1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 27 */ 28 29 /* 30 * Copyright (c) 2014 by Delphix. All rights reserved. 31 */ 32 33 /* 34 * Utility routines for run-time linker. some are duplicated here from libc 35 * (with different names) to avoid name space collisions. 36 */ 37 #include <sys/systeminfo.h> 38 #include <stdio.h> 39 #include <sys/time.h> 40 #include <sys/types.h> 41 #include <sys/mman.h> 42 #include <sys/lwp.h> 43 #include <sys/debug.h> 44 #include <stdarg.h> 45 #include <fcntl.h> 46 #include <string.h> 47 #include <dlfcn.h> 48 #include <unistd.h> 49 #include <stdlib.h> 50 #include <sys/auxv.h> 51 #include <limits.h> 52 #include <debug.h> 53 #include <conv.h> 54 #include "_rtld.h" 55 #include "_audit.h" 56 #include "_elf.h" 57 #include "msg.h" 58 59 /* 60 * Null function used as place where a debugger can set a breakpoint. 61 */ 62 void 63 rtld_db_dlactivity(Lm_list *lml) 64 { 65 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 66 r_debug.rtd_rdebug.r_state)); 67 } 68 69 /* 70 * Null function used as place where debugger can set a pre .init 71 * processing breakpoint. 72 */ 73 void 74 rtld_db_preinit(Lm_list *lml) 75 { 76 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 77 r_debug.rtd_rdebug.r_state)); 78 } 79 80 /* 81 * Null function used as place where debugger can set a post .init 82 * processing breakpoint. 83 */ 84 void 85 rtld_db_postinit(Lm_list *lml) 86 { 87 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 88 r_debug.rtd_rdebug.r_state)); 89 } 90 91 /* 92 * Debugger Event Notification 93 * 94 * This function centralizes all debugger event notification (ala rtld_db). 95 * 96 * There's a simple intent, focused on insuring the primary link-map control 97 * list (or each link-map list) is consistent, and the indication that objects 98 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 99 * event are posted for each of these, most debuggers don't care, as their 100 * view is that these events simply convey an "inconsistent" state. 101 * 102 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 103 * enter ld.so.1. 104 * 105 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 106 * required later (RT_FL_DBNOTIF): 107 * 108 * i. the first time we add or delete an object to the primary link-map 109 * control list. 110 * ii. the first time we move a secondary link-map control list to the primary 111 * link-map control list (effectively, this is like adding a group of 112 * objects to the primary link-map control list). 113 * 114 * Set an RD_CONSISTENT event when it is required (RT_FL_DBNOTIF is set): 115 * 116 * i. each time we leave the runtime linker. 117 */ 118 void 119 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 120 { 121 void (*fptr)(Lm_list *); 122 123 switch (event) { 124 case RD_PREINIT: 125 fptr = rtld_db_preinit; 126 break; 127 case RD_POSTINIT: 128 fptr = rtld_db_postinit; 129 break; 130 case RD_DLACTIVITY: 131 switch (state) { 132 case RT_CONSISTENT: 133 /* 134 * Do we need to send a notification? 135 */ 136 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 137 return; 138 rtld_flags &= ~RT_FL_DBNOTIF; 139 break; 140 case RT_ADD: 141 case RT_DELETE: 142 /* 143 * If we are already in an inconsistent state, no 144 * notification is required. 145 */ 146 if (rtld_flags & RT_FL_DBNOTIF) 147 return; 148 rtld_flags |= RT_FL_DBNOTIF; 149 break; 150 }; 151 fptr = rtld_db_dlactivity; 152 break; 153 default: 154 /* 155 * RD_NONE - do nothing 156 */ 157 break; 158 }; 159 160 /* 161 * Set event state and call 'notification' function. 162 * 163 * The debugging clients have previously been told about these 164 * notification functions and have set breakpoints on them if they 165 * are interested in the notification. 166 */ 167 r_debug.rtd_rdebug.r_state = state; 168 r_debug.rtd_rdebug.r_rdevent = event; 169 fptr(lml); 170 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 171 } 172 173 #if defined(__sparc) || defined(__x86) 174 /* 175 * Stack Cleanup. 176 * 177 * This function is invoked to 'remove' arguments that were passed in on the 178 * stack. This is most likely if ld.so.1 was invoked directly. In that case 179 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 180 * Which means we then need to slide everything above it on the stack down 181 * accordingly. 182 * 183 * While the stack layout is platform specific - it just so happens that __x86, 184 * and __sparc platforms share the following initial stack layout. 185 * 186 * !_______________________! high addresses 187 * ! ! 188 * ! Information ! 189 * ! Block ! 190 * ! (size varies) ! 191 * !_______________________! 192 * ! 0 word ! 193 * !_______________________! 194 * ! Auxiliary ! 195 * ! vector ! 196 * ! 2 word entries ! 197 * ! ! 198 * !_______________________! 199 * ! 0 word ! 200 * !_______________________! 201 * ! Environment ! 202 * ! pointers ! 203 * ! ... ! 204 * ! (one word each) ! 205 * !_______________________! 206 * ! 0 word ! 207 * !_______________________! 208 * ! Argument ! low addresses 209 * ! pointers ! 210 * ! Argc words ! 211 * !_______________________! 212 * ! ! 213 * ! Argc ! 214 * !_______________________! 215 * ! ... ! 216 * 217 */ 218 static void 219 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 220 { 221 int ndx; 222 long *argc; 223 char **oargv, **nargv; 224 char **oenvp, **nenvp; 225 auxv_t *oauxv, *nauxv; 226 227 /* 228 * Slide ARGV[] and update argc. The argv pointer remains the same, 229 * however slide the applications arguments over the arguments to 230 * ld.so.1. 231 */ 232 nargv = &argv[0]; 233 oargv = &argv[rmcnt]; 234 235 for (ndx = 0; oargv[ndx]; ndx++) 236 nargv[ndx] = oargv[ndx]; 237 nargv[ndx] = oargv[ndx]; 238 239 argc = (long *)((uintptr_t)argv - sizeof (long *)); 240 *argc -= rmcnt; 241 242 /* 243 * Slide ENVP[], and update the environment array pointer. 244 */ 245 ndx++; 246 nenvp = &nargv[ndx]; 247 oenvp = &oargv[ndx]; 248 *envp = nenvp; 249 250 for (ndx = 0; oenvp[ndx]; ndx++) 251 nenvp[ndx] = oenvp[ndx]; 252 nenvp[ndx] = oenvp[ndx]; 253 254 /* 255 * Slide AUXV[], and update the aux vector pointer. 256 */ 257 ndx++; 258 nauxv = (auxv_t *)&nenvp[ndx]; 259 oauxv = (auxv_t *)&oenvp[ndx]; 260 *auxv = nauxv; 261 262 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 263 nauxv[ndx] = oauxv[ndx]; 264 nauxv[ndx] = oauxv[ndx]; 265 } 266 #else 267 /* 268 * Verify that the above routine is appropriate for any new platforms. 269 */ 270 #error unsupported architecture! 271 #endif 272 273 /* 274 * Compare function for PathNode AVL tree. 275 */ 276 static int 277 pnavl_compare(const void *n1, const void *n2) 278 { 279 uint_t hash1, hash2; 280 const char *st1, *st2; 281 int rc; 282 283 hash1 = ((PathNode *)n1)->pn_hash; 284 hash2 = ((PathNode *)n2)->pn_hash; 285 286 if (hash1 > hash2) 287 return (1); 288 if (hash1 < hash2) 289 return (-1); 290 291 st1 = ((PathNode *)n1)->pn_name; 292 st2 = ((PathNode *)n2)->pn_name; 293 294 rc = strcmp(st1, st2); 295 if (rc > 0) 296 return (1); 297 if (rc < 0) 298 return (-1); 299 return (0); 300 } 301 302 /* 303 * Create an AVL tree. 304 */ 305 static avl_tree_t * 306 pnavl_create(size_t size) 307 { 308 avl_tree_t *avlt; 309 310 if ((avlt = malloc(sizeof (avl_tree_t))) == NULL) 311 return (NULL); 312 avl_create(avlt, pnavl_compare, size, SGSOFFSETOF(PathNode, pn_avl)); 313 return (avlt); 314 } 315 316 /* 317 * Determine whether a PathNode is recorded. 318 */ 319 int 320 pnavl_recorded(avl_tree_t **pnavl, const char *name, uint_t hash, 321 avl_index_t *where) 322 { 323 PathNode pn; 324 325 /* 326 * Create the avl tree if required. 327 */ 328 if ((*pnavl == NULL) && 329 ((*pnavl = pnavl_create(sizeof (PathNode))) == NULL)) 330 return (0); 331 332 pn.pn_name = name; 333 if ((pn.pn_hash = hash) == 0) 334 pn.pn_hash = sgs_str_hash(name); 335 336 if (avl_find(*pnavl, &pn, where) == NULL) 337 return (0); 338 339 return (1); 340 } 341 342 /* 343 * Determine if a pathname has already been recorded on the full path name 344 * AVL tree. This tree maintains a node for each path name that ld.so.1 has 345 * successfully loaded. If the path name does not exist in this AVL tree, then 346 * the next insertion point is deposited in "where". This value can be used by 347 * fpavl_insert() to expedite the insertion. 348 */ 349 Rt_map * 350 fpavl_recorded(Lm_list *lml, const char *name, uint_t hash, avl_index_t *where) 351 { 352 FullPathNode fpn, *fpnp; 353 354 /* 355 * Create the avl tree if required. 356 */ 357 if ((lml->lm_fpavl == NULL) && 358 ((lml->lm_fpavl = pnavl_create(sizeof (FullPathNode))) == NULL)) 359 return (NULL); 360 361 fpn.fpn_node.pn_name = name; 362 if ((fpn.fpn_node.pn_hash = hash) == 0) 363 fpn.fpn_node.pn_hash = sgs_str_hash(name); 364 365 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 366 return (NULL); 367 368 return (fpnp->fpn_lmp); 369 } 370 371 /* 372 * Insert a name into the FullPathNode AVL tree for the link-map list. The 373 * objects NAME() is the path that would have originally been searched for, and 374 * is therefore the name to associate with any "where" value. If the object has 375 * a different PATHNAME(), perhaps because it has resolved to a different file 376 * (see fullpath()), then this name will be recorded as a separate FullPathNode 377 * (see load_file()). 378 */ 379 int 380 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 381 { 382 FullPathNode *fpnp; 383 uint_t hash = sgs_str_hash(name); 384 385 if (where == 0) { 386 Rt_map *_lmp __maybe_unused; 387 388 _lmp = fpavl_recorded(lml, name, hash, &where); 389 390 /* 391 * We better not get a hit now, we do not want duplicates in 392 * the tree. 393 */ 394 ASSERT(_lmp == NULL); 395 } 396 397 /* 398 * Insert new node in tree. 399 */ 400 if ((fpnp = calloc(1, sizeof (FullPathNode))) == NULL) 401 return (0); 402 403 fpnp->fpn_node.pn_name = name; 404 fpnp->fpn_node.pn_hash = hash; 405 fpnp->fpn_lmp = lmp; 406 407 if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) { 408 free(fpnp); 409 return (0); 410 } 411 412 ASSERT(lml->lm_fpavl != NULL); 413 avl_insert(lml->lm_fpavl, fpnp, where); 414 return (1); 415 } 416 417 /* 418 * Remove an object from the FullPathNode AVL tree. 419 */ 420 void 421 fpavl_remove(Rt_map *lmp) 422 { 423 FullPathNode *fpnp; 424 Aliste idx; 425 426 for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) { 427 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 428 free(fpnp); 429 } 430 free(FPNODE(lmp)); 431 FPNODE(lmp) = NULL; 432 } 433 434 /* 435 * Insert a path name into the not-found AVL tree. 436 * 437 * This tree maintains a node for each path name that ld.so.1 has explicitly 438 * inspected, but has failed to load during a single ld.so.1 operation. If the 439 * path name does not exist in this AVL tree, then the next insertion point is 440 * deposited in "where". This value can be used by nfavl_insert() to expedite 441 * the insertion. 442 */ 443 void 444 nfavl_insert(const char *name, avl_index_t where) 445 { 446 PathNode *pnp; 447 uint_t hash = sgs_str_hash(name); 448 449 if (where == 0) { 450 int in_nfavl __maybe_unused; 451 452 in_nfavl = pnavl_recorded(&nfavl, name, hash, &where); 453 454 /* 455 * We better not get a hit now, we do not want duplicates in 456 * the tree. 457 */ 458 ASSERT(in_nfavl == 0); 459 } 460 461 /* 462 * Insert new node in tree. 463 */ 464 if ((pnp = calloc(1, sizeof (PathNode))) != NULL) { 465 pnp->pn_name = name; 466 pnp->pn_hash = hash; 467 avl_insert(nfavl, pnp, where); 468 } 469 } 470 471 /* 472 * Insert the directory name, of a full path name, into the secure path AVL 473 * tree. 474 * 475 * This tree is used to maintain a list of directories in which the dependencies 476 * of a secure process have been found. This list provides a fall-back in the 477 * case that a $ORIGIN expansion is deemed insecure, when the expansion results 478 * in a path name that has already provided dependencies. 479 */ 480 void 481 spavl_insert(const char *name) 482 { 483 char buffer[PATH_MAX], *str; 484 size_t size; 485 avl_index_t where; 486 PathNode *pnp; 487 uint_t hash; 488 489 /* 490 * Separate the directory name from the path name. 491 */ 492 if ((str = strrchr(name, '/')) == name) 493 size = 1; 494 else 495 size = str - name; 496 497 (void) strncpy(buffer, name, size); 498 buffer[size] = '\0'; 499 hash = sgs_str_hash(buffer); 500 501 /* 502 * Determine whether this directory name is already recorded, or if 503 * not, 'where" will provide the insertion point for the new string. 504 */ 505 if (pnavl_recorded(&spavl, buffer, hash, &where)) 506 return; 507 508 /* 509 * Insert new node in tree. 510 */ 511 if ((pnp = calloc(1, sizeof (PathNode))) != NULL) { 512 pnp->pn_name = strdup(buffer); 513 pnp->pn_hash = hash; 514 avl_insert(spavl, pnp, where); 515 } 516 } 517 518 /* 519 * Inspect the generic string AVL tree for the given string. If the string is 520 * not present, duplicate it, and insert the string in the AVL tree. Return the 521 * duplicated string to the caller. 522 * 523 * These strings are maintained for the life of ld.so.1 and represent path 524 * names, file names, and search paths. All other AVL trees that maintain 525 * FullPathNode and not-found path names use the same string pointer 526 * established for this string. 527 */ 528 static avl_tree_t *stravl = NULL; 529 static char *strbuf = NULL; 530 static PathNode *pnbuf = NULL; 531 static size_t strsize = 0, pnsize = 0; 532 533 const char * 534 stravl_insert(const char *name, uint_t hash, size_t nsize, int substr) 535 { 536 char str[PATH_MAX]; 537 PathNode *pnp; 538 avl_index_t where; 539 540 /* 541 * Create the avl tree if required. 542 */ 543 if ((stravl == NULL) && 544 ((stravl = pnavl_create(sizeof (PathNode))) == NULL)) 545 return (NULL); 546 547 /* 548 * Determine the string size if not provided by the caller. 