xref: /illumos-gate/usr/src/cmd/sgs/rtld/sparc/sparc_elf.c (revision e8d80663e4f91871f843bb8ad9108dc0b76dfcf3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  *	Copyright (c) 1988 AT&T
24  *	  All Rights Reserved
25  *
26  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
27  */
28 
29 /*
30  * SPARC machine dependent and ELF file class dependent functions.
31  * Contains routines for performing function binding and symbol relocations.
32  */
33 
34 #include	<stdio.h>
35 #include	<sys/elf.h>
36 #include	<sys/elf_SPARC.h>
37 #include	<sys/mman.h>
38 #include	<dlfcn.h>
39 #include	<synch.h>
40 #include	<string.h>
41 #include	<debug.h>
42 #include	<reloc.h>
43 #include	<conv.h>
44 #include	"_rtld.h"
45 #include	"_audit.h"
46 #include	"_elf.h"
47 #include	"_inline_gen.h"
48 #include	"_inline_reloc.h"
49 #include	"msg.h"
50 
51 extern void	iflush_range(caddr_t, size_t);
52 extern void	plt_full_range(uintptr_t, uintptr_t);
53 
54 int
55 elf_mach_flags_check(Rej_desc *rej, Ehdr *ehdr)
56 {
57 	/*
58 	 * Check machine type and flags.
59 	 */
60 	if (ehdr->e_machine != EM_SPARC) {
61 		if (ehdr->e_machine != EM_SPARC32PLUS) {
62 			rej->rej_type = SGS_REJ_MACH;
63 			rej->rej_info = (uint_t)ehdr->e_machine;
64 			return (0);
65 		}
66 		if ((ehdr->e_flags & EF_SPARC_32PLUS) == 0) {
67 			rej->rej_type = SGS_REJ_MISFLAG;
68 			rej->rej_info = (uint_t)ehdr->e_flags;
69 			return (0);
70 		}
71 		if ((ehdr->e_flags & ~at_flags) & EF_SPARC_32PLUS_MASK) {
72 			rej->rej_type = SGS_REJ_BADFLAG;
73 			rej->rej_info = (uint_t)ehdr->e_flags;
74 			return (0);
75 		}
76 	} else if ((ehdr->e_flags & ~EF_SPARCV9_MM) != 0) {
77 		rej->rej_type = SGS_REJ_BADFLAG;
78 		rej->rej_info = (uint_t)ehdr->e_flags;
79 		return (0);
80 	}
81 	return (1);
82 }
83 
84 void
85 ldso_plt_init(Rt_map *lmp)
86 {
87 	/*
88 	 * There is no need to analyze ld.so because we don't map in any of
89 	 * its dependencies.  However we may map these dependencies in later
90 	 * (as if ld.so had dlopened them), so initialize the plt and the
91 	 * permission information.
92 	 */
93 	if (PLTGOT(lmp))
94 		elf_plt_init((PLTGOT(lmp)), (caddr_t)lmp);
95 }
96 
97 /*
98  * elf_plt_write() will test to see how far away our destination
99  *	address lies.  If it is close enough that a branch can
100  *	be used instead of a jmpl - we will fill the plt in with
101  * 	single branch.  The branches are much quicker then
102  *	a jmpl instruction - see bug#4356879 for further
103  *	details.
104  *
105  *	NOTE: we pass in both a 'pltaddr' and a 'vpltaddr' since
106  *		librtld/dldump update PLT's who's physical
107  *		address is not the same as the 'virtual' runtime
108  *		address.
109  */
110 Pltbindtype
111 /* ARGSUSED4 */
112 elf_plt_write(uintptr_t addr, uintptr_t vaddr, void *rptr, uintptr_t symval,
113 	Xword pltndx)
114 {
115 	Rela		*rel = (Rela *)rptr;
116 	uintptr_t	vpltaddr, pltaddr;
117 	long		disp;
118 
119 	pltaddr = addr + rel->r_offset;
120 	vpltaddr = vaddr + rel->r_offset;
121 	disp = symval - vpltaddr - 4;
122 
123 	/*
124 	 * Test if the destination address is close enough to use
125 	 * a ba,a... instruction to reach it.
126 	 */
127 	if (S_INRANGE(disp, 23) && !(rtld_flags & RT_FL_NOBAPLT)) {
128 		uint_t		*pltent, bainstr;
129 		Pltbindtype	rc;
130 
131 		pltent = (uint_t *)pltaddr;
132 
133 		/*
134 		 * The
135 		 *
136 		 *	ba,a,pt %icc, <dest>
137 		 *
138 		 * is the most efficient of the PLT's.  If we
139 		 * are within +-20 bits *and* running on a
140 		 * v8plus architecture - use that branch.
141 		 */
142 		if ((at_flags & EF_SPARC_32PLUS) &&
143 		    S_INRANGE(disp, 20)) {
144 			bainstr = M_BA_A_PT;	/* ba,a,pt %icc,<dest> */
145 			bainstr |= (S_MASK(19) & (disp >> 2));
146 			rc = PLT_T_21D;
147 			DBG_CALL(pltcnt21d++);
148 		} else {
149 			/*
150 			 * Otherwise - we fall back to the good old
151 			 *
152 			 *	ba,a	<dest>
153 			 *
154 			 * Which still beats a jmpl instruction.
