1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* 28 * ZFS syseventd module. 29 * 30 * The purpose of this module is to identify when devices are added to the 31 * system, and appropriately online or replace the affected vdevs. 32 * 33 * When a device is added to the system: 34 * 35 * 1. Search for any vdevs whose devid matches that of the newly added 36 * device. 37 * 38 * 2. If no vdevs are found, then search for any vdevs whose devfs path 39 * matches that of the new device. 40 * 41 * 3. If no vdevs match by either method, then ignore the event. 42 * 43 * 4. Attempt to online the device with a flag to indicate that it should 44 * be unspared when resilvering completes. If this succeeds, then the 45 * same device was inserted and we should continue normally. 46 * 47 * 5. If the pool does not have the 'autoreplace' property set, attempt to 48 * online the device again without the unspare flag, which will 49 * generate a FMA fault. 50 * 51 * 6. If the pool has the 'autoreplace' property set, and the matching vdev 52 * is a whole disk, then label the new disk and attempt a 'zpool 53 * replace'. 54 * 55 * The module responds to EC_DEV_ADD events for both disks and lofi devices, 56 * with the latter used for testing. The special ESC_ZFS_VDEV_CHECK event 57 * indicates that a device failed to open during pool load, but the autoreplace 58 * property was set. In this case, we deferred the associated FMA fault until 59 * our module had a chance to process the autoreplace logic. If the device 60 * could not be replaced, then the second online attempt will trigger the FMA 61 * fault that we skipped earlier. 62 */ 63 64 #include <alloca.h> 65 #include <devid.h> 66 #include <fcntl.h> 67 #include <libnvpair.h> 68 #include <libsysevent.h> 69 #include <libzfs.h> 70 #include <limits.h> 71 #include <stdlib.h> 72 #include <string.h> 73 #include <syslog.h> 74 #include <sys/list.h> 75 #include <sys/sunddi.h> 76 #include <sys/sysevent/eventdefs.h> 77 #include <sys/sysevent/dev.h> 78 #include <thread_pool.h> 79 #include <unistd.h> 80 #include "syseventd.h" 81 82 #if defined(__i386) || defined(__amd64) 83 #define PHYS_PATH ":q" 84 #define RAW_SLICE "p0" 85 #elif defined(__sparc) 86 #define PHYS_PATH ":c" 87 #define RAW_SLICE "s2" 88 #else 89 #error Unknown architecture 90 #endif 91 92 typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t); 93 94 libzfs_handle_t *g_zfshdl; 95 list_t g_pool_list; 96 tpool_t *g_tpool; 97 boolean_t g_enumeration_done; 98 thread_t g_zfs_tid; 99 100 typedef struct unavailpool { 101 zpool_handle_t *uap_zhp; 102 list_node_t uap_node; 103 } unavailpool_t; 104 105 int 106 zfs_toplevel_state(zpool_handle_t *zhp) 107 { 108 nvlist_t *nvroot; 109 vdev_stat_t *vs; 110 unsigned int c; 111 112 verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL), 113 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 114 verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS, 115 (uint64_t **)&vs, &c) == 0); 116 return (vs->vs_state); 117 } 118 119 static int 120 zfs_unavail_pool(zpool_handle_t *zhp, void *data) 121 { 122 if (zfs_toplevel_state(zhp) < VDEV_STATE_DEGRADED) { 123 unavailpool_t *uap; 124 uap = malloc(sizeof (unavailpool_t)); 125 uap->uap_zhp = zhp; 126 list_insert_tail((list_t *)data, uap); 127 } else { 128 zpool_close(zhp); 129 } 130 return (0); 131 } 132 133 /* 134 * The device associated with the given vdev (either by devid or physical path) 135 * has been added to the system. If 'isdisk' is set, then we only attempt a 136 * replacement if it's a whole disk. This also implies that we should label the 137 * disk first. 