549 */ 550 if (nsize == 0) 551 nsize = strlen(name) + 1; 552 else if (substr) { 553 /* 554 * The string passed to us may be a multiple path string for 555 * which we only need the first component. Using the provided 556 * size, strip out the required string. 557 */ 558 (void) strncpy(str, name, nsize); 559 str[nsize - 1] = '\0'; 560 name = str; 561 } 562 563 /* 564 * Allocate a PathNode buffer if one doesn't exist, or any existing 565 * buffer has been used up. 566 */ 567 if ((pnbuf == NULL) || (sizeof (PathNode) > pnsize)) { 568 pnsize = syspagsz; 569 if ((pnbuf = dz_map(0, 0, pnsize, (PROT_READ | PROT_WRITE), 570 MAP_PRIVATE)) == MAP_FAILED) 571 return (NULL); 572 } 573 /* 574 * Determine whether this string already exists. 575 */ 576 pnbuf->pn_name = name; 577 if ((pnbuf->pn_hash = hash) == 0) 578 pnbuf->pn_hash = sgs_str_hash(name); 579 580 if ((pnp = avl_find(stravl, pnbuf, &where)) != NULL) 581 return (pnp->pn_name); 582 583 /* 584 * Allocate a string buffer if one does not exist, or if there is 585 * insufficient space for the new string in any existing buffer. 586 */ 587 if ((strbuf == NULL) || (nsize > strsize)) { 588 strsize = S_ROUND(nsize, syspagsz); 589 590 if ((strbuf = dz_map(0, 0, strsize, (PROT_READ | PROT_WRITE), 591 MAP_PRIVATE)) == MAP_FAILED) 592 return (NULL); 593 } 594 595 (void) memcpy(strbuf, name, nsize); 596 pnp = pnbuf; 597 pnp->pn_name = strbuf; 598 avl_insert(stravl, pnp, where); 599 600 strbuf += nsize; 601 strsize -= nsize; 602 pnbuf++; 603 pnsize -= sizeof (PathNode); 604 return (pnp->pn_name); 605 } 606 607 /* 608 * Prior to calling an object, either via a .plt or through dlsym(), make sure 609 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 610 * init's in the correct order, however, this order is typically based on needed 611 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 612 * still occur and result in bindings that were not captured during topological 613 * sorting. This routine compensates for this lack of binding information, and 614 * provides for dynamic .init firing. 615 */ 616 void 617 is_dep_init(Rt_map *dlmp, Rt_map *clmp) 618 { 619 Rt_map **tobj; 620 621 /* 622 * If the caller is an auditor, and the destination isn't, then don't 623 * run any .inits (see comments in load_completion()). 624 */ 625 if ((LIST(clmp)->lm_tflags & LML_TFLG_NOAUDIT) && 626 ((LIST(dlmp)->lm_tflags & LML_TFLG_NOAUDIT) == 0)) 627 return; 628 629 if ((dlmp == clmp) || (rtld_flags & RT_FL_INITFIRST)) 630 return; 631 632 (void) rt_mutex_lock(&dlmp->rt_lock); 633 while (dlmp->rt_init_thread != rt_thr_self() && (FLAGS(dlmp) & 634 (FLG_RT_RELOCED | FLG_RT_INITCALL | FLG_RT_INITDONE)) == 635 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 636 leave(LIST(dlmp), 0); 637 (void) _lwp_cond_wait(&dlmp->rt_cv, (mutex_t *)&dlmp->rt_lock); 638 (void) rt_mutex_unlock(&dlmp->rt_lock); 639 (void) enter(0); 640 (void) rt_mutex_lock(&dlmp->rt_lock); 641 } 642 (void) rt_mutex_unlock(&dlmp->rt_lock); 643 644 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 645 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 646 return; 647 648 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 649 tobj[0] = dlmp; 650 call_init(tobj, DBG_INIT_DYN); 651 } 652 } 653 654 /* 655 * Execute .{preinit|init|fini}array sections 656 */ 657 void 658 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 659 { 660 int start, stop, incr, ndx; 661 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 662 663 if (array == NULL) 664 return; 665 666 /* 667 * initarray & preinitarray are walked from beginning to end - while 668 * finiarray is walked from end to beginning. 669 */ 670 if (shtype == SHT_FINI_ARRAY) { 671 start = arraycnt - 1; 672 stop = incr = -1; 673 } else { 674 start = 0; 675 stop = arraycnt; 676 incr = 1; 677 } 678 679 /* 680 * Call the .*array[] entries 681 */ 682 for (ndx = start; ndx != stop; ndx += incr) { 683 uint_t rtldflags; 684 void (*fptr)(void) = (void(*)())array[ndx]; 685 686 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 687 688 APPLICATION_ENTER(rtldflags); 689 leave(LIST(lmp), 0); 690 (*fptr)(); 691 (void) enter(0); 692 APPLICATION_RETURN(rtldflags); 693 } 694 } 695 696 /* 697 * Execute any .init sections. These are passed to us in an lmp array which 698 * (by default) will have been sorted. 699 */ 700 void 701 call_init(Rt_map **tobj, int flag) 702 { 703 Rt_map **_tobj, **_nobj; 704 static APlist *pending = NULL; 705 706 /* 707 * If we're in the middle of an INITFIRST, this must complete before 708 * any new init's are fired. In this case add the object list to the 709 * pending queue and return. We'll pick up the queue after any 710 * INITFIRST objects have their init's fired. 711 */ 712 if (rtld_flags & RT_FL_INITFIRST) { 713 (void) aplist_append(&pending, tobj, AL_CNT_PENDING); 714 return; 715 } 716 717 /* 718 * Traverse the tobj array firing each objects init. 719 */ 720 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 721 Rt_map *lmp = *_tobj; 722 void (*iptr)() = INIT(lmp); 723 724 if (FLAGS(lmp) & FLG_RT_INITCALL) 725 continue; 726 727 FLAGS(lmp) |= FLG_RT_INITCALL; 728 lmp->rt_init_thread = rt_thr_self(); 729 730 /* 731 * Establish an initfirst state if necessary - no other inits 732 * will be fired (because of additional relocation bindings) 733 * when in this state. 734 */ 735 if (FLAGS(lmp) & FLG_RT_INITFRST) 736 rtld_flags |= RT_FL_INITFIRST; 737 738 if (INITARRAY(lmp) || iptr) 739 DBG_CALL(Dbg_util_call_init(lmp, flag)); 740 741 if (iptr) { 742 uint_t rtldflags; 743 744 APPLICATION_ENTER(rtldflags); 745 leave(LIST(lmp), 0); 746 (*iptr)(); 747 (void) enter(0); 748 APPLICATION_RETURN(rtldflags); 749 } 750 751 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 752 SHT_INIT_ARRAY); 753 754 if (INITARRAY(lmp) || iptr) 755 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 756 757 /* 758 * Set the initdone flag regardless of whether this object 759 * actually contains an .init section. This flag prevents us 760 * from processing this section again for an .init and also 761 * signifies that a .fini must be called should it exist. 762 * Clear the sort field for use in later .fini processing. 763 */ 764 (void) rt_mutex_lock(&lmp->rt_lock); 765 FLAGS(lmp) |= FLG_RT_INITDONE; 766 lmp->rt_init_thread = (thread_t)0; 767 (void) _lwp_cond_broadcast(&lmp->rt_cv); 768 (void) rt_mutex_unlock(&lmp->rt_lock); 769 SORTVAL(lmp) = -1; 770 771 /* 772 * If we're firing an INITFIRST object, and other objects must 773 * be fired which are not INITFIRST, make sure we grab any 774 * pending objects that might have been delayed as this 775 * INITFIRST was processed. 776 */ 777 if ((rtld_flags & RT_FL_INITFIRST) && 778 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 779 Aliste idx; 780 Rt_map **pobj; 781 782 rtld_flags &= ~RT_FL_INITFIRST; 783 784 for (APLIST_TRAVERSE(pending, idx, pobj)) { 785 aplist_delete(pending, &idx); 786 call_init(pobj, DBG_INIT_PEND); 787 } 788 } 789 } 790 free(tobj); 791 } 792 793 /* 794 * Call .fini sections for the topologically sorted list of objects. This 795 * routine is called from remove_hdl() for any objects being torn down as part 796 * of a dlclose() operation, and from atexit() processing for all the remaining 797 * objects within the process. 798 */ 799 void 800 call_fini(Lm_list *lml, Rt_map **tobj, Rt_map *clmp) 801 { 802 Rt_map **_tobj; 803 804 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 805 Rt_map *lmp = *_tobj; 806 807 /* 808 * Only fire a .fini if the objects corresponding .init has 809 * completed. We collect all .fini sections of objects that 810 * had their .init collected, but that doesn't mean that at 811 * the time of collection, that the .init had completed. 812 */ 813 if (FLAGS(lmp) & FLG_RT_INITDONE) { 814 void (*fptr)(void) = FINI(lmp); 815 816 if (FINIARRAY(lmp) || fptr) 817 DBG_CALL(Dbg_util_call_fini(lmp)); 818 819 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 820 SHT_FINI_ARRAY); 821 822 if (fptr) { 823 uint_t rtldflags; 824 825 APPLICATION_ENTER(rtldflags); 826 leave(lml, 0); 827 (*fptr)(); 828 (void) enter(0); 829 APPLICATION_RETURN(rtldflags); 830 } 831 } 832 833 /* 834 * Skip main, this is explicitly called last in atexit_fini(). 835 */ 836 if (FLAGS(lmp) & FLG_RT_ISMAIN) 837 continue; 838 839 /* 840 * This object has exercised its last instructions (regardless 841 * of whether it will be unmapped or not). Audit this closure. 842 */ 843 if ((lml->lm_tflags & LML_TFLG_NOAUDIT) == 0) 844 audit_objclose(lmp, clmp); 845 } 846 847 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 848 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 849 850 free(tobj); 851 } 852 853 /* 854 * Function called by atexit(3C). Calls all .fini sections within the objects 855 * that make up the process. As .fini processing is the last opportunity for 856 * any new bindings to be established, this is also a convenient location to 857 * check for unused objects. 858 */ 859 void 860 atexit_fini() 861 { 862 Rt_map **tobj, *lmp; 863 Lm_list *lml; 864 Aliste idx; 865 866 (void) enter(0); 867 868 rtld_flags |= RT_FL_ATEXIT; 869 870 lml = &lml_main; 871 lml->lm_flags |= LML_FLG_ATEXIT; 872 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 873 lmp = (Rt_map *)lml->lm_head; 874 875 /* 876 * Reverse topologically sort the main link-map for .fini execution. 877 */ 878 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 879 (tobj != (Rt_map **)S_ERROR)) 880 call_fini(lml, tobj, NULL); 881 882 /* 883 * Now that all .fini code has been run, see what unreferenced objects 884 * remain. 885 */ 886 unused(lml); 887 888 /* 889 * Traverse any alternative link-map lists, looking for non-auditors. 890 */ 891 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { 892 /* 893 * Ignore the base-link-map list, which has already been 894 * processed, the runtime linkers link-map list, which is 895 * processed last, and any auditors. 896 */ 897 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) || 898 (lml->lm_tflags & LML_TFLG_AUD_MASK) || 899 ((lmp = (Rt_map *)lml->lm_head) == NULL)) 900 continue; 901 902 lml->lm_flags |= LML_FLG_ATEXIT; 903 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 904 905 /* 906 * Reverse topologically sort the link-map for .fini execution. 907 */ 908 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 909 (tobj != (Rt_map **)S_ERROR)) 910 call_fini(lml, tobj, NULL); 911 912 unused(lml); 913 } 914 915 /* 916 * Add an explicit close to main and ld.so.1. Although main's .fini is 917 * collected in call_fini() to provide for FINITARRAY processing, its 918 * audit_objclose is explicitly skipped. This provides for it to be 919 * called last, here. This is the reverse of the explicit calls to 920 * audit_objopen() made in setup(). 921 */ 922 lml = &lml_main; 923 lmp = (Rt_map *)lml->lm_head; 924 925 if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_MASK) { 926 audit_objclose((Rt_map *)lml_rtld.lm_head, lmp); 927 audit_objclose(lmp, lmp); 928 } 929 930 /* 931 * Traverse any alternative link-map lists, looking for non-auditors. 932 */ 933 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { 934 /* 935 * Ignore the base-link-map list, which has already been 936 * processed, the runtime linkers link-map list, which is 937 * processed last, and any non-auditors. 938 */ 939 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) || 940 ((lml->lm_tflags & LML_TFLG_AUD_MASK) == 0) || 941 ((lmp = (Rt_map *)lml->lm_head) == NULL)) 942 continue; 943 944 lml->lm_flags |= LML_FLG_ATEXIT; 945 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 946 947 /* 948 * Reverse topologically sort the link-map for .fini execution. 949 */ 950 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 951 (tobj != (Rt_map **)S_ERROR)) 952 call_fini(lml, tobj, NULL); 953 954 unused(lml); 955 } 956 957 /* 958 * Finally reverse topologically sort the runtime linkers link-map for 959 * .fini execution. 960 */ 961 lml = &lml_rtld; 962 lml->lm_flags |= LML_FLG_ATEXIT; 963 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 964 lmp = (Rt_map *)lml->lm_head; 965 966 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 967 (tobj != (Rt_map **)S_ERROR)) 968 call_fini(lml, tobj, NULL); 969 970 leave(&lml_main, 0); 971 } 972 973 /* 974 * This routine is called to complete any runtime linker activity which may have 975 * resulted in objects being loaded. This is called from all user entry points 976 * and from any internal dl*() requests. 977 */ 978 void 979 load_completion(Rt_map *nlmp) 980 { 981 Rt_map **tobj = NULL; 982 Lm_list *nlml; 983 984 /* 985 * Establish any .init processing. Note, in a world of lazy loading, 986 * objects may have been loaded regardless of whether the users request 987 * was fulfilled (i.e., a dlsym() request may have failed to find a 988 * symbol but objects might have been loaded during its search). Thus, 989 * any tsorting starts from the nlmp (new link-maps) pointer and not 990 * necessarily from the link-map that may have satisfied the request. 991 * 992 * Note, the primary link-map has an initialization phase where dynamic 993 * .init firing is suppressed. This provides for a simple and clean 994 * handshake with the primary link-maps libc, which is important for 995 * establishing uberdata. In addition, auditors often obtain handles 996 * to primary link-map objects as the objects are loaded, so as to 997 * inspect the link-map for symbols. This inspection is allowed without 998 * running any code on the primary link-map, as running this code may 999 * reenter the auditor, who may not yet have finished its own 1000 * initialization. 1001 */ 1002 if (nlmp) 1003 nlml = LIST(nlmp); 1004 1005 if (nlmp && nlml->lm_init && ((nlml != &lml_main) || 1006 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1007 if ((tobj = tsort(nlmp, nlml->lm_init, 1008 RT_SORT_REV)) == (Rt_map **)S_ERROR) 1009 tobj = NULL; 1010 } 1011 1012 /* 1013 * Make sure any alternative link-map retrieves any external interfaces 1014 * and initializes threads. 