1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012 Pawel Jakub Dawidek. All rights reserved. 25 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2013 by Delphix. All rights reserved. 27 */ 28 29 #include <libintl.h> 30 #include <libuutil.h> 31 #include <stddef.h> 32 #include <stdio.h> 33 #include <stdlib.h> 34 #include <strings.h> 35 36 #include <libzfs.h> 37 38 #include "zfs_util.h" 39 #include "zfs_iter.h" 40 41 /* 42 * This is a private interface used to gather up all the datasets specified on 43 * the command line so that we can iterate over them in order. 44 * 45 * First, we iterate over all filesystems, gathering them together into an 46 * AVL tree. We report errors for any explicitly specified datasets 47 * that we couldn't open. 48 * 49 * When finished, we have an AVL tree of ZFS handles. We go through and execute 50 * the provided callback for each one, passing whatever data the user supplied. 51 */ 52 53 typedef struct zfs_node { 54 zfs_handle_t *zn_handle; 55 uu_avl_node_t zn_avlnode; 56 } zfs_node_t; 57 58 typedef struct callback_data { 59 uu_avl_t *cb_avl; 60 int cb_flags; 61 zfs_type_t cb_types; 62 zfs_sort_column_t *cb_sortcol; 63 zprop_list_t **cb_proplist; 64 int cb_depth_limit; 65 int cb_depth; 66 uint8_t cb_props_table[ZFS_NUM_PROPS]; 67 } callback_data_t; 68 69 uu_avl_pool_t *avl_pool; 70 71 /* 72 * Include snaps if they were requested or if this a zfs list where types 73 * were not specified and the "listsnapshots" property is set on this pool. 74 */ 75 static boolean_t 76 zfs_include_snapshots(zfs_handle_t *zhp, callback_data_t *cb) 77 { 78 zpool_handle_t *zph; 79 80 if ((cb->cb_flags & ZFS_ITER_PROP_LISTSNAPS) == 0) 81 return (cb->cb_types & ZFS_TYPE_SNAPSHOT); 82 83 zph = zfs_get_pool_handle(zhp); 84 return (zpool_get_prop_int(zph, ZPOOL_PROP_LISTSNAPS, NULL)); 85 } 86 87 /* 88 * Called for each dataset. If the object is of an appropriate type, 89 * add it to the avl tree and recurse over any children as necessary. 90 */ 91 static int 92 zfs_callback(zfs_handle_t *zhp, void *data) 93 { 94 callback_data_t *cb = data; 95 boolean_t should_close = B_TRUE; 96 boolean_t include_snaps = zfs_include_snapshots(zhp, cb); 97 boolean_t include_bmarks = (cb->cb_types & ZFS_TYPE_BOOKMARK); 98 99 if ((zfs_get_type(zhp) & cb->cb_types) || 100 ((zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT) && include_snaps)) { 101 uu_avl_index_t idx; 102 zfs_node_t *node = safe_malloc(sizeof (zfs_node_t)); 103 104 node->zn_handle = zhp; 105 uu_avl_node_init(node, &node->zn_avlnode, avl_pool); 106 if (uu_avl_find(cb->cb_avl, node, cb->cb_sortcol, 107 &idx) == NULL) { 108 if (cb->cb_proplist) { 109 if ((*cb->cb_proplist) && 110 !(*cb->cb_proplist)->pl_all) 111 zfs_prune_proplist(zhp, 112 cb->cb_props_table); 113 114 if (zfs_expand_proplist(zhp, cb->cb_proplist, 115 (cb->cb_flags & ZFS_ITER_RECVD_PROPS), 116 (cb->cb_flags & ZFS_ITER_LITERAL_PROPS)) 117 != 0) { 118 free(node); 119 return (-1); 120 } 121 } 122 uu_avl_insert(cb->cb_avl, node, idx); 123 should_close = B_FALSE; 124 } else { 125 free(node); 126 } 127 } 128 129 /* 130 * Recurse if necessary. 