xref: /illumos-gate/usr/src/cmd/zpool/zpool_vdev.c (revision 5e832498d1743a9c84b5f53b983c9f469290b34b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
25  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
26  */
27 
28 /*
29  * Functions to convert between a list of vdevs and an nvlist representing the
30  * configuration.  Each entry in the list can be one of:
31  *
32  * 	Device vdevs
33  * 		disk=(path=..., devid=...)
34  * 		file=(path=...)
35  *
36  * 	Group vdevs
37  * 		raidz[1|2]=(...)
38  * 		mirror=(...)
39  *
40  * 	Hot spares
41  *
42  * While the underlying implementation supports it, group vdevs cannot contain
43  * other group vdevs.  All userland verification of devices is contained within
44  * this file.  If successful, the nvlist returned can be passed directly to the
45  * kernel; we've done as much verification as possible in userland.
46  *
47  * Hot spares are a special case, and passed down as an array of disk vdevs, at
48  * the same level as the root of the vdev tree.
49  *
50  * The only function exported by this file is 'make_root_vdev'.  The
51  * function performs several passes:
52  *
53  * 	1. Construct the vdev specification.  Performs syntax validation and
54  *         makes sure each device is valid.
55  * 	2. Check for devices in use.  Using libdiskmgt, makes sure that no
56  *         devices are also in use.  Some can be overridden using the 'force'
57  *         flag, others cannot.
58  * 	3. Check for replication errors if the 'force' flag is not specified.
59  *         validates that the replication level is consistent across the
60  *         entire pool.
61  * 	4. Call libzfs to label any whole disks with an EFI label.
62  */
63 
64 #include <assert.h>
65 #include <devid.h>
66 #include <errno.h>
67 #include <fcntl.h>
68 #include <libdiskmgt.h>
69 #include <libintl.h>
70 #include <libnvpair.h>
71 #include <limits.h>
72 #include <stdio.h>
73 #include <string.h>
74 #include <unistd.h>
75 #include <sys/efi_partition.h>
76 #include <sys/stat.h>
77 #include <sys/vtoc.h>
78 #include <sys/mntent.h>
79 
80 #include "zpool_util.h"
81 
82 #define	BACKUP_SLICE	"s2"
83 
84 /*
85  * For any given vdev specification, we can have multiple errors.  The
86  * vdev_error() function keeps track of whether we have seen an error yet, and
87  * prints out a header if its the first error we've seen.
88  */
89 boolean_t error_seen;
90 boolean_t is_force;
91 
92 /*PRINTFLIKE1*/
93 static void
94 vdev_error(const char *fmt, ...)
95 {
96 	va_list ap;
97 
98 	if (!error_seen) {
99 		(void) fprintf(stderr, gettext("invalid vdev specification\n"));
100 		if (!is_force)
101 			(void) fprintf(stderr, gettext("use '-f' to override "
102 			    "the following errors:\n"));
103 		else
104 			(void) fprintf(stderr, gettext("the following errors "
105 			    "must be manually repaired:\n"));
106 		error_seen = B_TRUE;
107 	}
108 
109 	va_start(ap, fmt);
110 	(void) vfprintf(stderr, fmt, ap);
111 	va_end(ap);
112 }
113 
114 static void
115 libdiskmgt_error(int error)
116 {
117 	/*
118 	 * ENXIO/ENODEV is a valid error message if the device doesn't live in
119 	 * /dev/dsk.  Don't bother printing an error message in this case.
120 	 */
121 	if (error == ENXIO || error == ENODEV)
122 		return;
123 
124 	(void) fprintf(stderr, gettext("warning: device in use checking "
125 	    "failed: %s\n"), strerror(error));
126 }
127 
128 /*
129  * Validate a device, passing the bulk of the work off to libdiskmgt.
130  */
131 static int
132 check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare)
133 {
134 	char *msg;
135 	int error = 0;
136 	dm_who_type_t who;
137 
138 	if (force)
139 		who = DM_WHO_ZPOOL_FORCE;
140 	else if (isspare)
141 		who = DM_WHO_ZPOOL_SPARE;
142 	else
143 		who = DM_WHO_ZPOOL;
144 
145 	if (dm_inuse((char *)path, &msg, who, &error) || error) {
146 		if (error != 0) {
147 			libdiskmgt_error(error);
148 			return (0);
149 		} else {
150 			vdev_error("%s", msg);
151 			free(msg);
152 			return (-1);
153 		}
154 	}
155 
156 	/*
157 	 * If we're given a whole disk, ignore overlapping slices since we're
158 	 * about to label it anyway.
159 	 */
160 	error = 0;
161 	if (!wholedisk && !force &&
162 	    (dm_isoverlapping((char *)path, &msg, &error) || error)) {
163 		if (error == 0) {
164 			/* dm_isoverlapping returned -1 */
165 			vdev_error(gettext("%s overlaps with %s\n"), path, msg);
166 			free(msg);
167 			return (-1);
168 		} else if (error != ENODEV) {
169 			/* libdiskmgt's devcache only handles physical drives */
170 			libdiskmgt_error(error);
171 			return (0);
172 		}
173 	}
174 
175 	return (0);
176 }
177 
178 
179 /*
180  * Validate a whole disk.  Iterate over all slices on the disk and make sure
181  * that none is in use by calling check_slice().
182  */
183 static int
184 check_disk(const char *name, dm_descriptor_t disk, int force, int isspare)
185 {
186 	dm_descriptor_t *drive, *media, *slice;
187 	int err = 0;
188 	int i;
189 	int ret;
190 
191 	/*
192 	 * Get the drive associated with this disk.  This should never fail,
193 	 * because we already have an alias handle open for the device.
194 	 */
195 	if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE,
196 	    &err)) == NULL || *drive == NULL) {
197 		if (err)
198 			libdiskmgt_error(err);
199 		return (0);
200 	}
201 
202 	if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA,
203 	    &err)) == NULL) {
204 		dm_free_descriptors(drive);
205 		if (err)
206 			libdiskmgt_error(err);
207 		return (0);
208 	}
209 
210 	dm_free_descriptors(drive);
211 
212 	/*
213 	 * It is possible that the user has specified a removable media drive,
214 	 * and the media is not present.
