xref: /illumos-gate/usr/src/cmd/syseventd/modules/zfs_mod/zfs_mod.c (revision d321a33cdd896e6b211d113a33698dd76e89b861)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * ZFS syseventd module.
30  *
31  * The purpose of this module is to identify when devices are added to the
32  * system, and appropriately online or replace the affected vdevs.
33  *
34  * When a device is added to the system:
35  *
36  * 	1. Search for any vdevs whose devid matches that of the newly added
37  *	   device.
38  *
39  * 	2. If no vdevs are found, then search for any vdevs whose devfs path
40  *	   matches that of the new device.
41  *
42  *	3. If no vdevs match by either method, then ignore the event.
43  *
44  * 	4. Attempt to online the device with a flag to indicate that it should
45  *	   be unspared when resilvering completes.  If this succeeds, then the
46  *	   same device was inserted and we should continue normally.
47  *
48  *	5. If the pool does not have the 'autoreplace' property set, attempt to
49  *	   online the device again without the unspare flag, which will
50  *	   generate a FMA fault.
51  *
52  *	6. If the pool has the 'autoreplace' property set, and the matching vdev
53  *	   is a whole disk, then label the new disk and attempt a 'zpool
54  *	   replace'.
55  *
56  * The module responds to EC_DEV_ADD events for both disks and lofi devices,
57  * with the latter used for testing.  The special ESC_ZFS_VDEV_CHECK event
58  * indicates that a device failed to open during pool load, but the autoreplace
59  * property was set.  In this case, we deferred the associated FMA fault until
60  * our module had a chance to process the autoreplace logic.  If the device
61  * could not be replaced, then the second online attempt will trigger the FMA
62  * fault that we skipped earlier.
63  */
64 
65 #include <alloca.h>
66 #include <devid.h>
67 #include <fcntl.h>
68 #include <libnvpair.h>
69 #include <libsysevent.h>
70 #include <libzfs.h>
71 #include <limits.h>
72 #include <stdlib.h>
73 #include <string.h>
74 #include <syslog.h>
75 #include <sys/sunddi.h>
76 #include <sys/sysevent/eventdefs.h>
77 #include <sys/sysevent/dev.h>
78 #include <unistd.h>
79 
80 #if defined(__i386) || defined(__amd64)
81 #define	PHYS_PATH	":q"
82 #define	RAW_SLICE	"p0"
83 #elif defined(__sparc)
84 #define	PHYS_PATH	":c"
85 #define	RAW_SLICE	"s2"
86 #else
87 #error Unknown architecture
88 #endif
89 
90 typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t);
91 
92 libzfs_handle_t *g_zfshdl;
93 
94 /*
95  * The device associated with the given vdev (either by devid or physical path)
96  * has been added to the system.  If 'isdisk' is set, then we only attempt a
97  * replacement if it's a whole disk.  This also implies that we should label the
98  * disk first.
99  *
100  * First, we attempt to online the device (making sure to undo any spare
101  * operation when finished).  If this succeeds, then we're done.  If it fails,
102  * and the new state is VDEV_CANT_OPEN, it indicates that the device was opened,
103  * but that the label was not what we expected.  If the 'autoreplace' property
104  * is not set, then we relabel the disk (if specified), and attempt a 'zpool
105  * replace'.  If the online is successful, but the new state is something else
106  * (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of
107  * race, and we should avoid attempting to relabel the disk.
108  */
109 static void
110 zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t isdisk)
111 {
112 	char *path;
113 	vdev_state_t newstate;
114 	nvlist_t *nvroot, *newvd;
115 	uint64_t wholedisk = 0ULL;
116 	char *devid = NULL;
117 	char rawpath[PATH_MAX], fullpath[PATH_MAX];
118 	size_t len;
119 
120 	if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0)
121 		return;
122 
123 	(void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_DEVID, &devid);
124 	(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk);
125 
126 	/*
127 	 * We should have a way to online a device by guid.  With the current
128 	 * interface, we are forced to chop off the 's0' for whole disks.
129 	 */
130 	(void) strlcpy(fullpath, path, sizeof (fullpath));
131 	if (wholedisk)
132 		fullpath[strlen(fullpath) - 2] = '\0';
133 
134 	/*
135 	 * Attempt to online the device.  It would be nice to online this by
136 	 * GUID, but the current interface only supports lookup by path.
