xref: /illumos-gate/usr/src/cmd/sgs/rtld/sparcv9/sparc_elf.c (revision 67d74cc3e7c9d9461311136a0b2069813a3fd927)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
25  */
26 
27 /*
28  * SPARC V9 machine dependent and ELF file class dependent functions.
29  * Contains routines for performing function binding and symbol relocations.
30  */
31 
32 #include	<stdio.h>
33 #include	<sys/elf.h>
34 #include	<sys/elf_SPARC.h>
35 #include	<sys/mman.h>
36 #include	<dlfcn.h>
37 #include	<synch.h>
38 #include	<string.h>
39 #include	<debug.h>
40 #include	<reloc.h>
41 #include	<conv.h>
42 #include	"_rtld.h"
43 #include	"_audit.h"
44 #include	"_elf.h"
45 #include	"_inline_gen.h"
46 #include	"_inline_reloc.h"
47 #include	"msg.h"
48 
49 extern void	iflush_range(caddr_t, size_t);
50 extern void	plt_upper_32(uintptr_t, uintptr_t);
51 extern void	plt_upper_44(uintptr_t, uintptr_t);
52 extern void	plt_full_range(uintptr_t, uintptr_t);
53 extern void	elf_rtbndr(Rt_map *, ulong_t, caddr_t);
54 extern void	elf_rtbndr_far(Rt_map *, ulong_t, caddr_t);
55 
56 int
57 elf_mach_flags_check(Rej_desc *rej, Ehdr *ehdr)
58 {
59 	/*
60 	 * Check machine type and flags.
61 	 */
62 	if (ehdr->e_flags & EF_SPARC_EXT_MASK) {
63 		/*
64 		 * Check vendor-specific extensions.
65 		 */
66 		if (ehdr->e_flags & EF_SPARC_HAL_R1) {
67 			rej->rej_type = SGS_REJ_HAL;
68 			rej->rej_info = (uint_t)ehdr->e_flags;
69 			return (0);
70 		}
71 		if ((ehdr->e_flags & EF_SPARC_SUN_US3) & ~at_flags) {
72 			rej->rej_type = SGS_REJ_US3;
73 			rej->rej_info = (uint_t)ehdr->e_flags;
74 			return (0);
75 		}
76 
77 		/*
78 		 * Generic check.
79 		 * All of our 64-bit SPARC's support the US1 (UltraSPARC 1)
80 		 * instructions so that bit isn't worth checking for explicitly.
81 		 */
82 		if ((ehdr->e_flags & EF_SPARC_EXT_MASK) & ~at_flags) {
83 			rej->rej_type = SGS_REJ_BADFLAG;
84 			rej->rej_info = (uint_t)ehdr->e_flags;
85 			return (0);
86 		}
87 	} else if ((ehdr->e_flags & ~EF_SPARCV9_MM) != 0) {
88 		rej->rej_type = SGS_REJ_BADFLAG;
89 		rej->rej_info = (uint_t)ehdr->e_flags;
90 		return (0);
91 	}
92 	return (1);
93 }
94 
95 
96 void
97 ldso_plt_init(Rt_map *lmp)
98 {
99 	/*
100 	 * There is no need to analyze ld.so because we don't map in any of
101 	 * its dependencies.  However we may map these dependencies in later
102 	 * (as if ld.so had dlopened them), so initialize the plt and the
103 	 * permission information.
104 	 */
105 	if (PLTGOT(lmp)) {
106 		Xword pltoff;
107 
108 		/*
109 		 * Install the lm pointer in .PLT2 as per the ABI.
110 		 */
111 		pltoff = (2 * M_PLT_ENTSIZE) / M_PLT_INSSIZE;
112 		elf_plt2_init(PLTGOT(lmp) + pltoff, lmp);
113 
114 		/*
115 		 * The V9 ABI states that the first 32k PLT entries
116 		 * use .PLT1, with .PLT0 used by the "latter" entries.
117 		 * We don't currently implement the extendend format,
118 		 * so install an error handler in .PLT0 to catch anyone
119 		 * trying to use it.
120 		 */
121 		elf_plt_init(PLTGOT(lmp), (caddr_t)elf_rtbndr_far);
122 
123 		/*
124 		 * Initialize .PLT1
125 		 */
126 		pltoff = M_PLT_ENTSIZE / M_PLT_INSSIZE;
127 		elf_plt_init(PLTGOT(lmp) + pltoff, (caddr_t)elf_rtbndr);
128 	}
129 }
130 
131 /*
132  * elf_plt_write() will test to see how far away our destination
133  *	address lies.  If it is close enough that a branch can
134  *	be used instead of a jmpl - we will fill the plt in with
135  * 	single branch.  The branches are much quicker then
136  *	a jmpl instruction - see bug#4356879 for further
137  *	details.
138  *
139  *	NOTE: we pass in both a 'pltaddr' and a 'vpltaddr' since
140  *		librtld/dldump update PLT's who's physical
141  *		address is not the same as the 'virtual' runtime
142  *		address.
143  */
144 Pltbindtype
145 elf_plt_write(uintptr_t addr, uintptr_t vaddr, void *rptr, uintptr_t symval,
146 	Xword pltndx)
147 {
148 	Rela		*rel = (Rela *)rptr;
149 	uintptr_t	nsym = ~symval;
150 	uintptr_t	vpltaddr, pltaddr;
151 	long		disp;
152 
153 
154 	pltaddr = addr + rel->r_offset;
155 	vpltaddr = vaddr + rel->r_offset;
156 	disp = symval - vpltaddr - 4;
157 
158 	if (pltndx >= (M64_PLT_NEARPLTS - M_PLT_XNumber)) {
159 		*((Sxword *)pltaddr) = (uintptr_t)symval +
160 		    (uintptr_t)rel->r_addend - vaddr;
161 		DBG_CALL(pltcntfar++);
162 		return (PLT_T_FAR);
163 	}
164 
165 	/*
166 	 * Test if the destination address is close enough to use
167 	 * a ba,a... instruction to reach it.
168 	 */
169 	if (S_INRANGE(disp, 23) && !(rtld_flags & RT_FL_NOBAPLT)) {
170 		uint_t		*pltent, bainstr;
171 		Pltbindtype	rc;
172 
173 		pltent = (uint_t *)pltaddr;
174 
175 		/*
176 		 * The
177 		 *
178 		 *	ba,a,pt %icc, <dest>
179 		 *
180 		 * is the most efficient of the PLT's.  If we
181 		 * are within +-20 bits - use that branch.
182 		 */
183 		if (S_INRANGE(disp, 20)) {
184 			bainstr = M_BA_A_PT;	/* ba,a,pt %icc,<dest> */
185 			/* LINTED */
186 			bainstr |= (uint_t)(S_MASK(19) & (disp >> 2));
187 			rc = PLT_T_21D;
188 			DBG_CALL(pltcnt21d++);
189 		} else {
190 			/*
191 			 * Otherwise - we fall back to the good old
192 			 *
193 			 *	ba,a	<dest>
194 			 *
195 			 * Which still beats a jmpl instruction.
