xref: /illumos-gate/usr/src/cmd/sgs/rtld/common/elf.c (revision 5fbc1fe0da7f34cf8155bf7624c94583cc98e47c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  *	Copyright (c) 1988 AT&T
24  *	  All Rights Reserved
25  *
26  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
27  */
28 /*
29  * Copyright (c) 2012, Joyent, Inc.  All rights reserved.
30  */
31 
32 /*
33  * Object file dependent support for ELF objects.
34  */
35 
36 #include	<stdio.h>
37 #include	<sys/procfs.h>
38 #include	<sys/mman.h>
39 #include	<sys/debug.h>
40 #include	<string.h>
41 #include	<limits.h>
42 #include	<dlfcn.h>
43 #include	<debug.h>
44 #include	<conv.h>
45 #include	"_rtld.h"
46 #include	"_audit.h"
47 #include	"_elf.h"
48 #include	"_inline_gen.h"
49 #include	"_inline_reloc.h"
50 #include	"msg.h"
51 
52 /*
53  * Default and secure dependency search paths.
54  */
55 static Spath_defn _elf_def_dirs[] = {
56 #if	defined(_ELF64)
57 	{ MSG_ORIG(MSG_PTH_LIB_64),		MSG_PTH_LIB_64_SIZE },
58 	{ MSG_ORIG(MSG_PTH_USRLIB_64),		MSG_PTH_USRLIB_64_SIZE },
59 #else
60 	{ MSG_ORIG(MSG_PTH_LIB),		MSG_PTH_LIB_SIZE },
61 	{ MSG_ORIG(MSG_PTH_USRLIB),		MSG_PTH_USRLIB_SIZE },
62 #endif
63 	{ 0, 0 }
64 };
65 
66 static Spath_defn _elf_sec_dirs[] = {
67 #if	defined(_ELF64)
68 	{ MSG_ORIG(MSG_PTH_LIBSE_64),		MSG_PTH_LIBSE_64_SIZE },
69 	{ MSG_ORIG(MSG_PTH_USRLIBSE_64),	MSG_PTH_USRLIBSE_64_SIZE },
70 #else
71 	{ MSG_ORIG(MSG_PTH_LIBSE),		MSG_PTH_LIBSE_SIZE },
72 	{ MSG_ORIG(MSG_PTH_USRLIBSE),		MSG_PTH_USRLIBSE_SIZE },
73 #endif
74 	{ 0, 0 }
75 };
76 
77 Alist	*elf_def_dirs = NULL;
78 Alist	*elf_sec_dirs = NULL;
79 
80 /*
81  * Defines for local functions.
82  */
83 static void	elf_dladdr(ulong_t, Rt_map *, Dl_info *, void **, int);
84 static Addr	elf_entry_point(void);
85 static int	elf_fix_name(const char *, Rt_map *, Alist **, Aliste, uint_t);
86 static Alist	**elf_get_def_dirs(void);
87 static Alist	**elf_get_sec_dirs(void);
88 static char	*elf_get_so(const char *, const char *, size_t, size_t);
89 static int	elf_needed(Lm_list *, Aliste, Rt_map *, int *);
90 
91 /*
92  * Functions and data accessed through indirect pointers.
93  */
94 Fct elf_fct = {
95 	elf_verify,
96 	elf_new_lmp,
97 	elf_entry_point,
98 	elf_needed,
99 	lookup_sym,
100 	elf_reloc,
101 	elf_get_def_dirs,
102 	elf_get_sec_dirs,
103 	elf_fix_name,
104 	elf_get_so,
105 	elf_dladdr,
106 	dlsym_handle
107 };
108 
109 /*
110  * Default and secure dependency search paths.
111  */
112 static Alist **
113 elf_get_def_dirs()
114 {
115 	if (elf_def_dirs == NULL)
116 		set_dirs(&elf_def_dirs, _elf_def_dirs, LA_SER_DEFAULT);
117 	return (&elf_def_dirs);
118 }
119 
120 static Alist **
121 elf_get_sec_dirs()
122 {
123 	if (elf_sec_dirs == NULL)
124 		set_dirs(&elf_sec_dirs, _elf_sec_dirs, LA_SER_SECURE);
125 	return (&elf_sec_dirs);
126 }
127 
128 /*
129  * For a.out we have actual work to do here, on ELF we just perform path
130  * expansion.
131  */
132 static int
133 elf_fix_name(const char *name, Rt_map *clmp, Alist **alpp, Aliste alni,
134     uint_t orig)
135 {
136 	return (expand_paths(clmp, name, alpp, alni, orig, 0));
137 }
138 
139 /*
140  * Determine whether this object requires capabilities.
141  */
142 inline static int
143 elf_cap_check(Fdesc *fdp, Ehdr *ehdr, Rej_desc *rej)
144 {
145 	Phdr	*phdr;
146 	Cap	*cap = NULL;
147 	Dyn	*dyn = NULL;
148 	char	*str = NULL;
149 	Addr	base;
150 	uint_t	cnt, dyncnt;
151 
152 	/*
153 	 * If this is a shared object, the base address of the shared object is
154 	 * added to all address values defined within the object.  Otherwise, if
155 	 * this is an executable, all object addresses are used as is.
156 	 */
157 	if (ehdr->e_type == ET_EXEC)
158 		base = 0;
159 	else
160 		base = (Addr)ehdr;
161 
162 	/* LINTED */
163 	phdr = (Phdr *)((char *)ehdr + ehdr->e_phoff);
164 	for (cnt = 0; cnt < ehdr->e_phnum; cnt++, phdr++) {
165 		if (phdr->p_type == PT_DYNAMIC) {
166 			/* LINTED */
167 			dyn = (Dyn *)((uintptr_t)phdr->p_vaddr + base);
168 			dyncnt = phdr->p_filesz / sizeof (Dyn);
169 		} else if (phdr->p_type == PT_SUNWCAP) {
170 			/* LINTED */
171 			cap = (Cap *)((uintptr_t)phdr->p_vaddr + base);
172 		}
173 	}
174 
175 	if (cap) {
176 		/*
177 		 * From the .dynamic section, determine the associated string
178 		 * table.  Required for CA_SUNW_MACH and CA_SUNW_PLAT
179 		 * processing.
180 		 */
181 		while (dyn && dyncnt) {
182 			if (dyn->d_tag == DT_NULL) {
183 				break;
184 			} else if (dyn->d_tag == DT_STRTAB) {
185 				str = (char *)(dyn->d_un.d_ptr + base);
186 				break;
187 			}
188 			dyn++, dyncnt--;
189 		}
190 	}
191 
192 	/*
193 	 * Establish any alternative capabilities, and validate this object
194 	 * if it defines it's own capabilities information.
195 	 */
196 	return (cap_check_fdesc(fdp, cap, str, rej));
197 }
198 
199 /*
200  * Determine if we have been given an ELF file and if so determine if the file
201  * is compatible.  Returns 1 if true, else 0 and sets the reject descriptor
202  * with associated error information.