138 * 139 * First, we attempt to online the device (making sure to undo any spare 140 * operation when finished). If this succeeds, then we're done. If it fails, 141 * and the new state is VDEV_CANT_OPEN, it indicates that the device was opened, 142 * but that the label was not what we expected. If the 'autoreplace' property 143 * is not set, then we relabel the disk (if specified), and attempt a 'zpool 144 * replace'. If the online is successful, but the new state is something else 145 * (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of 146 * race, and we should avoid attempting to relabel the disk. 147 */ 148 static void 149 zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t isdisk) 150 { 151 char *path; 152 vdev_state_t newstate; 153 nvlist_t *nvroot, *newvd; 154 uint64_t wholedisk = 0ULL; 155 uint64_t offline = 0ULL; 156 char *physpath = NULL; 157 char rawpath[PATH_MAX], fullpath[PATH_MAX]; 158 size_t len; 159 160 if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0) 161 return; 162 163 (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &physpath); 164 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); 165 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_OFFLINE, &offline); 166 167 /* 168 * We should have a way to online a device by guid. With the current 169 * interface, we are forced to chop off the 's0' for whole disks. 170 */ 171 (void) strlcpy(fullpath, path, sizeof (fullpath)); 172 if (wholedisk) 173 fullpath[strlen(fullpath) - 2] = '\0'; 174 175 /* 176 * Attempt to online the device. It would be nice to online this by 177 * GUID, but the current interface only supports lookup by path. 178 */ 179 if (offline || 180 (zpool_vdev_online(zhp, fullpath, 181 ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE, &newstate) == 0 && 182 (newstate == VDEV_STATE_HEALTHY || 183 newstate == VDEV_STATE_DEGRADED))) 184 return; 185 186 /* 187 * If the pool doesn't have the autoreplace property set, then attempt a 188 * true online (without the unspare flag), which will trigger a FMA 189 * fault. 190 */ 191 if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) || 192 (isdisk && !wholedisk)) { 193 (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, 194 &newstate); 195 return; 196 } 197 198 if (isdisk) { 199 /* 200 * If this is a request to label a whole disk, then attempt to 201 * write out the label. Before we can label the disk, we need 202 * access to a raw node. Ideally, we'd like to walk the devinfo 203 * tree and find a raw node from the corresponding parent node. 204 * This is overly complicated, and since we know how we labeled 205 * this device in the first place, we know it's save to switch 206 * from /dev/dsk to /dev/rdsk and append the backup slice. 207 * 208 * If any part of this process fails, then do a force online to 209 * trigger a ZFS fault for the device (and any hot spare 210 * replacement). 211 */ 212 if (strncmp(path, "/dev/dsk/", 9) != 0) { 213 (void) zpool_vdev_online(zhp, fullpath, 214 ZFS_ONLINE_FORCEFAULT, &newstate); 215 return; 216 } 217 218 (void) strlcpy(rawpath, path + 9, sizeof (rawpath)); 219 len = strlen(rawpath); 220 rawpath[len - 2] = '\0'; 221 222 if (zpool_label_disk(g_zfshdl, zhp, rawpath) != 0) { 223 (void) zpool_vdev_online(zhp, fullpath, 224 ZFS_ONLINE_FORCEFAULT, &newstate); 225 return; 226 } 227 } 228 229 /* 230 * Cosntruct the root vdev to pass to zpool_vdev_attach(). While adding 231 * the entire vdev structure is harmless, we construct a reduced set of 232 * path/physpath/wholedisk to keep it simple. 233 */ 234 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 235 return; 236 237 if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) { 238 nvlist_free(nvroot); 239 return; 240 } 241 242 if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 || 243 nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 || 244 (physpath != NULL && nvlist_add_string(newvd, 245 ZPOOL_CONFIG_PHYS_PATH, physpath) != 0) || 246 nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 || 247 nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 || 248 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &newvd, 249 1) != 0) { 250 nvlist_free(newvd); 251 nvlist_free(nvroot); 252 return; 253 } 254 255 nvlist_free(newvd); 256 257 (void) zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE); 258 259 nvlist_free(nvroot); 260 261 } 262 263 /* 264 * Utility functions to find a vdev matching given criteria. 265 */ 266 typedef struct dev_data { 267 const char *dd_compare; 268 const char *dd_prop; 269 zfs_process_func_t dd_func; 270 boolean_t dd_found; 271 boolean_t dd_isdisk; 272 uint64_t dd_pool_guid; 273 uint64_t dd_vdev_guid; 274 } dev_data_t; 275 276 static void 277 zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data) 278 { 279 dev_data_t *dp = data; 280 char *path; 281 uint_t c, children; 282 nvlist_t **child; 283 size_t len; 284 uint64_t guid; 285 286 /* 287 * First iterate over any children. 