196 			 */
197 			bainstr = M_BA_A;		/* ba,a <dest> */
198 			/* LINTED */
199 			bainstr |= (uint_t)(S_MASK(22) & (disp >> 2));
200 			rc = PLT_T_24D;
201 			DBG_CALL(pltcnt24d++);
202 		}
203 
204 		pltent[2] = M_NOP;		/* nop instr */
205 		pltent[1] = bainstr;
206 
207 		iflush_range((char *)(&pltent[1]), 4);
208 		pltent[0] = M_NOP;		/* nop instr */
209 		iflush_range((char *)(&pltent[0]), 4);
210 		return (rc);
211 	}
212 
213 	if ((nsym >> 32) == 0) {
214 		plt_upper_32(pltaddr, symval);
215 		DBG_CALL(pltcntu32++);
216 		return (PLT_T_U32);
217 	}
218 
219 	if ((nsym >> 44) == 0) {
220 		plt_upper_44(pltaddr, symval);
221 		DBG_CALL(pltcntu44++);
222 		return (PLT_T_U44);
223 	}
224 
225 	/*
226 	 * The PLT destination is not in reach of
227 	 * a branch instruction - so we fall back
228 	 * to a 'jmpl' sequence.
229 	 */
230 	plt_full_range(pltaddr, symval);
231 	DBG_CALL(pltcntfull++);
232 	return (PLT_T_FULL);
233 }
234 
235 /*
236  * Once relocated, the following 6 instruction sequence moves
237  * a 64-bit immediate value into register %g1
238  */
239 #define	VAL64_TO_G1 \
240 /* 0x00 */	0x0b, 0x00, 0x00, 0x00,	/* sethi %hh(value), %g5 */ \
241 /* 0x04 */	0x8a, 0x11, 0x60, 0x00,	/* or %g5, %hm(value), %g5 */ \
242 /* 0x08 */	0x8b, 0x29, 0x70, 0x20,	/* sllx %g5, 32, %g5 */ \
243 /* 0x0c */	0x03, 0x00, 0x00, 0x00,	/* sethi %lm(value), %g1 */ \
244 /* 0x10 */	0x82, 0x10, 0x60, 0x00,	/* or %g1, %lo(value), %g1 */ \
245 /* 0x14 */	0x82, 0x10, 0x40, 0x05	/* or %g1, %g5, %g1 */
246 
247 /*
248  * Local storage space created on the stack created for this glue
249  * code includes space for:
250  *		0x8	pointer to dyn_data
251  *		0x8	size prev stack frame
252  */
253 static const Byte dyn_plt_template[] = {
254 /* 0x0 */	0x2a, 0xcf, 0x80, 0x03,	/* brnz,a,pt %fp, 0xc	*/
255 /* 0x4 */	0x82, 0x27, 0x80, 0x0e,	/* sub %fp, %sp, %g1 */
256 /* 0x8 */	0x82, 0x10, 0x20, 0xb0,	/* mov 176, %g1	*/
257 /* 0xc */	0x9d, 0xe3, 0xbf, 0x40,	/* save %sp, -192, %sp	*/
258 /* 0x10 */	0xc2, 0x77, 0xa7, 0xef,	/* stx %g1, [%fp + 2031] */
259 
260 					/* store prev stack size */
261 /* 0x14 */	VAL64_TO_G1,		/* dyn_data to g1 */
262 /* 0x2c */	0xc2, 0x77, 0xa7, 0xf7,	/* stx %g1, [%fp + 2039] */
263 
264 /* 0x30 */	VAL64_TO_G1,		/* elf_plt_trace() addr to g1 */
265 
266 					/* Call to elf_plt_trace() via g1 */
267 /* 0x48 */	0x9f, 0xc0, 0x60, 0x00,	/* jmpl ! link r[15] to addr in g1 */
268 /* 0x4c */	0x01, 0x00, 0x00, 0x00	/* nop ! for jmpl delay slot *AND* */
269 					/*	to get 8-byte alignment */
270 };
271 
272 int	dyn_plt_ent_size = sizeof (dyn_plt_template) +
273 		sizeof (Addr) +		/* reflmp */
274 		sizeof (Addr) +		/* deflmp */
275 		sizeof (Word) +		/* symndx */
276 		sizeof (Word) +		/* sb_flags */
277 		sizeof (Sym);		/* symdef */
278 
279 /*
280  * the dynamic plt entry is:
281  *
282  *	brnz,a,pt	%fp, 1f
283  *	sub     	%sp, %fp, %g1
284  *	mov     	SA(MINFRAME), %g1
285  * 1:
286  *	save    	%sp, -(SA(MINFRAME) + (2 * CLONGSIZE)), %sp
287  *
288  *	! store prev stack size
289  *	stx     	%g1, [%fp + STACK_BIAS - (2 * CLONGSIZE)]
290  *
291  * 2:
292  *	! move dyn_data to %g1
293  *	sethi   	%hh(dyn_data), %g5
294  *	or      	%g5, %hm(dyn_data), %g5
295  *	sllx    	%g5, 32, %g5
296  *	sethi   	%lm(dyn_data), %g1
297  *	or      	%g1, %lo(dyn_data), %g1
298  *	or      	%g1, %g5, %g1
299  *
300  *	! store dyn_data ptr on frame (from %g1)
301  *	 stx     	%g1, [%fp + STACK_BIAS - CLONGSIZE]
302  *
303  *	! Move address of elf_plt_trace() into %g1
304  *	[Uses same 6 instructions as shown at label 2: above. Not shown.]
305  *
306  *	! Use JMPL to make call. CALL instruction is limited to 30-bits.
307  *	! of displacement.
308  *	jmp1		%g1, %o7
309  *
310  *	! JMPL has a delay slot that must be filled. And, the sequence
311  *	! of instructions needs to have 8-byte alignment. This NOP does both.
312  *	! The alignment is needed for the data we put following the
313  *	! instruction.
314  *	nop
315  *
316  * dyn data:
317  *	Addr		reflmp
318  *	Addr		deflmp
319  *	Word		symndx
320  *	Word		sb_flags
321  *	Sym		symdef  (Elf64_Sym = 24-bytes)
322  */
323 
324 /*
325  * Relocate the instructions given by the VAL64_TO_G1 macro above.
326  * The arguments parallel those of do_reloc_rtld().
327  *
328  * entry:
329  *	off - Address of 1st instruction in sequence.
330  *	value - Value being relocated (addend)
331  *	sym - Name of value being relocated.
332  *	lml - link map list
333  *
334  * exit:
335  *	Returns TRUE for success, FALSE for failure.
