1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* 28 * ZFS syseventd module. 29 * 30 * The purpose of this module is to identify when devices are added to the 31 * system, and appropriately online or replace the affected vdevs. 32 * 33 * When a device is added to the system: 34 * 35 * 1. Search for any vdevs whose devid matches that of the newly added 36 * device. 37 * 38 * 2. If no vdevs are found, then search for any vdevs whose devfs path 39 * matches that of the new device. 40 * 41 * 3. If no vdevs match by either method, then ignore the event. 42 * 43 * 4. Attempt to online the device with a flag to indicate that it should 44 * be unspared when resilvering completes. If this succeeds, then the 45 * same device was inserted and we should continue normally. 46 * 47 * 5. If the pool does not have the 'autoreplace' property set, attempt to 48 * online the device again without the unspare flag, which will 49 * generate a FMA fault. 50 * 51 * 6. If the pool has the 'autoreplace' property set, and the matching vdev 52 * is a whole disk, then label the new disk and attempt a 'zpool 53 * replace'. 54 * 55 * The module responds to EC_DEV_ADD events for both disks and lofi devices, 56 * with the latter used for testing. The special ESC_ZFS_VDEV_CHECK event 57 * indicates that a device failed to open during pool load, but the autoreplace 58 * property was set. In this case, we deferred the associated FMA fault until 59 * our module had a chance to process the autoreplace logic. If the device 60 * could not be replaced, then the second online attempt will trigger the FMA 61 * fault that we skipped earlier. 62 */ 63 64 #include <alloca.h> 65 #include <devid.h> 66 #include <fcntl.h> 67 #include <libnvpair.h> 68 #include <libsysevent.h> 69 #include <libzfs.h> 70 #include <limits.h> 71 #include <stdlib.h> 72 #include <string.h> 73 #include <syslog.h> 74 #include <sys/list.h> 75 #include <sys/sunddi.h> 76 #include <sys/sysevent/eventdefs.h> 77 #include <sys/sysevent/dev.h> 78 #include <thread_pool.h> 79 #include <unistd.h> 80 #include "syseventd.h" 81 82 #if defined(__i386) || defined(__amd64) 83 #define PHYS_PATH ":q" 84 #define RAW_SLICE "p0" 85 #elif defined(__sparc) 86 #define PHYS_PATH ":c" 87 #define RAW_SLICE "s2" 88 #else 89 #error Unknown architecture 90 #endif 91 92 typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t); 93 94 libzfs_handle_t *g_zfshdl; 95 list_t g_pool_list; 96 tpool_t *g_tpool; 97 boolean_t g_enumeration_done; 98 thread_t g_zfs_tid; 99 100 typedef struct unavailpool { 101 zpool_handle_t *uap_zhp; 102 list_node_t uap_node; 103 } unavailpool_t; 104 105 int 106 zfs_toplevel_state(zpool_handle_t *zhp) 107 { 108 nvlist_t *nvroot; 109 vdev_stat_t *vs; 110 unsigned int c; 111 112 verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL), 113 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 114 verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS, 115 (uint64_t **)&vs, &c) == 0); 116 return (vs->vs_state); 117 } 118 119 static int 120 zfs_unavail_pool(zpool_handle_t *zhp, void *data) 121 { 122 if (zfs_toplevel_state(zhp) < VDEV_STATE_DEGRADED) { 123 unavailpool_t *uap; 124 uap = malloc(sizeof (unavailpool_t)); 125 uap->uap_zhp = zhp; 126 list_insert_tail((list_t *)data, uap); 127 } else { 128 zpool_close(zhp); 129 } 130 return (0); 131 } 132 133 /* 134 * The device associated with the given vdev (either by devid or physical path) 135 * has been added to the system. If 'isdisk' is set, then we only attempt a 136 * replacement if it's a whole disk. This also implies that we should label the 137 * disk first. 