1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * SPARC V9 machine dependent and ELF file class dependent functions. 29 * Contains routines for performing function binding and symbol relocations. 30 */ 31 32 #include <stdio.h> 33 #include <sys/elf.h> 34 #include <sys/elf_SPARC.h> 35 #include <sys/mman.h> 36 #include <dlfcn.h> 37 #include <synch.h> 38 #include <string.h> 39 #include <debug.h> 40 #include <reloc.h> 41 #include <conv.h> 42 #include "_rtld.h" 43 #include "_audit.h" 44 #include "_elf.h" 45 #include "_inline.h" 46 #include "msg.h" 47 48 extern void iflush_range(caddr_t, size_t); 49 extern void plt_upper_32(uintptr_t, uintptr_t); 50 extern void plt_upper_44(uintptr_t, uintptr_t); 51 extern void plt_full_range(uintptr_t, uintptr_t); 52 extern void elf_rtbndr(Rt_map *, ulong_t, caddr_t); 53 extern void elf_rtbndr_far(Rt_map *, ulong_t, caddr_t); 54 55 int 56 elf_mach_flags_check(Rej_desc *rej, Ehdr *ehdr) 57 { 58 /* 59 * Check machine type and flags. 60 */ 61 if (ehdr->e_flags & EF_SPARC_EXT_MASK) { 62 /* 63 * Check vendor-specific extensions. 64 */ 65 if (ehdr->e_flags & EF_SPARC_HAL_R1) { 66 rej->rej_type = SGS_REJ_HAL; 67 rej->rej_info = (uint_t)ehdr->e_flags; 68 return (0); 69 } 70 if ((ehdr->e_flags & EF_SPARC_SUN_US3) & ~at_flags) { 71 rej->rej_type = SGS_REJ_US3; 72 rej->rej_info = (uint_t)ehdr->e_flags; 73 return (0); 74 } 75 76 /* 77 * Generic check. 78 * All of our 64-bit SPARC's support the US1 (UltraSPARC 1) 79 * instructions so that bit isn't worth checking for explicitly. 80 */ 81 if ((ehdr->e_flags & EF_SPARC_EXT_MASK) & ~at_flags) { 82 rej->rej_type = SGS_REJ_BADFLAG; 83 rej->rej_info = (uint_t)ehdr->e_flags; 84 return (0); 85 } 86 } else if ((ehdr->e_flags & ~EF_SPARCV9_MM) != 0) { 87 rej->rej_type = SGS_REJ_BADFLAG; 88 rej->rej_info = (uint_t)ehdr->e_flags; 89 return (0); 90 } 91 return (1); 92 } 93 94 95 void 96 ldso_plt_init(Rt_map *lmp) 97 { 98 /* 99 * There is no need to analyze ld.so because we don't map in any of 100 * its dependencies. However we may map these dependencies in later 101 * (as if ld.so had dlopened them), so initialize the plt and the 102 * permission information. 103 */ 104 if (PLTGOT(lmp)) { 105 Xword pltoff; 106 107 /* 108 * Install the lm pointer in .PLT2 as per the ABI. 109 */ 110 pltoff = (2 * M_PLT_ENTSIZE) / M_PLT_INSSIZE; 111 elf_plt2_init(PLTGOT(lmp) + pltoff, lmp); 112 113 /* 114 * The V9 ABI states that the first 32k PLT entries 115 * use .PLT1, with .PLT0 used by the "latter" entries. 116 * We don't currently implement the extendend format, 117 * so install an error handler in .PLT0 to catch anyone 118 * trying to use it. 119 */ 120 elf_plt_init(PLTGOT(lmp), (caddr_t)elf_rtbndr_far); 121 122 /* 123 * Initialize .PLT1 124 */ 125 pltoff = M_PLT_ENTSIZE / M_PLT_INSSIZE; 126 elf_plt_init(PLTGOT(lmp) + pltoff, (caddr_t)elf_rtbndr); 127 } 128 } 129 130 /* 131 * elf_plt_write() will test to see how far away our destination 132 * address lies. If it is close enough that a branch can 133 * be used instead of a jmpl - we will fill the plt in with 134 * single branch. The branches are much quicker then 135 * a jmpl instruction - see bug#4356879 for further 136 * details. 137 * 138 * NOTE: we pass in both a 'pltaddr' and a 'vpltaddr' since 139 * librtld/dldump update PLT's who's physical 140 * address is not the same as the 'virtual' runtime 141 * address. 142 */ 143 Pltbindtype 144 elf_plt_write(uintptr_t addr, uintptr_t vaddr, void *rptr, uintptr_t symval, 145 Xword pltndx) 146 { 147 Rela *rel = (Rela *)rptr; 148 uintptr_t nsym = ~symval; 149 uintptr_t vpltaddr, pltaddr; 150 long disp; 151 152 153 pltaddr = addr + rel->r_offset; 154 vpltaddr = vaddr + rel->r_offset; 155 disp = symval - vpltaddr - 4; 156 157 if (pltndx >= (M64_PLT_NEARPLTS - M_PLT_XNumber)) { 158 *((Sxword *)pltaddr) = (uintptr_t)symval + 159 (uintptr_t)rel->r_addend - vaddr; 160 DBG_CALL(pltcntfar++); 161 return (PLT_T_FAR); 162 } 163 164 /* 165 * Test if the destination address is close enough to use 166 * a ba,a... instruction to reach it. 167 */ 168 if (S_INRANGE(disp, 23) && !(rtld_flags & RT_FL_NOBAPLT)) { 169 uint_t *pltent, bainstr; 170 Pltbindtype rc; 171 172 pltent = (uint_t *)pltaddr; 173 174 /* 175 * The 176 * 177 * ba,a,pt %icc, <dest> 178 * 179 * is the most efficient of the PLT's. If we 180 * are within +-20 bits - use that branch. 181 */ 182 if (S_INRANGE(disp, 20)) { 183 bainstr = M_BA_A_PT; /* ba,a,pt %icc,<dest> */ 184 /* LINTED */ 185 bainstr |= (uint_t)(S_MASK(19) & (disp >> 2)); 186 rc = PLT_T_21D; 187 DBG_CALL(pltcnt21d++); 188 } else { 189 /* 190 * Otherwise - we fall back to the good old 191 * 192 * ba,a <dest> 193 * 194 * Which still beats a jmpl instruction. 