xref: /illumos-gate/usr/src/cmd/sgs/rtld/sparcv9/sparc_elf.c (revision bac580724643c7779231d57696e30d2b4056d372)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * SPARC V9 machine dependent and ELF file class dependent functions.
30  * Contains routines for performing function binding and symbol relocations.
31  */
32 #include	"_synonyms.h"
33 
34 #include	<stdio.h>
35 #include	<sys/elf.h>
36 #include	<sys/elf_SPARC.h>
37 #include	<sys/mman.h>
38 #include	<dlfcn.h>
39 #include	<synch.h>
40 #include	<string.h>
41 #include	<debug.h>
42 #include	<reloc.h>
43 #include	<conv.h>
44 #include	"_rtld.h"
45 #include	"_audit.h"
46 #include	"_elf.h"
47 #include	"msg.h"
48 
49 extern void	iflush_range(caddr_t, size_t);
50 extern void	plt_upper_32(uintptr_t, uintptr_t);
51 extern void	plt_upper_44(uintptr_t, uintptr_t);
52 extern void	plt_full_range(uintptr_t, uintptr_t);
53 extern void	elf_rtbndr(Rt_map *, ulong_t, caddr_t);
54 extern void	elf_rtbndr_far(Rt_map *, ulong_t, caddr_t);
55 
56 
57 int
58 elf_mach_flags_check(Rej_desc *rej, Ehdr *ehdr)
59 {
60 	/*
61 	 * Check machine type and flags.
62 	 */
63 	if (ehdr->e_flags & EF_SPARC_EXT_MASK) {
64 		/*
65 		 * Check vendor-specific extensions.
66 		 */
67 		if (ehdr->e_flags & EF_SPARC_HAL_R1) {
68 			rej->rej_type = SGS_REJ_HAL;
69 			rej->rej_info = (uint_t)ehdr->e_flags;
70 			return (0);
71 		}
72 		if ((ehdr->e_flags & EF_SPARC_SUN_US3) & ~at_flags) {
73 			rej->rej_type = SGS_REJ_US3;
74 			rej->rej_info = (uint_t)ehdr->e_flags;
75 			return (0);
76 		}
77 
78 		/*
79 		 * Generic check.
80 		 * All of our 64-bit SPARC's support the US1 (UltraSPARC 1)
81 		 * instructions so that bit isn't worth checking for explicitly.
82 		 */
83 		if ((ehdr->e_flags & EF_SPARC_EXT_MASK) & ~at_flags) {
84 			rej->rej_type = SGS_REJ_BADFLAG;
85 			rej->rej_info = (uint_t)ehdr->e_flags;
86 			return (0);
87 		}
88 	} else if ((ehdr->e_flags & ~EF_SPARCV9_MM) != 0) {
89 		rej->rej_type = SGS_REJ_BADFLAG;
90 		rej->rej_info = (uint_t)ehdr->e_flags;
91 		return (0);
92 	}
93 	return (1);
94 }
95 
96 
97 void
98 ldso_plt_init(Rt_map * lmp)
99 {
100 	/*
101 	 * There is no need to analyze ld.so because we don't map in any of
102 	 * its dependencies.  However we may map these dependencies in later
103 	 * (as if ld.so had dlopened them), so initialize the plt and the
104 	 * permission information.
105 	 */
106 	if (PLTGOT(lmp)) {
107 		Xword pltoff;
108 
109 		/*
110 		 * Install the lm pointer in .PLT2 as per the ABI.
111 		 */
112 		pltoff = (2 * M_PLT_ENTSIZE) / M_PLT_INSSIZE;
113 		elf_plt2_init(PLTGOT(lmp) + pltoff, lmp);
114 
115 		/*
116 		 * The V9 ABI states that the first 32k PLT entries
117 		 * use .PLT1, with .PLT0 used by the "latter" entries.
118 		 * We don't currently implement the extendend format,
119 		 * so install an error handler in .PLT0 to catch anyone
120 		 * trying to use it.
121 		 */
122 		elf_plt_init(PLTGOT(lmp), (caddr_t)elf_rtbndr_far);
123 
124 		/*
125 		 * Initialize .PLT1
126 		 */
127 		pltoff = M_PLT_ENTSIZE / M_PLT_INSSIZE;
128 		elf_plt_init(PLTGOT(lmp) + pltoff, (caddr_t)elf_rtbndr);
129 	}
130 }
131 
132 /*
133  * elf_plt_write() will test to see how far away our destination
134  *	address lies.  If it is close enough that a branch can
135  *	be used instead of a jmpl - we will fill the plt in with
136  * 	single branch.  The branches are much quicker then
137  *	a jmpl instruction - see bug#4356879 for further
138  *	details.
139  *
140  *	NOTE: we pass in both a 'pltaddr' and a 'vpltaddr' since
141  *		librtld/dldump update PLT's who's physical
142  *		address is not the same as the 'virtual' runtime
143  *		address.
144  */
145 Pltbindtype
146 elf_plt_write(uintptr_t addr, uintptr_t vaddr, void *rptr, uintptr_t symval,
147 	Xword pltndx)
148 {
149 	Rela		*rel = (Rela *)rptr;
150 	uintptr_t	nsym = ~symval;
151 	uintptr_t	vpltaddr, pltaddr;
152 	long		disp;
153 
154 
155 	pltaddr = addr + rel->r_offset;
156 	vpltaddr = vaddr + rel->r_offset;
157 	disp = symval - vpltaddr - 4;
158 
159 	if (pltndx >= (M64_PLT_NEARPLTS - M_PLT_XNumber)) {
160 		*((Sxword *)pltaddr) = (uintptr_t)symval +
161 			(uintptr_t)rel->r_addend - vaddr;
162 		DBG_CALL(pltcntfar++);
163 		return (PLT_T_FAR);
164 	}
165 
166 	/*
167 	 * Test if the destination address is close enough to use
168 	 * a ba,a... instruction to reach it.
169 	 */
170 	if (S_INRANGE(disp, 23) && !(rtld_flags & RT_FL_NOBAPLT)) {
171 		uint_t		*pltent, bainstr;
172 		Pltbindtype	rc;
173 
174 		pltent = (uint_t *)pltaddr;
175 		/*
176 		 * The
177 		 *
178 		 *	ba,a,pt %icc, <dest>
179 		 *
180 		 * is the most efficient of the PLT's.  If we
181 		 * are within +-20 bits - use that branch.
182 		 */
183 		if (S_INRANGE(disp, 20)) {
184 			bainstr = M_BA_A_PT;	/* ba,a,pt %icc,<dest> */
185 			/* LINTED */
186 			bainstr |= (uint_t)(S_MASK(19) & (disp >> 2));
187 			rc = PLT_T_21D;
188 			DBG_CALL(pltcnt21d++);
189 		} else {
190 			/*
191 			 * Otherwise - we fall back to the good old
192 			 *
193 			 *	ba,a	<dest>
194 			 *
195 			 * Which still beats a jmpl instruction.
