xref: /illumos-gate/usr/src/cmd/sgs/rtld/common/setup.c (revision 153f3212c5a48deec74be10ba87dd04bc99edbbb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  *	Copyright (c) 1988 AT&T
28  *	  All Rights Reserved
29  */
30 /*
31  * Copyright (c) 2012, Joyent, Inc.  All rights reserved.
32  */
33 
34 /*
35  * Run time linker common setup.
36  *
37  * Called from _setup to get the process going at startup.
38  */
39 
40 #include	<stdlib.h>
41 #include	<fcntl.h>
42 #include	<stdio.h>
43 #include	<sys/types.h>
44 #include	<sys/stat.h>
45 #include	<sys/mman.h>
46 #include	<string.h>
47 #include	<unistd.h>
48 #include	<dlfcn.h>
49 #include	<sys/sysconfig.h>
50 #include	<sys/auxv.h>
51 #include	<debug.h>
52 #include	<conv.h>
53 #include	"_rtld.h"
54 #include	"_audit.h"
55 #include	"_elf.h"
56 #include	"msg.h"
57 
58 
59 extern int	_end, _edata, _etext;
60 extern void	_init(void);
61 extern int	_brk_unlocked(void *);
62 
63 /* needed for _brk_unlocked() */
64 void *_nd = &_end;
65 
66 /*
67  * Counters that are incremented every time an object is mapped/unmapped.
68  *
69  * Note that exec() will usually map 2 objects before we receive control,
70  * but this can be 1 if ld.so.1 is executed directly. We count one of these
71  * here, and add another as necessary in setup().
72  */
73 u_longlong_t	cnt_map = 1;
74 u_longlong_t	cnt_unmap = 0;
75 
76 
77 /*
78  * Define for the executable's interpreter.
79  * Usually it is ld.so.1, but for the first release of ICL binaries
80  * it is libc.so.1.  We keep this information so that we don't end
81  * up mapping libc twice if it is the interpreter.
82  */
83 static Interp _interp;
84 
85 /*
86  * LD_PRELOAD objects.
87  */
88 static int
89 preload(const char *str, Rt_map *mlmp, Rt_map **clmp)
90 {
91 	Alist		*palp = NULL;
92 	char		*objs, *ptr, *next;
93 	Word		lmflags = lml_main.lm_flags;
94 	int		lddstub;
95 
96 	DBG_CALL(Dbg_util_nl(&lml_main, DBG_NL_STD));
97 
98 	if ((objs = strdup(str)) == NULL)
99 		return (0);
100 
101 	/*
102 	 * Determine if we've been called from lddstub.
103 	 */
104 	lddstub = (lmflags & LML_FLG_TRC_ENABLE) &&
105 	    (FLAGS1(*clmp) & FL1_RT_LDDSTUB);
106 
107 
108 	for (ptr = strtok_r(objs, MSG_ORIG(MSG_STR_DELIMIT), &next);
109 	    ptr != NULL;
110 	    ptr = strtok_r(NULL, MSG_ORIG(MSG_STR_DELIMIT), &next)) {
111 		Rt_map	*nlmp = NULL;
112 		uint_t	flags;
113 
114 		DBG_CALL(Dbg_file_preload(&lml_main, ptr));
115 
116 		/*
117 		 * Establish the flags for loading each object.  If we're
118 		 * called via lddstub, then the first preloaded object is the
119 		 * object being inspected by ldd(1).  This object should not be
120 		 * marked as an interposer, as this object is intended to act
121 		 * as the target object of the process.
122 		 */
123 		if (lddstub)
124 			flags = FLG_RT_PRELOAD;
125 		else
126 			flags = (FLG_RT_PRELOAD | FLG_RT_OBJINTPO);
127 
128 		/*
129 		 * If this a secure application, then preload errors are
130 		 * reduced to warnings, as the errors are non-fatal.
131 		 */
132 		if (rtld_flags & RT_FL_SECURE)
133 			rtld_flags2 |= RT_FL2_FTL2WARN;
134 		if (expand_paths(*clmp, ptr, &palp, AL_CNT_NEEDED,
135 		    PD_FLG_EXTLOAD, 0) != 0)
136 			nlmp = load_one(&lml_main, ALIST_OFF_DATA, palp, *clmp,
137 			    MODE(mlmp), flags, 0, NULL);
138 		remove_alist(&palp, 0);
139 		if (rtld_flags & RT_FL_SECURE)
140 			rtld_flags2 &= ~RT_FL2_FTL2WARN;
141 		if (nlmp && (bind_one(*clmp, nlmp, BND_NEEDED) == 0))
142 			nlmp = NULL;
143 
144 		if (lddstub && nlmp) {
145 			lddstub = 0;
146 
147 			/*
148 			 * Fabricate a binding between the target shared object
149 			 * and lddstub so that the target object isn't called
150 			 * out from unused() processing.
151 			 */
152 			if (lmflags &
153 			    (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED)) {
154 				if (bind_one(*clmp, nlmp, BND_REFER) == 0)
155 					nlmp = NULL;
156 			}
157 
158 			/*
159 			 * By identifying lddstub as the caller, several
160 			 * confusing ldd() diagnostics get suppressed.  These
161 			 * diagnostics would reveal how the target shared object
162 			 * was found from lddstub.  Now that the real target is
163 			 * loaded, identify the target as the caller so that all
164 			 * ldd() diagnostics are enabled for subsequent objects.
165 			 */
166 			if (nlmp)
167 				*clmp = nlmp;
168 		}
169 
170 		/*
171 		 * If no error occurred with loading this object, indicate that
172 		 * this link-map list contains an interposer.
