1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, 2015 by Delphix. All rights reserved. 25 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>. 26 */ 27 28 /* 29 * Functions to convert between a list of vdevs and an nvlist representing the 30 * configuration. Each entry in the list can be one of: 31 * 32 * Device vdevs 33 * disk=(path=..., devid=...) 34 * file=(path=...) 35 * 36 * Group vdevs 37 * raidz[1|2]=(...) 38 * mirror=(...) 39 * 40 * Hot spares 41 * 42 * While the underlying implementation supports it, group vdevs cannot contain 43 * other group vdevs. All userland verification of devices is contained within 44 * this file. If successful, the nvlist returned can be passed directly to the 45 * kernel; we've done as much verification as possible in userland. 46 * 47 * Hot spares are a special case, and passed down as an array of disk vdevs, at 48 * the same level as the root of the vdev tree. 49 * 50 * The only function exported by this file is 'make_root_vdev'. The 51 * function performs several passes: 52 * 53 * 1. Construct the vdev specification. Performs syntax validation and 54 * makes sure each device is valid. 55 * 2. Check for devices in use. Using libdiskmgt, makes sure that no 56 * devices are also in use. Some can be overridden using the 'force' 57 * flag, others cannot. 58 * 3. Check for replication errors if the 'force' flag is not specified. 59 * validates that the replication level is consistent across the 60 * entire pool. 61 * 4. Call libzfs to label any whole disks with an EFI label. 62 */ 63 64 #include <assert.h> 65 #include <devid.h> 66 #include <errno.h> 67 #include <fcntl.h> 68 #include <libdiskmgt.h> 69 #include <libintl.h> 70 #include <libnvpair.h> 71 #include <limits.h> 72 #include <stdio.h> 73 #include <string.h> 74 #include <unistd.h> 75 #include <sys/efi_partition.h> 76 #include <sys/stat.h> 77 #include <sys/vtoc.h> 78 #include <sys/mntent.h> 79 80 #include "zpool_util.h" 81 82 #define BACKUP_SLICE "s2" 83 84 /* 85 * For any given vdev specification, we can have multiple errors. The 86 * vdev_error() function keeps track of whether we have seen an error yet, and 87 * prints out a header if its the first error we've seen. 88 */ 89 boolean_t error_seen; 90 boolean_t is_force; 91 92 /*PRINTFLIKE1*/ 93 static void 94 vdev_error(const char *fmt, ...) 95 { 96 va_list ap; 97 98 if (!error_seen) { 99 (void) fprintf(stderr, gettext("invalid vdev specification\n")); 100 if (!is_force) 101 (void) fprintf(stderr, gettext("use '-f' to override " 102 "the following errors:\n")); 103 else 104 (void) fprintf(stderr, gettext("the following errors " 105 "must be manually repaired:\n")); 106 error_seen = B_TRUE; 107 } 108 109 va_start(ap, fmt); 110 (void) vfprintf(stderr, fmt, ap); 111 va_end(ap); 112 } 113 114 static void 115 libdiskmgt_error(int error) 116 { 117 /* 118 * ENXIO/ENODEV is a valid error message if the device doesn't live in 119 * /dev/dsk. Don't bother printing an error message in this case. 120 */ 121 if (error == ENXIO || error == ENODEV) 122 return; 123 124 (void) fprintf(stderr, gettext("warning: device in use checking " 125 "failed: %s\n"), strerror(error)); 126 } 127 128 /* 129 * Validate a device, passing the bulk of the work off to libdiskmgt. 130 */ 131 static int 132 check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare) 133 { 134 char *msg; 135 int error = 0; 136 dm_who_type_t who; 137 138 if (force) 139 who = DM_WHO_ZPOOL_FORCE; 140 else if (isspare) 141 who = DM_WHO_ZPOOL_SPARE; 142 else 143 who = DM_WHO_ZPOOL; 144 145 if (dm_inuse((char *)path, &msg, who, &error) || error) { 146 if (error != 0) { 147 libdiskmgt_error(error); 148 return (0); 149 } else { 150 vdev_error("%s", msg); 151 free(msg); 152 return (-1); 153 } 154 } 155 156 /* 157 * If we're given a whole disk, ignore overlapping slices since we're 158 * about to label it anyway. 159 */ 160 error = 0; 161 if (!wholedisk && !force && 162 (dm_isoverlapping((char *)path, &msg, &error) || error)) { 163 if (error == 0) { 164 /* dm_isoverlapping returned -1 */ 165 vdev_error(gettext("%s overlaps with %s\n"), path, msg); 166 free(msg); 167 return (-1); 168 } else if (error != ENODEV) { 169 /* libdiskmgt's devcache only handles physical drives */ 170 libdiskmgt_error(error); 171 return (0); 172 } 173 } 174 175 return (0); 176 } 177 178 179 /* 180 * Validate a whole disk. Iterate over all slices on the disk and make sure 181 * that none is in use by calling check_slice(). 182 */ 183 static int 184 check_disk(const char *name, dm_descriptor_t disk, int force, int isspare) 185 { 186 dm_descriptor_t *drive, *media, *slice; 187 int err = 0; 188 int i; 189 int ret; 190 191 /* 192 * Get the drive associated with this disk. This should never fail, 193 * because we already have an alias handle open for the device. 