155 			 */
156 			bainstr = M_BA_A;		/* ba,a <dest> */
157 			bainstr |= (S_MASK(22) & (disp >> 2));
158 			rc = PLT_T_24D;
159 			DBG_CALL(pltcnt24d++);
160 		}
161 
162 		pltent[2] = M_NOP;		/* nop instr */
163 		pltent[1] = bainstr;
164 
165 		iflush_range((char *)(&pltent[1]), 4);
166 		pltent[0] = M_NOP;		/* nop instr */
167 		iflush_range((char *)(&pltent[0]), 4);
168 		return (rc);
169 	}
170 
171 	/*
172 	 * The PLT destination is not in reach of
173 	 * a branch instruction - so we fall back
174 	 * to a 'jmpl' sequence.
175 	 */
176 	plt_full_range(pltaddr, symval);
177 	DBG_CALL(pltcntfull++);
178 	return (PLT_T_FULL);
179 }
180 
181 /*
182  * Local storage space created on the stack created for this glue
183  * code includes space for:
184  *		0x4	pointer to dyn_data
185  *		0x4	size prev stack frame
186  */
187 static const uchar_t dyn_plt_template[] = {
188 /* 0x00 */	0x80, 0x90, 0x00, 0x1e,	/* tst   %fp */
189 /* 0x04 */	0x02, 0x80, 0x00, 0x04, /* be    0x14 */
190 /* 0x08 */	0x82, 0x27, 0x80, 0x0e,	/* sub   %sp, %fp, %g1 */
191 /* 0x0c */	0x10, 0x80, 0x00, 0x03, /* ba	 0x20 */
192 /* 0x10 */	0x01, 0x00, 0x00, 0x00, /* nop */
193 /* 0x14 */	0x82, 0x10, 0x20, 0x60, /* mov	0x60, %g1 */
194 /* 0x18 */	0x9d, 0xe3, 0xbf, 0x98,	/* save	%sp, -0x68, %sp */
195 /* 0x1c */	0xc2, 0x27, 0xbf, 0xf8,	/* st	%g1, [%fp + -0x8] */
196 /* 0x20 */	0x03, 0x00, 0x00, 0x00,	/* sethi %hi(val), %g1 */
197 /* 0x24 */	0x82, 0x10, 0x60, 0x00, /* or	 %g1, %lo(val), %g1 */
198 /* 0x28 */	0x40, 0x00, 0x00, 0x00,	/* call  <rel_addr> */
199 /* 0x2c */	0xc2, 0x27, 0xbf, 0xfc	/* st    %g1, [%fp + -0x4] */
200 };
201 
202 int	dyn_plt_ent_size = sizeof (dyn_plt_template) +
203 		sizeof (uintptr_t) +	/* reflmp */
204 		sizeof (uintptr_t) +	/* deflmp */
205 		sizeof (ulong_t) +	/* symndx */
206 		sizeof (ulong_t) +	/* sb_flags */
207 		sizeof (Sym);		/* symdef */
208 
209 /*
210  * the dynamic plt entry is:
211  *
212  *	tst	%fp
213  *	be	1f
214  *	nop
215  *	sub	%sp, %fp, %g1
216  *	ba	2f
217  *	nop
218  * 1:
219  *	mov	SA(MINFRAME), %g1	! if %fp is null this is the
220  *					!   'minimum stack'.  %fp is null
221  *					!   on the initial stack frame
222  * 2:
223  *	save	%sp, -(SA(MINFRAME) + 2 * CLONGSIZE), %sp
224  *	st	%g1, [%fp + -0x8] ! store prev_stack size in [%fp - 8]
225  *	sethi	%hi(dyn_data), %g1
226  *	or	%g1, %lo(dyn_data), %g1
227  *	call	elf_plt_trace
228  *	st	%g1, [%fp + -0x4] ! store dyn_data ptr in [%fp - 4]
229  * dyn data:
230  *	uintptr_t	reflmp
231  *	uintptr_t	deflmp
232  *	ulong_t		symndx
233  *	ulong_t		sb_flags
234  *	Sym		symdef
235  */
236 static caddr_t
237 elf_plt_trace_write(caddr_t addr, Rela *rptr, Rt_map *rlmp, Rt_map *dlmp,
238     Sym *sym, ulong_t symndx, ulong_t pltndx, caddr_t to, ulong_t sb_flags,
239     int *fail)
240 {
241 	extern ulong_t	elf_plt_trace();
242 	uchar_t		*dyn_plt;
243 	uintptr_t	*dyndata;
244 
245 	/*
246 	 * If both pltenter & pltexit have been disabled there
247 	 * there is no reason to even create the glue code.
248 	 */
249 	if ((sb_flags & (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) ==
250 	    (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) {
251 		(void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr,
252 		    rptr, (uintptr_t)to, pltndx);
253 		return (to);
254 	}
255 
256 	/*
257 	 * We only need to add the glue code if there is an auditing
258 	 * library that is interested in this binding.
259 	 */
260 	dyn_plt = (uchar_t *)((uintptr_t)AUDINFO(rlmp)->ai_dynplts +
261 	    (pltndx * dyn_plt_ent_size));
262 
263 	/*
264 	 * Have we initialized this dynamic plt entry yet?  If we haven't do it
265 	 * now.  Otherwise this function has been called before, but from a
266 	 * different plt (ie. from another shared object).  In that case
267 	 * we just set the plt to point to the new dyn_plt.