138 * 139 * First, we attempt to online the device (making sure to undo any spare 140 * operation when finished). If this succeeds, then we're done. If it fails, 141 * and the new state is VDEV_CANT_OPEN, it indicates that the device was opened, 142 * but that the label was not what we expected. If the 'autoreplace' property 143 * is not set, then we relabel the disk (if specified), and attempt a 'zpool 144 * replace'. If the online is successful, but the new state is something else 145 * (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of 146 * race, and we should avoid attempting to relabel the disk. 147 */ 148 static void 149 zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t isdisk) 150 { 151 char *path; 152 vdev_state_t newstate; 153 nvlist_t *nvroot, *newvd; 154 uint64_t wholedisk = 0ULL; 155 char *physpath = NULL; 156 char rawpath[PATH_MAX], fullpath[PATH_MAX]; 157 size_t len; 158 159 if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0) 160 return; 161 162 (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &physpath); 163 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); 164 165 /* 166 * We should have a way to online a device by guid. With the current 167 * interface, we are forced to chop off the 's0' for whole disks. 168 */ 169 (void) strlcpy(fullpath, path, sizeof (fullpath)); 170 if (wholedisk) 171 fullpath[strlen(fullpath) - 2] = '\0'; 172 173 /* 174 * Attempt to online the device. It would be nice to online this by 175 * GUID, but the current interface only supports lookup by path. 176 */ 177 if (zpool_vdev_online(zhp, fullpath, 178 ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE, &newstate) == 0 && 179 (newstate == VDEV_STATE_HEALTHY || newstate == VDEV_STATE_DEGRADED)) 180 return; 181 182 /* 183 * If the pool doesn't have the autoreplace property set, then attempt a 184 * true online (without the unspare flag), which will trigger a FMA 185 * fault. 186 */ 187 if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) || 188 (isdisk && !wholedisk)) { 189 (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, 190 &newstate); 191 return; 192 } 193 194 if (isdisk) { 195 /* 196 * If this is a request to label a whole disk, then attempt to 197 * write out the label. Before we can label the disk, we need 198 * access to a raw node. Ideally, we'd like to walk the devinfo 199 * tree and find a raw node from the corresponding parent node. 200 * This is overly complicated, and since we know how we labeled 201 * this device in the first place, we know it's save to switch 202 * from /dev/dsk to /dev/rdsk and append the backup slice. 203 * 204 * If any part of this process fails, then do a force online to 205 * trigger a ZFS fault for the device (and any hot spare 206 * replacement). 207 */ 208 if (strncmp(path, "/dev/dsk/", 9) != 0) { 209 (void) zpool_vdev_online(zhp, fullpath, 210 ZFS_ONLINE_FORCEFAULT, &newstate); 211 return; 212 } 213 214 (void) strlcpy(rawpath, path + 9, sizeof (rawpath)); 215 len = strlen(rawpath); 216 rawpath[len - 2] = '\0'; 217 218 if (zpool_label_disk(g_zfshdl, zhp, rawpath) != 0) { 219 (void) zpool_vdev_online(zhp, fullpath, 220 ZFS_ONLINE_FORCEFAULT, &newstate); 221 return; 222 } 223 } 224 225 /* 226 * Cosntruct the root vdev to pass to zpool_vdev_attach(). While adding 227 * the entire vdev structure is harmless, we construct a reduced set of 228 * path/physpath/wholedisk to keep it simple. 229 */ 230 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 231 return; 232 233 if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) { 234 nvlist_free(nvroot); 235 return; 236 } 237 238 if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 || 239 nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 || 240 (physpath != NULL && nvlist_add_string(newvd, 241 ZPOOL_CONFIG_PHYS_PATH, physpath) != 0) || 242 nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 || 243 nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 || 244 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &newvd, 245 1) != 0) { 246 nvlist_free(newvd); 247 nvlist_free(nvroot); 248 return; 249 } 250 251 nvlist_free(newvd); 252 253 (void) zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE); 254 255 nvlist_free(nvroot); 256 257 } 258 259 /* 260 * Utility functions to find a vdev matching given criteria. 261 */ 262 typedef struct dev_data { 263 const char *dd_compare; 264 const char *dd_prop; 265 zfs_process_func_t dd_func; 266 boolean_t dd_found; 267 boolean_t dd_isdisk; 268 uint64_t dd_pool_guid; 269 uint64_t dd_vdev_guid; 270 } dev_data_t; 271 272 static void 273 zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data) 274 { 275 dev_data_t *dp = data; 276 char *path; 277 uint_t c, children; 278 nvlist_t **child; 279 size_t len; 280 uint64_t guid; 281 282 /* 283 * First iterate over any children. 