xref: /illumos-gate/usr/src/cmd/sgs/rtld/sparc/sparc_elf.c (revision eb9a1df2aeb866bf1de4494433b6d7e5fa07b3ae)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  *	Copyright (c) 1988 AT&T
24  *	  All Rights Reserved
25  *
26  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
27  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
28  */
29 
30 /*
31  * SPARC machine dependent and ELF file class dependent functions.
32  * Contains routines for performing function binding and symbol relocations.
33  */
34 
35 #include	<stdio.h>
36 #include	<sys/elf.h>
37 #include	<sys/elf_SPARC.h>
38 #include	<sys/mman.h>
39 #include	<dlfcn.h>
40 #include	<synch.h>
41 #include	<string.h>
42 #include	<debug.h>
43 #include	<reloc.h>
44 #include	<conv.h>
45 #include	"_rtld.h"
46 #include	"_audit.h"
47 #include	"_elf.h"
48 #include	"_inline_gen.h"
49 #include	"_inline_reloc.h"
50 #include	"msg.h"
51 
52 extern void	iflush_range(caddr_t, size_t);
53 extern void	plt_full_range(uintptr_t, uintptr_t);
54 
55 int
56 elf_mach_flags_check(Rej_desc *rej, Ehdr *ehdr)
57 {
58 	/*
59 	 * Check machine type and flags.
60 	 */
61 	if (ehdr->e_machine != EM_SPARC) {
62 		if (ehdr->e_machine != EM_SPARC32PLUS) {
63 			rej->rej_type = SGS_REJ_MACH;
64 			rej->rej_info = (uint_t)ehdr->e_machine;
65 			return (0);
66 		}
67 		if ((ehdr->e_flags & EF_SPARC_32PLUS) == 0) {
68 			rej->rej_type = SGS_REJ_MISFLAG;
69 			rej->rej_info = (uint_t)ehdr->e_flags;
70 			return (0);
71 		}
72 		if ((ehdr->e_flags & ~at_flags) & EF_SPARC_32PLUS_MASK) {
73 			rej->rej_type = SGS_REJ_BADFLAG;
74 			rej->rej_info = (uint_t)ehdr->e_flags;
75 			return (0);
76 		}
77 	} else if ((ehdr->e_flags & ~EF_SPARCV9_MM) != 0) {
78 		rej->rej_type = SGS_REJ_BADFLAG;
79 		rej->rej_info = (uint_t)ehdr->e_flags;
80 		return (0);
81 	}
82 	return (1);
83 }
84 
85 void
86 ldso_plt_init(Rt_map *lmp)
87 {
88 	/*
89 	 * There is no need to analyze ld.so because we don't map in any of
90 	 * its dependencies.  However we may map these dependencies in later
91 	 * (as if ld.so had dlopened them), so initialize the plt and the
92 	 * permission information.
93 	 */
94 	if (PLTGOT(lmp))
95 		elf_plt_init((PLTGOT(lmp)), (caddr_t)lmp);
96 }
97 
98 /*
99  * elf_plt_write() will test to see how far away our destination
100  *	address lies.  If it is close enough that a branch can
101  *	be used instead of a jmpl - we will fill the plt in with
102  * 	single branch.  The branches are much quicker then
103  *	a jmpl instruction - see bug#4356879 for further
104  *	details.
105  *
106  *	NOTE: we pass in both a 'pltaddr' and a 'vpltaddr' since
107  *		librtld/dldump update PLT's who's physical
108  *		address is not the same as the 'virtual' runtime
109  *		address.
110  */
111 Pltbindtype
112 /* ARGSUSED4 */
113 elf_plt_write(uintptr_t addr, uintptr_t vaddr, void *rptr, uintptr_t symval,
114 	Xword pltndx)
115 {
116 	Rela		*rel = (Rela *)rptr;
117 	uintptr_t	vpltaddr, pltaddr;
118 	long		disp;
119 
120 	pltaddr = addr + rel->r_offset;
121 	vpltaddr = vaddr + rel->r_offset;
122 	disp = symval - vpltaddr - 4;
123 
124 	/*
125 	 * Test if the destination address is close enough to use
126 	 * a ba,a... instruction to reach it.
127 	 */
128 	if (S_INRANGE(disp, 23) && !(rtld_flags & RT_FL_NOBAPLT)) {
129 		uint_t		*pltent, bainstr;
130 		Pltbindtype	rc;
131 
132 		pltent = (uint_t *)pltaddr;
133 
134 		/*
135 		 * The
136 		 *
137 		 *	ba,a,pt %icc, <dest>
138 		 *
139 		 * is the most efficient of the PLT's.  If we
140 		 * are within +-20 bits *and* running on a
141 		 * v8plus architecture - use that branch.
142 		 */
143 		if ((at_flags & EF_SPARC_32PLUS) &&
144 		    S_INRANGE(disp, 20)) {
145 			bainstr = M_BA_A_PT;	/* ba,a,pt %icc,<dest> */
146 			bainstr |= (S_MASK(19) & (disp >> 2));
147 			rc = PLT_T_21D;
148 			DBG_CALL(pltcnt21d++);
149 		} else {
150 			/*
151 			 * Otherwise - we fall back to the good old
152 			 *
153 			 *	ba,a	<dest>
154 			 *
155 			 * Which still beats a jmpl instruction.