195 */ 196 bainstr = M_BA_A; /* ba,a <dest> */ 197 /* LINTED */ 198 bainstr |= (uint_t)(S_MASK(22) & (disp >> 2)); 199 rc = PLT_T_24D; 200 DBG_CALL(pltcnt24d++); 201 } 202 203 pltent[2] = M_NOP; /* nop instr */ 204 pltent[1] = bainstr; 205 206 iflush_range((char *)(&pltent[1]), 4); 207 pltent[0] = M_NOP; /* nop instr */ 208 iflush_range((char *)(&pltent[0]), 4); 209 return (rc); 210 } 211 212 if ((nsym >> 32) == 0) { 213 plt_upper_32(pltaddr, symval); 214 DBG_CALL(pltcntu32++); 215 return (PLT_T_U32); 216 } 217 218 if ((nsym >> 44) == 0) { 219 plt_upper_44(pltaddr, symval); 220 DBG_CALL(pltcntu44++); 221 return (PLT_T_U44); 222 } 223 224 /* 225 * The PLT destination is not in reach of 226 * a branch instruction - so we fall back 227 * to a 'jmpl' sequence. 228 */ 229 plt_full_range(pltaddr, symval); 230 DBG_CALL(pltcntfull++); 231 return (PLT_T_FULL); 232 } 233 234 /* 235 * Once relocated, the following 6 instruction sequence moves 236 * a 64-bit immediate value into register %g1 237 */ 238 #define VAL64_TO_G1 \ 239 /* 0x00 */ 0x0b, 0x00, 0x00, 0x00, /* sethi %hh(value), %g5 */ \ 240 /* 0x04 */ 0x8a, 0x11, 0x60, 0x00, /* or %g5, %hm(value), %g5 */ \ 241 /* 0x08 */ 0x8b, 0x29, 0x70, 0x20, /* sllx %g5, 32, %g5 */ \ 242 /* 0x0c */ 0x03, 0x00, 0x00, 0x00, /* sethi %lm(value), %g1 */ \ 243 /* 0x10 */ 0x82, 0x10, 0x60, 0x00, /* or %g1, %lo(value), %g1 */ \ 244 /* 0x14 */ 0x82, 0x10, 0x40, 0x05 /* or %g1, %g5, %g1 */ 245 246 /* 247 * Local storage space created on the stack created for this glue 248 * code includes space for: 249 * 0x8 pointer to dyn_data 250 * 0x8 size prev stack frame 251 */ 252 static const Byte dyn_plt_template[] = { 253 /* 0x0 */ 0x2a, 0xcf, 0x80, 0x03, /* brnz,a,pt %fp, 0xc */ 254 /* 0x4 */ 0x82, 0x27, 0x80, 0x0e, /* sub %fp, %sp, %g1 */ 255 /* 0x8 */ 0x82, 0x10, 0x20, 0xb0, /* mov 176, %g1 */ 256 /* 0xc */ 0x9d, 0xe3, 0xbf, 0x40, /* save %sp, -192, %sp */ 257 /* 0x10 */ 0xc2, 0x77, 0xa7, 0xef, /* stx %g1, [%fp + 2031] */ 258 259 /* store prev stack size */ 260 /* 0x14 */ VAL64_TO_G1, /* dyn_data to g1 */ 261 /* 0x2c */ 0xc2, 0x77, 0xa7, 0xf7, /* stx %g1, [%fp + 2039] */ 262 263 /* 0x30 */ VAL64_TO_G1, /* elf_plt_trace() addr to g1 */ 264 265 /* Call to elf_plt_trace() via g1 */ 266 /* 0x48 */ 0x9f, 0xc0, 0x60, 0x00, /* jmpl ! link r[15] to addr in g1 */ 267 /* 0x4c */ 0x01, 0x00, 0x00, 0x00 /* nop ! for jmpl delay slot *AND* */ 268 /* to get 8-byte alignment */ 269 }; 270 271 int dyn_plt_ent_size = sizeof (dyn_plt_template) + 272 sizeof (Addr) + /* reflmp */ 273 sizeof (Addr) + /* deflmp */ 274 sizeof (Word) + /* symndx */ 275 sizeof (Word) + /* sb_flags */ 276 sizeof (Sym); /* symdef */ 277 278 /* 279 * the dynamic plt entry is: 280 * 281 * brnz,a,pt %fp, 1f 282 * sub %sp, %fp, %g1 283 * mov SA(MINFRAME), %g1 284 * 1: 285 * save %sp, -(SA(MINFRAME) + (2 * CLONGSIZE)), %sp 286 * 287 * ! store prev stack size 288 * stx %g1, [%fp + STACK_BIAS - (2 * CLONGSIZE)] 289 * 290 * 2: 291 * ! move dyn_data to %g1 292 * sethi %hh(dyn_data), %g5 293 * or %g5, %hm(dyn_data), %g5 294 * sllx %g5, 32, %g5 295 * sethi %lm(dyn_data), %g1 296 * or %g1, %lo(dyn_data), %g1 297 * or %g1, %g5, %g1 298 * 299 * ! store dyn_data ptr on frame (from %g1) 300 * stx %g1, [%fp + STACK_BIAS - CLONGSIZE] 301 * 302 * ! Move address of elf_plt_trace() into %g1 303 * [Uses same 6 instructions as shown at label 2: above. Not shown.] 304 * 305 * ! Use JMPL to make call. CALL instruction is limited to 30-bits. 306 * ! of displacement. 307 * jmp1 %g1, %o7 308 * 309 * ! JMPL has a delay slot that must be filled. And, the sequence 310 * ! of instructions needs to have 8-byte alignment. This NOP does both. 311 * ! The alignment is needed for the data we put following the 312 * ! instruction. 313 * nop 314 * 315 * dyn data: 316 * Addr reflmp 317 * Addr deflmp 318 * Word symndx 319 * Word sb_flags 320 * Sym symdef (Elf64_Sym = 24-bytes) 321 */ 322 323 /* 324 * Relocate the instructions given by the VAL64_TO_G1 macro above. 325 * The arguments parallel those of do_reloc_rtld(). 326 * 327 * entry: 328 * off - Address of 1st instruction in sequence. 329 * value - Value being relocated (addend) 330 * sym - Name of value being relocated. 331 * lml - link map list 332 * 333 * exit: 334 * Returns TRUE for success, FALSE for failure. 