196 			 */
197 			bainstr = M_BA_A;		/* ba,a <dest> */
198 			/* LINTED */
199 			bainstr |= (uint_t)(S_MASK(22) & (disp >> 2));
200 			rc = PLT_T_24D;
201 			DBG_CALL(pltcnt24d++);
202 		}
203 
204 		pltent[2] = M_NOP;		/* nop instr */
205 		pltent[1] = bainstr;
206 
207 		iflush_range((char *)(&pltent[1]), 4);
208 		pltent[0] = M_NOP;		/* nop instr */
209 		iflush_range((char *)(&pltent[0]), 4);
210 		return (rc);
211 	}
212 
213 	if ((nsym >> 32) == 0) {
214 		plt_upper_32(pltaddr, symval);
215 		DBG_CALL(pltcntu32++);
216 		return (PLT_T_U32);
217 	}
218 
219 	if ((nsym >> 44) == 0) {
220 		plt_upper_44(pltaddr, symval);
221 		DBG_CALL(pltcntu44++);
222 		return (PLT_T_U44);
223 	}
224 
225 	/*
226 	 * The PLT destination is not in reach of
227 	 * a branch instruction - so we fall back
228 	 * to a 'jmpl' sequence.
229 	 */
230 	plt_full_range(pltaddr, symval);
231 	DBG_CALL(pltcntfull++);
232 	return (PLT_T_FULL);
233 }
234 
235 
236 
237 /*
238  * Once relocated, the following 6 instruction sequence moves
239  * a 64-bit immediate value into register %g1
240  */
241 #define	VAL64_TO_G1 \
242 /* 0x00 */	0x0b, 0x00, 0x00, 0x00,	/* sethi %hh(value), %g5 */ \
243 /* 0x04 */	0x8a, 0x11, 0x60, 0x00,	/* or %g5, %hm(value), %g5 */ \
244 /* 0x08 */	0x8b, 0x29, 0x70, 0x20,	/* sllx %g5, 32, %g5 */ \
245 /* 0x0c */	0x03, 0x00, 0x00, 0x00,	/* sethi %lm(value), %g1 */ \
246 /* 0x10 */	0x82, 0x10, 0x60, 0x00,	/* or %g1, %lo(value), %g1 */ \
247 /* 0x14 */	0x82, 0x10, 0x40, 0x05	/* or %g1, %g5, %g1 */
248 
249 /*
250  * Local storage space created on the stack created for this glue
251  * code includes space for:
252  *		0x8	pointer to dyn_data
253  *		0x8	size prev stack frame
254  */
255 static const Byte dyn_plt_template[] = {
256 /* 0x0 */	0x2a, 0xcf, 0x80, 0x03,	/* brnz,a,pt %fp, 0xc	*/
257 /* 0x4 */	0x82, 0x27, 0x80, 0x0e,	/* sub %fp, %sp, %g1 */
258 /* 0x8 */	0x82, 0x10, 0x20, 0xb0,	/* mov 176, %g1	*/
259 /* 0xc */	0x9d, 0xe3, 0xbf, 0x40,	/* save %sp, -192, %sp	*/
260 /* 0x10 */	0xc2, 0x77, 0xa7, 0xef,	/* stx %g1, [%fp + 2031] */
261 
262 					/* store prev stack size */
263 /* 0x14 */	VAL64_TO_G1,		/* dyn_data to g1 */
264 /* 0x2c */	0xc2, 0x77, 0xa7, 0xf7,	/* stx %g1, [%fp + 2039] */
265 
266 /* 0x30 */	VAL64_TO_G1,		/* elf_plt_trace() addr to g1 */
267 
268 					/* Call to elf_plt_trace() via g1 */
269 /* 0x48 */	0x9f, 0xc0, 0x60, 0x00,	/* jmpl ! link r[15] to addr in g1 */
270 /* 0x4c */	0x01, 0x00, 0x00, 0x00	/* nop ! for jmpl delay slot *AND* */
271 					/*	to get 8-byte alignment */
272 };
273 
274 
275 int	dyn_plt_ent_size = sizeof (dyn_plt_template) +
276 		sizeof (Addr) +		/* reflmp */
277 		sizeof (Addr) +		/* deflmp */
278 		sizeof (Word) +		/* symndx */
279 		sizeof (Word) +		/* sb_flags */
280 		sizeof (Sym);		/* symdef */
281 
282 
283 /*
284  * the dynamic plt entry is:
285  *
286  *	brnz,a,pt	%fp, 1f
287  *	sub     	%sp, %fp, %g1
288  *	mov     	SA(MINFRAME), %g1
289  * 1:
290  *	save    	%sp, -(SA(MINFRAME) + (2 * CLONGSIZE)), %sp
291  *
292  *	! store prev stack size
293  *	stx     	%g1, [%fp + STACK_BIAS - (2 * CLONGSIZE)]
294  *
295  * 2:
296  *	! move dyn_data to %g1
297  *	sethi   	%hh(dyn_data), %g5
298  *	or      	%g5, %hm(dyn_data), %g5
299  *	sllx    	%g5, 32, %g5
300  *	sethi   	%lm(dyn_data), %g1
301  *	or      	%g1, %lo(dyn_data), %g1
302  *	or      	%g1, %g5, %g1
303  *
304  *	! store dyn_data ptr on frame (from %g1)
305  *	 stx     	%g1, [%fp + STACK_BIAS - CLONGSIZE]
306  *
307  *	! Move address of elf_plt_trace() into %g1
308  *	[Uses same 6 instructions as shown at label 2: above. Not shown.]
309  *
310  *	! Use JMPL to make call. CALL instruction is limited to 30-bits.
311  *	! of displacement.
312  *	jmp1		%g1, %o7
313  *
314  *	! JMPL has a delay slot that must be filled. And, the sequence
315  *	! of instructions needs to have 8-byte alignment. This NOP does both.
316  *	! The alignment is needed for the data we put following the
317  *	! instruction.
318  *	nop
319  *
320  * dyn data:
321  *	Addr		reflmp
322  *	Addr		deflmp
323  *	Word		symndx
324  *	Word		sb_flags
325  *	Sym		symdef  (Elf64_Sym = 24-bytes)
326  */
327 
328 
329 /*
330  * Relocate the instructions given by the VAL64_TO_G1 macro above.
331  *
332  * entry:
333  *	lml - link map list
334  *	dyndata - Value being relocated (addend)
335  *	code_base - Address of 1st instruction in sequence.
336  *
337  * exit:
338  *	Returns TRUE for success, FALSE for failure.
