1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * Copyright (c) 1988 AT&T 28 * All Rights Reserved 29 */ 30 31 /* 32 * Run time linker common setup. 33 * 34 * Called from _setup to get the process going at startup. 35 */ 36 37 #include <stdlib.h> 38 #include <fcntl.h> 39 #include <stdio.h> 40 #include <sys/types.h> 41 #include <sys/stat.h> 42 #include <sys/mman.h> 43 #include <string.h> 44 #include <unistd.h> 45 #include <dlfcn.h> 46 #include <sys/sysconfig.h> 47 #include <sys/auxv.h> 48 #include <debug.h> 49 #include <conv.h> 50 #include "_rtld.h" 51 #include "_audit.h" 52 #include "_elf.h" 53 #include "_a.out.h" 54 #include "msg.h" 55 56 57 extern int _end, _edata, _etext; 58 extern void _init(void); 59 extern int _brk_unlocked(void *); 60 61 #ifndef SGS_PRE_UNIFIED_PROCESS 62 /* needed for _brk_unlocked() */ 63 void *_nd = &_end; 64 #endif 65 66 /* 67 * Counters that are incremented every time an object is mapped/unmapped. 68 * 69 * Note that exec() will usually map 2 objects before we receive control, 70 * but this can be 1 if ld.so.1 is executed directly. We count one of these 71 * here, and add another as necessary in setup(). 72 */ 73 u_longlong_t cnt_map = 1; 74 u_longlong_t cnt_unmap = 0; 75 76 77 /* 78 * Define for the executable's interpreter. 79 * Usually it is ld.so.1, but for the first release of ICL binaries 80 * it is libc.so.1. We keep this information so that we don't end 81 * up mapping libc twice if it is the interpreter. 82 */ 83 static Interp _interp; 84 85 /* 86 * LD_PRELOAD objects. 87 */ 88 static int 89 preload(const char *str, Rt_map *mlmp, Rt_map **clmp) 90 { 91 Alist *palp = NULL; 92 char *objs, *ptr, *next; 93 Word lmflags = lml_main.lm_flags; 94 int lddstub; 95 96 DBG_CALL(Dbg_util_nl(&lml_main, DBG_NL_STD)); 97 98 if ((objs = strdup(str)) == NULL) 99 return (0); 100 101 /* 102 * Determine if we've been called from lddstub. 103 */ 104 lddstub = (lmflags & LML_FLG_TRC_ENABLE) && 105 (FLAGS1(*clmp) & FL1_RT_LDDSTUB); 106 107 ptr = strtok_r(objs, MSG_ORIG(MSG_STR_DELIMIT), &next); 108 do { 109 Rt_map *nlmp = NULL; 110 uint_t flags; 111 112 DBG_CALL(Dbg_file_preload(&lml_main, ptr)); 113 114 /* 115 * Establish the flags for loading each object. If we're 116 * called via lddstub, then the first preloaded object is the 117 * object being inspected by ldd(1). This object should not be 118 * marked as an interposer, as this object is intended to act 119 * as the target object of the process. 120 */ 121 if (lddstub) 122 flags = FLG_RT_PRELOAD; 123 else 124 flags = (FLG_RT_PRELOAD | FLG_RT_OBJINTPO); 125 126 /* 127 * If this a secure application, then preload errors are 128 * reduced to warnings, as the errors are non-fatal. 129 */ 130 if (rtld_flags & RT_FL_SECURE) 131 rtld_flags2 |= RT_FL2_FTL2WARN; 132 if (expand_paths(*clmp, ptr, &palp, AL_CNT_NEEDED, 133 PD_FLG_EXTLOAD, 0) != 0) 134 nlmp = load_one(&lml_main, ALIST_OFF_DATA, palp, *clmp, 135 MODE(mlmp), flags, 0, NULL); 136 remove_alist(&palp, 0); 137 if (rtld_flags & RT_FL_SECURE) 138 rtld_flags2 &= ~RT_FL2_FTL2WARN; 139 if (nlmp && (bind_one(*clmp, nlmp, BND_NEEDED) == 0)) 140 nlmp = NULL; 141 142 if (lddstub && nlmp) { 143 lddstub = 0; 144 145 /* 146 * Fabricate a binding between the target shared object 147 * and lddstub so that the target object isn't called 148 * out from unused() processing. 149 */ 150 if (lmflags & 151 (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED)) { 152 if (bind_one(*clmp, nlmp, BND_REFER) == 0) 153 nlmp = NULL; 154 } 155 156 /* 157 * By identifying lddstub as the caller, several 158 * confusing ldd() diagnostics get suppressed. These 159 * diagnostics would reveal how the target shared object 160 * was found from lddstub. Now that the real target is 161 * loaded, identify the target as the caller so that all 162 * ldd() diagnostics are enabled for subsequent objects. 163 */ 164 if (nlmp) 165 *clmp = nlmp; 166 } 167 168 /* 169 * If no error occurred with loading this object, indicate that 170 * this link-map list contains an interposer. 171 */ 172 if (nlmp == NULL) { 173 if ((lmflags & LML_FLG_TRC_ENABLE) || 174 (rtld_flags & RT_FL_SECURE)) 175 continue; 176 else 177 return (0); 178 } 179 if (flags & FLG_RT_OBJINTPO) 180 lml_main.lm_flags |= LML_FLG_INTRPOSE; 181 182 } while ((ptr = strtok_r(NULL, 183 MSG_ORIG(MSG_STR_DELIMIT), &next)) != NULL); 184 185 free(palp); 186 free(objs); 187 return (1); 188 } 189 190 Rt_map * 191 setup(char **envp, auxv_t *auxv, Word _flags, char *_platform, int _syspagsz, 192 char *_rtldname, ulong_t ld_base, ulong_t interp_base, int fd, Phdr *phdr, 193 char *execname, char **argv, uid_t uid, uid_t euid, gid_t gid, gid_t egid, 194 void *aoutdyn, int auxflags, uint_t hwcap_1) 195 { 196 Rt_map *rlmp, *mlmp, *clmp, **tobj = NULL; 197 Ehdr *ehdr; 198 rtld_stat_t status; 199 int features = 0, ldsoexec = 0; 200 size_t eaddr, esize; 201 char *str, *argvname; 202 Word lmflags; 203 mmapobj_result_t *mpp; 204 Fdesc fdr = { 0 }, fdm = { 0 }; 205 Rej_desc rej = { 0 }; 206 APlist *ealp = NULL; 207 208 /* 209 * Now that ld.so has relocated itself, initialize our own 'environ' so 210 * as to establish an address suitable for any libc requirements. 