1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * ZFS syseventd module. 27 * 28 * The purpose of this module is to identify when devices are added to the 29 * system, and appropriately online or replace the affected vdevs. 30 * 31 * When a device is added to the system: 32 * 33 * 1. Search for any vdevs whose devid matches that of the newly added 34 * device. 35 * 36 * 2. If no vdevs are found, then search for any vdevs whose devfs path 37 * matches that of the new device. 38 * 39 * 3. If no vdevs match by either method, then ignore the event. 40 * 41 * 4. Attempt to online the device with a flag to indicate that it should 42 * be unspared when resilvering completes. If this succeeds, then the 43 * same device was inserted and we should continue normally. 44 * 45 * 5. If the pool does not have the 'autoreplace' property set, attempt to 46 * online the device again without the unspare flag, which will 47 * generate a FMA fault. 48 * 49 * 6. If the pool has the 'autoreplace' property set, and the matching vdev 50 * is a whole disk, then label the new disk and attempt a 'zpool 51 * replace'. 52 * 53 * The module responds to EC_DEV_ADD events for both disks and lofi devices, 54 * with the latter used for testing. The special ESC_ZFS_VDEV_CHECK event 55 * indicates that a device failed to open during pool load, but the autoreplace 56 * property was set. In this case, we deferred the associated FMA fault until 57 * our module had a chance to process the autoreplace logic. If the device 58 * could not be replaced, then the second online attempt will trigger the FMA 59 * fault that we skipped earlier. 60 */ 61 62 #include <alloca.h> 63 #include <devid.h> 64 #include <fcntl.h> 65 #include <libnvpair.h> 66 #include <libsysevent.h> 67 #include <libzfs.h> 68 #include <limits.h> 69 #include <stdlib.h> 70 #include <string.h> 71 #include <syslog.h> 72 #include <sys/list.h> 73 #include <sys/sunddi.h> 74 #include <sys/sysevent/eventdefs.h> 75 #include <sys/sysevent/dev.h> 76 #include <thread_pool.h> 77 #include <unistd.h> 78 #include "syseventd.h" 79 80 #if defined(__i386) || defined(__amd64) 81 #define PHYS_PATH ":q" 82 #define RAW_SLICE "p0" 83 #elif defined(__sparc) 84 #define PHYS_PATH ":c" 85 #define RAW_SLICE "s2" 86 #else 87 #error Unknown architecture 88 #endif 89 90 typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t); 91 92 libzfs_handle_t *g_zfshdl; 93 list_t g_pool_list; 94 tpool_t *g_tpool; 95 boolean_t g_enumeration_done; 96 thread_t g_zfs_tid; 97 98 typedef struct unavailpool { 99 zpool_handle_t *uap_zhp; 100 list_node_t uap_node; 101 } unavailpool_t; 102 103 int 104 zfs_toplevel_state(zpool_handle_t *zhp) 105 { 106 nvlist_t *nvroot; 107 vdev_stat_t *vs; 108 unsigned int c; 109 110 verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL), 111 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 112 verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS, 113 (uint64_t **)&vs, &c) == 0); 114 return (vs->vs_state); 115 } 116 117 static int 118 zfs_unavail_pool(zpool_handle_t *zhp, void *data) 119 { 120 if (zfs_toplevel_state(zhp) < VDEV_STATE_DEGRADED) { 121 unavailpool_t *uap; 122 uap = malloc(sizeof (unavailpool_t)); 123 uap->uap_zhp = zhp; 124 list_insert_tail((list_t *)data, uap); 125 } else { 126 zpool_close(zhp); 127 } 128 return (0); 129 } 130 131 /* 132 * The device associated with the given vdev (either by devid or physical path) 133 * has been added to the system. If 'isdisk' is set, then we only attempt a 134 * replacement if it's a whole disk. This also implies that we should label the 135 * disk first. 