336  */
337 static int
338 reloc_val64_to_g1(uchar_t *off, Addr *value, const char *sym, Lm_list *lml)
339 {
340 	Xword	tmp_value;
341 
342 	/*
343 	 * relocating:
344 	 *	sethi	%hh(value), %g5
345 	 */
346 	tmp_value = (Xword)value;
347 	if (do_reloc_rtld(R_SPARC_HH22, off, &tmp_value, sym,
348 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
349 		return (0);
350 	}
351 
352 	/*
353 	 * relocating:
354 	 *	or	%g5, %hm(value), %g5
355 	 */
356 	tmp_value = (Xword)value;
357 	if (do_reloc_rtld(R_SPARC_HM10, off + 4, &tmp_value, sym,
358 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
359 		return (0);
360 	}
361 
362 	/*
363 	 * relocating:
364 	 *	sethi	%lm(value), %g1
365 	 */
366 	tmp_value = (Xword)value;
367 	if (do_reloc_rtld(R_SPARC_LM22, off + 12, &tmp_value, sym,
368 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
369 		return (0);
370 	}
371 
372 	/*
373 	 * relocating:
374 	 *	or	%g1, %lo(value), %g1
375 	 */
376 	tmp_value = (Xword)value;
377 	if (do_reloc_rtld(R_SPARC_LO10, off + 16, &tmp_value, sym,
378 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
379 		return (0);
380 	}
381 
382 	return (1);
383 }
384 
385 static caddr_t
386 elf_plt_trace_write(caddr_t addr, Rela *rptr, Rt_map *rlmp, Rt_map *dlmp,
387     Sym *sym, uint_t symndx, ulong_t pltndx, caddr_t to, uint_t sb_flags,
388     int *fail)
389 {
390 	extern ulong_t	elf_plt_trace();
391 	uchar_t		*dyn_plt;
392 	uintptr_t	*dyndata;
393 
394 	/*
395 	 * If both pltenter & pltexit have been disabled there
396 	 * there is no reason to even create the glue code.
397 	 */
398 	if ((sb_flags & (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) ==
399 	    (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) {
400 		(void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr,
401 		    rptr, (uintptr_t)to, pltndx);
402 		return (to);
403 	}
404 
405 	/*
406 	 * We only need to add the glue code if there is an auditing
407 	 * library that is interested in this binding.
408 	 */
409 	dyn_plt = (uchar_t *)((uintptr_t)AUDINFO(rlmp)->ai_dynplts +
410 	    (pltndx * dyn_plt_ent_size));
411 
412 	/*
413 	 * Have we initialized this dynamic plt entry yet?  If we haven't do it
414 	 * now.  Otherwise this function has been called before, but from a
415 	 * different plt (ie. from another shared object).  In that case
416 	 * we just set the plt to point to the new dyn_plt.
417 	 */
418 	if (*dyn_plt == 0) {
419 		Sym	*symp;
420 		Lm_list	*lml = LIST(rlmp);
421 
422 		(void) memcpy((void *)dyn_plt, dyn_plt_template,
423 		    sizeof (dyn_plt_template));
424 		dyndata = (uintptr_t *)((uintptr_t)dyn_plt +
425 		    sizeof (dyn_plt_template));
426 
427 		/*
428 		 * relocating:
429 		 *	VAL64_TO_G1(dyndata)
430 		 *	VAL64_TO_G1(&elf_plt_trace)
431 		 */
432 		if (!(reloc_val64_to_g1((dyn_plt + 0x14), dyndata,
433 		    MSG_ORIG(MSG_SYM_LADYNDATA), lml) &&
434 		    reloc_val64_to_g1((dyn_plt + 0x30), (Addr *)&elf_plt_trace,
435 		    MSG_ORIG(MSG_SYM_ELFPLTTRACE), lml))) {
436 			*fail = 1;
437 			return (0);
438 		}
439 
440 		*dyndata++ = (Addr)rlmp;
441 		*dyndata++ = (Addr)dlmp;
442 
443 		/*
444 		 * symndx in the high word, sb_flags in the low.
445 		 */
446 		*dyndata = (Addr)sb_flags;
447 		*(Word *)dyndata = symndx;
448 		dyndata++;
449 
450 		symp = (Sym *)dyndata;
451 		*symp = *sym;
452 		symp->st_value = (Addr)to;
453 		iflush_range((void *)dyn_plt, sizeof (dyn_plt_template));
454 	}
455 
456 	(void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr, rptr,
457 	    (uintptr_t)dyn_plt, pltndx);
458 	return ((caddr_t)dyn_plt);
459 }
460 
461 /*
462  * Function binding routine - invoked on the first call to a function through
463  * the procedure linkage table;
464  * passes first through an assembly language interface.
465  *
466  * Takes the address of the PLT entry where the call originated,
467  * the offset into the relocation table of the associated
468  * relocation entry and the address of the link map (rt_private_map struct)
469  * for the entry.
470  *
471  * Returns the address of the function referenced after re-writing the PLT
472  * entry to invoke the function directly.
473  *
474  * On error, causes process to terminate with a signal.
475  */
476 ulong_t
477 elf_bndr(Rt_map *lmp, ulong_t pltoff, caddr_t from)
478 {
479 	Rt_map		*nlmp, *llmp;
480 	Addr		addr, vaddr, reloff, symval;
481 	char		*name;
482 	Rela		*rptr;
483 	Sym		*rsym, *nsym;
484 	Xword		pltndx;
485 	uint_t		binfo, sb_flags = 0, dbg_class;
486 	ulong_t		rsymndx;
487 	Slookup		sl;
488 	Sresult		sr;
489 	Pltbindtype	pbtype;
490 	int		entry, lmflags, farplt = 0;
491 	Lm_list		*lml;
492 
493 	/*
494 	 * For compatibility with libthread (TI_VERSION 1) we track the entry
495 	 * value.  A zero value indicates we have recursed into ld.so.1 to
496 	 * further process a locking request.  Under this recursion we disable
497 	 * tsort and cleanup activities.
498 	 */
499 	entry = enter(0);
500 
501 	lml = LIST(lmp);
502 	if ((lmflags = lml->lm_flags) & LML_FLG_RTLDLM) {
503 		dbg_class = dbg_desc->d_class;
504 		dbg_desc->d_class = 0;
505 	}
506 
507 	/*
508 	 * Must calculate true plt relocation address from reloc.
509 	 * Take offset, subtract number of reserved PLT entries, and divide
510 	 * by PLT entry size, which should give the index of the plt
511 	 * entry (and relocation entry since they have been defined to be
512 	 * in the same order).  Then we must multiply by the size of
513 	 * a relocation entry, which will give us the offset of the
514 	 * plt relocation entry from the start of them given by JMPREL(lm).