137 	 */
138 	if (zpool_vdev_online(zhp, fullpath,
139 	    ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE, &newstate) == 0 &&
140 	    newstate != VDEV_STATE_CANT_OPEN)
141 		return;
142 
143 	/*
144 	 * If the pool doesn't have the autoreplace property set, then attempt a
145 	 * true online (without the unspare flag), which will trigger a FMA
146 	 * fault.
147 	 */
148 	if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) ||
149 	    (isdisk && !wholedisk)) {
150 		(void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT,
151 		    &newstate);
152 		return;
153 	}
154 
155 	if (isdisk) {
156 		/*
157 		 * If this is a request to label a whole disk, then attempt to
158 		 * write out the label.  Before we can label the disk, we need
159 		 * access to a raw node.  Ideally, we'd like to walk the devinfo
160 		 * tree and find a raw node from the corresponding parent node.
161 		 * This is overly complicated, and since we know how we labeled
162 		 * this device in the first place, we know it's save to switch
163 		 * from /dev/dsk to /dev/rdsk and append the backup slice.
164 		 */
165 		if (strncmp(path, "/dev/dsk/", 9) != 0)
166 			return;
167 
168 		(void) strlcpy(rawpath, path + 9, sizeof (rawpath));
169 		len = strlen(rawpath);
170 		rawpath[len - 2] = '\0';
171 
172 		if (zpool_label_disk(g_zfshdl, zhp, rawpath) != 0)
173 			return;
174 	}
175 
176 	/*
177 	 * Cosntruct the root vdev to pass to zpool_vdev_attach().  While adding
178 	 * the entire vdev structure is harmless, we construct a reduced set of
179 	 * path/devid/wholedisk to keep it simple.
180 	 */
181 	if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
182 		return;
183 
184 	if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) {
185 		nvlist_free(nvroot);
186 		return;
187 	}
188 
189 	if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 ||
190 	    nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 ||
191 	    (devid && nvlist_add_string(newvd, ZPOOL_CONFIG_DEVID,
192 	    devid) != 0) ||
193 	    nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 ||
194 	    nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 ||
195 	    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &newvd,
196 	    1) != 0) {
197 		nvlist_free(newvd);
198 		nvlist_free(nvroot);
199 		return;
200 	}
201 
202 	nvlist_free(newvd);
203 
204 	(void) zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE);
205 
206 	nvlist_free(nvroot);
207 
208 }
209 
210 /*
211  * Utility functions to find a vdev matching given criteria.
212  */
213 typedef struct dev_data {
214 	const char		*dd_compare;
215 	const char		*dd_prop;
216 	zfs_process_func_t	dd_func;
217 	boolean_t		dd_found;
218 	boolean_t		dd_isdisk;
219 	uint64_t		dd_pool_guid;
220 	uint64_t		dd_vdev_guid;
221 } dev_data_t;
222 
223 static void
224 zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data)
225 {
226 	dev_data_t *dp = data;
227 	char *path;
228 	uint_t c, children;
229 	nvlist_t **child;
230 	size_t len;
231 	uint64_t guid;
232 
233 	/*
234 	 * First iterate over any children.
235 	 */
236 	if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN,
237 	    &child, &children) == 0) {
238 		for (c = 0; c < children; c++)
239 			zfs_iter_vdev(zhp, child[c], data);
240 		return;
241 	}
242 
243 	if (dp->dd_vdev_guid != 0) {
244 		if (nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID,
245 		    &guid) != 0 || guid != dp->dd_vdev_guid)
246 			return;
247 	} else {
248 		len = strlen(dp->dd_compare);
249 
250 		if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 ||
251 		    strncmp(dp->dd_compare, path, len) != 0)
252 			return;
253 
254 		/*
255 		 * Normally, we want to have an exact match for the comparison
256 		 * string.  However, we allow substring matches in the following
257 		 * cases:
258 		 *
259 		 * 	<path>:		This is a devpath, and the target is one
260 		 * 			of its children.
261 		 *
262 		 * 	<path/>		This is a devid for a whole disk, and
263 		 * 			the target is one of its children.
