1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <libintl.h> 27 #include <libuutil.h> 28 #include <stddef.h> 29 #include <stdio.h> 30 #include <stdlib.h> 31 #include <strings.h> 32 33 #include <libzfs.h> 34 35 #include "zfs_util.h" 36 #include "zfs_iter.h" 37 38 /* 39 * This is a private interface used to gather up all the datasets specified on 40 * the command line so that we can iterate over them in order. 41 * 42 * First, we iterate over all filesystems, gathering them together into an 43 * AVL tree. We report errors for any explicitly specified datasets 44 * that we couldn't open. 45 * 46 * When finished, we have an AVL tree of ZFS handles. We go through and execute 47 * the provided callback for each one, passing whatever data the user supplied. 48 */ 49 50 typedef struct zfs_node { 51 zfs_handle_t *zn_handle; 52 uu_avl_node_t zn_avlnode; 53 } zfs_node_t; 54 55 typedef struct callback_data { 56 uu_avl_t *cb_avl; 57 int cb_flags; 58 zfs_type_t cb_types; 59 zfs_sort_column_t *cb_sortcol; 60 zprop_list_t **cb_proplist; 61 } callback_data_t; 62 63 uu_avl_pool_t *avl_pool; 64 65 /* 66 * Include snaps if they were requested or if this a zfs list where types 67 * were not specified and the "listsnapshots" property is set on this pool. 68 */ 69 static int 70 zfs_include_snapshots(zfs_handle_t *zhp, callback_data_t *cb) 71 { 72 zpool_handle_t *zph; 73 74 if ((cb->cb_flags & ZFS_ITER_PROP_LISTSNAPS) == 0) 75 return (cb->cb_types & ZFS_TYPE_SNAPSHOT); 76 77 zph = zfs_get_pool_handle(zhp); 78 return (zpool_get_prop_int(zph, ZPOOL_PROP_LISTSNAPS, NULL)); 79 } 80 81 /* 82 * Called for each dataset. If the object is of an appropriate type, 83 * add it to the avl tree and recurse over any children as necessary. 84 */ 85 static int 86 zfs_callback(zfs_handle_t *zhp, void *data) 87 { 88 callback_data_t *cb = data; 89 int dontclose = 0; 90 int include_snaps = zfs_include_snapshots(zhp, cb); 91 92 if ((zfs_get_type(zhp) & cb->cb_types) || 93 ((zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT) && include_snaps)) { 94 uu_avl_index_t idx; 95 zfs_node_t *node = safe_malloc(sizeof (zfs_node_t)); 96 97 node->zn_handle = zhp; 98 uu_avl_node_init(node, &node->zn_avlnode, avl_pool); 99 if (uu_avl_find(cb->cb_avl, node, cb->cb_sortcol, 100 &idx) == NULL) { 101 if (cb->cb_proplist && 102 zfs_expand_proplist(zhp, cb->cb_proplist) != 0) { 103 free(node); 104 return (-1); 105 } 106 uu_avl_insert(cb->cb_avl, node, idx); 107 dontclose = 1; 108 } else { 109 free(node); 110 } 111 } 112 113 /* 114 * Recurse if necessary. 115 */ 116 if (cb->cb_flags & ZFS_ITER_RECURSE) { 117 if (zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) 118 (void) zfs_iter_filesystems(zhp, zfs_callback, data); 119 if ((zfs_get_type(zhp) != ZFS_TYPE_SNAPSHOT) && include_snaps) 120 (void) zfs_iter_snapshots(zhp, zfs_callback, data); 121 } 122 123 if (!dontclose) 124 zfs_close(zhp); 125 126 return (0); 127 } 128 129 int 130 zfs_add_sort_column(zfs_sort_column_t **sc, const char *name, 131 boolean_t reverse) 132 { 133 zfs_sort_column_t *col; 134 zfs_prop_t prop; 135 136 if ((prop = zfs_name_to_prop(name)) == ZPROP_INVAL && 137 !zfs_prop_user(name)) 138 return (-1); 139 140 col = safe_malloc(sizeof (zfs_sort_column_t)); 141 142 col->sc_prop = prop; 143 col->sc_reverse = reverse; 144 if (prop == ZPROP_INVAL) { 145 col->sc_user_prop = safe_malloc(strlen(name) + 1); 146 (void) strcpy(col->sc_user_prop, name); 147 } 148 149 if (*sc == NULL) { 150 col->sc_last = col; 151 *sc = col; 152 } else { 153 (*sc)->sc_last->sc_next = col; 154 (*sc)->sc_last = col; 155 } 156 157 return (0); 158 } 159 160 void 161 zfs_free_sort_columns(zfs_sort_column_t *sc) 162 { 163 zfs_sort_column_t *col; 164 165 while (sc != NULL) { 166 col = sc->sc_next; 167 free(sc->sc_user_prop); 168 free(sc); 169 sc = col; 170 } 171 } 172 173 /* ARGSUSED */ 174 static int 175 zfs_compare(const void *larg, const void *rarg, void *unused) 176 { 177 zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle; 178 zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle; 179 const char *lname = zfs_get_name(l); 180 const char *rname = zfs_get_name(r); 181 char *lat, *rat; 182 uint64_t lcreate, rcreate; 183 int ret; 184 185 lat = (char *)strchr(lname, '@'); 186 rat = (char *)strchr(rname, '@'); 187 188 if (lat != NULL) 189 *lat = '\0'; 190 if (rat != NULL) 191 *rat = '\0'; 192 193 ret = strcmp(lname, rname); 194 if (ret == 0) { 195 /* 196 * If we're comparing a dataset to one of its snapshots, we 197 * always make the full dataset first. 198 */ 199 if (lat == NULL) { 200 ret = -1; 201 } else if (rat == NULL) { 202 ret = 1; 203 } else { 204 /* 205 * If we have two snapshots from the same dataset, then 206 * we want to sort them according to creation time. We 207 * use the hidden CREATETXG property to get an absolute 208 * ordering of snapshots. 209 */ 210 lcreate = zfs_prop_get_int(l, ZFS_PROP_CREATETXG); 211 rcreate = zfs_prop_get_int(r, ZFS_PROP_CREATETXG); 212 213 if (lcreate < rcreate) 214 ret = -1; 215 else if (lcreate > rcreate) 216 ret = 1; 217 } 218 } 219 220 if (lat != NULL) 221 *lat = '@'; 222 if (rat != NULL) 223 *rat = '@'; 224 225 return (ret); 226 } 227 228 /* 229 * Sort datasets by specified columns. 230 * 231 * o Numeric types sort in ascending order. 232 * o String types sort in alphabetical order. 233 * o Types inappropriate for a row sort that row to the literal 234 * bottom, regardless of the specified ordering. 235 * 236 * If no sort columns are specified, or two datasets compare equally 237 * across all specified columns, they are sorted alphabetically by name 238 * with snapshots grouped under their parents. 239 */ 240 static int 241 zfs_sort(const void *larg, const void *rarg, void *data) 242 { 243 zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle; 244 zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle; 245 zfs_sort_column_t *sc = (zfs_sort_column_t *)data; 246 zfs_sort_column_t *psc; 247 248 for (psc = sc; psc != NULL; psc = psc->sc_next) { 249 char lbuf[ZFS_MAXPROPLEN], rbuf[ZFS_MAXPROPLEN]; 250 char *lstr, *rstr; 251 uint64_t lnum, rnum; 252 boolean_t lvalid, rvalid; 253 int ret = 0; 254 255 /* 256 * We group the checks below the generic code. If 'lstr' and 257 * 'rstr' are non-NULL, then we do a string based comparison. 258 * Otherwise, we compare 'lnum' and 'rnum'. 259 */ 260 lstr = rstr = NULL; 261 if (psc->sc_prop == ZPROP_INVAL) { 262 nvlist_t *luser, *ruser; 263 nvlist_t *lval, *rval; 264 265 luser = zfs_get_user_props(l); 266 ruser = zfs_get_user_props(r); 267 268 lvalid = (nvlist_lookup_nvlist(luser, 269 psc->sc_user_prop, &lval) == 0); 270 rvalid = (nvlist_lookup_nvlist(ruser, 271 psc->sc_user_prop, &rval) == 0); 272 273 if (lvalid) 274 verify(nvlist_lookup_string(lval, 275 ZPROP_VALUE, &lstr) == 0); 276 if (rvalid) 277 verify(nvlist_lookup_string(rval, 278 ZPROP_VALUE, &rstr) == 0); 279 280 } else if (zfs_prop_is_string(psc->sc_prop)) { 281 lvalid = (zfs_prop_get(l, psc->sc_prop, lbuf, 282 sizeof (lbuf), NULL, NULL, 0, B_TRUE) == 0); 283 rvalid = (zfs_prop_get(r, psc->sc_prop, rbuf, 284 sizeof (rbuf), NULL, NULL, 0, B_TRUE) == 0); 285 286 lstr = lbuf; 287 rstr = rbuf; 288 } else { 289 lvalid = zfs_prop_valid_for_type(psc->sc_prop, 290 zfs_get_type(l)); 291 rvalid = zfs_prop_valid_for_type(psc->sc_prop, 292 zfs_get_type(r)); 293 294 if (lvalid) 295 (void) zfs_prop_get_numeric(l, psc->sc_prop, 296 &lnum, NULL, NULL, 0); 297 if (rvalid) 298 (void) zfs_prop_get_numeric(r, psc->sc_prop, 299 &rnum, NULL, NULL, 0); 300 } 301 302 if (!lvalid && !rvalid) 303 continue; 304 else if (!lvalid) 305 return (1); 306 else if (!rvalid) 307 return (-1); 308 309 if (lstr) 310 ret = strcmp(lstr, rstr); 311 else if (lnum < rnum) 312 ret = -1; 313 else if (lnum > rnum) 314 ret = 1; 315 316 if (ret != 0) { 317 if (psc->sc_reverse == B_TRUE) 318 ret = (ret < 0) ? 1 : -1; 319 return (ret); 320 } 321 } 322 323 return (zfs_compare(larg, rarg, NULL)); 324 } 325 326 int 327 zfs_for_each(int argc, char **argv, int flags, zfs_type_t types, 328 zfs_sort_column_t *sortcol, zprop_list_t **proplist, 329 zfs_iter_f callback, void *data) 330 { 331 callback_data_t cb; 332 int ret = 0; 333 zfs_node_t *node; 334 uu_avl_walk_t *walk; 335 336 avl_pool = uu_avl_pool_create("zfs_pool", sizeof (zfs_node_t), 337 offsetof(zfs_node_t, zn_avlnode), zfs_sort, UU_DEFAULT); 338 339 if (avl_pool == NULL) { 340 (void) fprintf(stderr, 341 gettext("internal error: out of memory\n")); 342 exit(1); 343 } 344 345 cb.cb_sortcol = sortcol; 346 cb.cb_flags = flags; 347 cb.cb_proplist = proplist; 348 cb.cb_types = types; 349 if ((cb.cb_avl = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL) { 350 (void) fprintf(stderr, 351 gettext("internal error: out of memory\n")); 352 exit(1); 353 } 354 355 if (argc == 0) { 356 /* 357 * If given no arguments, iterate over all datasets. 358 */ 359 cb.cb_flags |= ZFS_ITER_RECURSE; 360 ret = zfs_iter_root(g_zfs, zfs_callback, &cb); 361 } else { 362 int i; 363 zfs_handle_t *zhp; 364 zfs_type_t argtype; 365 366 /* 367 * If we're recursive, then we always allow filesystems as 368 * arguments. If we also are interested in snapshots, then we 369 * can take volumes as well. 370 */ 371 argtype = types; 372 if (flags & ZFS_ITER_RECURSE) { 373 argtype |= ZFS_TYPE_FILESYSTEM; 374 if (types & ZFS_TYPE_SNAPSHOT) 375 argtype |= ZFS_TYPE_VOLUME; 376 } 377 378 for (i = 0; i < argc; i++) { 379 if (flags & ZFS_ITER_ARGS_CAN_BE_PATHS) { 380 zhp = zfs_path_to_zhandle(g_zfs, argv[i], 381 argtype); 382 } else { 383 zhp = zfs_open(g_zfs, argv[i], argtype); 384 } 385 if (zhp != NULL) 386 ret |= zfs_callback(zhp, &cb); 387 else 388 ret = 1; 389 } 390 } 391 392 /* 393 * At this point we've got our AVL tree full of zfs handles, so iterate 394 * over each one and execute the real user callback. 395 */ 396 for (node = uu_avl_first(cb.cb_avl); node != NULL; 397 node = uu_avl_next(cb.cb_avl, node)) 398 ret |= callback(node->zn_handle, data); 399 400 /* 401 * Finally, clean up the AVL tree. 402 */ 403 if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL) { 404 (void) fprintf(stderr, 405 gettext("internal error: out of memory")); 406 exit(1); 407 } 408 409 while ((node = uu_avl_walk_next(walk)) != NULL) { 410 uu_avl_remove(cb.cb_avl, node); 411 zfs_close(node->zn_handle); 412 free(node); 413 } 414 415 uu_avl_walk_end(walk); 416 uu_avl_destroy(cb.cb_avl); 417 uu_avl_pool_destroy(avl_pool); 418 419 return (ret); 420 } 421