515 	 */
516 	addr = pltoff - M_PLT_RESERVSZ;
517 
518 	if (pltoff < (M64_PLT_NEARPLTS * M_PLT_ENTSIZE)) {
519 		pltndx = addr / M_PLT_ENTSIZE;
520 	} else {
521 		ulong_t	pltblockoff;
522 
523 		pltblockoff = pltoff - (M64_PLT_NEARPLTS * M_PLT_ENTSIZE);
524 		pltndx = M64_PLT_NEARPLTS +
525 		    ((pltblockoff / M64_PLT_FBLOCKSZ) * M64_PLT_FBLKCNTS) +
526 		    ((pltblockoff % M64_PLT_FBLOCKSZ) / M64_PLT_FENTSIZE) -
527 		    M_PLT_XNumber;
528 		farplt = 1;
529 	}
530 
531 	/*
532 	 * Perform some basic sanity checks.  If we didn't get a load map
533 	 * or the plt offset is invalid then its possible someone has walked
534 	 * over the plt entries or jumped to plt[01] out of the blue.
535 	 */
536 	if (!lmp || (!farplt && (addr % M_PLT_ENTSIZE) != 0) ||
537 	    (farplt && (addr % M_PLT_INSSIZE))) {
538 		Conv_inv_buf_t	inv_buf;
539 
540 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_PLTREF),
541 		    conv_reloc_SPARC_type(R_SPARC_JMP_SLOT, 0, &inv_buf),
542 		    EC_NATPTR(lmp), EC_XWORD(pltoff), EC_NATPTR(from));
543 		rtldexit(lml, 1);
544 	}
545 	reloff = pltndx * sizeof (Rela);
546 
547 	/*
548 	 * Use relocation entry to get symbol table entry and symbol name.
549 	 */
550 	addr = (ulong_t)JMPREL(lmp);
551 	rptr = (Rela *)(addr + reloff);
552 	rsymndx = ELF_R_SYM(rptr->r_info);
553 	rsym = (Sym *)((ulong_t)SYMTAB(lmp) + (rsymndx * SYMENT(lmp)));
554 	name = (char *)(STRTAB(lmp) + rsym->st_name);
555 
556 	/*
557 	 * Determine the last link-map of this list, this'll be the starting
558 	 * point for any tsort() processing.
559 	 */
560 	llmp = lml->lm_tail;
561 
562 	/*
563 	 * Find definition for symbol.  Initialize the symbol lookup, and symbol
564 	 * result, data structures.
565 	 */
566 	SLOOKUP_INIT(sl, name, lmp, lml->lm_head, ld_entry_cnt, 0,
567 	    rsymndx, rsym, 0, LKUP_DEFT);
568 	SRESULT_INIT(sr, name);
569 
570 	if (lookup_sym(&sl, &sr, &binfo, NULL) == 0) {
571 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp),
572 		    demangle(name));
573 		rtldexit(lml, 1);
574 	}
575 
576 	name = (char *)sr.sr_name;
577 	nlmp = sr.sr_dmap;
578 	nsym = sr.sr_sym;
579 
580 	symval = nsym->st_value;
581 
582 	if (!(FLAGS(nlmp) & FLG_RT_FIXED) &&
583 	    (nsym->st_shndx != SHN_ABS))
584 		symval += ADDR(nlmp);
585 	if ((lmp != nlmp) && ((FLAGS1(nlmp) & FL1_RT_NOINIFIN) == 0)) {
586 		/*
587 		 * Record that this new link map is now bound to the caller.
588 		 */
589 		if (bind_one(lmp, nlmp, BND_REFER) == 0)
590 			rtldexit(lml, 1);
591 	}
592 
593 	if ((lml->lm_tflags | AFLAGS(lmp) | AFLAGS(nlmp)) &
594 	    LML_TFLG_AUD_SYMBIND) {
595 		/* LINTED */
596 		uint_t	symndx = (uint_t)(((uintptr_t)nsym -
597 		    (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp));
598 
599 		symval = audit_symbind(lmp, nlmp, nsym, symndx, symval,
600 		    &sb_flags);
601 	}
602 
603 	if (FLAGS(lmp) & FLG_RT_FIXED)
604 		vaddr = 0;
605 	else
606 		vaddr = ADDR(lmp);
607 
608 	pbtype = PLT_T_NONE;
609 	if (!(rtld_flags & RT_FL_NOBIND)) {
610 		if (((lml->lm_tflags | AFLAGS(lmp)) &
611 		    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
612 		    AUDINFO(lmp)->ai_dynplts) {
613 			int	fail = 0;
614 			/* LINTED */
615 			uint_t	symndx = (uint_t)(((uintptr_t)nsym -
616 			    (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp));
617 
618 			symval = (ulong_t)elf_plt_trace_write((caddr_t)vaddr,
619 			    rptr, lmp, nlmp, nsym, symndx, pltndx,
620 			    (caddr_t)symval, sb_flags, &fail);
621 			if (fail)
622 				rtldexit(lml, 1);
623 		} else {
624 			/*
625 			 * Write standard PLT entry to jump directly
626 			 * to newly bound function.
627 			 */
628 			pbtype = elf_plt_write((uintptr_t)vaddr,
629 			    (uintptr_t)vaddr, rptr, symval, pltndx);
630 		}
631 	}
632 
633 	/*
634 	 * Print binding information and rebuild PLT entry.
635 	 */
636 	DBG_CALL(Dbg_bind_global(lmp, (Addr)from, (Off)(from - ADDR(lmp)),
637 	    (Xword)pltndx, pbtype, nlmp, (Addr)symval, nsym->st_value,
638 	    name, binfo));
639 
640 	/*
641 	 * Complete any processing for newly loaded objects.  Note we don't
642 	 * know exactly where any new objects are loaded (we know the object
643 	 * that supplied the symbol, but others may have been loaded lazily as
644 	 * we searched for the symbol), so sorting starts from the last
645 	 * link-map know on entry to this routine.
646 	 */
647 	if (entry)
648 		load_completion(llmp);
649 
650 	/*
651 	 * Some operations like dldump() or dlopen()'ing a relocatable object
652 	 * result in objects being loaded on rtld's link-map, make sure these
653 	 * objects are initialized also.
654 	 */
655 	if ((LIST(nlmp)->lm_flags & LML_FLG_RTLDLM) && LIST(nlmp)->lm_init)
656 		load_completion(nlmp);
657 
658 	/*
659 	 * Make sure the object to which we've bound has had it's .init fired.
660 	 * Cleanup before return to user code.
661 	 */
662 	if (entry) {
663 		is_dep_init(nlmp, lmp);
664 		leave(lml, 0);
665 	}
666 
667 	if (lmflags & LML_FLG_RTLDLM)
668 		dbg_desc->d_class = dbg_class;
669 
670 	return (symval);
671 }
672 
673 static int
674 bindpltpad(Rt_map *lmp, Alist **padlist, Addr value, void **pltaddr,
675     const char *fname, const char *sname)
676 {
677 	Aliste		idx = 0;
678 	Pltpadinfo	ppi, *ppip;
679 	void		*plt;
680 	uintptr_t	pltoff;
681 	Rela		rel;
682 	int		i;
683 
684 	for (ALIST_TRAVERSE(*padlist, idx, ppip)) {
685 		if (ppip->pp_addr == value) {
686 			*pltaddr = ppip->pp_plt;
687 			DBG_CALL(Dbg_bind_pltpad_from(lmp, (Addr)*pltaddr,
688 			    sname));
689 			return (1);
690 		}
691 		if (ppip->pp_addr > value)
692 			break;
693 	}
694 
695 	plt = PLTPAD(lmp);
696 	pltoff = (uintptr_t)plt - (uintptr_t)ADDR(lmp);
697 
698 	PLTPAD(lmp) = (void *)((uintptr_t)PLTPAD(lmp) + M_PLT_ENTSIZE);
699 
700 	if (PLTPAD(lmp) > PLTPADEND(lmp)) {
701 		/*
702 		 * Just fail in usual relocation way
703 		 */
704 		*pltaddr = (void *)value;
705 		return (1);
706 	}
707 	rel.r_offset = pltoff;
708 	rel.r_info = 0;
709 	rel.r_addend = 0;
710 
711 	/*
712 	 * elf_plt_write assumes the plt was previously filled
713 	 * with NOP's, so fill it in now.