173 		 */
174 		if (nlmp == NULL) {
175 			if ((lmflags & LML_FLG_TRC_ENABLE) ||
176 			    (rtld_flags & RT_FL_SECURE))
177 				continue;
178 			else
179 				return (0);
180 		}
181 		if (flags & FLG_RT_OBJINTPO)
182 			lml_main.lm_flags |= LML_FLG_INTRPOSE;
183 
184 	}
185 
186 	free(palp);
187 	free(objs);
188 	return (1);
189 }
190 
191 Rt_map *
192 setup(char **envp, auxv_t *auxv, Word _flags, char *_platform, int _syspagsz,
193     char *_rtldname, ulong_t ld_base, ulong_t interp_base, int fd, Phdr *phdr,
194     char *execname, char **argv, uid_t uid, uid_t euid, gid_t gid, gid_t egid,
195     int auxflags, uint_t *hwcap)
196 {
197 	Rt_map			*rlmp, *mlmp, *clmp, **tobj = NULL;
198 	Ehdr			*ehdr;
199 	rtld_stat_t		status;
200 	int			features = 0, ldsoexec = 0;
201 	size_t			eaddr, esize;
202 	char			*str, *argvname;
203 	Word			lmflags;
204 	mmapobj_result_t	*mpp;
205 	Fdesc			fdr = { 0 }, fdm = { 0 };
206 	Rej_desc		rej = { 0 };
207 	APlist			*ealp = NULL;
208 
209 	/*
210 	 * Now that ld.so has relocated itself, initialize our own 'environ' so
211 	 * as to establish an address suitable for any libc requirements.
212 	 */
213 	_environ = (char **)((ulong_t)auxv - sizeof (char *));
214 	_init();
215 	_environ = envp;
216 
217 	/*
218 	 * Establish a base time.  Total time diagnostics start from entering
219 	 * ld.so.1 here, however the base time is reset each time the ld.so.1
220 	 * is re-entered.  Note also, there will be a large time associated
221 	 * with the first diagnostic from ld.so.1, as bootstrapping ld.so.1
222 	 * and establishing the liblddbg infrastructure takes some time.
223 	 */
224 	(void) gettimeofday(&DBG_TOTALTIME, NULL);
225 	DBG_DELTATIME = DBG_TOTALTIME;
226 
227 	/*
228 	 * Determine how ld.so.1 has been executed.
229 	 */
230 	if ((fd == -1) && (phdr == NULL)) {
231 		/*
232 		 * If we received neither the AT_EXECFD nor the AT_PHDR aux
233 		 * vector, ld.so.1 must have been invoked directly from the
234 		 * command line.
235 		 */
236 		ldsoexec = 1;
237 
238 		/*
239 		 * AT_SUN_EXECNAME provides the most precise name, if it is
240 		 * available, otherwise fall back to argv[0].  At this time,
241 		 * there is no process name.
242 		 */
243 		if (execname)
244 			rtldname = execname;
245 		else if (argv[0])
246 			rtldname = argv[0];
247 		else
248 			rtldname = (char *)MSG_INTL(MSG_STR_UNKNOWN);
249 	} else {
250 		/*
251 		 * Otherwise, we have a standard process.  AT_SUN_EXECNAME
252 		 * provides the most precise name, if it is available,
253 		 * otherwise fall back to argv[0].  Provided the application
254 		 * is already mapped, the process is the application, so
255 		 * simplify the application name for use in any diagnostics.
256 		 */
257 		if (execname)
258 			argvname = execname;
259 		else if (argv[0])
260 			argvname = execname = argv[0];
261 		else
262 			argvname = execname = (char *)MSG_INTL(MSG_STR_UNKNOWN);
263 
264 		if (fd == -1) {
265 			if ((str = strrchr(argvname, '/')) != NULL)
266 				procname = ++str;
267 			else
268 				procname = argvname;
269 		}
270 
271 		/*
272 		 * At this point, we don't know the runtime linkers full path
273 		 * name.  The _rtldname passed to us is the SONAME of the
274 		 * runtime linker, which is typically /lib/ld.so.1 no matter
275 		 * what the full path is.   Use this for now, we'll reset the
276 		 * runtime linkers name once the application is analyzed.
277 		 */
278 		if (_rtldname) {
279 			if ((str = strrchr(_rtldname, '/')) != NULL)
280 				rtldname = ++str;
281 			else
282 				rtldname = _rtldname;
283 		} else
284 			rtldname = (char *)MSG_INTL(MSG_STR_UNKNOWN);
285 
286 		/* exec() brought in two objects for us. Count the second one */
287 		cnt_map++;
288 	}
289 
290 	/*
291 	 * Initialize any global variables.
292 	 */
293 	at_flags = _flags;
294 
295 	if ((org_scapset->sc_plat = _platform) != NULL)
296 		org_scapset->sc_platsz = strlen(_platform);
297 
298 	if (org_scapset->sc_plat == NULL)
299 		platform_name(org_scapset);
300 	if (org_scapset->sc_mach == NULL)
301 		machine_name(org_scapset);
302 
303 	/*
304 	 * If pagesize is unspecified find its value.
305 	 */
306 	if ((syspagsz = _syspagsz) == 0)
307 		syspagsz = _sysconfig(_CONFIG_PAGESIZE);
308 
309 	/*
310 	 * Add the unused portion of the last data page to the free space list.
311 	 * The page size must be set before doing this.  Here, _end refers to
312 	 * the end of the runtime linkers bss.  Note that we do not use the
313 	 * unused data pages from any included .so's to supplement this free
314 	 * space as badly behaved .os's may corrupt this data space, and in so
315 	 * doing ruin our data.
316 	 */
317 	eaddr = S_DROUND((size_t)&_end);
318 	esize = eaddr % syspagsz;
319 	if (esize) {
320 		esize = syspagsz - esize;
321 		addfree((void *)eaddr, esize);
322 	}
323 
324 	/*
325 	 * Establish initial link-map list flags, and link-map list alists.
326 	 */
327 	if (alist_append(&lml_main.lm_lists, NULL, sizeof (Lm_cntl),
328 	    AL_CNT_LMLISTS) == NULL)
329 		return (0);
330 	lml_main.lm_flags |= LML_FLG_BASELM;
331 	lml_main.lm_lmid = LM_ID_BASE;
332 	lml_main.lm_lmidstr = (char *)MSG_ORIG(MSG_LMID_BASE);
333 
334 	if (alist_append(&lml_rtld.lm_lists, NULL, sizeof (Lm_cntl),
335 	    AL_CNT_LMLISTS) == NULL)
336 		return (0);
337 	lml_rtld.lm_flags |= (LML_FLG_RTLDLM | LML_FLG_HOLDLOCK);
338 	lml_rtld.lm_tflags |= LML_TFLG_NOAUDIT;
339 	lml_rtld.lm_lmid = LM_ID_LDSO;
340 	lml_rtld.lm_lmidstr = (char *)MSG_ORIG(MSG_LMID_LDSO);
341 
342 	/*
343 	 * Determine whether we have a secure executable.
