seen; 90 boolean_t is_force; 91 92 /*PRINTFLIKE1*/ 93 static void 94 vdev_error(const char *fmt, ...) 95 { 96 va_list ap; 97 98 if (!error_seen) { 99 (void) fprintf(stderr, gettext("invalid vdev specification\n")); 100 if (!is_force) 101 (void) fprintf(stderr, gettext("use '-f' to override " 102 "the following errors:\n")); 103 else 104 (void) fprintf(stderr, gettext("the following errors " 105 "must be manually repaired:\n")); 106 error_seen = B_TRUE; 107 } 108 109 va_start(ap, fmt); 110 (void) vfprintf(stderr, fmt, ap); 111 va_end(ap); 112 } 113 114 static void 115 libdiskmgt_error(int error) 116 { 117 /* 118 * ENXIO/ENODEV is a valid error message if the device doesn't live in 119 * /dev/dsk. Don't bother printing an error message in this case. 120 */ 121 if (error == ENXIO || error == ENODEV) 122 return; 123 124 (void) fprintf(stderr, gettext("warning: device in use checking " 125 "failed: %s\n"), strerror(error)); 126 } 127 128 /* 129 * Validate a device, passing the bulk of the work off to libdiskmgt. 130 */ 131 static int 132 check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare) 133 { 134 char *msg; 135 int error = 0; 136 dm_who_type_t who; 137 138 if (force) 139 who = DM_WHO_ZPOOL_FORCE; 140 else if (isspare) 141 who = DM_WHO_ZPOOL_SPARE; 142 else 143 who = DM_WHO_ZPOOL; 144 145 if (dm_inuse((char *)path, &msg, who, &error) || error) { 146 if (error != 0) { 147 libdiskmgt_error(error); 148 return (0); 149 } else { 150 vdev_error("%s", msg); 151 free(msg); 152 return (-1); 153 } 154 } 155 156 /* 157 * If we're given a whole disk, ignore overlapping slices since we're 158 * about to label it anyway. 159 */ 160 error = 0; 161 if (!wholedisk && !force && 162 (dm_isoverlapping((char *)path, &msg, &error) || error)) { 163 if (error == 0) { 164 /* dm_isoverlapping returned -1 */ 165 vdev_error(gettext("%s overlaps with %s\n"), path, msg); 166 free(msg); 167 return (-1); 168 } else if (error != ENODEV) { 169 /* libdiskmgt's devcache only handles physical drives */ 170 libdiskmgt_error(error); 171 return (0); 172 } 173 } 174 175 return (0); 176 } 177 178 179 /* 180 * Validate a whole disk. Iterate over all slices on the disk and make sure 181 * that none is in use by calling check_slice(). 182 */ 183 static int 184 check_disk(const char *name, dm_descriptor_t disk, int force, int isspare) 185 { 186 dm_descriptor_t *drive, *media, *slice; 187 int err = 0; 188 int i; 189 int ret; 190 191 /* 192 * Get the drive associated with this disk. This should never fail, 193 * because we already have an alias handle open for the device. 194 */ 195 if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE, 196 &err)) == NULL || *drive == NULL) { 197 if (err) 198 libdiskmgt_error(err); 199 return (0); 200 } 201 202 if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA, 203 &err)) == NULL) { 204 dm_free_descriptors(drive); 205 if (err) 206 libdiskmgt_error(err); 207 return (0); 208 } 209 210 dm_free_descriptors(drive); 211 212 /* 213 * It is possible that the user has specified a removable media drive, 214 * and the media is not present. 215 */ 216 if (*media == NULL) { 217 dm_free_descriptors(media); 218 vdev_error(gettext("'%s' has no media in drive\n"), name); 219 return (-1); 220 } 221 222 if ((slice = dm_get_associated_descriptors(*media, DM_SLICE, 223 &err)) == NULL) { 224 dm_free_descriptors(media); 225 if (err) 226 libdiskmgt_error(err); 227 return (0); 228 } 229 230 dm_free_descriptors(media); 231 232 ret = 0; 233 234 /* 235 * Iterate over all slices and report any errors. We don't care about 236 * overlapping slices because we are using the whole disk. 237 */ 238 for (i = 0; slice[i] != NULL; i++) { 239 char *name = dm_get_name(slice[i], &err); 240 241 if (check_slice(name, force, B_TRUE, isspare) != 0) 242 ret = -1; 243 244 dm_free_name(name); 245 } 246 247 dm_free_descriptors(slice); 248 return (ret); 249 } 250 251 /* 252 * Validate a device. 253 */ 254 static int 255 check_device(const char *path, boolean_t force, boolean_t isspare) 256 { 257 dm_descriptor_t desc; 258 int err; 259 char *dev; 260 261 /* 262 * For whole disks, libdiskmgt does not include the leading dev path. 263 */ 264 dev = strrchr(path, '/'); 265 assert(dev != NULL); 266 dev++; 267 if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) { 268 err = check_disk(path, desc, force, isspare); 269 dm_free_descriptor(desc); 270 return (err); 271 } 272 273 return (check_slice(path, force, B_FALSE, isspare)); 274 } 275 276 /* 277 * Check that a file is valid. All we can do in this case is check that it's 278 * not in use by another pool, and not in use by swap. 279 */ 280 static int 281 check_file(const char *file, boolean_t force, boolean_t isspare) 282 { 283 char *name; 284 int fd; 285 int ret = 0; 286 int err; 287 pool_state_t state; 288 boolean_t inuse; 289 290 if (dm_inuse_swap(file, &err)) { 291 if (err) 292 libdiskmgt_error(err); 293 else 294 vdev_error(gettext("%s is currently used by swap. " 295 "Please see swap(1M).