194 */ 195 if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE, 196 &err)) == NULL || *drive == NULL) { 197 if (err) 198 libdiskmgt_error(err); 199 return (0); 200 } 201 202 if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA, 203 &err)) == NULL) { 204 dm_free_descriptors(drive); 205 if (err) 206 libdiskmgt_error(err); 207 return (0); 208 } 209 210 dm_free_descriptors(drive); 211 212 /* 213 * It is possible that the user has specified a removable media drive, 214 * and the media is not present. 215 */ 216 if (*media == NULL) { 217 dm_free_descriptors(media); 218 vdev_error(gettext("'%s' has no media in drive\n"), name); 219 return (-1); 220 } 221 222 if ((slice = dm_get_associated_descriptors(*media, DM_SLICE, 223 &err)) == NULL) { 224 dm_free_descriptors(media); 225 if (err) 226 libdiskmgt_error(err); 227 return (0); 228 } 229 230 dm_free_descriptors(media); 231 232 ret = 0; 233 234 /* 235 * Iterate over all slices and report any errors. We don't care about 236 * overlapping slices because we are using the whole disk. 237 */ 238 for (i = 0; slice[i] != NULL; i++) { 239 char *name = dm_get_name(slice[i], &err); 240 241 if (check_slice(name, force, B_TRUE, isspare) != 0) 242 ret = -1; 243 244 dm_free_name(name); 245 } 246 247 dm_free_descriptors(slice); 248 return (ret); 249 } 250 251 /* 252 * Validate a device. 253 */ 254 static int 255 check_device(const char *path, boolean_t force, boolean_t isspare) 256 { 257 dm_descriptor_t desc; 258 int err; 259 char *dev; 260 261 /* 262 * For whole disks, libdiskmgt does not include the leading dev path. 263 */ 264 dev = strrchr(path, '/'); 265 assert(dev != NULL); 266 dev++; 267 if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) { 268 err = check_disk(path, desc, force, isspare); 269 dm_free_descriptor(desc); 270 return (err); 271 } 272 273 return (check_slice(path, force, B_FALSE, isspare)); 274 } 275 276 /* 277 * Check that a file is valid. All we can do in this case is check that it's 278 * not in use by another pool, and not in use by swap. 279 */ 280 static int 281 check_file(const char *file, boolean_t force, boolean_t isspare) 282 { 283 char *name; 284 int fd; 285 int ret = 0; 286 int err; 287 pool_state_t state; 288 boolean_t inuse; 289 290 if (dm_inuse_swap(file, &err)) { 291 if (err) 292 libdiskmgt_error(err); 293 else 294 vdev_error(gettext("%s is currently used by swap. " 295 "Please see swap(1M).\n"), file); 296 return (-1); 297 } 298 299 if ((fd = open(file, O_RDONLY)) < 0) 300 return (0); 301 302 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) { 303 const char *desc; 304 305 switch (state) { 306 case POOL_STATE_ACTIVE: 307 desc = gettext("active"); 308 break; 309 310 case POOL_STATE_EXPORTED: 311 desc = gettext("exported"); 312 break; 313 314 case POOL_STATE_POTENTIALLY_ACTIVE: 315 desc = gettext("potentially active"); 316 break; 317 318 default: 319 desc = gettext("unknown"); 320 break; 321 } 322 323 /* 324 * Allow hot spares to be shared between pools. 325 */ 326 if (state == POOL_STATE_SPARE && isspare) 327 return (0); 328 329 if (state == POOL_STATE_ACTIVE || 330 state == POOL_STATE_SPARE || !force) { 331 switch (state) { 332 case POOL_STATE_SPARE: 333 vdev_error(gettext("%s is reserved as a hot " 334 "spare for pool %s\n"), file, name); 335 break; 336 default: 337 vdev_error(gettext("%s is part of %s pool " 338 "'%s'\n"), file, desc, name); 339 break; 340 } 341 ret = -1; 342 } 343 344 free(name); 345 } 346 347 (void) close(fd); 348 return (ret); 349 } 350 351 352 /* 353 * By "whole disk" we mean an entire physical disk (something we can 354 * label, toggle the write cache on, etc.) as opposed to the full 355 * capacity of a pseudo-device such as lofi or did. We act as if we 356 * are labeling the disk, which should be a pretty good test of whether 357 * it's a viable device or not. Returns B_TRUE if it is and B_FALSE if 358 * it isn't. 359 */ 360 static boolean_t 361 is_whole_disk(const char *arg) 362 { 363 struct dk_gpt *label; 364 int fd; 365 char path[MAXPATHLEN]; 366 367 (void) snprintf(path, sizeof (path), "%s%s%s", 368 ZFS_RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE); 369 if ((fd = open(path, O_RDWR | O_NDELAY)) < 0) 370 return (B_FALSE); 371 if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) { 372 (void) close(fd); 373 return (B_FALSE); 374 } 375 efi_free(label); 376 (void) close(fd); 377 return (B_TRUE); 378 } 379 380 /* 381 * Create a leaf vdev. Determine if this is a file or a device. If it's a 382 * device, fill in the device id to make a complete nvlist. Valid forms for a 383 * leaf vdev are: 384 * 385 * /dev/dsk/xxx Complete disk path 386 * /xxx Full path to file 387 * xxx Shorthand for /dev/dsk/xxx 388 */ 389 static nvlist_t * 390 make_leaf_vdev(const char *arg, uint64_t is_log) 391 { 392 char path[MAXPATHLEN]; 393 struct stat64 statbuf; 394 nvlist_t *vdev = NULL; 395 char *type = NULL; 396 boolean_t wholedisk = B_FALSE; 397 398 /* 399 * Determine what type of vdev this is, and put the full path into 400 * 'path'. We detect whether this is a device of file afterwards by 401 * checking the st_mode of the file. 402 */ 403 if (arg[0] == '/') { 404 /* 405 * Complete device or file path. Exact type is determined by 406 * examining the file descriptor afterwards. 