203  */
204 Fct *
205 elf_verify(caddr_t addr, size_t size, Fdesc *fdp, const char *name,
206     Rej_desc *rej)
207 {
208 	Ehdr	*ehdr;
209 	char	*caddr = (char *)addr;
210 
211 	/*
212 	 * Determine if we're an elf file.  If not simply return, we don't set
213 	 * any rejection information as this test allows use to scroll through
214 	 * the objects we support (ELF, AOUT).
215 	 */
216 	if (size < sizeof (Ehdr) ||
217 	    caddr[EI_MAG0] != ELFMAG0 ||
218 	    caddr[EI_MAG1] != ELFMAG1 ||
219 	    caddr[EI_MAG2] != ELFMAG2 ||
220 	    caddr[EI_MAG3] != ELFMAG3) {
221 		return (NULL);
222 	}
223 
224 	/*
225 	 * Check class and encoding.
226 	 */
227 	/* LINTED */
228 	ehdr = (Ehdr *)addr;
229 	if (ehdr->e_ident[EI_CLASS] != M_CLASS) {
230 		rej->rej_type = SGS_REJ_CLASS;
231 		rej->rej_info = (uint_t)ehdr->e_ident[EI_CLASS];
232 		return (NULL);
233 	}
234 	if (ehdr->e_ident[EI_DATA] != M_DATA) {
235 		rej->rej_type = SGS_REJ_DATA;
236 		rej->rej_info = (uint_t)ehdr->e_ident[EI_DATA];
237 		return (NULL);
238 	}
239 	if ((ehdr->e_type != ET_REL) && (ehdr->e_type != ET_EXEC) &&
240 	    (ehdr->e_type != ET_DYN)) {
241 		rej->rej_type = SGS_REJ_TYPE;
242 		rej->rej_info = (uint_t)ehdr->e_type;
243 		return (NULL);
244 	}
245 
246 	/*
247 	 * Verify ELF version.
248 	 */
249 	if (ehdr->e_version > EV_CURRENT) {
250 		rej->rej_type = SGS_REJ_VERSION;
251 		rej->rej_info = (uint_t)ehdr->e_version;
252 		return (NULL);
253 	}
254 
255 	/*
256 	 * Verify machine specific flags.
257 	 */
258 	if (elf_mach_flags_check(rej, ehdr) == 0)
259 		return (NULL);
260 
261 	/*
262 	 * Verify any capability requirements.  Note, if this object is a shared
263 	 * object that is explicitly defined on the ldd(1) command line, and it
264 	 * contains an incompatible capabilities requirement, then inform the
265 	 * user, but continue processing.
266 	 */
267 	if (elf_cap_check(fdp, ehdr, rej) == 0) {
268 		Rt_map	*lmp = lml_main.lm_head;
269 
270 		if ((lml_main.lm_flags & LML_FLG_TRC_LDDSTUB) && lmp &&
271 		    (FLAGS1(lmp) & FL1_RT_LDDSTUB) && (NEXT(lmp) == NULL)) {
272 			/* LINTED */
273 			(void) printf(MSG_INTL(ldd_warn[rej->rej_type]), name,
274 			    rej->rej_str);
275 			return (&elf_fct);
276 		}
277 		return (NULL);
278 	}
279 	return (&elf_fct);
280 }
281 
282 /*
283  * The runtime linker employs lazy loading to provide the libraries needed for
284  * debugging, preloading .o's and dldump().  As these are seldom used, the
285  * standard startup of ld.so.1 doesn't initialize all the information necessary
286  * to perform plt relocation on ld.so.1's link-map.  The first time lazy loading
287  * is called we get here to perform these initializations:
288  *
289  *  -	elf_needed() is called to establish any ld.so.1 dependencies.  These
290  *	dependencies should all be lazy loaded, so this routine is typically a
291  *	no-op.  However, we call elf_needed() for completeness, in case any
292  *	NEEDED initialization is required.
293  *
294  *  -	For intel, ld.so.1's JMPSLOT relocations need relative updates. These
295  *	are by default skipped thus delaying all relative relocation processing
296  *	on every invocation of ld.so.1.
297  */
298 int
299 elf_rtld_load()
300 {
301 	Lm_list	*lml = &lml_rtld;
302 	Rt_map	*lmp = lml->lm_head;
303 
304 	if (lml->lm_flags & LML_FLG_PLTREL)
305 		return (1);
306 
307 	if (elf_needed(lml, ALIST_OFF_DATA, lmp, NULL) == 0)
308 		return (0);
309 
310 #if	defined(__i386)
311 	/*
312 	 * This is a kludge to give ld.so.1 a performance benefit on i386.
313 	 * It's based around two factors.
314 	 *
315 	 *  -	JMPSLOT relocations (PLT's) actually need a relative relocation
316 	 *	applied to the GOT entry so that they can find PLT0.
317 	 *
318 	 *  -	ld.so.1 does not exercise *any* PLT's before it has made a call
319 	 *	to elf_lazy_load().  This is because all dynamic dependencies
320 	 *	are recorded as lazy dependencies.
321 	 */
322 	(void) elf_reloc_relative_count((ulong_t)JMPREL(lmp),
323 	    (ulong_t)(PLTRELSZ(lmp) / RELENT(lmp)), (ulong_t)RELENT(lmp),
324 	    (ulong_t)ADDR(lmp), lmp, NULL, 0);
325 #endif
326 	lml->lm_flags |= LML_FLG_PLTREL;
327 	return (1);
328 }
329 
330 /*
331  * Lazy load an object.
332  */
333 Rt_map *
334 elf_lazy_load(Rt_map *clmp, Slookup *slp, uint_t ndx, const char *sym,
335     uint_t flags, Grp_hdl **hdl, int *in_nfavl)
336 {
337 	Alist		*palp = NULL;
338 	Rt_map		*nlmp;
339 	Dyninfo		*dip = &DYNINFO(clmp)[ndx], *pdip;
340 	const char	*name;
341 	Lm_list		*lml = LIST(clmp);
342 	Aliste		lmco;
343 
344 	/*
345 	 * If this dependency should be ignored, or has already been processed,
346 	 * we're done.
347 	 */
348 	if (((nlmp = (Rt_map *)dip->di_info) != NULL) ||
349 	    (dip->di_flags & (FLG_DI_IGNORE | FLG_DI_LDD_DONE)))
350 		return (nlmp);
351 
352 	/*
353 	 * If we're running under ldd(1), indicate that this dependency has been
354 	 * processed (see test above).  It doesn't matter whether the object is
355 	 * successfully loaded or not, this flag simply ensures that we don't
356 	 * repeatedly attempt to load an object that has already failed to load.
357 	 * To do so would create multiple failure diagnostics for the same
358 	 * object under ldd(1).
359 	 */
360 	if (lml->lm_flags & LML_FLG_TRC_ENABLE)
361 		dip->di_flags |= FLG_DI_LDD_DONE;
362 
363 	/*
364 	 * Determine the initial dependency name.
365 	 */
366 	name = dip->di_name;
367 	DBG_CALL(Dbg_file_lazyload(clmp, name, sym));
368 
369 	/*
370 	 * If this object needs to establish its own group, make sure a handle
371 	 * is created.