211 */ 212 _environ = (char **)((ulong_t)auxv - sizeof (char *)); 213 _init(); 214 _environ = envp; 215 216 /* 217 * Establish a base time. Total time diagnostics start from entering 218 * ld.so.1 here, however the base time is reset each time the ld.so.1 219 * is re-entered. Note also, there will be a large time associated 220 * with the first diagnostic from ld.so.1, as bootstrapping ld.so.1 221 * and establishing the liblddbg infrastructure takes some time. 222 */ 223 (void) gettimeofday(&DBG_TOTALTIME, NULL); 224 DBG_DELTATIME = DBG_TOTALTIME; 225 226 /* 227 * Determine how ld.so.1 has been executed. 228 */ 229 if ((fd == -1) && (phdr == NULL)) { 230 /* 231 * If we received neither the AT_EXECFD nor the AT_PHDR aux 232 * vector, ld.so.1 must have been invoked directly from the 233 * command line. 234 */ 235 ldsoexec = 1; 236 237 /* 238 * AT_SUN_EXECNAME provides the most precise name, if it is 239 * available, otherwise fall back to argv[0]. At this time, 240 * there is no process name. 241 */ 242 if (execname) 243 rtldname = execname; 244 else if (argv[0]) 245 rtldname = argv[0]; 246 else 247 rtldname = (char *)MSG_INTL(MSG_STR_UNKNOWN); 248 } else { 249 /* 250 * Otherwise, we have a standard process. AT_SUN_EXECNAME 251 * provides the most precise name, if it is available, 252 * otherwise fall back to argv[0]. Provided the application 253 * is already mapped, the process is the application, so 254 * simplify the application name for use in any diagnostics. 255 */ 256 if (execname) 257 argvname = execname; 258 else if (argv[0]) 259 argvname = execname = argv[0]; 260 else 261 argvname = execname = (char *)MSG_INTL(MSG_STR_UNKNOWN); 262 263 if (fd == -1) { 264 if ((str = strrchr(argvname, '/')) != NULL) 265 procname = ++str; 266 else 267 procname = argvname; 268 } 269 270 /* 271 * At this point, we don't know the runtime linkers full path 272 * name. The _rtldname passed to us is the SONAME of the 273 * runtime linker, which is typically /lib/ld.so.1 no matter 274 * what the full path is. Use this for now, we'll reset the 275 * runtime linkers name once the application is analyzed. 276 */ 277 if (_rtldname) { 278 if ((str = strrchr(_rtldname, '/')) != NULL) 279 rtldname = ++str; 280 else 281 rtldname = _rtldname; 282 } else 283 rtldname = (char *)MSG_INTL(MSG_STR_UNKNOWN); 284 285 /* exec() brought in two objects for us. Count the second one */ 286 cnt_map++; 287 } 288 289 /* 290 * Initialize any global variables. 291 */ 292 at_flags = _flags; 293 294 if ((org_scapset->sc_plat = _platform) != NULL) 295 org_scapset->sc_platsz = strlen(_platform); 296 297 if (org_scapset->sc_plat == NULL) 298 platform_name(org_scapset); 299 if (org_scapset->sc_mach == NULL) 300 machine_name(org_scapset); 301 302 /* 303 * If pagesize is unspecified find its value. 304 */ 305 if ((syspagsz = _syspagsz) == 0) 306 syspagsz = _sysconfig(_CONFIG_PAGESIZE); 307 308 /* 309 * Add the unused portion of the last data page to the free space list. 310 * The page size must be set before doing this. Here, _end refers to 311 * the end of the runtime linkers bss. Note that we do not use the 312 * unused data pages from any included .so's to supplement this free 313 * space as badly behaved .os's may corrupt this data space, and in so 314 * doing ruin our data. 315 */ 316 eaddr = S_DROUND((size_t)&_end); 317 esize = eaddr % syspagsz; 318 if (esize) { 319 esize = syspagsz - esize; 320 addfree((void *)eaddr, esize); 321 } 322 323 /* 324 * Establish initial link-map list flags, and link-map list alists. 325 */ 326 if (alist_append(&lml_main.lm_lists, NULL, sizeof (Lm_cntl), 327 AL_CNT_LMLISTS) == NULL) 328 return (0); 329 lml_main.lm_flags |= LML_FLG_BASELM; 330 lml_main.lm_lmid = LM_ID_BASE; 331 lml_main.lm_lmidstr = (char *)MSG_ORIG(MSG_LMID_BASE); 332 333 if (alist_append(&lml_rtld.lm_lists, NULL, sizeof (Lm_cntl), 334 AL_CNT_LMLISTS) == NULL) 335 return (0); 336 lml_rtld.lm_flags |= (LML_FLG_RTLDLM | LML_FLG_HOLDLOCK); 337 lml_rtld.lm_tflags |= LML_TFLG_NOAUDIT; 338 lml_rtld.lm_lmid = LM_ID_LDSO; 339 lml_rtld.lm_lmidstr = (char *)MSG_ORIG(MSG_LMID_LDSO); 340 341 /* 342 * Determine whether we have a secure executable. 343 */ 344 security(uid, euid, gid, egid, auxflags); 345 346 /* 347 * Make an initial pass of environment variables to pick off those 348 * related to locale processing. At the same time, collect and save 349 * any LD_XXXX variables for later processing. Note that this later 350 * processing will be skipped if ld.so.1 is invoked from the command 351 * line with -e LD_NOENVIRON. 