156 			 */
157 			bainstr = M_BA_A;		/* ba,a <dest> */
158 			bainstr |= (S_MASK(22) & (disp >> 2));
159 			rc = PLT_T_24D;
160 			DBG_CALL(pltcnt24d++);
161 		}
162 
163 		pltent[2] = M_NOP;		/* nop instr */
164 		pltent[1] = bainstr;
165 
166 		iflush_range((char *)(&pltent[1]), 4);
167 		pltent[0] = M_NOP;		/* nop instr */
168 		iflush_range((char *)(&pltent[0]), 4);
169 		return (rc);
170 	}
171 
172 	/*
173 	 * The PLT destination is not in reach of
174 	 * a branch instruction - so we fall back
175 	 * to a 'jmpl' sequence.
176 	 */
177 	plt_full_range(pltaddr, symval);
178 	DBG_CALL(pltcntfull++);
179 	return (PLT_T_FULL);
180 }
181 
182 /*
183  * Local storage space created on the stack created for this glue
184  * code includes space for:
185  *		0x4	pointer to dyn_data
186  *		0x4	size prev stack frame
187  */
188 static const uchar_t dyn_plt_template[] = {
189 /* 0x00 */	0x80, 0x90, 0x00, 0x1e,	/* tst   %fp */
190 /* 0x04 */	0x02, 0x80, 0x00, 0x04, /* be    0x14 */
191 /* 0x08 */	0x82, 0x27, 0x80, 0x0e,	/* sub   %sp, %fp, %g1 */
192 /* 0x0c */	0x10, 0x80, 0x00, 0x03, /* ba	 0x20 */
193 /* 0x10 */	0x01, 0x00, 0x00, 0x00, /* nop */
194 /* 0x14 */	0x82, 0x10, 0x20, 0x60, /* mov	0x60, %g1 */
195 /* 0x18 */	0x9d, 0xe3, 0xbf, 0x98,	/* save	%sp, -0x68, %sp */
196 /* 0x1c */	0xc2, 0x27, 0xbf, 0xf8,	/* st	%g1, [%fp + -0x8] */
197 /* 0x20 */	0x03, 0x00, 0x00, 0x00,	/* sethi %hi(val), %g1 */
198 /* 0x24 */	0x82, 0x10, 0x60, 0x00, /* or	 %g1, %lo(val), %g1 */
199 /* 0x28 */	0x40, 0x00, 0x00, 0x00,	/* call  <rel_addr> */
200 /* 0x2c */	0xc2, 0x27, 0xbf, 0xfc	/* st    %g1, [%fp + -0x4] */
201 };
202 
203 int	dyn_plt_ent_size = sizeof (dyn_plt_template) +
204 		sizeof (uintptr_t) +	/* reflmp */
205 		sizeof (uintptr_t) +	/* deflmp */
206 		sizeof (ulong_t) +	/* symndx */
207 		sizeof (ulong_t) +	/* sb_flags */
208 		sizeof (Sym);		/* symdef */
209 
210 /*
211  * the dynamic plt entry is:
212  *
213  *	tst	%fp
214  *	be	1f
215  *	nop
216  *	sub	%sp, %fp, %g1
217  *	ba	2f
218  *	nop
219  * 1:
220  *	mov	SA(MINFRAME), %g1	! if %fp is null this is the
221  *					!   'minimum stack'.  %fp is null
222  *					!   on the initial stack frame
223  * 2:
224  *	save	%sp, -(SA(MINFRAME) + 2 * CLONGSIZE), %sp
225  *	st	%g1, [%fp + -0x8] ! store prev_stack size in [%fp - 8]
226  *	sethi	%hi(dyn_data), %g1
227  *	or	%g1, %lo(dyn_data), %g1
228  *	call	elf_plt_trace
229  *	st	%g1, [%fp + -0x4] ! store dyn_data ptr in [%fp - 4]
230  * dyn data:
231  *	uintptr_t	reflmp
232  *	uintptr_t	deflmp
233  *	ulong_t		symndx
234  *	ulong_t		sb_flags
235  *	Sym		symdef
236  */
237 static caddr_t
238 elf_plt_trace_write(caddr_t addr, Rela *rptr, Rt_map *rlmp, Rt_map *dlmp,
239     Sym *sym, ulong_t symndx, ulong_t pltndx, caddr_t to, ulong_t sb_flags,
240     int *fail)
241 {
242 	extern ulong_t	elf_plt_trace();
243 	uchar_t		*dyn_plt;
244 	uintptr_t	*dyndata;
245 
246 	/*
247 	 * If both pltenter & pltexit have been disabled there
248 	 * there is no reason to even create the glue code.
249 	 */
250 	if ((sb_flags & (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) ==
251 	    (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) {
252 		(void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr,
253 		    rptr, (uintptr_t)to, pltndx);
254 		return (to);
255 	}
256 
257 	/*
258 	 * We only need to add the glue code if there is an auditing
259 	 * library that is interested in this binding.
260 	 */
261 	dyn_plt = (uchar_t *)((uintptr_t)AUDINFO(rlmp)->ai_dynplts +
262 	    (pltndx * dyn_plt_ent_size));
263 
264 	/*
265 	 * Have we initialized this dynamic plt entry yet?  If we haven't do it
266 	 * now.  Otherwise this function has been called before, but from a
267 	 * different plt (ie. from another shared object).  In that case
268 	 * we just set the plt to point to the new dyn_plt.