339  */
340 static int
341 reloc_val64_to_g1(Lm_list *lml, Addr *dyndata, Byte *code_base)
342 {
343 	Xword	symvalue;
344 
345 	/*
346 	 * relocating:
347 	 *	sethi	%hh(dyndata), %g5
348 	 */
349 	symvalue = (Xword)dyndata;
350 	if (do_reloc(R_SPARC_HH22, code_base,
351 	    &symvalue, MSG_ORIG(MSG_SYM_LADYNDATA),
352 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
353 		return (0);
354 	}
355 
356 	/*
357 	 * relocating:
358 	 *	or	%g5, %hm(dyndata), %g5
359 	 */
360 	symvalue = (Xword)dyndata;
361 	if (do_reloc(R_SPARC_HM10, code_base + 4,
362 	    &symvalue, MSG_ORIG(MSG_SYM_LADYNDATA),
363 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
364 		return (0);
365 	}
366 
367 	/*
368 	 * relocating:
369 	 *	sethi	%lm(dyndata), %g1
370 	 */
371 	symvalue = (Xword)dyndata;
372 	if (do_reloc(R_SPARC_LM22, code_base + 12,
373 	    &symvalue, MSG_ORIG(MSG_SYM_LADYNDATA),
374 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
375 		return (0);
376 	}
377 
378 	/*
379 	 * relocating:
380 	 *	or	%g1, %lo(dyndata), %g1
381 	 */
382 	symvalue = (Xword)dyndata;
383 	if (do_reloc(R_SPARC_LO10, code_base + 16,
384 	    &symvalue, MSG_ORIG(MSG_SYM_LADYNDATA),
385 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
386 		return (0);
387 	}
388 
389 	return (1);
390 }
391 
392 static caddr_t
393 elf_plt_trace_write(caddr_t addr, Rela * rptr, Rt_map * rlmp, Rt_map * dlmp,
394     Sym * sym, uint_t symndx, ulong_t pltndx, caddr_t to, uint_t sb_flags,
395     int *fail)
396 {
397 	extern ulong_t	elf_plt_trace();
398 	Addr		dyn_plt, *dyndata;
399 
400 	/*
401 	 * If both pltenter & pltexit have been disabled there
402 	 * there is no reason to even create the glue code.
403 	 */
404 	if ((sb_flags & (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) ==
405 	    (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) {
406 		(void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr,
407 		    rptr, (uintptr_t)to, pltndx);
408 		return (to);
409 	}
410 
411 	/*
412 	 * We only need to add the glue code if there is an auditing
413 	 * library that is interested in this binding.
414 	 */
415 	dyn_plt = (Xword)AUDINFO(rlmp)->ai_dynplts +
416 	    (pltndx * dyn_plt_ent_size);
417 
418 	/*
419 	 * Have we initialized this dynamic plt entry yet?  If we haven't do it
420 	 * now.  Otherwise this function has been called before, but from a
421 	 * different plt (ie. from another shared object).  In that case
422 	 * we just set the plt to point to the new dyn_plt.
423 	 */
424 	if (*(Word *)dyn_plt == 0) {
425 		Sym	*symp;
426 		Lm_list	*lml = LIST(rlmp);
427 
428 		(void) memcpy((void *)dyn_plt, dyn_plt_template,
429 		    sizeof (dyn_plt_template));
430 		dyndata = (Addr *)(dyn_plt + sizeof (dyn_plt_template));
431 
432 		/*
433 		 * relocating:
434 		 *	VAL64_TO_G1(dyndata)
435 		 *	VAL64_TO_G1(&elf_plt_trace)
436 		 */
437 		if (!(reloc_val64_to_g1(lml, dyndata,
438 					(Byte *) (dyn_plt + 0x14)) &&
439 			reloc_val64_to_g1(lml, (Addr *)&elf_plt_trace,
440 					(Byte *) (dyn_plt + 0x30)))) {
441 			*fail = 1;
442 			return (0);
443 		}
444 
445 		*dyndata++ = (Addr)rlmp;
446 		*dyndata++ = (Addr)dlmp;
447 
448 		/*
449 		 * symndx in the high word, sb_flags in the low.
450 		 */
451 		*dyndata = (Addr)sb_flags;
452 		*(Word *)dyndata = symndx;
453 		dyndata++;
454 
455 		symp = (Sym *)dyndata;
456 		*symp = *sym;
457 		symp->st_value = (Addr)to;
458 		iflush_range((void *)dyn_plt, sizeof (dyn_plt_template));
459 	}
460 
461 	(void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr, rptr,
462 	    (uintptr_t)dyn_plt, pltndx);
463 	return ((caddr_t)dyn_plt);
464 }
465 
466 /*
467  * Function binding routine - invoked on the first call to a function through
468  * the procedure linkage table;
469  * passes first through an assembly language interface.
470  *
471  * Takes the address of the PLT entry where the call originated,
472  * the offset into the relocation table of the associated
473  * relocation entry and the address of the link map (rt_private_map struct)
474  * for the entry.
475  *
476  * Returns the address of the function referenced after re-writing the PLT
477  * entry to invoke the function directly.
478  *
479  * On error, causes process to terminate with a signal.
480  */
481 
482 ulong_t
483 elf_bndr(Rt_map *lmp, ulong_t pltoff, caddr_t from)
484 {
485 	Rt_map		*nlmp, *llmp;
486 	Addr		addr, vaddr, reloff, symval;
487 	char		*name;
488 	Rela		*rptr;
489 	Sym		*sym, *nsym;
490 	Xword		pltndx;
491 	uint_t		binfo, sb_flags = 0;
492 	ulong_t		rsymndx;
493 	Slookup		sl;
494 	Pltbindtype	pbtype;
495 	int		entry, lmflags, farplt = 0;
496 	uint_t		dbg_class;
497 	Lm_list		*lml = LIST(lmp);
498 
499 	/*
500 	 * For compatibility with libthread (TI_VERSION 1) we track the entry
501 	 * value.  A zero value indicates we have recursed into ld.so.1 to
502 	 * further process a locking request.  Under this recursion we disable
503 	 * tsort and cleanup activities.
504 	 */
505 	entry = enter();
506 
507 	if ((lmflags = lml->lm_flags) & LML_FLG_RTLDLM) {
508 		dbg_class = dbg_desc->d_class;
509 		dbg_desc->d_class = 0;
510 	}
511 
512 	/*
513 	 * Must calculate true plt relocation address from reloc.
514 	 * Take offset, subtract number of reserved PLT entries, and divide
515 	 * by PLT entry size, which should give the index of the plt
516 	 * entry (and relocation entry since they have been defined to be
517 	 * in the same order).  Then we must multiply by the size of
518 	 * a relocation entry, which will give us the offset of the
519 	 * plt relocation entry from the start of them given by JMPREL(lm).
520 	 */
521 	addr = pltoff - M_PLT_RESERVSZ;
522 
523 	if (pltoff < (M64_PLT_NEARPLTS * M_PLT_ENTSIZE)) {
524 		pltndx = addr / M_PLT_ENTSIZE;
525 	} else {
526 		ulong_t	pltblockoff;
527 
528 		pltblockoff = pltoff - (M64_PLT_NEARPLTS * M_PLT_ENTSIZE);
529 		pltndx = M64_PLT_NEARPLTS +
530 			((pltblockoff / M64_PLT_FBLOCKSZ) * M64_PLT_FBLKCNTS) +
531 			((pltblockoff % M64_PLT_FBLOCKSZ) / M64_PLT_FENTSIZE) -
532 			M_PLT_XNumber;
533 		farplt = 1;
534 	}
535 
536 	/*
537 	 * Perform some basic sanity checks.  If we didn't get a load map
538 	 * or the plt offset is invalid then its possible someone has walked
539 	 * over the plt entries or jumped to plt[01] out of the blue.