352 */ 353 if (envp && (readenv_user((const char **)envp, &ealp) == 1)) 354 return (0); 355 356 /* 357 * If ld.so.1 has been invoked directly, process its arguments. 358 */ 359 if (ldsoexec) { 360 /* 361 * Process any arguments that are specific to ld.so.1, and 362 * reorganize the process stack to effectively remove ld.so.1 363 * from the stack. Reinitialize the environment pointer, as 364 * this pointer may have been shifted after skipping ld.so.1's 365 * arguments. 366 */ 367 if (rtld_getopt(argv, &envp, &auxv, &(lml_main.lm_flags), 368 &(lml_main.lm_tflags), (aoutdyn != 0)) == 1) { 369 eprintf(&lml_main, ERR_NONE, MSG_INTL(MSG_USG_BADOPT)); 370 return (0); 371 } 372 _environ = envp; 373 374 /* 375 * Open the object that ld.so.1 is to execute. 376 */ 377 argvname = execname = argv[0]; 378 379 if ((fd = open(argvname, O_RDONLY)) == -1) { 380 int err = errno; 381 eprintf(&lml_main, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 382 argvname, strerror(err)); 383 return (0); 384 } 385 } 386 387 /* 388 * Having processed any ld.so.1 command line options, return to process 389 * any LD_XXXX environment variables. 390 */ 391 if (ealp) { 392 if (((rtld_flags & RT_FL_NOENVIRON) == 0) && 393 (procenv_user(ealp, &(lml_main.lm_flags), 394 &(lml_main.lm_tflags), (aoutdyn != 0)) == 1)) 395 return (0); 396 free(ealp); 397 } 398 399 /* 400 * Initialize a hardware capability descriptor for use in comparing 401 * each loaded object. The aux vector must provide AF_SUN_HWCAPVERIFY, 402 * as prior to this setting any hardware capabilities that were found 403 * could not be relied upon. 404 */ 405 if (auxflags & AF_SUN_HWCAPVERIFY) { 406 rtld_flags2 |= RT_FL2_HWCAP; 407 org_scapset->sc_hw_1 = (Xword)hwcap_1; 408 } 409 410 /* 411 * Create a mapping descriptor for ld.so.1. We can determine our 412 * two segments information from known symbols. 413 */ 414 if ((mpp = calloc(2, sizeof (mmapobj_result_t))) == NULL) 415 return (0); 416 mpp[0].mr_addr = (caddr_t)M_PTRUNC(ld_base); 417 mpp[0].mr_msize = (caddr_t)&_etext - mpp[0].mr_addr; 418 mpp[0].mr_fsize = mpp[0].mr_msize; 419 mpp[0].mr_prot = (PROT_READ | PROT_EXEC); 420 421 mpp[1].mr_addr = (caddr_t)M_PTRUNC((uintptr_t)&r_debug); 422 mpp[1].mr_msize = (caddr_t)&_end - mpp[1].mr_addr; 423 mpp[1].mr_fsize = (caddr_t)&_edata - mpp[1].mr_addr; 424 mpp[1].mr_prot = (PROT_READ | PROT_WRITE | PROT_EXEC); 425 426 if ((fdr.fd_nname = stravl_insert(_rtldname, 0, 0, 0)) == NULL) 427 return (0); 428 if ((rlmp = elf_new_lmp(&lml_rtld, ALIST_OFF_DATA, &fdr, 429 (Addr)mpp->mr_addr, (size_t)((uintptr_t)eaddr - (uintptr_t)ld_base), 430 NULL, NULL, NULL)) == NULL) 431 return (0); 432 433 MMAPS(rlmp) = mpp; 434 MMAPCNT(rlmp) = 2; 435 PADSTART(rlmp) = (ulong_t)mpp[0].mr_addr; 436 PADIMLEN(rlmp) = (ulong_t)mpp[0].mr_addr + (ulong_t)mpp[1].mr_addr + 437 (ulong_t)mpp[1].mr_msize; 438 439 MODE(rlmp) |= (RTLD_LAZY | RTLD_NODELETE | RTLD_GLOBAL | RTLD_WORLD); 440 FLAGS(rlmp) |= (FLG_RT_ANALYZED | FLG_RT_RELOCED | FLG_RT_INITDONE | 441 FLG_RT_INITCLCT | FLG_RT_FINICLCT | FLG_RT_MODESET); 442 443 /* 444 * Initialize the runtime linkers information. 445 */ 446 interp = &_interp; 447 interp->i_name = (char *)rtldname; 448 interp->i_faddr = (caddr_t)ADDR(rlmp); 449 ldso_plt_init(rlmp); 450 451 /* 452 * Map in the file, if exec has not already done so, or if the file 453 * was passed as an argument to an explicit execution of ld.so.1 from 454 * the command line. 455 */ 456 if (fd != -1) { 457 /* 458 * Map the file. Once the object is mapped we no longer need 459 * the file descriptor. 460 */ 461 (void) rtld_fstat(fd, &status); 462 fdm.fd_oname = argvname; 463 fdm.fd_ftp = map_obj(&lml_main, &fdm, status.st_size, argvname, 464 fd, &rej); 465 (void) close(fd); 466 467 if (fdm.fd_ftp == NULL) { 468 Conv_reject_desc_buf_t rej_buf; 469 470 eprintf(&lml_main, ERR_FATAL, 471 MSG_INTL(err_reject[rej.rej_type]), argvname, 472 conv_reject_desc(&rej, &rej_buf, M_MACH)); 473 return (0); 474 } 475 476 /* 477 * Finish processing the loading of the file. 478 */ 479 if ((fdm.fd_nname = stravl_insert(argvname, 0, 0, 0)) == NULL) 480 return (0); 481 fdm.fd_dev = status.st_dev; 482 fdm.fd_ino = status.st_ino; 483 484 if ((mlmp = load_file(&lml_main, ALIST_OFF_DATA, NULL, &fdm, 485 NULL)) == NULL) 486 return (0); 487 488 /* 489 * We now have a process name for error diagnostics. 490 */ 491 if ((str = strrchr(argvname, '/')) != NULL) 492 procname = ++str; 493 else 494 procname = argvname; 495 496 if (ldsoexec) { 497 mmapobj_result_t *mpp = MMAPS(mlmp); 498 uint_t mnum, mapnum = MMAPCNT(mlmp); 499 void *brkbase = NULL; 500 501 /* 502 * Since ld.so.1 was the primary executed object - the 503 * brk() base has not yet been initialized, we need to 504 * initialize it. For an executable, initialize it to 505 * the end of the object. For a shared object (ET_DYN) 506 * initialize it to the first page in memory. 