1015 */ 1016 if (nlmp && (nlml != &lml_main)) { 1017 (void) rt_get_extern(nlml, nlmp); 1018 rt_thr_init(nlml); 1019 } 1020 1021 /* 1022 * Traverse the list of new link-maps and register any dynamic TLS. 1023 * This storage is established for any objects not on the primary 1024 * link-map, and for any objects added to the primary link-map after 1025 * static TLS has been registered. 1026 */ 1027 if (nlmp && nlml->lm_tls && ((nlml != &lml_main) || 1028 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1029 Rt_map *lmp; 1030 1031 for (lmp = nlmp; lmp; lmp = NEXT_RT_MAP(lmp)) { 1032 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 1033 tls_modaddrem(lmp, TM_FLG_MODADD); 1034 } 1035 nlml->lm_tls = 0; 1036 } 1037 1038 /* 1039 * Fire any .init's. 1040 */ 1041 if (tobj) 1042 call_init(tobj, DBG_INIT_SORT); 1043 } 1044 1045 /* 1046 * Append an item to the specified link map control list. 1047 */ 1048 void 1049 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1050 { 1051 Lm_cntl *lmc; 1052 int add = 1; 1053 1054 /* 1055 * Indicate that this link-map list has a new object. 1056 */ 1057 (lml->lm_obj)++; 1058 1059 /* 1060 * If we're about to add a new object to the main link-map control 1061 * list, alert the debuggers. Additions of individual objects to the 1062 * main link-map control list occur during initial setup as the 1063 * applications immediate dependencies are loaded. Additional objects 1064 * are loaded on the main link-map control list after they have been 1065 * fully initialized on an alternative link-map control list. See 1066 * lm_move(). 1067 */ 1068 if (lmco == ALIST_OFF_DATA) 1069 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1070 1071 /* LINTED */ 1072 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco); 1073 1074 /* 1075 * A link-map list header points to one of more link-map control lists 1076 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1077 * the list of relocated objects. Other lists maintain objects that 1078 * are still being analyzed or relocated. This list provides the core 1079 * link-map list information used by all ld.so.1 routines. 1080 */ 1081 if (lmc->lc_head == NULL) { 1082 /* 1083 * If this is the first link-map for the given control list, 1084 * initialize the list. 1085 */ 1086 lmc->lc_head = lmc->lc_tail = lmp; 1087 add = 0; 1088 1089 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1090 Rt_map *tlmp; 1091 1092 /* 1093 * If this is an interposer then append the link-map following 1094 * any other interposers (these are objects that have been 1095 * previously preloaded, or were identified with -z interpose). 1096 * Interposers can only be inserted on the first link-map 1097 * control list, as once relocation has started, interposition 1098 * from new interposers can't be guaranteed. 1099 * 1100 * NOTE: We do not interpose on the head of a list. This model 1101 * evolved because dynamic executables have already been fully 1102 * relocated within themselves and thus can't be interposed on. 1103 * Nowadays it's possible to have shared objects at the head of 1104 * a list, which conceptually means they could be interposed on. 1105 * But, shared objects can be created via dldump() and may only 1106 * be partially relocated (just relatives), in which case they 1107 * are interposable, but are marked as fixed (ET_EXEC). 1108 * 1109 * Thus we really don't have a clear method of deciding when the 1110 * head of a link-map is interposable. So, to be consistent, 1111 * for now only add interposers after the link-map lists head 1112 * object. 1113 */ 1114 for (tlmp = NEXT_RT_MAP(lmc->lc_head); tlmp; 1115 tlmp = NEXT_RT_MAP(tlmp)) { 1116 1117 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1118 continue; 1119 1120 /* 1121 * Insert the new link-map before this non-interposer, 1122 * and indicate an interposer is found. 1123 */ 1124 NEXT(PREV_RT_MAP(tlmp)) = (Link_map *)lmp; 1125 PREV(lmp) = PREV(tlmp); 1126 1127 NEXT(lmp) = (Link_map *)tlmp; 1128 PREV(tlmp) = (Link_map *)lmp; 1129 1130 lmc->lc_flags |= LMC_FLG_REANALYZE; 1131 add = 0; 1132 break; 1133 } 1134 } 1135 1136 /* 1137 * Fall through to appending the new link map to the tail of the list. 1138 * If we're processing the initial objects of this link-map list, add 1139 * them to the backward compatibility list. 1140 */ 1141 if (add) { 1142 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1143 PREV(lmp) = (Link_map *)lmc->lc_tail; 1144 lmc->lc_tail = lmp; 1145 } 1146 1147 /* 1148 * Having added this link-map to a control list, indicate which control 1149 * list the link-map belongs to. Note, control list information is 1150 * always maintained as an offset, as the Alist can be reallocated. 1151 */ 1152 CNTL(lmp) = lmco; 1153 1154 /* 1155 * Indicate if an interposer is found. Note that the first object on a 1156 * link-map can be explicitly defined as an interposer so that it can 1157 * provide interposition over direct binding requests. 1158 */ 1159 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1160 lml->lm_flags |= LML_FLG_INTRPOSE; 1161 1162 /* 1163 * For backward compatibility with debuggers, the link-map list contains 1164 * pointers to the main control list. 1165 */ 1166 if (lmco == ALIST_OFF_DATA) { 1167 lml->lm_head = lmc->lc_head; 1168 lml->lm_tail = lmc->lc_tail; 1169 } 1170 } 1171 1172 /* 1173 * Delete an item from the specified link map control list. 1174 */ 1175 void 1176 lm_delete(Lm_list *lml, Rt_map *lmp, Rt_map *clmp) 1177 { 1178 Lm_cntl *lmc; 1179 1180 /* 1181 * If the control list pointer hasn't been initialized, this object 1182 * never got added to a link-map list. 1183 */ 1184 if (CNTL(lmp) == 0) 1185 return; 1186 1187 /* 1188 * If we're about to delete an object from the main link-map control 1189 * list, alert the debuggers. 1190 */ 1191 if (CNTL(lmp) == ALIST_OFF_DATA) 1192 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1193 1194 /* 1195 * If we're being audited tell the audit library that we're 1196 * about to go deleting dependencies. 1197 */ 1198 if (clmp && (aud_activity || 1199 ((LIST(clmp)->lm_tflags | AFLAGS(clmp)) & LML_TFLG_AUD_ACTIVITY))) 1200 audit_activity(clmp, LA_ACT_DELETE); 1201 1202 /* LINTED */ 1203 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp)); 1204 1205 if (lmc->lc_head == lmp) 1206 lmc->lc_head = NEXT_RT_MAP(lmp); 1207 else 1208 NEXT(PREV_RT_MAP(lmp)) = (void *)NEXT(lmp); 1209 1210 if (lmc->lc_tail == lmp) 1211 lmc->lc_tail = PREV_RT_MAP(lmp); 1212 else 1213 PREV(NEXT_RT_MAP(lmp)) = PREV(lmp); 1214 1215 /* 1216 * For backward compatibility with debuggers, the link-map list contains 1217 * pointers to the main control list. 1218 */ 1219 if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) { 1220 lml->lm_head = lmc->lc_head; 1221 lml->lm_tail = lmc->lc_tail; 1222 } 1223 1224 /* 1225 * Indicate we have one less object on this control list. 1226 */ 1227 (lml->lm_obj)--; 1228 } 1229 1230 /* 1231 * Move a link-map control list to another. Objects that are being relocated 1232 * are maintained on secondary control lists. Once their relocation is 1233 * complete, the entire list is appended to the previous control list, as this 1234 * list must have been the trigger for generating the new control list. 1235 */ 1236 void 1237 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1238 { 1239 Rt_map *lmp; 1240 1241 /* 1242 * If we're about to add a new family of objects to the main link-map 1243 * control list, alert the debuggers. Additions of object families to 1244 * the main link-map control list occur during lazy loading, filtering 1245 * and dlopen(). 1246 */ 1247 if (plmco == ALIST_OFF_DATA) 1248 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1249 1250 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1251 1252 /* 1253 * Indicate each new link-map has been moved to the previous link-map 1254 * control list. 1255 */ 1256 for (lmp = nlmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) { 1257 CNTL(lmp) = plmco; 1258 1259 /* 1260 * If these objects are being added to the main link-map 1261 * control list, indicate that there are init's available 1262 * for harvesting. 1263 */ 1264 if (plmco == ALIST_OFF_DATA) { 1265 lml->lm_init++; 1266 lml->lm_flags |= LML_FLG_OBJADDED; 1267 } 1268 } 1269 1270 /* 1271 * Move the new link-map control list, to the callers link-map control 1272 * list. 1273 */ 1274 if (plmc->lc_head == NULL) { 1275 plmc->lc_head = nlmc->lc_head; 1276 PREV(nlmc->lc_head) = NULL; 1277 } else { 1278 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1279 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1280 } 1281 1282 plmc->lc_tail = nlmc->lc_tail; 1283 nlmc->lc_head = nlmc->lc_tail = NULL; 1284 1285 /* 1286 * For backward compatibility with debuggers, the link-map list contains 1287 * pointers to the main control list. 1288 */ 1289 if (plmco == ALIST_OFF_DATA) { 1290 lml->lm_head = plmc->lc_head; 1291 lml->lm_tail = plmc->lc_tail; 1292 } 1293 } 1294 1295 /* 1296 * Create, or assign a link-map control list. Each link-map list contains a 1297 * main control list, which has an Alist offset of ALIST_OFF_DATA (see the 1298 * description in include/rtld.h). During the initial construction of a 1299 * process, objects are added to this main control list. This control list is 1300 * never deleted, unless an alternate link-map list has been requested (say for 1301 * auditors), and the associated objects could not be loaded or relocated. 1302 * 1303 * Once relocation has started, any lazy loadable objects, or filtees, are 1304 * processed on a new, temporary control list. Only when these objects have 1305 * been fully relocated, are they moved to the main link-map control list. 1306 * Once the objects are moved, this temporary control list is deleted (see 1307 * remove_cntl()). 1308 * 1309 * A dlopen() always requires a new temporary link-map control list. 1310 * Typically, a dlopen() occurs on a link-map list that had already started 1311 * relocation, however, auditors can dlopen() objects on the main link-map 1312 * list while under initial construction, before any relocation has begun. 1313 * Hence, dlopen() requests are explicitly flagged. 1314 */ 1315 Aliste 1316 create_cntl(Lm_list *lml, int dlopen) 1317 { 1318 /* 1319 * If the head link-map object has already been relocated, create a 1320 * new, temporary, control list. 1321 */ 1322 if (dlopen || (lml->lm_head == NULL) || 1323 (FLAGS(lml->lm_head) & FLG_RT_RELOCED)) { 1324 Lm_cntl *lmc; 1325 1326 if ((lmc = alist_append(&lml->lm_lists, NULL, sizeof (Lm_cntl), 1327 AL_CNT_LMLISTS)) == NULL) 1328 return (0); 1329 1330 return ((Aliste)((char *)lmc - (char *)lml->lm_lists)); 1331 } 1332 1333 return (ALIST_OFF_DATA); 1334 } 1335 1336 /* 1337 * Environment variables can have a variety of defined permutations, and thus 1338 * the following infrastructure exists to allow this variety and to select the 1339 * required definition. 1340 * 1341 * Environment variables can be defined as 32- or 64-bit specific, and if so 1342 * they will take precedence over any instruction set neutral form. Typically 1343 * this is only useful when the environment value is an informational string. 1344 * 1345 * Environment variables may be obtained from the standard user environment or 1346 * from a configuration file. The latter provides a fallback if no user 1347 * environment setting is found, and can take two forms: 1348 * 1349 * - a replaceable definition - this will be used if no user environment 1350 * setting has been seen, or 1351 * 1352 * - an permanent definition - this will be used no matter what user 1353 * environment setting is seen. In the case of list variables it will be 1354 * appended to any process environment setting seen. 1355 * 1356 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1357 * override any replaceable environment variables from a configuration file. 1358 */ 1359 static u_longlong_t rplgen = 0; /* replaceable generic */ 1360 /* variables */ 1361 static u_longlong_t rplisa = 0; /* replaceable ISA specific */ 1362 /* variables */ 1363 static u_longlong_t prmgen = 0; /* permanent generic */ 1364 /* variables */ 1365 static u_longlong_t prmisa = 0; /* permanent ISA specific */ 1366 /* variables */ 1367 static u_longlong_t cmdgen = 0; /* command line (-e) generic */ 1368 /* variables */ 1369 static u_longlong_t cmdisa = 0; /* command line (-e) ISA */ 1370 /* specific variables */ 1371 1372 /* 1373 * Classify an environment variables type. 1374 */ 1375 #define ENV_TYP_IGNORE 0x01 /* ignore - variable is for */ 1376 /* the wrong ISA */ 1377 #define ENV_TYP_ISA 0x02 /* variable is ISA specific */ 1378 #define ENV_TYP_CONFIG 0x04 /* variable obtained from a */ 1379 /* config file */ 1380 #define ENV_TYP_PERMANT 0x08 /* variable is permanent */ 1381 #define ENV_TYP_CMDLINE 0x10 /* variable provide with -e */ 1382 #define ENV_TYP_NULL 0x20 /* variable is null */ 1383 1384 /* 1385 * Identify all environment variables. 