131 */ 132 if (cb->cb_flags & ZFS_ITER_RECURSE && 133 ((cb->cb_flags & ZFS_ITER_DEPTH_LIMIT) == 0 || 134 cb->cb_depth < cb->cb_depth_limit)) { 135 cb->cb_depth++; 136 if (zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) 137 (void) zfs_iter_filesystems(zhp, zfs_callback, data); 138 if (((zfs_get_type(zhp) & (ZFS_TYPE_SNAPSHOT | 139 ZFS_TYPE_BOOKMARK)) == 0) && include_snaps) 140 (void) zfs_iter_snapshots(zhp, 141 (cb->cb_flags & ZFS_ITER_SIMPLE) != 0, zfs_callback, 142 data); 143 if (((zfs_get_type(zhp) & (ZFS_TYPE_SNAPSHOT | 144 ZFS_TYPE_BOOKMARK)) == 0) && include_bmarks) 145 (void) zfs_iter_bookmarks(zhp, zfs_callback, data); 146 cb->cb_depth--; 147 } 148 149 if (should_close) 150 zfs_close(zhp); 151 152 return (0); 153 } 154 155 int 156 zfs_add_sort_column(zfs_sort_column_t **sc, const char *name, 157 boolean_t reverse) 158 { 159 zfs_sort_column_t *col; 160 zfs_prop_t prop; 161 162 if ((prop = zfs_name_to_prop(name)) == ZPROP_INVAL && 163 !zfs_prop_user(name)) 164 return (-1); 165 166 col = safe_malloc(sizeof (zfs_sort_column_t)); 167 168 col->sc_prop = prop; 169 col->sc_reverse = reverse; 170 if (prop == ZPROP_INVAL) { 171 col->sc_user_prop = safe_malloc(strlen(name) + 1); 172 (void) strcpy(col->sc_user_prop, name); 173 } 174 175 if (*sc == NULL) { 176 col->sc_last = col; 177 *sc = col; 178 } else { 179 (*sc)->sc_last->sc_next = col; 180 (*sc)->sc_last = col; 181 } 182 183 return (0); 184 } 185 186 void 187 zfs_free_sort_columns(zfs_sort_column_t *sc) 188 { 189 zfs_sort_column_t *col; 190 191 while (sc != NULL) { 192 col = sc->sc_next; 193 free(sc->sc_user_prop); 194 free(sc); 195 sc = col; 196 } 197 } 198 199 boolean_t 200 zfs_sort_only_by_name(const zfs_sort_column_t *sc) 201 { 202 203 return (sc != NULL && sc->sc_next == NULL && 204 sc->sc_prop == ZFS_PROP_NAME); 205 } 206 207 /* ARGSUSED */ 208 static int 209 zfs_compare(const void *larg, const void *rarg, void *unused) 210 { 211 zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle; 212 zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle; 213 const char *lname = zfs_get_name(l); 214 const char *rname = zfs_get_name(r); 215 char *lat, *rat; 216 uint64_t lcreate, rcreate; 217 int ret; 218 219 lat = (char *)strchr(lname, '@'); 220 rat = (char *)strchr(rname, '@'); 221 222 if (lat != NULL) 223 *lat = '\0'; 224 if (rat != NULL) 225 *rat = '\0'; 226 227 ret = strcmp(lname, rname); 228 if (ret == 0) { 229 /* 230 * If we're comparing a dataset to one of its snapshots, we 231 * always make the full dataset first. 232 */ 233 if (lat == NULL) { 234 ret = -1; 235 } else if (rat == NULL) { 236 ret = 1; 237 } else { 238 /* 239 * If we have two snapshots from the same dataset, then 240 * we want to sort them according to creation time. We 241 * use the hidden CREATETXG property to get an absolute 242 * ordering of snapshots. 243 */ 244 lcreate = zfs_prop_get_int(l, ZFS_PROP_CREATETXG); 245 rcreate = zfs_prop_get_int(r, ZFS_PROP_CREATETXG); 246 247 /* 248 * Both lcreate and rcreate being 0 means we don't have 249 * properties and we should compare full name. 250 */ 251 if (lcreate == 0 && rcreate == 0) 252 ret = strcmp(lat + 1, rat + 1); 253 else if (lcreate < rcreate) 254 ret = -1; 255 else if (lcreate > rcreate) 256 ret = 1; 257 } 258 } 259 260 if (lat != NULL) 261 *lat = '@'; 262 if (rat != NULL) 263 *rat = '@'; 264 265 return (ret); 266 } 267 268 /* 269 * Sort datasets by specified columns. 