\n"), file); 296 return (-1); 297 } 298 299 if ((fd = open(file, O_RDONLY)) < 0) 300 return (0); 301 302 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) { 303 const char *desc; 304 305 switch (state) { 306 case POOL_STATE_ACTIVE: 307 desc = gettext("active"); 308 break; 309 310 case POOL_STATE_EXPORTED: 311 desc = gettext("exported"); 312 break; 313 314 case POOL_STATE_POTENTIALLY_ACTIVE: 315 desc = gettext("potentially active"); 316 break; 317 318 default: 319 desc = gettext("unknown"); 320 break; 321 } 322 323 /* 324 * Allow hot spares to be shared between pools. 325 */ 326 if (state == POOL_STATE_SPARE && isspare) 327 return (0); 328 329 if (state == POOL_STATE_ACTIVE || 330 state == POOL_STATE_SPARE || !force) { 331 switch (state) { 332 case POOL_STATE_SPARE: 333 vdev_error(gettext("%s is reserved as a hot " 334 "spare for pool %s\n"), file, name); 335 break; 336 default: 337 vdev_error(gettext("%s is part of %s pool " 338 "'%s'\n"), file, desc, name); 339 break; 340 } 341 ret = -1; 342 } 343 344 free(name); 345 } 346 347 (void) close(fd); 348 return (ret); 349 } 350 351 352 /* 353 * By "whole disk" we mean an entire physical disk (something we can 354 * label, toggle the write cache on, etc.) as opposed to the full 355 * capacity of a pseudo-device such as lofi or did. We act as if we 356 * are labeling the disk, which should be a pretty good test of whether 357 * it's a viable device or not. Returns B_TRUE if it is and B_FALSE if 358 * it isn't. 359 */ 360 static boolean_t 361 is_whole_disk(const char *arg) 362 { 363 struct dk_gpt *label; 364 int fd; 365 char path[MAXPATHLEN]; 366 367 (void) snprintf(path, sizeof (path), "%s%s%s", 368 ZFS_RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE); 369 if ((fd = open(path, O_RDWR | O_NDELAY)) < 0) 370 return (B_FALSE); 371 if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) { 372 (void) close(fd); 373 return (B_FALSE); 374 } 375 efi_free(label); 376 (void) close(fd); 377 return (B_TRUE); 378 } 379 380 /* 381 * Create a leaf vdev. Determine if this is a file or a device. If it's a 382 * device, fill in the device id to make a complete nvlist. Valid forms for a 383 * leaf vdev are: 384 * 385 * /dev/dsk/xxx Complete disk path 386 * /xxx Full path to file 387 * xxx Shorthand for /dev/dsk/xxx 388 */ 389 static nvlist_t * 390 make_leaf_vdev(const char *arg, uint64_t is_log) 391 { 392 char path[MAXPATHLEN]; 393 struct stat64 statbuf; 394 nvlist_t *vdev = NULL; 395 char *type = NULL; 396 boolean_t wholedisk = B_FALSE; 397 398 /* 399 * Determine what type of vdev this is, and put the full path into 400 * 'path'. We detect whether this is a device of file afterwards by 401 * checking the st_mode of the file. 402 */ 403 if (arg[0] == '/') { 404 /* 405 * Complete device or file path. Exact type is determined by 406 * examining the file descriptor afterwards. 407 */ 408 wholedisk = is_whole_disk(arg); 409 if (!wholedisk && (stat64(arg, &statbuf) != 0)) { 410 (void) fprintf(stderr, 411 gettext("cannot open '%s': %s\n"), 412 arg, strerror(errno)); 413 return (NULL); 414 } 415 416 (void) strlcpy(path, arg, sizeof (path)); 417 } else { 418 /* 419 * This may be a short path for a device, or it could be total 420 * gibberish. Check to see if it's a known device in 421 * /dev/dsk/. As part of this check, see if we've been given a 422 * an entire disk (minus the slice number). 423 */ 424 (void) snprintf(path, sizeof (path), "%s/%s", ZFS_DISK_ROOT, 425 arg); 426 wholedisk = is_whole_disk(path); 427 if (!wholedisk && (stat64(path, &statbuf) != 0)) { 428 /* 429 * If we got ENOENT, then the user gave us 430 * gibberish, so try to direct them with a 431 * reasonable error message. Otherwise, 432 * regurgitate strerror() since it's the best we 433 * can do. 434 */ 435 if (errno == ENOENT) { 436 (void) fprintf(stderr, 437 gettext("cannot open '%s': no such " 438 "device in %s\n"), arg, ZFS_DISK_ROOT); 439 (void) fprintf(stderr, 440 gettext("must be a full path or " 441 "shorthand device name\n")); 442 return (NULL); 443 } else { 444 (void) fprintf(stderr, 445 gettext("cannot open '%s': %s\n"), 446 path, strerror(errno)); 447 return (NULL); 448 } 449 } 450 } 451 452 /* 453 * Determine whether this is a device or a file. 454 */ 455 if (wholedisk || S_ISBLK(statbuf.st_mode)) { 456 type = VDEV_TYPE_DISK; 457 } else if (S_ISREG(statbuf.st_mode)) { 458 type = VDEV_TYPE_FILE; 459 } else { 460 (void) fprintf(stderr, gettext("cannot use '%s': must be a " 461 "block device or regular file\n"), path); 462 return (NULL); 463 } 464 465 /* 466 * Finally, we have the complete device or file, and we know that it is 467 * acceptable to use. Construct the nvlist to describe this vdev. All 468 * vdevs have a 'path' element, and devices also have a 'devid' element. 