268 	 */
269 	if (*dyn_plt == 0) {
270 		Sym	*symp;
271 		Xword	symvalue;
272 		Lm_list	*lml = LIST(rlmp);
273 
274 		(void) memcpy((void *)dyn_plt, dyn_plt_template,
275 		    sizeof (dyn_plt_template));
276 		dyndata = (uintptr_t *)((uintptr_t)dyn_plt +
277 		    sizeof (dyn_plt_template));
278 
279 		/*
280 		 * relocating:
281 		 *	sethi	%hi(dyndata), %g1
282 		 */
283 		symvalue = (Xword)dyndata;
284 		if (do_reloc_rtld(R_SPARC_HI22, (dyn_plt + 0x20),
285 		    &symvalue, MSG_ORIG(MSG_SYM_LADYNDATA),
286 		    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
287 			*fail = 1;
288 			return (0);
289 		}
290 
291 		/*
292 		 * relocating:
293 		 *	or	%g1, %lo(dyndata), %g1
294 		 */
295 		symvalue = (Xword)dyndata;
296 		if (do_reloc_rtld(R_SPARC_LO10, (dyn_plt + 0x24),
297 		    &symvalue, MSG_ORIG(MSG_SYM_LADYNDATA),
298 		    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
299 			*fail = 1;
300 			return (0);
301 		}
302 
303 		/*
304 		 * relocating:
305 		 *	call	elf_plt_trace
306 		 */
307 		symvalue = (Xword)((uintptr_t)&elf_plt_trace -
308 		    (uintptr_t)(dyn_plt + 0x28));
309 		if (do_reloc_rtld(R_SPARC_WDISP30, (dyn_plt + 0x28),
310 		    &symvalue, MSG_ORIG(MSG_SYM_ELFPLTTRACE),
311 		    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
312 			*fail = 1;
313 			return (0);
314 		}
315 
316 		*dyndata++ = (uintptr_t)rlmp;
317 		*dyndata++ = (uintptr_t)dlmp;
318 		*(ulong_t *)dyndata++ = symndx;
319 		*(ulong_t *)dyndata++ = sb_flags;
320 		symp = (Sym *)dyndata;
321 		*symp = *sym;
322 		symp->st_name += (Word)STRTAB(dlmp);
323 		symp->st_value = (Addr)to;
324 
325 		iflush_range((void *)dyn_plt, sizeof (dyn_plt_template));
326 	}
327 
328 	(void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr, rptr,
329 	    (uintptr_t)dyn_plt, 0);
330 	return ((caddr_t)dyn_plt);
331 }
332 
333 /*
334  * Function binding routine - invoked on the first call to a function through
335  * the procedure linkage table;
336  * passes first through an assembly language interface.
337  *
338  * Takes the address of the PLT entry where the call originated,
339  * the offset into the relocation table of the associated
340  * relocation entry and the address of the link map (rt_private_map struct)
341  * for the entry.
342  *
343  * Returns the address of the function referenced after re-writing the PLT
344  * entry to invoke the function directly.
345  *
346  * On error, causes process to terminate with a signal.
347  */
348 ulong_t
349 elf_bndr(Rt_map *lmp, ulong_t pltoff, caddr_t from)
350 {
351 	Rt_map		*nlmp, *llmp;
352 	ulong_t		addr, vaddr, reloff, symval, rsymndx;
353 	char		*name;
354 	Rela		*rptr;
355 	Sym		*rsym, *nsym;
356 	Xword		pltndx;
357 	uint_t		binfo, sb_flags = 0, dbg_class;
358 	Slookup		sl;
359 	Sresult		sr;
360 	Pltbindtype	pbtype;
361 	int		entry, lmflags;
362 	Lm_list		*lml;
363 
364 	/*
365 	 * For compatibility with libthread (TI_VERSION 1) we track the entry
366 	 * value.  A zero value indicates we have recursed into ld.so.1 to
367 	 * further process a locking request.  Under this recursion we disable
368 	 * tsort and cleanup activities.
369 	 */
370 	entry = enter(0);
371 
372 	lml = LIST(lmp);
373 	if ((lmflags = lml->lm_flags) & LML_FLG_RTLDLM) {
374 		dbg_class = dbg_desc->d_class;
375 		dbg_desc->d_class = 0;
376 	}
377 
378 	/*
379 	 * Must calculate true plt relocation address from reloc.
380 	 * Take offset, subtract number of reserved PLT entries, and divide
381 	 * by PLT entry size, which should give the index of the plt
382 	 * entry (and relocation entry since they have been defined to be
383 	 * in the same order).  Then we must multiply by the size of
384 	 * a relocation entry, which will give us the offset of the
385 	 * plt relocation entry from the start of them given by JMPREL(lm).
386 	 */
387 	addr = pltoff - M_PLT_RESERVSZ;
388 	pltndx = addr / M_PLT_ENTSIZE;
389 
390 	/*
391 	 * Perform some basic sanity checks.  If we didn't get a load map
392 	 * or the plt offset is invalid then its possible someone has walked
393 	 * over the plt entries or jumped to plt[0] out of the blue.
394 	 */
395 	if (!lmp || ((addr % M_PLT_ENTSIZE) != 0)) {
396 		Conv_inv_buf_t	inv_buf;
397 
398 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_PLTREF),
399 		    conv_reloc_SPARC_type(R_SPARC_JMP_SLOT, 0, &inv_buf),
400 		    EC_NATPTR(lmp), EC_XWORD(pltoff), EC_NATPTR(from));
401 		rtldexit(lml, 1);
402 	}
403 	reloff = pltndx * sizeof (Rela);
404 
405 	/*
406 	 * Use relocation entry to get symbol table entry and symbol name.
407 	 */
408 	addr = (ulong_t)JMPREL(lmp);
409 	rptr = (Rela *)(addr + reloff);
410 	rsymndx = ELF_R_SYM(rptr->r_info);
411 	rsym = (Sym *)((ulong_t)SYMTAB(lmp) + (rsymndx * SYMENT(lmp)));
412 	name = (char *)(STRTAB(lmp) + rsym->st_name);
413 
414 	/*
415 	 * Determine the last link-map of this list, this'll be the starting
416 	 * point for any tsort() processing.