714 	 */
715 	for (i = 0; i < (M_PLT_ENTSIZE / sizeof (uint_t)); i++) {
716 		((uint_t *)plt)[i] = M_NOP;
717 	}
718 	iflush_range((caddr_t)plt, M_PLT_ENTSIZE);
719 
720 	(void) elf_plt_write(ADDR(lmp), ADDR(lmp), &rel, value, 0);
721 
722 	ppi.pp_addr = value;
723 	ppi.pp_plt = plt;
724 
725 	if (alist_insert(padlist, &ppi, sizeof (Pltpadinfo),
726 	    AL_CNT_PLTPAD, idx) == NULL)
727 		return (0);
728 
729 	*pltaddr = plt;
730 	DBG_CALL(Dbg_bind_pltpad_to(lmp, (Addr)*pltaddr, fname, sname));
731 	return (1);
732 }
733 
734 /*
735  * Read and process the relocations for one link object, we assume all
736  * relocation sections for loadable segments are stored contiguously in
737  * the file.
738  */
739 int
740 elf_reloc(Rt_map *lmp, uint_t plt, int *in_nfavl, APlist **textrel)
741 {
742 	ulong_t		relbgn, relend, relsiz, basebgn, pltbgn, pltend;
743 	ulong_t		pltndx, roffset, rsymndx, psymndx = 0;
744 	uint_t		dsymndx, binfo, pbinfo;
745 	uchar_t		rtype;
746 	long		reladd;
747 	Addr		value, pvalue;
748 	Sym		*symref, *psymref, *symdef, *psymdef;
749 	Syminfo		*sip;
750 	char		*name, *pname;
751 	Rt_map		*_lmp, *plmp;
752 	int		ret = 1, noplt = 0;
753 	long		relacount = RELACOUNT(lmp);
754 	Rela		*rel;
755 	Pltbindtype	pbtype;
756 	Alist		*pltpadlist = NULL;
757 	APlist		*bound = NULL;
758 
759 	/*
760 	 * If an object has any DT_REGISTER entries associated with
761 	 * it, they are processed now.
762 	 */
763 	if ((plt == 0) && (FLAGS(lmp) & FLG_RT_REGSYMS)) {
764 		if (elf_regsyms(lmp) == 0)
765 			return (0);
766 	}
767 
768 	/*
769 	 * Although only necessary for lazy binding, initialize the first
770 	 * procedure linkage table entry to go to elf_rtbndr().  dbx(1) seems
771 	 * to find this useful.
772 	 */
773 	if ((plt == 0) && PLTGOT(lmp)) {
774 		mmapobj_result_t	*mpp;
775 		Xword			pltoff;
776 
777 		/*
778 		 * Make sure the segment is writable.
779 		 */
780 		if ((((mpp =
781 		    find_segment((caddr_t)PLTGOT(lmp), lmp)) != NULL) &&
782 		    ((mpp->mr_prot & PROT_WRITE) == 0)) &&
783 		    ((set_prot(lmp, mpp, 1) == 0) ||
784 		    (aplist_append(textrel, mpp, AL_CNT_TEXTREL) == NULL)))
785 			return (0);
786 
787 		/*
788 		 * Install the lm pointer in .PLT2 as per the ABI.
789 		 */
790 		pltoff = (2 * M_PLT_ENTSIZE) / M_PLT_INSSIZE;
791 		elf_plt2_init(PLTGOT(lmp) + pltoff, lmp);
792 
793 		/*
794 		 * The V9 ABI states that the first 32k PLT entries
795 		 * use .PLT1, with .PLT0 used by the "latter" entries.
796 		 * We don't currently implement the extendend format,
797 		 * so install an error handler in .PLT0 to catch anyone
798 		 * trying to use it.
799 		 */
800 		elf_plt_init(PLTGOT(lmp), (caddr_t)elf_rtbndr_far);
801 
802 		/*
803 		 * Initialize .PLT1
804 		 */
805 		pltoff = M_PLT_ENTSIZE / M_PLT_INSSIZE;
806 		elf_plt_init(PLTGOT(lmp) + pltoff, (caddr_t)elf_rtbndr);
807 	}
808 
809 	/*
810 	 * Initialize the plt start and end addresses.
811 	 */
812 	if ((pltbgn = (ulong_t)JMPREL(lmp)) != 0)
813 		pltend = pltbgn + (ulong_t)(PLTRELSZ(lmp));
814 
815 	/*
816 	 * If we've been called upon to promote an RTLD_LAZY object to an
817 	 * RTLD_NOW then we're only interested in scaning the .plt table.
818 	 */
819 	if (plt) {
820 		relbgn = pltbgn;
821 		relend = pltend;
822 	} else {
823 		/*
824 		 * The relocation sections appear to the run-time linker as a
825 		 * single table.  Determine the address of the beginning and end
826 		 * of this table.  There are two different interpretations of
827 		 * the ABI at this point:
828 		 *
829 		 *   o	The REL table and its associated RELSZ indicate the
830 		 *	concatenation of *all* relocation sections (this is the
831 		 *	model our link-editor constructs).
832 		 *
833 		 *   o	The REL table and its associated RELSZ indicate the
834 		 *	concatenation of all *but* the .plt relocations.  These
835 		 *	relocations are specified individually by the JMPREL and
836 		 *	PLTRELSZ entries.
837 		 *
838 		 * Determine from our knowledege of the relocation range and
839 		 * .plt range, the range of the total relocation table.  Note
840 		 * that one other ABI assumption seems to be that the .plt
841 		 * relocations always follow any other relocations, the
842 		 * following range checking drops that assumption.
843 		 */
844 		relbgn = (ulong_t)(REL(lmp));
845 		relend = relbgn + (ulong_t)(RELSZ(lmp));
846 		if (pltbgn) {
847 			if (!relbgn || (relbgn > pltbgn))
848 				relbgn = pltbgn;
849 			if (!relbgn || (relend < pltend))
850 				relend = pltend;
851 		}
852 	}
853 	if (!relbgn || (relbgn == relend)) {
854 		DBG_CALL(Dbg_reloc_run(lmp, 0, plt, DBG_REL_NONE));
855 		return (1);
856 	}
857 
858 	relsiz = (ulong_t)(RELENT(lmp));
859 	basebgn = ADDR(lmp);
860 
861 	DBG_CALL(Dbg_reloc_run(lmp, M_REL_SHT_TYPE, plt, DBG_REL_START));
862 
863 	/*
864 	 * If we're processing in lazy mode there is no need to scan the
865 	 * .rela.plt table.