372 	 */
373 	if (dip->di_flags & FLG_DI_GROUP)
374 		flags |= (FLG_RT_SETGROUP | FLG_RT_PUBHDL);
375 
376 	/*
377 	 * Lazy dependencies are identified as DT_NEEDED entries with a
378 	 * DF_P1_LAZYLOAD flag in the previous DT_POSFLAG_1 element.  The
379 	 * dynamic information element that corresponds to the DT_POSFLAG_1
380 	 * entry is free, and thus used to store the present entrance
381 	 * identifier.  This identifier is used to prevent multiple attempts to
382 	 * load a failed lazy loadable dependency within the same runtime linker
383 	 * operation.  However, future attempts to reload this dependency are
384 	 * still possible.
385 	 */
386 	if (ndx && (pdip = dip - 1) && (pdip->di_flags & FLG_DI_POSFLAG1))
387 		pdip->di_info = (void *)slp->sl_id;
388 
389 	/*
390 	 * Expand the requested name if necessary.
391 	 */
392 	if (elf_fix_name(name, clmp, &palp, AL_CNT_NEEDED, 0) == 0)
393 		return (NULL);
394 
395 	/*
396 	 * Establish a link-map control list for this request.
397 	 */
398 	if ((lmco = create_cntl(lml, 0)) == 0) {
399 		remove_alist(&palp, 1);
400 		return (NULL);
401 	}
402 
403 	/*
404 	 * Load the associated object.
405 	 */
406 	dip->di_info = nlmp =
407 	    load_one(lml, lmco, palp, clmp, MODE(clmp), flags, hdl, in_nfavl);
408 
409 	/*
410 	 * Remove any expanded pathname infrastructure.  Reduce the pending lazy
411 	 * dependency count of the caller, together with the link-map lists
412 	 * count of objects that still have lazy dependencies pending.
413 	 */
414 	remove_alist(&palp, 1);
415 	if (--LAZY(clmp) == 0)
416 		LIST(clmp)->lm_lazy--;
417 
418 	/*
419 	 * Finish processing the objects associated with this request, and
420 	 * create an association between the caller and this dependency.
421 	 */
422 	if (nlmp && ((bind_one(clmp, nlmp, BND_NEEDED) == 0) ||
423 	    ((nlmp = analyze_lmc(lml, lmco, nlmp, clmp, in_nfavl)) == NULL) ||
424 	    (relocate_lmc(lml, lmco, clmp, nlmp, in_nfavl) == 0)))
425 		dip->di_info = nlmp = NULL;
426 
427 	/*
428 	 * If this lazyload has failed, and we've created a new link-map
429 	 * control list to which this request has added objects, then remove
430 	 * all the objects that have been associated to this request.
431 	 */
432 	if ((nlmp == NULL) && (lmco != ALIST_OFF_DATA))
433 		remove_lmc(lml, clmp, lmco, name);
434 
435 	/*
436 	 * Remove any temporary link-map control list.
437 	 */
438 	if (lmco != ALIST_OFF_DATA)
439 		remove_cntl(lml, lmco);
440 
441 	/*
442 	 * If this lazy loading failed, record the fact, and bump the lazy
443 	 * counts.
444 	 */
445 	if (nlmp == NULL) {
446 		dip->di_flags |= FLG_DI_LAZYFAIL;
447 		if (LAZY(clmp)++ == 0)
448 			LIST(clmp)->lm_lazy++;
449 	}
450 
451 	return (nlmp);
452 }
453 
454 /*
455  * Return the entry point of the ELF executable.
456  */
457 static Addr
458 elf_entry_point(void)
459 {
460 	Rt_map	*lmp = lml_main.lm_head;
461 	Ehdr	*ehdr = (Ehdr *)ADDR(lmp);
462 	Addr	addr = (Addr)(ehdr->e_entry);
463 
464 	if ((FLAGS(lmp) & FLG_RT_FIXED) == 0)
465 		addr += ADDR(lmp);
466 
467 	return (addr);
468 }
469 
470 /*
471  * Determine if a dependency requires a particular version and if so verify
472  * that the version exists in the dependency.
473  */
474 int
475 elf_verify_vers(const char *name, Rt_map *clmp, Rt_map *nlmp)
476 {
477 	Verneed		*vnd = VERNEED(clmp);
478 	int		_num, num = VERNEEDNUM(clmp);
479 	char		*cstrs = (char *)STRTAB(clmp);
480 	Lm_list		*lml = LIST(clmp);
481 
482 	/*
483 	 * Traverse the callers version needed information and determine if any
484 	 * specific versions are required from the dependency.
485 	 */
486 	DBG_CALL(Dbg_ver_need_title(LIST(clmp), NAME(clmp)));
487 	for (_num = 1; _num <= num; _num++,
488 	    vnd = (Verneed *)((Xword)vnd + vnd->vn_next)) {
489 		Half		cnt = vnd->vn_cnt;
490 		Vernaux		*vnap;
491 		char		*nstrs, *need;
492 
493 		/*
494 		 * Determine if a needed entry matches this dependency.
495 		 */
496 		need = (char *)(cstrs + vnd->vn_file);
497 		if (strcmp(name, need) != 0)
498 			continue;
499 
500 		if ((lml->lm_flags & LML_FLG_TRC_VERBOSE) &&
501 		    ((FLAGS1(clmp) & FL1_RT_LDDSTUB) == 0))
502 			(void) printf(MSG_INTL(MSG_LDD_VER_FIND), name);
503 
504 		/*
505 		 * Validate that each version required actually exists in the
506 		 * dependency.
507 		 */
508 		nstrs = (char *)STRTAB(nlmp);
509 
510 		for (vnap = (Vernaux *)((Xword)vnd + vnd->vn_aux); cnt;
511 		    cnt--, vnap = (Vernaux *)((Xword)vnap + vnap->vna_next)) {
512 			char		*version, *define;
513 			Verdef		*vdf = VERDEF(nlmp);
514 			ulong_t		_num, num = VERDEFNUM(nlmp);
515 			int		found = 0;
516 
517 			/*
518 			 * Skip validation of versions that are marked
519 			 * INFO. This optimization is used for versions
520 			 * that are inherited by another version. Verification
521 			 * of the inheriting version is sufficient.
522 			 *
523 			 * Such versions are recorded in the object for the
524 			 * benefit of VERSYM entries that refer to them. This
525 			 * provides a purely diagnostic benefit.
526 			 */
527 			if (vnap->vna_flags & VER_FLG_INFO)
528 				continue;
529 
530 			version = (char *)(cstrs + vnap->vna_name);
531 			DBG_CALL(Dbg_ver_need_entry(lml, 0, need, version));
532 
533 			for (_num = 1; _num <= num; _num++,
534 			    vdf = (Verdef *)((Xword)vdf + vdf->vd_next)) {
535 				Verdaux		*vdap;
536 
537 				if (vnap->vna_hash != vdf->vd_hash)
538 					continue;
539 
540 				vdap = (Verdaux *)((Xword)vdf + vdf->vd_aux);
541 				define = (char *)(nstrs + vdap->vda_name);
542 				if (strcmp(version, define) != 0)
543 					continue;
544 
545 				found++;
546 				break;
547 			}
548 
549 			/*
550 			 * If we're being traced print out any matched version
551 			 * when the verbose (-v) option is in effect.  Always
552 			 * print any unmatched versions.