507 */ 508 for (mnum = 0; mnum < mapnum; mnum++, mpp++) 509 brkbase = mpp->mr_addr + mpp->mr_msize; 510 511 if (brkbase == NULL) 512 brkbase = (void *)syspagsz; 513 514 if (_brk_unlocked(brkbase) == -1) { 515 int err = errno; 516 517 eprintf(&lml_main, ERR_FATAL, 518 MSG_INTL(MSG_SYS_BRK), argvname, 519 strerror(err)); 520 return (0); 521 } 522 } 523 } else { 524 /* 525 * Set up function ptr and arguments according to the type 526 * of file class the executable is. (Currently only supported 527 * types are ELF and a.out format.) Then create a link map 528 * for the executable. 529 */ 530 if (aoutdyn) { 531 #ifdef A_OUT 532 mmapobj_result_t *mpp; 533 534 /* 535 * Create a mapping structure sufficient to describe 536 * a single two segments. The ADDR() of the a.out is 537 * established as 0, which is required but the AOUT 538 * relocation code. 539 */ 540 if ((mpp = 541 calloc(sizeof (mmapobj_result_t), 2)) == NULL) 542 return (0); 543 544 if ((fdm.fd_nname = 545 stravl_insert(execname, 0, 0, 0)) == NULL) 546 return (0); 547 if ((mlmp = aout_new_lmp(&lml_main, ALIST_OFF_DATA, 548 &fdm, 0, 0, aoutdyn, NULL, NULL)) == NULL) 549 return (0); 550 551 /* 552 * Establish the true mapping information for the a.out. 553 */ 554 if (aout_get_mmap(&lml_main, mpp)) { 555 free(mpp); 556 return (0); 557 } 558 559 MSIZE(mlmp) = 560 (size_t)(mpp[1].mr_addr + mpp[1].mr_msize) - 561 S_ALIGN((size_t)mpp[0].mr_addr, syspagsz); 562 MMAPS(mlmp) = mpp; 563 MMAPCNT(mlmp) = 2; 564 PADSTART(mlmp) = (ulong_t)mpp->mr_addr; 565 PADIMLEN(mlmp) = mpp->mr_msize; 566 567 /* 568 * Disable any object configuration cache (BCP apps 569 * bring in sbcp which can benefit from any object 570 * cache, but both the app and sbcp can't use the same 571 * objects). 572 */ 573 rtld_flags |= RT_FL_NOOBJALT; 574 575 /* 576 * Make sure no-direct bindings are in effect. 577 */ 578 lml_main.lm_tflags |= LML_TFLG_NODIRECT; 579 #else 580 eprintf(&lml_main, ERR_FATAL, 581 MSG_INTL(MSG_ERR_REJ_UNKFILE), argvname); 582 return (0); 583 #endif 584 } else if (phdr) { 585 Phdr *pptr; 586 Off i_offset = 0; 587 Addr base = 0; 588 ulong_t phsize; 589 mmapobj_result_t *mpp, *fmpp, *hmpp = NULL; 590 uint_t mapnum = 0; 591 int i; 592 size_t msize; 593 594 /* 595 * Using the executables phdr address determine the base 596 * address of the input file. NOTE, this assumes the 597 * program headers and elf header are part of the same 598 * mapped segment. Although this has held for many 599 * years now, it might be more flexible if the kernel 600 * gave use the ELF headers start address, rather than 601 * the Program headers. 602 * 603 * Determine from the ELF header if we're been called 604 * from a shared object or dynamic executable. If the 605 * latter, then any addresses within the object are used 606 * as is. Addresses within shared objects must be added 607 * to the process's base address. 608 */ 609 ehdr = (Ehdr *)((Addr)phdr - phdr->p_offset); 610 phsize = ehdr->e_phentsize; 611 if (ehdr->e_type == ET_DYN) 612 base = (Addr)ehdr; 613 614 /* 615 * Allocate a mapping array to retain mapped segment 616 * information. 617 */ 618 if ((fmpp = mpp = calloc(ehdr->e_phnum, 619 sizeof (mmapobj_result_t))) == NULL) 620 return (0); 621 622 /* 623 * Extract the needed information from the segment 624 * headers. 625 */ 626 for (i = 0, pptr = phdr; i < ehdr->e_phnum; i++) { 627 if (pptr->p_type == PT_INTERP) { 628 i_offset = pptr->p_offset; 629 interp->i_faddr = 630 (caddr_t)interp_base; 631 } 632 if ((pptr->p_type == PT_LOAD) && 633 (pptr->p_filesz || pptr->p_memsz)) { 634 int perm = (PROT_READ | PROT_EXEC); 635 size_t off; 636 637 if (i_offset && pptr->p_filesz && 638 (i_offset >= pptr->p_offset) && 639 (i_offset <= 640 (pptr->p_memsz + pptr->p_offset))) { 641 interp->i_name = (char *) 642 pptr->p_vaddr + i_offset - 643 pptr->p_offset + base; 644 i_offset = 0; 645 } 646 647 if (pptr->p_flags & PF_W) 648 perm |= PROT_WRITE; 649 650 /* 651 * Retain segments mapping info. Round 652 * each segment to a page boundary, as 653 * this insures addresses are suitable 654 * for mprotect() if required. 