1386 */ 1387 #define ENV_FLG_AUDIT 0x0000000000001ULL 1388 #define ENV_FLG_AUDIT_ARGS 0x0000000000002ULL 1389 #define ENV_FLG_BIND_NOW 0x0000000000004ULL 1390 #define ENV_FLG_BIND_NOT 0x0000000000008ULL 1391 #define ENV_FLG_BINDINGS 0x0000000000010ULL 1392 #define ENV_FLG_CONFGEN 0x0000000000020ULL 1393 #define ENV_FLG_CONFIG 0x0000000000040ULL 1394 #define ENV_FLG_DEBUG 0x0000000000080ULL 1395 #define ENV_FLG_DEBUG_OUTPUT 0x0000000000100ULL 1396 #define ENV_FLG_DEMANGLE 0x0000000000200ULL 1397 #define ENV_FLG_FLAGS 0x0000000000400ULL 1398 #define ENV_FLG_INIT 0x0000000000800ULL 1399 #define ENV_FLG_LIBPATH 0x0000000001000ULL 1400 #define ENV_FLG_LOADAVAIL 0x0000000002000ULL 1401 #define ENV_FLG_LOADFLTR 0x0000000004000ULL 1402 #define ENV_FLG_NOAUDIT 0x0000000008000ULL 1403 #define ENV_FLG_NOAUXFLTR 0x0000000010000ULL 1404 #define ENV_FLG_NOBAPLT 0x0000000020000ULL 1405 #define ENV_FLG_NOCONFIG 0x0000000040000ULL 1406 #define ENV_FLG_NODIRCONFIG 0x0000000080000ULL 1407 #define ENV_FLG_NODIRECT 0x0000000100000ULL 1408 #define ENV_FLG_NOENVCONFIG 0x0000000200000ULL 1409 #define ENV_FLG_NOLAZY 0x0000000400000ULL 1410 #define ENV_FLG_NOOBJALTER 0x0000000800000ULL 1411 #define ENV_FLG_NOVERSION 0x0000001000000ULL 1412 #define ENV_FLG_PRELOAD 0x0000002000000ULL 1413 #define ENV_FLG_PROFILE 0x0000004000000ULL 1414 #define ENV_FLG_PROFILE_OUTPUT 0x0000008000000ULL 1415 #define ENV_FLG_SIGNAL 0x0000010000000ULL 1416 #define ENV_FLG_TRACE_OBJS 0x0000020000000ULL 1417 #define ENV_FLG_TRACE_PTHS 0x0000040000000ULL 1418 #define ENV_FLG_UNREF 0x0000080000000ULL 1419 #define ENV_FLG_UNUSED 0x0000100000000ULL 1420 #define ENV_FLG_VERBOSE 0x0000200000000ULL 1421 #define ENV_FLG_WARN 0x0000400000000ULL 1422 #define ENV_FLG_NOFLTCONFIG 0x0000800000000ULL 1423 #define ENV_FLG_BIND_LAZY 0x0001000000000ULL 1424 #define ENV_FLG_NOUNRESWEAK 0x0002000000000ULL 1425 #define ENV_FLG_NOPAREXT 0x0004000000000ULL 1426 #define ENV_FLG_HWCAP 0x0008000000000ULL 1427 #define ENV_FLG_SFCAP 0x0010000000000ULL 1428 #define ENV_FLG_MACHCAP 0x0020000000000ULL 1429 #define ENV_FLG_PLATCAP 0x0040000000000ULL 1430 #define ENV_FLG_CAP_FILES 0x0080000000000ULL 1431 #define ENV_FLG_DEFERRED 0x0100000000000ULL 1432 #define ENV_FLG_NOENVIRON 0x0200000000000ULL 1433 1434 #define SEL_REPLACE 0x0001 1435 #define SEL_PERMANT 0x0002 1436 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1437 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1438 #define SEL_ACT_STR 0x0400 /* setting string value */ 1439 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1440 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1441 #define SEL_ACT_SPEC_1 0x2000 /* for FLG_{FLAGS, LIBPATH} */ 1442 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1443 1444 /* 1445 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1446 * and len specifies its length (comparing a strings length before the string 1447 * itself speed things up). s2 points to the token itself which has already 1448 * had any leading white-space removed. 1449 */ 1450 static void 1451 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1452 Word *lmtflags, uint_t env_flags) 1453 { 1454 u_longlong_t variable = 0; 1455 ushort_t select = 0; 1456 const char **str; 1457 Word val = 0; 1458 1459 /* 1460 * Determine whether we're dealing with a replaceable or permanent 1461 * string. 1462 */ 1463 if (env_flags & ENV_TYP_PERMANT) { 1464 /* 1465 * If the string is from a configuration file and defined as 1466 * permanent, assign it as permanent. 1467 */ 1468 select |= SEL_PERMANT; 1469 } else 1470 select |= SEL_REPLACE; 1471 1472 /* 1473 * Parse the variable given. 1474 * 1475 * The LD_AUDIT family. 1476 */ 1477 if (*s1 == 'A') { 1478 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1479 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1480 /* 1481 * Replaceable and permanent audit objects can exist. 1482 */ 1483 select |= SEL_ACT_STR; 1484 str = (select & SEL_REPLACE) ? &rpl_audit : &prm_audit; 1485 variable = ENV_FLG_AUDIT; 1486 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1487 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1488 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1489 /* 1490 * A specialized variable for plt_exit() use, not 1491 * documented for general use. 1492 */ 1493 select |= SEL_ACT_SPEC_2; 1494 variable = ENV_FLG_AUDIT_ARGS; 1495 } 1496 } 1497 /* 1498 * The LD_BIND family. 1499 */ 1500 else if (*s1 == 'B') { 1501 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1502 MSG_ORIG(MSG_LD_BIND_LAZY), 1503 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1504 select |= SEL_ACT_RT2; 1505 val = RT_FL2_BINDLAZY; 1506 variable = ENV_FLG_BIND_LAZY; 1507 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1508 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1509 select |= SEL_ACT_RT2; 1510 val = RT_FL2_BINDNOW; 1511 variable = ENV_FLG_BIND_NOW; 1512 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1513 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1514 /* 1515 * Another trick, initially implemented to help debug 1516 * a.out executables under SunOS 4 binary 1517 * compatibility (now removed), not documented for 1518 * general use, but still useful for debugging around 1519 * the PLT, etc. 1520 */ 1521 select |= SEL_ACT_RT; 1522 val = RT_FL_NOBIND; 1523 variable = ENV_FLG_BIND_NOT; 1524 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1525 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1526 /* 1527 * This variable is simply for backward compatibility. 1528 * If this and LD_DEBUG are both specified, only one of 1529 * the strings is going to get processed. 1530 */ 1531 select |= SEL_ACT_SPEC_2; 1532 variable = ENV_FLG_BINDINGS; 1533 } 1534 } 1535 /* 1536 * LD_CAP_FILES and LD_CONFIG family. 1537 */ 1538 else if (*s1 == 'C') { 1539 if ((len == MSG_LD_CAP_FILES_SIZE) && (strncmp(s1, 1540 MSG_ORIG(MSG_LD_CAP_FILES), MSG_LD_CAP_FILES_SIZE) == 0)) { 1541 select |= SEL_ACT_STR; 1542 str = (select & SEL_REPLACE) ? 1543 &rpl_cap_files : &prm_cap_files; 1544 variable = ENV_FLG_CAP_FILES; 1545 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1546 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1547 /* 1548 * This variable is not documented for general use. 1549 * Although originaly designed for internal use with 1550 * crle(1), this variable is in use by the Studio 1551 * auditing tools. Hence, it can't be removed. 1552 */ 1553 select |= SEL_ACT_SPEC_2; 1554 variable = ENV_FLG_CONFGEN; 1555 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1556 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1557 /* 1558 * Secure applications must use a default configuration 1559 * file. A setting from a configuration file doesn't 1560 * make sense (given we must be reading a configuration 1561 * file to have gotten this). 1562 */ 1563 if ((rtld_flags & RT_FL_SECURE) || 1564 (env_flags & ENV_TYP_CONFIG)) 1565 return; 1566 select |= SEL_ACT_STR; 1567 str = &config->c_name; 1568 variable = ENV_FLG_CONFIG; 1569 } 1570 } 1571 /* 1572 * The LD_DEBUG family, LD_DEFERRED (internal, used by ldd(1)), and 1573 * LD_DEMANGLE. 1574 */ 1575 else if (*s1 == 'D') { 1576 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1577 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1578 select |= SEL_ACT_STR; 1579 str = (select & SEL_REPLACE) ? &rpl_debug : &prm_debug; 1580 variable = ENV_FLG_DEBUG; 1581 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1582 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1583 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1584 select |= SEL_ACT_STR; 1585 str = &dbg_file; 1586 variable = ENV_FLG_DEBUG_OUTPUT; 1587 } else if ((len == MSG_LD_DEFERRED_SIZE) && (strncmp(s1, 1588 MSG_ORIG(MSG_LD_DEFERRED), MSG_LD_DEFERRED_SIZE) == 0)) { 1589 select |= SEL_ACT_RT; 1590 val = RT_FL_DEFERRED; 1591 variable = ENV_FLG_DEFERRED; 1592 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1593 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1594 select |= SEL_ACT_RT; 1595 val = RT_FL_DEMANGLE; 1596 variable = ENV_FLG_DEMANGLE; 1597 } 1598 } 1599 /* 1600 * LD_FLAGS - collect the best variable definition. On completion of 1601 * environment variable processing pass the result to ld_flags_env() 1602 * where they'll be decomposed and passed back to this routine. 1603 */ 1604 else if (*s1 == 'F') { 1605 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1606 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1607 select |= SEL_ACT_SPEC_1; 1608 str = (select & SEL_REPLACE) ? &rpl_ldflags : 1609 &prm_ldflags; 1610 variable = ENV_FLG_FLAGS; 1611 } 1612 } 1613 /* 1614 * LD_HWCAP. 1615 */ 1616 else if (*s1 == 'H') { 1617 if ((len == MSG_LD_HWCAP_SIZE) && (strncmp(s1, 1618 MSG_ORIG(MSG_LD_HWCAP), MSG_LD_HWCAP_SIZE) == 0)) { 1619 select |= SEL_ACT_STR; 1620 str = (select & SEL_REPLACE) ? 1621 &rpl_hwcap : &prm_hwcap; 1622 variable = ENV_FLG_HWCAP; 1623 } 1624 } 1625 /* 1626 * LD_INIT (internal, used by ldd(1)). 1627 */ 1628 else if (*s1 == 'I') { 1629 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1630 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1631 select |= SEL_ACT_LML; 1632 val = LML_FLG_TRC_INIT; 1633 variable = ENV_FLG_INIT; 1634 } 1635 } 1636 /* 1637 * The LD_LIBRARY_PATH and LD_LOAD families. 1638 */ 1639 else if (*s1 == 'L') { 1640 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1641 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1642 select |= SEL_ACT_SPEC_1; 1643 str = (select & SEL_REPLACE) ? &rpl_libpath : 1644 &prm_libpath; 1645 variable = ENV_FLG_LIBPATH; 1646 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1647 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1648 /* 1649 * This variable is not documented for general use. 1650 * Although originaly designed for internal use with 1651 * crle(1), this variable is in use by the Studio 1652 * auditing tools. Hence, it can't be removed. 1653 */ 1654 select |= SEL_ACT_LML; 1655 val = LML_FLG_LOADAVAIL; 1656 variable = ENV_FLG_LOADAVAIL; 1657 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1658 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1659 select |= SEL_ACT_SPEC_2; 1660 variable = ENV_FLG_LOADFLTR; 1661 } 1662 } 1663 /* 1664 * LD_MACHCAP. 1665 */ 1666 else if (*s1 == 'M') { 1667 if ((len == MSG_LD_MACHCAP_SIZE) && (strncmp(s1, 1668 MSG_ORIG(MSG_LD_MACHCAP), MSG_LD_MACHCAP_SIZE) == 0)) { 1669 select |= SEL_ACT_STR; 1670 str = (select & SEL_REPLACE) ? 1671 &rpl_machcap : &prm_machcap; 1672 variable = ENV_FLG_MACHCAP; 1673 } 1674 } 1675 /* 1676 * The LD_NO family. 1677 */ 1678 else if (*s1 == 'N') { 1679 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1680 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1681 select |= SEL_ACT_RT; 1682 val = RT_FL_NOAUDIT; 1683 variable = ENV_FLG_NOAUDIT; 1684 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1685 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1686 select |= SEL_ACT_RT; 1687 val = RT_FL_NOAUXFLTR; 1688 variable = ENV_FLG_NOAUXFLTR; 1689 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1690 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1691 select |= SEL_ACT_RT; 1692 val = RT_FL_NOBAPLT; 1693 variable = ENV_FLG_NOBAPLT; 1694 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1695 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1696 select |= SEL_ACT_RT; 1697 val = RT_FL_NOCFG; 1698 variable = ENV_FLG_NOCONFIG; 1699 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1700 MSG_ORIG(MSG_LD_NODIRCONFIG), 1701 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1702 select |= SEL_ACT_RT; 1703 val = RT_FL_NODIRCFG; 1704 variable = ENV_FLG_NODIRCONFIG; 1705 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1706 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1707 select |= SEL_ACT_LMLT; 1708 val = LML_TFLG_NODIRECT; 1709 variable = ENV_FLG_NODIRECT; 1710 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1711 MSG_ORIG(MSG_LD_NOENVCONFIG), 1712 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1713 select |= SEL_ACT_RT; 1714 val = RT_FL_NOENVCFG; 1715 variable = ENV_FLG_NOENVCONFIG; 1716 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1717 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1718 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1719 select |= SEL_ACT_RT2; 1720 val = RT_FL2_NOFLTCFG; 1721 variable = ENV_FLG_NOFLTCONFIG; 1722 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1723 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1724 select |= SEL_ACT_LMLT; 1725 val = LML_TFLG_NOLAZYLD; 1726 variable = ENV_FLG_NOLAZY; 1727 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1728 MSG_ORIG(MSG_LD_NOOBJALTER), 1729 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1730 select |= SEL_ACT_RT; 1731 val = RT_FL_NOOBJALT; 1732 variable = ENV_FLG_NOOBJALTER; 1733 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1734 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1735 select |= SEL_ACT_RT; 1736 val = RT_FL_NOVERSION; 1737 variable = ENV_FLG_NOVERSION; 1738 } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1, 1739 MSG_ORIG(MSG_LD_NOUNRESWEAK), 1740 MSG_LD_NOUNRESWEAK_SIZE) == 0)) { 1741 /* 1742 * LD_NOUNRESWEAK (internal, used by ldd(1)). 1743 */ 1744 select |= SEL_ACT_LML; 1745 val = LML_FLG_TRC_NOUNRESWEAK; 1746 variable = ENV_FLG_NOUNRESWEAK; 1747 } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1, 1748 MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) { 1749 select |= SEL_ACT_LML; 1750 val = LML_FLG_TRC_NOPAREXT; 1751 variable = ENV_FLG_NOPAREXT; 1752 } else if ((len == MSG_LD_NOENVIRON_SIZE) && (strncmp(s1, 1753 MSG_ORIG(MSG_LD_NOENVIRON), MSG_LD_NOENVIRON_SIZE) == 0)) { 1754 /* 1755 * LD_NOENVIRON can only be set with ld.so.1 -e. 1756 */ 1757 select |= SEL_ACT_RT; 1758 val = RT_FL_NOENVIRON; 1759 variable = ENV_FLG_NOENVIRON; 1760 } 1761 } 1762 /* 1763 * LD_PLATCAP, LD_PRELOAD and LD_PROFILE family. 1764 */ 1765 else if (*s1 == 'P') { 1766 if ((len == MSG_LD_PLATCAP_SIZE) && (strncmp(s1, 1767 MSG_ORIG(MSG_LD_PLATCAP), MSG_LD_PLATCAP_SIZE) == 0)) { 1768 select |= SEL_ACT_STR; 1769 str = (select & SEL_REPLACE) ? 1770 &rpl_platcap : &prm_platcap; 1771 variable = ENV_FLG_PLATCAP; 1772 } else if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1773 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1774 select |= SEL_ACT_STR; 1775 str = (select & SEL_REPLACE) ? &rpl_preload : 1776 &prm_preload; 1777 variable = ENV_FLG_PRELOAD; 1778 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1779 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1780 /* 1781 * Only one user library can be profiled at a time. 1782 */ 1783 select |= SEL_ACT_SPEC_2; 1784 variable = ENV_FLG_PROFILE; 1785 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1786 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1787 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1788 /* 1789 * Only one user library can be profiled at a time. 1790 */ 1791 select |= SEL_ACT_STR; 1792 str = &profile_out; 1793 variable = ENV_FLG_PROFILE_OUTPUT; 1794 } 1795 } 1796 /* 1797 * LD_SFCAP and LD_SIGNAL. 