540 	 */
541 	if (!lmp || (!farplt && (addr % M_PLT_ENTSIZE) != 0) ||
542 	    (farplt && (addr % M_PLT_INSSIZE))) {
543 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_PLTREF),
544 		    conv_reloc_SPARC_type(R_SPARC_JMP_SLOT),
545 		    EC_NATPTR(lmp), EC_XWORD(pltoff), EC_NATPTR(from));
546 		rtldexit(lml, 1);
547 	}
548 	reloff = pltndx * sizeof (Rela);
549 
550 	/*
551 	 * Use relocation entry to get symbol table entry and symbol name.
552 	 */
553 	addr = (ulong_t)JMPREL(lmp);
554 	rptr = (Rela *)(addr + reloff);
555 	rsymndx = ELF_R_SYM(rptr->r_info);
556 	sym = (Sym *)((ulong_t)SYMTAB(lmp) + (rsymndx * SYMENT(lmp)));
557 	name = (char *)(STRTAB(lmp) + sym->st_name);
558 
559 	/*
560 	 * Determine the last link-map of this list, this'll be the starting
561 	 * point for any tsort() processing.
562 	 */
563 	llmp = lml->lm_tail;
564 
565 	/*
566 	 * Find definition for symbol.
567 	 */
568 	sl.sl_name = name;
569 	sl.sl_cmap = lmp;
570 	sl.sl_imap = lml->lm_head;
571 	sl.sl_hash = 0;
572 	sl.sl_rsymndx = rsymndx;
573 	sl.sl_flags = LKUP_DEFT;
574 	if ((nsym = lookup_sym(&sl, &nlmp, &binfo)) == 0) {
575 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp),
576 		    demangle(name));
577 		rtldexit(lml, 1);
578 	}
579 
580 	symval = nsym->st_value;
581 	if (!(FLAGS(nlmp) & FLG_RT_FIXED) &&
582 	    (nsym->st_shndx != SHN_ABS))
583 		symval += ADDR(nlmp);
584 	if ((lmp != nlmp) && ((FLAGS1(nlmp) & FL1_RT_NOINIFIN) == 0)) {
585 		/*
586 		 * Record that this new link map is now bound to the caller.
587 		 */
588 		if (bind_one(lmp, nlmp, BND_REFER) == 0)
589 			rtldexit(lml, 1);
590 	}
591 
592 	if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_SYMBIND) {
593 		/* LINTED */
594 		uint_t	symndx = (uint_t)(((uintptr_t)nsym -
595 			(uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp));
596 
597 		symval = audit_symbind(lmp, nlmp, nsym, symndx, symval,
598 			&sb_flags);
599 	}
600 
601 	if (FLAGS(lmp) & FLG_RT_FIXED)
602 		vaddr = 0;
603 	else
604 		vaddr = ADDR(lmp);
605 
606 	pbtype = PLT_T_NONE;
607 	if (!(rtld_flags & RT_FL_NOBIND)) {
608 		if (((lml->lm_tflags | FLAGS1(lmp)) &
609 		    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
610 		    AUDINFO(lmp)->ai_dynplts) {
611 			int	fail = 0;
612 			/* LINTED */
613 			uint_t	symndx = (uint_t)(((uintptr_t)nsym -
614 				(uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp));
615 
616 			symval = (ulong_t)elf_plt_trace_write((caddr_t)vaddr,
617 			    rptr, lmp, nlmp, nsym, symndx, pltndx,
618 			    (caddr_t)symval, sb_flags, &fail);
619 			if (fail)
620 				rtldexit(lml, 1);
621 		} else {
622 			/*
623 			 * Write standard PLT entry to jump directly
624 			 * to newly bound function.
625 			 */
626 			pbtype = elf_plt_write((uintptr_t)vaddr,
627 				(uintptr_t)vaddr, rptr, symval, pltndx);
628 		}
629 	}
630 
631 	/*
632 	 * Print binding information and rebuild PLT entry.
633 	 */
634 	DBG_CALL(Dbg_bind_global(lmp, (Addr)from, (Off)(from - ADDR(lmp)),
635 	    (Xword)pltndx, pbtype, nlmp, (Addr)symval, nsym->st_value,
636 	    name, binfo));
637 
638 	/*
639 	 * Complete any processing for newly loaded objects.  Note we don't
640 	 * know exactly where any new objects are loaded (we know the object
641 	 * that supplied the symbol, but others may have been loaded lazily as
642 	 * we searched for the symbol), so sorting starts from the last
643 	 * link-map know on entry to this routine.
644 	 */
645 	if (entry)
646 		load_completion(llmp, lmp);
647 
648 	/*
649 	 * Some operations like dldump() or dlopen()'ing a relocatable object
650 	 * result in objects being loaded on rtld's link-map, make sure these
651 	 * objects are initialized also.
652 	 */
653 	if ((LIST(nlmp)->lm_flags & LML_FLG_RTLDLM) && LIST(nlmp)->lm_init)
654 		load_completion(nlmp, 0);
655 
656 	/*
657 	 * If the object we've bound to is in the process of being initialized
658 	 * by another thread, determine whether we should block.
659 	 */
660 	is_dep_ready(nlmp, lmp, DBG_WAIT_SYMBOL);
661 
662 	/*
663 	 * Make sure the object to which we've bound has had it's .init fired.
664 	 * Cleanup before return to user code.
665 	 */
666 	if (entry) {
667 		is_dep_init(nlmp, lmp);
668 		leave(LIST(lmp));
669 	}
670 
671 	if (lmflags & LML_FLG_RTLDLM)
672 		dbg_desc->d_class = dbg_class;
673 
674 	return (symval);
675 }
676 
677 
678 static int
679 bindpltpad(Rt_map *lmp, List *padlist, Addr value, void **pltaddr,
680     const char *fname, const char *sname)
681 {
682 	Listnode	*lnp, *prevlnp;
683 	Pltpadinfo	*pip;
684 	void		*plt;
685 	uintptr_t	pltoff;
686 	Rela		rel;
687 	int		i;
688 
689 	prevlnp = 0;
690 	for (LIST_TRAVERSE(padlist, lnp, pip)) {
691 		if (pip->pp_addr == value) {
692 			*pltaddr = pip->pp_plt;
693 			DBG_CALL(Dbg_bind_pltpad_from(lmp, (Addr)*pltaddr,
694 			    sname));
695 			return (1);
696 		}
697 		if (pip->pp_addr > value)
698 			break;
699 		prevlnp = lnp;
700 	}
701 
702 	plt = PLTPAD(lmp);
703 	pltoff = (uintptr_t)plt - (uintptr_t)ADDR(lmp);
704 
705 	PLTPAD(lmp) = (void *)((uintptr_t)PLTPAD(lmp) + M_PLT_ENTSIZE);
706 
707 	if (PLTPAD(lmp) > PLTPADEND(lmp)) {
708 		/*
709 		 * Just fail in usual relocation way
710 		 */
711 		*pltaddr = (void *)value;
712 		return (1);
713 	}
714 	rel.r_offset = pltoff;
715 	rel.r_info = 0;
716 	rel.r_addend = 0;
717 
718 
719 	/*
720 	 * elf_plt_write assumes the plt was previously filled
721 	 * with NOP's, so fill it in now.