344 	 */
345 	security(uid, euid, gid, egid, auxflags);
346 
347 	/*
348 	 * Make an initial pass of environment variables to pick off those
349 	 * related to locale processing.  At the same time, collect and save
350 	 * any LD_XXXX variables for later processing.  Note that this later
351 	 * processing will be skipped if ld.so.1 is invoked from the command
352 	 * line with -e LD_NOENVIRON.
353 	 */
354 	if (envp && (readenv_user((const char **)envp, &ealp) == 1))
355 		return (0);
356 
357 	/*
358 	 * If ld.so.1 has been invoked directly, process its arguments.
359 	 */
360 	if (ldsoexec) {
361 		/*
362 		 * Process any arguments that are specific to ld.so.1, and
363 		 * reorganize the process stack to effectively remove ld.so.1
364 		 * from the stack.  Reinitialize the environment pointer, as
365 		 * this pointer may have been shifted after skipping ld.so.1's
366 		 * arguments.
367 		 */
368 		if (rtld_getopt(argv, &envp, &auxv, &(lml_main.lm_flags),
369 		    &(lml_main.lm_tflags)) == 1) {
370 			eprintf(&lml_main, ERR_NONE, MSG_INTL(MSG_USG_BADOPT));
371 			return (0);
372 		}
373 		_environ = envp;
374 
375 		/*
376 		 * Open the object that ld.so.1 is to execute.
377 		 */
378 		argvname = execname = argv[0];
379 
380 		if ((fd = open(argvname, O_RDONLY)) == -1) {
381 			int	err = errno;
382 			eprintf(&lml_main, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN),
383 			    argvname, strerror(err));
384 			return (0);
385 		}
386 	}
387 
388 	/*
389 	 * Having processed any ld.so.1 command line options, return to process
390 	 * any LD_XXXX environment variables.
391 	 */
392 	if (ealp) {
393 		if (((rtld_flags & RT_FL_NOENVIRON) == 0) &&
394 		    (procenv_user(ealp, &(lml_main.lm_flags),
395 		    &(lml_main.lm_tflags)) == 1))
396 			return (0);
397 		free(ealp);
398 	}
399 
400 	/*
401 	 * Initialize a hardware capability descriptor for use in comparing
402 	 * each loaded object.  The aux vector must provide AF_SUN_HWCAPVERIFY,
403 	 * as prior to this setting any hardware capabilities that were found
404 	 * could not be relied upon.
405 	 */
406 	if (auxflags & AF_SUN_HWCAPVERIFY) {
407 		rtld_flags2 |= RT_FL2_HWCAP;
408 		org_scapset->sc_hw_1 = (Xword)hwcap[0];
409 		org_scapset->sc_hw_2 = (Xword)hwcap[1];
410 	}
411 
412 	/*
413 	 * Create a mapping descriptor for ld.so.1.  We can determine our
414 	 * two segments information from known symbols.
415 	 */
416 	if ((mpp = calloc(2, sizeof (mmapobj_result_t))) == NULL)
417 		return (0);
418 	mpp[0].mr_addr = (caddr_t)M_PTRUNC(ld_base);
419 	mpp[0].mr_msize = (caddr_t)&_etext - mpp[0].mr_addr;
420 	mpp[0].mr_fsize = mpp[0].mr_msize;
421 	mpp[0].mr_prot = (PROT_READ | PROT_EXEC);
422 
423 	mpp[1].mr_addr = (caddr_t)M_PTRUNC((uintptr_t)&r_debug);
424 	mpp[1].mr_msize = (caddr_t)&_end - mpp[1].mr_addr;
425 	mpp[1].mr_fsize = (caddr_t)&_edata - mpp[1].mr_addr;
426 	mpp[1].mr_prot = (PROT_READ | PROT_WRITE | PROT_EXEC);
427 
428 	if ((fdr.fd_nname = stravl_insert(_rtldname, 0, 0, 0)) == NULL)
429 		return (0);
430 	if ((rlmp = elf_new_lmp(&lml_rtld, ALIST_OFF_DATA, &fdr,
431 	    (Addr)mpp->mr_addr, (size_t)((uintptr_t)eaddr - (uintptr_t)ld_base),
432 	    NULL, NULL, NULL)) == NULL)
433 		return (0);
434 
435 	MMAPS(rlmp) = mpp;
436 	MMAPCNT(rlmp) = 2;
437 	PADSTART(rlmp) = (ulong_t)mpp[0].mr_addr;
438 	PADIMLEN(rlmp) = (ulong_t)mpp[0].mr_addr + (ulong_t)mpp[1].mr_addr +
439 	    (ulong_t)mpp[1].mr_msize;
440 
441 	MODE(rlmp) |= (RTLD_LAZY | RTLD_NODELETE | RTLD_GLOBAL | RTLD_WORLD);
442 	FLAGS(rlmp) |= (FLG_RT_ANALYZED | FLG_RT_RELOCED | FLG_RT_INITDONE |
443 	    FLG_RT_INITCLCT | FLG_RT_FINICLCT | FLG_RT_MODESET);
444 
445 	/*
446 	 * Initialize the runtime linkers information.
447 	 */
448 	interp = &_interp;
449 	interp->i_name = (char *)rtldname;
450 	interp->i_faddr = (caddr_t)ADDR(rlmp);
451 	ldso_plt_init(rlmp);
452 
453 	/*
454 	 * Map in the file, if exec has not already done so, or if the file
455 	 * was passed as an argument to an explicit execution of ld.so.1 from
456 	 * the command line.
457 	 */
458 	if (fd != -1) {
459 		/*
460 		 * Map the file.  Once the object is mapped we no longer need
461 		 * the file descriptor.