215 	 */
216 	if (*media == NULL) {
217 		dm_free_descriptors(media);
218 		vdev_error(gettext("'%s' has no media in drive\n"), name);
219 		return (-1);
220 	}
221 
222 	if ((slice = dm_get_associated_descriptors(*media, DM_SLICE,
223 	    &err)) == NULL) {
224 		dm_free_descriptors(media);
225 		if (err)
226 			libdiskmgt_error(err);
227 		return (0);
228 	}
229 
230 	dm_free_descriptors(media);
231 
232 	ret = 0;
233 
234 	/*
235 	 * Iterate over all slices and report any errors.  We don't care about
236 	 * overlapping slices because we are using the whole disk.
237 	 */
238 	for (i = 0; slice[i] != NULL; i++) {
239 		char *name = dm_get_name(slice[i], &err);
240 
241 		if (check_slice(name, force, B_TRUE, isspare) != 0)
242 			ret = -1;
243 
244 		dm_free_name(name);
245 	}
246 
247 	dm_free_descriptors(slice);
248 	return (ret);
249 }
250 
251 /*
252  * Validate a device.
253  */
254 static int
255 check_device(const char *path, boolean_t force, boolean_t isspare)
256 {
257 	dm_descriptor_t desc;
258 	int err;
259 	char *dev;
260 
261 	/*
262 	 * For whole disks, libdiskmgt does not include the leading dev path.
263 	 */
264 	dev = strrchr(path, '/');
265 	assert(dev != NULL);
266 	dev++;
267 	if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) {
268 		err = check_disk(path, desc, force, isspare);
269 		dm_free_descriptor(desc);
270 		return (err);
271 	}
272 
273 	return (check_slice(path, force, B_FALSE, isspare));
274 }
275 
276 /*
277  * Check that a file is valid.  All we can do in this case is check that it's
278  * not in use by another pool, and not in use by swap.
279  */
280 static int
281 check_file(const char *file, boolean_t force, boolean_t isspare)
282 {
283 	char  *name;
284 	int fd;
285 	int ret = 0;
286 	int err;
287 	pool_state_t state;
288 	boolean_t inuse;
289 
290 	if (dm_inuse_swap(file, &err)) {
291 		if (err)
292 			libdiskmgt_error(err);
293 		else
294 			vdev_error(gettext("%s is currently used by swap. "
295 			    "Please see swap(1M).\n"), file);
296 		return (-1);
297 	}
298 
299 	if ((fd = open(file, O_RDONLY)) < 0)
300 		return (0);
301 
302 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
303 		const char *desc;
304 
305 		switch (state) {
306 		case POOL_STATE_ACTIVE:
307 			desc = gettext("active");
308 			break;
309 
310 		case POOL_STATE_EXPORTED:
311 			desc = gettext("exported");
312 			break;
313 
314 		case POOL_STATE_POTENTIALLY_ACTIVE:
315 			desc = gettext("potentially active");
316 			break;
317 
318 		default:
319 			desc = gettext("unknown");
320 			break;
321 		}
322 
323 		/*
324 		 * Allow hot spares to be shared between pools.
325 		 */
326 		if (state == POOL_STATE_SPARE && isspare)
327 			return (0);
328 
329 		if (state == POOL_STATE_ACTIVE ||
330 		    state == POOL_STATE_SPARE || !force) {
331 			switch (state) {
332 			case POOL_STATE_SPARE:
333 				vdev_error(gettext("%s is reserved as a hot "
334 				    "spare for pool %s\n"), file, name);
335 				break;
336 			default:
337 				vdev_error(gettext("%s is part of %s pool "
338 				    "'%s'\n"), file, desc, name);
339 				break;
340 			}
341 			ret = -1;
342 		}
343 
344 		free(name);
345 	}
346 
347 	(void) close(fd);
348 	return (ret);
349 }
350 
351 
352 /*
353  * By "whole disk" we mean an entire physical disk (something we can
354  * label, toggle the write cache on, etc.) as opposed to the full
355  * capacity of a pseudo-device such as lofi or did.  We act as if we
356  * are labeling the disk, which should be a pretty good test of whether
357  * it's a viable device or not.  Returns B_TRUE if it is and B_FALSE if
358  * it isn't.
359  */
360 static boolean_t
361 is_whole_disk(const char *arg)
362 {
363 	struct dk_gpt *label;
364 	int	fd;
365 	char	path[MAXPATHLEN];
366 
367 	(void) snprintf(path, sizeof (path), "%s%s%s",
368 	    ZFS_RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE);
369 	if ((fd = open(path, O_RDWR | O_NDELAY)) < 0)
370 		return (B_FALSE);
371 	if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
372 		(void) close(fd);
373 		return (B_FALSE);
374 	}
375 	efi_free(label);
376 	(void) close(fd);
377 	return (B_TRUE);
378 }
379 
380 /*
381  * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
382  * device, fill in the device id to make a complete nvlist.  Valid forms for a
383  * leaf vdev are:
384  *
385  * 	/dev/dsk/xxx	Complete disk path
386  * 	/xxx		Full path to file
387  * 	xxx		Shorthand for /dev/dsk/xxx
388  */
389 static nvlist_t *
390 make_leaf_vdev(const char *arg, uint64_t is_log)
391 {
392 	char path[MAXPATHLEN];
393 	struct stat64 statbuf;
394 	nvlist_t *vdev = NULL;
395 	char *type = NULL;
396 	boolean_t wholedisk = B_FALSE;
397 
398 	/*
399 	 * Determine what type of vdev this is, and put the full path into
400 	 * 'path'.  We detect whether this is a device of file afterwards by
401 	 * checking the st_mode of the file.
402 	 */
403 	if (arg[0] == '/') {
404 		/*
405 		 * Complete device or file path.  Exact type is determined by
406 		 * examining the file descriptor afterwards.