269 	 */
270 	if (*dyn_plt == 0) {
271 		Sym	*symp;
272 		Xword	symvalue;
273 		Lm_list	*lml = LIST(rlmp);
274 
275 		(void) memcpy((void *)dyn_plt, dyn_plt_template,
276 		    sizeof (dyn_plt_template));
277 		dyndata = (uintptr_t *)((uintptr_t)dyn_plt +
278 		    sizeof (dyn_plt_template));
279 
280 		/*
281 		 * relocating:
282 		 *	sethi	%hi(dyndata), %g1
283 		 */
284 		symvalue = (Xword)dyndata;
285 		if (do_reloc_rtld(R_SPARC_HI22, (dyn_plt + 0x20),
286 		    &symvalue, MSG_ORIG(MSG_SYM_LADYNDATA),
287 		    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
288 			*fail = 1;
289 			return (0);
290 		}
291 
292 		/*
293 		 * relocating:
294 		 *	or	%g1, %lo(dyndata), %g1
295 		 */
296 		symvalue = (Xword)dyndata;
297 		if (do_reloc_rtld(R_SPARC_LO10, (dyn_plt + 0x24),
298 		    &symvalue, MSG_ORIG(MSG_SYM_LADYNDATA),
299 		    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
300 			*fail = 1;
301 			return (0);
302 		}
303 
304 		/*
305 		 * relocating:
306 		 *	call	elf_plt_trace
307 		 */
308 		symvalue = (Xword)((uintptr_t)&elf_plt_trace -
309 		    (uintptr_t)(dyn_plt + 0x28));
310 		if (do_reloc_rtld(R_SPARC_WDISP30, (dyn_plt + 0x28),
311 		    &symvalue, MSG_ORIG(MSG_SYM_ELFPLTTRACE),
312 		    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
313 			*fail = 1;
314 			return (0);
315 		}
316 
317 		*dyndata++ = (uintptr_t)rlmp;
318 		*dyndata++ = (uintptr_t)dlmp;
319 		*(ulong_t *)dyndata++ = symndx;
320 		*(ulong_t *)dyndata++ = sb_flags;
321 		symp = (Sym *)dyndata;
322 		*symp = *sym;
323 		symp->st_name += (Word)STRTAB(dlmp);
324 		symp->st_value = (Addr)to;
325 
326 		iflush_range((void *)dyn_plt, sizeof (dyn_plt_template));
327 	}
328 
329 	(void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr, rptr,
330 	    (uintptr_t)dyn_plt, 0);
331 	return ((caddr_t)dyn_plt);
332 }
333 
334 /*
335  * Function binding routine - invoked on the first call to a function through
336  * the procedure linkage table;
337  * passes first through an assembly language interface.
338  *
339  * Takes the address of the PLT entry where the call originated,
340  * the offset into the relocation table of the associated
341  * relocation entry and the address of the link map (rt_private_map struct)
342  * for the entry.
343  *
344  * Returns the address of the function referenced after re-writing the PLT
345  * entry to invoke the function directly.
346  *
347  * On error, causes process to terminate with a signal.
348  */
349 ulong_t
350 elf_bndr(Rt_map *lmp, ulong_t pltoff, caddr_t from)
351 {
352 	Rt_map		*nlmp, *llmp;
353 	ulong_t		addr, vaddr, reloff, symval, rsymndx;
354 	char		*name;
355 	Rela		*rptr;
356 	Sym		*rsym, *nsym;
357 	Xword		pltndx;
358 	uint_t		binfo, sb_flags = 0, dbg_class;
359 	Slookup		sl;
360 	Sresult		sr;
361 	Pltbindtype	pbtype;
362 	int		entry, lmflags;
363 	Lm_list		*lml;
364 
365 	/*
366 	 * For compatibility with libthread (TI_VERSION 1) we track the entry
367 	 * value.  A zero value indicates we have recursed into ld.so.1 to
368 	 * further process a locking request.  Under this recursion we disable
369 	 * tsort and cleanup activities.
370 	 */
371 	entry = enter(0);
372 
373 	lml = LIST(lmp);
374 	if ((lmflags = lml->lm_flags) & LML_FLG_RTLDLM) {
375 		dbg_class = dbg_desc->d_class;
376 		dbg_desc->d_class = 0;
377 	}
378 
379 	/*
380 	 * Must calculate true plt relocation address from reloc.
381 	 * Take offset, subtract number of reserved PLT entries, and divide
382 	 * by PLT entry size, which should give the index of the plt
383 	 * entry (and relocation entry since they have been defined to be
384 	 * in the same order).  Then we must multiply by the size of
385 	 * a relocation entry, which will give us the offset of the
386 	 * plt relocation entry from the start of them given by JMPREL(lm).
387 	 */
388 	addr = pltoff - M_PLT_RESERVSZ;
389 	pltndx = addr / M_PLT_ENTSIZE;
390 
391 	/*
392 	 * Perform some basic sanity checks.  If we didn't get a load map
393 	 * or the plt offset is invalid then its possible someone has walked
394 	 * over the plt entries or jumped to plt[0] out of the blue.
395 	 */
396 	if (!lmp || ((addr % M_PLT_ENTSIZE) != 0)) {
397 		Conv_inv_buf_t	inv_buf;
398 
399 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_PLTREF),
400 		    conv_reloc_SPARC_type(R_SPARC_JMP_SLOT, 0, &inv_buf),
401 		    EC_NATPTR(lmp), EC_XWORD(pltoff), EC_NATPTR(from));
402 		rtldexit(lml, 1);
403 	}
404 	reloff = pltndx * sizeof (Rela);
405 
406 	/*
407 	 * Use relocation entry to get symbol table entry and symbol name.
408 	 */
409 	addr = (ulong_t)JMPREL(lmp);
410 	rptr = (Rela *)(addr + reloff);
411 	rsymndx = ELF_R_SYM(rptr->r_info);
412 	rsym = (Sym *)((ulong_t)SYMTAB(lmp) + (rsymndx * SYMENT(lmp)));
413 	name = (char *)(STRTAB(lmp) + rsym->st_name);
414 
415 	/*
416 	 * Determine the last link-map of this list, this'll be the starting
417 	 * point for any tsort() processing.