722 	 */
723 	for (i = 0; i < (M_PLT_ENTSIZE / sizeof (uint_t)); i++) {
724 		((uint_t *)plt)[i] = M_NOP;
725 	}
726 	iflush_range((caddr_t)plt, M_PLT_ENTSIZE);
727 
728 	(void) elf_plt_write(ADDR(lmp), ADDR(lmp), &rel, value, 0);
729 
730 	if ((pip = calloc(sizeof (Pltpadinfo), 1)) == 0)
731 		return (0);
732 	pip->pp_addr = value;
733 	pip->pp_plt = plt;
734 
735 	if (prevlnp)
736 		lnp = list_insert(padlist, pip, prevlnp);
737 	else
738 		lnp = list_prepend(padlist, pip);
739 
740 	if (!lnp) {
741 		free(pip);
742 		return (0);
743 	}
744 
745 	*pltaddr = plt;
746 	DBG_CALL(Dbg_bind_pltpad_to(lmp, (Addr)*pltaddr, fname, sname));
747 	return (1);
748 }
749 
750 /*
751  * Read and process the relocations for one link object, we assume all
752  * relocation sections for loadable segments are stored contiguously in
753  * the file.
754  */
755 int
756 elf_reloc(Rt_map *lmp, uint_t plt)
757 {
758 	ulong_t		relbgn, relend, relsiz, basebgn, pltbgn, pltend;
759 	ulong_t		roffset, rsymndx, psymndx = 0, etext = ETEXT(lmp);
760 	ulong_t		emap, pltndx;
761 	uint_t		dsymndx, binfo, pbinfo;
762 	Byte		rtype;
763 	long		reladd;
764 	Addr		value, pvalue;
765 	Sym		*symref, *psymref, *symdef, *psymdef;
766 	char		*name, *pname;
767 	Rt_map		*_lmp, *plmp;
768 	int		textrel = 0, ret = 1, noplt = 0;
769 	long		relacount = RELACOUNT(lmp);
770 	Rela		*rel;
771 	Pltbindtype	pbtype;
772 	List		pltpadlist = {0, 0};
773 	Alist		*bound = 0;
774 
775 	/*
776 	 * If an object has any DT_REGISTER entries associated with
777 	 * it, they are processed now.
778 	 */
779 	if ((plt == 0) && (FLAGS(lmp) & FLG_RT_REGSYMS)) {
780 		if (elf_regsyms(lmp) == 0)
781 			return (0);
782 	}
783 
784 	/*
785 	 * Although only necessary for lazy binding, initialize the first
786 	 * procedure linkage table entry to go to elf_rtbndr().  dbx(1) seems
787 	 * to find this useful.
788 	 */
789 	if ((plt == 0) && PLTGOT(lmp)) {
790 		Xword pltoff;
791 
792 		if ((ulong_t)PLTGOT(lmp) < etext) {
793 			if (elf_set_prot(lmp, PROT_WRITE) == 0)
794 				return (0);
795 			textrel = 1;
796 		}
797 
798 		/*
799 		 * Install the lm pointer in .PLT2 as per the ABI.
800 		 */
801 		pltoff = (2 * M_PLT_ENTSIZE) / M_PLT_INSSIZE;
802 		elf_plt2_init(PLTGOT(lmp) + pltoff, lmp);
803 
804 		/*
805 		 * The V9 ABI states that the first 32k PLT entries
806 		 * use .PLT1, with .PLT0 used by the "latter" entries.
807 		 * We don't currently implement the extendend format,
808 		 * so install an error handler in .PLT0 to catch anyone
809 		 * trying to use it.
810 		 */
811 		elf_plt_init(PLTGOT(lmp), (caddr_t)elf_rtbndr_far);
812 
813 		/*
814 		 * Initialize .PLT1
815 		 */
816 		pltoff = M_PLT_ENTSIZE / M_PLT_INSSIZE;
817 		elf_plt_init(PLTGOT(lmp) + pltoff, (caddr_t)elf_rtbndr);
818 	}
819 
820 	/*
821 	 * Initialize the plt start and end addresses.
822 	 */
823 	if ((pltbgn = (ulong_t)JMPREL(lmp)) != 0)
824 		pltend = pltbgn + (ulong_t)(PLTRELSZ(lmp));
825 
826 	/*
827 	 * If we've been called upon to promote an RTLD_LAZY object to an
828 	 * RTLD_NOW then we're only interested in scaning the .plt table.
829 	 */
830 	if (plt) {
831 		relbgn = pltbgn;
832 		relend = pltend;
833 	} else {
834 		/*
835 		 * The relocation sections appear to the run-time linker as a
836 		 * single table.  Determine the address of the beginning and end
837 		 * of this table.  There are two different interpretations of
838 		 * the ABI at this point:
839 		 *
840 		 *   o	The REL table and its associated RELSZ indicate the
841 		 *	concatenation of *all* relocation sections (this is the
842 		 *	model our link-editor constructs).
843 		 *
844 		 *   o	The REL table and its associated RELSZ indicate the
845 		 *	concatenation of all *but* the .plt relocations.  These
846 		 *	relocations are specified individually by the JMPREL and
847 		 *	PLTRELSZ entries.
848 		 *
849 		 * Determine from our knowledege of the relocation range and
850 		 * .plt range, the range of the total relocation table.  Note
851 		 * that one other ABI assumption seems to be that the .plt
852 		 * relocations always follow any other relocations, the
853 		 * following range checking drops that assumption.
854 		 */
855 		relbgn = (ulong_t)(REL(lmp));
856 		relend = relbgn + (ulong_t)(RELSZ(lmp));
857 		if (pltbgn) {
858 			if (!relbgn || (relbgn > pltbgn))
859 				relbgn = pltbgn;
860 			if (!relbgn || (relend < pltend))
861 				relend = pltend;
862 		}
863 	}
864 	if (!relbgn || (relbgn == relend)) {
865 		DBG_CALL(Dbg_reloc_run(lmp, 0, plt, DBG_REL_NONE));
866 		return (1);
867 	}
868 
869 	relsiz = (ulong_t)(RELENT(lmp));
870 	basebgn = ADDR(lmp);
871 	emap = ADDR(lmp) + MSIZE(lmp);
872 
873 	DBG_CALL(Dbg_reloc_run(lmp, M_REL_SHT_TYPE, plt, DBG_REL_START));
874 
875 	/*
876 	 * If we're processing in lazy mode there is no need to scan the
877 	 * .rela.plt table.