407 		 */
408 		wholedisk = is_whole_disk(arg);
409 		if (!wholedisk && (stat64(arg, &statbuf) != 0)) {
410 			(void) fprintf(stderr,
411 			    gettext("cannot open '%s': %s\n"),
412 			    arg, strerror(errno));
413 			return (NULL);
414 		}
415 
416 		(void) strlcpy(path, arg, sizeof (path));
417 	} else {
418 		/*
419 		 * This may be a short path for a device, or it could be total
420 		 * gibberish.  Check to see if it's a known device in
421 		 * /dev/dsk/.  As part of this check, see if we've been given a
422 		 * an entire disk (minus the slice number).
423 		 */
424 		(void) snprintf(path, sizeof (path), "%s/%s", ZFS_DISK_ROOT,
425 		    arg);
426 		wholedisk = is_whole_disk(path);
427 		if (!wholedisk && (stat64(path, &statbuf) != 0)) {
428 			/*
429 			 * If we got ENOENT, then the user gave us
430 			 * gibberish, so try to direct them with a
431 			 * reasonable error message.  Otherwise,
432 			 * regurgitate strerror() since it's the best we
433 			 * can do.
434 			 */
435 			if (errno == ENOENT) {
436 				(void) fprintf(stderr,
437 				    gettext("cannot open '%s': no such "
438 				    "device in %s\n"), arg, ZFS_DISK_ROOT);
439 				(void) fprintf(stderr,
440 				    gettext("must be a full path or "
441 				    "shorthand device name\n"));
442 				return (NULL);
443 			} else {
444 				(void) fprintf(stderr,
445 				    gettext("cannot open '%s': %s\n"),
446 				    path, strerror(errno));
447 				return (NULL);
448 			}
449 		}
450 	}
451 
452 	/*
453 	 * Determine whether this is a device or a file.
454 	 */
455 	if (wholedisk || S_ISBLK(statbuf.st_mode)) {
456 		type = VDEV_TYPE_DISK;
457 	} else if (S_ISREG(statbuf.st_mode)) {
458 		type = VDEV_TYPE_FILE;
459 	} else {
460 		(void) fprintf(stderr, gettext("cannot use '%s': must be a "
461 		    "block device or regular file\n"), path);
462 		return (NULL);
463 	}
464 
465 	/*
466 	 * Finally, we have the complete device or file, and we know that it is
467 	 * acceptable to use.  Construct the nvlist to describe this vdev.  All
468 	 * vdevs have a 'path' element, and devices also have a 'devid' element.
469 	 */
470 	verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
471 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
472 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
473 	verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
474 	if (strcmp(type, VDEV_TYPE_DISK) == 0)
475 		verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
476 		    (uint64_t)wholedisk) == 0);
477 
478 	/*
479 	 * For a whole disk, defer getting its devid until after labeling it.
480 	 */
481 	if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
482 		/*
483 		 * Get the devid for the device.
484 		 */
485 		int fd;
486 		ddi_devid_t devid;
487 		char *minor = NULL, *devid_str = NULL;
488 
489 		if ((fd = open(path, O_RDONLY)) < 0) {
490 			(void) fprintf(stderr, gettext("cannot open '%s': "
491 			    "%s\n"), path, strerror(errno));
492 			nvlist_free(vdev);
493 			return (NULL);
494 		}
495 
496 		if (devid_get(fd, &devid) == 0) {
497 			if (devid_get_minor_name(fd, &minor) == 0 &&
498 			    (devid_str = devid_str_encode(devid, minor)) !=
499 			    NULL) {
500 				verify(nvlist_add_string(vdev,
501 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
502 			}
503 			if (devid_str != NULL)
504 				devid_str_free(devid_str);
505 			if (minor != NULL)
506 				devid_str_free(minor);
507 			devid_free(devid);
508 		}
509 
510 		(void) close(fd);
511 	}
512 
513 	return (vdev);
514 }
515 
516 /*
517  * Go through and verify the replication level of the pool is consistent.
518  * Performs the following checks:
519  *
520  * 	For the new spec, verifies that devices in mirrors and raidz are the
521  * 	same size.
522  *
523  * 	If the current configuration already has inconsistent replication
524  * 	levels, ignore any other potential problems in the new spec.
525  *
526  * 	Otherwise, make sure that the current spec (if there is one) and the new
527  * 	spec have consistent replication levels.
528  */
529 typedef struct replication_level {
530 	char *zprl_type;
531 	uint64_t zprl_children;
532 	uint64_t zprl_parity;
533 } replication_level_t;
534 
535 #define	ZPOOL_FUZZ	(16 * 1024 * 1024)
536 
537 /*
538  * Given a list of toplevel vdevs, return the current replication level.  If
539  * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
540  * an error message will be displayed for each self-inconsistent vdev.
541  */
542 static replication_level_t *
543 get_replication(nvlist_t *nvroot, boolean_t fatal)
544 {
545 	nvlist_t **top;
546 	uint_t t, toplevels;
547 	nvlist_t **child;
548 	uint_t c, children;
549 	nvlist_t *nv;
550 	char *type;
551 	replication_level_t lastrep = {0};
552 	replication_level_t rep;
553 	replication_level_t *ret;
554 	boolean_t dontreport;
555 
556 	ret = safe_malloc(sizeof (replication_level_t));
557 
558 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
559 	    &top, &toplevels) == 0);
560 
561 	for (t = 0; t < toplevels; t++) {
562 		uint64_t is_log = B_FALSE;
563 
564 		nv = top[t];
565 
566 		/*
567 		 * For separate logs we ignore the top level vdev replication
568 		 * constraints.
569 		 */
570 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
571 		if (is_log)
572 			continue;
573 
574 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
575 		    &type) == 0);
576 		if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
577 		    &child, &children) != 0) {
578 			/*
579 			 * This is a 'file' or 'disk' vdev.
580 			 */
581 			rep.zprl_type = type;
582 			rep.zprl_children = 1;
583 			rep.zprl_parity = 0;
584 		} else {
585 			uint64_t vdev_size;
586 
587 			/*
588 			 * This is a mirror or RAID-Z vdev.  Go through and make
589 			 * sure the contents are all the same (files vs. disks),
590 			 * keeping track of the number of elements in the
591 			 * process.