418 	 */
419 	llmp = lml->lm_tail;
420 
421 	/*
422 	 * Find definition for symbol.  Initialize the symbol lookup, and
423 	 * symbol result, data structures.
424 	 */
425 	SLOOKUP_INIT(sl, name, lmp, lml->lm_head, ld_entry_cnt, 0,
426 	    rsymndx, rsym, 0, LKUP_DEFT);
427 	SRESULT_INIT(sr, name);
428 
429 	if (lookup_sym(&sl, &sr, &binfo, NULL) == 0) {
430 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp),
431 		    demangle(name));
432 		rtldexit(lml, 1);
433 	}
434 
435 	name = (char *)sr.sr_name;
436 	nlmp = sr.sr_dmap;
437 	nsym = sr.sr_sym;
438 
439 	symval = nsym->st_value;
440 
441 	if (!(FLAGS(nlmp) & FLG_RT_FIXED) &&
442 	    (nsym->st_shndx != SHN_ABS))
443 		symval += ADDR(nlmp);
444 	if ((lmp != nlmp) && ((FLAGS1(nlmp) & FL1_RT_NOINIFIN) == 0)) {
445 		/*
446 		 * Record that this new link map is now bound to the caller.
447 		 */
448 		if (bind_one(lmp, nlmp, BND_REFER) == 0)
449 			rtldexit(lml, 1);
450 	}
451 
452 	if ((lml->lm_tflags | AFLAGS(lmp) | AFLAGS(nlmp)) &
453 	    LML_TFLG_AUD_SYMBIND) {
454 		ulong_t	symndx = (((uintptr_t)nsym -
455 		    (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp));
456 
457 		symval = audit_symbind(lmp, nlmp, nsym, symndx, symval,
458 		    &sb_flags);
459 	}
460 
461 	if (FLAGS(lmp) & FLG_RT_FIXED)
462 		vaddr = 0;
463 	else
464 		vaddr = ADDR(lmp);
465 
466 	pbtype = PLT_T_NONE;
467 	if (!(rtld_flags & RT_FL_NOBIND)) {
468 		if (((lml->lm_tflags | AFLAGS(lmp)) &
469 		    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
470 		    AUDINFO(lmp)->ai_dynplts) {
471 			int	fail = 0;
472 			ulong_t	symndx = (((uintptr_t)nsym -
473 			    (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp));
474 
475 			symval = (ulong_t)elf_plt_trace_write((caddr_t)vaddr,
476 			    rptr, lmp, nlmp, nsym, symndx, pltndx,
477 			    (caddr_t)symval, sb_flags, &fail);
478 			if (fail)
479 				rtldexit(lml, 1);
480 		} else {
481 			/*
482 			 * Write standard PLT entry to jump directly
483 			 * to newly bound function.
484 			 */
485 			pbtype = elf_plt_write((uintptr_t)vaddr,
486 			    (uintptr_t)vaddr, rptr, symval, pltndx);
487 		}
488 	}
489 
490 	/*
491 	 * Print binding information and rebuild PLT entry.
492 	 */
493 	DBG_CALL(Dbg_bind_global(lmp, (Addr)from, (Off)(from - ADDR(lmp)),
494 	    pltndx, pbtype, nlmp, (Addr)symval, nsym->st_value, name, binfo));
495 
496 	/*
497 	 * Complete any processing for newly loaded objects.  Note we don't
498 	 * know exactly where any new objects are loaded (we know the object
499 	 * that supplied the symbol, but others may have been loaded lazily as
500 	 * we searched for the symbol), so sorting starts from the last
501 	 * link-map know on entry to this routine.
502 	 */
503 	if (entry)
504 		load_completion(llmp);
505 
506 	/*
507 	 * Some operations like dldump() or dlopen()'ing a relocatable object
508 	 * result in objects being loaded on rtld's link-map, make sure these
509 	 * objects are initialized also.
510 	 */
511 	if ((LIST(nlmp)->lm_flags & LML_FLG_RTLDLM) && LIST(nlmp)->lm_init)
512 		load_completion(nlmp);
513 
514 	/*
515 	 * Make sure the object to which we've bound has had it's .init fired.
516 	 * Cleanup before return to user code.
517 	 */
518 	if (entry) {
519 		is_dep_init(nlmp, lmp);
520 		leave(lml, 0);
521 	}
522 
523 	if (lmflags & LML_FLG_RTLDLM)
524 		dbg_desc->d_class = dbg_class;
525 
526 	return (symval);
527 }
528 
529 /*
530  * Read and process the relocations for one link object, we assume all
531  * relocation sections for loadable segments are stored contiguously in
532  * the file.
533  */
534 int
535 elf_reloc(Rt_map *lmp, uint_t plt, int *in_nfavl, APlist **textrel)
536 {
537 	ulong_t		relbgn, relend, relsiz, basebgn, pltbgn, pltend;
538 	ulong_t		dsymndx, pltndx, roffset, rsymndx, psymndx = 0;
539 	uchar_t		rtype;
540 	long		reladd, value, pvalue, relacount = RELACOUNT(lmp);
541 	Sym		*symref, *psymref, *symdef, *psymdef;
542 	Syminfo		*sip;
543 	char		*name, *pname;
544 	Rt_map		*_lmp, *plmp;
545 	int		ret = 1, noplt = 0;
546 	Rela		*rel;
547 	Pltbindtype	pbtype;
548 	uint_t		binfo, pbinfo;
549 	APlist		*bound = NULL;
550 
551 	/*
552 	 * If an object has any DT_REGISTER entries associated with
553 	 * it, they are processed now.