417 	 */
418 	llmp = lml->lm_tail;
419 
420 	/*
421 	 * Find definition for symbol.  Initialize the symbol lookup, and
422 	 * symbol result, data structures.
423 	 */
424 	SLOOKUP_INIT(sl, name, lmp, lml->lm_head, ld_entry_cnt, 0,
425 	    rsymndx, rsym, 0, LKUP_DEFT);
426 	SRESULT_INIT(sr, name);
427 
428 	if (lookup_sym(&sl, &sr, &binfo, NULL) == 0) {
429 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp),
430 		    demangle(name));
431 		rtldexit(lml, 1);
432 	}
433 
434 	name = (char *)sr.sr_name;
435 	nlmp = sr.sr_dmap;
436 	nsym = sr.sr_sym;
437 
438 	symval = nsym->st_value;
439 
440 	if (!(FLAGS(nlmp) & FLG_RT_FIXED) &&
441 	    (nsym->st_shndx != SHN_ABS))
442 		symval += ADDR(nlmp);
443 	if ((lmp != nlmp) && ((FLAGS1(nlmp) & FL1_RT_NOINIFIN) == 0)) {
444 		/*
445 		 * Record that this new link map is now bound to the caller.
446 		 */
447 		if (bind_one(lmp, nlmp, BND_REFER) == 0)
448 			rtldexit(lml, 1);
449 	}
450 
451 	if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_SYMBIND) {
452 		ulong_t	symndx = (((uintptr_t)nsym -
453 		    (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp));
454 
455 		symval = audit_symbind(lmp, nlmp, nsym, symndx, symval,
456 		    &sb_flags);
457 	}
458 
459 	if (FLAGS(lmp) & FLG_RT_FIXED)
460 		vaddr = 0;
461 	else
462 		vaddr = ADDR(lmp);
463 
464 	pbtype = PLT_T_NONE;
465 	if (!(rtld_flags & RT_FL_NOBIND)) {
466 		if (((lml->lm_tflags | AFLAGS(lmp)) &
467 		    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
468 		    AUDINFO(lmp)->ai_dynplts) {
469 			int	fail = 0;
470 			ulong_t	symndx = (((uintptr_t)nsym -
471 			    (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp));
472 
473 			symval = (ulong_t)elf_plt_trace_write((caddr_t)vaddr,
474 			    rptr, lmp, nlmp, nsym, symndx, pltndx,
475 			    (caddr_t)symval, sb_flags, &fail);
476 			if (fail)
477 				rtldexit(lml, 1);
478 		} else {
479 			/*
480 			 * Write standard PLT entry to jump directly
481 			 * to newly bound function.
482 			 */
483 			pbtype = elf_plt_write((uintptr_t)vaddr,
484 			    (uintptr_t)vaddr, rptr, symval, pltndx);
485 		}
486 	}
487 
488 	/*
489 	 * Print binding information and rebuild PLT entry.
490 	 */
491 	DBG_CALL(Dbg_bind_global(lmp, (Addr)from, (Off)(from - ADDR(lmp)),
492 	    pltndx, pbtype, nlmp, (Addr)symval, nsym->st_value, name, binfo));
493 
494 	/*
495 	 * Complete any processing for newly loaded objects.  Note we don't
496 	 * know exactly where any new objects are loaded (we know the object
497 	 * that supplied the symbol, but others may have been loaded lazily as
498 	 * we searched for the symbol), so sorting starts from the last
499 	 * link-map know on entry to this routine.
500 	 */
501 	if (entry)
502 		load_completion(llmp);
503 
504 	/*
505 	 * Some operations like dldump() or dlopen()'ing a relocatable object
506 	 * result in objects being loaded on rtld's link-map, make sure these
507 	 * objects are initialized also.
508 	 */
509 	if ((LIST(nlmp)->lm_flags & LML_FLG_RTLDLM) && LIST(nlmp)->lm_init)
510 		load_completion(nlmp);
511 
512 	/*
513 	 * Make sure the object to which we've bound has had it's .init fired.
514 	 * Cleanup before return to user code.
515 	 */
516 	if (entry) {
517 		is_dep_init(nlmp, lmp);
518 		leave(lml, 0);
519 	}
520 
521 	if (lmflags & LML_FLG_RTLDLM)
522 		dbg_desc->d_class = dbg_class;
523 
524 	return (symval);
525 }
526 
527 /*
528  * Read and process the relocations for one link object, we assume all
529  * relocation sections for loadable segments are stored contiguously in
530  * the file.
531  */
532 int
533 elf_reloc(Rt_map *lmp, uint_t plt, int *in_nfavl, APlist **textrel)
534 {
535 	ulong_t		relbgn, relend, relsiz, basebgn, pltbgn, pltend;
536 	ulong_t		dsymndx, pltndx, roffset, rsymndx, psymndx = 0;
537 	uchar_t		rtype;
538 	long		reladd, value, pvalue, relacount = RELACOUNT(lmp);
539 	Sym		*symref, *psymref, *symdef, *psymdef;
540 	Syminfo		*sip;
541 	char		*name, *pname;
542 	Rt_map		*_lmp, *plmp;
543 	int		ret = 1, noplt = 0;
544 	Rela		*rel;
545 	Pltbindtype	pbtype;
546 	uint_t		binfo, pbinfo;
547 	APlist		*bound = NULL;
548 
549 	/*
550 	 * If an object has any DT_REGISTER entries associated with
551 	 * it, they are processed now.