592 			 *
593 			 * We also check that the size of each vdev (if it can
594 			 * be determined) is the same.
595 			 */
596 			rep.zprl_type = type;
597 			rep.zprl_children = 0;
598 
599 			if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
600 				verify(nvlist_lookup_uint64(nv,
601 				    ZPOOL_CONFIG_NPARITY,
602 				    &rep.zprl_parity) == 0);
603 				assert(rep.zprl_parity != 0);
604 			} else {
605 				rep.zprl_parity = 0;
606 			}
607 
608 			/*
609 			 * The 'dontreport' variable indicates that we've
610 			 * already reported an error for this spec, so don't
611 			 * bother doing it again.
612 			 */
613 			type = NULL;
614 			dontreport = 0;
615 			vdev_size = -1ULL;
616 			for (c = 0; c < children; c++) {
617 				nvlist_t *cnv = child[c];
618 				char *path;
619 				struct stat64 statbuf;
620 				uint64_t size = -1ULL;
621 				char *childtype;
622 				int fd, err;
623 
624 				rep.zprl_children++;
625 
626 				verify(nvlist_lookup_string(cnv,
627 				    ZPOOL_CONFIG_TYPE, &childtype) == 0);
628 
629 				/*
630 				 * If this is a replacing or spare vdev, then
631 				 * get the real first child of the vdev: do this
632 				 * in a loop because replacing and spare vdevs
633 				 * can be nested.
634 				 */
635 				while (strcmp(childtype,
636 				    VDEV_TYPE_REPLACING) == 0 ||
637 				    strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
638 					nvlist_t **rchild;
639 					uint_t rchildren;
640 
641 					verify(nvlist_lookup_nvlist_array(cnv,
642 					    ZPOOL_CONFIG_CHILDREN, &rchild,
643 					    &rchildren) == 0);
644 					assert(rchildren == 2);
645 					cnv = rchild[0];
646 
647 					verify(nvlist_lookup_string(cnv,
648 					    ZPOOL_CONFIG_TYPE,
649 					    &childtype) == 0);
650 				}
651 
652 				verify(nvlist_lookup_string(cnv,
653 				    ZPOOL_CONFIG_PATH, &path) == 0);
654 
655 				/*
656 				 * If we have a raidz/mirror that combines disks
657 				 * with files, report it as an error.
658 				 */
659 				if (!dontreport && type != NULL &&
660 				    strcmp(type, childtype) != 0) {
661 					if (ret != NULL)
662 						free(ret);
663 					ret = NULL;
664 					if (fatal)
665 						vdev_error(gettext(
666 						    "mismatched replication "
667 						    "level: %s contains both "
668 						    "files and devices\n"),
669 						    rep.zprl_type);
670 					else
671 						return (NULL);
672 					dontreport = B_TRUE;
673 				}
674 
675 				/*
676 				 * According to stat(2), the value of 'st_size'
677 				 * is undefined for block devices and character
678 				 * devices.  But there is no effective way to
679 				 * determine the real size in userland.
680 				 *
681 				 * Instead, we'll take advantage of an
682 				 * implementation detail of spec_size().  If the
683 				 * device is currently open, then we (should)
684 				 * return a valid size.
685 				 *
686 				 * If we still don't get a valid size (indicated
687 				 * by a size of 0 or MAXOFFSET_T), then ignore
688 				 * this device altogether.
689 				 */
690 				if ((fd = open(path, O_RDONLY)) >= 0) {
691 					err = fstat64(fd, &statbuf);
692 					(void) close(fd);
693 				} else {
694 					err = stat64(path, &statbuf);
695 				}
696 
697 				if (err != 0 ||
698 				    statbuf.st_size == 0 ||
699 				    statbuf.st_size == MAXOFFSET_T)
700 					continue;
701 
702 				size = statbuf.st_size;
703 
704 				/*
705 				 * Also make sure that devices and
706 				 * slices have a consistent size.  If
707 				 * they differ by a significant amount
708 				 * (~16MB) then report an error.
709 				 */
710 				if (!dontreport &&
711 				    (vdev_size != -1ULL &&
712 				    (labs(size - vdev_size) >
713 				    ZPOOL_FUZZ))) {
714 					if (ret != NULL)
715 						free(ret);
716 					ret = NULL;
717 					if (fatal)
718 						vdev_error(gettext(
719 						    "%s contains devices of "
720 						    "different sizes\n"),
721 						    rep.zprl_type);
722 					else
723 						return (NULL);
724 					dontreport = B_TRUE;
725 				}
726 
727 				type = childtype;
728 				vdev_size = size;
729 			}
730 		}
731 
732 		/*
733 		 * At this point, we have the replication of the last toplevel
734 		 * vdev in 'rep'.  Compare it to 'lastrep' to see if its
735 		 * different.
736 		 */
737 		if (lastrep.zprl_type != NULL) {
738 			if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
739 				if (ret != NULL)
740 					free(ret);
741 				ret = NULL;
742 				if (fatal)
743 					vdev_error(gettext(
744 					    "mismatched replication level: "
745 					    "both %s and %s vdevs are "
746 					    "present\n"),
747 					    lastrep.zprl_type, rep.zprl_type);
748 				else
749 					return (NULL);
750 			} else if (lastrep.zprl_parity != rep.zprl_parity) {
751 				if (ret)
752 					free(ret);
753 				ret = NULL;
754 				if (fatal)
755 					vdev_error(gettext(
756 					    "mismatched replication level: "
757 					    "both %llu and %llu device parity "
758 					    "%s vdevs are present\n"),
759 					    lastrep.zprl_parity,
760 					    rep.zprl_parity,
761 					    rep.zprl_type);
762 				else
763 					return (NULL);
764 			} else if (lastrep.zprl_children != rep.zprl_children) {
765 				if (ret)
766 					free(ret);
767 				ret = NULL;
768 				if (fatal)
769 					vdev_error(gettext(
770 					    "mismatched replication level: "
771 					    "both %llu-way and %llu-way %s "
772 					    "vdevs are present\n"),
773 					    lastrep.zprl_children,
774 					    rep.zprl_children,
775 					    rep.zprl_type);
776 				else
777 					return (NULL);
778 			}
779 		}
780 		lastrep = rep;
781 	}
782 
783 	if (ret != NULL)
784 		*ret = rep;
785 
786 	return (ret);
787 }
788 
789 /*
790  * Check the replication level of the vdev spec against the current pool.  Calls
791  * get_replication() to make sure the new spec is self-consistent.  If the pool
792  * has a consistent replication level, then we ignore any errors.  Otherwise,
793  * report any difference between the two.