554 	 */
555 	if ((plt == 0) && (FLAGS(lmp) & FLG_RT_REGSYMS)) {
556 		if (elf_regsyms(lmp) == 0)
557 			return (0);
558 	}
559 
560 	/*
561 	 * Although only necessary for lazy binding, initialize the first
562 	 * procedure linkage table entry to go to elf_rtbndr().  dbx(1) seems
563 	 * to find this useful.
564 	 */
565 	if ((plt == 0) && PLTGOT(lmp)) {
566 		mmapobj_result_t	*mpp;
567 
568 		/*
569 		 * Make sure the segment is writable.
570 		 */
571 		if ((((mpp =
572 		    find_segment((caddr_t)PLTGOT(lmp), lmp)) != NULL) &&
573 		    ((mpp->mr_prot & PROT_WRITE) == 0)) &&
574 		    ((set_prot(lmp, mpp, 1) == 0) ||
575 		    (aplist_append(textrel, mpp, AL_CNT_TEXTREL) == NULL)))
576 			return (0);
577 
578 		elf_plt_init(PLTGOT(lmp), (caddr_t)lmp);
579 	}
580 
581 	/*
582 	 * Initialize the plt start and end addresses.
583 	 */
584 	if ((pltbgn = (ulong_t)JMPREL(lmp)) != 0)
585 		pltend = pltbgn + (ulong_t)(PLTRELSZ(lmp));
586 
587 	/*
588 	 * If we've been called upon to promote an RTLD_LAZY object to an
589 	 * RTLD_NOW then we're only interested in scaning the .plt table.
590 	 */
591 	if (plt) {
592 		relbgn = pltbgn;
593 		relend = pltend;
594 	} else {
595 		/*
596 		 * The relocation sections appear to the run-time linker as a
597 		 * single table.  Determine the address of the beginning and end
598 		 * of this table.  There are two different interpretations of
599 		 * the ABI at this point:
600 		 *
601 		 *  -	The REL table and its associated RELSZ indicate the
602 		 *	concatenation of *all* relocation sections (this is the
603 		 *	model our link-editor constructs).
604 		 *
605 		 *  -	The REL table and its associated RELSZ indicate the
606 		 *	concatenation of all *but* the .plt relocations.  These
607 		 *	relocations are specified individually by the JMPREL and
608 		 *	PLTRELSZ entries.
609 		 *
610 		 * Determine from our knowledege of the relocation range and
611 		 * .plt range, the range of the total relocation table.  Note
612 		 * that one other ABI assumption seems to be that the .plt
613 		 * relocations always follow any other relocations, the
614 		 * following range checking drops that assumption.
615 		 */
616 		relbgn = (ulong_t)(REL(lmp));
617 		relend = relbgn + (ulong_t)(RELSZ(lmp));
618 		if (pltbgn) {
619 			if (!relbgn || (relbgn > pltbgn))
620 				relbgn = pltbgn;
621 			if (!relbgn || (relend < pltend))
622 				relend = pltend;
623 		}
624 	}
625 	if (!relbgn || (relbgn == relend)) {
626 		DBG_CALL(Dbg_reloc_run(lmp, 0, plt, DBG_REL_NONE));
627 		return (1);
628 	}
629 
630 	relsiz = (ulong_t)(RELENT(lmp));
631 	basebgn = ADDR(lmp);
632 
633 	DBG_CALL(Dbg_reloc_run(lmp, M_REL_SHT_TYPE, plt, DBG_REL_START));
634 
635 	/*
636 	 * If we're processing in lazy mode there is no need to scan the
637 	 * .rela.plt table.
638 	 */
639 	if (pltbgn && ((MODE(lmp) & RTLD_NOW) == 0))
640 		noplt = 1;
641 
642 	sip = SYMINFO(lmp);
643 	/*
644 	 * Loop through relocations.
645 	 */
646 	while (relbgn < relend) {
647 		mmapobj_result_t	*mpp;
648 		uint_t			sb_flags = 0;
649 		Addr			vaddr;
650 
651 		rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info, M_MACH);
652 
653 		/*
654 		 * If this is a RELATIVE relocation in a shared object (the
655 		 * common case), and if we are not debugging, then jump into one
656 		 * of the tighter relocation loops.
657 		 */
658 		if ((rtype == R_SPARC_RELATIVE) &&
659 		    ((FLAGS(lmp) & FLG_RT_FIXED) == 0) && (DBG_ENABLED == 0)) {
660 			if (relacount) {
661 				relbgn = elf_reloc_relative_count(relbgn,
662 				    relacount, relsiz, basebgn, lmp,
663 				    textrel, 0);
664 				relacount = 0;
665 			} else {
666 				relbgn = elf_reloc_relative(relbgn, relend,
667 				    relsiz, basebgn, lmp, textrel, 0);
668 			}
669 			if (relbgn >= relend)
670 				break;
671 			rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info, M_MACH);
672 		}
673 
674 		roffset = ((Rela *)relbgn)->r_offset;
675 
676 		reladd = (long)(((Rela *)relbgn)->r_addend);
677 		rsymndx = ELF_R_SYM(((Rela *)relbgn)->r_info);
678 		rel = (Rela *)relbgn;
679 		relbgn += relsiz;
680 
681 		/*
682 		 * Optimizations.
683 		 */
684 		if (rtype == R_SPARC_NONE)
685 			continue;
686 		if (noplt && ((ulong_t)rel >= pltbgn) &&
687 		    ((ulong_t)rel < pltend)) {
688 			relbgn = pltend;
689 			continue;
690 		}
691 
692 		if (rtype != R_SPARC_REGISTER) {
693 			/*
694 			 * If this is a shared object, add the base address
695 			 * to offset.