136 * 137 * First, we attempt to online the device (making sure to undo any spare 138 * operation when finished). If this succeeds, then we're done. If it fails, 139 * and the new state is VDEV_CANT_OPEN, it indicates that the device was opened, 140 * but that the label was not what we expected. If the 'autoreplace' property 141 * is not set, then we relabel the disk (if specified), and attempt a 'zpool 142 * replace'. If the online is successful, but the new state is something else 143 * (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of 144 * race, and we should avoid attempting to relabel the disk. 145 */ 146 static void 147 zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t isdisk) 148 { 149 char *path; 150 vdev_state_t newstate; 151 nvlist_t *nvroot, *newvd; 152 uint64_t wholedisk = 0ULL; 153 char *physpath = NULL; 154 char rawpath[PATH_MAX], fullpath[PATH_MAX]; 155 size_t len; 156 157 if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0) 158 return; 159 160 (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &physpath); 161 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); 162 163 /* 164 * We should have a way to online a device by guid. With the current 165 * interface, we are forced to chop off the 's0' for whole disks. 166 */ 167 (void) strlcpy(fullpath, path, sizeof (fullpath)); 168 if (wholedisk) 169 fullpath[strlen(fullpath) - 2] = '\0'; 170 171 /* 172 * Attempt to online the device. It would be nice to online this by 173 * GUID, but the current interface only supports lookup by path. 174 */ 175 if (zpool_vdev_online(zhp, fullpath, 176 ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE, &newstate) == 0 && 177 (newstate == VDEV_STATE_HEALTHY || newstate == VDEV_STATE_DEGRADED)) 178 return; 179 180 /* 181 * If the pool doesn't have the autoreplace property set, then attempt a 182 * true online (without the unspare flag), which will trigger a FMA 183 * fault. 184 */ 185 if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) || 186 (isdisk && !wholedisk)) { 187 (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, 188 &newstate); 189 return; 190 } 191 192 if (isdisk) { 193 /* 194 * If this is a request to label a whole disk, then attempt to 195 * write out the label. Before we can label the disk, we need 196 * access to a raw node. Ideally, we'd like to walk the devinfo 197 * tree and find a raw node from the corresponding parent node. 198 * This is overly complicated, and since we know how we labeled 199 * this device in the first place, we know it's save to switch 200 * from /dev/dsk to /dev/rdsk and append the backup slice. 201 * 202 * If any part of this process fails, then do a force online to 203 * trigger a ZFS fault for the device (and any hot spare 204 * replacement). 205 */ 206 if (strncmp(path, "/dev/dsk/", 9) != 0) { 207 (void) zpool_vdev_online(zhp, fullpath, 208 ZFS_ONLINE_FORCEFAULT, &newstate); 209 return; 210 } 211 212 (void) strlcpy(rawpath, path + 9, sizeof (rawpath)); 213 len = strlen(rawpath); 214 rawpath[len - 2] = '\0'; 215 216 if (zpool_label_disk(g_zfshdl, zhp, rawpath) != 0) { 217 (void) zpool_vdev_online(zhp, fullpath, 218 ZFS_ONLINE_FORCEFAULT, &newstate); 219 return; 220 } 221 } 222 223 /* 224 * Cosntruct the root vdev to pass to zpool_vdev_attach(). While adding 225 * the entire vdev structure is harmless, we construct a reduced set of 226 * path/physpath/wholedisk to keep it simple. 227 */ 228 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 229 return; 230 231 if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) { 232 nvlist_free(nvroot); 233 return; 234 } 235 236 if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 || 237 nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 || 238 (physpath != NULL && nvlist_add_string(newvd, 239 ZPOOL_CONFIG_PHYS_PATH, physpath) != 0) || 240 nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 || 241 nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 || 242 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &newvd, 243 1) != 0) { 244 nvlist_free(newvd); 245 nvlist_free(nvroot); 246 return; 247 } 248 249 nvlist_free(newvd); 250 251 (void) zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE); 252 253 nvlist_free(nvroot); 254 255 } 256 257 /* 258 * Utility functions to find a vdev matching given criteria. 