878 	 */
879 	if (pltbgn && ((MODE(lmp) & RTLD_NOW) == 0))
880 		noplt = 1;
881 
882 	/*
883 	 * Loop through relocations.
884 	 */
885 	while (relbgn < relend) {
886 		Addr		vaddr;
887 		uint_t		sb_flags = 0;
888 
889 		rtype = (Byte)ELF_R_TYPE(((Rela *)relbgn)->r_info);
890 
891 		/*
892 		 * If this is a RELATIVE relocation in a shared object
893 		 * (the common case), and if we are not debugging, then
894 		 * jump into a tighter relocaiton loop (elf_reloc_relacount)
895 		 * Only make the jump if we've been given a hint on the
896 		 * number of relocations.
897 		 */
898 		if ((rtype == R_SPARC_RELATIVE) &&
899 		    ((FLAGS(lmp) & FLG_RT_FIXED) == 0) && (DBG_ENABLED == 0)) {
900 			/*
901 			 * It's possible that the relative relocation block
902 			 * has relocations against the text segment as well
903 			 * as the data segment.  Since our optimized relocation
904 			 * engine does not check which segment the relocation
905 			 * is against - just mprotect it now if it's been
906 			 * marked as containing TEXTREL's.
907 			 */
908 			if ((textrel == 0) && (FLAGS1(lmp) & FL1_RT_TEXTREL)) {
909 				if (elf_set_prot(lmp, PROT_WRITE) == 0) {
910 					ret = 0;
911 					break;
912 				}
913 				textrel = 1;
914 			}
915 			if (relacount) {
916 				relbgn = elf_reloc_relacount(relbgn, relacount,
917 				    relsiz, basebgn);
918 				relacount = 0;
919 			} else {
920 				relbgn = elf_reloc_relative(relbgn, relend,
921 				    relsiz, basebgn, etext, emap);
922 			}
923 			if (relbgn >= relend)
924 				break;
925 			rtype = (Byte)ELF_R_TYPE(((Rela *)relbgn)->r_info);
926 		}
927 
928 		roffset = ((Rela *)relbgn)->r_offset;
929 
930 		reladd = (long)(((Rela *)relbgn)->r_addend);
931 		rsymndx = ELF_R_SYM(((Rela *)relbgn)->r_info);
932 
933 		rel = (Rela *)relbgn;
934 		relbgn += relsiz;
935 
936 		/*
937 		 * Optimizations.
938 		 */
939 		if (rtype == R_SPARC_NONE)
940 			continue;
941 		if (noplt && ((ulong_t)rel >= pltbgn) &&
942 		    ((ulong_t)rel < pltend)) {
943 			relbgn = pltend;
944 			continue;
945 		}
946 
947 		if (rtype != R_SPARC_REGISTER) {
948 			/*
949 			 * If this is a shared object, add the base address
950 			 * to offset.
951 			 */
952 			if (!(FLAGS(lmp) & FLG_RT_FIXED))
953 				roffset += basebgn;
954 
955 			/*
956 			 * If this relocation is not against part of the image
957 			 * mapped into memory we skip it.
958 			 */
959 			if ((roffset < ADDR(lmp)) || (roffset > (ADDR(lmp) +
960 			    MSIZE(lmp)))) {
961 				elf_reloc_bad(lmp, (void *)rel, rtype, roffset,
962 				    rsymndx);
963 				continue;
964 			}
965 		}
966 
967 		/*
968 		 * If we're promoting plts determine if this one has already
969 		 * been written. An uninitialized plts' second instruction is a
970 		 * branch.
971 		 */
972 		if (plt) {
973 			uchar_t	*_roffset = (uchar_t *)roffset;
974 
975 			_roffset += M_PLT_INSSIZE;
976 			/* LINTED */
977 			if ((*(uint_t *)_roffset &
978 			    (~(S_MASK(19)))) != M_BA_A_XCC)
979 				continue;
980 		}
981 
982 		binfo = 0;
983 		pltndx = (ulong_t)-1;
984 		pbtype = PLT_T_NONE;
985 		/*
986 		 * If a symbol index is specified then get the symbol table
987 		 * entry, locate the symbol definition, and determine its
988 		 * address.
989 		 */
990 		if (rsymndx) {
991 			/*
992 			 * Get the local symbol table entry.
993 			 */
994 			symref = (Sym *)((ulong_t)SYMTAB(lmp) +
995 			    (rsymndx * SYMENT(lmp)));
996 
997 			/*
998 			 * If this is a local symbol, just use the base address.
999 			 * (we should have no local relocations in the
1000 			 * executable).
1001 			 */
1002 			if (ELF_ST_BIND(symref->st_info) == STB_LOCAL) {
1003 				value = basebgn;
1004 				name = (char *)0;
1005 
1006 				/*
1007 				 * TLS relocation - value for DTPMOD relocation
1008 				 * is the TLS modid.
1009 				 */
1010 				if (rtype == M_R_DTPMOD)
1011 					value = TLSMODID(lmp);
1012 			} else {
1013 				/*
1014 				 * If the symbol index is equal to the previous
1015 				 * symbol index relocation we processed then
1016 				 * reuse the previous values. (Note that there
1017 				 * have been cases where a relocation exists
1018 				 * against a copy relocation symbol, our ld(1)
1019 				 * should optimize this away, but make sure we
1020 				 * don't use the same symbol information should
1021 				 * this case exist).
1022 				 */
1023 				if ((rsymndx == psymndx) &&
1024 				    (rtype != R_SPARC_COPY)) {
1025 					/* LINTED */
1026 					if (psymdef == 0) {
1027 						DBG_CALL(Dbg_bind_weak(lmp,
1028 						    (Addr)roffset, (Addr)
1029 						    (roffset - basebgn), name));
1030 						continue;
1031 					}
1032 					/* LINTED */
1033 					value = pvalue;
1034 					/* LINTED */
1035 					name = pname;
1036 					symdef = psymdef;
1037 					/* LINTED */
1038 					symref = psymref;
1039 					/* LINTED */
1040 					_lmp = plmp;
1041 					/* LINTED */
1042 					binfo = pbinfo;
1043 
1044 					if ((LIST(_lmp)->lm_tflags |
1045 					    FLAGS1(_lmp)) &
1046 					    LML_TFLG_AUD_SYMBIND) {
1047 						value = audit_symbind(lmp, _lmp,
1048 						    /* LINTED */
1049 						    symdef, dsymndx, value,
1050 						    &sb_flags);
1051 					}
1052 				} else {
1053 					Slookup		sl;
1054 					uchar_t		bind;
1055 
1056 					/*
1057 					 * Lookup the symbol definition.