264 		 */
265 		if (path[len] != '\0' && path[len] != ':' &&
266 		    path[len - 1] != '/')
267 			return;
268 	}
269 
270 	(dp->dd_func)(zhp, nvl, dp->dd_isdisk);
271 }
272 
273 static int
274 zfs_iter_pool(zpool_handle_t *zhp, void *data)
275 {
276 	nvlist_t *config, *nvl;
277 	dev_data_t *dp = data;
278 	uint64_t pool_guid;
279 
280 	if ((config = zpool_get_config(zhp, NULL)) != NULL) {
281 		if (dp->dd_pool_guid == 0 ||
282 		    (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
283 		    &pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) {
284 			(void) nvlist_lookup_nvlist(config,
285 			    ZPOOL_CONFIG_VDEV_TREE, &nvl);
286 			zfs_iter_vdev(zhp, nvl, data);
287 		}
288 	}
289 
290 	zpool_close(zhp);
291 	return (0);
292 }
293 
294 /*
295  * Given a physical device path, iterate over all (pool, vdev) pairs which
296  * correspond to the given path.
297  */
298 static boolean_t
299 devpath_iter(const char *devpath, zfs_process_func_t func, boolean_t wholedisk)
300 {
301 	dev_data_t data = { 0 };
302 
303 	data.dd_compare = devpath;
304 	data.dd_func = func;
305 	data.dd_prop = ZPOOL_CONFIG_PHYS_PATH;
306 	data.dd_found = B_FALSE;
307 	data.dd_isdisk = wholedisk;
308 
309 	(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
310 
311 	return (data.dd_found);
312 }
313 
314 /*
315  * Given a /devices path, lookup the corresponding devid for each minor node,
316  * and find any vdevs with matching devids.  Doing this straight up would be
317  * rather inefficient, O(minor nodes * vdevs in system), so we take advantage of
318  * the fact that each devid ends with "/<minornode>".  Once we find any valid
319  * minor node, we chop off the portion after the last slash, and then search for
320  * matching vdevs, which is O(vdevs in system).
321  */
322 static boolean_t
323 devid_iter(const char *devpath, zfs_process_func_t func, boolean_t wholedisk)
324 {
325 	size_t len = strlen(devpath) + sizeof ("/devices") +
326 	    sizeof (PHYS_PATH) - 1;
327 	char *fullpath;
328 	int fd;
329 	ddi_devid_t devid;
330 	char *devidstr, *fulldevid;
331 	dev_data_t data = { 0 };
332 
333 	/*
334 	 * Try to open a known minor node.
335 	 */
336 	fullpath = alloca(len);
337 	(void) snprintf(fullpath, len, "/devices%s%s", devpath, PHYS_PATH);
338 	if ((fd = open(fullpath, O_RDONLY)) < 0)
339 		return (B_FALSE);
340 
341 	/*
342 	 * Determine the devid as a string, with no trailing slash for the minor
343 	 * node.
344 	 */
345 	if (devid_get(fd, &devid) != 0) {
346 		(void) close(fd);
347 		return (B_FALSE);
348 	}
349 	(void) close(fd);
350 
351 	if ((devidstr = devid_str_encode(devid, NULL)) == NULL) {
352 		devid_free(devid);
353 		return (B_FALSE);
354 	}
355 
356 	len = strlen(devidstr) + 2;
357 	fulldevid = alloca(len);
358 	(void) snprintf(fulldevid, len, "%s/", devidstr);
359 
360 	data.dd_compare = fulldevid;
361 	data.dd_func = func;
362 	data.dd_prop = ZPOOL_CONFIG_DEVID;
363 	data.dd_found = B_FALSE;
364 	data.dd_isdisk = wholedisk;
365 
366 	(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
367 
368 	devid_str_free(devidstr);
369 
370 	return (data.dd_found);
371 }
372 
373 /*
374  * This function is called when we receive a devfs add event.  This can be
375  * either a disk event or a lofi event, and the behavior is slightly different
376  * depending on which it is.
377  */
378 static int
379 zfs_deliver_add(nvlist_t *nvl, boolean_t is_lofi)
380 {
381 	char *devpath, *devname;
382 	char path[PATH_MAX], realpath[PATH_MAX];
383 	char *colon, *raw;
384 	int ret;
385 
386 	/*
387 	 * The main unit of operation is the physical device path.  For disks,
388 	 * this is the device node, as all minor nodes are affected.  For lofi
389 	 * devices, this includes the minor path.  Unfortunately, this isn't
390 	 * represented in the DEV_PHYS_PATH for various reasons.
391 	 */
392 	if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath) != 0)
393 		return (-1);
394 
395 	/*
396 	 * If this is a lofi device, then also get the minor instance name.