259 */ 260 typedef struct dev_data { 261 const char *dd_compare; 262 const char *dd_prop; 263 zfs_process_func_t dd_func; 264 boolean_t dd_found; 265 boolean_t dd_isdisk; 266 uint64_t dd_pool_guid; 267 uint64_t dd_vdev_guid; 268 } dev_data_t; 269 270 static void 271 zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data) 272 { 273 dev_data_t *dp = data; 274 char *path; 275 uint_t c, children; 276 nvlist_t **child; 277 size_t len; 278 uint64_t guid; 279 280 /* 281 * First iterate over any children. 282 */ 283 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, 284 &child, &children) == 0) { 285 for (c = 0; c < children; c++) 286 zfs_iter_vdev(zhp, child[c], data); 287 return; 288 } 289 290 if (dp->dd_vdev_guid != 0) { 291 if (nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID, 292 &guid) != 0 || guid != dp->dd_vdev_guid) 293 return; 294 } else { 295 len = strlen(dp->dd_compare); 296 297 if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 || 298 strncmp(dp->dd_compare, path, len) != 0) 299 return; 300 301 /* 302 * Normally, we want to have an exact match for the comparison 303 * string. However, we allow substring matches in the following 304 * cases: 305 * 306 * <path>: This is a devpath, and the target is one 307 * of its children. 308 * 309 * <path/> This is a devid for a whole disk, and 310 * the target is one of its children. 311 */ 312 if (path[len] != '\0' && path[len] != ':' && 313 path[len - 1] != '/') 314 return; 315 } 316 317 (dp->dd_func)(zhp, nvl, dp->dd_isdisk); 318 } 319 320 void 321 zfs_enable_ds(void *arg) 322 { 323 unavailpool_t *pool = (unavailpool_t *)arg; 324 325 (void) zpool_enable_datasets(pool->uap_zhp, NULL, 0); 326 zpool_close(pool->uap_zhp); 327 free(pool); 328 } 329 330 static int 331 zfs_iter_pool(zpool_handle_t *zhp, void *data) 332 { 333 nvlist_t *config, *nvl; 334 dev_data_t *dp = data; 335 uint64_t pool_guid; 336 unavailpool_t *pool; 337 338 if ((config = zpool_get_config(zhp, NULL)) != NULL) { 339 if (dp->dd_pool_guid == 0 || 340 (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 341 &pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) { 342 (void) nvlist_lookup_nvlist(config, 343 ZPOOL_CONFIG_VDEV_TREE, &nvl); 344 zfs_iter_vdev(zhp, nvl, data); 345 } 346 } 347 if (g_enumeration_done) { 348 for (pool = list_head(&g_pool_list); pool != NULL; 349 pool = list_next(&g_pool_list, pool)) { 350 351 if (strcmp(zpool_get_name(zhp), 352 zpool_get_name(pool->uap_zhp))) 353 continue; 354 if (zfs_toplevel_state(zhp) >= VDEV_STATE_DEGRADED) { 355 list_remove(&g_pool_list, pool); 356 (void) tpool_dispatch(g_tpool, zfs_enable_ds, 357 pool); 358 break; 359 } 360 } 361 } 362 363 zpool_close(zhp); 364 return (0); 365 } 366 367 /* 368 * Given a physical device path, iterate over all (pool, vdev) pairs which 369 * correspond to the given path. 370 */ 371 static boolean_t 372 devpath_iter(const char *devpath, zfs_process_func_t func, boolean_t wholedisk) 373 { 374 dev_data_t data = { 0 }; 375 376 data.dd_compare = devpath; 377 data.dd_func = func; 378 data.dd_prop = ZPOOL_CONFIG_PHYS_PATH; 379 data.dd_found = B_FALSE; 380 data.dd_isdisk = wholedisk; 381 382 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 383 384 return (data.dd_found); 385 } 386 387 /* 388 * Given a /devices path, lookup the corresponding devid for each minor node, 389 * and find any vdevs with matching devids. Doing this straight up would be 390 * rather inefficient, O(minor nodes * vdevs in system), so we take advantage of 391 * the fact that each devid ends with "/<minornode>". Once we find any valid 392 * minor node, we chop off the portion after the last slash, and then search for 393 * matching vdevs, which is O(vdevs in system). 394 */ 395 static boolean_t 396 devid_iter(const char *devpath, zfs_process_func_t func, boolean_t wholedisk) 397 { 398 size_t len = strlen(devpath) + sizeof ("/devices") + 399 sizeof (PHYS_PATH) - 1; 400 char *fullpath; 401 int fd; 402 ddi_devid_t devid; 403 char *devidstr, *fulldevid; 404 dev_data_t data = { 0 }; 405 406 /* 407 * Try to open a known minor node. 408 */ 409 fullpath = alloca(len); 410 (void) snprintf(fullpath, len, "/devices%s%s", devpath, PHYS_PATH); 411 if ((fd = open(fullpath, O_RDONLY)) < 0) 412 return (B_FALSE); 413 414 /* 415 * Determine the devid as a string, with no trailing slash for the