866 	 */
867 	if (pltbgn && ((MODE(lmp) & RTLD_NOW) == 0))
868 		noplt = 1;
869 
870 	sip = SYMINFO(lmp);
871 	/*
872 	 * Loop through relocations.
873 	 */
874 	while (relbgn < relend) {
875 		mmapobj_result_t	*mpp;
876 		uint_t			sb_flags = 0;
877 		Addr			vaddr;
878 
879 		rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info, M_MACH);
880 
881 		/*
882 		 * If this is a RELATIVE relocation in a shared object
883 		 * (the common case), and if we are not debugging, then
884 		 * jump into a tighter relocaiton loop (elf_reloc_relacount)
885 		 * Only make the jump if we've been given a hint on the
886 		 * number of relocations.
887 		 */
888 		if ((rtype == R_SPARC_RELATIVE) &&
889 		    ((FLAGS(lmp) & FLG_RT_FIXED) == 0) && (DBG_ENABLED == 0)) {
890 			if (relacount) {
891 				relbgn = elf_reloc_relative_count(relbgn,
892 				    relacount, relsiz, basebgn, lmp,
893 				    textrel, 0);
894 				relacount = 0;
895 			} else {
896 				relbgn = elf_reloc_relative(relbgn, relend,
897 				    relsiz, basebgn, lmp, textrel, 0);
898 			}
899 			if (relbgn >= relend)
900 				break;
901 			rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info, M_MACH);
902 		}
903 
904 		roffset = ((Rela *)relbgn)->r_offset;
905 
906 		reladd = (long)(((Rela *)relbgn)->r_addend);
907 		rsymndx = ELF_R_SYM(((Rela *)relbgn)->r_info);
908 		rel = (Rela *)relbgn;
909 		relbgn += relsiz;
910 
911 		/*
912 		 * Optimizations.
913 		 */
914 		if (rtype == R_SPARC_NONE)
915 			continue;
916 		if (noplt && ((ulong_t)rel >= pltbgn) &&
917 		    ((ulong_t)rel < pltend)) {
918 			relbgn = pltend;
919 			continue;
920 		}
921 
922 		if (rtype != R_SPARC_REGISTER) {
923 			/*
924 			 * If this is a shared object, add the base address
925 			 * to offset.
926 			 */
927 			if (!(FLAGS(lmp) & FLG_RT_FIXED))
928 				roffset += basebgn;
929 
930 			/*
931 			 * If this relocation is not against part of the image
932 			 * mapped into memory we skip it.
933 			 */
934 			if ((mpp = find_segment((caddr_t)roffset,
935 			    lmp)) == NULL) {
936 				elf_reloc_bad(lmp, (void *)rel, rtype, roffset,
937 				    rsymndx);
938 				continue;
939 			}
940 		}
941 
942 		/*
943 		 * If we're promoting plts, determine if this one has already
944 		 * been written. An uninitialized plts' second instruction is a
945 		 * branch.
946 		 */
947 		if (plt) {
948 			uchar_t	*_roffset = (uchar_t *)roffset;
949 
950 			_roffset += M_PLT_INSSIZE;
951 			/* LINTED */
952 			if ((*(uint_t *)_roffset &
953 			    (~(S_MASK(19)))) != M_BA_A_XCC)
954 				continue;
955 		}
956 
957 		binfo = 0;
958 		pltndx = (ulong_t)-1;
959 		pbtype = PLT_T_NONE;
960 
961 		/*
962 		 * If a symbol index is specified then get the symbol table
963 		 * entry, locate the symbol definition, and determine its
964 		 * address.
965 		 */
966 		if (rsymndx) {
967 			/*
968 			 * If a Syminfo section is provided, determine if this
969 			 * symbol is deferred, and if so, skip this relocation.
970 			 */
971 			if (sip && is_sym_deferred((ulong_t)rel, basebgn, lmp,
972 			    textrel, sip, rsymndx))
973 				continue;
974 
975 			/*
976 			 * Get the local symbol table entry.
977 			 */
978 			symref = (Sym *)((ulong_t)SYMTAB(lmp) +
979 			    (rsymndx * SYMENT(lmp)));
980 
981 			/*
982 			 * If this is a local symbol, just use the base address.
983 			 * (we should have no local relocations in the
984 			 * executable).
985 			 */
986 			if (ELF_ST_BIND(symref->st_info) == STB_LOCAL) {
987 				value = basebgn;
988 				name = NULL;
989 
990 				/*
991 				 * Special case TLS relocations.
992 				 */
993 				if ((rtype == R_SPARC_TLS_DTPMOD32) ||
994 				    (rtype == R_SPARC_TLS_DTPMOD64)) {
995 					/*
996 					 * Use the TLS modid.
997 					 */
998 					value = TLSMODID(lmp);
999 
1000 				} else if ((rtype == R_SPARC_TLS_TPOFF32) ||
1001 				    (rtype == R_SPARC_TLS_TPOFF64)) {
1002 					if ((value = elf_static_tls(lmp, symref,
1003 					    rel, rtype, 0, roffset, 0)) == 0) {
1004 						ret = 0;
1005 						break;
1006 					}
1007 				}
1008 			} else {
1009 				/*
1010 				 * If the symbol index is equal to the previous
1011 				 * symbol index relocation we processed then
1012 				 * reuse the previous values. (Note that there
1013 				 * have been cases where a relocation exists
1014 				 * against a copy relocation symbol, our ld(1)
1015 				 * should optimize this away, but make sure we
1016 				 * don't use the same symbol information should
1017 				 * this case exist).
1018 				 */
1019 				if ((rsymndx == psymndx) &&
1020 				    (rtype != R_SPARC_COPY)) {
1021 					/* LINTED */
1022 					if (psymdef == 0) {
1023 						DBG_CALL(Dbg_bind_weak(lmp,
1024 						    (Addr)roffset, (Addr)
1025 						    (roffset - basebgn), name));
1026 						continue;
1027 					}
1028 					/* LINTED */
1029 					value = pvalue;
1030 					/* LINTED */
1031 					name = pname;
1032 					symdef = psymdef;
1033 					/* LINTED */
1034 					symref = psymref;
1035 					/* LINTED */
1036 					_lmp = plmp;
1037 					/* LINTED */
1038 					binfo = pbinfo;
1039 
1040 					if ((LIST(_lmp)->lm_tflags |
1041 					    AFLAGS(_lmp)) &
1042 					    LML_TFLG_AUD_SYMBIND) {
1043 						value = audit_symbind(lmp, _lmp,
1044 						    /* LINTED */
1045 						    symdef, dsymndx, value,
1046 						    &sb_flags);
1047 					}
1048 				} else {
1049 					Slookup		sl;
1050 					Sresult		sr;
1051 
1052 					/*
1053 					 * Lookup the symbol definition.