696 			 */
697 			if (!(FLAGS(lmp) & FLG_RT_FIXED))
698 				roffset += basebgn;
699 
700 			/*
701 			 * If this relocation is not against part of the image
702 			 * mapped into memory we skip it.
703 			 */
704 			if ((mpp = find_segment((caddr_t)roffset,
705 			    lmp)) == NULL) {
706 				elf_reloc_bad(lmp, (void *)rel, rtype, roffset,
707 				    rsymndx);
708 				continue;
709 			}
710 		}
711 
712 		/*
713 		 * If we're promoting .plts, try and determine if this one has
714 		 * already been written.  An uninitialized .plts' second
715 		 * instruction is a branch.  Note, elf_plt_write() optimizes
716 		 * .plt relocations, and it's possible that a relocated entry
717 		 * is a branch.  If this is the case, we can't tell the
718 		 * difference between an uninitialized .plt and a relocated,
719 		 * .plt that uses a branch.  In this case, we'll simply redo
720 		 * the relocation calculation, which is a bit sad.
721 		 */
722 		if (plt) {
723 			ulong_t	*_roffset = (ulong_t *)roffset;
724 
725 			_roffset++;
726 			if ((*_roffset & (~(S_MASK(22)))) != M_BA_A)
727 				continue;
728 		}
729 
730 		binfo = 0;
731 		pltndx = (ulong_t)-1;
732 		pbtype = PLT_T_NONE;
733 
734 		/*
735 		 * If a symbol index is specified then get the symbol table
736 		 * entry, locate the symbol definition, and determine its
737 		 * address.
738 		 */
739 		if (rsymndx) {
740 			/*
741 			 * If a Syminfo section is provided, determine if this
742 			 * symbol is deferred, and if so, skip this relocation.
743 			 */
744 			if (sip && is_sym_deferred((ulong_t)rel, basebgn, lmp,
745 			    textrel, sip, rsymndx))
746 				continue;
747 
748 			/*
749 			 * Get the local symbol table entry.
750 			 */
751 			symref = (Sym *)((ulong_t)SYMTAB(lmp) +
752 			    (rsymndx * SYMENT(lmp)));
753 
754 			/*
755 			 * If this is a local symbol, just use the base address.
756 			 * (we should have no local relocations in the
757 			 * executable).
758 			 */
759 			if (ELF_ST_BIND(symref->st_info) == STB_LOCAL) {
760 				value = basebgn;
761 				name = NULL;
762 
763 				/*
764 				 * Special case TLS relocations.
765 				 */
766 				if (rtype == R_SPARC_TLS_DTPMOD32) {
767 					/*
768 					 * Use the TLS modid.
769 					 */
770 					value = TLSMODID(lmp);
771 
772 				} else if (rtype == R_SPARC_TLS_TPOFF32) {
773 					if ((value = elf_static_tls(lmp, symref,
774 					    rel, rtype, 0, roffset, 0)) == 0) {
775 						ret = 0;
776 						break;
777 					}
778 				}
779 			} else {
780 				/*
781 				 * If the symbol index is equal to the previous
782 				 * symbol index relocation we processed then
783 				 * reuse the previous values. (Note that there
784 				 * have been cases where a relocation exists
785 				 * against a copy relocation symbol, our ld(1)
786 				 * should optimize this away, but make sure we
787 				 * don't use the same symbol information should
788 				 * this case exist).
789 				 */
790 				if ((rsymndx == psymndx) &&
791 				    (rtype != R_SPARC_COPY)) {
792 					/* LINTED */
793 					if (psymdef == 0) {
794 						DBG_CALL(Dbg_bind_weak(lmp,
795 						    (Addr)roffset, (Addr)
796 						    (roffset - basebgn), name));
797 						continue;
798 					}
799 					/* LINTED */
800 					value = pvalue;
801 					/* LINTED */
802 					name = pname;
803 					symdef = psymdef;
804 					/* LINTED */
805 					symref = psymref;
806 					/* LINTED */
807 					_lmp = plmp;
808 					/* LINTED */
809 					binfo = pbinfo;
810 
811 					if ((LIST(_lmp)->lm_tflags |
812 					    AFLAGS(_lmp)) &
813 					    LML_TFLG_AUD_SYMBIND) {
814 						value = audit_symbind(lmp, _lmp,
815 						    /* LINTED */
816 						    symdef, dsymndx, value,
817 						    &sb_flags);
818 					}
819 				} else {
820 					Slookup		sl;
821 					Sresult		sr;
822 
823 					/*
824 					 * Lookup the symbol definition.
825 					 * Initialize the symbol lookup, and
826 					 * symbol result, data structures.
827 					 */
828 					name = (char *)(STRTAB(lmp) +
829 					    symref->st_name);
830 
831 					SLOOKUP_INIT(sl, name, lmp, 0,
832 					    ld_entry_cnt, 0, rsymndx, symref,
833 					    rtype, LKUP_STDRELOC);
834 					SRESULT_INIT(sr, name);
835 					symdef = NULL;
836 
837 					if (lookup_sym(&sl, &sr, &binfo,
838 					    in_nfavl)) {
839 						name = (char *)sr.sr_name;
840 						_lmp = sr.sr_dmap;
841 						symdef = sr.sr_sym;
842 					}
843 
844 					/*
845 					 * If the symbol is not found and the
846 					 * reference was not to a weak symbol,
847 					 * report an error.  Weak references
848 					 * may be unresolved.