462 		 */
463 		(void) rtld_fstat(fd, &status);
464 		fdm.fd_oname = argvname;
465 		fdm.fd_ftp = map_obj(&lml_main, &fdm, status.st_size, argvname,
466 		    fd, &rej);
467 		(void) close(fd);
468 
469 		if (fdm.fd_ftp == NULL) {
470 			Conv_reject_desc_buf_t rej_buf;
471 
472 			eprintf(&lml_main, ERR_FATAL,
473 			    MSG_INTL(err_reject[rej.rej_type]), argvname,
474 			    conv_reject_desc(&rej, &rej_buf, M_MACH));
475 			return (0);
476 		}
477 
478 		/*
479 		 * Finish processing the loading of the file.
480 		 */
481 		if ((fdm.fd_nname = stravl_insert(argvname, 0, 0, 0)) == NULL)
482 			return (0);
483 		fdm.fd_dev = status.st_dev;
484 		fdm.fd_ino = status.st_ino;
485 
486 		if ((mlmp = load_file(&lml_main, ALIST_OFF_DATA, NULL, &fdm,
487 		    NULL)) == NULL)
488 			return (0);
489 
490 		/*
491 		 * We now have a process name for error diagnostics.
492 		 */
493 		if ((str = strrchr(argvname, '/')) != NULL)
494 			procname = ++str;
495 		else
496 			procname = argvname;
497 
498 		if (ldsoexec) {
499 			mmapobj_result_t	*mpp = MMAPS(mlmp);
500 			uint_t			mnum, mapnum = MMAPCNT(mlmp);
501 			void			*brkbase = NULL;
502 
503 			/*
504 			 * Since ld.so.1 was the primary executed object - the
505 			 * brk() base has not yet been initialized, we need to
506 			 * initialize it.  For an executable, initialize it to
507 			 * the end of the object.  For a shared object (ET_DYN)
508 			 * initialize it to the first page in memory.
509 			 */
510 			for (mnum = 0; mnum < mapnum; mnum++, mpp++)
511 				brkbase = mpp->mr_addr + mpp->mr_msize;
512 
513 			if (brkbase == NULL)
514 				brkbase = (void *)syspagsz;
515 
516 			if (_brk_unlocked(brkbase) == -1) {
517 				int	err = errno;
518 
519 				eprintf(&lml_main, ERR_FATAL,
520 				    MSG_INTL(MSG_SYS_BRK), argvname,
521 				    strerror(err));
522 				return (0);
523 			}
524 		}
525 	} else {
526 		if (phdr != NULL) {
527 			Phdr			*pptr;
528 			Off			i_offset = 0;
529 			Addr			base = 0;
530 			ulong_t			phsize;
531 			mmapobj_result_t	*mpp, *fmpp, *hmpp = NULL;
532 			uint_t			mapnum = 0;
533 			int			i;
534 			size_t			msize;
535 
536 			/*
537 			 * Using the executables phdr address determine the base
538 			 * address of the input file.  NOTE, this assumes the
539 			 * program headers and elf header are part of the same
540 			 * mapped segment.  Although this has held for many
541 			 * years now, it might be more flexible if the kernel
542 			 * gave use the ELF headers start address, rather than
543 			 * the Program headers.
544 			 *
545 			 * Determine from the ELF header if we're been called
546 			 * from a shared object or dynamic executable.  If the
547 			 * latter, then any addresses within the object are used
548 			 * as is.  Addresses within shared objects must be added
549 			 * to the process's base address.
550 			 */
551 			ehdr = (Ehdr *)((Addr)phdr - phdr->p_offset);
552 			phsize = ehdr->e_phentsize;
553 			if (ehdr->e_type == ET_DYN)
554 				base = (Addr)ehdr;
555 
556 			/*
557 			 * Allocate a mapping array to retain mapped segment
558 			 * information.
559 			 */
560 			if ((fmpp = mpp = calloc(ehdr->e_phnum,
561 			    sizeof (mmapobj_result_t))) == NULL)
562 				return (0);
563 
564 			/*
565 			 * Extract the needed information from the segment
566 			 * headers.
567 			 */
568 			for (i = 0, pptr = phdr; i < ehdr->e_phnum; i++) {
569 				if (pptr->p_type == PT_INTERP) {
570 					i_offset = pptr->p_offset;
571 					interp->i_faddr =
572 					    (caddr_t)interp_base;
573 				}
574 				if ((pptr->p_type == PT_LOAD) &&
575 				    (pptr->p_filesz || pptr->p_memsz)) {
576 					int	perm = (PROT_READ | PROT_EXEC);
577 					size_t	off;
578 
579 					if (i_offset && pptr->p_filesz &&
580 					    (i_offset >= pptr->p_offset) &&
581 					    (i_offset <=
582 					    (pptr->p_memsz + pptr->p_offset))) {
583 						interp->i_name = (char *)
584 						    pptr->p_vaddr + i_offset -
585 						    pptr->p_offset + base;
586 						i_offset = 0;
587 					}
588 
589 					if (pptr->p_flags & PF_W)
590 						perm |= PROT_WRITE;
591 
592 					/*
593 					 * Retain segments mapping info.  Round
594 					 * each segment to a page boundary, as
595 					 * this insures addresses are suitable
596 					 * for mprotect() if required.
597 					 */
598 					off = pptr->p_vaddr + base;
599 					if (hmpp == NULL) {
600 						hmpp = mpp;
601 						mpp->mr_addr = (caddr_t)ehdr;
602 					} else
603 						mpp->mr_addr = (caddr_t)off;
604 
605 					off -= (size_t)(uintptr_t)mpp->mr_addr;
606 					mpp->mr_msize = pptr->p_memsz + off;
607 					mpp->mr_fsize = pptr->p_filesz + off;
608 					mpp->mr_prot = perm;
609 
610 					mpp++, mapnum++;
611 				}
612 
613 				pptr = (Phdr *)((ulong_t)pptr + phsize);
614 			}
615 
616 			mpp--;
617 			msize = (size_t)(mpp->mr_addr + mpp->mr_msize) -
618 			    S_ALIGN((size_t)fmpp->mr_addr, syspagsz);
619 
620 			if ((fdm.fd_nname =
621 			    stravl_insert(execname, 0, 0, 0)) == NULL)
622 				return (0);
623 			if ((mlmp = elf_new_lmp(&lml_main, ALIST_OFF_DATA,
624 			    &fdm, (Addr)hmpp->mr_addr, msize,
625 			    NULL, NULL, NULL)) == NULL)
626 				return (0);
627 
628 			MMAPS(mlmp) = fmpp;
629 			MMAPCNT(mlmp) = mapnum;
630 			PADSTART(mlmp) = (ulong_t)fmpp->mr_addr;
631 			PADIMLEN(mlmp) = (ulong_t)fmpp->mr_addr +
632 			    (ulong_t)mpp->mr_addr + (ulong_t)mpp->mr_msize;
633 		}
634 	}
635 
636 	/*
637 	 * Establish the interpretors name as that defined within the initial
638 	 * object (executable).  This provides for ORIGIN processing of ld.so.1
639 	 * dependencies.  Note, the NAME() of the object remains that which was
640 	 * passed to us as the SONAME on execution.