407 */ 408 wholedisk = is_whole_disk(arg); 409 if (!wholedisk && (stat64(arg, &statbuf) != 0)) { 410 (void) fprintf(stderr, 411 gettext("cannot open '%s': %s\n"), 412 arg, strerror(errno)); 413 return (NULL); 414 } 415 416 (void) strlcpy(path, arg, sizeof (path)); 417 } else { 418 /* 419 * This may be a short path for a device, or it could be total 420 * gibberish. Check to see if it's a known device in 421 * /dev/dsk/. As part of this check, see if we've been given a 422 * an entire disk (minus the slice number). 423 */ 424 (void) snprintf(path, sizeof (path), "%s/%s", ZFS_DISK_ROOT, 425 arg); 426 wholedisk = is_whole_disk(path); 427 if (!wholedisk && (stat64(path, &statbuf) != 0)) { 428 /* 429 * If we got ENOENT, then the user gave us 430 * gibberish, so try to direct them with a 431 * reasonable error message. Otherwise, 432 * regurgitate strerror() since it's the best we 433 * can do. 434 */ 435 if (errno == ENOENT) { 436 (void) fprintf(stderr, 437 gettext("cannot open '%s': no such " 438 "device in %s\n"), arg, ZFS_DISK_ROOT); 439 (void) fprintf(stderr, 440 gettext("must be a full path or " 441 "shorthand device name\n")); 442 return (NULL); 443 } else { 444 (void) fprintf(stderr, 445 gettext("cannot open '%s': %s\n"), 446 path, strerror(errno)); 447 return (NULL); 448 } 449 } 450 } 451 452 /* 453 * Determine whether this is a device or a file. 454 */ 455 if (wholedisk || S_ISBLK(statbuf.st_mode)) { 456 type = VDEV_TYPE_DISK; 457 } else if (S_ISREG(statbuf.st_mode)) { 458 type = VDEV_TYPE_FILE; 459 } else { 460 (void) fprintf(stderr, gettext("cannot use '%s': must be a " 461 "block device or regular file\n"), path); 462 return (NULL); 463 } 464 465 /* 466 * Finally, we have the complete device or file, and we know that it is 467 * acceptable to use. Construct the nvlist to describe this vdev. All 468 * vdevs have a 'path' element, and devices also have a 'devid' element. 469 */ 470 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0); 471 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0); 472 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0); 473 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0); 474 if (strcmp(type, VDEV_TYPE_DISK) == 0) 475 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, 476 (uint64_t)wholedisk) == 0); 477 478 /* 479 * For a whole disk, defer getting its devid until after labeling it. 480 */ 481 if (S_ISBLK(statbuf.st_mode) && !wholedisk) { 482 /* 483 * Get the devid for the device. 484 */ 485 int fd; 486 ddi_devid_t devid; 487 char *minor = NULL, *devid_str = NULL; 488 489 if ((fd = open(path, O_RDONLY)) < 0) { 490 (void) fprintf(stderr, gettext("cannot open '%s': " 491 "%s\n"), path, strerror(errno)); 492 nvlist_free(vdev); 493 return (NULL); 494 } 495 496 if (devid_get(fd, &devid) == 0) { 497 if (devid_get_minor_name(fd, &minor) == 0 && 498 (devid_str = devid_str_encode(devid, minor)) != 499 NULL) { 500 verify(nvlist_add_string(vdev, 501 ZPOOL_CONFIG_DEVID, devid_str) == 0); 502 } 503 if (devid_str != NULL) 504 devid_str_free(devid_str); 505 if (minor != NULL) 506 devid_str_free(minor); 507 devid_free(devid); 508 } 509 510 (void) close(fd); 511 } 512 513 return (vdev); 514 } 515 516 /* 517 * Go through and verify the replication level of the pool is consistent. 518 * Performs the following checks: 519 * 520 * For the new spec, verifies that devices in mirrors and raidz are the 521 * same size. 522 * 523 * If the current configuration already has inconsistent replication 524 * levels, ignore any other potential problems in the new spec. 525 * 526 * Otherwise, make sure that the current spec (if there is one) and the new 527 * spec have consistent replication levels. 528 */ 529 typedef struct replication_level { 530 char *zprl_type; 531 uint64_t zprl_children; 532 uint64_t zprl_parity; 533 } replication_level_t; 534 535 #define ZPOOL_FUZZ (16 * 1024 * 1024) 536 537 /* 538 * Given a list of toplevel vdevs, return the current replication level. If 539 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then 540 * an error message will be displayed for each self-inconsistent vdev. 541 */ 542 static replication_level_t * 543 get_replication(nvlist_t *nvroot, boolean_t fatal) 544 { 545 nvlist_t **top; 546 uint_t t, toplevels; 547 nvlist_t **child; 548 uint_t c, children; 549 nvlist_t *nv; 550 char *type; 551 replication_level_t lastrep = {0}; 552 replication_level_t rep; 553 replication_level_t *ret; 554 boolean_t dontreport; 555 556 ret = safe_malloc(sizeof (replication_level_t)); 557 558 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 559 &top, &toplevels) == 0); 560 561 for (t = 0; t < toplevels; t++) { 562 uint64_t is_log = B_FALSE; 563 564 nv = top[t]; 565 566 /* 567 * For separate logs we ignore the top level vdev replication 568 * constraints. 