469 */ 470 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0); 471 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0); 472 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0); 473 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0); 474 if (strcmp(type, VDEV_TYPE_DISK) == 0) 475 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, 476 (uint64_t)wholedisk) == 0); 477 478 /* 479 * For a whole disk, defer getting its devid until after labeling it. 480 */ 481 if (S_ISBLK(statbuf.st_mode) && !wholedisk) { 482 /* 483 * Get the devid for the device. 484 */ 485 int fd; 486 ddi_devid_t devid; 487 char *minor = NULL, *devid_str = NULL; 488 489 if ((fd = open(path, O_RDONLY)) < 0) { 490 (void) fprintf(stderr, gettext("cannot open '%s': " 491 "%s\n"), path, strerror(errno)); 492 nvlist_free(vdev); 493 return (NULL); 494 } 495 496 if (devid_get(fd, &devid) == 0) { 497 if (devid_get_minor_name(fd, &minor) == 0 && 498 (devid_str = devid_str_encode(devid, minor)) != 499 NULL) { 500 verify(nvlist_add_string(vdev, 501 ZPOOL_CONFIG_DEVID, devid_str) == 0); 502 } 503 if (devid_str != NULL) 504 devid_str_free(devid_str); 505 if (minor != NULL) 506 devid_str_free(minor); 507 devid_free(devid); 508 } 509 510 (void) close(fd); 511 } 512 513 return (vdev); 514 } 515 516 /* 517 * Go through and verify the replication level of the pool is consistent. 518 * Performs the following checks: 519 * 520 * For the new spec, verifies that devices in mirrors and raidz are the 521 * same size. 522 * 523 * If the current configuration already has inconsistent replication 524 * levels, ignore any other potential problems in the new spec. 525 * 526 * Otherwise, make sure that the current spec (if there is one) and the new 527 * spec have consistent replication levels. 528 */ 529 typedef struct replication_level { 530 char *zprl_type; 531 uint64_t zprl_children; 532 uint64_t zprl_parity; 533 } replication_level_t; 534 535 #define ZPOOL_FUZZ (16 * 1024 * 1024) 536 537 /* 538 * Given a list of toplevel vdevs, return the current replication level. If 539 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then 540 * an error message will be displayed for each self-inconsistent vdev. 541 */ 542 static replication_level_t * 543 get_replication(nvlist_t *nvroot, boolean_t fatal) 544 { 545 nvlist_t **top; 546 uint_t t, toplevels; 547 nvlist_t **child; 548 uint_t c, children; 549 nvlist_t *nv; 550 char *type; 551 replication_level_t lastrep = {0}; 552 replication_level_t rep; 553 replication_level_t *ret; 554 boolean_t dontreport; 555 556 ret = safe_malloc(sizeof (replication_level_t)); 557 558 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 559 &top, &toplevels) == 0); 560 561 for (t = 0; t < toplevels; t++) { 562 uint64_t is_log = B_FALSE; 563 564 nv = top[t]; 565 566 /* 567 * For separate logs we ignore the top level vdev replication 568 * constraints. 569 */ 570 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log); 571 if (is_log) 572 continue; 573 574 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, 575 &type) == 0); 576 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 577 &child, &children) != 0) { 578 /* 579 * This is a 'file' or 'disk' vdev. 580 */ 581 rep.zprl_type = type; 582 rep.zprl_children = 1; 583 rep.zprl_parity = 0; 584 } else { 585 uint64_t vdev_size; 586 587 /* 588 * This is a mirror or RAID-Z vdev. Go through and make 589 * sure the contents are all the same (files vs. disks), 590 * keeping track of the number of elements in the 591 * process. 592 * 593 * We also check that the size of each vdev (if it can 594 * be determined) is the same. 595 */ 596 rep.zprl_type = type; 597 rep.zprl_children = 0; 598 599 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) { 600 verify(nvlist_lookup_uint64(nv, 601 ZPOOL_CONFIG_NPARITY, 602 &rep.zprl_parity) == 0); 603 assert(rep.zprl_parity != 0); 604 } else { 605 rep.zprl_parity = 0; 606 } 607 608 /* 609 * The 'dontreport' variable indicates that we've 610 * already reported an error for this spec, so don't 611 * bother doing it again. 612 */ 613 type = NULL; 614 dontreport = 0; 615 vdev_size = -1ULL; 616 for (c = 0; c < children; c++) { 617 nvlist_t *cnv = child[c]; 618 char *path; 619 struct stat64 statbuf; 620 uint64_t size = -1ULL; 621 char *childtype; 622 int fd, err; 623 624 rep.zprl_children++; 625 626 verify(nvlist_lookup_string(cnv, 627 ZPOOL_CONFIG_TYPE, &childtype) == 0); 628 629 /* 630 * If this is a replacing or spare vdev, then 631 * get the real first child of the vdev: do this 632 * in a loop because replacing and spare vdevs 633 * can be nested. 