641 	 */
642 	if (ldsoexec == 0) {
643 		size_t	len = strlen(interp->i_name);
644 
645 		if (expand(&interp->i_name, &len, 0, 0,
646 		    (PD_TKN_ISALIST | PD_TKN_CAP), rlmp) & PD_TKN_RESOLVED)
647 			fdr.fd_flags |= FLG_FD_RESOLVED;
648 	}
649 	fdr.fd_pname = interp->i_name;
650 	(void) fullpath(rlmp, &fdr);
651 
652 	/*
653 	 * The runtime linker acts as a filtee for various dl*() functions that
654 	 * are defined in libc (and libdl).  Make sure this standard name for
655 	 * the runtime linker is also registered in the FullPathNode AVL tree.
656 	 */
657 	(void) fpavl_insert(&lml_rtld, rlmp, _rtldname, 0);
658 
659 	/*
660 	 * Having established the true runtime linkers name, simplify the name
661 	 * for error diagnostics.
662 	 */
663 	if ((str = strrchr(PATHNAME(rlmp), '/')) != NULL)
664 		rtldname = ++str;
665 	else
666 		rtldname = PATHNAME(rlmp);
667 
668 	/*
669 	 * Expand the fullpath name of the application.  This typically occurs
670 	 * as a part of loading an object, but as the kernel probably mapped
671 	 * it in, complete this processing now.
672 	 */
673 	(void) fullpath(mlmp, 0);
674 
675 	/*
676 	 * Some troublesome programs will change the value of argv[0].  Dupping
677 	 * the process string protects us, and insures the string is left in
678 	 * any core files.
679 	 */
680 	if ((str = (char *)strdup(procname)) == NULL)
681 		return (0);
682 	procname = str;
683 
684 	FLAGS(mlmp) |= (FLG_RT_ISMAIN | FLG_RT_MODESET);
685 	FLAGS1(mlmp) |= FL1_RT_USED;
686 
687 	/*
688 	 * It's the responsibility of MAIN(crt0) to call it's _init and _fini
689 	 * section, therefore null out any INIT/FINI so that this object isn't
690 	 * collected during tsort processing.  And, if the application has no
691 	 * initarray or finiarray we can economize on establishing bindings.
692 	 */
693 	INIT(mlmp) = FINI(mlmp) = NULL;
694 	if ((INITARRAY(mlmp) == NULL) && (FINIARRAY(mlmp) == NULL))
695 		FLAGS1(mlmp) |= FL1_RT_NOINIFIN;
696 
697 	/*
698 	 * Identify lddstub if necessary.
699 	 */
700 	if (lml_main.lm_flags & LML_FLG_TRC_LDDSTUB)
701 		FLAGS1(mlmp) |= FL1_RT_LDDSTUB;
702 
703 	/*
704 	 * Retain our argument information for use in dlinfo.
705 	 */
706 	argsinfo.dla_argv = argv--;
707 	argsinfo.dla_argc = (long)*argv;
708 	argsinfo.dla_envp = envp;
709 	argsinfo.dla_auxv = auxv;
710 
711 	(void) enter(0);
712 
713 	/*
714 	 * Add our two main link-maps to the dynlm_list
715 	 */
716 	if (aplist_append(&dynlm_list, &lml_main, AL_CNT_DYNLIST) == NULL)
717 		return (0);
718 
719 	if (aplist_append(&dynlm_list, &lml_rtld, AL_CNT_DYNLIST) == NULL)
720 		return (0);
721 
722 	/*
723 	 * Reset the link-map counts for both lists.  The init count is used to
724 	 * track how many objects have pending init sections, this gets incre-
725 	 * mented each time an object is relocated.  Since ld.so.1 relocates
726 	 * itself, it's init count will remain zero.
727 	 * The object count is used to track how many objects have pending fini
728 	 * sections, as ld.so.1 handles its own fini we can zero its count.
729 	 */
730 	lml_main.lm_obj = 1;
731 	lml_rtld.lm_obj = 0;
732 
733 	/*
734 	 * Initialize debugger information structure.  Some parts of this
735 	 * structure were initialized statically.
736 	 */
737 	r_debug.rtd_rdebug.r_map = (Link_map *)lml_main.lm_head;
738 	r_debug.rtd_rdebug.r_ldsomap = (Link_map *)lml_rtld.lm_head;
739 	r_debug.rtd_rdebug.r_ldbase = r_debug.rtd_rdebug.r_ldsomap->l_addr;
740 	r_debug.rtd_dynlmlst = &dynlm_list;
741 
742 	/*
743 	 * Determine the dev/inode information for the executable to complete
744 	 * load_so() checking for those who might call dlopen(3c) on the
745 	 * executable .
746 	 */
747 	if (rtld_stat(PATHNAME(mlmp), &status) == 0) {
748 		STDEV(mlmp) = status.st_dev;
749 		STINO(mlmp) = status.st_ino;
750 	}
751 
752 	/*
753 	 * Initialize any configuration information.
754 	 */
755 	if (!(rtld_flags & RT_FL_NOCFG)) {
756 		if ((features = elf_config(mlmp)) == -1)
757 			return (0);
758 	}
759 
760 #if	defined(_ELF64)
761 	/*
762 	 * If this is a 64-bit process, determine whether this process has
763 	 * restricted the process address space to 32-bits.  Any dependencies
764 	 * that are restricted to a 32-bit address space can only be loaded if
765 	 * the executable has established this requirement.