655 */ 656 off = pptr->p_vaddr + base; 657 if (hmpp == NULL) { 658 hmpp = mpp; 659 mpp->mr_addr = (caddr_t)ehdr; 660 } else 661 mpp->mr_addr = (caddr_t)off; 662 663 off -= (size_t)(uintptr_t)mpp->mr_addr; 664 mpp->mr_msize = pptr->p_memsz + off; 665 mpp->mr_fsize = pptr->p_filesz + off; 666 mpp->mr_prot = perm; 667 668 mpp++, mapnum++; 669 } 670 671 pptr = (Phdr *)((ulong_t)pptr + phsize); 672 } 673 674 mpp--; 675 msize = (size_t)(mpp->mr_addr + mpp->mr_msize) - 676 S_ALIGN((size_t)fmpp->mr_addr, syspagsz); 677 678 if ((fdm.fd_nname = 679 stravl_insert(execname, 0, 0, 0)) == NULL) 680 return (0); 681 if ((mlmp = elf_new_lmp(&lml_main, ALIST_OFF_DATA, 682 &fdm, (Addr)hmpp->mr_addr, msize, 683 NULL, NULL, NULL)) == NULL) 684 return (0); 685 686 MMAPS(mlmp) = fmpp; 687 MMAPCNT(mlmp) = mapnum; 688 PADSTART(mlmp) = (ulong_t)fmpp->mr_addr; 689 PADIMLEN(mlmp) = (ulong_t)fmpp->mr_addr + 690 (ulong_t)mpp->mr_addr + (ulong_t)mpp->mr_msize; 691 } 692 } 693 694 /* 695 * Establish the interpretors name as that defined within the initial 696 * object (executable). This provides for ORIGIN processing of ld.so.1 697 * dependencies. Note, the NAME() of the object remains that which was 698 * passed to us as the SONAME on execution. 699 */ 700 if (ldsoexec == 0) { 701 size_t len = strlen(interp->i_name); 702 703 if (expand(&interp->i_name, &len, 0, 0, 704 (PD_TKN_ISALIST | PD_TKN_CAP), rlmp) & PD_TKN_RESOLVED) 705 fdr.fd_flags |= FLG_FD_RESOLVED; 706 } 707 fdr.fd_pname = interp->i_name; 708 (void) fullpath(rlmp, &fdr); 709 710 /* 711 * The runtime linker acts as a filtee for various dl*() functions that 712 * are defined in libc (and libdl). Make sure this standard name for 713 * the runtime linker is also registered in the FullPathNode AVL tree. 714 */ 715 (void) fpavl_insert(&lml_rtld, rlmp, _rtldname, 0); 716 717 /* 718 * Having established the true runtime linkers name, simplify the name 719 * for error diagnostics. 720 */ 721 if ((str = strrchr(PATHNAME(rlmp), '/')) != NULL) 722 rtldname = ++str; 723 else 724 rtldname = PATHNAME(rlmp); 725 726 /* 727 * Expand the fullpath name of the application. This typically occurs 728 * as a part of loading an object, but as the kernel probably mapped 729 * it in, complete this processing now. 730 */ 731 (void) fullpath(mlmp, 0); 732 733 /* 734 * Some troublesome programs will change the value of argv[0]. Dupping 735 * the process string protects us, and insures the string is left in 736 * any core files. 737 */ 738 if ((str = (char *)strdup(procname)) == NULL) 739 return (0); 740 procname = str; 741 742 FLAGS(mlmp) |= (FLG_RT_ISMAIN | FLG_RT_MODESET); 743 FLAGS1(mlmp) |= FL1_RT_USED; 744 745 /* 746 * It's the responsibility of MAIN(crt0) to call it's _init and _fini 747 * section, therefore null out any INIT/FINI so that this object isn't 748 * collected during tsort processing. And, if the application has no 749 * initarray or finiarray we can economize on establishing bindings. 750 */ 751 INIT(mlmp) = FINI(mlmp) = NULL; 752 if ((INITARRAY(mlmp) == NULL) && (FINIARRAY(mlmp) == NULL)) 753 FLAGS1(mlmp) |= FL1_RT_NOINIFIN; 754 755 /* 756 * Identify lddstub if necessary. 757 */ 758 if (lml_main.lm_flags & LML_FLG_TRC_LDDSTUB) 759 FLAGS1(mlmp) |= FL1_RT_LDDSTUB; 760 761 /* 762 * Retain our argument information for use in dlinfo. 763 */ 764 argsinfo.dla_argv = argv--; 765 argsinfo.dla_argc = (long)*argv; 766 argsinfo.dla_envp = envp; 767 argsinfo.dla_auxv = auxv; 768 769 (void) enter(0); 770 771 /* 772 * Add our two main link-maps to the dynlm_list 773 */ 774 if (aplist_append(&dynlm_list, &lml_main, AL_CNT_DYNLIST) == NULL) 775 return (0); 776 777 if (aplist_append(&dynlm_list, &lml_rtld, AL_CNT_DYNLIST) == NULL) 778 return (0); 779 780 /* 781 * Reset the link-map counts for both lists. The init count is used to 782 * track how many objects have pending init sections, this gets incre- 783 * mented each time an object is relocated. Since ld.so.1 relocates 784 * itself, it's init count will remain zero. 785 * The object count is used to track how many objects have pending fini 786 * sections, as ld.so.1 handles its own fini we can zero its count. 787 */ 788 lml_main.lm_obj = 1; 789 lml_rtld.lm_obj = 0; 790 791 /* 792 * Initialize debugger information structure. Some parts of this 793 * structure were initialized statically. 794 */ 795 r_debug.rtd_rdebug.r_map = (Link_map *)lml_main.lm_head; 796 r_debug.rtd_rdebug.r_ldsomap = (Link_map *)lml_rtld.lm_head; 797 r_debug.rtd_rdebug.r_ldbase = r_debug.rtd_rdebug.r_ldsomap->l_addr; 798 r_debug.rtd_dynlmlst = &dynlm_list; 799 800 /* 801 * Determine the dev/inode information for the executable to complete 802 * load_so() checking for those who might dlopen(a.out). 803 */ 804 if (rtld_stat(PATHNAME(mlmp), &status) == 0) { 805 STDEV(mlmp) = status.st_dev; 806 STINO(mlmp) = status.st_ino; 807 } 808 809 /* 810 * Initialize any configuration information. 811 */ 812 if (!(rtld_flags & RT_FL_NOCFG)) { 813 if ((features = elf_config(mlmp, (aoutdyn != 0))) == -1) 814 return (0); 815 } 816 817 #if defined(_ELF64) 818 /* 819 * If this is a 64-bit process, determine whether this process has 820 * restricted the process address space to 32-bits. Any dependencies 821 * that are restricted to a 32-bit address space can only be loaded if 822 * the executable has established this requirement. 