288 */ 289 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, 290 &child, &children) == 0) { 291 for (c = 0; c < children; c++) 292 zfs_iter_vdev(zhp, child[c], data); 293 return; 294 } 295 296 if (dp->dd_vdev_guid != 0) { 297 if (nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID, 298 &guid) != 0 || guid != dp->dd_vdev_guid) 299 return; 300 } else { 301 len = strlen(dp->dd_compare); 302 303 if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 || 304 strncmp(dp->dd_compare, path, len) != 0) 305 return; 306 307 /* 308 * Normally, we want to have an exact match for the comparison 309 * string. However, we allow substring matches in the following 310 * cases: 311 * 312 * <path>: This is a devpath, and the target is one 313 * of its children. 314 * 315 * <path/> This is a devid for a whole disk, and 316 * the target is one of its children. 317 */ 318 if (path[len] != '\0' && path[len] != ':' && 319 path[len - 1] != '/') 320 return; 321 } 322 323 (dp->dd_func)(zhp, nvl, dp->dd_isdisk); 324 } 325 326 void 327 zfs_enable_ds(void *arg) 328 { 329 unavailpool_t *pool = (unavailpool_t *)arg; 330 331 (void) zpool_enable_datasets(pool->uap_zhp, NULL, 0); 332 zpool_close(pool->uap_zhp); 333 free(pool); 334 } 335 336 static int 337 zfs_iter_pool(zpool_handle_t *zhp, void *data) 338 { 339 nvlist_t *config, *nvl; 340 dev_data_t *dp = data; 341 uint64_t pool_guid; 342 unavailpool_t *pool; 343 344 if ((config = zpool_get_config(zhp, NULL)) != NULL) { 345 if (dp->dd_pool_guid == 0 || 346 (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 347 &pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) { 348 (void) nvlist_lookup_nvlist(config, 349 ZPOOL_CONFIG_VDEV_TREE, &nvl); 350 zfs_iter_vdev(zhp, nvl, data); 351 } 352 } 353 if (g_enumeration_done) { 354 for (pool = list_head(&g_pool_list); pool != NULL; 355 pool = list_next(&g_pool_list, pool)) { 356 357 if (strcmp(zpool_get_name(zhp), 358 zpool_get_name(pool->uap_zhp))) 359 continue; 360 if (zfs_toplevel_state(zhp) >= VDEV_STATE_DEGRADED) { 361 list_remove(&g_pool_list, pool); 362 (void) tpool_dispatch(g_tpool, zfs_enable_ds, 363 pool); 364 break; 365 } 366 } 367 } 368 369 zpool_close(zhp); 370 return (0); 371 } 372 373 /* 374 * Given a physical device path, iterate over all (pool, vdev) pairs which 375 * correspond to the given path. 376 */ 377 static boolean_t 378 devpath_iter(const char *devpath, zfs_process_func_t func, boolean_t wholedisk) 379 { 380 dev_data_t data = { 0 }; 381 382 data.dd_compare = devpath; 383 data.dd_func = func; 384 data.dd_prop = ZPOOL_CONFIG_PHYS_PATH; 385 data.dd_found = B_FALSE; 386 data.dd_isdisk = wholedisk; 387 388 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 389 390 return (data.dd_found); 391 } 392 393 /* 394 * Given a /devices path, lookup the corresponding devid for each minor node, 395 * and find any vdevs with matching devids. Doing this straight up would be 396 * rather inefficient, O(minor nodes * vdevs in system), so we take advantage of 397 * the fact that each devid ends with "/<minornode>". Once we find any valid 398 * minor node, we chop off the portion after the last slash, and then search for 399 * matching vdevs, which is O(vdevs in system). 400 */ 401 static boolean_t 402 devid_iter(const char *devpath, zfs_process_func_t func, boolean_t wholedisk) 403 { 404 size_t len = strlen(devpath) + sizeof ("/devices") + 405 sizeof (PHYS_PATH) - 1; 406 char *fullpath; 407 int fd; 408 ddi_devid_t devid; 409 char *devidstr, *fulldevid; 410 dev_data_t data = { 0 }; 411 412 /* 413 * Try to open a known minor node. 414 */ 415 fullpath = alloca(len); 416 (void) snprintf(fullpath, len, "/devices%s%s", devpath, PHYS_PATH); 417 if ((fd = open(fullpath, O_RDONLY)) < 0) 418 return (B_FALSE); 419 420 /* 421 * Determine the devid as a string, with no trailing slash for the minor 422 * node. 423 */ 424 if (devid_get(fd, &devid) != 0) { 425 (void) close(fd); 