335 */ 336 static int 337 reloc_val64_to_g1(uchar_t *off, Addr *value, const char *sym, Lm_list *lml) 338 { 339 Xword tmp_value; 340 341 /* 342 * relocating: 343 * sethi %hh(value), %g5 344 */ 345 tmp_value = (Xword)value; 346 if (do_reloc_rtld(R_SPARC_HH22, off, &tmp_value, sym, 347 MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) { 348 return (0); 349 } 350 351 /* 352 * relocating: 353 * or %g5, %hm(value), %g5 354 */ 355 tmp_value = (Xword)value; 356 if (do_reloc_rtld(R_SPARC_HM10, off + 4, &tmp_value, sym, 357 MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) { 358 return (0); 359 } 360 361 /* 362 * relocating: 363 * sethi %lm(value), %g1 364 */ 365 tmp_value = (Xword)value; 366 if (do_reloc_rtld(R_SPARC_LM22, off + 12, &tmp_value, sym, 367 MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) { 368 return (0); 369 } 370 371 /* 372 * relocating: 373 * or %g1, %lo(value), %g1 374 */ 375 tmp_value = (Xword)value; 376 if (do_reloc_rtld(R_SPARC_LO10, off + 16, &tmp_value, sym, 377 MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) { 378 return (0); 379 } 380 381 return (1); 382 } 383 384 static caddr_t 385 elf_plt_trace_write(caddr_t addr, Rela *rptr, Rt_map *rlmp, Rt_map *dlmp, 386 Sym *sym, uint_t symndx, ulong_t pltndx, caddr_t to, uint_t sb_flags, 387 int *fail) 388 { 389 extern ulong_t elf_plt_trace(); 390 uchar_t *dyn_plt; 391 uintptr_t *dyndata; 392 393 /* 394 * If both pltenter & pltexit have been disabled there 395 * there is no reason to even create the glue code. 396 */ 397 if ((sb_flags & (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) == 398 (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) { 399 (void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr, 400 rptr, (uintptr_t)to, pltndx); 401 return (to); 402 } 403 404 /* 405 * We only need to add the glue code if there is an auditing 406 * library that is interested in this binding. 407 */ 408 dyn_plt = (uchar_t *)((uintptr_t)AUDINFO(rlmp)->ai_dynplts + 409 (pltndx * dyn_plt_ent_size)); 410 411 /* 412 * Have we initialized this dynamic plt entry yet? If we haven't do it 413 * now. Otherwise this function has been called before, but from a 414 * different plt (ie. from another shared object). In that case 415 * we just set the plt to point to the new dyn_plt. 416 */ 417 if (*dyn_plt == 0) { 418 Sym *symp; 419 Lm_list *lml = LIST(rlmp); 420 421 (void) memcpy((void *)dyn_plt, dyn_plt_template, 422 sizeof (dyn_plt_template)); 423 dyndata = (uintptr_t *)((uintptr_t)dyn_plt + 424 sizeof (dyn_plt_template)); 425 426 /* 427 * relocating: 428 * VAL64_TO_G1(dyndata) 429 * VAL64_TO_G1(&elf_plt_trace) 430 */ 431 if (!(reloc_val64_to_g1((dyn_plt + 0x14), dyndata, 432 MSG_ORIG(MSG_SYM_LADYNDATA), lml) && 433 reloc_val64_to_g1((dyn_plt + 0x30), (Addr *)&elf_plt_trace, 434 MSG_ORIG(MSG_SYM_ELFPLTTRACE), lml))) { 435 *fail = 1; 436 return (0); 437 } 438 439 *dyndata++ = (Addr)rlmp; 440 *dyndata++ = (Addr)dlmp; 441 442 /* 443 * symndx in the high word, sb_flags in the low. 444 */ 445 *dyndata = (Addr)sb_flags; 446 *(Word *)dyndata = symndx; 447 dyndata++; 448 449 symp = (Sym *)dyndata; 450 *symp = *sym; 451 symp->st_value = (Addr)to; 452 iflush_range((void *)dyn_plt, sizeof (dyn_plt_template)); 453 } 454 455 (void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr, rptr, 456 (uintptr_t)dyn_plt, pltndx); 457 return ((caddr_t)dyn_plt); 458 } 459 460 /* 461 * Function binding routine - invoked on the first call to a function through 462 * the procedure linkage table; 463 * passes first through an assembly language interface. 464 * 465 * Takes the address of the PLT entry where the call originated, 466 * the offset into the relocation table of the associated 467 * relocation entry and the address of the link map (rt_private_map struct) 468 * for the entry. 469 * 470 * Returns the address of the function referenced after re-writing the PLT 471 * entry to invoke the function directly. 472 * 473 * On error, causes process to terminate with a signal. 474 */ 475 ulong_t 476 elf_bndr(Rt_map *lmp, ulong_t pltoff, caddr_t from) 477 { 478 Rt_map *nlmp, *llmp; 479 Addr addr, vaddr, reloff, symval; 480 char *name; 481 Rela *rptr; 482 Sym *rsym, *nsym; 483 Xword pltndx; 484 uint_t binfo, sb_flags = 0, dbg_class; 485 ulong_t rsymndx; 486 Slookup sl; 487 Pltbindtype pbtype; 488 int entry, lmflags, farplt = 0; 489 Lm_list *lml; 490 491 /* 492 * For compatibility with libthread (TI_VERSION 1) we track the entry 493 * value. A zero value indicates we have recursed into ld.so.1 to 494 * further process a locking request. Under this recursion we disable 495 * tsort and cleanup activities. 496 */ 497 entry = enter(0); 498 499 lml = LIST(lmp); 500 if ((lmflags = lml->lm_flags) & LML_FLG_RTLDLM) { 501 dbg_class = dbg_desc->d_class; 502 dbg_desc->d_class = 0; 503 } 504 505 /* 506 * Must calculate true plt relocation address from reloc. 507 * Take offset, subtract number of reserved PLT entries, and divide 508 * by PLT entry size, which should give the index of the plt 509 * entry (and relocation entry since they have been defined to be 510 * in the same order). Then we must multiply by the size of 511 * a relocation entry, which will give us the offset of the 512 * plt relocation entry from the start of them given by JMPREL(lm). 