552 	 */
553 	if ((plt == 0) && (FLAGS(lmp) & FLG_RT_REGSYMS)) {
554 		if (elf_regsyms(lmp) == 0)
555 			return (0);
556 	}
557 
558 	/*
559 	 * Although only necessary for lazy binding, initialize the first
560 	 * procedure linkage table entry to go to elf_rtbndr().  dbx(1) seems
561 	 * to find this useful.
562 	 */
563 	if ((plt == 0) && PLTGOT(lmp)) {
564 		mmapobj_result_t	*mpp;
565 
566 		/*
567 		 * Make sure the segment is writable.
568 		 */
569 		if ((((mpp =
570 		    find_segment((caddr_t)PLTGOT(lmp), lmp)) != NULL) &&
571 		    ((mpp->mr_prot & PROT_WRITE) == 0)) &&
572 		    ((set_prot(lmp, mpp, 1) == 0) ||
573 		    (aplist_append(textrel, mpp, AL_CNT_TEXTREL) == NULL)))
574 			return (0);
575 
576 		elf_plt_init(PLTGOT(lmp), (caddr_t)lmp);
577 	}
578 
579 	/*
580 	 * Initialize the plt start and end addresses.
581 	 */
582 	if ((pltbgn = (ulong_t)JMPREL(lmp)) != 0)
583 		pltend = pltbgn + (ulong_t)(PLTRELSZ(lmp));
584 
585 	/*
586 	 * If we've been called upon to promote an RTLD_LAZY object to an
587 	 * RTLD_NOW then we're only interested in scaning the .plt table.
588 	 */
589 	if (plt) {
590 		relbgn = pltbgn;
591 		relend = pltend;
592 	} else {
593 		/*
594 		 * The relocation sections appear to the run-time linker as a
595 		 * single table.  Determine the address of the beginning and end
596 		 * of this table.  There are two different interpretations of
597 		 * the ABI at this point:
598 		 *
599 		 *  -	The REL table and its associated RELSZ indicate the
600 		 *	concatenation of *all* relocation sections (this is the
601 		 *	model our link-editor constructs).
602 		 *
603 		 *  -	The REL table and its associated RELSZ indicate the
604 		 *	concatenation of all *but* the .plt relocations.  These
605 		 *	relocations are specified individually by the JMPREL and
606 		 *	PLTRELSZ entries.
607 		 *
608 		 * Determine from our knowledege of the relocation range and
609 		 * .plt range, the range of the total relocation table.  Note
610 		 * that one other ABI assumption seems to be that the .plt
611 		 * relocations always follow any other relocations, the
612 		 * following range checking drops that assumption.
613 		 */
614 		relbgn = (ulong_t)(REL(lmp));
615 		relend = relbgn + (ulong_t)(RELSZ(lmp));
616 		if (pltbgn) {
617 			if (!relbgn || (relbgn > pltbgn))
618 				relbgn = pltbgn;
619 			if (!relbgn || (relend < pltend))
620 				relend = pltend;
621 		}
622 	}
623 	if (!relbgn || (relbgn == relend)) {
624 		DBG_CALL(Dbg_reloc_run(lmp, 0, plt, DBG_REL_NONE));
625 		return (1);
626 	}
627 
628 	relsiz = (ulong_t)(RELENT(lmp));
629 	basebgn = ADDR(lmp);
630 
631 	DBG_CALL(Dbg_reloc_run(lmp, M_REL_SHT_TYPE, plt, DBG_REL_START));
632 
633 	/*
634 	 * If we're processing in lazy mode there is no need to scan the
635 	 * .rela.plt table.
636 	 */
637 	if (pltbgn && ((MODE(lmp) & RTLD_NOW) == 0))
638 		noplt = 1;
639 
640 	sip = SYMINFO(lmp);
641 	/*
642 	 * Loop through relocations.
643 	 */
644 	while (relbgn < relend) {
645 		mmapobj_result_t	*mpp;
646 		uint_t			sb_flags = 0;
647 		Addr			vaddr;
648 
649 		rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info, M_MACH);
650 
651 		/*
652 		 * If this is a RELATIVE relocation in a shared object (the
653 		 * common case), and if we are not debugging, then jump into one
654 		 * of the tighter relocation loops.
655 		 */
656 		if ((rtype == R_SPARC_RELATIVE) &&
657 		    ((FLAGS(lmp) & FLG_RT_FIXED) == 0) && (DBG_ENABLED == 0)) {
658 			if (relacount) {
659 				relbgn = elf_reloc_relative_count(relbgn,
660 				    relacount, relsiz, basebgn, lmp,
661 				    textrel, 0);
662 				relacount = 0;
663 			} else {
664 				relbgn = elf_reloc_relative(relbgn, relend,
665 				    relsiz, basebgn, lmp, textrel, 0);
666 			}
667 			if (relbgn >= relend)
668 				break;
669 			rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info, M_MACH);
670 		}
671 
672 		roffset = ((Rela *)relbgn)->r_offset;
673 
674 		reladd = (long)(((Rela *)relbgn)->r_addend);
675 		rsymndx = ELF_R_SYM(((Rela *)relbgn)->r_info);
676 		rel = (Rela *)relbgn;
677 		relbgn += relsiz;
678 
679 		/*
680 		 * Optimizations.
681 		 */
682 		if (rtype == R_SPARC_NONE)
683 			continue;
684 		if (noplt && ((ulong_t)rel >= pltbgn) &&
685 		    ((ulong_t)rel < pltend)) {
686 			relbgn = pltend;
687 			continue;
688 		}
689 
690 		if (rtype != R_SPARC_REGISTER) {
691 			/*
692 			 * If this is a shared object, add the base address
693 			 * to offset.