794  */
795 static int
796 check_replication(nvlist_t *config, nvlist_t *newroot)
797 {
798 	nvlist_t **child;
799 	uint_t	children;
800 	replication_level_t *current = NULL, *new;
801 	int ret;
802 
803 	/*
804 	 * If we have a current pool configuration, check to see if it's
805 	 * self-consistent.  If not, simply return success.
806 	 */
807 	if (config != NULL) {
808 		nvlist_t *nvroot;
809 
810 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
811 		    &nvroot) == 0);
812 		if ((current = get_replication(nvroot, B_FALSE)) == NULL)
813 			return (0);
814 	}
815 	/*
816 	 * for spares there may be no children, and therefore no
817 	 * replication level to check
818 	 */
819 	if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
820 	    &child, &children) != 0) || (children == 0)) {
821 		free(current);
822 		return (0);
823 	}
824 
825 	/*
826 	 * If all we have is logs then there's no replication level to check.
827 	 */
828 	if (num_logs(newroot) == children) {
829 		free(current);
830 		return (0);
831 	}
832 
833 	/*
834 	 * Get the replication level of the new vdev spec, reporting any
835 	 * inconsistencies found.
836 	 */
837 	if ((new = get_replication(newroot, B_TRUE)) == NULL) {
838 		free(current);
839 		return (-1);
840 	}
841 
842 	/*
843 	 * Check to see if the new vdev spec matches the replication level of
844 	 * the current pool.
845 	 */
846 	ret = 0;
847 	if (current != NULL) {
848 		if (strcmp(current->zprl_type, new->zprl_type) != 0) {
849 			vdev_error(gettext(
850 			    "mismatched replication level: pool uses %s "
851 			    "and new vdev is %s\n"),
852 			    current->zprl_type, new->zprl_type);
853 			ret = -1;
854 		} else if (current->zprl_parity != new->zprl_parity) {
855 			vdev_error(gettext(
856 			    "mismatched replication level: pool uses %llu "
857 			    "device parity and new vdev uses %llu\n"),
858 			    current->zprl_parity, new->zprl_parity);
859 			ret = -1;
860 		} else if (current->zprl_children != new->zprl_children) {
861 			vdev_error(gettext(
862 			    "mismatched replication level: pool uses %llu-way "
863 			    "%s and new vdev uses %llu-way %s\n"),
864 			    current->zprl_children, current->zprl_type,
865 			    new->zprl_children, new->zprl_type);
866 			ret = -1;
867 		}
868 	}
869 
870 	free(new);
871 	if (current != NULL)
872 		free(current);
873 
874 	return (ret);
875 }
876 
877 /*
878  * Go through and find any whole disks in the vdev specification, labelling them
879  * as appropriate.  When constructing the vdev spec, we were unable to open this
880  * device in order to provide a devid.  Now that we have labelled the disk and
881  * know the pool slice is valid, we can construct the devid now.
882  *
883  * If the disk was already labeled with an EFI label, we will have gotten the
884  * devid already (because we were able to open the whole disk).  Otherwise, we
885  * need to get the devid after we label the disk.
886  */
887 static int
888 make_disks(zpool_handle_t *zhp, nvlist_t *nv, zpool_boot_label_t boot_type,
889     uint64_t boot_size)
890 {
891 	nvlist_t **child;
892 	uint_t c, children;
893 	char *type, *path, *diskname;
894 	char buf[MAXPATHLEN];
895 	uint64_t wholedisk;
896 	int fd;
897 	int ret;
898 	int slice;
899 	ddi_devid_t devid;
900 	char *minor = NULL, *devid_str = NULL;
901 
902 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
903 
904 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
905 	    &child, &children) != 0) {
906 
907 		if (strcmp(type, VDEV_TYPE_DISK) != 0)
908 			return (0);
909 
910 		/*
911 		 * We have a disk device.  Get the path to the device
912 		 * and see if it's a whole disk by appending the backup
913 		 * slice and stat()ing the device.
914 		 */
915 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
916 
917 		diskname = strrchr(path, '/');
918 		assert(diskname != NULL);
919 		diskname++;
920 
921 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
922 		    &wholedisk) != 0 || !wholedisk) {
923 			/*
924 			 * This is not whole disk, return error if
925 			 * boot partition creation was requested
926 			 */
927 			if (boot_type == ZPOOL_CREATE_BOOT_LABEL) {
928 				(void) fprintf(stderr,
929 				    gettext("creating boot partition is only "
930 				    "supported on whole disk vdevs: %s\n"),
931 				    diskname);
932 				return (-1);
933 			}
934 			return (0);
935 		}
936 
937 		ret = zpool_label_disk(g_zfs, zhp, diskname, boot_type,
938 		    boot_size, &slice);
939 		if (ret == -1)
940 			return (ret);
941 
942 		/*
943 		 * Fill in the devid, now that we've labeled the disk.
944 		 */
945 		(void) snprintf(buf, sizeof (buf), "%ss%d", path, slice);
946 		if ((fd = open(buf, O_RDONLY)) < 0) {
947 			(void) fprintf(stderr,
948 			    gettext("cannot open '%s': %s\n"),
949 			    buf, strerror(errno));
950 			return (-1);
951 		}
952 
953 		if (devid_get(fd, &devid) == 0) {
954 			if (devid_get_minor_name(fd, &minor) == 0 &&
955 			    (devid_str = devid_str_encode(devid, minor)) !=
956 			    NULL) {
957 				verify(nvlist_add_string(nv,
958 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
959 			}
960 			if (devid_str != NULL)
961 				devid_str_free(devid_str);
962 			if (minor != NULL)
963 				devid_str_free(minor);
964 			devid_free(devid);
965 		}
966 
967 		/*
968 		 * Update the path to refer to the pool slice.  The presence of
969 		 * the 'whole_disk' field indicates to the CLI that we should
970 		 * chop off the slice number when displaying the device in
971 		 * future output.