397 	 * Unfortunately, the current payload doesn't include an easy way to get
398 	 * this information.  So we cheat by resolving the 'dev_name' (which
399 	 * refers to the raw device) and taking the portion between ':(*),raw'.
400 	 */
401 	(void) strlcpy(realpath, devpath, sizeof (realpath));
402 	if (is_lofi) {
403 		if (nvlist_lookup_string(nvl, DEV_NAME,
404 		    &devname) == 0 &&
405 		    (ret = resolvepath(devname, path,
406 		    sizeof (path))) > 0) {
407 			path[ret] = '\0';
408 			colon = strchr(path, ':');
409 			if (colon != NULL)
410 				raw = strstr(colon + 1, ",raw");
411 			if (colon != NULL && raw != NULL) {
412 				*raw = '\0';
413 				(void) snprintf(realpath,
414 				    sizeof (realpath), "%s%s",
415 				    devpath, colon);
416 				*raw = ',';
417 			}
418 		}
419 	}
420 
421 	/*
422 	 * Iterate over all vdevs with a matching devid, and then those with a
423 	 * matching /devices path.  For disks, we only want to pay attention to
424 	 * vdevs marked as whole disks.  For lofi, we don't care (because we're
425 	 * matching an exact minor name).
426 	 */
427 	if (!devid_iter(realpath, zfs_process_add, !is_lofi))
428 		(void) devpath_iter(realpath, zfs_process_add, !is_lofi);
429 
430 	return (0);
431 }
432 
433 /*
434  * Called when we receive a VDEV_CHECK event, which indicates a device could not
435  * be opened during initial pool open, but the autoreplace property was set on
436  * the pool.  In this case, we treat it as if it were an add event.
437  */
438 static int
439 zfs_deliver_check(nvlist_t *nvl)
440 {
441 	dev_data_t data = { 0 };
442 
443 	if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID,
444 	    &data.dd_pool_guid) != 0 ||
445 	    nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID,
446 	    &data.dd_vdev_guid) != 0)
447 		return (0);
448 
449 	data.dd_isdisk = B_TRUE;
450 	data.dd_func = zfs_process_add;
451 
452 	(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
453 
454 	return (0);
455 }
456 
457 /*ARGSUSED*/
458 static int
459 zfs_deliver_event(sysevent_t *ev, int unused)
460 {
461 	const char *class = sysevent_get_class_name(ev);
462 	const char *subclass = sysevent_get_subclass_name(ev);
463 	nvlist_t *nvl;
464 	int ret;
465 	boolean_t is_lofi, is_check;
466 
467 	if (strcmp(class, EC_DEV_ADD) == 0) {
468 		/*
469 		 * We're mainly interested in disk additions, but we also listen
470 		 * for new lofi devices, to allow for simplified testing.
471 		 */
472 		if (strcmp(subclass, ESC_DISK) == 0)
473 			is_lofi = B_FALSE;
474 		else if (strcmp(subclass, ESC_LOFI) == 0)
475 			is_lofi = B_TRUE;
476 		else
477 			return (0);
478 
479 		is_check = B_FALSE;
480 	} else if (strcmp(class, EC_ZFS) == 0 &&
481 	    strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) {
482 		/*
483 		 * This event signifies that a device failed to open during pool
484 		 * load, but the 'autoreplace' property was set, so we should
485 		 * pretend it's just been added.
486 		 */
487 		is_check = B_TRUE;
488 	} else {
489 		return (0);
490 	}
491 
492 	if (sysevent_get_attr_list(ev, &nvl) != 0)
493 		return (-1);
494 
495 	if (is_check)
496 		ret = zfs_deliver_check(nvl);
497 	else
498 		ret = zfs_deliver_add(nvl, is_lofi);
499 
500 
501 	nvlist_free(nvl);
502 	return (ret);
503 }
504 
505 static struct slm_mod_ops zfs_mod_ops = {
506 	SE_MAJOR_VERSION, SE_MINOR_VERSION, 10, zfs_deliver_event
507 };
508 
509 struct slm_mod_ops *
510 slm_init()
511 {
512 	if ((g_zfshdl = libzfs_init()) == NULL)
513 		return (NULL);
514 
515 	return (&zfs_mod_ops);
516 }
517 
518 void
519 slm_fini()
520 {
521 }
522