426 return (B_FALSE); 427 } 428 (void) close(fd); 429 430 if ((devidstr = devid_str_encode(devid, NULL)) == NULL) { 431 devid_free(devid); 432 return (B_FALSE); 433 } 434 435 len = strlen(devidstr) + 2; 436 fulldevid = alloca(len); 437 (void) snprintf(fulldevid, len, "%s/", devidstr); 438 439 data.dd_compare = fulldevid; 440 data.dd_func = func; 441 data.dd_prop = ZPOOL_CONFIG_DEVID; 442 data.dd_found = B_FALSE; 443 data.dd_isdisk = wholedisk; 444 445 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 446 447 devid_str_free(devidstr); 448 devid_free(devid); 449 450 return (data.dd_found); 451 } 452 453 /* 454 * This function is called when we receive a devfs add event. This can be 455 * either a disk event or a lofi event, and the behavior is slightly different 456 * depending on which it is. 457 */ 458 static int 459 zfs_deliver_add(nvlist_t *nvl, boolean_t is_lofi) 460 { 461 char *devpath, *devname; 462 char path[PATH_MAX], realpath[PATH_MAX]; 463 char *colon, *raw; 464 int ret; 465 466 /* 467 * The main unit of operation is the physical device path. For disks, 468 * this is the device node, as all minor nodes are affected. For lofi 469 * devices, this includes the minor path. Unfortunately, this isn't 470 * represented in the DEV_PHYS_PATH for various reasons. 471 */ 472 if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath) != 0) 473 return (-1); 474 475 /* 476 * If this is a lofi device, then also get the minor instance name. 477 * Unfortunately, the current payload doesn't include an easy way to get 478 * this information. So we cheat by resolving the 'dev_name' (which 479 * refers to the raw device) and taking the portion between ':(*),raw'. 480 */ 481 (void) strlcpy(realpath, devpath, sizeof (realpath)); 482 if (is_lofi) { 483 if (nvlist_lookup_string(nvl, DEV_NAME, 484 &devname) == 0 && 485 (ret = resolvepath(devname, path, 486 sizeof (path))) > 0) { 487 path[ret] = '\0'; 488 colon = strchr(path, ':'); 489 if (colon != NULL) 490 raw = strstr(colon + 1, ",raw"); 491 if (colon != NULL && raw != NULL) { 492 *raw = '\0'; 493 (void) snprintf(realpath, 494 sizeof (realpath), "%s%s", 495 devpath, colon); 496 *raw = ','; 497 } 498 } 499 } 500 501 /* 502 * Iterate over all vdevs with a matching devid, and then those with a 503 * matching /devices path. For disks, we only want to pay attention to 504 * vdevs marked as whole disks. For lofi, we don't care (because we're 505 * matching an exact minor name). 506 */ 507 if (!devid_iter(realpath, zfs_process_add, !is_lofi)) 508 (void) devpath_iter(realpath, zfs_process_add, !is_lofi); 509 510 return (0); 511 } 512 513 /* 514 * Called when we receive a VDEV_CHECK event, which indicates a device could not 515 * be opened during initial pool open, but the autoreplace property was set on 516 * the pool. In this case, we treat it as if it were an add event. 517 */ 518 static int 519 zfs_deliver_check(nvlist_t *nvl) 520 { 521 dev_data_t data = { 0 }; 522 523 if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, 524 &data.dd_pool_guid) != 0 || 525 nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, 526 &data.dd_vdev_guid) != 0 || 527 data.dd_vdev_guid == 0) 528 return (0); 529 530 data.dd_isdisk = B_TRUE; 531 data.dd_func = zfs_process_add; 532 533 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 534 535 return (0); 536 } 537 538 #define DEVICE_PREFIX "/devices" 539 540 static int 541 zfsdle_vdev_online(zpool_handle_t *zhp, void *data) 542 { 543 char *devname = data; 544 boolean_t avail_spare, l2cache; 545 vdev_state_t newstate; 546 nvlist_t *tgt; 547 548 syseventd_print(9, "zfsdle_vdev_online: searching for %s in pool %s\n", 549 devname, zpool_get_name(zhp)); 550 551 if ((tgt = zpool_find_vdev_by_physpath(zhp, devname, 552 &avail_spare, &l2cache, NULL)) != NULL) { 553 char *path, fullpath[MAXPATHLEN]; 554 uint64_t wholedisk = 0ULL; 555 556 verify(nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH, 557 &path) == 0); 558 verify(nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK, 559 &wholedisk) == 0); 560 561 (void) strlcpy(fullpath, path, sizeof (fullpath)); 562 if (wholedisk) { 563 fullpath[strlen(fullpath) - 2] = '\0'; 564 565 /* 566 * We need to reopen the pool associated with this 567 * device so that the kernel can update the size 568 * of the expanded device. 