270 * 271 * o Numeric types sort in ascending order. 272 * o String types sort in alphabetical order. 273 * o Types inappropriate for a row sort that row to the literal 274 * bottom, regardless of the specified ordering. 275 * 276 * If no sort columns are specified, or two datasets compare equally 277 * across all specified columns, they are sorted alphabetically by name 278 * with snapshots grouped under their parents. 279 */ 280 static int 281 zfs_sort(const void *larg, const void *rarg, void *data) 282 { 283 zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle; 284 zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle; 285 zfs_sort_column_t *sc = (zfs_sort_column_t *)data; 286 zfs_sort_column_t *psc; 287 288 for (psc = sc; psc != NULL; psc = psc->sc_next) { 289 char lbuf[ZFS_MAXPROPLEN], rbuf[ZFS_MAXPROPLEN]; 290 char *lstr, *rstr; 291 uint64_t lnum, rnum; 292 boolean_t lvalid, rvalid; 293 int ret = 0; 294 295 /* 296 * We group the checks below the generic code. If 'lstr' and 297 * 'rstr' are non-NULL, then we do a string based comparison. 298 * Otherwise, we compare 'lnum' and 'rnum'. 299 */ 300 lstr = rstr = NULL; 301 if (psc->sc_prop == ZPROP_INVAL) { 302 nvlist_t *luser, *ruser; 303 nvlist_t *lval, *rval; 304 305 luser = zfs_get_user_props(l); 306 ruser = zfs_get_user_props(r); 307 308 lvalid = (nvlist_lookup_nvlist(luser, 309 psc->sc_user_prop, &lval) == 0); 310 rvalid = (nvlist_lookup_nvlist(ruser, 311 psc->sc_user_prop, &rval) == 0); 312 313 if (lvalid) 314 verify(nvlist_lookup_string(lval, 315 ZPROP_VALUE, &lstr) == 0); 316 if (rvalid) 317 verify(nvlist_lookup_string(rval, 318 ZPROP_VALUE, &rstr) == 0); 319 } else if (psc->sc_prop == ZFS_PROP_NAME) { 320 lvalid = rvalid = B_TRUE; 321 322 (void) strlcpy(lbuf, zfs_get_name(l), sizeof (lbuf)); 323 (void) strlcpy(rbuf, zfs_get_name(r), sizeof (rbuf)); 324 325 lstr = lbuf; 326 rstr = rbuf; 327 } else if (zfs_prop_is_string(psc->sc_prop)) { 328 lvalid = (zfs_prop_get(l, psc->sc_prop, lbuf, 329 sizeof (lbuf), NULL, NULL, 0, B_TRUE) == 0); 330 rvalid = (zfs_prop_get(r, psc->sc_prop, rbuf, 331 sizeof (rbuf), NULL, NULL, 0, B_TRUE) == 0); 332 333 lstr = lbuf; 334 rstr = rbuf; 335 } else { 336 lvalid = zfs_prop_valid_for_type(psc->sc_prop, 337 zfs_get_type(l)); 338 rvalid = zfs_prop_valid_for_type(psc->sc_prop, 339 zfs_get_type(r)); 340 341 if (lvalid) 342 (void) zfs_prop_get_numeric(l, psc->sc_prop, 343 &lnum, NULL, NULL, 0); 344 if (rvalid) 345 (void) zfs_prop_get_numeric(r, psc->sc_prop, 346 &rnum, NULL, NULL, 0); 347 } 348 349 if (!lvalid && !rvalid) 350 continue; 351 else if (!lvalid) 352 return (1); 353 else if (!rvalid) 354 return (-1); 355 356 if (lstr) 357 ret = strcmp(lstr, rstr); 358 else if (lnum < rnum) 359 ret = -1; 360 else if (lnum > rnum) 361 ret = 1; 362 363 if (ret != 0) { 364 if (psc->sc_reverse == B_TRUE) 365 ret = (ret < 0) ? 