1798 */ 1799 else if (*s1 == 'S') { 1800 if ((len == MSG_LD_SFCAP_SIZE) && (strncmp(s1, 1801 MSG_ORIG(MSG_LD_SFCAP), MSG_LD_SFCAP_SIZE) == 0)) { 1802 select |= SEL_ACT_STR; 1803 str = (select & SEL_REPLACE) ? 1804 &rpl_sfcap : &prm_sfcap; 1805 variable = ENV_FLG_SFCAP; 1806 } else if ((len == MSG_LD_SIGNAL_SIZE) && 1807 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1808 MSG_LD_SIGNAL_SIZE) == 0) && 1809 ((rtld_flags & RT_FL_SECURE) == 0)) { 1810 select |= SEL_ACT_SPEC_2; 1811 variable = ENV_FLG_SIGNAL; 1812 } 1813 } 1814 /* 1815 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1816 * the key to enabling all other ldd(1) specific environment variables. 1817 * In case an auditor is called, which in turn might exec(2) a 1818 * subprocess, this variable is disabled, so that any subprocess 1819 * escapes ldd(1) processing. 1820 */ 1821 else if (*s1 == 'T') { 1822 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1823 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1824 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1825 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1826 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1827 MSG_LD_TRACE_OBJS_E_SIZE) == 0))) { 1828 char *s0 = (char *)s1; 1829 1830 select |= SEL_ACT_SPEC_2; 1831 variable = ENV_FLG_TRACE_OBJS; 1832 1833 #if defined(__sparc) || defined(__x86) 1834 /* 1835 * The simplest way to "disable" this variable is to 1836 * truncate this string to "LD_'\0'". This string is 1837 * ignored by any ld.so.1 environment processing. 1838 * Use of such interfaces as unsetenv(3c) are overkill, 1839 * and would drag too much libc implementation detail 1840 * into ld.so.1. 1841 */ 1842 *s0 = '\0'; 1843 #else 1844 /* 1845 * Verify that the above write is appropriate for any new platforms. 1846 */ 1847 #error unsupported architecture! 1848 #endif 1849 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1850 MSG_ORIG(MSG_LD_TRACE_PTHS), 1851 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1852 select |= SEL_ACT_LML; 1853 val = LML_FLG_TRC_SEARCH; 1854 variable = ENV_FLG_TRACE_PTHS; 1855 } 1856 } 1857 /* 1858 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1859 */ 1860 else if (*s1 == 'U') { 1861 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1862 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1863 select |= SEL_ACT_LML; 1864 val = LML_FLG_TRC_UNREF; 1865 variable = ENV_FLG_UNREF; 1866 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1867 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1868 select |= SEL_ACT_LML; 1869 val = LML_FLG_TRC_UNUSED; 1870 variable = ENV_FLG_UNUSED; 1871 } 1872 } 1873 /* 1874 * LD_VERBOSE (internal, used by ldd(1)). 1875 */ 1876 else if (*s1 == 'V') { 1877 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1878 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1879 select |= SEL_ACT_LML; 1880 val = LML_FLG_TRC_VERBOSE; 1881 variable = ENV_FLG_VERBOSE; 1882 } 1883 } 1884 /* 1885 * LD_WARN (internal, used by ldd(1)). 1886 */ 1887 else if (*s1 == 'W') { 1888 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1889 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1890 select |= SEL_ACT_LML; 1891 val = LML_FLG_TRC_WARN; 1892 variable = ENV_FLG_WARN; 1893 } 1894 } 1895 1896 if (variable == 0) 1897 return; 1898 1899 /* 1900 * If the variable is already processed with and ISA specific variable, 1901 * no further processing is needed. 1902 */ 1903 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1904 ((select & SEL_PERMANT) && (prmisa & variable))) 1905 return; 1906 1907 /* 1908 * If this variable has already been set via the command line, then 1909 * ignore this variable. The command line, -e, takes precedence. 1910 */ 1911 if (env_flags & ENV_TYP_ISA) { 1912 if (cmdisa & variable) 1913 return; 1914 if (env_flags & ENV_TYP_CMDLINE) 1915 cmdisa |= variable; 1916 } else { 1917 if (cmdgen & variable) 1918 return; 1919 if (env_flags & ENV_TYP_CMDLINE) 1920 cmdgen |= variable; 1921 } 1922 1923 /* 1924 * Mark the appropriate variables. 1925 */ 1926 if (env_flags & ENV_TYP_ISA) { 1927 /* 1928 * This is an ISA setting. 1929 */ 1930 if (select & SEL_REPLACE) { 1931 if (rplisa & variable) 1932 return; 1933 rplisa |= variable; 1934 } else { 1935 prmisa |= variable; 1936 } 1937 } else { 1938 /* 1939 * This is a non-ISA setting. 1940 */ 1941 if (select & SEL_REPLACE) { 1942 if (rplgen & variable) 1943 return; 1944 rplgen |= variable; 1945 } else 1946 prmgen |= variable; 1947 } 1948 1949 /* 1950 * Now perform the setting. 1951 */ 1952 if (select & SEL_ACT_RT) { 1953 if (s2) 1954 rtld_flags |= val; 1955 else 1956 rtld_flags &= ~val; 1957 } else if (select & SEL_ACT_RT2) { 1958 if (s2) 1959 rtld_flags2 |= val; 1960 else 1961 rtld_flags2 &= ~val; 1962 } else if (select & SEL_ACT_STR) { 1963 if (env_flags & ENV_TYP_NULL) 1964 *str = NULL; 1965 else 1966 *str = s2; 1967 } else if (select & SEL_ACT_LML) { 1968 if (s2) 1969 *lmflags |= val; 1970 else 1971 *lmflags &= ~val; 1972 } else if (select & SEL_ACT_LMLT) { 1973 if (s2) 1974 *lmtflags |= val; 1975 else 1976 *lmtflags &= ~val; 1977 } else if (select & SEL_ACT_SPEC_1) { 1978 /* 1979 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1980 */ 1981 if (env_flags & ENV_TYP_NULL) 1982 *str = NULL; 1983 else 1984 *str = s2; 1985 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1986 if (s2) { 1987 if (variable == ENV_FLG_FLAGS) 1988 env_info |= ENV_INF_FLAGCFG; 1989 else 1990 env_info |= ENV_INF_PATHCFG; 1991 } else { 1992 if (variable == ENV_FLG_FLAGS) 1993 env_info &= ~ENV_INF_FLAGCFG; 1994 else 1995 env_info &= ~ENV_INF_PATHCFG; 1996 } 1997 } 1998 } else if (select & SEL_ACT_SPEC_2) { 1999 /* 2000 * variables can be: ENV_FLG_ 2001 * AUDIT_ARGS, BINDING, CONFGEN, LOADFLTR, PROFILE, 2002 * SIGNAL, TRACE_OBJS 2003 */ 2004 switch (variable) { 2005 case ENV_FLG_AUDIT_ARGS: 2006 if (s2) { 2007 audit_argcnt = atoi(s2); 2008 audit_argcnt += audit_argcnt % 2; 2009 } else 2010 audit_argcnt = 0; 2011 break; 2012 case ENV_FLG_BINDINGS: 2013 if (s2) 2014 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 2015 else 2016 rpl_debug = NULL; 2017 break; 2018 case ENV_FLG_CONFGEN: 2019 if (s2) { 2020 rtld_flags |= RT_FL_CONFGEN; 2021 *lmflags |= LML_FLG_IGNRELERR; 2022 } else { 2023 rtld_flags &= ~RT_FL_CONFGEN; 2024 *lmflags &= ~LML_FLG_IGNRELERR; 2025 } 2026 break; 2027 case ENV_FLG_LOADFLTR: 2028 if (s2) { 2029 *lmtflags |= LML_TFLG_LOADFLTR; 2030 if (*s2 == '2') 2031 rtld_flags |= RT_FL_WARNFLTR; 2032 } else { 2033 *lmtflags &= ~LML_TFLG_LOADFLTR; 2034 rtld_flags &= ~RT_FL_WARNFLTR; 2035 } 2036 break; 2037 case ENV_FLG_PROFILE: 2038 profile_name = s2; 2039 if (s2) { 2040 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 2041 return; 2042 } 2043 /* BEGIN CSTYLED */ 2044 if (rtld_flags & RT_FL_SECURE) { 2045 profile_lib = 2046 #if defined(_ELF64) 2047 MSG_ORIG(MSG_PTH_LDPROFSE_64); 2048 #else 2049 MSG_ORIG(MSG_PTH_LDPROFSE); 2050 #endif 2051 } else { 2052 profile_lib = 2053 #if defined(_ELF64) 2054 MSG_ORIG(MSG_PTH_LDPROF_64); 2055 #else 2056 MSG_ORIG(MSG_PTH_LDPROF); 2057 #endif 2058 } 2059 /* END CSTYLED */ 2060 } else 2061 profile_lib = NULL; 2062 break; 2063 case ENV_FLG_SIGNAL: 2064 killsig = s2 ? atoi(s2) : SIGKILL; 2065 break; 2066 case ENV_FLG_TRACE_OBJS: 2067 if (s2) { 2068 *lmflags |= LML_FLG_TRC_ENABLE; 2069 if (*s2 == '2') 2070 *lmflags |= LML_FLG_TRC_LDDSTUB; 2071 } else 2072 *lmflags &= 2073 ~(LML_FLG_TRC_ENABLE | LML_FLG_TRC_LDDSTUB); 2074 break; 2075 } 2076 } 2077 } 2078 2079 /* 2080 * Determine whether we have an architecture specific environment variable. 2081 * If we do, and we're the wrong architecture, it'll just get ignored. 2082 * Otherwise the variable is processed in it's architecture neutral form. 2083 */ 2084 static int 2085 ld_arch_env(const char *s1, size_t *len) 2086 { 2087 size_t _len = *len - 3; 2088 2089 if (s1[_len++] == '_') { 2090 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2091 #if defined(_ELF64) 2092 return (ENV_TYP_IGNORE); 2093 #else 2094 *len = *len - 3; 2095 return (ENV_TYP_ISA); 2096 #endif 2097 } 2098 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2099 #if defined(_ELF64) 2100 *len = *len - 3; 2101 return (ENV_TYP_ISA); 2102 #else 2103 return (ENV_TYP_IGNORE); 2104 #endif 2105 } 2106 } 2107 return (0); 2108 } 2109 2110 /* 2111 * Process an LD_FLAGS environment variable. The value can be a comma 2112 * separated set of tokens, which are sent (in upper case) into the generic 2113 * LD_XXXX environment variable engine. For example: 2114 * 2115 * LD_FLAGS=bind_now= -> LD_BIND_NOW= 2116 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2117 * LD_FLAGS=library_path= -> LD_LIBRARY_PATH= 2118 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2119 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2120 * or 2121 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2122 */ 2123 static int 2124 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2125 uint_t env_flags) 2126 { 2127 char *nstr, *sstr, *estr = NULL; 2128 size_t nlen, len; 2129 2130 if (str == NULL) 2131 return (0); 2132 2133 /* 2134 * Create a new string as we're going to transform the token(s) into 2135 * uppercase and separate tokens with nulls. 2136 */ 2137 len = strlen(str); 2138 if ((nstr = malloc(len + 1)) == NULL) 2139 return (1); 2140 (void) strcpy(nstr, str); 2141 2142 for (sstr = nstr; sstr; sstr++, len--) { 2143 int flags = 0; 2144 2145 if ((*sstr != '\0') && (*sstr != ',')) { 2146 if (estr == NULL) { 2147 if (*sstr == '=') 2148 estr = sstr; 2149 else { 2150 /* 2151 * Translate token to uppercase. Don't 2152 * use toupper(3C) as including this 2153 * code doubles the size of ld.so.1. 2154 */ 2155 if ((*sstr >= 'a') && (*sstr <= 'z')) 2156 *sstr = *sstr - ('a' - 'A'); 2157 } 2158 } 2159 continue; 2160 } 2161 2162 *sstr = '\0'; 2163 2164 /* 2165 * Have we discovered an "=" string. 2166 */ 2167 if (estr) { 2168 nlen = estr - nstr; 2169 2170 /* 2171 * If this is an unqualified "=", then this variable 2172 * is intended to ensure a feature is disabled. 2173 */ 2174 if ((*++estr == '\0') || (*estr == ',')) 2175 estr = NULL; 2176 } else { 2177 nlen = sstr - nstr; 2178 2179 /* 2180 * If there is no "=" found, fabricate a boolean 2181 * definition for any unqualified variable. Thus, 2182 * LD_FLAGS=bind_now is represented as BIND_NOW=1. 2183 * The value "1" is sufficient to assert any boolean 2184 * variables. Setting of ENV_TYP_NULL ensures any 2185 * string usage is reset to a NULL string, thus 2186 * LD_FLAGS=library_path is equivalent to 2187 * LIBRARY_PATH='\0'. 2188 */ 2189 flags |= ENV_TYP_NULL; 2190 estr = (char *)MSG_ORIG(MSG_STR_ONE); 2191 } 2192 2193 /* 2194 * Determine whether the environment variable is 32- or 64-bit 2195 * specific. The length, len, will reflect the architecture 2196 * neutral portion of the string. 2197 */ 2198 if ((flags |= ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2199 ld_generic_env(nstr, nlen, estr, lmflags, 2200 lmtflags, (env_flags | flags)); 2201 } 2202 if (len == 0) 2203 break; 2204 2205 nstr = sstr + 1; 2206 estr = NULL; 2207 } 2208 2209 return (0); 2210 } 2211 2212 /* 2213 * Variant of getopt(), intended for use when ld.so.1 is invoked directly 2214 * from the command line. The only command line option allowed is -e followed 2215 * by a runtime linker environment variable. 2216 */ 2217 int 2218 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 2219 Word *lmtflags) 2220 { 2221 int ndx; 2222 2223 for (ndx = 1; argv[ndx]; ndx++) { 2224 char *str; 2225 2226 if (argv[ndx][0] != '-') 2227 break; 2228 2229 if (argv[ndx][1] == '\0') { 2230 ndx++; 2231 break; 2232 } 2233 2234 if (argv[ndx][1] != 'e') 2235 return (1); 2236 2237 if (argv[ndx][2] == '\0') { 2238 ndx++; 2239 if (argv[ndx] == NULL) 2240 return (1); 2241 str = argv[ndx]; 2242 } else 2243 str = &argv[ndx][2]; 2244 2245 /* 2246 * If the environment variable starts with LD_, strip the LD_. 2247 * Otherwise, take things as is. Indicate that this variable 2248 * originates from the command line, as these variables take 2249 * precedence over any environment variables, or configuration 2250 * file variables. 2251 */ 2252 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 2253 (str[3] != '\0')) 2254 str += 3; 2255 if (ld_flags_env(str, lmflags, lmtflags, 2256 ENV_TYP_CMDLINE) == 1) 2257 return (1); 2258 } 2259 2260 /* 2261 * Make sure an object file has been specified. 2262 */ 2263 if (argv[ndx] == NULL) 2264 return (1); 2265 2266 /* 2267 * Having gotten the arguments, clean ourselves off of the stack. 2268 * This results in a process that looks as if it was executed directly 2269 * from the application. 2270 */ 2271 stack_cleanup(argv, envp, auxv, ndx); 2272 return (0); 2273 } 2274 2275 /* 2276 * Process a single LD_XXXX string. 2277 */ 2278 static void 2279 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags) 2280 { 2281 const char *s2; 2282 size_t len; 2283 int flags; 2284 2285 /* 2286 * In a branded process we must ignore all LD_XXXX variables because 2287 * they are intended for the brand's linker. To affect the native 2288 * linker, use LD_BRAND_XXXX instead. 