513 */ 514 addr = pltoff - M_PLT_RESERVSZ; 515 516 if (pltoff < (M64_PLT_NEARPLTS * M_PLT_ENTSIZE)) { 517 pltndx = addr / M_PLT_ENTSIZE; 518 } else { 519 ulong_t pltblockoff; 520 521 pltblockoff = pltoff - (M64_PLT_NEARPLTS * M_PLT_ENTSIZE); 522 pltndx = M64_PLT_NEARPLTS + 523 ((pltblockoff / M64_PLT_FBLOCKSZ) * M64_PLT_FBLKCNTS) + 524 ((pltblockoff % M64_PLT_FBLOCKSZ) / M64_PLT_FENTSIZE) - 525 M_PLT_XNumber; 526 farplt = 1; 527 } 528 529 /* 530 * Perform some basic sanity checks. If we didn't get a load map 531 * or the plt offset is invalid then its possible someone has walked 532 * over the plt entries or jumped to plt[01] out of the blue. 533 */ 534 if (!lmp || (!farplt && (addr % M_PLT_ENTSIZE) != 0) || 535 (farplt && (addr % M_PLT_INSSIZE))) { 536 Conv_inv_buf_t inv_buf; 537 538 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_PLTREF), 539 conv_reloc_SPARC_type(R_SPARC_JMP_SLOT, 0, &inv_buf), 540 EC_NATPTR(lmp), EC_XWORD(pltoff), EC_NATPTR(from)); 541 rtldexit(lml, 1); 542 } 543 reloff = pltndx * sizeof (Rela); 544 545 /* 546 * Use relocation entry to get symbol table entry and symbol name. 547 */ 548 addr = (ulong_t)JMPREL(lmp); 549 rptr = (Rela *)(addr + reloff); 550 rsymndx = ELF_R_SYM(rptr->r_info); 551 rsym = (Sym *)((ulong_t)SYMTAB(lmp) + (rsymndx * SYMENT(lmp))); 552 name = (char *)(STRTAB(lmp) + rsym->st_name); 553 554 /* 555 * Determine the last link-map of this list, this'll be the starting 556 * point for any tsort() processing. 557 */ 558 llmp = lml->lm_tail; 559 560 /* 561 * Find definition for symbol. Initialize the symbol lookup data 562 * structure. 563 */ 564 SLOOKUP_INIT(sl, name, lmp, lml->lm_head, ld_entry_cnt, 0, 565 rsymndx, rsym, 0, LKUP_DEFT); 566 567 if ((nsym = lookup_sym(&sl, &nlmp, &binfo, NULL)) == 0) { 568 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp), 569 demangle(name)); 570 rtldexit(lml, 1); 571 } 572 573 symval = nsym->st_value; 574 if (!(FLAGS(nlmp) & FLG_RT_FIXED) && 575 (nsym->st_shndx != SHN_ABS)) 576 symval += ADDR(nlmp); 577 if ((lmp != nlmp) && ((FLAGS1(nlmp) & FL1_RT_NOINIFIN) == 0)) { 578 /* 579 * Record that this new link map is now bound to the caller. 580 */ 581 if (bind_one(lmp, nlmp, BND_REFER) == 0) 582 rtldexit(lml, 1); 583 } 584 585 if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_SYMBIND) { 586 /* LINTED */ 587 uint_t symndx = (uint_t)(((uintptr_t)nsym - 588 (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp)); 589 590 symval = audit_symbind(lmp, nlmp, nsym, symndx, symval, 591 &sb_flags); 592 } 593 594 if (FLAGS(lmp) & FLG_RT_FIXED) 595 vaddr = 0; 596 else 597 vaddr = ADDR(lmp); 598 599 pbtype = PLT_T_NONE; 600 if (!(rtld_flags & RT_FL_NOBIND)) { 601 if (((lml->lm_tflags | AFLAGS(lmp)) & 602 (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) && 603 AUDINFO(lmp)->ai_dynplts) { 604 int fail = 0; 605 /* LINTED */ 606 uint_t symndx = (uint_t)(((uintptr_t)nsym - 607 (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp)); 608 609 symval = (ulong_t)elf_plt_trace_write((caddr_t)vaddr, 610 rptr, lmp, nlmp, nsym, symndx, pltndx, 611 (caddr_t)symval, sb_flags, &fail); 612 if (fail) 613 rtldexit(lml, 1); 614 } else { 615 /* 616 * Write standard PLT entry to jump directly 617 * to newly bound function. 618 */ 619 pbtype = elf_plt_write((uintptr_t)vaddr, 620 (uintptr_t)vaddr, rptr, symval, pltndx); 621 } 622 } 623 624 /* 625 * Print binding information and rebuild PLT entry. 626 */ 627 DBG_CALL(Dbg_bind_global(lmp, (Addr)from, (Off)(from - ADDR(lmp)), 628 (Xword)pltndx, pbtype, nlmp, (Addr)symval, nsym->st_value, 629 name, binfo)); 630 631 /* 632 * Complete any processing for newly loaded objects. Note we don't 633 * know exactly where any new objects are loaded (we know the object 634 * that supplied the symbol, but others may have been loaded lazily as 635 * we searched for the symbol), so sorting starts from the last 636 * link-map know on entry to this routine. 637 */ 638 if (entry) 639 load_completion(llmp); 640 641 /* 642 * Some operations like dldump() or dlopen()'ing a relocatable object 643 * result in objects being loaded on rtld's link-map, make sure these 644 * objects are initialized also. 645 */ 646 if ((LIST(nlmp)->lm_flags & LML_FLG_RTLDLM) && LIST(nlmp)->lm_init) 647 load_completion(nlmp); 648 649 /* 650 * Make sure the object to which we've bound has had it's .init fired. 