569 */ 570 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log); 571 if (is_log) 572 continue; 573 574 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, 575 &type) == 0); 576 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 577 &child, &children) != 0) { 578 /* 579 * This is a 'file' or 'disk' vdev. 580 */ 581 rep.zprl_type = type; 582 rep.zprl_children = 1; 583 rep.zprl_parity = 0; 584 } else { 585 uint64_t vdev_size; 586 587 /* 588 * This is a mirror or RAID-Z vdev. Go through and make 589 * sure the contents are all the same (files vs. disks), 590 * keeping track of the number of elements in the 591 * process. 592 * 593 * We also check that the size of each vdev (if it can 594 * be determined) is the same. 595 */ 596 rep.zprl_type = type; 597 rep.zprl_children = 0; 598 599 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) { 600 verify(nvlist_lookup_uint64(nv, 601 ZPOOL_CONFIG_NPARITY, 602 &rep.zprl_parity) == 0); 603 assert(rep.zprl_parity != 0); 604 } else { 605 rep.zprl_parity = 0; 606 } 607 608 /* 609 * The 'dontreport' variable indicates that we've 610 * already reported an error for this spec, so don't 611 * bother doing it again. 612 */ 613 type = NULL; 614 dontreport = 0; 615 vdev_size = -1ULL; 616 for (c = 0; c < children; c++) { 617 nvlist_t *cnv = child[c]; 618 char *path; 619 struct stat64 statbuf; 620 uint64_t size = -1ULL; 621 char *childtype; 622 int fd, err; 623 624 rep.zprl_children++; 625 626 verify(nvlist_lookup_string(cnv, 627 ZPOOL_CONFIG_TYPE, &childtype) == 0); 628 629 /* 630 * If this is a replacing or spare vdev, then 631 * get the real first child of the vdev. 632 */ 633 if (strcmp(childtype, 634 VDEV_TYPE_REPLACING) == 0 || 635 strcmp(childtype, VDEV_TYPE_SPARE) == 0) { 636 nvlist_t **rchild; 637 uint_t rchildren; 638 639 verify(nvlist_lookup_nvlist_array(cnv, 640 ZPOOL_CONFIG_CHILDREN, &rchild, 641 &rchildren) == 0); 642 assert(rchildren == 2); 643 cnv = rchild[0]; 644 645 verify(nvlist_lookup_string(cnv, 646 ZPOOL_CONFIG_TYPE, 647 &childtype) == 0); 648 } 649 650 verify(nvlist_lookup_string(cnv, 651 ZPOOL_CONFIG_PATH, &path) == 0); 652 653 /* 654 * If we have a raidz/mirror that combines disks 655 * with files, report it as an error. 656 */ 657 if (!dontreport && type != NULL && 658 strcmp(type, childtype) != 0) { 659 if (ret != NULL) 660 free(ret); 661 ret = NULL; 662 if (fatal) 663 vdev_error(gettext( 664 "mismatched replication " 665 "level: %s contains both " 666 "files and devices\n"), 667 rep.zprl_type); 668 else 669 return (NULL); 670 dontreport = B_TRUE; 671 } 672 673 /* 674 * According to stat(2), the value of 'st_size' 675 * is undefined for block devices and character 676 * devices. But there is no effective way to 677 * determine the real size in userland. 678 * 679 * Instead, we'll take advantage of an 680 * implementation detail of spec_size(). If the 681 * device is currently open, then we (should) 682 * return a valid size. 683 * 684 * If we still don't get a valid size (indicated 685 * by a size of 0 or MAXOFFSET_T), then ignore 686 * this device altogether. 687 */ 688 if ((fd = open(path, O_RDONLY)) >= 0) { 689 err = fstat64(fd, &statbuf); 690 (void) close(fd); 691 } else { 692 err = stat64(path, &statbuf); 693 } 694 695 if (err != 0 || 696 statbuf.st_size == 0 || 697 statbuf.st_size == MAXOFFSET_T) 698 continue; 699 700 size = statbuf.st_size; 701 702 /* 703 * Also make sure that devices and 704 * slices have a consistent size. If 705 * they differ by a significant amount 706 * (~16MB) then report an error. 707 */ 708 if (!dontreport && 709 (vdev_size != -1ULL && 710 (labs(size - vdev_size) > 711 ZPOOL_FUZZ))) { 712 if (ret != NULL) 713 free(ret); 714 ret = NULL; 715 if (fatal) 716 vdev_error(gettext( 717 "%s contains devices of " 718 "different sizes\n"), 719 rep.zprl_type); 720 else 721 return (NULL); 722 dontreport = B_TRUE; 723 } 724 725 type = childtype; 726 vdev_size = size; 727 } 728 } 729 730 /* 731 * At this point, we have the replication of the last toplevel 732 * vdev in 'rep'. Compare it to 'lastrep' to see if its 733 * different. 