minor 416 * node. 417 */ 418 if (devid_get(fd, &devid) != 0) { 419 (void) close(fd); 420 return (B_FALSE); 421 } 422 (void) close(fd); 423 424 if ((devidstr = devid_str_encode(devid, NULL)) == NULL) { 425 devid_free(devid); 426 return (B_FALSE); 427 } 428 429 len = strlen(devidstr) + 2; 430 fulldevid = alloca(len); 431 (void) snprintf(fulldevid, len, "%s/", devidstr); 432 433 data.dd_compare = fulldevid; 434 data.dd_func = func; 435 data.dd_prop = ZPOOL_CONFIG_DEVID; 436 data.dd_found = B_FALSE; 437 data.dd_isdisk = wholedisk; 438 439 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 440 441 devid_str_free(devidstr); 442 devid_free(devid); 443 444 return (data.dd_found); 445 } 446 447 /* 448 * This function is called when we receive a devfs add event. This can be 449 * either a disk event or a lofi event, and the behavior is slightly different 450 * depending on which it is. 451 */ 452 static int 453 zfs_deliver_add(nvlist_t *nvl, boolean_t is_lofi) 454 { 455 char *devpath, *devname; 456 char path[PATH_MAX], realpath[PATH_MAX]; 457 char *colon, *raw; 458 int ret; 459 460 /* 461 * The main unit of operation is the physical device path. For disks, 462 * this is the device node, as all minor nodes are affected. For lofi 463 * devices, this includes the minor path. Unfortunately, this isn't 464 * represented in the DEV_PHYS_PATH for various reasons. 465 */ 466 if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath) != 0) 467 return (-1); 468 469 /* 470 * If this is a lofi device, then also get the minor instance name. 471 * Unfortunately, the current payload doesn't include an easy way to get 472 * this information. So we cheat by resolving the 'dev_name' (which 473 * refers to the raw device) and taking the portion between ':(*),raw'. 474 */ 475 (void) strlcpy(realpath, devpath, sizeof (realpath)); 476 if (is_lofi) { 477 if (nvlist_lookup_string(nvl, DEV_NAME, 478 &devname) == 0 && 479 (ret = resolvepath(devname, path, 480 sizeof (path))) > 0) { 481 path[ret] = '\0'; 482 colon = strchr(path, ':'); 483 if (colon != NULL) 484 raw = strstr(colon + 1, ",raw"); 485 if (colon != NULL && raw != NULL) { 486 *raw = '\0'; 487 (void) snprintf(realpath, 488 sizeof (realpath), "%s%s", 489 devpath, colon); 490 *raw = ','; 491 } 492 } 493 } 494 495 /* 496 * Iterate over all vdevs with a matching devid, and then those with a 497 * matching /devices path. For disks, we only want to pay attention to 498 * vdevs marked as whole disks. For lofi, we don't care (because we're 499 * matching an exact minor name). 500 */ 501 if (!devid_iter(realpath, zfs_process_add, !is_lofi)) 502 (void) devpath_iter(realpath, zfs_process_add, !is_lofi); 503 504 return (0); 505 } 506 507 /* 508 * Called when we receive a VDEV_CHECK event, which indicates a device could not 509 * be opened during initial pool open, but the autoreplace property was set on 510 * the pool. In this case, we treat it as if it were an add event. 511 */ 512 static int 513 zfs_deliver_check(nvlist_t *nvl) 514 { 515 dev_data_t data = { 0 }; 516 517 if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, 518 &data.dd_pool_guid) != 0 || 519 nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, 520 &data.dd_vdev_guid) != 0) 521 return (0); 522 523 data.dd_isdisk = B_TRUE; 524 data.dd_func = zfs_process_add; 525 526 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 527 528 return (0); 529 } 530 531 #define DEVICE_PREFIX "/devices" 532 533 static int 534 zfsdle_vdev_online(zpool_handle_t *zhp, void *data) 535 { 536 char *devname = data; 537 boolean_t avail_spare, l2cache; 538 vdev_state_t newstate; 539 nvlist_t *tgt; 540 541 syseventd_print(9, "zfsdle_vdev_online: searching for %s in pool %s\n", 542 devname, zpool_get_name(zhp)); 543 544 if ((tgt = zpool_find_vdev_by_physpath(zhp, devname, 545 &avail_spare, &l2cache, NULL)) != NULL) { 546 char *path, fullpath[MAXPATHLEN]; 547 uint64_t wholedisk = 0ULL; 548 549 verify(nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH, 550 &path) == 0); 551 verify(nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK, 552 &wholedisk) == 0); 553 554 (void) strlcpy(fullpath, path, sizeof (fullpath)); 555 if (wholedisk) 556 fullpath[strlen(fullpath) - 2] = '\0'; 557 558 if (zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) { 559 syseventd_print(9, "zfsdle_vdev_online: setting device" 560 " device %s to ONLINE state in pool %s.