284 */ 285 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, 286 &child, &children) == 0) { 287 for (c = 0; c < children; c++) 288 zfs_iter_vdev(zhp, child[c], data); 289 return; 290 } 291 292 if (dp->dd_vdev_guid != 0) { 293 if (nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID, 294 &guid) != 0 || guid != dp->dd_vdev_guid) 295 return; 296 } else { 297 len = strlen(dp->dd_compare); 298 299 if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 || 300 strncmp(dp->dd_compare, path, len) != 0) 301 return; 302 303 /* 304 * Normally, we want to have an exact match for the comparison 305 * string. However, we allow substring matches in the following 306 * cases: 307 * 308 * <path>: This is a devpath, and the target is one 309 * of its children. 310 * 311 * <path/> This is a devid for a whole disk, and 312 * the target is one of its children. 313 */ 314 if (path[len] != '\0' && path[len] != ':' && 315 path[len - 1] != '/') 316 return; 317 } 318 319 (dp->dd_func)(zhp, nvl, dp->dd_isdisk); 320 } 321 322 void 323 zfs_enable_ds(void *arg) 324 { 325 unavailpool_t *pool = (unavailpool_t *)arg; 326 327 (void) zpool_enable_datasets(pool->uap_zhp, NULL, 0); 328 zpool_close(pool->uap_zhp); 329 free(pool); 330 } 331 332 static int 333 zfs_iter_pool(zpool_handle_t *zhp, void *data) 334 { 335 nvlist_t *config, *nvl; 336 dev_data_t *dp = data; 337 uint64_t pool_guid; 338 unavailpool_t *pool; 339 340 if ((config = zpool_get_config(zhp, NULL)) != NULL) { 341 if (dp->dd_pool_guid == 0 || 342 (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 343 &pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) { 344 (void) nvlist_lookup_nvlist(config, 345 ZPOOL_CONFIG_VDEV_TREE, &nvl); 346 zfs_iter_vdev(zhp, nvl, data); 347 } 348 } 349 if (g_enumeration_done) { 350 for (pool = list_head(&g_pool_list); pool != NULL; 351 pool = list_next(&g_pool_list, pool)) { 352 353 if (strcmp(zpool_get_name(zhp), 354 zpool_get_name(pool->uap_zhp))) 355 continue; 356 if (zfs_toplevel_state(zhp) >= VDEV_STATE_DEGRADED) { 357 list_remove(&g_pool_list, pool); 358 (void) tpool_dispatch(g_tpool, zfs_enable_ds, 359 pool); 360 break; 361 } 362 } 363 } 364 365 zpool_close(zhp); 366 return (0); 367 } 368 369 /* 370 * Given a physical device path, iterate over all (pool, vdev) pairs which 371 * correspond to the given path. 372 */ 373 static boolean_t 374 devpath_iter(const char *devpath, zfs_process_func_t func, boolean_t wholedisk) 375 { 376 dev_data_t data = { 0 }; 377 378 data.dd_compare = devpath; 379 data.dd_func = func; 380 data.dd_prop = ZPOOL_CONFIG_PHYS_PATH; 381 data.dd_found = B_FALSE; 382 data.dd_isdisk = wholedisk; 383 384 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 385 386 return (data.dd_found); 387 } 388 389 /* 390 * Given a /devices path, lookup the corresponding devid for each minor node, 391 * and find any vdevs with matching devids. Doing this straight up would be 392 * rather inefficient, O(minor nodes * vdevs in system), so we take advantage of 393 * the fact that each devid ends with "/<minornode>". Once we find any valid 394 * minor node, we chop off the portion after the last slash, and then search for 395 * matching vdevs, which is O(vdevs in system). 396 */ 397 static boolean_t 398 devid_iter(const char *devpath, zfs_process_func_t func, boolean_t wholedisk) 399 { 400 size_t len = strlen(devpath) + sizeof ("/devices") + 401 sizeof (PHYS_PATH) - 1; 402 char *fullpath; 403 int fd; 404 ddi_devid_t devid; 405 char *devidstr, *fulldevid; 406 dev_data_t data = { 0 }; 407 408 /* 409 * Try to open a known minor node. 410 */ 411 fullpath = alloca(len); 412 (void) snprintf(fullpath, len, "/devices%s%s", devpath, PHYS_PATH); 413 if ((fd = open(fullpath, O_RDONLY)) < 0) 414 return (B_FALSE); 415 416 /* 417 * Determine the devid as a string, with no trailing slash for the minor 418 * node. 419 */ 420 if (devid_get(fd, &devid) != 0) { 421 (void) close(fd); 422 return (B_FALSE); 423 } 424 (void) close(fd); 