xref: /illumos-gate/usr/src/cmd/troff/troff.d/draw.c (revision fdd3baea1de807613d7541b2fad475760768584b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 1989 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 #include	<stdio.h>
41 #include	<math.h>
42 #define	PI	3.141592654
43 #define	hmot(n)		hpos += n
44 #define	hgoto(n)	hpos = n
45 #define	vmot(n)		vgoto(vpos + n)
46 
47 extern	int	hpos;
48 extern	int	vpos;
49 extern	int	size;
50 extern	short	*pstab;
51 extern	int	DX;	/* step size in x */
52 extern	int	DY;	/* step size in y */
53 extern	int	drawdot;	/* character to use when drawing */
54 extern	int	drawsize;	/* shrink point size by this facter */
55 
56 int	maxdots	= 32000;	/* maximum number of dots in an object */
57 
58 #define	sgn(n)	((n > 0) ? 1 : ((n < 0) ? -1 : 0))
59 #define	abs(n)	((n) >= 0 ? (n) : -(n))
60 #define	max(x,y)	((x) > (y) ? (x) : (y))
61 #define	min(x,y)	((x) < (y) ? (x) : (y))
62 #define	arcmove(x,y)	{ hgoto(x); vmot(-vpos-(y)); }
63 
64 /* draw line from here to dx, dy using s */
65 int
66 drawline(int dx, int dy, char *s)
67 {
68 	int xd, yd;
69 	float val, slope;
70 	int i, numdots;
71 	int dirmot, perp;
72 	int motincr, perpincr;
73 	int ohpos, ovpos, osize, ofont;
74 	float incrway;
75 
76 	int itemp; /*temp. storage for value returned byint function sgn*/
77 	osize = size;
78 	setsize(t_size(pstab[osize-1] / drawsize));
79 	ohpos = hpos;
80 	ovpos = vpos;
81 	xd = dx / DX;
82 	yd = dy / DX;
83 	if (xd == 0) {
84 		numdots = abs (yd);
85 		numdots = min(numdots, maxdots);
86 		motincr = DX * sgn (yd);
87 		for (i = 0; i < numdots; i++) {
88 			vmot(motincr);
89 			put1(drawdot);
90 		}
91 		vgoto(ovpos + dy);
92 		setsize(osize);
93 		return (0);
94 	}
95 	if (yd == 0) {
96 		numdots = abs (xd);
97 		motincr = DX * sgn (xd);
98 		for (i = 0; i < numdots; i++) {
99 			hmot(motincr);
100 			put1(drawdot);
101 		}
102 		hgoto(ohpos + dx);
103 		setsize(osize);
104 		return (0);
105 	}
106 	if (abs (xd) > abs (yd)) {
107 		val = slope = (float) xd/yd;
108 		numdots = abs (xd);
109 		numdots = min(numdots, maxdots);
110 		dirmot = 'h';
111 		perp = 'v';
112 		motincr = DX * sgn (xd);
113 		perpincr = DX * sgn (yd);
114 	}
115 	else {
116 		val = slope = (float) yd/xd;
117 		numdots = abs (yd);
118 		numdots = min(numdots, maxdots);
119 		dirmot = 'v';
120 		perp = 'h';
121 		motincr = DX * sgn (yd);
122 		perpincr = DX * sgn (xd);
123 	}
124 	incrway = itemp = sgn ((int) slope);
125 	for (i = 0; i < numdots; i++) {
126 		val -= incrway;
127 		if (dirmot == 'h')
128 			hmot(motincr);
129 		else
130 			vmot(motincr);
131 		if (val * slope < 0) {
132 			if (perp == 'h')
133 				hmot(perpincr);
134 			else
135 				vmot(perpincr);
136 			val += slope;
137 		}
138 		put1(drawdot);
139 	}
140 	hgoto(ohpos + dx);
141 	vgoto(ovpos + dy);
142 	setsize(osize);
143 
144 	return (0);
145 }
146 
147 int
148 drawwig(char *s)	/* draw wiggly line */
149 {
150 	int x[50], y[50], xp, yp, pxp, pyp;
151 	float t1, t2, t3, w;
152 	int i, j, numdots, N;
153 	int osize, ofont;
154 	char temp[50], *p, *getstr();
155 
156 	osize = size;
157 	setsize(t_size(pstab[osize-1] / drawsize));
158 	p = s;
159 	for (N = 2; (p=getstr(p,temp)) != NULL && N < sizeof(x)/sizeof(x[0]); N++) {
160 		x[N] = atoi(temp);
161 		p = getstr(p, temp);
162 		y[N] = atoi(temp);
163 	}
164 	x[0] = x[1] = hpos;
165 	y[0] = y[1] = vpos;
166 	for (i = 1; i < N; i++) {
167 		x[i+1] += x[i];
168 		y[i+1] += y[i];
169 	}
170 	x[N] = x[N-1];
171 	y[N] = y[N-1];