823 */ 824 if (CAPSET(mlmp).sc_sf_1 & SF1_SUNW_ADDR32) 825 rtld_flags2 |= RT_FL2_ADDR32; 826 #endif 827 /* 828 * Establish any alternative capabilities, and validate this object 829 * if it defines it's own capabilities information. 830 */ 831 if (cap_alternative() == 0) 832 return (0); 833 834 if (cap_check_lmp(mlmp, &rej) == 0) { 835 if (lml_main.lm_flags & LML_FLG_TRC_ENABLE) { 836 /* LINTED */ 837 (void) printf(MSG_INTL(ldd_warn[rej.rej_type]), 838 NAME(mlmp), rej.rej_str); 839 } else { 840 /* LINTED */ 841 eprintf(&lml_main, ERR_FATAL, 842 MSG_INTL(err_reject[rej.rej_type]), 843 NAME(mlmp), rej.rej_str); 844 return (0); 845 } 846 } 847 848 /* 849 * Establish the modes of the initial object. These modes are 850 * propagated to any preloaded objects and explicit shared library 851 * dependencies. 852 * 853 * If we're generating a configuration file using crle(1), remove 854 * any RTLD_NOW use, as we don't want to trigger any relocation proc- 855 * essing during crle(1)'s first past (this would just be unnecessary 856 * overhead). Any filters are explicitly loaded, and thus RTLD_NOW is 857 * not required to trigger filter loading. 858 * 859 * Note, RTLD_NOW may have been established during analysis of the 860 * application had the application been built -z now. 861 */ 862 MODE(mlmp) |= (RTLD_NODELETE | RTLD_GLOBAL | RTLD_WORLD); 863 864 if (rtld_flags & RT_FL_CONFGEN) { 865 MODE(mlmp) |= RTLD_CONFGEN; 866 MODE(mlmp) &= ~RTLD_NOW; 867 rtld_flags2 &= ~RT_FL2_BINDNOW; 868 } 869 870 if ((MODE(mlmp) & RTLD_NOW) == 0) { 871 if (rtld_flags2 & RT_FL2_BINDNOW) 872 MODE(mlmp) |= RTLD_NOW; 873 else 874 MODE(mlmp) |= RTLD_LAZY; 875 } 876 877 /* 878 * If debugging was requested initialize things now that any cache has 879 * been established. A user can specify LD_DEBUG=help to discover the 880 * list of debugging tokens available without running the application. 881 * However, don't allow this setting from a configuration file. 882 * 883 * Note, to prevent recursion issues caused by loading and binding the 884 * debugging libraries themselves, a local debugging descriptor is 885 * initialized. Once the debugging setup has completed, this local 886 * descriptor is copied to the global descriptor which effectively 887 * enables diagnostic output. 888 * 889 * Ignore any debugging request if we're being monitored by a process 890 * that expects the old getpid() initialization handshake. 891 */ 892 if ((rpl_debug || prm_debug) && ((rtld_flags & RT_FL_DEBUGGER) == 0)) { 893 Dbg_desc _dbg_desc = {0}; 894 struct timeval total = DBG_TOTALTIME; 895 struct timeval delta = DBG_DELTATIME; 896 897 if (rpl_debug) { 898 if (dbg_setup(rpl_debug, &_dbg_desc) == 0) 899 return (0); 900 if (_dbg_desc.d_extra & DBG_E_HELP_EXIT) 901 rtldexit(&lml_main, 0); 902 } 903 if (prm_debug) 904 (void) dbg_setup(prm_debug, &_dbg_desc); 905 906 *dbg_desc = _dbg_desc; 907 DBG_TOTALTIME = total; 908 DBG_DELTATIME = delta; 909 } 910 911 /* 912 * Now that debugging is enabled generate any diagnostics from any 913 * previous events. 914 */ 915 if (DBG_ENABLED) { 916 DBG_CALL(Dbg_cap_val(&lml_main, org_scapset, alt_scapset, 917 M_MACH)); 918 DBG_CALL(Dbg_file_config_dis(&lml_main, config->c_name, 919 features)); 920 921 DBG_CALL(Dbg_file_ldso(rlmp, envp, auxv, 922 LIST(rlmp)->lm_lmidstr, ALIST_OFF_DATA)); 923 924 if (THIS_IS_ELF(mlmp)) { 925 DBG_CALL(Dbg_file_elf(&lml_main, PATHNAME(mlmp), 926 ADDR(mlmp), MSIZE(mlmp), LIST(mlmp)->lm_lmidstr, 927 ALIST_OFF_DATA)); 928 } else { 929 DBG_CALL(Dbg_file_aout(&lml_main, PATHNAME(mlmp), 930 ADDR(mlmp), MSIZE(mlmp), LIST(mlmp)->lm_lmidstr, 931 ALIST_OFF_DATA)); 932 } 933 } 934 935 /* 936 * Enable auditing. 937 */ 938 if (rpl_audit || prm_audit || profile_lib) { 939 int ndx; 940 const char *aud[3]; 941 942 aud[0] = rpl_audit; 943 aud[1] = prm_audit; 944 aud[2] = profile_lib; 945 946 /* 947 * Any global auditing (set using LD_AUDIT or LD_PROFILE) that 948 * can't be established is non-fatal. 949 */ 950 if ((auditors = calloc(1, sizeof (Audit_desc))) == NULL) 951 return (0); 952 953 for (ndx = 0; ndx < 3; ndx++) { 954 if (aud[ndx]) { 955 if ((auditors->ad_name = 956 strdup(aud[ndx])) == NULL) 957 return (0); 958 rtld_flags2 |= RT_FL2_FTL2WARN; 959 (void) audit_setup(mlmp, auditors, 960 PD_FLG_EXTLOAD, NULL); 961 rtld_flags2 &= ~RT_FL2_FTL2WARN; 962 } 963 } 964 lml_main.lm_tflags |= auditors->ad_flags; 965 } 966 if (AUDITORS(mlmp)) { 967 /* 968 * Any object required auditing (set with a DT_DEPAUDIT dynamic 969 * entry) that can't be established is fatal. 970 */ 971 if (FLAGS1(mlmp) & FL1_RT_GLOBAUD) { 972 /* 973 * If this object requires global auditing, use the 974 * local auditing information to set the global 975 * auditing descriptor. The effect is that a 976 * DT_DEPAUDIT act as an LD_AUDIT. 