634 */ 635 while (strcmp(childtype, 636 VDEV_TYPE_REPLACING) == 0 || 637 strcmp(childtype, VDEV_TYPE_SPARE) == 0) { 638 nvlist_t **rchild; 639 uint_t rchildren; 640 641 verify(nvlist_lookup_nvlist_array(cnv, 642 ZPOOL_CONFIG_CHILDREN, &rchild, 643 &rchildren) == 0); 644 assert(rchildren == 2); 645 cnv = rchild[0]; 646 647 verify(nvlist_lookup_string(cnv, 648 ZPOOL_CONFIG_TYPE, 649 &childtype) == 0); 650 } 651 652 verify(nvlist_lookup_string(cnv, 653 ZPOOL_CONFIG_PATH, &path) == 0); 654 655 /* 656 * If we have a raidz/mirror that combines disks 657 * with files, report it as an error. 658 */ 659 if (!dontreport && type != NULL && 660 strcmp(type, childtype) != 0) { 661 if (ret != NULL) 662 free(ret); 663 ret = NULL; 664 if (fatal) 665 vdev_error(gettext( 666 "mismatched replication " 667 "level: %s contains both " 668 "files and devices\n"), 669 rep.zprl_type); 670 else 671 return (NULL); 672 dontreport = B_TRUE; 673 } 674 675 /* 676 * According to stat(2), the value of 'st_size' 677 * is undefined for block devices and character 678 * devices. But there is no effective way to 679 * determine the real size in userland. 680 * 681 * Instead, we'll take advantage of an 682 * implementation detail of spec_size(). If the 683 * device is currently open, then we (should) 684 * return a valid size. 685 * 686 * If we still don't get a valid size (indicated 687 * by a size of 0 or MAXOFFSET_T), then ignore 688 * this device altogether. 689 */ 690 if ((fd = open(path, O_RDONLY)) >= 0) { 691 err = fstat64(fd, &statbuf); 692 (void) close(fd); 693 } else { 694 err = stat64(path, &statbuf); 695 } 696 697 if (err != 0 || 698 statbuf.st_size == 0 || 699 statbuf.st_size == MAXOFFSET_T) 700 continue; 701 702 size = statbuf.st_size; 703 704 /* 705 * Also make sure that devices and 706 * slices have a consistent size. If 707 * they differ by a significant amount 708 * (~16MB) then report an error. 709 */ 710 if (!dontreport && 711 (vdev_size != -1ULL && 712 (labs(size - vdev_size) > 713 ZPOOL_FUZZ))) { 714 if (ret != NULL) 715 free(ret); 716 ret = NULL; 717 if (fatal) 718 vdev_error(gettext( 719 "%s contains devices of " 720 "different sizes\n"), 721 rep.zprl_type); 722 else 723 return (NULL); 724 dontreport = B_TRUE; 725 } 726 727 type = childtype; 728 vdev_size = size; 729 } 730 } 731 732 /* 733 * At this point, we have the replication of the last toplevel 734 * vdev in 'rep'. Compare it to 'lastrep' to see if its 735 * different. 736 */ 737 if (lastrep.zprl_type != NULL) { 738 if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) { 739 if (ret != NULL) 740 free(ret); 741 ret = NULL; 742 if (fatal) 743 vdev_error(gettext( 744 "mismatched replication level: " 745 "both %s and %s vdevs are " 746 "present\n"), 747 lastrep.zprl_type, rep.zprl_type); 748 else 749 return (NULL); 750 } else if (lastrep.zprl_parity != rep.zprl_parity) { 751 if (ret) 752 free(ret); 753 ret = NULL; 754 if (fatal) 755 vdev_error(gettext( 756 "mismatched replication level: " 757 "both %llu and %llu device parity " 758 "%s vdevs are present\n"), 759 lastrep.zprl_parity, 760 rep.zprl_parity, 761 rep.zprl_type); 762 else 763 return (NULL); 764 } else if (lastrep.zprl_children != rep.zprl_children) { 765 if (ret) 766 free(ret); 767 ret = NULL; 768 if (fatal) 769 vdev_error(gettext( 770 "mismatched replication level: " 771 "both %llu-way and %llu-way %s " 772 "vdevs are present\n"), 773 lastrep.zprl_children, 774 rep.zprl_children, 775 rep.zprl_type); 776 else 777 return (NULL); 778 } 779 } 780 lastrep = rep; 781 } 782 783 if (ret != NULL) 784 *ret = rep; 785 786 return (ret); 787 } 788 789 /* 790 * Check the replication level of the vdev spec against the current pool. Calls 791 * get_replication() to make sure the new spec is self-consistent. If the pool 792 * has a consistent replication level, then we ignore any errors. Otherwise, 793 * report any difference between the two. 794 */ 795 static int 796 check_replication(nvlist_t *config, nvlist_t *newroot) 797 { 798 nvlist_t **child; 799 uint_t children; 800 replication_level_t *current = NULL, *new; 801 int ret; 802 803 /* 804 * If we have a current pool configuration, check to see if it's 805 * self-consistent. If not, simply return success. 806 */ 807 if (config != NULL) { 808 nvlist_t *nvroot; 809 810 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 811 &nvroot) == 0); 812 if ((current = get_replication(nvroot, B_FALSE)) == NULL) 813 return (0); 814 } 815 /* 816 * for spares there may be no children, and therefore no 817 * replication level to check 818 */ 819 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN, 820 &child, &children) != 0) || (children == 0)) { 821 free(current); 822 return (0); 823 } 824 825 /* 826 * If all we have is logs then there's no replication level to check. 