849 					 */
850 					/* BEGIN CSTYLED */
851 					if (symdef == 0) {
852 					    if (sl.sl_bind != STB_WEAK) {
853 						if (elf_reloc_error(lmp, name,
854 						    rel, binfo))
855 							continue;
856 
857 						ret = 0;
858 						break;
859 
860 					    } else {
861 						psymndx = rsymndx;
862 						psymdef = 0;
863 
864 						DBG_CALL(Dbg_bind_weak(lmp,
865 						    (Addr)roffset, (Addr)
866 						    (roffset - basebgn), name));
867 						continue;
868 					    }
869 					}
870 					/* END CSTYLED */
871 
872 					/*
873 					 * If symbol was found in an object
874 					 * other than the referencing object
875 					 * then record the binding.
876 					 */
877 					if ((lmp != _lmp) && ((FLAGS1(_lmp) &
878 					    FL1_RT_NOINIFIN) == 0)) {
879 						if (aplist_test(&bound, _lmp,
880 						    AL_CNT_RELBIND) == 0) {
881 							ret = 0;
882 							break;
883 						}
884 					}
885 
886 					/*
887 					 * Calculate the location of definition;
888 					 * symbol value plus base address of
889 					 * containing shared object.
890 					 */
891 					if (IS_SIZE(rtype))
892 						value = symdef->st_size;
893 					else
894 						value = symdef->st_value;
895 
896 					if (!(FLAGS(_lmp) & FLG_RT_FIXED) &&
897 					    !(IS_SIZE(rtype)) &&
898 					    (symdef->st_shndx != SHN_ABS) &&
899 					    (ELF_ST_TYPE(symdef->st_info) !=
900 					    STT_TLS))
901 						value += ADDR(_lmp);
902 
903 					/*
904 					 * Retain this symbol index and the
905 					 * value in case it can be used for the
906 					 * subsequent relocations.
907 					 */
908 					if (rtype != R_SPARC_COPY) {
909 						psymndx = rsymndx;
910 						pvalue = value;
911 						pname = name;
912 						psymdef = symdef;
913 						psymref = symref;
914 						plmp = _lmp;
915 						pbinfo = binfo;
916 					}
917 					if ((LIST(_lmp)->lm_tflags |
918 					    AFLAGS(_lmp)) &
919 					    LML_TFLG_AUD_SYMBIND) {
920 						dsymndx = (((uintptr_t)symdef -
921 						    (uintptr_t)SYMTAB(_lmp)) /
922 						    SYMENT(_lmp));
923 						value = audit_symbind(lmp, _lmp,
924 						    symdef, dsymndx, value,
925 						    &sb_flags);
926 					}
927 				}
928 
929 				/*
930 				 * If relocation is PC-relative, subtract
931 				 * offset address.
932 				 */
933 				if (IS_PC_RELATIVE(rtype))
934 					value -= roffset;
935 
936 				/*
937 				 * Special case TLS relocations.
938 				 */
939 				if (rtype == R_SPARC_TLS_DTPMOD32) {
940 					/*
941 					 * Relocation value is the TLS modid.
942 					 */
943 					value = TLSMODID(_lmp);
944 
945 				} else if (rtype == R_SPARC_TLS_TPOFF32) {
946 					if ((value = elf_static_tls(_lmp,
947 					    symdef, rel, rtype, name, roffset,
948 					    value)) == 0) {
949 						ret = 0;
950 						break;
951 					}
952 				}
953 			}
954 		} else {
955 			/*
956 			 * Special cases.
957 			 */
958 			if (rtype == R_SPARC_REGISTER) {
959 				/*
960 				 * A register symbol associated with symbol
961 				 * index 0 is initialized (i.e. relocated) to
962 				 * a constant in the r_addend field rather than
963 				 * to a symbol value.
964 				 */
965 				value = 0;
966 
967 			} else if (rtype == R_SPARC_TLS_DTPMOD32) {
968 				/*
969 				 * TLS relocation value is the TLS modid.
970 				 */
971 				value = TLSMODID(lmp);
972 			} else
973 				value = basebgn;
974 
975 			name = NULL;
976 		}
977 
978 		DBG_CALL(Dbg_reloc_in(LIST(lmp), ELF_DBG_RTLD, M_MACH,
979 		    M_REL_SHT_TYPE, rel, NULL, 0, name));
980 
981 		/*
982 		 * Make sure the segment is writable.
983 		 */
984 		if ((rtype != R_SPARC_REGISTER) &&
985 		    ((mpp->mr_prot & PROT_WRITE) == 0) &&
986 		    ((set_prot(lmp, mpp, 1) == 0) ||
987 		    (aplist_append(textrel, mpp, AL_CNT_TEXTREL) == NULL))) {
988 			ret = 0;
989 			break;
990 		}
991 
992 		/*
993 		 * Call relocation routine to perform required relocation.
994 		 */
995 		switch (rtype) {
996 		case R_SPARC_REGISTER:
997 			/*
998 			 * The v9 ABI 4.2.4 says that system objects may,
999 			 * but are not required to, use register symbols
1000 			 * to inidcate how they use global registers. Thus
1001 			 * at least %g6, %g7 must be allowed in addition
1002 			 * to %g2 and %g3.