977 */ 978 if ((auditors == NULL) && ((auditors = calloc(1, 979 sizeof (Audit_desc))) == NULL)) 980 return (0); 981 982 auditors->ad_name = AUDITORS(mlmp)->ad_name; 983 if (audit_setup(mlmp, auditors, 0, NULL) == 0) 984 return (0); 985 lml_main.lm_tflags |= auditors->ad_flags; 986 987 /* 988 * Clear the local auditor information. 989 */ 990 free((void *) AUDITORS(mlmp)); 991 AUDITORS(mlmp) = NULL; 992 993 } else { 994 /* 995 * Establish any local auditing. 996 */ 997 if (audit_setup(mlmp, AUDITORS(mlmp), 0, NULL) == 0) 998 return (0); 999 1000 AFLAGS(mlmp) |= AUDITORS(mlmp)->ad_flags; 1001 lml_main.lm_flags |= LML_FLG_LOCAUDIT; 1002 } 1003 } 1004 1005 /* 1006 * Explicitly add the initial object and ld.so.1 to those objects being 1007 * audited. Note, although the ld.so.1 link-map isn't auditable, 1008 * establish a cookie for ld.so.1 as this may be bound to via the 1009 * dl*() family. 1010 */ 1011 if ((lml_main.lm_tflags | AFLAGS(mlmp)) & LML_TFLG_AUD_MASK) { 1012 if (((audit_objopen(mlmp, mlmp) == 0) || 1013 (audit_objopen(mlmp, rlmp) == 0)) && 1014 (AFLAGS(mlmp) & LML_TFLG_AUD_MASK)) 1015 return (0); 1016 } 1017 1018 /* 1019 * Map in any preloadable shared objects. Establish the caller as the 1020 * head of the main link-map list. In the case of being exercised from 1021 * lddstub, the caller gets reassigned to the first target shared object 1022 * so as to provide intuitive diagnostics from ldd(). 1023 * 1024 * Note, it is valid to preload a 4.x shared object with a 5.0 1025 * executable (or visa-versa), as this functionality is required by 1026 * ldd(1). 1027 */ 1028 clmp = mlmp; 1029 if (rpl_preload && (preload(rpl_preload, mlmp, &clmp) == 0)) 1030 return (0); 1031 if (prm_preload && (preload(prm_preload, mlmp, &clmp) == 0)) 1032 return (0); 1033 1034 /* 1035 * Load all dependent (needed) objects. 1036 */ 1037 if (analyze_lmc(&lml_main, ALIST_OFF_DATA, mlmp, mlmp, NULL) == NULL) 1038 return (0); 1039 1040 /* 1041 * Relocate all the dependencies we've just added. 1042 * 1043 * If this process has been established via crle(1), the environment 1044 * variable LD_CONFGEN will have been set. crle(1) may create this 1045 * process twice. The first time crle only needs to gather dependency 1046 * information. The second time, is to dldump() the images. 1047 * 1048 * If we're only gathering dependencies, relocation is unnecessary. 1049 * As crle(1) may be building an arbitrary family of objects, they may 1050 * not fully relocate either. Hence the relocation phase is not carried 1051 * out now, but will be called by crle(1) once all objects have been 1052 * loaded. 1053 */ 1054 if ((rtld_flags & RT_FL_CONFGEN) == 0) { 1055 1056 DBG_CALL(Dbg_util_nl(&lml_main, DBG_NL_STD)); 1057 1058 if (relocate_lmc(&lml_main, ALIST_OFF_DATA, mlmp, 1059 mlmp, NULL) == 0) 1060 return (0); 1061 1062 /* 1063 * Inform the debuggers that basic process initialization is 1064 * complete, and that the state of ld.so.1 (link-map lists, 1065 * etc.) is stable. This handshake enables the debugger to 1066 * initialize themselves, and consequently allows the user to 1067 * set break points in .init code. 1068 * 1069 * Most new debuggers use librtld_db to monitor activity events. 1070 * Older debuggers indicated their presence by setting the 1071 * DT_DEBUG entry in the dynamic executable (see elf_new_lm()). 1072 * In this case, getpid() is called so that the debugger can 1073 * catch the system call. This old mechanism has some 1074 * restrictions, as getpid() should not be called prior to 1075 * basic process initialization being completed. This 1076 * restriction has become increasingly difficult to maintain, 1077 * as the use of auditors, LD_DEBUG, and the initialization 1078 * handshake with libc can result in "premature" getpid() 1079 * calls. The use of this getpid() handshake is expected to 1080 * disappear at some point in the future, and there is intent 1081 * to work towards that goal. 1082 */ 1083 rd_event(&lml_main, RD_DLACTIVITY, RT_CONSISTENT); 1084 rd_event(&lml_rtld, RD_DLACTIVITY, RT_CONSISTENT); 1085 1086 if (rtld_flags & RT_FL_DEBUGGER) { 1087 r_debug.rtd_rdebug.r_flags |= RD_FL_ODBG; 1088 (void) getpid(); 1089 } 1090 } 1091 1092 /* 1093 * Indicate preinit activity, and call any auditing routines. These 1094 * routines are called before initializing any threads via libc, or 1095 * before collecting the complete set of .inits on the primary link-map. 1096 * Although most libc interfaces are encapsulated in local routines 1097 * within libc, they have been known to escape (ie. call a .plt). As 1098 * the appcert auditor uses preinit as a trigger to establish some 1099 * external interfaces to the main link-maps libc, we need to activate 1100 * this trigger before exercising any code within libc. Additionally, 1101 * I wouldn't put it past an auditor to add additional objects to the 1102 * primary link-map. Hence, we collect .inits after the audit call. 1103 */ 1104 rd_event(&lml_main, RD_PREINIT, 0); 1105 1106 if (aud_activity || 1107 ((lml_main.lm_tflags | AFLAGS(mlmp)) & LML_TFLG_AUD_ACTIVITY)) 1108 audit_activity(mlmp, LA_ACT_CONSISTENT); 1109 if (aud_preinit || 1110 ((lml_main.lm_tflags | AFLAGS(mlmp)) & LML_TFLG_AUD_PREINIT)) 1111 audit_preinit(mlmp); 1112 1113 /* 1114 * If we're creating initial configuration information, we're done 1115 * now that the auditing step has been called. 