1058 					 */
1059 					name = (char *)(STRTAB(lmp) +
1060 					    symref->st_name);
1061 
1062 					sl.sl_name = name;
1063 					sl.sl_cmap = lmp;
1064 					sl.sl_imap = 0;
1065 					sl.sl_hash = 0;
1066 					sl.sl_rsymndx = rsymndx;
1067 
1068 					if (rtype == R_SPARC_COPY)
1069 						sl.sl_flags = LKUP_COPY;
1070 					else
1071 						sl.sl_flags = LKUP_DEFT;
1072 
1073 					sl.sl_flags |= LKUP_ALLCNTLIST;
1074 
1075 					if (rtype != R_SPARC_JMP_SLOT)
1076 						sl.sl_flags |= LKUP_SPEC;
1077 
1078 					bind = ELF_ST_BIND(symref->st_info);
1079 					if (bind == STB_WEAK)
1080 						sl.sl_flags |= LKUP_WEAK;
1081 
1082 					symdef = lookup_sym(&sl, &_lmp, &binfo);
1083 
1084 					/*
1085 					 * If the symbol is not found and the
1086 					 * reference was not to a weak symbol,
1087 					 * report an error.  Weak references
1088 					 * may be unresolved.
1089 					 * chkmsg: MSG_INTL(MSG_LDD_SYM_NFOUND)
1090 					 */
1091 					if (symdef == 0) {
1092 					    Lm_list	*lml = LIST(lmp);
1093 
1094 					    if (bind != STB_WEAK) {
1095 						if (lml->lm_flags &
1096 						    LML_FLG_IGNRELERR) {
1097 						    continue;
1098 						} else if (lml->lm_flags &
1099 						    LML_FLG_TRC_WARN) {
1100 						    (void) printf(MSG_INTL(
1101 							MSG_LDD_SYM_NFOUND),
1102 							demangle(name),
1103 							NAME(lmp));
1104 						    continue;
1105 						} else {
1106 						    eprintf(lml, ERR_FATAL,
1107 							MSG_INTL(MSG_REL_NOSYM),
1108 							NAME(lmp),
1109 							demangle(name));
1110 						    ret = 0;
1111 						    break;
1112 						}
1113 					    } else {
1114 						psymndx = rsymndx;
1115 						psymdef = 0;
1116 
1117 						DBG_CALL(Dbg_bind_weak(lmp,
1118 						    (Addr)roffset, (Addr)
1119 						    (roffset - basebgn), name));
1120 						continue;
1121 					    }
1122 					}
1123 
1124 					/*
1125 					 * If symbol was found in an object
1126 					 * other than the referencing object
1127 					 * then record the binding.
1128 					 */
1129 					if ((lmp != _lmp) && ((FLAGS1(_lmp) &
1130 					    FL1_RT_NOINIFIN) == 0)) {
1131 						if (alist_test(&bound, _lmp,
1132 						    sizeof (Rt_map *),
1133 						    AL_CNT_RELBIND) == 0) {
1134 							ret = 0;
1135 							break;
1136 						}
1137 					}
1138 
1139 					/*
1140 					 * Calculate the location of definition;
1141 					 * symbol value plus base address of
1142 					 * containing shared object.
1143 					 */
1144 					value = symdef->st_value;
1145 					if (!(FLAGS(_lmp) & FLG_RT_FIXED) &&
1146 					    (symdef->st_shndx != SHN_ABS) &&
1147 					    (ELF_ST_TYPE(symdef->st_info) !=
1148 					    STT_TLS))
1149 						value += ADDR(_lmp);
1150 
1151 					/*
1152 					 * Retain this symbol index and the
1153 					 * value in case it can be used for the
1154 					 * subsequent relocations.
1155 					 */
1156 					if (rtype != R_SPARC_COPY) {
1157 						psymndx = rsymndx;
1158 						pvalue = value;
1159 						pname = name;
1160 						psymdef = symdef;
1161 						psymref = symref;
1162 						plmp = _lmp;
1163 						pbinfo = binfo;
1164 					}
1165 					if ((LIST(_lmp)->lm_tflags |
1166 					    FLAGS1(_lmp)) &
1167 					    LML_TFLG_AUD_SYMBIND) {
1168 						/* LINTED */
1169 						dsymndx = (((uintptr_t)symdef -
1170 						    (uintptr_t)SYMTAB(_lmp)) /
1171 						    SYMENT(_lmp));
1172 						value = audit_symbind(lmp, _lmp,
1173 						    symdef, dsymndx, value,
1174 						    &sb_flags);
1175 					}
1176 				}
1177 
1178 				/*
1179 				 * If relocation is PC-relative, subtract
1180 				 * offset address.
1181 				 */
1182 				if (IS_PC_RELATIVE(rtype))
1183 					value -= roffset;
1184 
1185 				/*
1186 				 * TLS relocation - value for DTPMOD relocation
1187 				 * is the TLS modid.
1188 				 */
1189 				if (rtype == M_R_DTPMOD)
1190 					value = TLSMODID(_lmp);
1191 				else if (rtype == M_R_TPOFF)
1192 					value = -(TLSSTATOFF(_lmp) - value);
1193 			}
1194 		} else {
1195 			/*
1196 			 * Special cases, a regsiter symbol associated with
1197 			 * symbol index 0 is initialized (i.e. relocated) to
1198 			 * a constant in the r_addend field rather than to a
1199 			 * symbol value.
1200 			 *
1201 			 * A DTPMOD relocation is a local binding to a TLS
1202 			 * symbol.  Fill in the TLSMODID for the current object.
1203 			 */
1204 			if (rtype == R_SPARC_REGISTER)
1205 				value = 0;
1206 			else if (rtype == M_R_DTPMOD)
1207 				value = TLSMODID(lmp);
1208 			else
1209 				value = basebgn;
1210 			name = (char *)0;
1211 		}
1212 
1213 		/*
1214 		 * If this object has relocations in the text segment, turn
1215 		 * off the write protect.
1216 		 */
1217 		if ((rtype != R_SPARC_REGISTER) && (roffset < etext) &&
1218 		    (textrel == 0)) {
1219 			if (elf_set_prot(lmp, PROT_WRITE) == 0) {
1220 				ret = 0;
1221 				break;
1222 			}
1223 			textrel = 1;
1224 		}
1225 
1226 		/*
1227 		 * Call relocation routine to perform required relocation.
1228 		 */
1229 		DBG_CALL(Dbg_reloc_in(LIST(lmp), ELF_DBG_RTLD, M_MACH,
1230 		    M_REL_SHT_TYPE, rel, NULL, name));
1231 
1232 		switch (rtype) {
1233 		case R_SPARC_REGISTER:
1234 			/*
1235 			 * The v9 ABI 4.2.4 says that system objects may,
1236 			 * but are not required to, use register symbols
1237 			 * to inidcate how they use global registers. Thus
1238 			 * at least %g6, %g7 must be allowed in addition
1239 			 * to %g2 and %g3.