766 	 */
767 	if (CAPSET(mlmp).sc_sf_1 & SF1_SUNW_ADDR32)
768 		rtld_flags2 |= RT_FL2_ADDR32;
769 #endif
770 	/*
771 	 * Establish any alternative capabilities, and validate this object
772 	 * if it defines it's own capabilities information.
773 	 */
774 	if (cap_alternative() == 0)
775 		return (0);
776 
777 	if (cap_check_lmp(mlmp, &rej) == 0) {
778 		if (lml_main.lm_flags & LML_FLG_TRC_ENABLE) {
779 			/* LINTED */
780 			(void) printf(MSG_INTL(ldd_warn[rej.rej_type]),
781 			    NAME(mlmp), rej.rej_str);
782 		} else {
783 			/* LINTED */
784 			eprintf(&lml_main, ERR_FATAL,
785 			    MSG_INTL(err_reject[rej.rej_type]),
786 			    NAME(mlmp), rej.rej_str);
787 			return (0);
788 		}
789 	}
790 
791 	/*
792 	 * Establish the modes of the initial object.  These modes are
793 	 * propagated to any preloaded objects and explicit shared library
794 	 * dependencies.
795 	 *
796 	 * If we're generating a configuration file using crle(1), remove
797 	 * any RTLD_NOW use, as we don't want to trigger any relocation proc-
798 	 * essing during crle(1)'s first past (this would just be unnecessary
799 	 * overhead).  Any filters are explicitly loaded, and thus RTLD_NOW is
800 	 * not required to trigger filter loading.
801 	 *
802 	 * Note, RTLD_NOW may have been established during analysis of the
803 	 * application had the application been built -z now.
804 	 */
805 	MODE(mlmp) |= (RTLD_NODELETE | RTLD_GLOBAL | RTLD_WORLD);
806 
807 	if (rtld_flags & RT_FL_CONFGEN) {
808 		MODE(mlmp) |= RTLD_CONFGEN;
809 		MODE(mlmp) &= ~RTLD_NOW;
810 		rtld_flags2 &= ~RT_FL2_BINDNOW;
811 	}
812 
813 	if ((MODE(mlmp) & RTLD_NOW) == 0) {
814 		if (rtld_flags2 & RT_FL2_BINDNOW)
815 			MODE(mlmp) |= RTLD_NOW;
816 		else
817 			MODE(mlmp) |= RTLD_LAZY;
818 	}
819 
820 	/*
821 	 * If debugging was requested initialize things now that any cache has
822 	 * been established.  A user can specify LD_DEBUG=help to discover the
823 	 * list of debugging tokens available without running the application.
824 	 * However, don't allow this setting from a configuration file.
825 	 *
826 	 * Note, to prevent recursion issues caused by loading and binding the
827 	 * debugging libraries themselves, a local debugging descriptor is
828 	 * initialized.  Once the debugging setup has completed, this local
829 	 * descriptor is copied to the global descriptor which effectively
830 	 * enables diagnostic output.
831 	 *
832 	 * Ignore any debugging request if we're being monitored by a process
833 	 * that expects the old getpid() initialization handshake.
834 	 */
835 	if ((rpl_debug || prm_debug) && ((rtld_flags & RT_FL_DEBUGGER) == 0)) {
836 		Dbg_desc	_dbg_desc = {0};
837 		struct timeval	total = DBG_TOTALTIME;
838 		struct timeval	delta = DBG_DELTATIME;
839 
840 		if (rpl_debug) {
841 			if (dbg_setup(rpl_debug, &_dbg_desc) == 0)
842 				return (0);
843 			if (_dbg_desc.d_extra & DBG_E_HELP_EXIT)
844 				rtldexit(&lml_main, 0);
845 		}
846 		if (prm_debug)
847 			(void) dbg_setup(prm_debug, &_dbg_desc);
848 
849 		*dbg_desc = _dbg_desc;
850 		DBG_TOTALTIME = total;
851 		DBG_DELTATIME = delta;
852 	}
853 
854 	/*
855 	 * Now that debugging is enabled generate any diagnostics from any
856 	 * previous events.
857 	 */
858 	if (DBG_ENABLED) {
859 		DBG_CALL(Dbg_cap_val(&lml_main, org_scapset, alt_scapset,
860 		    M_MACH));
861 		DBG_CALL(Dbg_file_config_dis(&lml_main, config->c_name,
862 		    features));
863 
864 		DBG_CALL(Dbg_file_ldso(rlmp, envp, auxv,
865 		    LIST(rlmp)->lm_lmidstr, ALIST_OFF_DATA));
866 
867 		if (THIS_IS_ELF(mlmp)) {
868 			DBG_CALL(Dbg_file_elf(&lml_main, PATHNAME(mlmp),
869 			    ADDR(mlmp), MSIZE(mlmp), LIST(mlmp)->lm_lmidstr,
870 			    ALIST_OFF_DATA));
871 		}
872 	}
873 
874 	/*
875 	 * Enable auditing.
876 	 */
877 	if (rpl_audit || prm_audit || profile_lib) {
878 		int		ndx;
879 		const char	*aud[3];
880 
881 		aud[0] = rpl_audit;
882 		aud[1] = prm_audit;
883 		aud[2] = profile_lib;
884 
885 		/*
886 		 * Any global auditing (set using LD_AUDIT or LD_PROFILE) that
887 		 * can't be established is non-fatal.
888 		 */
889 		if ((auditors = calloc(1, sizeof (Audit_desc))) == NULL)
890 			return (0);
891 
892 		for (ndx = 0; ndx < 3; ndx++) {
893 			if (aud[ndx]) {
894 				if ((auditors->ad_name =
895 				    strdup(aud[ndx])) == NULL)
896 					return (0);
897 				rtld_flags2 |= RT_FL2_FTL2WARN;
898 				(void) audit_setup(mlmp, auditors,
899 				    PD_FLG_EXTLOAD, NULL);
900 				rtld_flags2 &= ~RT_FL2_FTL2WARN;
901 			}
902 		}
903 		lml_main.lm_tflags |= auditors->ad_flags;
904 	}
905 	if (AUDITORS(mlmp)) {
906 		/*
907 		 * Any object required auditing (set with a DT_DEPAUDIT dynamic
908 		 * entry) that can't be established is fatal.