827 */ 828 if (num_logs(newroot) == children) { 829 free(current); 830 return (0); 831 } 832 833 /* 834 * Get the replication level of the new vdev spec, reporting any 835 * inconsistencies found. 836 */ 837 if ((new = get_replication(newroot, B_TRUE)) == NULL) { 838 free(current); 839 return (-1); 840 } 841 842 /* 843 * Check to see if the new vdev spec matches the replication level of 844 * the current pool. 845 */ 846 ret = 0; 847 if (current != NULL) { 848 if (strcmp(current->zprl_type, new->zprl_type) != 0) { 849 vdev_error(gettext( 850 "mismatched replication level: pool uses %s " 851 "and new vdev is %s\n"), 852 current->zprl_type, new->zprl_type); 853 ret = -1; 854 } else if (current->zprl_parity != new->zprl_parity) { 855 vdev_error(gettext( 856 "mismatched replication level: pool uses %llu " 857 "device parity and new vdev uses %llu\n"), 858 current->zprl_parity, new->zprl_parity); 859 ret = -1; 860 } else if (current->zprl_children != new->zprl_children) { 861 vdev_error(gettext( 862 "mismatched replication level: pool uses %llu-way " 863 "%s and new vdev uses %llu-way %s\n"), 864 current->zprl_children, current->zprl_type, 865 new->zprl_children, new->zprl_type); 866 ret = -1; 867 } 868 } 869 870 free(new); 871 if (current != NULL) 872 free(current); 873 874 return (ret); 875 } 876 877 /* 878 * Go through and find any whole disks in the vdev specification, labelling them 879 * as appropriate. When constructing the vdev spec, we were unable to open this 880 * device in order to provide a devid. Now that we have labelled the disk and 881 * know the pool slice is valid, we can construct the devid now. 882 * 883 * If the disk was already labeled with an EFI label, we will have gotten the 884 * devid already (because we were able to open the whole disk). Otherwise, we 885 * need to get the devid after we label the disk. 886 */ 887 static int 888 make_disks(zpool_handle_t *zhp, nvlist_t *nv, zpool_boot_label_t boot_type, 889 uint64_t boot_size) 890 { 891 nvlist_t **child; 892 uint_t c, children; 893 char *type, *path, *diskname; 894 char buf[MAXPATHLEN]; 895 uint64_t wholedisk; 896 int fd; 897 int ret; 898 int slice; 899 ddi_devid_t devid; 900 char *minor = NULL, *devid_str = NULL; 901 902 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); 903 904 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 905 &child, &children) != 0) { 906 907 if (strcmp(type, VDEV_TYPE_DISK) != 0) 908 return (0); 909 910 /* 911 * We have a disk device. Get the path to the device 912 * and see if it's a whole disk by appending the backup 913 * slice and stat()ing the device. 914 */ 915 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0); 916 917 diskname = strrchr(path, '/'); 918 assert(diskname != NULL); 919 diskname++; 920 921 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 922 &wholedisk) != 0 || !wholedisk) { 923 /* 924 * This is not whole disk, return error if 925 * boot partition creation was requested 926 */ 927 if (boot_type == ZPOOL_CREATE_BOOT_LABEL) { 928 (void) fprintf(stderr, 929 gettext("creating boot partition is only " 930 "supported on whole disk vdevs: %s\n"), 931 diskname); 932 return (-1); 933 } 934 return (0); 935 } 936 937 ret = zpool_label_disk(g_zfs, zhp, diskname, boot_type, 938 boot_size, &slice); 939 if (ret == -1) 940 return (ret); 941 942 /* 943 * Fill in the devid, now that we've labeled the disk. 944 */ 945 (void) snprintf(buf, sizeof (buf), "%ss%d", path, slice); 946 if ((fd = open(buf, O_RDONLY)) < 0) { 947 (void) fprintf(stderr, 948 gettext("cannot open '%s': %s\n"), 949 buf, strerror(errno)); 950 return (-1); 951 } 952 953 if (devid_get(fd, &devid) == 0) { 954 if (devid_get_minor_name(fd, &minor) == 0 && 955 (devid_str = devid_str_encode(devid, minor)) != 956 NULL) { 957 verify(nvlist_add_string(nv, 958 ZPOOL_CONFIG_DEVID, devid_str) == 0); 959 } 960 if (devid_str != NULL) 961 devid_str_free(devid_str); 962 if (minor != NULL) 963 devid_str_free(minor); 964 devid_free(devid); 965 } 966 967 /* 968 * Update the path to refer to the pool slice. The presence of 969 * the 'whole_disk' field indicates to the CLI that we should 970 * chop off the slice number when displaying the device in 971 * future output. 