694 			 */
695 			if (!(FLAGS(lmp) & FLG_RT_FIXED))
696 				roffset += basebgn;
697 
698 			/*
699 			 * If this relocation is not against part of the image
700 			 * mapped into memory we skip it.
701 			 */
702 			if ((mpp = find_segment((caddr_t)roffset,
703 			    lmp)) == NULL) {
704 				elf_reloc_bad(lmp, (void *)rel, rtype, roffset,
705 				    rsymndx);
706 				continue;
707 			}
708 		}
709 
710 		/*
711 		 * If we're promoting .plts, try and determine if this one has
712 		 * already been written.  An uninitialized .plts' second
713 		 * instruction is a branch.  Note, elf_plt_write() optimizes
714 		 * .plt relocations, and it's possible that a relocated entry
715 		 * is a branch.  If this is the case, we can't tell the
716 		 * difference between an uninitialized .plt and a relocated,
717 		 * .plt that uses a branch.  In this case, we'll simply redo
718 		 * the relocation calculation, which is a bit sad.
719 		 */
720 		if (plt) {
721 			ulong_t	*_roffset = (ulong_t *)roffset;
722 
723 			_roffset++;
724 			if ((*_roffset & (~(S_MASK(22)))) != M_BA_A)
725 				continue;
726 		}
727 
728 		binfo = 0;
729 		pltndx = (ulong_t)-1;
730 		pbtype = PLT_T_NONE;
731 
732 		/*
733 		 * If a symbol index is specified then get the symbol table
734 		 * entry, locate the symbol definition, and determine its
735 		 * address.
736 		 */
737 		if (rsymndx) {
738 			/*
739 			 * If a Syminfo section is provided, determine if this
740 			 * symbol is deferred, and if so, skip this relocation.
741 			 */
742 			if (sip && is_sym_deferred((ulong_t)rel, basebgn, lmp,
743 			    textrel, sip, rsymndx))
744 				continue;
745 
746 			/*
747 			 * Get the local symbol table entry.
748 			 */
749 			symref = (Sym *)((ulong_t)SYMTAB(lmp) +
750 			    (rsymndx * SYMENT(lmp)));
751 
752 			/*
753 			 * If this is a local symbol, just use the base address.
754 			 * (we should have no local relocations in the
755 			 * executable).
756 			 */
757 			if (ELF_ST_BIND(symref->st_info) == STB_LOCAL) {
758 				value = basebgn;
759 				name = NULL;
760 
761 				/*
762 				 * Special case TLS relocations.
763 				 */
764 				if (rtype == R_SPARC_TLS_DTPMOD32) {
765 					/*
766 					 * Use the TLS modid.
767 					 */
768 					value = TLSMODID(lmp);
769 
770 				} else if (rtype == R_SPARC_TLS_TPOFF32) {
771 					if ((value = elf_static_tls(lmp, symref,
772 					    rel, rtype, 0, roffset, 0)) == 0) {
773 						ret = 0;
774 						break;
775 					}
776 				}
777 			} else {
778 				/*
779 				 * If the symbol index is equal to the previous
780 				 * symbol index relocation we processed then
781 				 * reuse the previous values. (Note that there
782 				 * have been cases where a relocation exists
783 				 * against a copy relocation symbol, our ld(1)
784 				 * should optimize this away, but make sure we
785 				 * don't use the same symbol information should
786 				 * this case exist).
787 				 */
788 				if ((rsymndx == psymndx) &&
789 				    (rtype != R_SPARC_COPY)) {
790 					/* LINTED */
791 					if (psymdef == 0) {
792 						DBG_CALL(Dbg_bind_weak(lmp,
793 						    (Addr)roffset, (Addr)
794 						    (roffset - basebgn), name));
795 						continue;
796 					}
797 					/* LINTED */
798 					value = pvalue;
799 					/* LINTED */
800 					name = pname;
801 					symdef = psymdef;
802 					/* LINTED */
803 					symref = psymref;
804 					/* LINTED */
805 					_lmp = plmp;
806 					/* LINTED */
807 					binfo = pbinfo;
808 
809 					if ((LIST(_lmp)->lm_tflags |
810 					    AFLAGS(_lmp)) &
811 					    LML_TFLG_AUD_SYMBIND) {
812 						value = audit_symbind(lmp, _lmp,
813 						    /* LINTED */
814 						    symdef, dsymndx, value,
815 						    &sb_flags);
816 					}
817 				} else {
818 					Slookup		sl;
819 					Sresult		sr;
820 
821 					/*
822 					 * Lookup the symbol definition.
823 					 * Initialize the symbol lookup, and
824 					 * symbol result, data structures.
825 					 */
826 					name = (char *)(STRTAB(lmp) +
827 					    symref->st_name);
828 
829 					SLOOKUP_INIT(sl, name, lmp, 0,
830 					    ld_entry_cnt, 0, rsymndx, symref,
831 					    rtype, LKUP_STDRELOC);
832 					SRESULT_INIT(sr, name);
833 					symdef = NULL;
834 
835 					if (lookup_sym(&sl, &sr, &binfo,
836 					    in_nfavl)) {
837 						name = (char *)sr.sr_name;
838 						_lmp = sr.sr_dmap;
839 						symdef = sr.sr_sym;
840 					}
841 
842 					/*
843 					 * If the symbol is not found and the
844 					 * reference was not to a weak symbol,
845 					 * report an error.  Weak references
846 					 * may be unresolved.