\n", 561 fullpath, zpool_get_name(zhp)); 562 if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL) 563 (void) zpool_vdev_online(zhp, fullpath, 0, 564 &newstate); 565 } 566 zpool_close(zhp); 567 return (1); 568 } 569 zpool_close(zhp); 570 return (0); 571 } 572 573 int 574 zfs_deliver_dle(nvlist_t *nvl) 575 { 576 char *devname; 577 if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) != 0) { 578 syseventd_print(9, "zfs_deliver_event: no physpath\n"); 579 return (-1); 580 } 581 if (strncmp(devname, DEVICE_PREFIX, strlen(DEVICE_PREFIX)) != 0) { 582 syseventd_print(9, "zfs_deliver_event: invalid " 583 "device '%s'", devname); 584 return (-1); 585 } 586 587 /* 588 * We try to find the device using the physical 589 * path that has been supplied. We need to strip off 590 * the /devices prefix before starting our search. 591 */ 592 devname += strlen(DEVICE_PREFIX); 593 if (zpool_iter(g_zfshdl, zfsdle_vdev_online, devname) != 1) { 594 syseventd_print(9, "zfs_deliver_event: device '%s' not" 595 " found\n", devname); 596 return (1); 597 } 598 return (0); 599 } 600 601 602 /*ARGSUSED*/ 603 static int 604 zfs_deliver_event(sysevent_t *ev, int unused) 605 { 606 const char *class = sysevent_get_class_name(ev); 607 const char *subclass = sysevent_get_subclass_name(ev); 608 nvlist_t *nvl; 609 int ret; 610 boolean_t is_lofi, is_check, is_dle = B_FALSE; 611 612 if (strcmp(class, EC_DEV_ADD) == 0) { 613 /* 614 * We're mainly interested in disk additions, but we also listen 615 * for new lofi devices, to allow for simplified testing. 616 */ 617 if (strcmp(subclass, ESC_DISK) == 0) 618 is_lofi = B_FALSE; 619 else if (strcmp(subclass, ESC_LOFI) == 0) 620 is_lofi = B_TRUE; 621 else 622 return (0); 623 624 is_check = B_FALSE; 625 } else if (strcmp(class, EC_ZFS) == 0 && 626 strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) { 627 /* 628 * This event signifies that a device failed to open during pool 629 * load, but the 'autoreplace' property was set, so we should 630 * pretend it's just been added. 631 */ 632 is_check = B_TRUE; 633 } else if (strcmp(class, EC_DEV_STATUS) == 0 && 634 strcmp(subclass, ESC_DEV_DLE) == 0) { 635 is_dle = B_TRUE; 636 } else { 637 return (0); 638 } 639 640 if (sysevent_get_attr_list(ev, &nvl) != 0) 641 return (-1); 642 643 if (is_dle) 644 ret = zfs_deliver_dle(nvl); 645 else if (is_check) 646 ret = zfs_deliver_check(nvl); 647 else 648 ret = zfs_deliver_add(nvl, is_lofi); 649 650 nvlist_free(nvl); 651 return (ret); 652 } 653 654 /*ARGSUSED*/ 655 void * 656 zfs_enum_pools(void *arg) 657 { 658 (void) zpool_iter(g_zfshdl, zfs_unavail_pool, (void *)&g_pool_list); 659 if (!list_is_empty(&g_pool_list)) 660 g_tpool = tpool_create(1, sysconf(_SC_NPROCESSORS_ONLN), 661 0, NULL); 662 g_enumeration_done = B_TRUE; 663 return (NULL); 664 } 665 666 static struct slm_mod_ops zfs_mod_ops = { 667 SE_MAJOR_VERSION, SE_MINOR_VERSION, 10, zfs_deliver_event 668 }; 669 670 struct slm_mod_ops * 671 slm_init() 672 { 673 if ((g_zfshdl = libzfs_init()) == NULL) 674 return (NULL); 675 /* 676 * collect a list of unavailable pools (asynchronously, 677 * since this can take a while) 678 */ 679 list_create(&g_pool_list, sizeof (struct unavailpool), 680 offsetof(struct unavailpool, uap_node)); 681 if (thr_create(NULL, 0, zfs_enum_pools, NULL, 0, &g_zfs_tid) != 0) 682 return (NULL); 683 return (&zfs_mod_ops); 684 } 685 686 void 687 slm_fini() 688 { 689 unavailpool_t *pool; 690 691 if (g_tpool != NULL) { 692 tpool_wait(g_tpool); 693 tpool_destroy(g_tpool); 694 } 695 while ((pool = (list_head(&g_pool_list))) != NULL) { 696 list_remove(&g_pool_list, pool); 697 zpool_close(pool->uap_zhp); 698 free(pool); 699 } 700 (void) thr_join(g_zfs_tid, NULL, NULL); 701 list_destroy(&g_pool_list); 702 libzfs_fini(g_zfshdl); 703 } 704