1054 					 * Initialize the symbol lookup, and
1055 					 * symbol result, data structures.
1056 					 */
1057 					name = (char *)(STRTAB(lmp) +
1058 					    symref->st_name);
1059 
1060 					SLOOKUP_INIT(sl, name, lmp, 0,
1061 					    ld_entry_cnt, 0, rsymndx, symref,
1062 					    rtype, LKUP_STDRELOC);
1063 					SRESULT_INIT(sr, name);
1064 					symdef = NULL;
1065 
1066 					if (lookup_sym(&sl, &sr, &binfo,
1067 					    in_nfavl)) {
1068 						name = (char *)sr.sr_name;
1069 						_lmp = sr.sr_dmap;
1070 						symdef = sr.sr_sym;
1071 					}
1072 
1073 					/*
1074 					 * If the symbol is not found and the
1075 					 * reference was not to a weak symbol,
1076 					 * report an error.  Weak references
1077 					 * may be unresolved.
1078 					 */
1079 					/* BEGIN CSTYLED */
1080 					if (symdef == 0) {
1081 					    if (sl.sl_bind != STB_WEAK) {
1082 						if (elf_reloc_error(lmp, name,
1083 						    rel, binfo))
1084 							continue;
1085 
1086 						ret = 0;
1087 						break;
1088 
1089 					    } else {
1090 						psymndx = rsymndx;
1091 						psymdef = 0;
1092 
1093 						DBG_CALL(Dbg_bind_weak(lmp,
1094 						    (Addr)roffset, (Addr)
1095 						    (roffset - basebgn), name));
1096 						continue;
1097 					    }
1098 					}
1099 					/* END CSTYLED */
1100 
1101 					/*
1102 					 * If symbol was found in an object
1103 					 * other than the referencing object
1104 					 * then record the binding.
1105 					 */
1106 					if ((lmp != _lmp) && ((FLAGS1(_lmp) &
1107 					    FL1_RT_NOINIFIN) == 0)) {
1108 						if (aplist_test(&bound, _lmp,
1109 						    AL_CNT_RELBIND) == 0) {
1110 							ret = 0;
1111 							break;
1112 						}
1113 					}
1114 
1115 					/*
1116 					 * Calculate the location of definition;
1117 					 * symbol value plus base address of
1118 					 * containing shared object.
1119 					 */
1120 					if (IS_SIZE(rtype))
1121 						value = symdef->st_size;
1122 					else
1123 						value = symdef->st_value;
1124 
1125 					if (!(FLAGS(_lmp) & FLG_RT_FIXED) &&
1126 					    !(IS_SIZE(rtype)) &&
1127 					    (symdef->st_shndx != SHN_ABS) &&
1128 					    (ELF_ST_TYPE(symdef->st_info) !=
1129 					    STT_TLS))
1130 						value += ADDR(_lmp);
1131 
1132 					/*
1133 					 * Retain this symbol index and the
1134 					 * value in case it can be used for the
1135 					 * subsequent relocations.
1136 					 */
1137 					if (rtype != R_SPARC_COPY) {
1138 						psymndx = rsymndx;
1139 						pvalue = value;
1140 						pname = name;
1141 						psymdef = symdef;
1142 						psymref = symref;
1143 						plmp = _lmp;
1144 						pbinfo = binfo;
1145 					}
1146 					if ((LIST(_lmp)->lm_tflags |
1147 					    AFLAGS(_lmp)) &
1148 					    LML_TFLG_AUD_SYMBIND) {
1149 						/* LINTED */
1150 						dsymndx = (((uintptr_t)symdef -
1151 						    (uintptr_t)SYMTAB(_lmp)) /
1152 						    SYMENT(_lmp));
1153 						value = audit_symbind(lmp, _lmp,
1154 						    symdef, dsymndx, value,
1155 						    &sb_flags);
1156 					}
1157 				}
1158 
1159 				/*
1160 				 * If relocation is PC-relative, subtract
1161 				 * offset address.
1162 				 */
1163 				if (IS_PC_RELATIVE(rtype))
1164 					value -= roffset;
1165 
1166 				/*
1167 				 * Special case TLS relocations.
1168 				 */
1169 				if ((rtype == R_SPARC_TLS_DTPMOD32) ||
1170 				    (rtype == R_SPARC_TLS_DTPMOD64)) {
1171 					/*
1172 					 * Relocation value is the TLS modid.
1173 					 */
1174 					value = TLSMODID(_lmp);
1175 
1176 				} else if ((rtype == R_SPARC_TLS_TPOFF64) ||
1177 				    (rtype == R_SPARC_TLS_TPOFF32)) {
1178 					if ((value = elf_static_tls(_lmp,
1179 					    symdef, rel, rtype, name, roffset,
1180 					    value)) == 0) {
1181 						ret = 0;
1182 						break;
1183 					}
1184 				}
1185 			}
1186 		} else {
1187 			/*
1188 			 * Special cases.
1189 			 */
1190 			if (rtype == R_SPARC_REGISTER) {
1191 				/*
1192 				 * A register symbol associated with symbol
1193 				 * index 0 is initialized (i.e. relocated) to
1194 				 * a constant in the r_addend field rather than
1195 				 * to a symbol value.
1196 				 */
1197 				value = 0;
1198 
1199 			} else if ((rtype == R_SPARC_TLS_DTPMOD32) ||
1200 			    (rtype == R_SPARC_TLS_DTPMOD64)) {
1201 				/*
1202 				 * TLS relocation value is the TLS modid.
1203 				 */
1204 				value = TLSMODID(lmp);
1205 			} else
1206 				value = basebgn;
1207 
1208 			name = NULL;
1209 		}
1210 
1211 		DBG_CALL(Dbg_reloc_in(LIST(lmp), ELF_DBG_RTLD, M_MACH,
1212 		    M_REL_SHT_TYPE, rel, NULL, 0, name));
1213 
1214 		/*
1215 		 * Make sure the segment is writable.
1216 		 */
1217 		if ((rtype != R_SPARC_REGISTER) &&
1218 		    ((mpp->mr_prot & PROT_WRITE) == 0) &&
1219 		    ((set_prot(lmp, mpp, 1) == 0) ||
1220 		    (aplist_append(textrel, mpp, AL_CNT_TEXTREL) == NULL))) {
1221 			ret = 0;
1222 			break;
1223 		}
1224 
1225 		/*
1226 		 * Call relocation routine to perform required relocation.
1227 		 */
1228 		switch (rtype) {
1229 		case R_SPARC_REGISTER:
1230 			/*
1231 			 * The v9 ABI 4.2.4 says that system objects may,
1232 			 * but are not required to, use register symbols
1233 			 * to inidcate how they use global registers. Thus
1234 			 * at least %g6, %g7 must be allowed in addition
1235 			 * to %g2 and %g3.