847 					 */
848 					/* BEGIN CSTYLED */
849 					if (symdef == 0) {
850 					    if (sl.sl_bind != STB_WEAK) {
851 						if (elf_reloc_error(lmp, name,
852 						    rel, binfo))
853 							continue;
854 
855 						ret = 0;
856 						break;
857 
858 					    } else {
859 						psymndx = rsymndx;
860 						psymdef = 0;
861 
862 						DBG_CALL(Dbg_bind_weak(lmp,
863 						    (Addr)roffset, (Addr)
864 						    (roffset - basebgn), name));
865 						continue;
866 					    }
867 					}
868 					/* END CSTYLED */
869 
870 					/*
871 					 * If symbol was found in an object
872 					 * other than the referencing object
873 					 * then record the binding.
874 					 */
875 					if ((lmp != _lmp) && ((FLAGS1(_lmp) &
876 					    FL1_RT_NOINIFIN) == 0)) {
877 						if (aplist_test(&bound, _lmp,
878 						    AL_CNT_RELBIND) == 0) {
879 							ret = 0;
880 							break;
881 						}
882 					}
883 
884 					/*
885 					 * Calculate the location of definition;
886 					 * symbol value plus base address of
887 					 * containing shared object.
888 					 */
889 					if (IS_SIZE(rtype))
890 						value = symdef->st_size;
891 					else
892 						value = symdef->st_value;
893 
894 					if (!(FLAGS(_lmp) & FLG_RT_FIXED) &&
895 					    !(IS_SIZE(rtype)) &&
896 					    (symdef->st_shndx != SHN_ABS) &&
897 					    (ELF_ST_TYPE(symdef->st_info) !=
898 					    STT_TLS))
899 						value += ADDR(_lmp);
900 
901 					/*
902 					 * Retain this symbol index and the
903 					 * value in case it can be used for the
904 					 * subsequent relocations.
905 					 */
906 					if (rtype != R_SPARC_COPY) {
907 						psymndx = rsymndx;
908 						pvalue = value;
909 						pname = name;
910 						psymdef = symdef;
911 						psymref = symref;
912 						plmp = _lmp;
913 						pbinfo = binfo;
914 					}
915 					if ((LIST(_lmp)->lm_tflags |
916 					    AFLAGS(_lmp)) &
917 					    LML_TFLG_AUD_SYMBIND) {
918 						dsymndx = (((uintptr_t)symdef -
919 						    (uintptr_t)SYMTAB(_lmp)) /
920 						    SYMENT(_lmp));
921 						value = audit_symbind(lmp, _lmp,
922 						    symdef, dsymndx, value,
923 						    &sb_flags);
924 					}
925 				}
926 
927 				/*
928 				 * If relocation is PC-relative, subtract
929 				 * offset address.
930 				 */
931 				if (IS_PC_RELATIVE(rtype))
932 					value -= roffset;
933 
934 				/*
935 				 * Special case TLS relocations.
936 				 */
937 				if (rtype == R_SPARC_TLS_DTPMOD32) {
938 					/*
939 					 * Relocation value is the TLS modid.
940 					 */
941 					value = TLSMODID(_lmp);
942 
943 				} else if (rtype == R_SPARC_TLS_TPOFF32) {
944 					if ((value = elf_static_tls(_lmp,
945 					    symdef, rel, rtype, name, roffset,
946 					    value)) == 0) {
947 						ret = 0;
948 						break;
949 					}
950 				}
951 			}
952 		} else {
953 			/*
954 			 * Special cases.
955 			 */
956 			if (rtype == R_SPARC_REGISTER) {
957 				/*
958 				 * A register symbol associated with symbol
959 				 * index 0 is initialized (i.e. relocated) to
960 				 * a constant in the r_addend field rather than
961 				 * to a symbol value.
962 				 */
963 				value = 0;
964 
965 			} else if (rtype == R_SPARC_TLS_DTPMOD32) {
966 				/*
967 				 * TLS relocation value is the TLS modid.
968 				 */
969 				value = TLSMODID(lmp);
970 			} else
971 				value = basebgn;
972 
973 			name = NULL;
974 		}
975 
976 		DBG_CALL(Dbg_reloc_in(LIST(lmp), ELF_DBG_RTLD, M_MACH,
977 		    M_REL_SHT_TYPE, rel, NULL, 0, name));
978 
979 		/*
980 		 * Make sure the segment is writable.
981 		 */
982 		if ((rtype != R_SPARC_REGISTER) &&
983 		    ((mpp->mr_prot & PROT_WRITE) == 0) &&
984 		    ((set_prot(lmp, mpp, 1) == 0) ||
985 		    (aplist_append(textrel, mpp, AL_CNT_TEXTREL) == NULL))) {
986 			ret = 0;
987 			break;
988 		}
989 
990 		/*
991 		 * Call relocation routine to perform required relocation.
992 		 */
993 		switch (rtype) {
994 		case R_SPARC_REGISTER:
995 			/*
996 			 * The v9 ABI 4.2.4 says that system objects may,
997 			 * but are not required to, use register symbols
998 			 * to inidcate how they use global registers. Thus
999 			 * at least %g6, %g7 must be allowed in addition
1000 			 * to %g2 and %g3.