651 * Cleanup before return to user code. 652 */ 653 if (entry) { 654 is_dep_init(nlmp, lmp); 655 leave(lml, 0); 656 } 657 658 if (lmflags & LML_FLG_RTLDLM) 659 dbg_desc->d_class = dbg_class; 660 661 return (symval); 662 } 663 664 static int 665 bindpltpad(Rt_map *lmp, List *padlist, Addr value, void **pltaddr, 666 const char *fname, const char *sname) 667 { 668 Listnode *lnp, *prevlnp; 669 Pltpadinfo *pip; 670 void *plt; 671 uintptr_t pltoff; 672 Rela rel; 673 int i; 674 675 prevlnp = 0; 676 for (LIST_TRAVERSE(padlist, lnp, pip)) { 677 if (pip->pp_addr == value) { 678 *pltaddr = pip->pp_plt; 679 DBG_CALL(Dbg_bind_pltpad_from(lmp, (Addr)*pltaddr, 680 sname)); 681 return (1); 682 } 683 if (pip->pp_addr > value) 684 break; 685 prevlnp = lnp; 686 } 687 688 plt = PLTPAD(lmp); 689 pltoff = (uintptr_t)plt - (uintptr_t)ADDR(lmp); 690 691 PLTPAD(lmp) = (void *)((uintptr_t)PLTPAD(lmp) + M_PLT_ENTSIZE); 692 693 if (PLTPAD(lmp) > PLTPADEND(lmp)) { 694 /* 695 * Just fail in usual relocation way 696 */ 697 *pltaddr = (void *)value; 698 return (1); 699 } 700 rel.r_offset = pltoff; 701 rel.r_info = 0; 702 rel.r_addend = 0; 703 704 /* 705 * elf_plt_write assumes the plt was previously filled 706 * with NOP's, so fill it in now. 707 */ 708 for (i = 0; i < (M_PLT_ENTSIZE / sizeof (uint_t)); i++) { 709 ((uint_t *)plt)[i] = M_NOP; 710 } 711 iflush_range((caddr_t)plt, M_PLT_ENTSIZE); 712 713 (void) elf_plt_write(ADDR(lmp), ADDR(lmp), &rel, value, 0); 714 715 if ((pip = calloc(sizeof (Pltpadinfo), 1)) == 0) 716 return (0); 717 pip->pp_addr = value; 718 pip->pp_plt = plt; 719 720 if (prevlnp) 721 lnp = list_insert(padlist, pip, prevlnp); 722 else 723 lnp = list_prepend(padlist, pip); 724 725 if (!lnp) { 726 free(pip); 727 return (0); 728 } 729 730 *pltaddr = plt; 731 DBG_CALL(Dbg_bind_pltpad_to(lmp, (Addr)*pltaddr, fname, sname)); 732 return (1); 733 } 734 735 /* 736 * Read and process the relocations for one link object, we assume all 737 * relocation sections for loadable segments are stored contiguously in 738 * the file. 739 */ 740 int 741 elf_reloc(Rt_map *lmp, uint_t plt, int *in_nfavl, APlist **textrel) 742 { 743 ulong_t relbgn, relend, relsiz, basebgn, pltbgn, pltend; 744 ulong_t pltndx, roffset, rsymndx, psymndx = 0; 745 uint_t dsymndx, binfo, pbinfo; 746 Byte rtype; 747 long reladd; 748 Addr value, pvalue; 749 Sym *symref, *psymref, *symdef, *psymdef; 750 char *name, *pname; 751 Rt_map *_lmp, *plmp; 752 int ret = 1, noplt = 0; 753 long relacount = RELACOUNT(lmp); 754 Rela *rel; 755 Pltbindtype pbtype; 756 List pltpadlist = {0, 0}; 757 APlist *bound = NULL; 758 759 /* 760 * If an object has any DT_REGISTER entries associated with 761 * it, they are processed now. 762 */ 763 if ((plt == 0) && (FLAGS(lmp) & FLG_RT_REGSYMS)) { 764 if (elf_regsyms(lmp) == 0) 765 return (0); 766 } 767 768 /* 769 * Although only necessary for lazy binding, initialize the first 770 * procedure linkage table entry to go to elf_rtbndr(). dbx(1) seems 771 * to find this useful. 772 */ 773 if ((plt == 0) && PLTGOT(lmp)) { 774 mmapobj_result_t *mpp; 775 Xword pltoff; 776 777 /* 778 * Make sure the segment is writable. 779 */ 780 if ((((mpp = 781 find_segment((caddr_t)PLTGOT(lmp), lmp)) != NULL) && 782 ((mpp->mr_prot & PROT_WRITE) == 0)) && 783 ((set_prot(lmp, mpp, 1) == 0) || 784 (aplist_append(textrel, mpp, AL_CNT_TEXTREL) == NULL))) 785 return (0); 786 787 /* 788 * Install the lm pointer in .PLT2 as per the ABI. 789 */ 790 pltoff = (2 * M_PLT_ENTSIZE) / M_PLT_INSSIZE; 791 elf_plt2_init(PLTGOT(lmp) + pltoff, lmp); 792 793 /* 794 * The V9 ABI states that the first 32k PLT entries 795 * use .PLT1, with .PLT0 used by the "latter" entries. 796 * We don't currently implement the extendend format, 797 * so install an error handler in .PLT0 to catch anyone 798 * trying to use it. 799 */ 800 elf_plt_init(PLTGOT(lmp), (caddr_t)elf_rtbndr_far); 801 802 /* 803 * Initialize .PLT1 804 */ 805 pltoff = M_PLT_ENTSIZE / M_PLT_INSSIZE; 806 elf_plt_init(PLTGOT(lmp) + pltoff, (caddr_t)elf_rtbndr); 807 } 808 809 /* 810 * Initialize the plt start and end addresses. 811 */ 812 if ((pltbgn = (ulong_t)JMPREL(lmp)) != 0) 813 pltend = pltbgn + (ulong_t)(PLTRELSZ(lmp)); 814 815 /* 816 * If we've been called upon to promote an RTLD_LAZY object to an 817 * RTLD_NOW then we're only interested in scaning the .plt table. 818 */ 819 if (plt) { 820 relbgn = pltbgn; 821 relend = pltend; 822 } else { 823 /* 824 * The relocation sections appear to the run-time linker as a 825 * single table. Determine the address of the beginning and end 826 * of this table. There are two different interpretations of 827 * the ABI at this point: 828 * 829 * o The REL table and its associated RELSZ indicate the 830 * concatenation of *all* relocation sections (this is the 831 * model our link-editor constructs). 832 * 833 * o The REL table and its associated RELSZ indicate the 834 * concatenation of all *but* the .plt relocations. These 835 * relocations are specified individually by the JMPREL and 836 * PLTRELSZ entries. 