2289 */ 2290 if (rtld_flags2 & RT_FL2_BRANDED) { 2291 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2292 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2293 return; 2294 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2295 } 2296 2297 /* 2298 * Variables with no value (ie. LD_XXXX=) turn a capability off. 2299 */ 2300 if ((s2 = strchr(s1, '=')) == NULL) { 2301 len = strlen(s1); 2302 s2 = NULL; 2303 } else if (*++s2 == '\0') { 2304 len = strlen(s1) - 1; 2305 s2 = NULL; 2306 } else { 2307 len = s2 - s1 - 1; 2308 while (conv_strproc_isspace(*s2)) 2309 s2++; 2310 } 2311 2312 /* 2313 * Determine whether the environment variable is 32-bit or 64-bit 2314 * specific. The length, len, will reflect the architecture neutral 2315 * portion of the string. 2316 */ 2317 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2318 return; 2319 env_flags |= flags; 2320 2321 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags); 2322 } 2323 2324 /* 2325 * Internal getenv routine. Called immediately after ld.so.1 initializes 2326 * itself to process any locale specific environment variables, and collect 2327 * any LD_XXXX variables for later processing. 2328 */ 2329 #define LOC_LANG 1 2330 #define LOC_MESG 2 2331 #define LOC_ALL 3 2332 2333 int 2334 readenv_user(const char **envp, APlist **ealpp) 2335 { 2336 char *locale; 2337 const char *s1; 2338 int loc = 0; 2339 2340 for (s1 = *envp; s1; envp++, s1 = *envp) { 2341 const char *s2; 2342 2343 if (*s1++ != 'L') 2344 continue; 2345 2346 /* 2347 * See if we have any locale environment settings. These 2348 * environment variables have a precedence, LC_ALL is higher 2349 * than LC_MESSAGES which is higher than LANG. 2350 */ 2351 s2 = s1; 2352 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2353 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), 2354 MSG_LC_ALL_SIZE) == 0) { 2355 s2 += MSG_LC_ALL_SIZE; 2356 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2357 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 2358 (char *)s2; 2359 loc = LOC_ALL; 2360 } 2361 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2362 MSG_LC_MESSAGES_SIZE) == 0) { 2363 s2 += MSG_LC_MESSAGES_SIZE; 2364 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2365 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 2366 (char *)s2; 2367 loc = LOC_MESG; 2368 } 2369 } 2370 continue; 2371 } 2372 2373 s2 = s1; 2374 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2375 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2376 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2377 loc = LOC_LANG; 2378 continue; 2379 } 2380 2381 /* 2382 * Pick off any LD_XXXX environment variables. 2383 */ 2384 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2385 if (aplist_append(ealpp, s1, AL_CNT_ENVIRON) == NULL) 2386 return (1); 2387 } 2388 } 2389 2390 /* 2391 * If we have a locale setting make sure it's worth processing further. 2392 * C and POSIX locales don't need any processing. In addition, to 2393 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2394 * the locale to contain a segment that leads upward in the file system 2395 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2396 * the /usr/lib/locale hierarchy, there is no need to extensively 2397 * validate the mode or ownership of any message file (as libc's 2398 * generic handling of message files does), or be concerned with 2399 * symbolic links that might otherwise send us elsewhere. Duplicate 2400 * the string so that new locale setting can generically cleanup any 2401 * previous locales. 2402 */ 2403 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != NULL) { 2404 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2405 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2406 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2407 glcs[CI_LCMESSAGES].lc_un.lc_ptr = NULL; 2408 else 2409 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2410 } 2411 return (0); 2412 } 2413 2414 /* 2415 * Process any LD_XXXX environment variables collected by readenv_user(). 2416 */ 2417 int 2418 procenv_user(APlist *ealp, Word *lmflags, Word *lmtflags) 2419 { 2420 Aliste idx; 2421 const char *s1; 2422 2423 for (APLIST_TRAVERSE(ealp, idx, s1)) 2424 ld_str_env(s1, lmflags, lmtflags, 0); 2425 2426 /* 2427 * Having collected the best representation of any LD_FLAGS, process 2428 * these strings. 2429 */ 2430 if (rpl_ldflags) { 2431 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0) == 1) 2432 return (1); 2433 rpl_ldflags = NULL; 2434 } 2435 2436 /* 2437 * Don't allow environment controlled auditing when tracing or if 2438 * explicitly disabled. Trigger all tracing modes from 2439 * LML_FLG_TRC_ENABLE. 2440 */ 2441 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2442 rpl_audit = profile_lib = profile_name = NULL; 2443 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2444 *lmflags &= ~LML_MSK_TRC; 2445 2446 /* 2447 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2448 */ 2449 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2450 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2451 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2452 2453 /* 2454 * When using ldd(1) -r or -d against an executable, assert -p. 2455 */ 2456 if ((*lmflags & 2457 (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN) 2458 *lmflags |= LML_FLG_TRC_NOPAREXT; 2459 2460 return (0); 2461 } 2462 2463 /* 2464 * Configuration environment processing. Called after the executable has been 2465 * processed (as the executable can specify its own configuration file). 2466 */ 2467 int 2468 readenv_config(Rtc_env * envtbl, Addr addr) 2469 { 2470 Word *lmflags = &(lml_main.lm_flags); 2471 Word *lmtflags = &(lml_main.lm_tflags); 2472 2473 if (envtbl == NULL) 2474 return (0); 2475 2476 while (envtbl->env_str) { 2477 uint_t env_flags = ENV_TYP_CONFIG; 2478 const char *s1 = (const char *)(envtbl->env_str + addr); 2479 2480 if (envtbl->env_flags & RTC_ENV_PERMANT) 2481 env_flags |= ENV_TYP_PERMANT; 2482 2483 if ((*s1++ == 'L') && (*s1++ == 'D') && 2484 (*s1++ == '_') && (*s1 != '\0')) 2485 ld_str_env(s1, lmflags, lmtflags, env_flags); 2486 2487 envtbl++; 2488 } 2489 2490 /* 2491 * Having collected the best representation of any LD_FLAGS, process 2492 * these strings. 2493 */ 2494 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0) == 1) 2495 return (1); 2496 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, 2497 ENV_TYP_CONFIG) == 1) 2498 return (1); 2499 2500 /* 2501 * Don't allow environment controlled auditing when tracing or if 2502 * explicitly disabled. Trigger all tracing modes from 2503 * LML_FLG_TRC_ENABLE. 2504 */ 2505 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2506 prm_audit = profile_lib = profile_name = NULL; 2507 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2508 *lmflags &= ~LML_MSK_TRC; 2509 2510 return (0); 2511 } 2512 2513 int 2514 dowrite(Prfbuf * prf) 2515 { 2516 /* 2517 * We do not have a valid file descriptor, so we are unable 2518 * to flush the buffer. 2519 */ 2520 if (prf->pr_fd == -1) 2521 return (0); 2522 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2523 prf->pr_cur = prf->pr_buf; 2524 return (1); 2525 } 2526 2527 /* 2528 * Simplified printing. The following conversion specifications are supported: 2529 * 2530 * % [#] [-] [min field width] [. precision] s|d|x|c 2531 * 2532 * 2533 * dorprf takes the output buffer in the form of Prfbuf which permits 2534 * the verification of the output buffer size and the concatenation 2535 * of data to an already existing output buffer. The Prfbuf 2536 * structure contains the following: 2537 * 2538 * pr_buf pointer to the beginning of the output buffer. 2539 * pr_cur pointer to the next available byte in the output buffer. By 2540 * setting pr_cur ahead of pr_buf you can append to an already 2541 * existing buffer. 2542 * pr_len the size of the output buffer. By setting pr_len to '0' you 2543 * disable protection from overflows in the output buffer. 2544 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2545 * output to. If pr_fd is set to '-1' then it's assumed there is 2546 * no output buffer, and doprf() will return with an error to 2547 * indicate an output buffer overflow. If pr_fd is > -1 then when 2548 * the output buffer is filled it will be flushed to pr_fd and will 2549 * then be available for additional data. 2550 */ 2551 #define FLG_UT_MINUS 0x0001 /* - */ 2552 #define FLG_UT_SHARP 0x0002 /* # */ 2553 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2554 2555 /* 2556 * This macro is for use from within doprf only. It is to be used for checking 2557 * the output buffer size and placing characters into the buffer. 2558 */ 2559 #define PUTC(c) \ 2560 { \ 2561 char tmpc; \ 2562 \ 2563 tmpc = (c); \ 2564 if (bufsiz && (bp >= bufend)) { \ 2565 prf->pr_cur = bp; \ 2566 if (dowrite(prf) == 0) \ 2567 return (0); \ 2568 bp = prf->pr_cur; \ 2569 } \ 2570 *bp++ = tmpc; \ 2571 } 2572 2573 /* 2574 * Define a local buffer size for building a numeric value - large enough to 2575 * hold a 64-bit value. 2576 */ 2577 #define NUM_SIZE 22 2578 2579 size_t 2580 doprf(const char *format, va_list args, Prfbuf *prf) 2581 { 2582 char c; 2583 char *bp = prf->pr_cur; 2584 char *bufend = prf->pr_buf + prf->pr_len; 2585 size_t bufsiz = prf->pr_len; 2586 2587 while ((c = *format++) != '\0') { 2588 if (c != '%') { 2589 PUTC(c); 2590 } else { 2591 int base = 0, flag = 0, width = 0, prec = 0; 2592 size_t _i; 2593 int _c, _n; 2594 char *_s; 2595 int ls = 0; 2596 again: 2597 c = *format++; 2598 switch (c) { 2599 case '-': 2600 flag |= FLG_UT_MINUS; 2601 goto again; 2602 case '#': 2603 flag |= FLG_UT_SHARP; 2604 goto again; 2605 case '.': 2606 flag |= FLG_UT_DOTSEEN; 2607 goto again; 2608 case '0': 2609 case '1': 2610 case '2': 2611 case '3': 2612 case '4': 2613 case '5': 2614 case '6': 2615 case '7': 2616 case '8': 2617 case '9': 2618 if (flag & FLG_UT_DOTSEEN) 2619 prec = (prec * 10) + c - '0'; 2620 else 2621 width = (width * 10) + c - '0'; 2622 goto again; 2623 case 'x': 2624 case 'X': 2625 base = 16; 2626 break; 2627 case 'd': 2628 case 'D': 2629 case 'u': 2630 base = 10; 2631 flag &= ~FLG_UT_SHARP; 2632 break; 2633 case 'l': 2634 base = 10; 2635 ls++; /* number of l's (long or long long) */ 2636 if ((*format == 'l') || 2637 (*format == 'd') || (*format == 'D') || 2638 (*format == 'x') || (*format == 'X') || 2639 (*format == 'o') || (*format == 'O') || 2640 (*format == 'u') || (*format == 'U')) 2641 goto again; 2642 break; 2643 case 'o': 2644 case 'O': 2645 base = 8; 2646 break; 2647 case 'c': 2648 _c = va_arg(args, int); 2649 2650 for (_i = 24; _i > 0; _i -= 8) { 2651 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2652 PUTC(c); 2653 } 2654 } 2655 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2656 PUTC(c); 2657 } 2658 break; 2659 case 's': 2660 _s = va_arg(args, char *); 2661 _i = strlen(_s); 2662 /* LINTED */ 2663 _n = (int)(width - _i); 2664 if (!prec) 2665 /* LINTED */ 2666 prec = (int)_i; 2667 2668 if (width && !(flag & FLG_UT_MINUS)) { 2669 while (_n-- > 0) 2670 PUTC(' '); 2671 } 2672 while (((c = *_s++) != 0) && prec--) { 2673 PUTC(c); 2674 } 2675 if (width && (flag & FLG_UT_MINUS)) { 2676 while (_n-- > 0) 2677 PUTC(' '); 2678 } 2679 break; 2680 case '%': 2681 PUTC('%'); 2682 break; 2683 default: 2684 break; 2685 } 2686 2687 /* 2688 * Numeric processing 2689 */ 2690 if (base) { 2691 char local[NUM_SIZE]; 2692 size_t ssize = 0, psize = 0; 2693 const char *string = 2694 MSG_ORIG(MSG_STR_HEXNUM); 2695 const char *prefix = 2696 MSG_ORIG(MSG_STR_EMPTY); 2697 u_longlong_t num; 2698 2699 switch (ls) { 2700 case 0: /* int */ 2701 num = (u_longlong_t) 2702 va_arg(args, uint_t); 2703 break; 2704 case 1: /* long */ 2705 num = (u_longlong_t) 2706 va_arg(args, ulong_t); 2707 break; 2708 case 2: /* long long */ 2709 num = va_arg(args, u_longlong_t); 2710 break; 2711 } 2712 2713 if (flag & FLG_UT_SHARP) { 2714 if (base == 16) { 2715 prefix = MSG_ORIG(MSG_STR_HEX); 2716 psize = 2; 2717 } else { 2718 prefix = MSG_ORIG(MSG_STR_ZERO); 2719 psize = 1; 2720 } 2721 } 2722 if ((base == 10) && (long)num < 0) { 2723 prefix = MSG_ORIG(MSG_STR_NEGATE); 2724 psize = MSG_STR_NEGATE_SIZE; 2725 num = (u_longlong_t)(-(longlong_t)num); 2726 } 2727 2728 /* 2729 * Convert the numeric value into a local 2730 * string (stored in reverse order). 2731 */ 2732 _s = local; 2733 do { 2734 *_s++ = string[num % base]; 2735 num /= base; 2736 ssize++; 2737 } while (num); 2738 2739 ASSERT(ssize < sizeof (local)); 2740 2741 /* 2742 * Provide any precision or width padding. 2743 */ 2744 if (prec) { 2745 /* LINTED */ 2746 _n = (int)(prec - ssize); 2747 while ((_n-- > 0) && 2748 (ssize < sizeof (local))) { 2749 *_s++ = '0'; 2750 ssize++; 2751 } 2752 } 2753 if (width && !(flag & FLG_UT_MINUS)) { 2754 /* LINTED */ 2755 _n = (int)(width - ssize - psize); 2756 while (_n-- > 0) { 2757 PUTC(' '); 2758 } 2759 } 2760 2761 /* 2762 * Print any prefix and the numeric string 2763 */ 2764 while (*prefix) 2765 PUTC(*prefix++); 2766 do { 2767 PUTC(*--_s); 2768 } while (_s > local); 2769 2770 /* 2771 * Provide any width padding. 2772 */ 2773 if (width && (flag & FLG_UT_MINUS)) { 2774 /* LINTED */ 2775 _n = (int)(width - ssize - psize); 2776 while (_n-- > 0) 2777 PUTC(' '); 2778 } 2779 } 2780 } 2781 } 2782 2783 PUTC('\0'); 2784 prf->pr_cur = bp; 2785 return (1); 2786 } 2787 2788 static int 2789 doprintf(const char *format, va_list args, Prfbuf *prf) 2790 { 2791 char *ocur = prf->pr_cur; 2792 2793 if (doprf(format, args, prf) == 0) 2794 return (0); 2795 /* LINTED */ 2796 return ((int)(prf->pr_cur - ocur)); 2797 } 2798 2799 /* VARARGS2 */ 2800 int 2801 sprintf(char *buf, const char *format, ...) 2802 { 2803 va_list args; 2804 int len; 2805 Prfbuf prf; 2806 2807 va_start(args, format); 2808 prf.pr_buf = prf.pr_cur = buf; 2809 prf.pr_len = 0; 2810 prf.pr_fd = -1; 2811 len = doprintf(format, args, &prf); 2812 va_end(args); 2813 2814 /* 2815 * sprintf() return value excludes the terminating null byte. 2816 */ 2817 return (len - 1); 2818 } 2819 2820 /* VARARGS3 */ 2821 int 2822 snprintf(char *buf, size_t n, const char *format, ...) 