1240 			 */
1241 			value += reladd;
1242 			if (roffset == STO_SPARC_REGISTER_G1) {
1243 				set_sparc_g1(value);
1244 			} else if (roffset == STO_SPARC_REGISTER_G2) {
1245 				set_sparc_g2(value);
1246 			} else if (roffset == STO_SPARC_REGISTER_G3) {
1247 				set_sparc_g3(value);
1248 			} else if (roffset == STO_SPARC_REGISTER_G4) {
1249 				set_sparc_g4(value);
1250 			} else if (roffset == STO_SPARC_REGISTER_G5) {
1251 				set_sparc_g5(value);
1252 			} else if (roffset == STO_SPARC_REGISTER_G6) {
1253 				set_sparc_g6(value);
1254 			} else if (roffset == STO_SPARC_REGISTER_G7) {
1255 				set_sparc_g7(value);
1256 			} else {
1257 				eprintf(LIST(lmp), ERR_FATAL,
1258 				    MSG_INTL(MSG_REL_BADREG), NAME(lmp),
1259 				    EC_ADDR(roffset));
1260 				ret = 0;
1261 				break;
1262 			}
1263 
1264 			DBG_CALL(Dbg_reloc_apply_reg(LIST(lmp), ELF_DBG_RTLD,
1265 			    M_MACH, (Xword)roffset, (Xword)value));
1266 			break;
1267 		case R_SPARC_COPY:
1268 			if (elf_copy_reloc(name, symref, lmp, (void *)roffset,
1269 			    symdef, _lmp, (const void *)value) == 0)
1270 				ret = 0;
1271 			break;
1272 		case R_SPARC_JMP_SLOT:
1273 			pltndx = ((uintptr_t)rel -
1274 				(uintptr_t)JMPREL(lmp)) / relsiz;
1275 
1276 			if (FLAGS(lmp) & FLG_RT_FIXED)
1277 				vaddr = 0;
1278 			else
1279 				vaddr = ADDR(lmp);
1280 
1281 			if (((LIST(lmp)->lm_tflags | FLAGS1(lmp)) &
1282 			    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
1283 			    AUDINFO(lmp)->ai_dynplts) {
1284 				int	fail = 0;
1285 				/* LINTED */
1286 				uint_t	symndx = (uint_t)(((uintptr_t)symdef -
1287 					(uintptr_t)SYMTAB(_lmp)) /
1288 					SYMENT(_lmp));
1289 
1290 				(void) elf_plt_trace_write((caddr_t)vaddr,
1291 				    (Rela *)rel, lmp, _lmp, symdef, symndx,
1292 				    pltndx, (caddr_t)value, sb_flags, &fail);
1293 				if (fail)
1294 					ret = 0;
1295 			} else {
1296 				/*
1297 				 * Write standard PLT entry to jump directly
1298 				 * to newly bound function.
1299 				 */
1300 				DBG_CALL(Dbg_reloc_apply_val(LIST(lmp),
1301 				    ELF_DBG_RTLD, (Xword)roffset,
1302 				    (Xword)value));
1303 				pbtype = elf_plt_write((uintptr_t)vaddr,
1304 				    (uintptr_t)vaddr, (void *)rel, value,
1305 				    pltndx);
1306 			}
1307 			break;
1308 		case R_SPARC_WDISP30:
1309 			if (PLTPAD(lmp) &&
1310 			    (S_INRANGE((Sxword)value, 29) == 0)) {
1311 				void *	plt = 0;
1312 
1313 				if (bindpltpad(lmp, &pltpadlist,
1314 				    value + roffset, &plt,
1315 				    NAME(_lmp), name) == 0) {
1316 					ret = 0;
1317 					break;
1318 				}
1319 				value = (Addr)((Addr)plt - roffset);
1320 			}
1321 			/* FALLTHROUGH */
1322 		default:
1323 			value += reladd;
1324 			if (IS_EXTOFFSET(rtype))
1325 				value += (Word)ELF_R_TYPE_DATA(rel->r_info);
1326 
1327 			/*
1328 			 * Write the relocation out.  If this relocation is a
1329 			 * common basic write, skip the doreloc() engine.
1330 			 */
1331 			if ((rtype == R_SPARC_GLOB_DAT) ||
1332 			    (rtype == R_SPARC_64)) {
1333 				if (roffset & 0x7) {
1334 					eprintf(LIST(lmp), ERR_FATAL,
1335 					    MSG_INTL(MSG_REL_NONALIGN),
1336 					    conv_reloc_SPARC_type(rtype),
1337 					    NAME(lmp), demangle(name),
1338 					    EC_OFF(roffset));
1339 					ret = 0;
1340 				} else
1341 					*(ulong_t *)roffset += value;
1342 			} else {
1343 				if (do_reloc(rtype, (uchar_t *)roffset,
1344 				    (Xword *)&value, name,
1345 				    NAME(lmp), LIST(lmp)) == 0)
1346 					ret = 0;
1347 			}
1348 
1349 			/*
1350 			 * The value now contains the 'bit-shifted' value that
1351 			 * was or'ed into memory (this was set by do_reloc()).
1352 			 */
1353 			DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), ELF_DBG_RTLD,
1354 			    (Xword)roffset, (Xword)value));
1355 
1356 			/*
1357 			 * If this relocation is against a text segment, make
1358 			 * sure that the instruction cache is flushed.
1359 			 */
1360 			if (textrel)
1361 				iflush_range((caddr_t)roffset, 0x4);
1362 		}
1363 
1364 		if ((ret == 0) &&
1365 		    ((LIST(lmp)->lm_flags & LML_FLG_TRC_WARN) == 0))
1366 			break;
1367 
1368 		if (binfo) {
1369 			DBG_CALL(Dbg_bind_global(lmp, (Addr)roffset,
1370 			    (Off)(roffset - basebgn), pltndx, pbtype,
1371 			    _lmp, (Addr)value, symdef->st_value, name, binfo));
1372 		}
1373 	}
1374 
1375 	/*
1376 	 * Free up any items on the pltpadlist if it was allocated
1377 	 */
1378 	if (pltpadlist.head) {
1379 		Listnode *	lnp;
1380 		Listnode *	plnp;
1381 		Pltpadinfo *	pip;
1382 
1383 		plnp = 0;
1384 		for (LIST_TRAVERSE(&pltpadlist, lnp, pip)) {
1385 			if (plnp != 0)
1386 				free(plnp);
1387 			free(pip);
1388 			plnp = lnp;
1389 		}
1390 		if (plnp != 0)
1391 			free(plnp);
1392 	}
1393 
1394 	return (relocate_finish(lmp, bound, textrel, ret));
1395 }
1396 
1397 /*
1398  * Provide a machine specific interface to the conversion routine.  By calling
1399  * the machine specific version, rather than the generic version, we insure that
1400  * the data tables/strings for all known machine versions aren't dragged into
1401  * ld.so.1.
1402  */
1403 const char *
1404 _conv_reloc_type(uint_t rel)
1405 {
1406 	return (conv_reloc_SPARC_type(rel));
1407 }
1408