909 		 */
910 		if (FLAGS1(mlmp) & FL1_RT_GLOBAUD) {
911 			/*
912 			 * If this object requires global auditing, use the
913 			 * local auditing information to set the global
914 			 * auditing descriptor.  The effect is that a
915 			 * DT_DEPAUDIT act as an LD_AUDIT.
916 			 */
917 			if ((auditors == NULL) && ((auditors = calloc(1,
918 			    sizeof (Audit_desc))) == NULL))
919 				return (0);
920 
921 			auditors->ad_name = AUDITORS(mlmp)->ad_name;
922 			if (audit_setup(mlmp, auditors, 0, NULL) == 0)
923 				return (0);
924 			lml_main.lm_tflags |= auditors->ad_flags;
925 
926 			/*
927 			 * Clear the local auditor information.
928 			 */
929 			free((void *) AUDITORS(mlmp));
930 			AUDITORS(mlmp) = NULL;
931 
932 		} else {
933 			/*
934 			 * Establish any local auditing.
935 			 */
936 			if (audit_setup(mlmp, AUDITORS(mlmp), 0, NULL) == 0)
937 				return (0);
938 
939 			AFLAGS(mlmp) |= AUDITORS(mlmp)->ad_flags;
940 			lml_main.lm_flags |= LML_FLG_LOCAUDIT;
941 		}
942 	}
943 
944 	/*
945 	 * Explicitly add the initial object and ld.so.1 to those objects being
946 	 * audited.  Note, although the ld.so.1 link-map isn't auditable,
947 	 * establish a cookie for ld.so.1 as this may be bound to via the
948 	 * dl*() family.
949 	 */
950 	if ((lml_main.lm_tflags | AFLAGS(mlmp)) & LML_TFLG_AUD_MASK) {
951 		if (((audit_objopen(mlmp, mlmp) == 0) ||
952 		    (audit_objopen(mlmp, rlmp) == 0)) &&
953 		    (AFLAGS(mlmp) & LML_TFLG_AUD_MASK))
954 			return (0);
955 	}
956 
957 	/*
958 	 * Map in any preloadable shared objects.  Establish the caller as the
959 	 * head of the main link-map list.  In the case of being exercised from
960 	 * lddstub, the caller gets reassigned to the first target shared object
961 	 * so as to provide intuitive diagnostics from ldd().
962 	 *
963 	 * Note, it is valid to preload a 4.x shared object with a 5.0
964 	 * executable (or visa-versa), as this functionality is required by
965 	 * ldd(1).
966 	 */
967 	clmp = mlmp;
968 	if (rpl_preload && (preload(rpl_preload, mlmp, &clmp) == 0))
969 		return (0);
970 	if (prm_preload && (preload(prm_preload, mlmp, &clmp) == 0))
971 		return (0);
972 
973 	/*
974 	 * Load all dependent (needed) objects.
975 	 */
976 	if (analyze_lmc(&lml_main, ALIST_OFF_DATA, mlmp, mlmp, NULL) == NULL)
977 		return (0);
978 
979 	/*
980 	 * Relocate all the dependencies we've just added.
981 	 *
982 	 * If this process has been established via crle(1), the environment
983 	 * variable LD_CONFGEN will have been set.  crle(1) may create this
984 	 * process twice.  The first time crle only needs to gather dependency
985 	 * information.  The second time, is to dldump() the images.
986 	 *
987 	 * If we're only gathering dependencies, relocation is unnecessary.
988 	 * As crle(1) may be building an arbitrary family of objects, they may
989 	 * not fully relocate either.  Hence the relocation phase is not carried
990 	 * out now, but will be called by crle(1) once all objects have been
991 	 * loaded.
992 	 */
993 	if ((rtld_flags & RT_FL_CONFGEN) == 0) {
994 
995 		DBG_CALL(Dbg_util_nl(&lml_main, DBG_NL_STD));
996 
997 		if (relocate_lmc(&lml_main, ALIST_OFF_DATA, mlmp,
998 		    mlmp, NULL) == 0)
999 			return (0);
1000 
1001 		/*
1002 		 * Inform the debuggers that basic process initialization is
1003 		 * complete, and that the state of ld.so.1 (link-map lists,
1004 		 * etc.) is stable.  This handshake enables the debugger to
1005 		 * initialize themselves, and consequently allows the user to
1006 		 * set break points in .init code.
1007 		 *
1008 		 * Most new debuggers use librtld_db to monitor activity events.
1009 		 * Older debuggers indicated their presence by setting the
1010 		 * DT_DEBUG entry in the dynamic executable (see elf_new_lm()).
1011 		 * In this case, getpid() is called so that the debugger can
1012 		 * catch the system call.  This old mechanism has some
1013 		 * restrictions, as getpid() should not be called prior to
1014 		 * basic process initialization being completed.  This
1015 		 * restriction has become increasingly difficult to maintain,
1016 		 * as the use of auditors, LD_DEBUG, and the initialization
1017 		 * handshake with libc can result in "premature" getpid()
1018 		 * calls.  The use of this getpid() handshake is expected to
1019 		 * disappear at some point in the future, and there is intent
1020 		 * to work towards that goal.
1021 		 */
1022 		rd_event(&lml_main, RD_DLACTIVITY, RT_CONSISTENT);
1023 		rd_event(&lml_rtld, RD_DLACTIVITY, RT_CONSISTENT);
1024 
1025 		if (rtld_flags & RT_FL_DEBUGGER) {
1026 			r_debug.rtd_rdebug.r_flags |= RD_FL_ODBG;
1027 			(void) getpid();
1028 		}
1029 	}
1030 
1031 	/*
1032 	 * Indicate preinit activity, and call any auditing routines.  These
1033 	 * routines are called before initializing any threads via libc, or
1034 	 * before collecting the complete set of .inits on the primary link-map.