553 			 */
554 			if (lml->lm_flags & LML_FLG_TRC_ENABLE) {
555 				/* BEGIN CSTYLED */
556 				if (found) {
557 				    if (!(lml->lm_flags & LML_FLG_TRC_VERBOSE))
558 					continue;
559 
560 				    (void) printf(MSG_ORIG(MSG_LDD_VER_FOUND),
561 					need, version, NAME(nlmp));
562 				} else {
563 				    if (rtld_flags & RT_FL_SILENCERR)
564 					continue;
565 
566 				    (void) printf(MSG_INTL(MSG_LDD_VER_NFOUND),
567 					need, version);
568 				}
569 				/* END CSTYLED */
570 				continue;
571 			}
572 
573 			/*
574 			 * If the version hasn't been found then this is a
575 			 * candidate for a fatal error condition.  Weak
576 			 * version definition requirements are silently
577 			 * ignored.  Also, if the image inspected for a version
578 			 * definition has no versioning recorded at all then
579 			 * silently ignore this (this provides better backward
580 			 * compatibility to old images created prior to
581 			 * versioning being available).  Both of these skipped
582 			 * diagnostics are available under tracing (see above).
583 			 */
584 			if ((found == 0) && (num != 0) &&
585 			    (!(vnap->vna_flags & VER_FLG_WEAK))) {
586 				eprintf(lml, ERR_FATAL,
587 				    MSG_INTL(MSG_VER_NFOUND), need, version,
588 				    NAME(clmp));
589 				return (0);
590 			}
591 		}
592 	}
593 	DBG_CALL(Dbg_ver_need_done(lml));
594 	return (1);
595 }
596 
597 /*
598  * Search through the dynamic section for DT_NEEDED entries and perform one
599  * of two functions.  If only the first argument is specified then load the
600  * defined shared object, otherwise add the link map representing the defined
601  * link map the the dlopen list.
602  */
603 static int
604 elf_needed(Lm_list *lml, Aliste lmco, Rt_map *clmp, int *in_nfavl)
605 {
606 	Alist		*palp = NULL;
607 	Dyn		*dyn;
608 	Dyninfo		*dip;
609 	Word		lmflags = lml->lm_flags;
610 
611 	/*
612 	 * A DYNINFO() structure is created during link-map generation that
613 	 * parallels the DYN() information, and defines any flags that
614 	 * influence a dependencies loading.
615 	 */
616 	for (dyn = DYN(clmp), dip = DYNINFO(clmp);
617 	    !(dip->di_flags & FLG_DI_IGNORE); dyn++, dip++) {
618 		uint_t		flags = 0, silent = 0;
619 		const char	*name = dip->di_name;
620 		Rt_map		*nlmp = NULL;
621 
622 		if ((dip->di_flags & FLG_DI_NEEDED) == 0)
623 			continue;
624 
625 		/*
626 		 * Skip any deferred dependencies, unless ldd(1) has forced
627 		 * their processing.  By default, deferred dependencies are
628 		 * only processed when an explicit binding to an individual
629 		 * deferred reference is made.
630 		 */
631 		if ((dip->di_flags & FLG_DI_DEFERRED) &&
632 		    ((rtld_flags & RT_FL_DEFERRED) == 0))
633 			continue;
634 
635 		/*
636 		 * NOTE, libc.so.1 can't be lazy loaded.  Although a lazy
637 		 * position flag won't be produced when a RTLDINFO .dynamic
638 		 * entry is found (introduced with the UPM in Solaris 10), it
639 		 * was possible to mark libc for lazy loading on previous
640 		 * releases.  To reduce the overhead of testing for this
641 		 * occurrence, only carry out this check for the first object
642 		 * on the link-map list (there aren't many applications built
643 		 * without libc).
644 		 */
645 		if ((dip->di_flags & FLG_DI_LAZY) && (lml->lm_head == clmp) &&
646 		    (strcmp(name, MSG_ORIG(MSG_FIL_LIBC)) == 0))
647 			dip->di_flags &= ~FLG_DI_LAZY;
648 
649 		/*
650 		 * Don't bring in lazy loaded objects yet unless we've been
651 		 * asked to attempt to load all available objects (crle(1) sets
652 		 * LD_FLAGS=loadavail).  Even under RTLD_NOW we don't process
653 		 * this - RTLD_NOW will cause relocation processing which in
654 		 * turn might trigger lazy loading, but its possible that the
655 		 * object has a lazy loaded file with no bindings (i.e., it
656 		 * should never have been a dependency in the first place).
657 		 */
658 		if (dip->di_flags & FLG_DI_LAZY) {
659 			if ((lmflags & LML_FLG_LOADAVAIL) == 0) {
660 				LAZY(clmp)++;
661 				continue;
662 			}
663 
664 			/*
665 			 * Silence any error messages - see description under
666 			 * elf_lookup_filtee().
667 			 */
668 			if ((rtld_flags & RT_FL_SILENCERR) == 0) {
669 				rtld_flags |= RT_FL_SILENCERR;
670 				silent = 1;
671 			}
672 		}
673 
674 		DBG_CALL(Dbg_file_needed(clmp, name));
675 
676 		/*
677 		 * If we're running under ldd(1), indicate that this dependency
678 		 * has been processed.  It doesn't matter whether the object is
679 		 * successfully loaded or not, this flag simply ensures that we
680 		 * don't repeatedly attempt to load an object that has already
681 		 * failed to load.  To do so would create multiple failure
682 		 * diagnostics for the same object under ldd(1).
683 		 */
684 		if (lml->lm_flags & LML_FLG_TRC_ENABLE)
685 			dip->di_flags |= FLG_DI_LDD_DONE;
686 
687 		/*
688 		 * Identify any group permission requirements.
689 		 */
690 		if (dip->di_flags & FLG_DI_GROUP)
691 			flags = (FLG_RT_SETGROUP | FLG_RT_PUBHDL);
692 
693 		/*
694 		 * Establish the objects name, load it and establish a binding
695 		 * with the caller.
696 		 */
697 		if ((elf_fix_name(name, clmp, &palp, AL_CNT_NEEDED, 0) == 0) ||
698 		    ((nlmp = load_one(lml, lmco, palp, clmp, MODE(clmp),
699 		    flags, 0, in_nfavl)) == NULL) ||
700 		    (bind_one(clmp, nlmp, BND_NEEDED) == 0))
701 			nlmp = NULL;
702 
703 		/*
704 		 * Clean up any infrastructure, including the removal of the
705 		 * error suppression state, if it had been previously set in
706 		 * this routine.