734 */ 735 if (lastrep.zprl_type != NULL) { 736 if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) { 737 if (ret != NULL) 738 free(ret); 739 ret = NULL; 740 if (fatal) 741 vdev_error(gettext( 742 "mismatched replication level: " 743 "both %s and %s vdevs are " 744 "present\n"), 745 lastrep.zprl_type, rep.zprl_type); 746 else 747 return (NULL); 748 } else if (lastrep.zprl_parity != rep.zprl_parity) { 749 if (ret) 750 free(ret); 751 ret = NULL; 752 if (fatal) 753 vdev_error(gettext( 754 "mismatched replication level: " 755 "both %llu and %llu device parity " 756 "%s vdevs are present\n"), 757 lastrep.zprl_parity, 758 rep.zprl_parity, 759 rep.zprl_type); 760 else 761 return (NULL); 762 } else if (lastrep.zprl_children != rep.zprl_children) { 763 if (ret) 764 free(ret); 765 ret = NULL; 766 if (fatal) 767 vdev_error(gettext( 768 "mismatched replication level: " 769 "both %llu-way and %llu-way %s " 770 "vdevs are present\n"), 771 lastrep.zprl_children, 772 rep.zprl_children, 773 rep.zprl_type); 774 else 775 return (NULL); 776 } 777 } 778 lastrep = rep; 779 } 780 781 if (ret != NULL) 782 *ret = rep; 783 784 return (ret); 785 } 786 787 /* 788 * Check the replication level of the vdev spec against the current pool. Calls 789 * get_replication() to make sure the new spec is self-consistent. If the pool 790 * has a consistent replication level, then we ignore any errors. Otherwise, 791 * report any difference between the two. 792 */ 793 static int 794 check_replication(nvlist_t *config, nvlist_t *newroot) 795 { 796 nvlist_t **child; 797 uint_t children; 798 replication_level_t *current = NULL, *new; 799 int ret; 800 801 /* 802 * If we have a current pool configuration, check to see if it's 803 * self-consistent. If not, simply return success. 804 */ 805 if (config != NULL) { 806 nvlist_t *nvroot; 807 808 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 809 &nvroot) == 0); 810 if ((current = get_replication(nvroot, B_FALSE)) == NULL) 811 return (0); 812 } 813 /* 814 * for spares there may be no children, and therefore no 815 * replication level to check 816 */ 817 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN, 818 &child, &children) != 0) || (children == 0)) { 819 free(current); 820 return (0); 821 } 822 823 /* 824 * If all we have is logs then there's no replication level to check. 825 */ 826 if (num_logs(newroot) == children) { 827 free(current); 828 return (0); 829 } 830 831 /* 832 * Get the replication level of the new vdev spec, reporting any 833 * inconsistencies found. 834 */ 835 if ((new = get_replication(newroot, B_TRUE)) == NULL) { 836 free(current); 837 return (-1); 838 } 839 840 /* 841 * Check to see if the new vdev spec matches the replication level of 842 * the current pool. 843 */ 844 ret = 0; 845 if (current != NULL) { 846 if (strcmp(current->zprl_type, new->zprl_type) != 0) { 847 vdev_error(gettext( 848 "mismatched replication level: pool uses %s " 849 "and new vdev is %s\n"), 850 current->zprl_type, new->zprl_type); 851 ret = -1; 852 } else if (current->zprl_parity != new->zprl_parity) { 853 vdev_error(gettext( 854 "mismatched replication level: pool uses %llu " 855 "device parity and new vdev uses %llu\n"), 856 current->zprl_parity, new->zprl_parity); 857 ret = -1; 858 } else if (current->zprl_children != new->zprl_children) { 859 vdev_error(gettext( 860 "mismatched replication level: pool uses %llu-way " 861 "%s and new vdev uses %llu-way %s\n"), 862 current->zprl_children, current->zprl_type, 863 new->zprl_children, new->zprl_type); 864 ret = -1; 865 } 866 } 867 868 free(new); 869 if (current != NULL) 870 free(current); 871 872 return (ret); 873 } 874 875 /* 876 * Go through and find any whole disks in the vdev specification, labelling them 877 * as appropriate. When constructing the vdev spec, we were unable to open this 878 * device in order to provide a devid. Now that we have labelled the disk and 879 * know that slice 0 is valid, we can construct the devid now. 880 * 881 * If the disk was already labeled with an EFI label, we will have gotten the 882 * devid already (because we were able to open the whole disk). Otherwise, we 883 * need to get the devid after we label the disk. 884 */ 885 static int 886 make_disks(zpool_handle_t *zhp, nvlist_t *nv) 887 { 888 nvlist_t **child; 889 uint_t c, children; 890 char *type, *path, *diskname; 891 char buf[MAXPATHLEN]; 892 uint64_t wholedisk; 893 int fd; 894 int ret; 895 ddi_devid_t devid; 896 char *minor = NULL, *devid_str = NULL; 897 898 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); 899 900 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 901 &child, &children) != 0) { 902 903 if (strcmp(type, VDEV_TYPE_DISK) != 0) 904 return (0); 905 906 /* 907 * We have a disk device. Get the path to the device 908 * and see if it's a whole disk by appending the backup 909 * slice and stat()ing the device. 910 */ 911 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0); 912 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 913 &wholedisk) != 0 || !wholedisk) 914 return (0); 915 916 diskname = strrchr(path, '/'); 917 assert(diskname != NULL); 918 diskname++; 919 if (zpool_label_disk(g_zfs, zhp, diskname) == -1) 920 return (-1); 921 922 /* 923 * Fill in the devid, now that we've labeled the disk. 924 */ 925 (void) snprintf(buf, sizeof (buf), "%ss0", path); 926 if ((fd = open(buf, O_RDONLY)) < 0) { 927 (void) fprintf(stderr, 928 gettext("cannot open '%s': %s\n"), 929 buf, strerror(errno)); 930 return (-1); 931 } 932 933 if (devid_get(fd, &devid) == 0) { 934 if (devid_get_minor_name(fd, &minor) == 0 && 935 (devid_str = devid_str_encode(devid, minor)) != 936 NULL) { 937 verify(nvlist_add_string(nv, 938 ZPOOL_CONFIG_DEVID, devid_str) == 0); 939 } 940 if (devid_str != NULL) 941 devid_str_free(devid_str); 942 if (minor != NULL) 943 devid_str_free(minor); 944 devid_free(devid); 945 } 946 947 /* 948 * Update the path to refer to the 's0' slice. The presence of 949 * the 'whole_disk' field indicates to the CLI that we should 950 * chop off the slice number when displaying the device in 951 * future output. 