1236 			 */
1237 			value += reladd;
1238 			if (roffset == STO_SPARC_REGISTER_G1) {
1239 				set_sparc_g1(value);
1240 			} else if (roffset == STO_SPARC_REGISTER_G2) {
1241 				set_sparc_g2(value);
1242 			} else if (roffset == STO_SPARC_REGISTER_G3) {
1243 				set_sparc_g3(value);
1244 			} else if (roffset == STO_SPARC_REGISTER_G4) {
1245 				set_sparc_g4(value);
1246 			} else if (roffset == STO_SPARC_REGISTER_G5) {
1247 				set_sparc_g5(value);
1248 			} else if (roffset == STO_SPARC_REGISTER_G6) {
1249 				set_sparc_g6(value);
1250 			} else if (roffset == STO_SPARC_REGISTER_G7) {
1251 				set_sparc_g7(value);
1252 			} else {
1253 				eprintf(LIST(lmp), ERR_FATAL,
1254 				    MSG_INTL(MSG_REL_BADREG), NAME(lmp),
1255 				    EC_ADDR(roffset));
1256 				ret = 0;
1257 				break;
1258 			}
1259 
1260 			DBG_CALL(Dbg_reloc_apply_reg(LIST(lmp), ELF_DBG_RTLD,
1261 			    M_MACH, (Xword)roffset, (Xword)value));
1262 			break;
1263 		case R_SPARC_COPY:
1264 			if (elf_copy_reloc(name, symref, lmp, (void *)roffset,
1265 			    symdef, _lmp, (const void *)value) == 0)
1266 				ret = 0;
1267 			break;
1268 		case R_SPARC_JMP_SLOT:
1269 			pltndx = ((uintptr_t)rel -
1270 			    (uintptr_t)JMPREL(lmp)) / relsiz;
1271 
1272 			if (FLAGS(lmp) & FLG_RT_FIXED)
1273 				vaddr = 0;
1274 			else
1275 				vaddr = ADDR(lmp);
1276 
1277 			if (((LIST(lmp)->lm_tflags | AFLAGS(lmp)) &
1278 			    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
1279 			    AUDINFO(lmp)->ai_dynplts) {
1280 				int	fail = 0;
1281 				/* LINTED */
1282 				uint_t	symndx = (uint_t)(((uintptr_t)symdef -
1283 				    (uintptr_t)SYMTAB(_lmp)) / SYMENT(_lmp));
1284 
1285 				(void) elf_plt_trace_write((caddr_t)vaddr,
1286 				    (Rela *)rel, lmp, _lmp, symdef, symndx,
1287 				    pltndx, (caddr_t)value, sb_flags, &fail);
1288 				if (fail)
1289 					ret = 0;
1290 			} else {
1291 				/*
1292 				 * Write standard PLT entry to jump directly
1293 				 * to newly bound function.
1294 				 */
1295 				DBG_CALL(Dbg_reloc_apply_val(LIST(lmp),
1296 				    ELF_DBG_RTLD, (Xword)roffset,
1297 				    (Xword)value));
1298 				pbtype = elf_plt_write((uintptr_t)vaddr,
1299 				    (uintptr_t)vaddr, (void *)rel, value,
1300 				    pltndx);
1301 			}
1302 			break;
1303 		case R_SPARC_WDISP30:
1304 			if (PLTPAD(lmp) &&
1305 			    (S_INRANGE((Sxword)value, 29) == 0)) {
1306 				void *	plt = 0;
1307 
1308 				if (bindpltpad(lmp, &pltpadlist,
1309 				    value + roffset, &plt,
1310 				    NAME(_lmp), name) == 0) {
1311 					ret = 0;
1312 					break;
1313 				}
1314 				value = (Addr)((Addr)plt - roffset);
1315 			}
1316 			/* FALLTHROUGH */
1317 		default:
1318 			value += reladd;
1319 			if (IS_EXTOFFSET(rtype))
1320 				value += (Word)ELF_R_TYPE_DATA(rel->r_info);
1321 
1322 			/*
1323 			 * Write the relocation out.  If this relocation is a
1324 			 * common basic write, skip the doreloc() engine.
1325 			 */
1326 			if ((rtype == R_SPARC_GLOB_DAT) ||
1327 			    (rtype == R_SPARC_64)) {
1328 				if (roffset & 0x7) {
1329 					Conv_inv_buf_t	inv_buf;
1330 
1331 					eprintf(LIST(lmp), ERR_FATAL,
1332 					    MSG_INTL(MSG_REL_NONALIGN),
1333 					    conv_reloc_SPARC_type(rtype,
1334 					    0, &inv_buf),
1335 					    NAME(lmp), demangle(name),
1336 					    EC_OFF(roffset));
1337 					ret = 0;
1338 				} else
1339 					*(ulong_t *)roffset += value;
1340 			} else {
1341 				if (do_reloc_rtld(rtype, (uchar_t *)roffset,
1342 				    (Xword *)&value, name,
1343 				    NAME(lmp), LIST(lmp)) == 0)
1344 					ret = 0;
1345 			}
1346 
1347 			/*
1348 			 * The value now contains the 'bit-shifted' value that
1349 			 * was or'ed into memory (this was set by
1350 			 * do_reloc_rtld()).
1351 			 */
1352 			DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), ELF_DBG_RTLD,
1353 			    (Xword)roffset, (Xword)value));
1354 
1355 			/*
1356 			 * If this relocation is against a text segment, make
1357 			 * sure that the instruction cache is flushed.
1358 			 */
1359 			if (textrel)
1360 				iflush_range((caddr_t)roffset, 0x4);
1361 		}
1362 
1363 		if ((ret == 0) &&
1364 		    ((LIST(lmp)->lm_flags & LML_FLG_TRC_WARN) == 0))
1365 			break;
1366 
1367 		if (binfo) {
1368 			DBG_CALL(Dbg_bind_global(lmp, (Addr)roffset,
1369 			    (Off)(roffset - basebgn), pltndx, pbtype,
1370 			    _lmp, (Addr)value, symdef->st_value, name, binfo));
1371 		}
1372 	}
1373 
1374 	/*
1375 	 * Free up any items on the pltpadlist if it was allocated
1376 	 */
1377 	if (pltpadlist)
1378 		free(pltpadlist);
1379 
1380 	return (relocate_finish(lmp, bound, ret));
1381 }
1382 
1383 /*
1384  * Provide a machine specific interface to the conversion routine.  By calling
1385  * the machine specific version, rather than the generic version, we insure that
1386  * the data tables/strings for all known machine versions aren't dragged into
1387  * ld.so.1.
1388  */
1389 const char *
1390 _conv_reloc_type(uint_t rel)
1391 {
1392 	static Conv_inv_buf_t	inv_buf;
1393 
1394 	return (conv_reloc_SPARC_type(rel, 0, &inv_buf));
1395 }
1396