707 		 */
708 		remove_alist(&palp, 0);
709 
710 		if (silent)
711 			rtld_flags &= ~RT_FL_SILENCERR;
712 
713 		if ((dip->di_info = (void *)nlmp) == NULL) {
714 			/*
715 			 * If the object could not be mapped, continue if error
716 			 * suppression is established or we're here with ldd(1).
717 			 */
718 			if ((MODE(clmp) & RTLD_CONFGEN) || (lmflags &
719 			    (LML_FLG_LOADAVAIL | LML_FLG_TRC_ENABLE)))
720 				continue;
721 			else {
722 				remove_alist(&palp, 1);
723 				return (0);
724 			}
725 		}
726 	}
727 
728 	if (LAZY(clmp))
729 		lml->lm_lazy++;
730 
731 	remove_alist(&palp, 1);
732 	return (1);
733 }
734 
735 /*
736  * A null symbol interpretor.  Used if a filter has no associated filtees.
737  */
738 /* ARGSUSED0 */
739 static int
740 elf_null_find_sym(Slookup *slp, Sresult *srp, uint_t *binfo, int *in_nfavl)
741 {
742 	return (0);
743 }
744 
745 /*
746  * Disable filtee use.
747  */
748 static void
749 elf_disable_filtee(Rt_map *lmp, Dyninfo *dip)
750 {
751 	if ((dip->di_flags & FLG_DI_SYMFLTR) == 0) {
752 		/*
753 		 * If this is an object filter, null out the reference name.
754 		 */
755 		if (OBJFLTRNDX(lmp) != FLTR_DISABLED) {
756 			REFNAME(lmp) = NULL;
757 			OBJFLTRNDX(lmp) = FLTR_DISABLED;
758 
759 			/*
760 			 * Indicate that this filtee is no longer available.
761 			 */
762 			if (dip->di_flags & FLG_DI_STDFLTR)
763 				SYMINTP(lmp) = elf_null_find_sym;
764 
765 		}
766 	} else if (dip->di_flags & FLG_DI_STDFLTR) {
767 		/*
768 		 * Indicate that this standard filtee is no longer available.
769 		 */
770 		if (SYMSFLTRCNT(lmp))
771 			SYMSFLTRCNT(lmp)--;
772 	} else {
773 		/*
774 		 * Indicate that this auxiliary filtee is no longer available.
775 		 */
776 		if (SYMAFLTRCNT(lmp))
777 			SYMAFLTRCNT(lmp)--;
778 	}
779 	dip->di_flags &= ~MSK_DI_FILTER;
780 }
781 
782 /*
783  * Find symbol interpreter - filters.
784  * This function is called when the symbols from a shared object should
785  * be resolved from the shared objects filtees instead of from within itself.
786  *
787  * A symbol name of 0 is used to trigger filtee loading.
788  */
789 static int
790 _elf_lookup_filtee(Slookup *slp, Sresult *srp, uint_t *binfo, uint_t ndx,
791     int *in_nfavl)
792 {
793 	const char	*name = slp->sl_name, *filtees;
794 	Rt_map		*clmp = slp->sl_cmap;
795 	Rt_map		*ilmp = slp->sl_imap;
796 	Pdesc		*pdp;
797 	int		any;
798 	Dyninfo		*dip = &DYNINFO(ilmp)[ndx];
799 	Lm_list		*lml = LIST(ilmp);
800 	Aliste		idx;
801 
802 	/*
803 	 * Indicate that the filter has been used.  If a binding already exists
804 	 * to the caller, indicate that this object is referenced.  This insures
805 	 * we don't generate false unreferenced diagnostics from ldd -u/U or
806 	 * debugging.  Don't create a binding regardless, as this filter may
807 	 * have been dlopen()'ed.
808 	 */
809 	if (name && (ilmp != clmp)) {
810 		Word	tracing = (LIST(clmp)->lm_flags &
811 		    (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED));
812 
813 		if (tracing || DBG_ENABLED) {
814 			Bnd_desc	*bdp;
815 			Aliste		idx;
816 
817 			FLAGS1(ilmp) |= FL1_RT_USED;
818 
819 			if ((tracing & LML_FLG_TRC_UNREF) || DBG_ENABLED) {
820 				for (APLIST_TRAVERSE(CALLERS(ilmp), idx, bdp)) {
821 					if (bdp->b_caller == clmp) {
822 						bdp->b_flags |= BND_REFER;
823 						break;
824 					}
825 				}
826 			}
827 		}
828 	}
829 
830 	/*
831 	 * If this is the first call to process this filter, establish the
832 	 * filtee list.  If a configuration file exists, determine if any
833 	 * filtee associations for this filter, and its filtee reference, are
834 	 * defined.  Otherwise, process the filtee reference.  Any token
835 	 * expansion is also completed at this point (i.e., $PLATFORM).
836 	 */
837 	filtees = dip->di_name;
838 	if (dip->di_info == NULL) {
839 		if (rtld_flags2 & RT_FL2_FLTCFG) {
840 			elf_config_flt(lml, PATHNAME(ilmp), filtees,
841 			    (Alist **)&dip->di_info, AL_CNT_FILTEES);
842 		}
843 		if (dip->di_info == NULL) {
844 			DBG_CALL(Dbg_file_filter(lml, NAME(ilmp), filtees, 0));
845 			if ((lml->lm_flags &
846 			    (LML_FLG_TRC_VERBOSE | LML_FLG_TRC_SEARCH)) &&
847 			    ((FLAGS1(ilmp) & FL1_RT_LDDSTUB) == 0))
848 				(void) printf(MSG_INTL(MSG_LDD_FIL_FILTER),
849 				    NAME(ilmp), filtees);
850 
851 			if (expand_paths(ilmp, filtees, (Alist **)&dip->di_info,
852 			    AL_CNT_FILTEES, 0, 0) == 0) {
853 				elf_disable_filtee(ilmp, dip);
854 				return (0);
855 			}
856 		}
857 	}
858 
859 	/*
860 	 * Traverse the filtee list, dlopen()'ing any objects specified and
861 	 * using their group handle to lookup the symbol.
862 	 */
863 	any = 0;
864 	for (ALIST_TRAVERSE((Alist *)dip->di_info, idx, pdp)) {
865 		int	mode;
866 		Grp_hdl	*ghp;
867 		Rt_map	*nlmp = NULL;
868 
869 		if (pdp->pd_plen == 0)
870 			continue;
871 
872 		/*
873 		 * Establish the mode of the filtee from the filter.  As filtees
874 		 * are loaded via a dlopen(), make sure that RTLD_GROUP is set
875 		 * and the filtees aren't global.  It would be nice to have
876 		 * RTLD_FIRST used here also, but as filters got out long before
877 		 * RTLD_FIRST was introduced it's a little too late now.
878 		 */
879 		mode = MODE(ilmp) | RTLD_GROUP;
880 		mode &= ~RTLD_GLOBAL;
881 
882 		/*
883 		 * Insure that any auxiliary filter can locate symbols from its
884 		 * caller.
885 		 */
886 		if (dip->di_flags & FLG_DI_AUXFLTR)
887 			mode |= RTLD_PARENT;
888 
889 		/*
890 		 * Process any capability directory.  Establish a new link-map
891 		 * control list from which to analyze any newly added objects.