2823 { 2824 va_list args; 2825 int len; 2826 Prfbuf prf; 2827 2828 va_start(args, format); 2829 prf.pr_buf = prf.pr_cur = buf; 2830 prf.pr_len = n; 2831 prf.pr_fd = -1; 2832 len = doprintf(format, args, &prf); 2833 va_end(args); 2834 2835 return (len); 2836 } 2837 2838 /* VARARGS2 */ 2839 int 2840 bufprint(Prfbuf *prf, const char *format, ...) 2841 { 2842 va_list args; 2843 int len; 2844 2845 va_start(args, format); 2846 len = doprintf(format, args, prf); 2847 va_end(args); 2848 2849 return (len); 2850 } 2851 2852 /*PRINTFLIKE1*/ 2853 int 2854 printf(const char *format, ...) 2855 { 2856 va_list args; 2857 char buffer[ERRSIZE]; 2858 Prfbuf prf; 2859 2860 va_start(args, format); 2861 prf.pr_buf = prf.pr_cur = buffer; 2862 prf.pr_len = ERRSIZE; 2863 prf.pr_fd = 1; 2864 (void) doprf(format, args, &prf); 2865 va_end(args); 2866 /* 2867 * Trim trailing '\0' form buffer 2868 */ 2869 prf.pr_cur--; 2870 return (dowrite(&prf)); 2871 } 2872 2873 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = NULL; 2874 2875 /* 2876 * All error messages go through eprintf(). During process initialization, 2877 * these messages are directed to the standard error, however once control has 2878 * been passed to the applications code these messages are stored in an internal 2879 * buffer for use with dlerror(). Note, fatal error conditions that may occur 2880 * while running the application will still cause a standard error message, see 2881 * rtldexit() in this file for details. 2882 * The RT_FL_APPLIC flag serves to indicate the transition between process 2883 * initialization and when the applications code is running. 2884 */ 2885 void 2886 veprintf(Lm_list *lml, Error error, const char *format, va_list args) 2887 { 2888 int overflow = 0; 2889 static int lock = 0; 2890 Prfbuf prf; 2891 2892 if (lock || (nextptr == (errbuf + ERRSIZE))) 2893 return; 2894 2895 /* 2896 * Note: this lock is here to prevent the same thread from recursively 2897 * entering itself during a eprintf. ie: during eprintf malloc() fails 2898 * and we try and call eprintf ... and then malloc() fails .... 2899 */ 2900 lock = 1; 2901 2902 /* 2903 * If we have completed startup initialization, all error messages 2904 * must be saved. These are reported through dlerror(). If we're 2905 * still in the initialization stage, output the error directly and 2906 * add a newline. 2907 */ 2908 prf.pr_buf = prf.pr_cur = nextptr; 2909 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2910 2911 if ((rtld_flags & RT_FL_APPLIC) == 0) 2912 prf.pr_fd = 2; 2913 else 2914 prf.pr_fd = -1; 2915 2916 if (error > ERR_NONE) { 2917 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2918 error = ERR_WARNING; 2919 switch (error) { 2920 case ERR_WARNING_NF: 2921 if (err_strs[ERR_WARNING_NF] == NULL) 2922 err_strs[ERR_WARNING_NF] = 2923 MSG_INTL(MSG_ERR_WARNING); 2924 break; 2925 case ERR_WARNING: 2926 if (err_strs[ERR_WARNING] == NULL) 2927 err_strs[ERR_WARNING] = 2928 MSG_INTL(MSG_ERR_WARNING); 2929 break; 2930 case ERR_GUIDANCE: 2931 if (err_strs[ERR_GUIDANCE] == NULL) 2932 err_strs[ERR_GUIDANCE] = 2933 MSG_INTL(MSG_ERR_GUIDANCE); 2934 break; 2935 case ERR_ELF: 2936 if (err_strs[ERR_ELF] == NULL) 2937 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2938 break; 2939 /* If this API is mis-used, create a fatal error */ 2940 case ERR_FATAL: 2941 default: 2942 if (err_strs[ERR_FATAL] == NULL) 2943 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2944 break; 2945 2946 } 2947 if (procname) { 2948 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2949 rtldname, procname, err_strs[error]) == 0) 2950 overflow = 1; 2951 } else { 2952 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2953 rtldname, err_strs[error]) == 0) 2954 overflow = 1; 2955 } 2956 if (overflow == 0) { 2957 /* 2958 * Remove the terminating '\0'. 2959 */ 2960 prf.pr_cur--; 2961 } 2962 } 2963 2964 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2965 overflow = 1; 2966 2967 /* 2968 * If this is an ELF error, it will have been generated by a support 2969 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2970 * ELF error messages as it doesn't interact with libelf. Determine the 2971 * ELF error string. 2972 */ 2973 if ((overflow == 0) && (error == ERR_ELF)) { 2974 static int (*elfeno)() = 0; 2975 static const char *(*elfemg)(); 2976 const char *emsg; 2977 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2978 2979 if (NEXT(lmp) && (elfeno == 0)) { 2980 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2981 MSG_ORIG(MSG_SYM_ELFERRMSG), 2982 lmp, &dlmp)) == NULL) || 2983 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2984 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == NULL)) 2985 elfeno = 0; 2986 } 2987 2988 /* 2989 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2990 */ 2991 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != NULL)) { 2992 prf.pr_cur--; 2993 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2994 emsg) == 0) 2995 overflow = 1; 2996 } 2997 } 2998 2999 /* 3000 * Push out any message that's been built. Note, in the case of an 3001 * overflow condition, this message may be incomplete, in which case 3002 * make sure any partial string is null terminated. 3003 */ 3004 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 3005 *(prf.pr_cur - 1) = '\n'; 3006 (void) dowrite(&prf); 3007 } 3008 if (overflow) 3009 *(prf.pr_cur - 1) = '\0'; 3010 3011 DBG_CALL(Dbg_util_str(lml, nextptr)); 3012 3013 /* 3014 * Determine if there was insufficient space left in the buffer to 3015 * complete the message. If so, we'll have printed out as much as had 3016 * been processed if we're not yet executing the application. 3017 * Otherwise, there will be some debugging diagnostic indicating 3018 * as much of the error message as possible. Write out a final buffer 3019 * overflow diagnostic - unlocalized, so we don't chance more errors. 3020 */ 3021 if (overflow) { 3022 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 3023 3024 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 3025 lasterr = str; 3026 3027 if ((rtld_flags & RT_FL_APPLIC) == 0) { 3028 (void) write(2, str, strlen(str)); 3029 (void) write(2, MSG_ORIG(MSG_STR_NL), 3030 MSG_STR_NL_SIZE); 3031 } 3032 } 3033 DBG_CALL(Dbg_util_str(lml, str)); 3034 3035 lock = 0; 3036 nextptr = errbuf + ERRSIZE; 3037 return; 3038 } 3039 3040 /* 3041 * If the application has started, then error messages are being saved 3042 * for retrieval by dlerror(), or possible flushing from rtldexit() in 3043 * the case of a fatal error. In this case, establish the next error 3044 * pointer. If we haven't started the application, the whole message 3045 * buffer can be reused. 3046 */ 3047 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 3048 lasterr = nextptr; 3049 3050 /* 3051 * Note, should we encounter an error such as ENOMEM, there may 3052 * be a number of the same error messages (ie. an operation 3053 * fails with ENOMEM, and then the attempts to construct the 3054 * error message itself, which incurs additional ENOMEM errors). 3055 * Compare any previous error message with the one we've just 3056 * created to prevent any duplication clutter. 3057 */ 3058 if ((rtld_flags & RT_FL_APPLIC) && 3059 ((prevptr == NULL) || (strcmp(prevptr, nextptr) != 0))) { 3060 prevptr = nextptr; 3061 nextptr = prf.pr_cur; 3062 *nextptr = '\0'; 3063 } 3064 } 3065 lock = 0; 3066 } 3067 3068 /*PRINTFLIKE3*/ 3069 void 3070 eprintf(Lm_list *lml, Error error, const char *format, ...) 3071 { 3072 va_list args; 3073 3074 va_start(args, format); 3075 veprintf(lml, error, format, args); 3076 va_end(args); 3077 } 3078 3079 /* 3080 * Provide assfail() for ASSERT() statements. See <sys/debug.h> for further 3081 * details. 3082 */ 3083 int 3084 assfail(const char *a, const char *f, int l) 3085 { 3086 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 3087 (void) _lwp_kill(_lwp_self(), SIGABRT); 3088 return (0); 3089 } 3090 3091 void 3092 assfail3(const char *msg, uintmax_t a, const char *op, uintmax_t b, 3093 const char *f, int l) 3094 { 3095 (void) printf("assertion failed: %s (0x%llx %s 0x%llx), " 3096 "file: %s, line: %d\n", msg, (unsigned long long)a, op, 3097 (unsigned long long)b, f, l); 3098 (void) _lwp_kill(_lwp_self(), SIGABRT); 3099 } 3100 3101 /* 3102 * Exit. If we arrive here with a non zero status it's because of a fatal 3103 * error condition (most commonly a relocation error). If the application has 3104 * already had control, then the actual fatal error message will have been 3105 * recorded in the dlerror() message buffer. Print the message before really 3106 * exiting. 3107 */ 3108 void 3109 rtldexit(Lm_list * lml, int status) 3110 { 3111 if (status) { 3112 if (rtld_flags & RT_FL_APPLIC) { 3113 /* 3114 * If the error buffer has been used, write out all 3115 * pending messages - lasterr is simply a pointer to 3116 * the last message in this buffer. However, if the 3117 * buffer couldn't be created at all, lasterr points 3118 * to a constant error message string. 3119 */ 3120 if (*errbuf) { 3121 char *errptr = errbuf; 3122 char *errend = errbuf + ERRSIZE; 3123 3124 while ((errptr < errend) && *errptr) { 3125 size_t size = strlen(errptr); 3126 (void) write(2, errptr, size); 3127 (void) write(2, MSG_ORIG(MSG_STR_NL), 3128 MSG_STR_NL_SIZE); 3129 errptr += (size + 1); 3130 } 3131 } 3132 if (lasterr && ((lasterr < errbuf) || 3133 (lasterr > (errbuf + ERRSIZE)))) { 3134 (void) write(2, lasterr, strlen(lasterr)); 3135 (void) write(2, MSG_ORIG(MSG_STR_NL), 3136 MSG_STR_NL_SIZE); 3137 } 3138 } 3139 leave(lml, 0); 3140 (void) _lwp_kill(_lwp_self(), killsig); 3141 } 3142 _exit(status); 3143 } 3144 3145 /* 3146 * Map anonymous memory via MAP_ANON (added in Solaris 8). 3147 */ 3148 void * 3149 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3150 { 3151 caddr_t va; 3152 3153 if ((va = (caddr_t)mmap(addr, len, prot, 3154 (flags | MAP_ANON), -1, 0)) == MAP_FAILED) { 3155 int err = errno; 3156 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 3157 strerror(err)); 3158 return (MAP_FAILED); 3159 } 3160 return (va); 3161 } 3162 3163 static int nu_fd = FD_UNAVAIL; 3164 3165 void * 3166 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3167 { 3168 caddr_t va; 3169 int err; 3170 3171 if (nu_fd == FD_UNAVAIL) { 3172 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3173 O_RDONLY)) == FD_UNAVAIL) { 3174 err = errno; 3175 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3176 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3177 return (MAP_FAILED); 3178 } 3179 } 3180 3181 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3182 MAP_FAILED) { 3183 err = errno; 3184 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3185 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3186 } 3187 return (va); 3188 } 3189 3190 /* 3191 * Generic entry point from user code - simply grabs a lock, and bumps the 3192 * entrance count. 3193 */ 3194 int 3195 enter(int flags) 3196 { 3197 if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) { 3198 if (!thr_flg_nolock) 3199 (void) rt_mutex_lock(&rtldlock); 3200 if (rtld_flags & RT_FL_OPERATION) { 3201 ld_entry_cnt++; 3202 3203 /* 3204 * Reset the diagnostic time information for each new 3205 * "operation". Thus timing diagnostics are relative 3206 * to entering ld.so.1. 3207 */ 3208 if (DBG_ISTIME() && 3209 (gettimeofday(&DBG_TOTALTIME, NULL) == 0)) { 3210 DBG_DELTATIME = DBG_TOTALTIME; 3211 DBG_ONRESET(); 3212 } 3213 } 3214 return (1); 3215 } 3216 return (0); 3217 } 3218 3219 /* 3220 * Determine whether a search path has been used. 3221 */ 3222 static void 3223 is_path_used(Lm_list *lml, Word unref, int *nl, Alist *alp, const char *obj) 3224 { 3225 Pdesc *pdp; 3226 Aliste idx; 3227 3228 for (ALIST_TRAVERSE(alp, idx, pdp)) { 3229 const char *fmt, *name; 3230 3231 if ((pdp->pd_plen == 0) || (pdp->pd_flags & PD_FLG_USED)) 3232 continue; 3233 3234 /* 3235 * If this pathname originated from an expanded token, use the 3236 * original for any diagnostic output. 3237 */ 3238 if ((name = pdp->pd_oname) == NULL) 3239 name = pdp->pd_pname; 3240 3241 if (unref == 0) { 3242 if ((*nl)++ == 0) 3243 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3244 DBG_CALL(Dbg_unused_path(lml, name, pdp->pd_flags, 3245 (pdp->pd_flags & PD_FLG_DUPLICAT), obj)); 3246 continue; 3247 } 3248 3249 if (pdp->pd_flags & LA_SER_LIBPATH) { 3250 if (pdp->pd_flags & LA_SER_CONFIG) { 3251 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3252 fmt = MSG_INTL(MSG_DUP_LDLIBPATHC); 3253 else 3254 fmt = MSG_INTL(MSG_USD_LDLIBPATHC); 3255 } else { 3256 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3257 fmt = MSG_INTL(MSG_DUP_LDLIBPATH); 3258 else 3259 fmt = MSG_INTL(MSG_USD_LDLIBPATH); 3260 } 3261 } else if (pdp->pd_flags & LA_SER_RUNPATH) { 3262 fmt = MSG_INTL(MSG_USD_RUNPATH); 3263 } else 3264 continue; 3265 3266 if ((*nl)++ == 0) 3267 (void) printf(MSG_ORIG(MSG_STR_NL)); 3268 (void) printf(fmt, name, obj); 3269 } 3270 } 3271 3272 /* 3273 * Generate diagnostics as to whether an object has been used. A symbolic 3274 * reference that gets bound to an object marks it as used. Dependencies that 3275 * are unused when RTLD_NOW is in effect should be removed from future builds 3276 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3277 * candidates for lazy-loading. 3278 * 3279 * Unreferenced objects identify objects that are defined as dependencies but 3280 * are unreferenced by the caller. These unreferenced objects may however be 3281 * referenced by other objects within the process, and therefore don't qualify 3282 * as completely unused. They are still an unnecessary overhead. 3283 * 3284 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail" 3285 * debugging. 3286 */ 3287 void 3288 unused(Lm_list *lml) 3289 { 3290 Rt_map *lmp; 3291 int nl = 0; 3292 Word unref, unuse; 3293 3294 /* 3295 * If we're not tracing unused references or dependencies, or debugging 3296 * there's nothing to do. 3297 */ 3298 unref = lml->lm_flags & LML_FLG_TRC_UNREF; 3299 unuse = lml->lm_flags & LML_FLG_TRC_UNUSED; 3300 3301 if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0)) 3302 return; 3303 3304 /* 3305 * Detect unused global search paths. 