1 : -1; 366 return (ret); 367 } 368 } 369 370 return (zfs_compare(larg, rarg, NULL)); 371 } 372 373 int 374 zfs_for_each(int argc, char **argv, int flags, zfs_type_t types, 375 zfs_sort_column_t *sortcol, zprop_list_t **proplist, int limit, 376 zfs_iter_f callback, void *data) 377 { 378 callback_data_t cb = {0}; 379 int ret = 0; 380 zfs_node_t *node; 381 uu_avl_walk_t *walk; 382 383 avl_pool = uu_avl_pool_create("zfs_pool", sizeof (zfs_node_t), 384 offsetof(zfs_node_t, zn_avlnode), zfs_sort, UU_DEFAULT); 385 386 if (avl_pool == NULL) 387 nomem(); 388 389 cb.cb_sortcol = sortcol; 390 cb.cb_flags = flags; 391 cb.cb_proplist = proplist; 392 cb.cb_types = types; 393 cb.cb_depth_limit = limit; 394 /* 395 * If cb_proplist is provided then in the zfs_handles created we 396 * retain only those properties listed in cb_proplist and sortcol. 397 * The rest are pruned. So, the caller should make sure that no other 398 * properties other than those listed in cb_proplist/sortcol are 399 * accessed. 400 * 401 * If cb_proplist is NULL then we retain all the properties. We 402 * always retain the zoned property, which some other properties 403 * need (userquota & friends), and the createtxg property, which 404 * we need to sort snapshots. 405 */ 406 if (cb.cb_proplist && *cb.cb_proplist) { 407 zprop_list_t *p = *cb.cb_proplist; 408 409 while (p) { 410 if (p->pl_prop >= ZFS_PROP_TYPE && 411 p->pl_prop < ZFS_NUM_PROPS) { 412 cb.cb_props_table[p->pl_prop] = B_TRUE; 413 } 414 p = p->pl_next; 415 } 416 417 while (sortcol) { 418 if (sortcol->sc_prop >= ZFS_PROP_TYPE && 419 sortcol->sc_prop < ZFS_NUM_PROPS) { 420 cb.cb_props_table[sortcol->sc_prop] = B_TRUE; 421 } 422 sortcol = sortcol->sc_next; 423 } 424 425 cb.cb_props_table[ZFS_PROP_ZONED] = B_TRUE; 426 cb.cb_props_table[ZFS_PROP_CREATETXG] = B_TRUE; 427 } else { 428 (void) memset(cb.cb_props_table, B_TRUE, 429 sizeof (cb.cb_props_table)); 430 } 431 432 if ((cb.cb_avl = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL) 433 nomem(); 434 435 if (argc == 0) { 436 /* 437 * If given no arguments, iterate over all datasets. 438 */ 439 cb.cb_flags |= ZFS_ITER_RECURSE; 440 ret = zfs_iter_root(g_zfs, zfs_callback, &cb); 441 } else { 442 int i; 443 zfs_handle_t *zhp; 444 zfs_type_t argtype; 445 446 /* 447 * If we're recursive, then we always allow filesystems as 448 * arguments. If we also are interested in snapshots, then we 449 * can take volumes as well. 450 */ 451 argtype = types; 452 if (flags & ZFS_ITER_RECURSE) { 453 argtype |= ZFS_TYPE_FILESYSTEM; 454 if (types & ZFS_TYPE_SNAPSHOT) 455 argtype |= ZFS_TYPE_VOLUME; 456 } 457 458 for (i = 0; i < argc; i++) { 459 if (flags & ZFS_ITER_ARGS_CAN_BE_PATHS) { 460 zhp = zfs_path_to_zhandle(g_zfs, argv[i], 461 argtype); 462 } else { 463 zhp = zfs_open(g_zfs, argv[i], argtype); 464 } 465 if (zhp != NULL) 466 ret |= zfs_callback(zhp, &cb); 467 else 468 ret = 1; 469 } 470 } 471 472 /* 473 * At this point we've got our AVL tree full of zfs handles, so iterate 474 * over each one and execute the real user callback. 475 */ 476 for (node = uu_avl_first(cb.cb_avl); node != NULL; 477 node = uu_avl_next(cb.cb_avl, node)) 478 ret |= callback(node->zn_handle, data); 479 480 /* 481 * Finally, clean up the AVL tree. 482 */ 483 if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL) 484 nomem(); 485 486 while ((node = uu_avl_walk_next(walk)) != NULL) { 487 uu_avl_remove(cb.cb_avl, node); 488 zfs_close(node->zn_handle); 489 free(node); 490 } 491 492 uu_avl_walk_end(walk); 493 uu_avl_destroy(cb.cb_avl); 494 uu_avl_pool_destroy(avl_pool); 495 496 return (ret); 497 } 498