892 		 */
893 		if ((pdp->pd_info == NULL) && (pdp->pd_flags & PD_TKN_CAP)) {
894 			const char	*dir = pdp->pd_pname;
895 			Aliste		lmco;
896 
897 			/*
898 			 * Establish a link-map control list for this request.
899 			 */
900 			if ((lmco = create_cntl(lml, 0)) == 0)
901 				return (0);
902 
903 			/*
904 			 * Determine the capability filtees.  If none can be
905 			 * found, provide suitable diagnostics.
906 			 */
907 			DBG_CALL(Dbg_cap_filter(lml, dir, ilmp));
908 			if (cap_filtees((Alist **)&dip->di_info, idx, dir,
909 			    lmco, ilmp, clmp, filtees, mode,
910 			    (FLG_RT_PUBHDL | FLG_RT_CAP), in_nfavl) == 0) {
911 				if ((lml->lm_flags & LML_FLG_TRC_ENABLE) &&
912 				    (dip->di_flags & FLG_DI_AUXFLTR) &&
913 				    (rtld_flags & RT_FL_WARNFLTR)) {
914 					(void) printf(
915 					    MSG_INTL(MSG_LDD_CAP_NFOUND), dir);
916 				}
917 				DBG_CALL(Dbg_cap_filter(lml, dir, 0));
918 			}
919 
920 			/*
921 			 * Re-establish the originating path name descriptor,
922 			 * as the expansion of capabilities filtees may have
923 			 * re-allocated the controlling Alist.  Mark this
924 			 * original pathname descriptor as unused so that the
925 			 * descriptor isn't revisited for processing.  Any real
926 			 * capabilities filtees have been added as new pathname
927 			 * descriptors following this descriptor.
928 			 */
929 			pdp = alist_item((Alist *)dip->di_info, idx);
930 			pdp->pd_flags &= ~PD_TKN_CAP;
931 			pdp->pd_plen = 0;
932 
933 			/*
934 			 * Now that any capability objects have been processed,
935 			 * remove any temporary link-map control list.
936 			 */
937 			if (lmco != ALIST_OFF_DATA)
938 				remove_cntl(lml, lmco);
939 		}
940 
941 		if (pdp->pd_plen == 0)
942 			continue;
943 
944 		/*
945 		 * Process an individual filtee.
946 		 */
947 		if (pdp->pd_info == NULL) {
948 			const char	*filtee = pdp->pd_pname;
949 			int		audit = 0;
950 
951 			DBG_CALL(Dbg_file_filtee(lml, NAME(ilmp), filtee, 0));
952 
953 			ghp = NULL;
954 
955 			/*
956 			 * Determine if the reference link map is already
957 			 * loaded.  As an optimization compare the filtee with
958 			 * our interpretor.  The most common filter is
959 			 * libdl.so.1, which is a filter on ld.so.1.
960 			 */
961 #if	defined(_ELF64)
962 			if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD_64)) == 0) {
963 #else
964 			if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD)) == 0) {
965 #endif
966 				uint_t	hflags, rdflags, cdflags;
967 
968 				/*
969 				 * Establish any flags for the handle (Grp_hdl).
970 				 *
971 				 *  -	This is a special, public, ld.so.1
972 				 *	handle.
973 				 *  -	Only the first object on this handle
974 				 *	can supply symbols.
975 				 *  -	This handle provides a filtee.
976 				 *
977 				 * Essentially, this handle allows a caller to
978 				 * reference the dl*() family of interfaces from
979 				 * ld.so.1.
980 				 */
981 				hflags = (GPH_PUBLIC | GPH_LDSO |
982 				    GPH_FIRST | GPH_FILTEE);
983 
984 				/*
985 				 * Establish the flags for the referenced
986 				 * dependency descriptor (Grp_desc).
987 				 *
988 				 *  -	ld.so.1 is available for dlsym().
989 				 *  -	ld.so.1 is available to relocate
990 				 *	against.
991 				 *  -	There's no need to add an dependencies
992 				 *	to this handle.
993 				 */
994 				rdflags = (GPD_DLSYM | GPD_RELOC);
995 
996 				/*
997 				 * Establish the flags for this callers
998 				 * dependency descriptor (Grp_desc).
999 				 *
1000 				 *  -   The explicit creation of a handle
1001 				 *	creates a descriptor for the referenced
1002 				 *	object and the parent (caller).
1003 				 */
1004 				cdflags = GPD_PARENT;
1005 
1006 				nlmp = lml_rtld.lm_head;
1007 				if ((ghp = hdl_create(&lml_rtld, nlmp, ilmp,
1008 				    hflags, rdflags, cdflags)) == NULL)
1009 					nlmp = NULL;
1010 
1011 				/*
1012 				 * Establish the filter handle to prevent any
1013 				 * recursion.
1014 				 */
1015 				if (nlmp && ghp)
1016 					pdp->pd_info = (void *)ghp;
1017 
1018 				/*
1019 				 * Audit the filter/filtee established.  Ignore
1020 				 * any return from the auditor, as we can't
1021 				 * allow ignore filtering to ld.so.1, otherwise
1022 				 * nothing is going to work.
1023 				 */
1024 				if (nlmp && ((lml->lm_tflags | AFLAGS(ilmp)) &
1025 				    LML_TFLG_AUD_OBJFILTER))
1026 					(void) audit_objfilter(ilmp, filtees,
1027 					    nlmp, 0);
1028 
1029 			} else {
1030 				Rej_desc	rej = { 0 };
1031 				Fdesc		fd = { 0 };
1032 				Aliste		lmco;
1033 
1034 				/*
1035 				 * Trace the inspection of this file, determine
1036 				 * any auditor substitution, and seed the file
1037 				 * descriptor with the originating name.
1038 				 */
1039 				if (load_trace(lml, pdp, clmp, &fd) == NULL)
1040 					continue;
1041 
1042 				/*
1043 				 * Establish a link-map control list for this
1044 				 * request.
1045 				 */
1046 				if ((lmco = create_cntl(lml, 0)) == 0)
1047 					return (0);
1048 
1049 				/*
1050 				 * Locate and load the filtee.
1051 				 */
1052 				if ((nlmp = load_path(lml, lmco, ilmp, mode,
1053 				    FLG_RT_PUBHDL, &ghp, &fd, &rej,
1054 				    in_nfavl)) == NULL)
1055 					file_notfound(LIST(ilmp), filtee, ilmp,
1056 					    FLG_RT_PUBHDL, &rej);
1057 
1058 				filtee = pdp->pd_pname;
1059 
1060 				/*
1061 				 * Establish the filter handle to prevent any
1062 				 * recursion.
1063 				 */
1064 				if (nlmp && ghp) {
1065 					ghp->gh_flags |= GPH_FILTEE;
1066 					pdp->pd_info = (void *)ghp;
1067 
1068 					FLAGS1(nlmp) |= FL1_RT_USED;
1069 				}
1070 
1071 				/*
1072 				 * Audit the filter/filtee established.  A
1073 				 * return of 0 indicates the auditor wishes to
1074 				 * ignore this filtee.