972 		 */
973 		verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
974 
975 		(void) close(fd);
976 
977 		return (0);
978 	}
979 
980 	/* illumos kernel does not support booting from multi-vdev pools. */
981 	if ((boot_type == ZPOOL_CREATE_BOOT_LABEL)) {
982 		if ((strcmp(type, VDEV_TYPE_ROOT) == 0) && children > 1) {
983 			(void) fprintf(stderr, gettext("boot pool "
984 			    "can not have more than one vdev\n"));
985 			return (-1);
986 		}
987 	}
988 
989 	for (c = 0; c < children; c++) {
990 		ret = make_disks(zhp, child[c], boot_type, boot_size);
991 		if (ret != 0)
992 			return (ret);
993 	}
994 
995 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
996 	    &child, &children) == 0)
997 		for (c = 0; c < children; c++) {
998 			ret = make_disks(zhp, child[c], boot_type, boot_size);
999 			if (ret != 0)
1000 				return (ret);
1001 		}
1002 
1003 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1004 	    &child, &children) == 0)
1005 		for (c = 0; c < children; c++) {
1006 			ret = make_disks(zhp, child[c], boot_type, boot_size);
1007 			if (ret != 0)
1008 				return (ret);
1009 		}
1010 
1011 	return (0);
1012 }
1013 
1014 /*
1015  * Determine if the given path is a hot spare within the given configuration.
1016  */
1017 static boolean_t
1018 is_spare(nvlist_t *config, const char *path)
1019 {
1020 	int fd;
1021 	pool_state_t state;
1022 	char *name = NULL;
1023 	nvlist_t *label;
1024 	uint64_t guid, spareguid;
1025 	nvlist_t *nvroot;
1026 	nvlist_t **spares;
1027 	uint_t i, nspares;
1028 	boolean_t inuse;
1029 
1030 	if ((fd = open(path, O_RDONLY)) < 0)
1031 		return (B_FALSE);
1032 
1033 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
1034 	    !inuse ||
1035 	    state != POOL_STATE_SPARE ||
1036 	    zpool_read_label(fd, &label) != 0) {
1037 		free(name);
1038 		(void) close(fd);
1039 		return (B_FALSE);
1040 	}
1041 	free(name);
1042 	(void) close(fd);
1043 
1044 	verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
1045 	nvlist_free(label);
1046 
1047 	verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1048 	    &nvroot) == 0);
1049 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1050 	    &spares, &nspares) == 0) {
1051 		for (i = 0; i < nspares; i++) {
1052 			verify(nvlist_lookup_uint64(spares[i],
1053 			    ZPOOL_CONFIG_GUID, &spareguid) == 0);
1054 			if (spareguid == guid)
1055 				return (B_TRUE);
1056 		}
1057 	}
1058 
1059 	return (B_FALSE);
1060 }
1061 
1062 /*
1063  * Go through and find any devices that are in use.  We rely on libdiskmgt for
1064  * the majority of this task.
1065  */
1066 static boolean_t
1067 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1068     boolean_t replacing, boolean_t isspare)
1069 {
1070 	nvlist_t **child;
1071 	uint_t c, children;
1072 	char *type, *path;
1073 	int ret = 0;
1074 	char buf[MAXPATHLEN];
1075 	uint64_t wholedisk;
1076 	boolean_t anyinuse = B_FALSE;
1077 
1078 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1079 
1080 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1081 	    &child, &children) != 0) {
1082 
1083 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1084 
1085 		/*
1086 		 * As a generic check, we look to see if this is a replace of a
1087 		 * hot spare within the same pool.  If so, we allow it
1088 		 * regardless of what libdiskmgt or zpool_in_use() says.
1089 		 */
1090 		if (replacing) {
1091 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1092 			    &wholedisk) == 0 && wholedisk)
1093 				(void) snprintf(buf, sizeof (buf), "%ss0",
1094 				    path);
1095 			else
1096 				(void) strlcpy(buf, path, sizeof (buf));
1097 
1098 			if (is_spare(config, buf))
1099 				return (B_FALSE);
1100 		}
1101 
1102 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1103 			ret = check_device(path, force, isspare);
1104 		else if (strcmp(type, VDEV_TYPE_FILE) == 0)
1105 			ret = check_file(path, force, isspare);
1106 
1107 		return (ret != 0);
1108 	}
1109 
1110 	for (c = 0; c < children; c++)
1111 		if (is_device_in_use(config, child[c], force, replacing,
1112 		    B_FALSE))
1113 			anyinuse = B_TRUE;
1114 
1115 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1116 	    &child, &children) == 0)
1117 		for (c = 0; c < children; c++)
1118 			if (is_device_in_use(config, child[c], force, replacing,
1119 			    B_TRUE))
1120 				anyinuse = B_TRUE;
1121 
1122 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1123 	    &child, &children) == 0)
1124 		for (c = 0; c < children; c++)
1125 			if (is_device_in_use(config, child[c], force, replacing,
1126 			    B_FALSE))
1127 				anyinuse = B_TRUE;
1128 
1129 	return (anyinuse);
1130 }
1131 
1132 static const char *
1133 is_grouping(const char *type, int *mindev, int *maxdev)
1134 {
1135 	if (strncmp(type, "raidz", 5) == 0) {
1136 		const char *p = type + 5;
1137 		char *end;
1138 		long nparity;
1139 
1140 		if (*p == '\0') {
1141 			nparity = 1;
1142 		} else if (*p == '0') {
1143 			return (NULL); /* no zero prefixes allowed */
1144 		} else {
1145 			errno = 0;
1146 			nparity = strtol(p, &end, 10);
1147 			if (errno != 0 || nparity < 1 || nparity >= 255 ||
1148 			    *end != '\0')
1149 				return (NULL);
1150 		}
1151 
1152 		if (mindev != NULL)
1153 			*mindev = nparity + 1;
1154 		if (maxdev != NULL)
1155 			*maxdev = 255;
1156 		return (VDEV_TYPE_RAIDZ);
1157 	}
1158 
1159 	if (maxdev != NULL)
1160 		*maxdev = INT_MAX;
1161 
1162 	if (strcmp(type, "mirror") == 0) {
1163 		if (mindev != NULL)
1164 			*mindev = 2;
1165 		return (VDEV_TYPE_MIRROR);
1166 	}
1167 
1168 	if (strcmp(type, "spare") == 0) {
1169 		if (mindev != NULL)
1170 			*mindev = 1;
1171 		return (VDEV_TYPE_SPARE);
1172 	}
1173 
1174 	if (strcmp(type, "log") == 0) {
1175 		if (mindev != NULL)
1176 			*mindev = 1;
1177 		return (VDEV_TYPE_LOG);
1178 	}
1179 
1180 	if (strcmp(type, "cache") == 0) {
1181 		if (mindev != NULL)
1182 			*mindev = 1;
1183 		return (VDEV_TYPE_L2CACHE);
1184 	}
1185 
1186 	return (NULL);
1187 }
1188 
1189 /*
1190  * Construct a syntactically valid vdev specification,
1191  * and ensure that all devices and files exist and can be opened.