952 */ 953 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0); 954 955 (void) close(fd); 956 957 return (0); 958 } 959 960 for (c = 0; c < children; c++) 961 if ((ret = make_disks(zhp, child[c])) != 0) 962 return (ret); 963 964 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, 965 &child, &children) == 0) 966 for (c = 0; c < children; c++) 967 if ((ret = make_disks(zhp, child[c])) != 0) 968 return (ret); 969 970 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, 971 &child, &children) == 0) 972 for (c = 0; c < children; c++) 973 if ((ret = make_disks(zhp, child[c])) != 0) 974 return (ret); 975 976 return (0); 977 } 978 979 /* 980 * Determine if the given path is a hot spare within the given configuration. 981 */ 982 static boolean_t 983 is_spare(nvlist_t *config, const char *path) 984 { 985 int fd; 986 pool_state_t state; 987 char *name = NULL; 988 nvlist_t *label; 989 uint64_t guid, spareguid; 990 nvlist_t *nvroot; 991 nvlist_t **spares; 992 uint_t i, nspares; 993 boolean_t inuse; 994 995 if ((fd = open(path, O_RDONLY)) < 0) 996 return (B_FALSE); 997 998 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 || 999 !inuse || 1000 state != POOL_STATE_SPARE || 1001 zpool_read_label(fd, &label) != 0) { 1002 free(name); 1003 (void) close(fd); 1004 return (B_FALSE); 1005 } 1006 free(name); 1007 (void) close(fd); 1008 1009 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0); 1010 nvlist_free(label); 1011 1012 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 1013 &nvroot) == 0); 1014 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1015 &spares, &nspares) == 0) { 1016 for (i = 0; i < nspares; i++) { 1017 verify(nvlist_lookup_uint64(spares[i], 1018 ZPOOL_CONFIG_GUID, &spareguid) == 0); 1019 if (spareguid == guid) 1020 return (B_TRUE); 1021 } 1022 } 1023 1024 return (B_FALSE); 1025 } 1026 1027 /* 1028 * Go through and find any devices that are in use. We rely on libdiskmgt for 1029 * the majority of this task. 1030 */ 1031 static boolean_t 1032 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force, 1033 boolean_t replacing, boolean_t isspare) 1034 { 1035 nvlist_t **child; 1036 uint_t c, children; 1037 char *type, *path; 1038 int ret = 0; 1039 char buf[MAXPATHLEN]; 1040 uint64_t wholedisk; 1041 boolean_t anyinuse = B_FALSE; 1042 1043 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); 1044 1045 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1046 &child, &children) != 0) { 1047 1048 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0); 1049 1050 /* 1051 * As a generic check, we look to see if this is a replace of a 1052 * hot spare within the same pool. If so, we allow it 1053 * regardless of what libdiskmgt or zpool_in_use() says. 1054 */ 1055 if (replacing) { 1056 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 1057 &wholedisk) == 0 && wholedisk) 1058 (void) snprintf(buf, sizeof (buf), "%ss0", 1059 path); 1060 else 1061 (void) strlcpy(buf, path, sizeof (buf)); 1062 1063 if (is_spare(config, buf)) 1064 return (B_FALSE); 1065 } 1066 1067 if (strcmp(type, VDEV_TYPE_DISK) == 0) 1068 ret = check_device(path, force, isspare); 1069 else if (strcmp(type, VDEV_TYPE_FILE) == 0) 1070 ret = check_file(path, force, isspare); 1071 1072 return (ret != 0); 1073 } 1074 1075 for (c = 0; c < children; c++) 1076 if (is_device_in_use(config, child[c], force, replacing, 1077 B_FALSE)) 1078 anyinuse = B_TRUE; 1079 1080 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, 1081 &child, &children) == 0) 1082 for (c = 0; c < children; c++) 1083 if (is_device_in_use(config, child[c], force, replacing, 1084 B_TRUE)) 1085 anyinuse = B_TRUE; 1086 1087 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, 1088 &child, &children) == 0) 1089 for (c = 0; c < children; c++) 1090 if (is_device_in_use(config, child[c], force, replacing, 1091 B_FALSE)) 1092 anyinuse = B_TRUE; 1093 1094 return (anyinuse); 1095 } 1096 1097 static const char * 1098 is_grouping(const char *type, int *mindev, int *maxdev) 1099 { 1100 if (strncmp(type, "raidz", 5) == 0) { 1101 const char *p = type + 5; 1102 char *end; 1103 long nparity; 1104 1105 if (*p == '\0') { 1106 nparity = 1; 1107 } else if (*p == '0') { 1108 return (NULL); /* no zero prefixes allowed */ 1109 } else { 1110 errno = 0; 1111 nparity = strtol(p, &end, 10); 1112 if (errno != 0 || nparity < 1 || nparity >= 255 || 1113 *end != '\0') 1114 return (NULL); 1115 } 1116 1117 if (mindev != NULL) 1118 *mindev = nparity + 1; 1119 if (maxdev != NULL) 1120 *maxdev = 255; 1121 return (VDEV_TYPE_RAIDZ); 1122 } 1123 1124 if (maxdev != NULL) 1125 *maxdev = INT_MAX; 1126 1127 if (strcmp(type, "mirror") == 0) { 1128 if (mindev != NULL) 1129 *mindev = 2; 1130 return (VDEV_TYPE_MIRROR); 1131 } 1132 1133 if (strcmp(type, "spare") == 0) { 1134 if (mindev != NULL) 1135 *mindev = 1; 1136 return (VDEV_TYPE_SPARE); 1137 } 1138 1139 if (strcmp(type, "log") == 0) { 1140 if (mindev != NULL) 1141 *mindev = 1; 1142 return (VDEV_TYPE_LOG); 1143 } 1144 1145 if (strcmp(type, "cache") == 0) { 1146 if (mindev != NULL) 1147 *mindev = 1; 1148 return (VDEV_TYPE_L2CACHE); 1149 } 1150 1151 return (NULL); 1152 } 1153 1154 /* 1155 * Construct a syntactically valid vdev specification, 1156 * and ensure that all devices and files exist and can be opened. 1157 * Note: we don't bother freeing anything in the error paths 1158 * because the program is just going to exit anyway. 1159 */ 1160 nvlist_t * 1161 construct_spec(int argc, char **argv) 1162 { 1163 nvlist_t *nvroot, *nv, **top, **spares, **l2cache; 1164 int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache; 1165 const char *type; 1166 uint64_t is_log; 1167 boolean_t seen_logs; 1168 1169 top = NULL; 1170 toplevels = 0; 1171 spares = NULL; 1172 l2cache = NULL; 1173 nspares = 0; 1174 nlogs = 0; 1175 nl2cache = 0; 1176 is_log = B_FALSE; 1177 seen_logs = B_FALSE; 1178 1179 while (argc > 0) { 1180 nv = NULL; 1181 1182 /* 1183 * If it's a mirror or raidz, the subsequent arguments are 1184 * its leaves -- until we encounter the next mirror or raidz. 1185 */ 1186 if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) { 1187 nvlist_t **child = NULL; 1188 int c, children = 0; 1189 1190 if (strcmp(type, VDEV_TYPE_SPARE) == 0) { 1191 if (spares != NULL) { 1192 (void) fprintf(stderr, 1193 gettext("invalid vdev " 1194 "specification: 'spare' can be " 1195 "specified only once\n")); 1196 return (NULL); 1197 } 1198 is_log = B_FALSE; 1199 } 1200 1201 if (strcmp(type, VDEV_TYPE_LOG) == 0) { 1202 if (seen_logs) { 1203 (void) fprintf(stderr, 1204 gettext("invalid vdev " 1205 "specification: 'log' can be " 1206 "specified only once\n")); 1207 return (NULL); 1208 } 1209 seen_logs = B_TRUE; 1210 is_log = B_TRUE; 1211 argc--; 1212 argv++; 1213 /* 1214 * A log is not a real grouping device. 1215 * We just set is_log and continue. 1216 */ 1217 continue; 1218 } 1219 1220 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) { 1221 if (l2cache != NULL) { 1222 (void) fprintf(stderr, 1223 gettext("invalid vdev " 1224 "specification: 'cache' can be " 1225 "specified only once\n")); 1226 return (NULL); 1227 } 1228 is_log = B_FALSE; 1229 } 1230 1231 if (is_log) { 1232 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) { 1233 (void) fprintf(stderr, 1234 gettext("invalid vdev " 1235 "specification: unsupported 'log' " 1236 "device: %s\n"), type); 1237 return (NULL); 1238 } 1239 nlogs++; 1240 } 1241 1242 for (c = 1; c < argc; c++) { 1243 if (is_grouping(argv[c], NULL, NULL) != NULL) 1244 break; 1245 children++; 1246 child = realloc(child, 1247 children * sizeof (nvlist_t *)); 1248 if (child == NULL) 1249 zpool_no_memory(); 1250 if ((nv = make_leaf_vdev(argv[c], B_FALSE)) 1251 == NULL) 1252 return (NULL); 1253 child[children - 1] = nv; 1254 } 1255 1256 if (children < mindev) { 1257 (void) fprintf(stderr, gettext("invalid vdev " 1258 "specification: %s requires at least %d " 1259 "devices\n"), argv[0], mindev); 1260 return (NULL); 1261 } 1262 1263 if (children > maxdev) { 1264 (void) fprintf(stderr, gettext("invalid vdev " 1265 "specification: %s supports no more than " 1266 "%d devices\n"), argv[0], maxdev); 1267 return (NULL); 1268 } 1269 1270 argc -= c; 1271 argv += c; 1272 1273 if (strcmp(type, VDEV_TYPE_SPARE) == 0) { 1274 spares = child; 1275 nspares = children; 1276 continue; 1277 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) { 1278 l2cache = child; 1279 nl2cache = children; 1280 continue; 1281 } else { 1282 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME, 1283 0) == 0); 1284 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 1285 type) == 0); 1286 verify(nvlist_add_uint64(nv, 1287 ZPOOL_CONFIG_IS_LOG, is_log) == 0); 1288 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) { 1289 verify(nvlist_add_uint64(nv, 1290 ZPOOL_CONFIG_NPARITY, 1291 mindev - 1) == 0); 1292 } 1293 verify(nvlist_add_nvlist_array(nv, 1294 ZPOOL_CONFIG_CHILDREN, child, 1295 children) == 0); 1296 1297 for (c = 0; c < children; c++) 1298 nvlist_free(child[c]); 1299 free(child); 1300 } 1301 } else { 1302 /* 1303 * We have a device. Pass off to make_leaf_vdev() to 1304 * construct the appropriate nvlist describing the vdev. 1305 */ 1306 if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL) 1307 return (NULL); 1308 if (is_log) 1309 nlogs++; 1310 