837 * 838 * Determine from our knowledege of the relocation range and 839 * .plt range, the range of the total relocation table. Note 840 * that one other ABI assumption seems to be that the .plt 841 * relocations always follow any other relocations, the 842 * following range checking drops that assumption. 843 */ 844 relbgn = (ulong_t)(REL(lmp)); 845 relend = relbgn + (ulong_t)(RELSZ(lmp)); 846 if (pltbgn) { 847 if (!relbgn || (relbgn > pltbgn)) 848 relbgn = pltbgn; 849 if (!relbgn || (relend < pltend)) 850 relend = pltend; 851 } 852 } 853 if (!relbgn || (relbgn == relend)) { 854 DBG_CALL(Dbg_reloc_run(lmp, 0, plt, DBG_REL_NONE)); 855 return (1); 856 } 857 858 relsiz = (ulong_t)(RELENT(lmp)); 859 basebgn = ADDR(lmp); 860 861 DBG_CALL(Dbg_reloc_run(lmp, M_REL_SHT_TYPE, plt, DBG_REL_START)); 862 863 /* 864 * If we're processing in lazy mode there is no need to scan the 865 * .rela.plt table. 866 */ 867 if (pltbgn && ((MODE(lmp) & RTLD_NOW) == 0)) 868 noplt = 1; 869 870 /* 871 * Loop through relocations. 872 */ 873 while (relbgn < relend) { 874 mmapobj_result_t *mpp; 875 uint_t sb_flags = 0; 876 Addr vaddr; 877 878 rtype = (Byte)ELF_R_TYPE(((Rela *)relbgn)->r_info, M_MACH); 879 880 /* 881 * If this is a RELATIVE relocation in a shared object 882 * (the common case), and if we are not debugging, then 883 * jump into a tighter relocaiton loop (elf_reloc_relacount) 884 * Only make the jump if we've been given a hint on the 885 * number of relocations. 886 */ 887 if ((rtype == R_SPARC_RELATIVE) && 888 ((FLAGS(lmp) & FLG_RT_FIXED) == 0) && (DBG_ENABLED == 0)) { 889 if (relacount) { 890 relbgn = elf_reloc_relative_count(relbgn, 891 relacount, relsiz, basebgn, lmp, textrel); 892 relacount = 0; 893 } else { 894 relbgn = elf_reloc_relative(relbgn, relend, 895 relsiz, basebgn, lmp, textrel); 896 } 897 if (relbgn >= relend) 898 break; 899 rtype = (Byte)ELF_R_TYPE(((Rela *)relbgn)->r_info, 900 M_MACH); 901 } 902 903 roffset = ((Rela *)relbgn)->r_offset; 904 905 reladd = (long)(((Rela *)relbgn)->r_addend); 906 rsymndx = ELF_R_SYM(((Rela *)relbgn)->r_info); 907 908 rel = (Rela *)relbgn; 909 relbgn += relsiz; 910 911 /* 912 * Optimizations. 913 */ 914 if (rtype == R_SPARC_NONE) 915 continue; 916 if (noplt && ((ulong_t)rel >= pltbgn) && 917 ((ulong_t)rel < pltend)) { 918 relbgn = pltend; 919 continue; 920 } 921 922 if (rtype != R_SPARC_REGISTER) { 923 /* 924 * If this is a shared object, add the base address 925 * to offset. 926 */ 927 if (!(FLAGS(lmp) & FLG_RT_FIXED)) 928 roffset += basebgn; 929 930 /* 931 * If this relocation is not against part of the image 932 * mapped into memory we skip it. 933 */ 934 if ((mpp = find_segment((caddr_t)roffset, 935 lmp)) == NULL) { 936 elf_reloc_bad(lmp, (void *)rel, rtype, roffset, 937 rsymndx); 938 continue; 939 } 940 } 941 942 /* 943 * If we're promoting plts, determine if this one has already 944 * been written. An uninitialized plts' second instruction is a 945 * branch. 946 */ 947 if (plt) { 948 uchar_t *_roffset = (uchar_t *)roffset; 949 950 _roffset += M_PLT_INSSIZE; 951 /* LINTED */ 952 if ((*(uint_t *)_roffset & 953 (~(S_MASK(19)))) != M_BA_A_XCC) 954 continue; 955 } 956 957 binfo = 0; 958 pltndx = (ulong_t)-1; 959 pbtype = PLT_T_NONE; 960 961 /* 962 * If a symbol index is specified then get the symbol table 963 * entry, locate the symbol definition, and determine its 964 * address. 965 */ 966 if (rsymndx) { 967 /* 968 * Get the local symbol table entry. 969 */ 970 symref = (Sym *)((ulong_t)SYMTAB(lmp) + 971 (rsymndx * SYMENT(lmp))); 972 973 /* 974 * If this is a local symbol, just use the base address. 975 * (we should have no local relocations in the 976 * executable). 977 */ 978 if (ELF_ST_BIND(symref->st_info) == STB_LOCAL) { 979 value = basebgn; 980 name = (char *)0; 981 982 /* 983 * Special case TLS relocations. 984 */ 985 if ((rtype == R_SPARC_TLS_DTPMOD32) || 986 (rtype == R_SPARC_TLS_DTPMOD64)) { 987 /* 988 * Use the TLS modid. 989 */ 990 value = TLSMODID(lmp); 991 992 } else if ((rtype == R_SPARC_TLS_TPOFF32) || 993 (rtype == R_SPARC_TLS_TPOFF64)) { 994 if ((value = elf_static_tls(lmp, symref, 995 rel, rtype, 0, roffset, 0)) == 0) { 996 ret = 0; 997 break; 998 } 999 } 1000 } else { 1001 /* 1002 * If the symbol index is equal to the previous 1003 * symbol index relocation we processed then 1004 * reuse the previous values. (Note that there 1005 * have been cases where a relocation exists 1006 * against a copy relocation symbol, our ld(1) 1007 * should optimize this away, but make sure we 1008 * don't use the same symbol information should 1009 * this case exist). 