569 */ 570 (void) zpool_reopen(zhp); 571 } 572 573 if (zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) { 574 syseventd_print(9, "zfsdle_vdev_online: setting device" 575 " device %s to ONLINE state in pool %s.\n", 576 fullpath, zpool_get_name(zhp)); 577 if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL) 578 (void) zpool_vdev_online(zhp, fullpath, 0, 579 &newstate); 580 } 581 zpool_close(zhp); 582 return (1); 583 } 584 zpool_close(zhp); 585 return (0); 586 } 587 588 int 589 zfs_deliver_dle(nvlist_t *nvl) 590 { 591 char *devname; 592 if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) != 0) { 593 syseventd_print(9, "zfs_deliver_event: no physpath\n"); 594 return (-1); 595 } 596 if (strncmp(devname, DEVICE_PREFIX, strlen(DEVICE_PREFIX)) != 0) { 597 syseventd_print(9, "zfs_deliver_event: invalid " 598 "device '%s'", devname); 599 return (-1); 600 } 601 602 /* 603 * We try to find the device using the physical 604 * path that has been supplied. We need to strip off 605 * the /devices prefix before starting our search. 606 */ 607 devname += strlen(DEVICE_PREFIX); 608 if (zpool_iter(g_zfshdl, zfsdle_vdev_online, devname) != 1) { 609 syseventd_print(9, "zfs_deliver_event: device '%s' not" 610 " found\n", devname); 611 return (1); 612 } 613 return (0); 614 } 615 616 617 /*ARGSUSED*/ 618 static int 619 zfs_deliver_event(sysevent_t *ev, int unused) 620 { 621 const char *class = sysevent_get_class_name(ev); 622 const char *subclass = sysevent_get_subclass_name(ev); 623 nvlist_t *nvl; 624 int ret; 625 boolean_t is_lofi, is_check, is_dle = B_FALSE; 626 627 if (strcmp(class, EC_DEV_ADD) == 0) { 628 /* 629 * We're mainly interested in disk additions, but we also listen 630 * for new lofi devices, to allow for simplified testing. 631 */ 632 if (strcmp(subclass, ESC_DISK) == 0) 633 is_lofi = B_FALSE; 634 else if (strcmp(subclass, ESC_LOFI) == 0) 635 is_lofi = B_TRUE; 636 else 637 return (0); 638 639 is_check = B_FALSE; 640 } else if (strcmp(class, EC_ZFS) == 0 && 641 strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) { 642 /* 643 * This event signifies that a device failed to open during pool 644 * load, but the 'autoreplace' property was set, so we should 645 * pretend it's just been added. 646 */ 647 is_check = B_TRUE; 648 } else if (strcmp(class, EC_DEV_STATUS) == 0 && 649 strcmp(subclass, ESC_DEV_DLE) == 0) { 650 is_dle = B_TRUE; 651 } else { 652 return (0); 653 } 654 655 if (sysevent_get_attr_list(ev, &nvl) != 0) 656 return (-1); 657 658 if (is_dle) 659 ret = zfs_deliver_dle(nvl); 660 else if (is_check) 661 ret = zfs_deliver_check(nvl); 662 else 663 ret = zfs_deliver_add(nvl, is_lofi); 664 665 nvlist_free(nvl); 666 return (ret); 667 } 668 669 /*ARGSUSED*/ 670 void * 671 zfs_enum_pools(void *arg) 672 { 673 (void) zpool_iter(g_zfshdl, zfs_unavail_pool, (void *)&g_pool_list); 674 if (!list_is_empty(&g_pool_list)) 675 g_tpool = tpool_create(1, sysconf(_SC_NPROCESSORS_ONLN), 676 0, NULL); 677 g_enumeration_done = B_TRUE; 678 return (NULL); 679 } 680 681 static struct slm_mod_ops zfs_mod_ops = { 682 SE_MAJOR_VERSION, SE_MINOR_VERSION, 10, zfs_deliver_event 683 }; 684 685 struct slm_mod_ops * 686 slm_init() 687 { 688 if ((g_zfshdl = libzfs_init()) == NULL) 689 return (NULL); 690 /* 691 * collect a list of unavailable pools (asynchronously, 692 * since this can take a while) 693 */ 694 list_create(&g_pool_list, sizeof (struct unavailpool), 695 offsetof(struct unavailpool, uap_node)); 696 if (thr_create(NULL, 0, zfs_enum_pools, NULL, 0, &g_zfs_tid) != 0) 697 return (NULL); 698 return (&zfs_mod_ops); 699 } 700 701 void 702 slm_fini() 703 { 704 unavailpool_t *pool; 705 706 if (g_tpool != NULL) { 707 tpool_wait(g_tpool); 708 tpool_destroy(g_tpool); 709 } 710 while ((pool = (list_head(&g_pool_list))) != NULL) { 711 list_remove(&g_pool_list, pool); 712 zpool_close(pool->uap_zhp); 713 free(pool); 714 } 715 (void) thr_join(g_zfs_tid, NULL, NULL); 716 list_destroy(&g_pool_list); 717 libzfs_fini(g_zfshdl); 718 } 719