3306 */ 3307 if (rpl_libdirs) 3308 is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name); 3309 if (prm_libdirs) 3310 is_path_used(lml, unref, &nl, prm_libdirs, config->c_name); 3311 3312 nl = 0; 3313 lmp = lml->lm_head; 3314 if (RLIST(lmp)) 3315 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3316 3317 /* 3318 * Traverse the link-maps looking for unreferenced or unused 3319 * dependencies. Ignore the first object on a link-map list, as this 3320 * is always used. 3321 */ 3322 nl = 0; 3323 for (lmp = NEXT_RT_MAP(lmp); lmp; lmp = NEXT_RT_MAP(lmp)) { 3324 /* 3325 * Determine if this object contains any runpaths that have 3326 * not been used. 3327 */ 3328 if (RLIST(lmp)) 3329 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3330 3331 /* 3332 * If tracing unreferenced objects, or under debugging, 3333 * determine whether any of this objects callers haven't 3334 * referenced it. 3335 */ 3336 if (unref || DBG_ENABLED) { 3337 Bnd_desc *bdp; 3338 Aliste idx; 3339 3340 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 3341 Rt_map *clmp; 3342 3343 if (bdp->b_flags & BND_REFER) 3344 continue; 3345 3346 clmp = bdp->b_caller; 3347 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3348 continue; 3349 3350 /* BEGIN CSTYLED */ 3351 if (nl++ == 0) { 3352 if (unref) 3353 (void) printf(MSG_ORIG(MSG_STR_NL)); 3354 else 3355 DBG_CALL(Dbg_util_nl(lml, 3356 DBG_NL_STD)); 3357 } 3358 3359 if (unref) 3360 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3361 NAME(lmp), NAME(clmp)); 3362 else 3363 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3364 /* END CSTYLED */ 3365 } 3366 } 3367 3368 /* 3369 * If tracing unused objects simply display those objects that 3370 * haven't been referenced by anyone. 3371 */ 3372 if (FLAGS1(lmp) & FL1_RT_USED) 3373 continue; 3374 3375 if (nl++ == 0) { 3376 if (unref || unuse) 3377 (void) printf(MSG_ORIG(MSG_STR_NL)); 3378 else 3379 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3380 } 3381 if (CYCGROUP(lmp)) { 3382 if (unref || unuse) 3383 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3384 NAME(lmp), CYCGROUP(lmp)); 3385 else 3386 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3387 CYCGROUP(lmp))); 3388 } else { 3389 if (unref || unuse) 3390 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3391 NAME(lmp)); 3392 else 3393 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3394 } 3395 } 3396 3397 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3398 } 3399 3400 /* 3401 * Generic cleanup routine called prior to returning control to the user. 3402 * Ensures that any ld.so.1 specific file descriptors or temporary mapping are 3403 * released, and any locks dropped. 3404 */ 3405 void 3406 leave(Lm_list *lml, int flags) 3407 { 3408 /* 3409 * Alert the debuggers that the link-maps are consistent. 3410 */ 3411 rd_event(lml, RD_DLACTIVITY, RT_CONSISTENT); 3412 3413 /* 3414 * Alert any auditors that the link-maps are consistent. 3415 */ 3416 if (lml->lm_flags & LML_FLG_ACTAUDIT) { 3417 audit_activity(lml->lm_head, LA_ACT_CONSISTENT); 3418 lml->lm_flags &= ~LML_FLG_ACTAUDIT; 3419 } 3420 3421 if (nu_fd != FD_UNAVAIL) { 3422 (void) close(nu_fd); 3423 nu_fd = FD_UNAVAIL; 3424 } 3425 3426 /* 3427 * Reinitialize error message pointer, and any overflow indication. 3428 */ 3429 nextptr = errbuf; 3430 prevptr = NULL; 3431 3432 /* 3433 * Defragment any freed memory. 3434 */ 3435 if (aplist_nitems(free_alp)) 3436 defrag(); 3437 3438 /* 3439 * Don't drop our lock if we are running on our link-map list as 3440 * there's little point in doing so since we are single-threaded. 3441 * 3442 * LML_FLG_HOLDLOCK is set for: 3443 * - The ld.so.1's link-map list. 3444 * - The auditor's link-map if the environment is pre-UPM. 3445 */ 3446 if (lml->lm_flags & LML_FLG_HOLDLOCK) 3447 return; 3448 3449 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3450 if (!thr_flg_nolock) 3451 (void) rt_mutex_unlock(&rtldlock); 3452 (void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags); 3453 } 3454 } 3455 3456 int 3457 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags) 3458 { 3459 APlist *calp, *dalp; 3460 Aliste idx1, idx2; 3461 Grp_hdl *ghp1, *ghp2; 3462 3463 /* 3464 * An object can always find symbols within itself. 3465 */ 3466 if (clmp == dlmp) 3467 return (1); 3468 3469 /* 3470 * The search for a singleton must look in every loaded object. 3471 */ 3472 if (slflags & LKUP_SINGLETON) 3473 return (1); 3474 3475 /* 3476 * Don't allow an object to bind to an object that is being deleted 3477 * unless the binder is also being deleted. 3478 */ 3479 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3480 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3481 return (0); 3482 3483 /* 3484 * An object with world access can always bind to an object with global 3485 * visibility. 3486 */ 3487 if (((MODE(clmp) & RTLD_WORLD) || (slflags & LKUP_WORLD)) && 3488 (MODE(dlmp) & RTLD_GLOBAL)) 3489 return (1); 3490 3491 /* 3492 * An object with local access can only bind to an object that is a 3493 * member of the same group. 3494 */ 3495 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3496 ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL)) 3497 return (0); 3498 3499 /* 3500 * Traverse the list of groups the caller is a part of. 3501 */ 3502 for (APLIST_TRAVERSE(calp, idx1, ghp1)) { 3503 /* 3504 * If we're testing for the ability of two objects to bind to 3505 * each other regardless of a specific group, ignore that group. 3506 */ 3507 if (ghp && (ghp1 == ghp)) 3508 continue; 3509 3510 /* 3511 * Traverse the list of groups the destination is a part of. 3512 */ 3513 for (APLIST_TRAVERSE(dalp, idx2, ghp2)) { 3514 Grp_desc *gdp; 3515 Aliste idx3; 3516 3517 if (ghp1 != ghp2) 3518 continue; 3519 3520 /* 3521 * Make sure the relationship between the destination 3522 * and the caller provide symbols for relocation. 3523 * Parents are maintained as callers, but unless the 3524 * destination object was opened with RTLD_PARENT, the 3525 * parent doesn't provide symbols for the destination 3526 * to relocate against. 3527 */ 3528 for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) { 3529 if (dlmp != gdp->gd_depend) 3530 continue; 3531 3532 if (gdp->gd_flags & GPD_RELOC) 3533 return (1); 3534 } 3535 } 3536 } 3537 return (0); 3538 } 3539 3540 /* 3541 * Initialize the environ symbol. Traditionally this is carried out by the crt 3542 * code prior to jumping to main. However, init sections get fired before this 3543 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3544 * information. In addition, a process may have multiple link-maps (ld.so.1's 3545 * debugging and preloading objects), and link auditing, and each may need an 3546 * environ variable set. 3547 * 3548 * This routine is called after a relocation() pass, and thus provides for: 3549 * 3550 * - setting environ on the main link-map after the initial application and 3551 * its dependencies have been established. Typically environ lives in the 3552 * application (provided by its crt), but in older applications it might 3553 * be in libc. Who knows what's expected of applications not built on 3554 * Solaris. 3555 * 3556 * - after loading a new shared object. We can add shared objects to various 3557 * link-maps, and any link-map dependencies requiring getopt() require 3558 * their own environ. In addition, lazy loading might bring in the 3559 * supplier of environ (libc used to be a lazy loading candidate) after 3560 * the link-map has been established and other objects are present. 3561 * 3562 * This routine handles all these scenarios, without adding unnecessary overhead 3563 * to ld.so.1. 3564 */ 3565 void 3566 set_environ(Lm_list *lml) 3567 { 3568 Slookup sl; 3569 Sresult sr; 3570 uint_t binfo; 3571 3572 /* 3573 * Initialize the symbol lookup, and symbol result, data structures. 3574 */ 3575 SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head, 3576 ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK); 3577 SRESULT_INIT(sr, MSG_ORIG(MSG_SYM_ENVIRON)); 3578 3579 if (LM_LOOKUP_SYM(lml->lm_head)(&sl, &sr, &binfo, 0)) { 3580 Rt_map *dlmp = sr.sr_dmap; 3581 3582 lml->lm_environ = (char ***)sr.sr_sym->st_value; 3583 3584 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3585 lml->lm_environ = 3586 (char ***)((uintptr_t)lml->lm_environ + 3587 (uintptr_t)ADDR(dlmp)); 3588 *(lml->lm_environ) = (char **)environ; 3589 lml->lm_flags |= LML_FLG_ENVIRON; 3590 } 3591 } 3592 3593 /* 3594 * Determine whether we have a secure executable. Uid and gid information 3595 * can be passed to us via the aux vector, however if these values are -1 3596 * then use the appropriate system call to obtain them. 3597 * 3598 * - If the user is the root they can do anything 3599 * 3600 * - If the real and effective uid's don't match, or the real and 3601 * effective gid's don't match then this is determined to be a `secure' 3602 * application. 3603 * 3604 * This function is called prior to any dependency processing (see _setup.c). 3605 * Any secure setting will remain in effect for the life of the process. 3606 */ 3607 void 3608 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3609 { 3610 if (auxflags != -1) { 3611 if ((auxflags & AF_SUN_SETUGID) != 0) 3612 rtld_flags |= RT_FL_SECURE; 3613 return; 3614 } 3615 3616 if (uid == (uid_t)-1) 3617 uid = getuid(); 3618 if (uid) { 3619 if (euid == (uid_t)-1) 3620 euid = geteuid(); 3621 if (uid != euid) 3622 rtld_flags |= RT_FL_SECURE; 3623 else { 3624 if (gid == (gid_t)-1) 3625 gid = getgid(); 3626 if (egid == (gid_t)-1) 3627 egid = getegid(); 3628 if (gid != egid) 3629 rtld_flags |= RT_FL_SECURE; 3630 } 3631 } 3632 } 3633 3634 /* 3635 * Determine whether ld.so.1 itself is owned by root and has its mode setuid. 3636 */ 3637 int 3638 is_rtld_setuid() 3639 { 3640 rtld_stat_t status; 3641 const char *name; 3642 3643 if (rtld_flags2 & RT_FL2_SETUID) 3644 return (1); 3645 3646 if (interp && interp->i_name) 3647 name = interp->i_name; 3648 else 3649 name = NAME(lml_rtld.lm_head); 3650 3651 if (((rtld_stat(name, &status) == 0) && 3652 (status.st_uid == 0) && (status.st_mode & S_ISUID))) { 3653 rtld_flags2 |= RT_FL2_SETUID; 3654 return (1); 3655 } 3656 return (0); 3657 } 3658 3659 /* 3660 * Determine that systems platform name. Normally, this name is provided from 3661 * the AT_SUN_PLATFORM aux vector from the kernel. This routine provides a 3662 * fall back. 3663 */ 3664 void 3665 platform_name(Syscapset *scapset) 3666 { 3667 char info[SYS_NMLN]; 3668 size_t size; 3669 3670 if ((scapset->sc_platsz = size = 3671 sysinfo(SI_PLATFORM, info, SYS_NMLN)) == (size_t)-1) 3672 return; 3673 3674 if ((scapset->sc_plat = malloc(size)) == NULL) { 3675 scapset->sc_platsz = (size_t)-1; 3676 return; 3677 } 3678 (void) strcpy(scapset->sc_plat, info); 3679 } 3680 3681 /* 3682 * Determine that systems machine name. Normally, this name is provided from 3683 * the AT_SUN_MACHINE aux vector from the kernel. This routine provides a 3684 * fall back. 3685 */ 3686 void 3687 machine_name(Syscapset *scapset) 3688 { 3689 char info[SYS_NMLN]; 3690 size_t size; 3691 3692 if ((scapset->sc_machsz = size = 3693 sysinfo(SI_MACHINE, info, SYS_NMLN)) == (size_t)-1) 3694 return; 3695 3696 if ((scapset->sc_mach = malloc(size)) == NULL) { 3697 scapset->sc_machsz = (size_t)-1; 3698 return; 3699 } 3700 (void) strcpy(scapset->sc_mach, info); 3701 } 3702 3703 /* 3704 * _REENTRANT code gets errno redefined to a function so provide for return 3705 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3706 * is basically singled threaded. Provide the interface for our dependencies. 3707 */ 3708 #undef errno 3709 int * 3710 ___errno() 3711 { 3712 extern int errno; 3713 3714 return (&errno); 3715 } 3716 3717 /* 3718 * Determine whether a symbol name should be demangled. 3719 */ 3720 const char * 3721 demangle(const char *name) 3722 { 3723 if (rtld_flags & RT_FL_DEMANGLE) 3724 return (conv_demangle_name(name)); 3725 else 3726 return (name); 3727 } 3728 3729 #ifndef _LP64 3730 /* 3731 * Wrappers on stat() and fstat() for 32-bit rtld that uses stat64() 3732 * underneath while preserving the object size limits of a non-largefile 3733 * enabled 32-bit process. The purpose of this is to prevent large inode 3734 * values from causing stat() to fail. 3735 */ 3736 inline static int 3737 rtld_stat_process(int r, struct stat64 *lbuf, rtld_stat_t *restrict buf) 3738 { 3739 extern int errno; 3740 3741 /* 3742 * Although we used a 64-bit capable stat(), the 32-bit rtld 3743 * can only handle objects < 2GB in size. If this object is 3744 * too big, turn the success into an overflow error. 3745 */ 3746 if ((lbuf->st_size & 0xffffffff80000000) != 0) { 3747 errno = EOVERFLOW; 3748 return (-1); 3749 } 3750 3751 /* 3752 * Transfer the information needed by rtld into a rtld_stat_t 3753 * structure that preserves the non-largile types for everything 3754 * except inode. 3755 */ 3756 buf->st_dev = lbuf->st_dev; 3757 buf->st_ino = lbuf->st_ino; 3758 buf->st_mode = lbuf->st_mode; 3759 buf->st_uid = lbuf->st_uid; 3760 buf->st_size = (off_t)lbuf->st_size; 3761 buf->st_mtim = lbuf->st_mtim; 3762 #ifdef sparc 3763 buf->st_blksize = lbuf->st_blksize; 3764 #endif 3765 3766 return (r); 3767 } 3768 3769 int 3770 rtld_stat(const char *restrict path, rtld_stat_t *restrict buf) 3771 { 3772 struct stat64 lbuf; 3773 int r; 3774 3775 r = stat64(path, &lbuf); 3776 if (r != -1) 3777 r = rtld_stat_process(r, &lbuf, buf); 3778 return (r); 3779 } 3780 3781 int 3782 rtld_fstat(int fildes, rtld_stat_t *restrict buf) 3783 { 3784 struct stat64 lbuf; 3785 int r; 3786 3787 r = fstat64(fildes, &lbuf); 3788 if (r != -1) 3789 r = rtld_stat_process(r, &lbuf, buf); 3790 return (r); 3791 } 3792 #endif 3793