425 426 if ((devidstr = devid_str_encode(devid, NULL)) == NULL) { 427 devid_free(devid); 428 return (B_FALSE); 429 } 430 431 len = strlen(devidstr) + 2; 432 fulldevid = alloca(len); 433 (void) snprintf(fulldevid, len, "%s/", devidstr); 434 435 data.dd_compare = fulldevid; 436 data.dd_func = func; 437 data.dd_prop = ZPOOL_CONFIG_DEVID; 438 data.dd_found = B_FALSE; 439 data.dd_isdisk = wholedisk; 440 441 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 442 443 devid_str_free(devidstr); 444 devid_free(devid); 445 446 return (data.dd_found); 447 } 448 449 /* 450 * This function is called when we receive a devfs add event. This can be 451 * either a disk event or a lofi event, and the behavior is slightly different 452 * depending on which it is. 453 */ 454 static int 455 zfs_deliver_add(nvlist_t *nvl, boolean_t is_lofi) 456 { 457 char *devpath, *devname; 458 char path[PATH_MAX], realpath[PATH_MAX]; 459 char *colon, *raw; 460 int ret; 461 462 /* 463 * The main unit of operation is the physical device path. For disks, 464 * this is the device node, as all minor nodes are affected. For lofi 465 * devices, this includes the minor path. Unfortunately, this isn't 466 * represented in the DEV_PHYS_PATH for various reasons. 467 */ 468 if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath) != 0) 469 return (-1); 470 471 /* 472 * If this is a lofi device, then also get the minor instance name. 473 * Unfortunately, the current payload doesn't include an easy way to get 474 * this information. So we cheat by resolving the 'dev_name' (which 475 * refers to the raw device) and taking the portion between ':(*),raw'. 476 */ 477 (void) strlcpy(realpath, devpath, sizeof (realpath)); 478 if (is_lofi) { 479 if (nvlist_lookup_string(nvl, DEV_NAME, 480 &devname) == 0 && 481 (ret = resolvepath(devname, path, 482 sizeof (path))) > 0) { 483 path[ret] = '\0'; 484 colon = strchr(path, ':'); 485 if (colon != NULL) 486 raw = strstr(colon + 1, ",raw"); 487 if (colon != NULL && raw != NULL) { 488 *raw = '\0'; 489 (void) snprintf(realpath, 490 sizeof (realpath), "%s%s", 491 devpath, colon); 492 *raw = ','; 493 } 494 } 495 } 496 497 /* 498 * Iterate over all vdevs with a matching devid, and then those with a 499 * matching /devices path. For disks, we only want to pay attention to 500 * vdevs marked as whole disks. For lofi, we don't care (because we're 501 * matching an exact minor name). 502 */ 503 if (!devid_iter(realpath, zfs_process_add, !is_lofi)) 504 (void) devpath_iter(realpath, zfs_process_add, !is_lofi); 505 506 return (0); 507 } 508 509 /* 510 * Called when we receive a VDEV_CHECK event, which indicates a device could not 511 * be opened during initial pool open, but the autoreplace property was set on 512 * the pool. In this case, we treat it as if it were an add event. 513 */ 514 static int 515 zfs_deliver_check(nvlist_t *nvl) 516 { 517 dev_data_t data = { 0 }; 518 519 if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, 520 &data.dd_pool_guid) != 0 || 521 nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, 522 &data.dd_vdev_guid) != 0 || 523 data.dd_vdev_guid == 0) 524 return (0); 525 526 data.dd_isdisk = B_TRUE; 527 data.dd_func = zfs_process_add; 528 529 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 530 531 return (0); 532 } 533 534 #define DEVICE_PREFIX "/devices" 535 536 static int 537 zfsdle_vdev_online(zpool_handle_t *zhp, void *data) 538 { 539 char *devname = data; 540 boolean_t avail_spare, l2cache; 541 vdev_state_t newstate; 542 nvlist_t *tgt; 543 544 syseventd_print(9, "zfsdle_vdev_online: searching for %s in pool %s\n", 545 devname, zpool_get_name(zhp)); 546 547 if ((tgt = zpool_find_vdev_by_physpath(zhp, devname, 548 &avail_spare, &l2cache, NULL)) != NULL) { 549 char *path, fullpath[MAXPATHLEN]; 550 uint64_t wholedisk = 0ULL; 551 552 verify(nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH, 553 &path) == 0); 554 verify(nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK, 555 &wholedisk) == 0); 556 557 (void) strlcpy(fullpath, path, sizeof (fullpath)); 558 if (wholedisk) { 559 fullpath[strlen(fullpath) - 2] = '\0'; 560 561 /* 562 * We need to reopen the pool associated with this 563 * device so that the kernel can update the size 564 * of the expanded device. 