1075 				 */
1076 				if (nlmp && ((lml->lm_tflags | FLAGS1(ilmp)) &
1077 				    LML_TFLG_AUD_OBJFILTER)) {
1078 					if (audit_objfilter(ilmp, filtees,
1079 					    nlmp, 0) == 0) {
1080 						audit = 1;
1081 						nlmp = NULL;
1082 					}
1083 				}
1084 
1085 				/*
1086 				 * Finish processing the objects associated with
1087 				 * this request.  Create an association between
1088 				 * this object and the originating filter to
1089 				 * provide sufficient information to tear down
1090 				 * this filtee if necessary.
1091 				 */
1092 				if (nlmp && ghp && (((nlmp = analyze_lmc(lml,
1093 				    lmco, nlmp, clmp, in_nfavl)) == NULL) ||
1094 				    (relocate_lmc(lml, lmco, ilmp, nlmp,
1095 				    in_nfavl) == 0)))
1096 					nlmp = NULL;
1097 
1098 				/*
1099 				 * If the filtee has been successfully
1100 				 * processed, then create an association
1101 				 * between the filter and filtee.  This
1102 				 * association provides sufficient information
1103 				 * to tear down the filter and filtee if
1104 				 * necessary.
1105 				 */
1106 				DBG_CALL(Dbg_file_hdl_title(DBG_HDL_ADD));
1107 				if (nlmp && ghp && (hdl_add(ghp, ilmp,
1108 				    GPD_FILTER, NULL) == NULL))
1109 					nlmp = NULL;
1110 
1111 				/*
1112 				 * Generate a diagnostic if the filtee couldn't
1113 				 * be loaded.
1114 				 */
1115 				if (nlmp == NULL)
1116 					DBG_CALL(Dbg_file_filtee(lml, 0, filtee,
1117 					    audit));
1118 
1119 				/*
1120 				 * If this filtee loading has failed, and we've
1121 				 * created a new link-map control list to which
1122 				 * this request has added objects, then remove
1123 				 * all the objects that have been associated to
1124 				 * this request.
1125 				 */
1126 				if ((nlmp == NULL) && (lmco != ALIST_OFF_DATA))
1127 					remove_lmc(lml, clmp, lmco, name);
1128 
1129 				/*
1130 				 * Remove any temporary link-map control list.
1131 				 */
1132 				if (lmco != ALIST_OFF_DATA)
1133 					remove_cntl(lml, lmco);
1134 			}
1135 
1136 			/*
1137 			 * If the filtee couldn't be loaded, null out the
1138 			 * path name descriptor entry, and continue the search.
1139 			 * Otherwise, the group handle is retained for future
1140 			 * symbol searches.
1141 			 */
1142 			if (nlmp == NULL) {
1143 				pdp->pd_info = NULL;
1144 				pdp->pd_plen = 0;
1145 				continue;
1146 			}
1147 		}
1148 
1149 		ghp = (Grp_hdl *)pdp->pd_info;
1150 
1151 		/*
1152 		 * If name is NULL, we're here to trigger filtee loading.
1153 		 * Skip the symbol lookup so that we'll continue looking for
1154 		 * additional filtees.
1155 		 */
1156 		if (name) {
1157 			Grp_desc	*gdp;
1158 			int		ret = 0;
1159 			Aliste		idx;
1160 			Slookup		sl = *slp;
1161 
1162 			sl.sl_flags |= (LKUP_FIRST | LKUP_DLSYM);
1163 			any++;
1164 
1165 			/*
1166 			 * Look for the symbol in the handles dependencies.
1167 			 */
1168 			for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
1169 				if ((gdp->gd_flags & GPD_DLSYM) == 0)
1170 					continue;
1171 
1172 				/*
1173 				 * If our parent is a dependency don't look at
1174 				 * it (otherwise we are in a recursive loop).
1175 				 * This situation can occur with auxiliary
1176 				 * filters if the filtee has a dependency on the
1177 				 * filter.  This dependency isn't necessary as
1178 				 * auxiliary filters are opened RTLD_PARENT, but
1179 				 * users may still unknowingly add an explicit
1180 				 * dependency to the parent.
1181 				 */
1182 				if ((sl.sl_imap = gdp->gd_depend) == ilmp)
1183 					continue;
1184 
1185 				if (((ret = SYMINTP(sl.sl_imap)(&sl, srp, binfo,
1186 				    in_nfavl)) != 0) ||
1187 				    (ghp->gh_flags & GPH_FIRST))
1188 					break;
1189 			}
1190 
1191 			/*
1192 			 * If a symbol has been found, indicate the binding
1193 			 * and return the symbol.
1194 			 */
1195 			if (ret) {
1196 				*binfo |= DBG_BINFO_FILTEE;
1197 				return (1);
1198 			}
1199 		}
1200 
1201 		/*
1202 		 * If this object is tagged to terminate filtee processing we're
1203 		 * done.
1204 		 */
1205 		if (FLAGS1(ghp->gh_ownlmp) & FL1_RT_ENDFILTE)
1206 			break;
1207 	}
1208 
1209 	/*
1210 	 * If we're just here to trigger filtee loading then we're done.
1211 	 */
1212 	if (name == NULL)
1213 		return (0);
1214 
1215 	/*
1216 	 * If no filtees have been found for a filter, clean up any path name
1217 	 * descriptors and disable their search completely.  For auxiliary
1218 	 * filters we can reselect the symbol search function so that we never
1219 	 * enter this routine again for this object.  For standard filters we
1220 	 * use the null symbol routine.
1221 	 */
1222 	if (any == 0) {
1223 		remove_alist((Alist **)&(dip->di_info), 1);
1224 		elf_disable_filtee(ilmp, dip);
1225 	}
1226 
1227 	return (0);
1228 }
1229 
1230 /*
1231  * Focal point for disabling error messages for auxiliary filters.  As an
1232  * auxiliary filter allows for filtee use, but provides a fallback should a
1233  * filtee not exist (or fail to load), any errors generated as a consequence of
1234  * trying to load the filtees are typically suppressed.  Setting RT_FL_SILENCERR
1235  * suppresses errors generated by eprintf(), but ensures a debug diagnostic is
1236  * produced.  ldd(1) employs printf(), and here the selection of whether to
1237  * print a diagnostic in regards to auxiliary filters is a little more complex.
1238  *
1239  *   -	The determination of whether to produce an ldd message, or a fatal
1240  *	error message is driven by LML_FLG_TRC_ENABLE.
1241  *   -	More detailed ldd messages may also be driven off of LML_FLG_TRC_WARN,
1242  *	(ldd -d/-r), LML_FLG_TRC_VERBOSE (ldd -v), LML_FLG_TRC_SEARCH (ldd -s),
1243  *	and LML_FLG_TRC_UNREF/LML_FLG_TRC_UNUSED (ldd -U/-u).
1244  *   -	If the calling object is lddstub, then several classes of message are
1245  *	suppressed.  The user isn't trying to diagnose lddstub, this is simply
1246  *	a stub executable employed to preload a user specified library against.