1003 			 */
1004 			value += reladd;
1005 			if (roffset == STO_SPARC_REGISTER_G1) {
1006 				set_sparc_g1(value);
1007 			} else if (roffset == STO_SPARC_REGISTER_G2) {
1008 				set_sparc_g2(value);
1009 			} else if (roffset == STO_SPARC_REGISTER_G3) {
1010 				set_sparc_g3(value);
1011 			} else if (roffset == STO_SPARC_REGISTER_G4) {
1012 				set_sparc_g4(value);
1013 			} else if (roffset == STO_SPARC_REGISTER_G5) {
1014 				set_sparc_g5(value);
1015 			} else if (roffset == STO_SPARC_REGISTER_G6) {
1016 				set_sparc_g6(value);
1017 			} else if (roffset == STO_SPARC_REGISTER_G7) {
1018 				set_sparc_g7(value);
1019 			} else {
1020 				eprintf(LIST(lmp), ERR_FATAL,
1021 				    MSG_INTL(MSG_REL_BADREG), NAME(lmp),
1022 				    EC_ADDR(roffset));
1023 				ret = 0;
1024 				break;
1025 			}
1026 
1027 			DBG_CALL(Dbg_reloc_apply_reg(LIST(lmp), ELF_DBG_RTLD,
1028 			    M_MACH, (Xword)roffset, (Xword)value));
1029 			break;
1030 		case R_SPARC_COPY:
1031 			if (elf_copy_reloc(name, symref, lmp, (void *)roffset,
1032 			    symdef, _lmp, (const void *)value) == 0)
1033 				ret = 0;
1034 			break;
1035 		case R_SPARC_JMP_SLOT:
1036 			pltndx = ((ulong_t)rel -
1037 			    (uintptr_t)JMPREL(lmp)) / relsiz;
1038 
1039 			if (FLAGS(lmp) & FLG_RT_FIXED)
1040 				vaddr = 0;
1041 			else
1042 				vaddr = ADDR(lmp);
1043 
1044 			if (((LIST(lmp)->lm_tflags | AFLAGS(lmp)) &
1045 			    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
1046 			    AUDINFO(lmp)->ai_dynplts) {
1047 				int	fail = 0;
1048 				ulong_t	symndx = (((uintptr_t)symdef -
1049 				    (uintptr_t)SYMTAB(_lmp)) / SYMENT(_lmp));
1050 
1051 				(void) elf_plt_trace_write((caddr_t)vaddr,
1052 				    (Rela *)rel, lmp, _lmp, symdef, symndx,
1053 				    pltndx, (caddr_t)value, sb_flags, &fail);
1054 				if (fail)
1055 					ret = 0;
1056 			} else {
1057 				/*
1058 				 * Write standard PLT entry to jump directly
1059 				 * to newly bound function.
1060 				 */
1061 				DBG_CALL(Dbg_reloc_apply_val(LIST(lmp),
1062 				    ELF_DBG_RTLD, (Xword)roffset,
1063 				    (Xword)value));
1064 				pbtype = elf_plt_write((uintptr_t)vaddr,
1065 				    (uintptr_t)vaddr, (void *)rel, value,
1066 				    pltndx);
1067 			}
1068 			break;
1069 		default:
1070 			value += reladd;
1071 
1072 			/*
1073 			 * Write the relocation out.  If this relocation is a
1074 			 * common basic write, skip the doreloc() engine.
1075 			 */
1076 			if ((rtype == R_SPARC_GLOB_DAT) ||
1077 			    (rtype == R_SPARC_32)) {
1078 				if (roffset & 0x3) {
1079 					Conv_inv_buf_t inv_buf;
1080 
1081 					eprintf(LIST(lmp), ERR_FATAL,
1082 					    MSG_INTL(MSG_REL_NONALIGN),
1083 					    conv_reloc_SPARC_type(rtype,
1084 					    0, &inv_buf),
1085 					    NAME(lmp), demangle(name),
1086 					    EC_OFF(roffset));
1087 					ret = 0;
1088 				} else
1089 					*(uint_t *)roffset += value;
1090 			} else {
1091 				if (do_reloc_rtld(rtype, (uchar_t *)roffset,
1092 				    (Xword *)&value, name,
1093 				    NAME(lmp), LIST(lmp)) == 0)
1094 					ret = 0;
1095 			}
1096 
1097 			/*
1098 			 * The value now contains the 'bit-shifted' value that
1099 			 * was or'ed into memory (this was set by
1100 			 * do_reloc_rtld()).
1101 			 */
1102 			DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), ELF_DBG_RTLD,
1103 			    (Xword)roffset, (Xword)value));
1104 
1105 			/*
1106 			 * If this relocation is against a text segment, make
1107 			 * sure that the instruction cache is flushed.
1108 			 */
1109 			if (textrel)
1110 				iflush_range((caddr_t)roffset, 0x4);
1111 		}
1112 
1113 		if ((ret == 0) &&
1114 		    ((LIST(lmp)->lm_flags & LML_FLG_TRC_WARN) == 0))
1115 			break;
1116 
1117 		if (binfo) {
1118 			DBG_CALL(Dbg_bind_global(lmp, (Addr)roffset,
1119 			    (Off)(roffset - basebgn), pltndx, pbtype,
1120 			    _lmp, (Addr)value, symdef->st_value, name, binfo));
1121 		}
1122 	}
1123 
1124 	return (relocate_finish(lmp, bound, ret));
1125 }
1126 
1127 /*
1128  * Provide a machine specific interface to the conversion routine.  By calling
1129  * the machine specific version, rather than the generic version, we insure that
1130  * the data tables/strings for all known machine versions aren't dragged into
1131  * ld.so.1.
1132  */
1133 const char *
1134 _conv_reloc_type(uint_t rel)
1135 {
1136 	static Conv_inv_buf_t	inv_buf;
1137 
1138 	return (conv_reloc_SPARC_type(rel, 0, &inv_buf));
1139 }
1140