1116 */ 1117 if (rtld_flags & RT_FL_CONFGEN) { 1118 leave(LIST(mlmp), 0); 1119 return (mlmp); 1120 } 1121 1122 /* 1123 * Sort the .init sections of all objects we've added. If we're 1124 * tracing we only need to execute this under ldd(1) with the -i or -u 1125 * options. 1126 */ 1127 lmflags = lml_main.lm_flags; 1128 if (((lmflags & LML_FLG_TRC_ENABLE) == 0) || 1129 (lmflags & (LML_FLG_TRC_INIT | LML_FLG_TRC_UNREF))) { 1130 if ((tobj = tsort(mlmp, LIST(mlmp)->lm_init, 1131 RT_SORT_REV)) == (Rt_map **)S_ERROR) 1132 return (0); 1133 } 1134 1135 /* 1136 * If we are tracing we're done. This is the one legitimate use of a 1137 * direct call to rtldexit() rather than return, as we don't want to 1138 * return and jump to the application. 1139 */ 1140 if (lmflags & LML_FLG_TRC_ENABLE) { 1141 unused(&lml_main); 1142 rtldexit(&lml_main, 0); 1143 } 1144 1145 /* 1146 * Check if this instance of the linker should have a primary link 1147 * map. This flag allows multiple copies of the -same- -version- 1148 * of the linker (and libc) to run in the same address space. 1149 * 1150 * Without this flag we only support one copy of the linker in a 1151 * process because by default the linker will always try to 1152 * initialize at one primary link map The copy of libc which is 1153 * initialized on a primary link map will initialize global TLS 1154 * data which can be shared with other copies of libc in the 1155 * process. The problem is that if there is more than one copy 1156 * of the linker, only one copy should link libc onto a primary 1157 * link map, otherwise libc will attempt to re-initialize global 1158 * TLS data. So when a copy of the linker is loaded with this 1159 * flag set, it will not initialize any primary link maps since 1160 * presumably another copy of the linker will do this. 1161 * 1162 * Note that this flag only allows multiple copies of the -same- 1163 * -version- of the linker (and libc) to coexist. This approach 1164 * will not work if we are trying to load different versions of 1165 * the linker and libc into the same process. The reason for 1166 * this is that the format of the global TLS data may not be 1167 * the same for different versions of libc. In this case each 1168 * different version of libc must have it's own primary link map 1169 * and be able to maintain it's own TLS data. The only way this 1170 * can be done is by carefully managing TLS pointers on transitions 1171 * between code associated with each of the different linkers. 1172 * Note that this is actually what is done for processes in lx 1173 * branded zones. Although in the lx branded zone case, the 1174 * other linker and libc are actually gld and glibc. But the 1175 * same general TLS management mechanism used by the lx brand 1176 * would apply to any attempts to run multiple versions of the 1177 * solaris linker and libc in a single process. 1178 */ 1179 if (auxflags & AF_SUN_NOPLM) 1180 rtld_flags2 |= RT_FL2_NOPLM; 1181 1182 /* 1183 * Establish any static TLS for this primary link-map. Note, regardless 1184 * of whether TLS is available, an initial handshake occurs with libc to 1185 * indicate we're processing the primary link-map. Having identified 1186 * the primary link-map, initialize threads. 1187 */ 1188 if (rt_get_extern(&lml_main, mlmp) == 0) 1189 return (0); 1190 1191 if ((rtld_flags2 & RT_FL2_NOPLM) == 0) { 1192 if (tls_statmod(&lml_main, mlmp) == 0) 1193 return (0); 1194 rt_thr_init(&lml_main); 1195 rtld_flags2 |= RT_FL2_PLMSETUP; 1196 } else { 1197 rt_thr_init(&lml_main); 1198 } 1199 1200 /* 1201 * Fire all dependencies .init sections. Identify any unused 1202 * dependencies, and leave the runtime linker - effectively calling 1203 * the dynamic executables entry point. 1204 */ 1205 call_array(PREINITARRAY(mlmp), (uint_t)PREINITARRAYSZ(mlmp), mlmp, 1206 SHT_PREINIT_ARRAY); 1207 1208 if (tobj) 1209 call_init(tobj, DBG_INIT_SORT); 1210 1211 rd_event(&lml_main, RD_POSTINIT, 0); 1212 1213 unused(&lml_main); 1214 1215 DBG_CALL(Dbg_util_call_main(mlmp)); 1216 1217 rtld_flags |= (RT_FL_OPERATION | RT_FL_APPLIC); 1218 1219 leave(LIST(mlmp), 0); 1220 1221 return (mlmp); 1222 } 1223