172 	pxp = pyp = -9999;
173 	for (i = 0; i < N-1; i++) {	/* interval */
174 		numdots = (dist(x[i],y[i], x[i+1],y[i+1]) + dist(x[i+1],y[i+1], x[i+2],y[i+2])) / 2;
175 		numdots /= DX;
176 		numdots = min(numdots, maxdots);
177 		for (j = 0; j < numdots; j++) {	/* points within */
178 			w = (float) j / numdots;
179 			t1 = 0.5 * w * w;
180 			w = w - 0.5;
181 			t2 = 0.75 - w * w;
182 			w = w - 0.5;
183 			t3 = 0.5 * w * w;
184 			xp = t1 * x[i+2] + t2 * x[i+1] + t3 * x[i] + 0.5;
185 			yp = t1 * y[i+2] + t2 * y[i+1] + t3 * y[i] + 0.5;
186 			if (xp != pxp || yp != pyp) {
187 				hgoto(xp);
188 				vgoto(yp);
189 				put1(drawdot);
190 				pxp = xp;
191 				pyp = yp;
192 			}
193 		}
194 	}
195 	setsize(osize);
196 
197 	return (0);
198 }
199 
200 /* copy next non-blank string from p to temp, update p */
201 char *getstr(char *p, char *temp)
202 {
203 	while (*p == ' ' || *p == '\t' || *p == '\n')
204 		p++;
205 	if (*p == '\0') {
206 		temp[0] = 0;
207 		return(NULL);
208 	}
209 	while (*p != ' ' && *p != '\t' && *p != '\n' && *p != '\0')
210 		*temp++ = *p++;
211 	*temp = '\0';
212 	return(p);
213 }
214 
215 int
216 drawcirc(int d)
217 {
218 	int xc, yc;
219 
220 	xc = hpos;
221 	yc = vpos;
222 	conicarc(hpos + d/2, -vpos, hpos, -vpos, hpos, -vpos, d/2, d/2);
223 	hgoto(xc + d);	/* circle goes to right side */
224 	vgoto(yc);
225 
226 	return (0);
227 }
228 
229 /* integer distance from x1,y1 to x2,y2 */
230 int
231 dist(int x1, int y1, int x2, int y2)
232 {
233 	float dx, dy;
234 
235 	dx = x2 - x1;
236 	dy = y2 - y1;
237 	return sqrt(dx*dx + dy*dy) + 0.5;
238 }
239 
240 int
241 drawarc(int dx1, int dy1, int dx2, int dy2)
242 {
243 	int x0, y0, x2, y2, r;
244 
245 	x0 = hpos + dx1;	/* center */
246 	y0 = vpos + dy1;
247 	x2 = x0 + dx2;	/* "to" */
248 	y2 = y0 + dy2;
249 	r = sqrt((float) dx1 * dx1 + (float) dy1 * dy1) + 0.5;
250 	conicarc(x0, -y0, hpos, -vpos, x2, -y2, r, r);
251 
252 	return (0);
253 }
254 
255 int
256 drawellip(int a, int b)
257 {
258 	int xc, yc;
259 
260 	xc = hpos;
261 	yc = vpos;
262 	conicarc(hpos + a/2, -vpos, hpos, -vpos, hpos, -vpos, a/2, b/2);
263 	hgoto(xc + a);
264 	vgoto(yc);
265 
266 	return (0);
267 }
268 
269 #define sqr(x) (long int)(x)*(x)
270 
271 int
272 conicarc(int x, int y, int x0, int y0, int x1, int y1, int a, int b)
273 {
274 	/* based on Bresenham, CACM, Feb 77, pp 102-3 */
275 	/* by Chris Van Wyk */
276 	/* capitalized vars are an internal reference frame */
277 	long dotcount = 0;
278 	int osize, ofont;
279 	int	xs, ys, xt, yt, Xs, Ys, qs, Xt, Yt, qt,
280 		M1x, M1y, M2x, M2y, M3x, M3y,
281 		Q, move, Xc, Yc;
282 	int ox1, oy1;
283 	long	delta;
284 	float	xc, yc;
285 	float	radius, slope;
286 	float	xstep, ystep;
287 
288 	osize = size;
289 	setsize(t_size(pstab[osize-1] / drawsize));
290 	ox1 = x1;
291 	oy1 = y1;
292 	if (a != b)	/* an arc of an ellipse; internally, will still think of circle */
293 		if (a > b) {
294 			xstep = (float)a / b;
295 			ystep = 1;
296 			radius = b;
297 		} else {
298 			xstep = 1;
299 			ystep = (float)b / a;
300 			radius = a;
301 		}
302 	else {	/* a circular arc; radius is computed from center and first point */
303 		xstep = ystep = 1;
304 		radius = sqrt((float)(sqr(x0 - x) + sqr(y0 - y)));
305 	}
306 
307 
308 	xc = x0;
309 	yc = y0;
310 	/* now, use start and end point locations to figure out
311 	the angle at which start and end happen; use these
312 	angles with known radius to figure out where start
313 	and end should be
314 	*/