972 */ 973 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0); 974 975 (void) close(fd); 976 977 return (0); 978 } 979 980 /* illumos kernel does not support booting from multi-vdev pools. */ 981 if ((boot_type == ZPOOL_CREATE_BOOT_LABEL)) { 982 if ((strcmp(type, VDEV_TYPE_ROOT) == 0) && children > 1) { 983 (void) fprintf(stderr, gettext("boot pool " 984 "can not have more than one vdev\n")); 985 return (-1); 986 } 987 } 988 989 for (c = 0; c < children; c++) { 990 ret = make_disks(zhp, child[c], boot_type, boot_size); 991 if (ret != 0) 992 return (ret); 993 } 994 995 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, 996 &child, &children) == 0) 997 for (c = 0; c < children; c++) { 998 ret = make_disks(zhp, child[c], boot_type, boot_size); 999 if (ret != 0) 1000 return (ret); 1001 } 1002 1003 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, 1004 &child, &children) == 0) 1005 for (c = 0; c < children; c++) { 1006 ret = make_disks(zhp, child[c], boot_type, boot_size); 1007 if (ret != 0) 1008 return (ret); 1009 } 1010 1011 return (0); 1012 } 1013 1014 /* 1015 * Determine if the given path is a hot spare within the given configuration. 1016 */ 1017 static boolean_t 1018 is_spare(nvlist_t *config, const char *path) 1019 { 1020 int fd; 1021 pool_state_t state; 1022 char *name = NULL; 1023 nvlist_t *label; 1024 uint64_t guid, spareguid; 1025 nvlist_t *nvroot; 1026 nvlist_t **spares; 1027 uint_t i, nspares; 1028 boolean_t inuse; 1029 1030 if ((fd = open(path, O_RDONLY)) < 0) 1031 return (B_FALSE); 1032 1033 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 || 1034 !inuse || 1035 state != POOL_STATE_SPARE || 1036 zpool_read_label(fd, &label) != 0) { 1037 free(name); 1038 (void) close(fd); 1039 return (B_FALSE); 1040 } 1041 free(name); 1042 (void) close(fd); 1043 1044 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0); 1045 nvlist_free(label); 1046 1047 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 1048 &nvroot) == 0); 1049 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1050 &spares, &nspares) == 0) { 1051 for (i = 0; i < nspares; i++) { 1052 verify(nvlist_lookup_uint64(spares[i], 1053 ZPOOL_CONFIG_GUID, &spareguid) == 0); 1054 if (spareguid == guid) 1055 return (B_TRUE); 1056 } 1057 } 1058 1059 return (B_FALSE); 1060 } 1061 1062 /* 1063 * Go through and find any devices that are in use. We rely on libdiskmgt for 1064 * the majority of this task. 1065 */ 1066 static boolean_t 1067 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force, 1068 boolean_t replacing, boolean_t isspare) 1069 { 1070 nvlist_t **child; 1071 uint_t c, children; 1072 char *type, *path; 1073 int ret = 0; 1074 char buf[MAXPATHLEN]; 1075 uint64_t wholedisk; 1076 boolean_t anyinuse = B_FALSE; 1077 1078 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); 1079 1080 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1081 &child, &children) != 0) { 1082 1083 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0); 1084 1085 /* 1086 * As a generic check, we look to see if this is a replace of a 1087 * hot spare within the same pool. If so, we allow it 1088 * regardless of what libdiskmgt or zpool_in_use() says. 1089 */ 1090 if (replacing) { 1091 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 1092 &wholedisk) == 0 && wholedisk) 1093 (void) snprintf(buf, sizeof (buf), "%ss0", 1094 path); 1095 else 1096 (void) strlcpy(buf, path, sizeof (buf)); 1097 1098 if (is_spare(config, buf)) 1099 return (B_FALSE); 1100 } 1101 1102 if (strcmp(type, VDEV_TYPE_DISK) == 0) 1103 ret = check_device(path, force, isspare); 1104 else if (strcmp(type, VDEV_TYPE_FILE) == 0) 1105 ret = check_file(path, force, isspare); 1106 1107 return (ret != 0); 1108 } 1109 1110 for (c = 0; c < children; c++) 1111 if (is_device_in_use(config, child[c], force, replacing, 1112 B_FALSE)) 1113 anyinuse = B_TRUE; 1114 1115 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, 1116 &child, &children) == 0) 1117 for (c = 0; c < children; c++) 1118 if (is_device_in_use(config, child[c], force, replacing, 1119 B_TRUE)) 1120 anyinuse = B_TRUE; 1121 1122 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, 1123 &child, &children) == 0) 1124 for (c = 0; c < children; c++) 1125 if (is_device_in_use(config, child[c], force, replacing, 1126 B_FALSE)) 1127 anyinuse = B_TRUE; 1128 1129 return (anyinuse); 1130 } 1131 1132 static const char * 1133 is_grouping(const char *type, int *mindev, int *maxdev) 1134 { 1135 if (strncmp(type, "raidz", 5) == 0) { 1136 const char *p = type + 5; 1137 char *end; 1138 long nparity; 1139 1140 if (*p == '\0') { 1141 nparity = 1; 1142 } else if (*p == '0') { 1143 return (NULL); /* no zero prefixes allowed */ 1144 } else { 1145 errno = 0; 1146 nparity = strtol(p, &end, 10); 1147 if (errno != 0 || nparity < 1 || nparity >= 255 || 1148 *end != '\0') 1149 return (NULL); 1150 } 1151 1152 if (mindev != NULL) 1153 *mindev = nparity + 1; 1154 if (maxdev != NULL) 1155 *maxdev = 255; 1156 return (VDEV_TYPE_RAIDZ); 1157 } 1158 1159 if (maxdev != NULL) 1160 *maxdev = INT_MAX; 1161 1162 if (strcmp(type, "mirror") == 0) { 1163 if (mindev != NULL) 1164 *mindev = 2; 1165 return (VDEV_TYPE_MIRROR); 1166 } 1167 1168 if (strcmp(type, "spare") == 0) { 1169 if (mindev != NULL) 1170 *mindev = 1; 1171 return (VDEV_TYPE_SPARE); 1172 } 1173 1174 if (strcmp(type, "log") == 0) { 1175 if (mindev != NULL) 1176 *mindev = 1; 1177 return (VDEV_TYPE_LOG); 1178 } 1179 1180 if (strcmp(type, "cache") == 0) { 1181 if (mindev != NULL) 1182 *mindev = 1; 1183 return (VDEV_TYPE_L2CACHE); 1184 } 1185 1186 return (NULL); 1187 } 1188 1189 /* 1190 * Construct a syntactically valid vdev specification, 1191 * and ensure that all devices and files exist and can be opened. 