1192  * Note: we don't bother freeing anything in the error paths
1193  * because the program is just going to exit anyway.
1194  */
1195 nvlist_t *
1196 construct_spec(int argc, char **argv)
1197 {
1198 	nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1199 	int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1200 	const char *type;
1201 	uint64_t is_log;
1202 	boolean_t seen_logs;
1203 
1204 	top = NULL;
1205 	toplevels = 0;
1206 	spares = NULL;
1207 	l2cache = NULL;
1208 	nspares = 0;
1209 	nlogs = 0;
1210 	nl2cache = 0;
1211 	is_log = B_FALSE;
1212 	seen_logs = B_FALSE;
1213 
1214 	while (argc > 0) {
1215 		nv = NULL;
1216 
1217 		/*
1218 		 * If it's a mirror or raidz, the subsequent arguments are
1219 		 * its leaves -- until we encounter the next mirror or raidz.
1220 		 */
1221 		if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) {
1222 			nvlist_t **child = NULL;
1223 			int c, children = 0;
1224 
1225 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1226 				if (spares != NULL) {
1227 					(void) fprintf(stderr,
1228 					    gettext("invalid vdev "
1229 					    "specification: 'spare' can be "
1230 					    "specified only once\n"));
1231 					return (NULL);
1232 				}
1233 				is_log = B_FALSE;
1234 			}
1235 
1236 			if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1237 				if (seen_logs) {
1238 					(void) fprintf(stderr,
1239 					    gettext("invalid vdev "
1240 					    "specification: 'log' can be "
1241 					    "specified only once\n"));
1242 					return (NULL);
1243 				}
1244 				seen_logs = B_TRUE;
1245 				is_log = B_TRUE;
1246 				argc--;
1247 				argv++;
1248 				/*
1249 				 * A log is not a real grouping device.
1250 				 * We just set is_log and continue.
1251 				 */
1252 				continue;
1253 			}
1254 
1255 			if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1256 				if (l2cache != NULL) {
1257 					(void) fprintf(stderr,
1258 					    gettext("invalid vdev "
1259 					    "specification: 'cache' can be "
1260 					    "specified only once\n"));
1261 					return (NULL);
1262 				}
1263 				is_log = B_FALSE;
1264 			}
1265 
1266 			if (is_log) {
1267 				if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1268 					(void) fprintf(stderr,
1269 					    gettext("invalid vdev "
1270 					    "specification: unsupported 'log' "
1271 					    "device: %s\n"), type);
1272 					return (NULL);
1273 				}
1274 				nlogs++;
1275 			}
1276 
1277 			for (c = 1; c < argc; c++) {
1278 				if (is_grouping(argv[c], NULL, NULL) != NULL)
1279 					break;
1280 				children++;
1281 				child = realloc(child,
1282 				    children * sizeof (nvlist_t *));
1283 				if (child == NULL)
1284 					zpool_no_memory();
1285 				if ((nv = make_leaf_vdev(argv[c], B_FALSE))
1286 				    == NULL)
1287 					return (NULL);
1288 				child[children - 1] = nv;
1289 			}
1290 
1291 			if (children < mindev) {
1292 				(void) fprintf(stderr, gettext("invalid vdev "
1293 				    "specification: %s requires at least %d "
1294 				    "devices\n"), argv[0], mindev);
1295 				return (NULL);
1296 			}
1297 
1298 			if (children > maxdev) {
1299 				(void) fprintf(stderr, gettext("invalid vdev "
1300 				    "specification: %s supports no more than "
1301 				    "%d devices\n"), argv[0], maxdev);
1302 				return (NULL);
1303 			}
1304 
1305 			argc -= c;
1306 			argv += c;
1307 
1308 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1309 				spares = child;
1310 				nspares = children;
1311 				continue;
1312 			} else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1313 				l2cache = child;
1314 				nl2cache = children;
1315 				continue;
1316 			} else {
1317 				verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1318 				    0) == 0);
1319 				verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1320 				    type) == 0);
1321 				verify(nvlist_add_uint64(nv,
1322 				    ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1323 				if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1324 					verify(nvlist_add_uint64(nv,
1325 					    ZPOOL_CONFIG_NPARITY,
1326 					    mindev - 1) == 0);
1327 				}
1328 				verify(nvlist_add_nvlist_array(nv,
1329 				    ZPOOL_CONFIG_CHILDREN, child,
1330 				    children) == 0);
1331 
1332 				for (c = 0; c < children; c++)
1333 					nvlist_free(child[c]);
1334 				free(child);
1335 			}
1336 		} else {
1337 			/*
1338 			 * We have a device.  Pass off to make_leaf_vdev() to
1339 			 * construct the appropriate nvlist describing the vdev.