argc--; 1311 argv++; 1312 } 1313 1314 toplevels++; 1315 top = realloc(top, toplevels * sizeof (nvlist_t *)); 1316 if (top == NULL) 1317 zpool_no_memory(); 1318 top[toplevels - 1] = nv; 1319 } 1320 1321 if (toplevels == 0 && nspares == 0 && nl2cache == 0) { 1322 (void) fprintf(stderr, gettext("invalid vdev " 1323 "specification: at least one toplevel vdev must be " 1324 "specified\n")); 1325 return (NULL); 1326 } 1327 1328 if (seen_logs && nlogs == 0) { 1329 (void) fprintf(stderr, gettext("invalid vdev specification: " 1330 "log requires at least 1 device\n")); 1331 return (NULL); 1332 } 1333 1334 /* 1335 * Finally, create nvroot and add all top-level vdevs to it. 1336 */ 1337 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0); 1338 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 1339 VDEV_TYPE_ROOT) == 0); 1340 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 1341 top, toplevels) == 0); 1342 if (nspares != 0) 1343 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1344 spares, nspares) == 0); 1345 if (nl2cache != 0) 1346 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 1347 l2cache, nl2cache) == 0); 1348 1349 for (t = 0; t < toplevels; t++) 1350 nvlist_free(top[t]); 1351 for (t = 0; t < nspares; t++) 1352 nvlist_free(spares[t]); 1353 for (t = 0; t < nl2cache; t++) 1354 nvlist_free(l2cache[t]); 1355 if (spares) 1356 free(spares); 1357 if (l2cache) 1358 free(l2cache); 1359 free(top); 1360 1361 return (nvroot); 1362 } 1363 1364 nvlist_t * 1365 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props, 1366 splitflags_t flags, int argc, char **argv) 1367 { 1368 nvlist_t *newroot = NULL, **child; 1369 uint_t c, children; 1370 1371 if (argc > 0) { 1372 if ((newroot = construct_spec(argc, argv)) == NULL) { 1373 (void) fprintf(stderr, gettext("Unable to build a " 1374 "pool from the specified devices\n")); 1375 return (NULL); 1376 } 1377 1378 if (!flags.dryrun && make_disks(zhp, newroot) != 0) { 1379 nvlist_free(newroot); 1380 return (NULL); 1381 } 1382 1383 /* avoid any tricks in the spec */ 1384 verify(nvlist_lookup_nvlist_array(newroot, 1385 ZPOOL_CONFIG_CHILDREN, &child, &children) == 0); 1386 for (c = 0; c < children; c++) { 1387 char *path; 1388 const char *type; 1389 int min, max; 1390 1391 verify(nvlist_lookup_string(child[c], 1392 ZPOOL_CONFIG_PATH, &path) == 0); 1393 if ((type = is_grouping(path, &min, &max)) != NULL) { 1394 (void) fprintf(stderr, gettext("Cannot use " 1395 "'%s' as a device for splitting\n"), type); 1396 nvlist_free(newroot); 1397 return (NULL); 1398 } 1399 } 1400 } 1401 1402 if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) { 1403 nvlist_free(newroot); 1404 return (NULL); 1405 } 1406 1407 return (newroot); 1408 } 1409 1410 /* 1411 * Get and validate the contents of the given vdev specification. This ensures 1412 * that the nvlist returned is well-formed, that all the devices exist, and that 1413 * they are not currently in use by any other known consumer. The 'poolconfig' 1414 * parameter is the current configuration of the pool when adding devices 1415 * existing pool, and is used to perform additional checks, such as changing the 1416 * replication level of the pool. It can be 'NULL' to indicate that this is a 1417 * new pool. The 'force' flag controls whether devices should be forcefully 1418 * added, even if they appear in use. 1419 */ 1420 nvlist_t * 1421 make_root_vdev(zpool_handle_t *zhp, int force, int check_rep, 1422 boolean_t replacing, boolean_t dryrun, int argc, char **argv) 1423 { 1424 nvlist_t *newroot; 1425 nvlist_t *poolconfig = NULL; 1426 is_force = force; 1427 1428 /* 1429 * Construct the vdev specification. If this is successful, we know 1430 * that we have a valid specification, and that all devices can be 1431 * opened. 1432 */ 1433 if ((newroot = construct_spec(argc, argv)) == NULL) 1434 return (NULL); 1435 1436 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) 1437 return (NULL); 1438 1439 /* 1440 * Validate each device to make sure that its not shared with another 1441 * subsystem. We do this even if 'force' is set, because there are some 1442 * uses (such as a dedicated dump device) that even '-f' cannot 1443 * override. 1444 */ 1445 if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) { 1446 nvlist_free(newroot); 1447 return (NULL); 1448 } 1449 1450 /* 1451 * Check the replication level of the given vdevs and report any errors 1452 * found. We include the existing pool spec, if any, as we need to 1453 * catch changes against the existing replication level. 1454 */ 1455 if (check_rep && check_replication(poolconfig, newroot) != 0) { 1456 nvlist_free(newroot); 1457 return (NULL); 1458 } 1459 1460 /* 1461 * Run through the vdev specification and label any whole disks found. 1462 */ 1463 if (!dryrun && make_disks(zhp, newroot) != 0) { 1464 nvlist_free(newroot); 1465 return (NULL); 1466 } 1467 1468 return (newroot); 1469 } 1470