1035 	 * Although most libc interfaces are encapsulated in local routines
1036 	 * within libc, they have been known to escape (ie. call a .plt).  As
1037 	 * the appcert auditor uses preinit as a trigger to establish some
1038 	 * external interfaces to the main link-maps libc, we need to activate
1039 	 * this trigger before exercising any code within libc.  Additionally,
1040 	 * I wouldn't put it past an auditor to add additional objects to the
1041 	 * primary link-map.  Hence, we collect .inits after the audit call.
1042 	 */
1043 	rd_event(&lml_main, RD_PREINIT, 0);
1044 
1045 	if (aud_activity ||
1046 	    ((lml_main.lm_tflags | AFLAGS(mlmp)) & LML_TFLG_AUD_ACTIVITY))
1047 		audit_activity(mlmp, LA_ACT_CONSISTENT);
1048 	if (aud_preinit ||
1049 	    ((lml_main.lm_tflags | AFLAGS(mlmp)) & LML_TFLG_AUD_PREINIT))
1050 		audit_preinit(mlmp);
1051 
1052 	/*
1053 	 * If we're creating initial configuration information, we're done
1054 	 * now that the auditing step has been called.
1055 	 */
1056 	if (rtld_flags & RT_FL_CONFGEN) {
1057 		leave(LIST(mlmp), 0);
1058 		return (mlmp);
1059 	}
1060 
1061 	/*
1062 	 * Sort the .init sections of all objects we've added.  If we're
1063 	 * tracing we only need to execute this under ldd(1) with the -i or -u
1064 	 * options.
1065 	 */
1066 	lmflags = lml_main.lm_flags;
1067 	if (((lmflags & LML_FLG_TRC_ENABLE) == 0) ||
1068 	    (lmflags & (LML_FLG_TRC_INIT | LML_FLG_TRC_UNREF))) {
1069 		if ((tobj = tsort(mlmp, LIST(mlmp)->lm_init,
1070 		    RT_SORT_REV)) == (Rt_map **)S_ERROR)
1071 			return (0);
1072 	}
1073 
1074 	/*
1075 	 * If we are tracing we're done.  This is the one legitimate use of a
1076 	 * direct call to rtldexit() rather than return, as we don't want to
1077 	 * return and jump to the application.
1078 	 */
1079 	if (lmflags & LML_FLG_TRC_ENABLE) {
1080 		unused(&lml_main);
1081 		rtldexit(&lml_main, 0);
1082 	}
1083 
1084 	/*
1085 	 * Check if this instance of the linker should have a primary link
1086 	 * map.  This flag allows multiple copies of the -same- -version-
1087 	 * of the linker (and libc) to run in the same address space.
1088 	 *
1089 	 * Without this flag we only support one copy of the linker in a
1090 	 * process because by default the linker will always try to
1091 	 * initialize at one primary link map  The copy of libc which is
1092 	 * initialized on a primary link map will initialize global TLS
1093 	 * data which can be shared with other copies of libc in the
1094 	 * process.  The problem is that if there is more than one copy
1095 	 * of the linker, only one copy should link libc onto a primary
1096 	 * link map, otherwise libc will attempt to re-initialize global
1097 	 * TLS data.  So when a copy of the linker is loaded with this
1098 	 * flag set, it will not initialize any primary link maps since
1099 	 * presumably another copy of the linker will do this.
1100 	 *
1101 	 * Note that this flag only allows multiple copies of the -same-
1102 	 * -version- of the linker (and libc) to coexist.  This approach
1103 	 * will not work if we are trying to load different versions of
1104 	 * the linker and libc into the same process.  The reason for
1105 	 * this is that the format of the global TLS data may not be
1106 	 * the same for different versions of libc.  In this case each
1107 	 * different version of libc must have it's own primary link map
1108 	 * and be able to maintain it's own TLS data.  The only way this
1109 	 * can be done is by carefully managing TLS pointers on transitions
1110 	 * between code associated with each of the different linkers.
1111 	 * Note that this is actually what is done for processes in lx
1112 	 * branded zones.  Although in the lx branded zone case, the
1113 	 * other linker and libc are actually gld and glibc.  But the
1114 	 * same general TLS management mechanism used by the lx brand
1115 	 * would apply to any attempts to run multiple versions of the
1116 	 * solaris linker and libc in a single process.
1117 	 */
1118 	if (auxflags & AF_SUN_NOPLM)
1119 		rtld_flags2 |= RT_FL2_NOPLM;
1120 
1121 	/*
1122 	 * Establish any static TLS for this primary link-map.  Note, regardless
1123 	 * of whether TLS is available, an initial handshake occurs with libc to
1124 	 * indicate we're processing the primary link-map.  Having identified
1125 	 * the primary link-map, initialize threads.
1126 	 */
1127 	if (rt_get_extern(&lml_main, mlmp) == 0)
1128 		return (0);
1129 
1130 	if ((rtld_flags2 & RT_FL2_NOPLM) == 0) {
1131 		if (tls_statmod(&lml_main, mlmp) == 0)
1132 			return (0);
1133 		rt_thr_init(&lml_main);
1134 		rtld_flags2 |= RT_FL2_PLMSETUP;
1135 	} else {
1136 		rt_thr_init(&lml_main);
1137 	}
1138 
1139 	/*
1140 	 * Fire all dependencies .init sections.  Identify any unused
1141 	 * dependencies, and leave the runtime linker - effectively calling
1142 	 * the dynamic executables entry point.
1143 	 */
1144 	call_array(PREINITARRAY(mlmp), (uint_t)PREINITARRAYSZ(mlmp), mlmp,
1145 	    SHT_PREINIT_ARRAY);
1146 
1147 	if (tobj)
1148 		call_init(tobj, DBG_INIT_SORT);
1149 
1150 	rd_event(&lml_main, RD_POSTINIT, 0);
1151 
1152 	unused(&lml_main);
1153 
1154 	DBG_CALL(Dbg_util_call_main(mlmp));
1155 
1156 	rtld_flags |= (RT_FL_OPERATION | RT_FL_APPLIC);
1157 
1158 	leave(LIST(mlmp), 0);
1159 
1160 	return (mlmp);
1161 }
1162