1010 */ 1011 if ((rsymndx == psymndx) && 1012 (rtype != R_SPARC_COPY)) { 1013 /* LINTED */ 1014 if (psymdef == 0) { 1015 DBG_CALL(Dbg_bind_weak(lmp, 1016 (Addr)roffset, (Addr) 1017 (roffset - basebgn), name)); 1018 continue; 1019 } 1020 /* LINTED */ 1021 value = pvalue; 1022 /* LINTED */ 1023 name = pname; 1024 symdef = psymdef; 1025 /* LINTED */ 1026 symref = psymref; 1027 /* LINTED */ 1028 _lmp = plmp; 1029 /* LINTED */ 1030 binfo = pbinfo; 1031 1032 if ((LIST(_lmp)->lm_tflags | 1033 AFLAGS(_lmp)) & 1034 LML_TFLG_AUD_SYMBIND) { 1035 value = audit_symbind(lmp, _lmp, 1036 /* LINTED */ 1037 symdef, dsymndx, value, 1038 &sb_flags); 1039 } 1040 } else { 1041 Slookup sl; 1042 1043 /* 1044 * Lookup the symbol definition. 1045 * Initialize the symbol lookup data 1046 * structure. 1047 */ 1048 name = (char *)(STRTAB(lmp) + 1049 symref->st_name); 1050 1051 SLOOKUP_INIT(sl, name, lmp, 0, 1052 ld_entry_cnt, 0, rsymndx, symref, 1053 rtype, LKUP_STDRELOC); 1054 1055 symdef = lookup_sym(&sl, &_lmp, 1056 &binfo, in_nfavl); 1057 1058 /* 1059 * If the symbol is not found and the 1060 * reference was not to a weak symbol, 1061 * report an error. Weak references 1062 * may be unresolved. 1063 */ 1064 /* BEGIN CSTYLED */ 1065 if (symdef == 0) { 1066 if (sl.sl_bind != STB_WEAK) { 1067 if (elf_reloc_error(lmp, name, 1068 rel, binfo)) 1069 continue; 1070 1071 ret = 0; 1072 break; 1073 1074 } else { 1075 psymndx = rsymndx; 1076 psymdef = 0; 1077 1078 DBG_CALL(Dbg_bind_weak(lmp, 1079 (Addr)roffset, (Addr) 1080 (roffset - basebgn), name)); 1081 continue; 1082 } 1083 } 1084 /* END CSTYLED */ 1085 1086 /* 1087 * If symbol was found in an object 1088 * other than the referencing object 1089 * then record the binding. 1090 */ 1091 if ((lmp != _lmp) && ((FLAGS1(_lmp) & 1092 FL1_RT_NOINIFIN) == 0)) { 1093 if (aplist_test(&bound, _lmp, 1094 AL_CNT_RELBIND) == 0) { 1095 ret = 0; 1096 break; 1097 } 1098 } 1099 1100 /* 1101 * Calculate the location of definition; 1102 * symbol value plus base address of 1103 * containing shared object. 1104 */ 1105 if (IS_SIZE(rtype)) 1106 value = symdef->st_size; 1107 else 1108 value = symdef->st_value; 1109 1110 if (!(FLAGS(_lmp) & FLG_RT_FIXED) && 1111 !(IS_SIZE(rtype)) && 1112 (symdef->st_shndx != SHN_ABS) && 1113 (ELF_ST_TYPE(symdef->st_info) != 1114 STT_TLS)) 1115 value += ADDR(_lmp); 1116 1117 /* 1118 * Retain this symbol index and the 1119 * value in case it can be used for the 1120 * subsequent relocations. 1121 */ 1122 if (rtype != R_SPARC_COPY) { 1123 psymndx = rsymndx; 1124 pvalue = value; 1125 pname = name; 1126 psymdef = symdef; 1127 psymref = symref; 1128 plmp = _lmp; 1129 pbinfo = binfo; 1130 } 1131 if ((LIST(_lmp)->lm_tflags | 1132 AFLAGS(_lmp)) & 1133 LML_TFLG_AUD_SYMBIND) { 1134 /* LINTED */ 1135 dsymndx = (((uintptr_t)symdef - 1136 (uintptr_t)SYMTAB(_lmp)) / 1137 SYMENT(_lmp)); 1138 value = audit_symbind(lmp, _lmp, 1139 symdef, dsymndx, value, 1140 &sb_flags); 1141 } 1142 } 1143 1144 /* 1145 * If relocation is PC-relative, subtract 1146 * offset address. 1147 */ 1148 if (IS_PC_RELATIVE(rtype)) 1149 value -= roffset; 1150 1151 /* 1152 * Special case TLS relocations. 1153 */ 1154 if ((rtype == R_SPARC_TLS_DTPMOD32) || 1155 (rtype == R_SPARC_TLS_DTPMOD64)) { 1156 /* 1157 * Relocation value is the TLS modid. 1158 */ 1159 value = TLSMODID(_lmp); 1160 1161 } else if ((rtype == R_SPARC_TLS_TPOFF64) || 1162 (rtype == R_SPARC_TLS_TPOFF32)) { 1163 if ((value = elf_static_tls(_lmp, 1164 symdef, rel, rtype, name, roffset, 1165 value)) == 0) { 1166 ret = 0; 1167 break; 1168 } 1169 } 1170 } 1171 } else { 1172 /* 1173 * Special cases. 1174 */ 1175 if (rtype == R_SPARC_REGISTER) { 1176 /* 1177 * A register symbol associated with symbol 1178 * index 0 is initialized (i.e. relocated) to 1179 * a constant in the r_addend field rather than 1180 * to a symbol value. 1181 */ 1182 value = 0; 1183 1184 } else if ((rtype == R_SPARC_TLS_DTPMOD32) || 1185 (rtype == R_SPARC_TLS_DTPMOD64)) { 1186 /* 1187 * TLS relocation value is the TLS modid. 1188 */ 1189 value = TLSMODID(lmp); 1190 } else 1191 value = basebgn; 1192 name = (char *)0; 1193 } 1194 1195 DBG_CALL(Dbg_reloc_in(LIST(lmp), ELF_DBG_RTLD, M_MACH, 1196 M_REL_SHT_TYPE, rel, NULL, name)); 1197 1198 /* 1199 * Make sure the segment is writable. 1200 */ 1201 if ((rtype != R_SPARC_REGISTER) && 1202 ((mpp->mr_prot & PROT_WRITE) == 0) && 1203 ((set_prot(lmp, mpp, 1) == 0) || 1204 (aplist_append(textrel, mpp, AL_CNT_TEXTREL) == NULL))) { 1205 ret = 0; 1206 break; 1207 } 1208 1209 /* 1210 * Call relocation routine to perform required relocation. 1211 */ 1212 switch (rtype) { 1213 case R_SPARC_REGISTER: 1214 /* 1215 * The v9 ABI 4.2.4 says that system objects may, 1216 * but are not required to, use register symbols 1217 * to inidcate how they use global registers. Thus 1218 * at least %g6, %g7 must be allowed in addition 1219 * to %g2 and %g3. 