1192 * Note: we don't bother freeing anything in the error paths 1193 * because the program is just going to exit anyway. 1194 */ 1195 nvlist_t * 1196 construct_spec(int argc, char **argv) 1197 { 1198 nvlist_t *nvroot, *nv, **top, **spares, **l2cache; 1199 int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache; 1200 const char *type; 1201 uint64_t is_log; 1202 boolean_t seen_logs; 1203 1204 top = NULL; 1205 toplevels = 0; 1206 spares = NULL; 1207 l2cache = NULL; 1208 nspares = 0; 1209 nlogs = 0; 1210 nl2cache = 0; 1211 is_log = B_FALSE; 1212 seen_logs = B_FALSE; 1213 1214 while (argc > 0) { 1215 nv = NULL; 1216 1217 /* 1218 * If it's a mirror or raidz, the subsequent arguments are 1219 * its leaves -- until we encounter the next mirror or raidz. 1220 */ 1221 if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) { 1222 nvlist_t **child = NULL; 1223 int c, children = 0; 1224 1225 if (strcmp(type, VDEV_TYPE_SPARE) == 0) { 1226 if (spares != NULL) { 1227 (void) fprintf(stderr, 1228 gettext("invalid vdev " 1229 "specification: 'spare' can be " 1230 "specified only once\n")); 1231 return (NULL); 1232 } 1233 is_log = B_FALSE; 1234 } 1235 1236 if (strcmp(type, VDEV_TYPE_LOG) == 0) { 1237 if (seen_logs) { 1238 (void) fprintf(stderr, 1239 gettext("invalid vdev " 1240 "specification: 'log' can be " 1241 "specified only once\n")); 1242 return (NULL); 1243 } 1244 seen_logs = B_TRUE; 1245 is_log = B_TRUE; 1246 argc--; 1247 argv++; 1248 /* 1249 * A log is not a real grouping device. 1250 * We just set is_log and continue. 1251 */ 1252 continue; 1253 } 1254 1255 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) { 1256 if (l2cache != NULL) { 1257 (void) fprintf(stderr, 1258 gettext("invalid vdev " 1259 "specification: 'cache' can be " 1260 "specified only once\n")); 1261 return (NULL); 1262 } 1263 is_log = B_FALSE; 1264 } 1265 1266 if (is_log) { 1267 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) { 1268 (void) fprintf(stderr, 1269 gettext("invalid vdev " 1270 "specification: unsupported 'log' " 1271 "device: %s\n"), type); 1272 return (NULL); 1273 } 1274 nlogs++; 1275 } 1276 1277 for (c = 1; c < argc; c++) { 1278 if (is_grouping(argv[c], NULL, NULL) != NULL) 1279 break; 1280 children++; 1281 child = realloc(child, 1282 children * sizeof (nvlist_t *)); 1283 if (child == NULL) 1284 zpool_no_memory(); 1285 if ((nv = make_leaf_vdev(argv[c], B_FALSE)) 1286 == NULL) 1287 return (NULL); 1288 child[children - 1] = nv; 1289 } 1290 1291 if (children < mindev) { 1292 (void) fprintf(stderr, gettext("invalid vdev " 1293 "specification: %s requires at least %d " 1294 "devices\n"), argv[0], mindev); 1295 return (NULL); 1296 } 1297 1298 if (children > maxdev) { 1299 (void) fprintf(stderr, gettext("invalid vdev " 1300 "specification: %s supports no more than " 1301 "%d devices\n"), argv[0], maxdev); 1302 return (NULL); 1303 } 1304 1305 argc -= c; 1306 argv += c; 1307 1308 if (strcmp(type, VDEV_TYPE_SPARE) == 0) { 1309 spares = child; 1310 nspares = children; 1311 continue; 1312 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) { 1313 l2cache = child; 1314 nl2cache = children; 1315 continue; 1316 } else { 1317 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME, 1318 0) == 0); 1319 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 1320 type) == 0); 1321 verify(nvlist_add_uint64(nv, 1322 ZPOOL_CONFIG_IS_LOG, is_log) == 0); 1323 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) { 1324 verify(nvlist_add_uint64(nv, 1325 ZPOOL_CONFIG_NPARITY, 1326 mindev - 1) == 0); 1327 } 1328 verify(nvlist_add_nvlist_array(nv, 1329 ZPOOL_CONFIG_CHILDREN, child, 1330 children) == 0); 1331 1332 for (c = 0; c < children; c++) 1333 nvlist_free(child[c]); 1334 free(child); 1335 } 1336 } else { 1337 /* 1338 * We have a device. Pass off to make_leaf_vdev() to 1339 * construct the appropriate nvlist describing the vdev. 1340 */ 1341 if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL) 1342 return (NULL); 1343 if (is_log) 1344 nlogs++; 1345 argc--; 1346 argv++; 1347 } 1348 1349 toplevels++; 1350 top = realloc(top, toplevels * sizeof (nvlist_t *)); 1351 if (top == NULL) 1352 zpool_no_memory(); 1353 top[toplevels - 1] = nv; 1354 } 1355 1356 if (toplevels == 0 && nspares == 0 && nl2cache == 0) { 1357 (void) fprintf(stderr, gettext("invalid vdev " 1358 "specification: at least one toplevel vdev must be " 1359 "specified\n")); 1360 return (NULL); 1361 } 1362 1363 if (seen_logs && nlogs == 0) { 1364 (void) fprintf(stderr, gettext("invalid vdev specification: " 1365 "log requires at least 1 device\n")); 1366 return (NULL); 1367 } 1368 1369 /* 1370 * Finally, create nvroot and add all top-level vdevs to it. 1371 */ 1372 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0); 1373 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 1374 VDEV_TYPE_ROOT) == 0); 1375 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 1376 top, toplevels) == 0); 1377 if (nspares != 0) 1378 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1379 spares, nspares) == 0); 1380 if (nl2cache != 0) 1381 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 1382 l2cache, nl2cache) == 0); 1383 1384 for (t = 0; t < toplevels; t++) 1385 nvlist_free(top[t]); 1386 for (t = 0; t < nspares; t++) 1387 nvlist_free(spares[t]); 1388 for (t = 0; t < nl2cache; t++) 1389 nvlist_free(l2cache[t]); 1390 if (spares) 1391 free(spares); 1392 if (l2cache) 1393 free(l2cache); 1394 free(top); 1395 1396 return (nvroot); 1397 } 1398 1399 nvlist_t * 1400 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props, 1401 splitflags_t flags, int argc, char **argv) 1402 { 1403 nvlist_t *newroot = NULL, **child; 1404 uint_t c, children; 1405 zpool_boot_label_t boot_type; 1406 1407 if (argc > 0) { 1408 if ((newroot = construct_spec(argc, argv)) == NULL) { 1409 (void) fprintf(stderr, gettext("Unable to build a " 1410 "pool from the specified devices\n")); 1411 return (NULL); 1412 } 1413 1414 if (zpool_is_bootable(zhp)) 1415 boot_type = ZPOOL_COPY_BOOT_LABEL; 1416 else 1417 boot_type = ZPOOL_NO_BOOT_LABEL; 1418 1419 if (!flags.dryrun && 1420 make_disks(zhp, newroot, boot_type, 0) != 0) { 1421 nvlist_free(newroot); 1422 return (NULL); 1423 } 1424 1425 /* avoid any tricks in the spec */ 1426 verify(nvlist_lookup_nvlist_array(newroot, 1427 ZPOOL_CONFIG_CHILDREN, &child, &children) == 0); 1428 for (c = 0; c < children; c++) { 1429 char *path; 1430 const char *type; 1431 int min, max; 1432 1433 verify(nvlist_lookup_string(child[c], 1434 ZPOOL_CONFIG_PATH, &path) == 0); 1435 if ((type = is_grouping(path, &min, &max)) != NULL) { 1436 (void) fprintf(stderr, gettext("Cannot use " 1437 "'%s' as a device for splitting\n"), type); 1438 nvlist_free(newroot); 1439 return (NULL); 1440 } 1441 } 1442 } 1443 1444 if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) { 1445 nvlist_free(newroot); 1446 return (NULL); 1447 } 1448 1449 return (newroot); 1450 } 1451 1452 /* 1453 * Get and validate the contents of the given vdev specification. This ensures 1454 * that the nvlist returned is well-formed, that all the devices exist, and that 1455 * they are not currently in use by any other known consumer. The 'poolconfig' 1456 * parameter is the current configuration of the pool when adding devices 1457 * existing pool, and is used to perform additional checks, such as changing the 1458 * replication level of the pool. It can be 'NULL' to indicate that this is a 1459 * new pool. The 'force' flag controls whether devices should be forcefully 1460 * added, even if they appear in use. 1461 */ 1462 nvlist_t * 1463 make_root_vdev(zpool_handle_t *zhp, int force, int check_rep, 1464 boolean_t replacing, boolean_t dryrun, zpool_boot_label_t boot_type, 1465 uint64_t boot_size, int argc, char **argv) 1466 { 1467 nvlist_t *newroot; 1468 nvlist_t *poolconfig = NULL; 1469 is_force = force; 1470 1471 /* 1472 * Construct the vdev specification. If this is successful, we know 1473 * that we have a valid specification, and that all devices can be 1474 * opened. 1475 */ 1476 if ((newroot = construct_spec(argc, argv)) == NULL) 1477 return (NULL); 1478 1479 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) 1480 return (NULL); 1481 1482 /* 1483 * Validate each device to make sure that its not shared with another 1484 * subsystem. We do this even if 'force' is set, because there are some 1485 * uses (such as a dedicated dump device) that even '-f' cannot 1486 * override. 1487 */ 1488 if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) { 1489 nvlist_free(newroot); 1490 return (NULL); 1491 } 1492 1493 /* 1494 * Check the replication level of the given vdevs and report any errors 1495 * found. We include the existing pool spec, if any, as we need to 1496 * catch changes against the existing replication level. 1497 */ 1498 if (check_rep && check_replication(poolconfig, newroot) != 0) { 1499 nvlist_free(newroot); 1500 return (NULL); 1501 } 1502 1503 /* 1504 * Run through the vdev specification and label any whole disks found. 1505 */ 1506 if (!dryrun && make_disks(zhp, newroot, boot_type, boot_size) != 0) { 1507 nvlist_free(newroot); 1508 return (NULL); 1509 } 1510 1511 return (newroot); 1512 } 1513