565 */ 566 (void) zpool_reopen(zhp); 567 } 568 569 if (zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) { 570 syseventd_print(9, "zfsdle_vdev_online: setting device" 571 " device %s to ONLINE state in pool %s.\n", 572 fullpath, zpool_get_name(zhp)); 573 if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL) 574 (void) zpool_vdev_online(zhp, fullpath, 0, 575 &newstate); 576 } 577 zpool_close(zhp); 578 return (1); 579 } 580 zpool_close(zhp); 581 return (0); 582 } 583 584 int 585 zfs_deliver_dle(nvlist_t *nvl) 586 { 587 char *devname; 588 if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) != 0) { 589 syseventd_print(9, "zfs_deliver_event: no physpath\n"); 590 return (-1); 591 } 592 if (strncmp(devname, DEVICE_PREFIX, strlen(DEVICE_PREFIX)) != 0) { 593 syseventd_print(9, "zfs_deliver_event: invalid " 594 "device '%s'", devname); 595 return (-1); 596 } 597 598 /* 599 * We try to find the device using the physical 600 * path that has been supplied. We need to strip off 601 * the /devices prefix before starting our search. 602 */ 603 devname += strlen(DEVICE_PREFIX); 604 if (zpool_iter(g_zfshdl, zfsdle_vdev_online, devname) != 1) { 605 syseventd_print(9, "zfs_deliver_event: device '%s' not" 606 " found\n", devname); 607 return (1); 608 } 609 return (0); 610 } 611 612 613 /*ARGSUSED*/ 614 static int 615 zfs_deliver_event(sysevent_t *ev, int unused) 616 { 617 const char *class = sysevent_get_class_name(ev); 618 const char *subclass = sysevent_get_subclass_name(ev); 619 nvlist_t *nvl; 620 int ret; 621 boolean_t is_lofi, is_check, is_dle = B_FALSE; 622 623 if (strcmp(class, EC_DEV_ADD) == 0) { 624 /* 625 * We're mainly interested in disk additions, but we also listen 626 * for new lofi devices, to allow for simplified testing. 627 */ 628 if (strcmp(subclass, ESC_DISK) == 0) 629 is_lofi = B_FALSE; 630 else if (strcmp(subclass, ESC_LOFI) == 0) 631 is_lofi = B_TRUE; 632 else 633 return (0); 634 635 is_check = B_FALSE; 636 } else if (strcmp(class, EC_ZFS) == 0 && 637 strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) { 638 /* 639 * This event signifies that a device failed to open during pool 640 * load, but the 'autoreplace' property was set, so we should 641 * pretend it's just been added. 642 */ 643 is_check = B_TRUE; 644 } else if (strcmp(class, EC_DEV_STATUS) == 0 && 645 strcmp(subclass, ESC_DEV_DLE) == 0) { 646 is_dle = B_TRUE; 647 } else { 648 return (0); 649 } 650 651 if (sysevent_get_attr_list(ev, &nvl) != 0) 652 return (-1); 653 654 if (is_dle) 655 ret = zfs_deliver_dle(nvl); 656 else if (is_check) 657 ret = zfs_deliver_check(nvl); 658 else 659 ret = zfs_deliver_add(nvl, is_lofi); 660 661 nvlist_free(nvl); 662 return (ret); 663 } 664 665 /*ARGSUSED*/ 666 void * 667 zfs_enum_pools(void *arg) 668 { 669 (void) zpool_iter(g_zfshdl, zfs_unavail_pool, (void *)&g_pool_list); 670 if (!list_is_empty(&g_pool_list)) 671 g_tpool = tpool_create(1, sysconf(_SC_NPROCESSORS_ONLN), 672 0, NULL); 673 g_enumeration_done = B_TRUE; 674 return (NULL); 675 } 676 677 static struct slm_mod_ops zfs_mod_ops = { 678 SE_MAJOR_VERSION, SE_MINOR_VERSION, 10, zfs_deliver_event 679 }; 680 681 struct slm_mod_ops * 682 slm_init() 683 { 684 if ((g_zfshdl = libzfs_init()) == NULL) 685 return (NULL); 686 /* 687 * collect a list of unavailable pools (asynchronously, 688 * since this can take a while) 689 */ 690 list_create(&g_pool_list, sizeof (struct unavailpool), 691 offsetof(struct unavailpool, uap_node)); 692 if (thr_create(NULL, 0, zfs_enum_pools, NULL, 0, &g_zfs_tid) != 0) 693 return (NULL); 694 return (&zfs_mod_ops); 695 } 696 697 void 698 slm_fini() 699 { 700 unavailpool_t *pool; 701 702 if (g_tpool != NULL) { 703 tpool_wait(g_tpool); 704 tpool_destroy(g_tpool); 705 } 706 while ((pool = (list_head(&g_pool_list))) != NULL) { 707 list_remove(&g_pool_list, pool); 708 zpool_close(pool->uap_zhp); 709 free(pool); 710 } 711 (void) thr_join(g_zfs_tid, NULL, NULL); 712 list_destroy(&g_pool_list); 713 libzfs_fini(g_zfshdl); 714 } 715