1220 */ 1221 value += reladd; 1222 if (roffset == STO_SPARC_REGISTER_G1) { 1223 set_sparc_g1(value); 1224 } else if (roffset == STO_SPARC_REGISTER_G2) { 1225 set_sparc_g2(value); 1226 } else if (roffset == STO_SPARC_REGISTER_G3) { 1227 set_sparc_g3(value); 1228 } else if (roffset == STO_SPARC_REGISTER_G4) { 1229 set_sparc_g4(value); 1230 } else if (roffset == STO_SPARC_REGISTER_G5) { 1231 set_sparc_g5(value); 1232 } else if (roffset == STO_SPARC_REGISTER_G6) { 1233 set_sparc_g6(value); 1234 } else if (roffset == STO_SPARC_REGISTER_G7) { 1235 set_sparc_g7(value); 1236 } else { 1237 eprintf(LIST(lmp), ERR_FATAL, 1238 MSG_INTL(MSG_REL_BADREG), NAME(lmp), 1239 EC_ADDR(roffset)); 1240 ret = 0; 1241 break; 1242 } 1243 1244 DBG_CALL(Dbg_reloc_apply_reg(LIST(lmp), ELF_DBG_RTLD, 1245 M_MACH, (Xword)roffset, (Xword)value)); 1246 break; 1247 case R_SPARC_COPY: 1248 if (elf_copy_reloc(name, symref, lmp, (void *)roffset, 1249 symdef, _lmp, (const void *)value) == 0) 1250 ret = 0; 1251 break; 1252 case R_SPARC_JMP_SLOT: 1253 pltndx = ((uintptr_t)rel - 1254 (uintptr_t)JMPREL(lmp)) / relsiz; 1255 1256 if (FLAGS(lmp) & FLG_RT_FIXED) 1257 vaddr = 0; 1258 else 1259 vaddr = ADDR(lmp); 1260 1261 if (((LIST(lmp)->lm_tflags | AFLAGS(lmp)) & 1262 (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) && 1263 AUDINFO(lmp)->ai_dynplts) { 1264 int fail = 0; 1265 /* LINTED */ 1266 uint_t symndx = (uint_t)(((uintptr_t)symdef - 1267 (uintptr_t)SYMTAB(_lmp)) / SYMENT(_lmp)); 1268 1269 (void) elf_plt_trace_write((caddr_t)vaddr, 1270 (Rela *)rel, lmp, _lmp, symdef, symndx, 1271 pltndx, (caddr_t)value, sb_flags, &fail); 1272 if (fail) 1273 ret = 0; 1274 } else { 1275 /* 1276 * Write standard PLT entry to jump directly 1277 * to newly bound function. 1278 */ 1279 DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), 1280 ELF_DBG_RTLD, (Xword)roffset, 1281 (Xword)value)); 1282 pbtype = elf_plt_write((uintptr_t)vaddr, 1283 (uintptr_t)vaddr, (void *)rel, value, 1284 pltndx); 1285 } 1286 break; 1287 case R_SPARC_WDISP30: 1288 if (PLTPAD(lmp) && 1289 (S_INRANGE((Sxword)value, 29) == 0)) { 1290 void * plt = 0; 1291 1292 if (bindpltpad(lmp, &pltpadlist, 1293 value + roffset, &plt, 1294 NAME(_lmp), name) == 0) { 1295 ret = 0; 1296 break; 1297 } 1298 value = (Addr)((Addr)plt - roffset); 1299 } 1300 /* FALLTHROUGH */ 1301 default: 1302 value += reladd; 1303 if (IS_EXTOFFSET(rtype)) 1304 value += (Word)ELF_R_TYPE_DATA(rel->r_info); 1305 1306 /* 1307 * Write the relocation out. If this relocation is a 1308 * common basic write, skip the doreloc() engine. 1309 */ 1310 if ((rtype == R_SPARC_GLOB_DAT) || 1311 (rtype == R_SPARC_64)) { 1312 if (roffset & 0x7) { 1313 Conv_inv_buf_t inv_buf; 1314 1315 eprintf(LIST(lmp), ERR_FATAL, 1316 MSG_INTL(MSG_REL_NONALIGN), 1317 conv_reloc_SPARC_type(rtype, 1318 0, &inv_buf), 1319 NAME(lmp), demangle(name), 1320 EC_OFF(roffset)); 1321 ret = 0; 1322 } else 1323 *(ulong_t *)roffset += value; 1324 } else { 1325 if (do_reloc_rtld(rtype, (uchar_t *)roffset, 1326 (Xword *)&value, name, 1327 NAME(lmp), LIST(lmp)) == 0) 1328 ret = 0; 1329 } 1330 1331 /* 1332 * The value now contains the 'bit-shifted' value that 1333 * was or'ed into memory (this was set by 1334 * do_reloc_rtld()). 1335 */ 1336 DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), ELF_DBG_RTLD, 1337 (Xword)roffset, (Xword)value)); 1338 1339 /* 1340 * If this relocation is against a text segment, make 1341 * sure that the instruction cache is flushed. 1342 */ 1343 if (textrel) 1344 iflush_range((caddr_t)roffset, 0x4); 1345 } 1346 1347 if ((ret == 0) && 1348 ((LIST(lmp)->lm_flags & LML_FLG_TRC_WARN) == 0)) 1349 break; 1350 1351 if (binfo) { 1352 DBG_CALL(Dbg_bind_global(lmp, (Addr)roffset, 1353 (Off)(roffset - basebgn), pltndx, pbtype, 1354 _lmp, (Addr)value, symdef->st_value, name, binfo)); 1355 } 1356 } 1357 1358 /* 1359 * Free up any items on the pltpadlist if it was allocated 1360 */ 1361 if (pltpadlist.head) { 1362 Listnode *lnp, *plnp = NULL; 1363 Pltpadinfo *pip; 1364 1365 for (LIST_TRAVERSE(&pltpadlist, lnp, pip)) { 1366 if (plnp) 1367 free(plnp); 1368 free(pip); 1369 plnp = lnp; 1370 } 1371 if (plnp) 1372 free(plnp); 1373 } 1374 1375 return (relocate_finish(lmp, bound, ret)); 1376 } 1377 1378 /* 1379 * Provide a machine specific interface to the conversion routine. By calling 1380 * the machine specific version, rather than the generic version, we insure that 1381 * the data tables/strings for all known machine versions aren't dragged into 1382 * ld.so.1. 1383 */ 1384 const char * 1385 _conv_reloc_type(uint_t rel) 1386 { 1387 static Conv_inv_buf_t inv_buf; 1388 1389 return (conv_reloc_SPARC_type(rel, 0, &inv_buf)); 1390 } 1391