315 	slope = atan2((double)(y0 - y), (double)(x0 - x) );
316 	if (slope == 0.0 && x0 < x)
317 		slope = 3.14159265;
318 	x0 = x + radius * cos(slope) + 0.5;
319 	y0 = y + radius * sin(slope) + 0.5;
320 	slope = atan2((double)(y1 - y), (double)(x1 - x));
321 	if (slope == 0.0 && x1 < x)
322 		slope = 3.14159265;
323 	x1 = x + radius * cos(slope) + 0.5;
324 	y1 = y + radius * sin(slope) + 0.5;
325 	/* step 2: translate to zero-centered circle */
326 	xs = x0 - x;
327 	ys = y0 - y;
328 	xt = x1 - x;
329 	yt = y1 - y;
330 	/* step 3: normalize to first quadrant */
331 	if (xs < 0)
332 		if (ys < 0) {
333 			Xs = abs(ys);
334 			Ys = abs(xs);
335 			qs = 3;
336 			M1x = 0;
337 			M1y = -1;
338 			M2x = 1;
339 			M2y = -1;
340 			M3x = 1;
341 			M3y = 0;
342 		} else {
343 			Xs = abs(xs);
344 			Ys = abs(ys);
345 			qs = 2;
346 			M1x = -1;
347 			M1y = 0;
348 			M2x = -1;
349 			M2y = -1;
350 			M3x = 0;
351 			M3y = -1;
352 		}
353 	else if (ys < 0) {
354 		Xs = abs(xs);
355 		Ys = abs(ys);
356 		qs = 0;
357 		M1x = 1;
358 		M1y = 0;
359 		M2x = 1;
360 		M2y = 1;
361 		M3x = 0;
362 		M3y = 1;
363 	} else {
364 		Xs = abs(ys);
365 		Ys = abs(xs);
366 		qs = 1;
367 		M1x = 0;
368 		M1y = 1;
369 		M2x = -1;
370 		M2y = 1;
371 		M3x = -1;
372 		M3y = 0;
373 	}
374 
375 
376 	Xc = Xs;
377 	Yc = Ys;
378 	if (xt < 0)
379 		if (yt < 0) {
380 			Xt = abs(yt);
381 			Yt = abs(xt);
382 			qt = 3;
383 		} else {
384 			Xt = abs(xt);
385 			Yt = abs(yt);
386 			qt = 2;
387 		}
388 	else if (yt < 0) {
389 		Xt = abs(xt);
390 		Yt = abs(yt);
391 		qt = 0;
392 	} else {
393 		Xt = abs(yt);
394 		Yt = abs(xt);
395 		qt = 1;
396 	}
397 
398 
399 	/* step 4: calculate number of quadrant crossings */
400 	if (((4 + qt - qs)
401 	     % 4 == 0)
402 	     && (Xt <= Xs)
403 	     && (Yt >= Ys)
404 	    )
405 		Q = 3;
406 	else
407 		Q = (4 + qt - qs) % 4 - 1;
408 	/* step 5: calculate initial decision difference */
409 	delta = sqr(Xs + 1)
410 	 + sqr(Ys - 1)
411 	-sqr(xs)
412 	-sqr(ys);
413 	/* here begins the work of drawing
414    we hope it ends here too */
415 	while ((Q >= 0)
416 	     || ((Q > -2)
417 	     && ((Xt > Xc)
418 	     && (Yt < Yc)
419 	    )
420 	    )
421 	    ) {
422 		if (dotcount++ % DX == 0)
423 			putdot((int)xc, (int)yc);
424 		if (Yc < 0.5) {
425 			/* reinitialize */
426 			Xs = Xc = 0;
427 			Ys = Yc = sqrt((float)(sqr(xs) + sqr(ys)));
428 			delta = sqr(Xs + 1) + sqr(Ys - 1) - sqr(xs) - sqr(ys);
429 			Q--;
430 			M1x = M3x;
431 			M1y = M3y;
432 			 {
433 				int	T;
434 				T = M2y;
435 				M2y = M2x;
436 				M2x = -T;
437 				T = M3y;
438 				M3y = M3x;
439 				M3x = -T;
440 			}
441 		} else {
442 			if (delta <= 0)
443 				if (2 * delta + 2 * Yc - 1 <= 0)
444 					move = 1;
445 				else
446 					move = 2;
447 			else if (2 * delta - 2 * Xc - 1 <= 0)
448 				move = 2;
449 			else
450 				move = 3;
451 			switch (move) {
452 			case 1:
453 				Xc++;
454 				delta += 2 * Xc + 1;
455 				xc += M1x * xstep;
456 				yc += M1y * ystep;
457 				break;
458 			case 2:
459 				Xc++;
460 				Yc--;
461 				delta += 2 * Xc - 2 * Yc + 2;
462 				xc += M2x * xstep;
463 				yc += M2y * ystep;
464 				break;
465 			case 3:
466 				Yc--;
467 				delta -= 2 * Yc + 1;
468 				xc += M3x * xstep;
469 				yc += M3y * ystep;
470 				break;
471 			}
472 		}
473 	}
474 
475 
476 	setsize(osize);
477 	drawline((int)xc-ox1,(int)yc-oy1,".");
478 
479 	return (0);
480 }
481 
482 int
483 putdot(int x, int y)
484 {
485 	arcmove(x, y);
486 	put1(drawdot);
487 
488 	return (0);
489 }
490