1001 			 */
1002 			value += reladd;
1003 			if (roffset == STO_SPARC_REGISTER_G1) {
1004 				set_sparc_g1(value);
1005 			} else if (roffset == STO_SPARC_REGISTER_G2) {
1006 				set_sparc_g2(value);
1007 			} else if (roffset == STO_SPARC_REGISTER_G3) {
1008 				set_sparc_g3(value);
1009 			} else if (roffset == STO_SPARC_REGISTER_G4) {
1010 				set_sparc_g4(value);
1011 			} else if (roffset == STO_SPARC_REGISTER_G5) {
1012 				set_sparc_g5(value);
1013 			} else if (roffset == STO_SPARC_REGISTER_G6) {
1014 				set_sparc_g6(value);
1015 			} else if (roffset == STO_SPARC_REGISTER_G7) {
1016 				set_sparc_g7(value);
1017 			} else {
1018 				eprintf(LIST(lmp), ERR_FATAL,
1019 				    MSG_INTL(MSG_REL_BADREG), NAME(lmp),
1020 				    EC_ADDR(roffset));
1021 				ret = 0;
1022 				break;
1023 			}
1024 
1025 			DBG_CALL(Dbg_reloc_apply_reg(LIST(lmp), ELF_DBG_RTLD,
1026 			    M_MACH, (Xword)roffset, (Xword)value));
1027 			break;
1028 		case R_SPARC_COPY:
1029 			if (elf_copy_reloc(name, symref, lmp, (void *)roffset,
1030 			    symdef, _lmp, (const void *)value) == 0)
1031 				ret = 0;
1032 			break;
1033 		case R_SPARC_JMP_SLOT:
1034 			pltndx = ((ulong_t)rel -
1035 			    (uintptr_t)JMPREL(lmp)) / relsiz;
1036 
1037 			if (FLAGS(lmp) & FLG_RT_FIXED)
1038 				vaddr = 0;
1039 			else
1040 				vaddr = ADDR(lmp);
1041 
1042 			if (((LIST(lmp)->lm_tflags | AFLAGS(lmp)) &
1043 			    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
1044 			    AUDINFO(lmp)->ai_dynplts) {
1045 				int	fail = 0;
1046 				ulong_t	symndx = (((uintptr_t)symdef -
1047 				    (uintptr_t)SYMTAB(_lmp)) / SYMENT(_lmp));
1048 
1049 				(void) elf_plt_trace_write((caddr_t)vaddr,
1050 				    (Rela *)rel, lmp, _lmp, symdef, symndx,
1051 				    pltndx, (caddr_t)value, sb_flags, &fail);
1052 				if (fail)
1053 					ret = 0;
1054 			} else {
1055 				/*
1056 				 * Write standard PLT entry to jump directly
1057 				 * to newly bound function.
1058 				 */
1059 				DBG_CALL(Dbg_reloc_apply_val(LIST(lmp),
1060 				    ELF_DBG_RTLD, (Xword)roffset,
1061 				    (Xword)value));
1062 				pbtype = elf_plt_write((uintptr_t)vaddr,
1063 				    (uintptr_t)vaddr, (void *)rel, value,
1064 				    pltndx);
1065 			}
1066 			break;
1067 		default:
1068 			value += reladd;
1069 
1070 			/*
1071 			 * Write the relocation out.  If this relocation is a
1072 			 * common basic write, skip the doreloc() engine.
1073 			 */
1074 			if ((rtype == R_SPARC_GLOB_DAT) ||
1075 			    (rtype == R_SPARC_32)) {
1076 				if (roffset & 0x3) {
1077 					Conv_inv_buf_t inv_buf;
1078 
1079 					eprintf(LIST(lmp), ERR_FATAL,
1080 					    MSG_INTL(MSG_REL_NONALIGN),
1081 					    conv_reloc_SPARC_type(rtype,
1082 					    0, &inv_buf),
1083 					    NAME(lmp), demangle(name),
1084 					    EC_OFF(roffset));
1085 					ret = 0;
1086 				} else
1087 					*(uint_t *)roffset += value;
1088 			} else {
1089 				if (do_reloc_rtld(rtype, (uchar_t *)roffset,
1090 				    (Xword *)&value, name,
1091 				    NAME(lmp), LIST(lmp)) == 0)
1092 					ret = 0;
1093 			}
1094 
1095 			/*
1096 			 * The value now contains the 'bit-shifted' value that
1097 			 * was or'ed into memory (this was set by
1098 			 * do_reloc_rtld()).
1099 			 */
1100 			DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), ELF_DBG_RTLD,
1101 			    (Xword)roffset, (Xword)value));
1102 
1103 			/*
1104 			 * If this relocation is against a text segment, make
1105 			 * sure that the instruction cache is flushed.
1106 			 */
1107 			if (textrel)
1108 				iflush_range((caddr_t)roffset, 0x4);
1109 		}
1110 
1111 		if ((ret == 0) &&
1112 		    ((LIST(lmp)->lm_flags & LML_FLG_TRC_WARN) == 0))
1113 			break;
1114 
1115 		if (binfo) {
1116 			DBG_CALL(Dbg_bind_global(lmp, (Addr)roffset,
1117 			    (Off)(roffset - basebgn), pltndx, pbtype,
1118 			    _lmp, (Addr)value, symdef->st_value, name, binfo));
1119 		}
1120 	}
1121 
1122 	return (relocate_finish(lmp, bound, ret));
1123 }
1124 
1125 /*
1126  * Provide a machine specific interface to the conversion routine.  By calling
1127  * the machine specific version, rather than the generic version, we insure that
1128  * the data tables/strings for all known machine versions aren't dragged into
1129  * ld.so.1.
1130  */
1131 const char *
1132 _conv_reloc_type(uint_t rel)
1133 {
1134 	static Conv_inv_buf_t	inv_buf;
1135 
1136 	return (conv_reloc_SPARC_type(rel, 0, &inv_buf));
1137 }
1138