1340 			 */
1341 			if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL)
1342 				return (NULL);
1343 			if (is_log)
1344 				nlogs++;
1345 			argc--;
1346 			argv++;
1347 		}
1348 
1349 		toplevels++;
1350 		top = realloc(top, toplevels * sizeof (nvlist_t *));
1351 		if (top == NULL)
1352 			zpool_no_memory();
1353 		top[toplevels - 1] = nv;
1354 	}
1355 
1356 	if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1357 		(void) fprintf(stderr, gettext("invalid vdev "
1358 		    "specification: at least one toplevel vdev must be "
1359 		    "specified\n"));
1360 		return (NULL);
1361 	}
1362 
1363 	if (seen_logs && nlogs == 0) {
1364 		(void) fprintf(stderr, gettext("invalid vdev specification: "
1365 		    "log requires at least 1 device\n"));
1366 		return (NULL);
1367 	}
1368 
1369 	/*
1370 	 * Finally, create nvroot and add all top-level vdevs to it.
1371 	 */
1372 	verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1373 	verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1374 	    VDEV_TYPE_ROOT) == 0);
1375 	verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1376 	    top, toplevels) == 0);
1377 	if (nspares != 0)
1378 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1379 		    spares, nspares) == 0);
1380 	if (nl2cache != 0)
1381 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1382 		    l2cache, nl2cache) == 0);
1383 
1384 	for (t = 0; t < toplevels; t++)
1385 		nvlist_free(top[t]);
1386 	for (t = 0; t < nspares; t++)
1387 		nvlist_free(spares[t]);
1388 	for (t = 0; t < nl2cache; t++)
1389 		nvlist_free(l2cache[t]);
1390 	if (spares)
1391 		free(spares);
1392 	if (l2cache)
1393 		free(l2cache);
1394 	free(top);
1395 
1396 	return (nvroot);
1397 }
1398 
1399 nvlist_t *
1400 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1401     splitflags_t flags, int argc, char **argv)
1402 {
1403 	nvlist_t *newroot = NULL, **child;
1404 	uint_t c, children;
1405 	zpool_boot_label_t boot_type;
1406 
1407 	if (argc > 0) {
1408 		if ((newroot = construct_spec(argc, argv)) == NULL) {
1409 			(void) fprintf(stderr, gettext("Unable to build a "
1410 			    "pool from the specified devices\n"));
1411 			return (NULL);
1412 		}
1413 
1414 		if (zpool_is_bootable(zhp))
1415 			boot_type = ZPOOL_COPY_BOOT_LABEL;
1416 		else
1417 			boot_type = ZPOOL_NO_BOOT_LABEL;
1418 
1419 		if (!flags.dryrun &&
1420 		    make_disks(zhp, newroot, boot_type, 0) != 0) {
1421 			nvlist_free(newroot);
1422 			return (NULL);
1423 		}
1424 
1425 		/* avoid any tricks in the spec */
1426 		verify(nvlist_lookup_nvlist_array(newroot,
1427 		    ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1428 		for (c = 0; c < children; c++) {
1429 			char *path;
1430 			const char *type;
1431 			int min, max;
1432 
1433 			verify(nvlist_lookup_string(child[c],
1434 			    ZPOOL_CONFIG_PATH, &path) == 0);
1435 			if ((type = is_grouping(path, &min, &max)) != NULL) {
1436 				(void) fprintf(stderr, gettext("Cannot use "
1437 				    "'%s' as a device for splitting\n"), type);
1438 				nvlist_free(newroot);
1439 				return (NULL);
1440 			}
1441 		}
1442 	}
1443 
1444 	if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1445 		nvlist_free(newroot);
1446 		return (NULL);
1447 	}
1448 
1449 	return (newroot);
1450 }
1451 
1452 /*
1453  * Get and validate the contents of the given vdev specification.  This ensures
1454  * that the nvlist returned is well-formed, that all the devices exist, and that
1455  * they are not currently in use by any other known consumer.  The 'poolconfig'
1456  * parameter is the current configuration of the pool when adding devices
1457  * existing pool, and is used to perform additional checks, such as changing the
1458  * replication level of the pool.  It can be 'NULL' to indicate that this is a
1459  * new pool.  The 'force' flag controls whether devices should be forcefully
1460  * added, even if they appear in use.
1461  */
1462 nvlist_t *
1463 make_root_vdev(zpool_handle_t *zhp, int force, int check_rep,
1464     boolean_t replacing, boolean_t dryrun, zpool_boot_label_t boot_type,
1465     uint64_t boot_size, int argc, char **argv)
1466 {
1467 	nvlist_t *newroot;
1468 	nvlist_t *poolconfig = NULL;
1469 	is_force = force;
1470 
1471 	/*
1472 	 * Construct the vdev specification.  If this is successful, we know
1473 	 * that we have a valid specification, and that all devices can be
1474 	 * opened.
1475 	 */
1476 	if ((newroot = construct_spec(argc, argv)) == NULL)
1477 		return (NULL);
1478 
1479 	if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL))
1480 		return (NULL);
1481 
1482 	/*
1483 	 * Validate each device to make sure that its not shared with another
1484 	 * subsystem.  We do this even if 'force' is set, because there are some
1485 	 * uses (such as a dedicated dump device) that even '-f' cannot
1486 	 * override.
1487 	 */
1488 	if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
1489 		nvlist_free(newroot);
1490 		return (NULL);
1491 	}
1492 
1493 	/*
1494 	 * Check the replication level of the given vdevs and report any errors
1495 	 * found.  We include the existing pool spec, if any, as we need to
1496 	 * catch changes against the existing replication level.
1497 	 */
1498 	if (check_rep && check_replication(poolconfig, newroot) != 0) {
1499 		nvlist_free(newroot);
1500 		return (NULL);
1501 	}
1502 
1503 	/*
1504 	 * Run through the vdev specification and label any whole disks found.
1505 	 */
1506 	if (!dryrun && make_disks(zhp, newroot, boot_type, boot_size) != 0) {
1507 		nvlist_free(newroot);
1508 		return (NULL);
1509 	}
1510 
1511 	return (newroot);
1512 }
1513