1247  *   -	If RT_FL_SILENCERR is in effect then any generic ldd() messages should
1248  *	be suppressed.  All detailed ldd messages should still be produced.
1249  */
1250 int
1251 elf_lookup_filtee(Slookup *slp, Sresult *srp, uint_t *binfo, uint_t ndx,
1252     int *in_nfavl)
1253 {
1254 	Dyninfo	*dip = &DYNINFO(slp->sl_imap)[ndx];
1255 	int	ret, silent = 0;
1256 
1257 	/*
1258 	 * Make sure this entry is still acting as a filter.  We may have tried
1259 	 * to process this previously, and disabled it if the filtee couldn't
1260 	 * be processed.  However, other entries may provide different filtees
1261 	 * that are yet to be completed.
1262 	 */
1263 	if (dip->di_flags == 0)
1264 		return (0);
1265 
1266 	/*
1267 	 * Indicate whether an error message is required should this filtee not
1268 	 * be found, based on the type of filter.
1269 	 */
1270 	if ((dip->di_flags & FLG_DI_AUXFLTR) &&
1271 	    ((rtld_flags & (RT_FL_WARNFLTR | RT_FL_SILENCERR)) == 0)) {
1272 		rtld_flags |= RT_FL_SILENCERR;
1273 		silent = 1;
1274 	}
1275 
1276 	ret = _elf_lookup_filtee(slp, srp, binfo, ndx, in_nfavl);
1277 
1278 	if (silent)
1279 		rtld_flags &= ~RT_FL_SILENCERR;
1280 
1281 	return (ret);
1282 }
1283 
1284 /*
1285  * Compute the elf hash value (as defined in the ELF access library).
1286  * The form of the hash table is:
1287  *
1288  *	|--------------|
1289  *	| # of buckets |
1290  *	|--------------|
1291  *	| # of chains  |
1292  *	|--------------|
1293  *	|   bucket[]   |
1294  *	|--------------|
1295  *	|   chain[]    |
1296  *	|--------------|
1297  */
1298 ulong_t
1299 elf_hash(const char *name)
1300 {
1301 	uint_t	hval = 0;
1302 
1303 	while (*name) {
1304 		uint_t	g;
1305 		hval = (hval << 4) + *name++;
1306 		if ((g = (hval & 0xf0000000)) != 0)
1307 			hval ^= g >> 24;
1308 		hval &= ~g;
1309 	}
1310 	return ((ulong_t)hval);
1311 }
1312 
1313 /*
1314  * Look up a symbol.  The callers lookup information is passed in the Slookup
1315  * structure, and any resultant binding information is returned in the Sresult
1316  * structure.
1317  */
1318 int
1319 elf_find_sym(Slookup *slp, Sresult *srp, uint_t *binfo, int *in_nfavl)
1320 {
1321 	const char	*name = slp->sl_name;
1322 	Rt_map		*ilmp = slp->sl_imap;
1323 	ulong_t		hash = slp->sl_hash;
1324 	uint_t		ndx, hashoff, buckets, *chainptr;
1325 	Sym		*sym, *symtabptr;
1326 	char		*strtabptr, *strtabname;
1327 	uint_t		flags1;
1328 	Syminfo		*sip;
1329 
1330 	/*
1331 	 * If we're only here to establish a symbols index, skip the diagnostic
1332 	 * used to trace a symbol search.
1333 	 */
1334 	if ((slp->sl_flags & LKUP_SYMNDX) == 0)
1335 		DBG_CALL(Dbg_syms_lookup(ilmp, name, MSG_ORIG(MSG_STR_ELF)));
1336 
1337 	if (HASH(ilmp) == NULL)
1338 		return (0);
1339 
1340 	buckets = HASH(ilmp)[0];
1341 	/* LINTED */
1342 	hashoff = ((uint_t)hash % buckets) + 2;
1343 
1344 	/*
1345 	 * Get the first symbol from the hash chain and initialize the string
1346 	 * and symbol table pointers.
1347 	 */
1348 	if ((ndx = HASH(ilmp)[hashoff]) == 0)
1349 		return (0);
1350 
1351 	chainptr = HASH(ilmp) + 2 + buckets;
1352 	strtabptr = STRTAB(ilmp);
1353 	symtabptr = SYMTAB(ilmp);
1354 
1355 	while (ndx) {
1356 		sym = symtabptr + ndx;
1357 		strtabname = strtabptr + sym->st_name;
1358 
1359 		/*
1360 		 * Compare the symbol found with the name required.  If the
1361 		 * names don't match continue with the next hash entry.
1362 		 */
1363 		if ((*strtabname++ != *name) || strcmp(strtabname, &name[1])) {
1364 			hashoff = ndx + buckets + 2;
1365 			if ((ndx = chainptr[ndx]) != 0)
1366 				continue;
1367 			return (0);
1368 		}
1369 
1370 		/*
1371 		 * Symbols that are defined as hidden within an object usually
1372 		 * have any references from within the same object bound at
1373 		 * link-edit time, thus ld.so.1 is not involved.  However, if
1374 		 * these are capabilities symbols, then references to them must
1375 		 * be resolved at runtime.  A hidden symbol can only be bound
1376 		 * to by the object that defines the symbol.
1377 		 */
1378 		if ((sym->st_shndx != SHN_UNDEF) &&
1379 		    (ELF_ST_VISIBILITY(sym->st_other) == STV_HIDDEN) &&
1380 		    (slp->sl_cmap != ilmp))
1381 			return (0);
1382 
1383 		/*
1384 		 * The Solaris ld does not put DT_VERSYM in the dynamic
1385 		 * section, but the GNU ld does. The GNU runtime linker
1386 		 * interprets the top bit of the 16-bit Versym value
1387 		 * (0x8000) as the "hidden" bit. If this bit is set,
1388 		 * the linker is supposed to act as if that symbol does
1389 		 * not exist. The hidden bit supports their versioning
1390 		 * scheme, which allows multiple incompatible functions
1391 		 * with the same name to exist at different versions
1392 		 * within an object. The Solaris linker does not support this
1393 		 * mechanism, or the model of interface evolution that
1394 		 * it allows, but we honor the hidden bit in GNU ld
1395 		 * produced objects in order to interoperate with them.
1396 		 */
1397 		if (VERSYM(ilmp) && (VERSYM(ilmp)[ndx] & 0x8000)) {
1398 			DBG_CALL(Dbg_syms_ignore_gnuver(ilmp, name,
1399 			    ndx, VERSYM(ilmp)[ndx]));
1400 			return (0);
1401 		}
1402 
1403 		/*
1404 		 * If we're only here to establish a symbol's index, we're done.
1405 		 */
1406 		if (slp->sl_flags & LKUP_SYMNDX) {
1407 			srp->sr_dmap = ilmp;
1408 			srp->sr_sym = sym;
1409 			return (1);
1410 		}
1411 
1412 		/*
1413 		 * If we find a match and the symbol is defined, capture the
1414 		 * symbol pointer and the link map in which it was found.
1415 		 */
1416 		if (sym->st_shndx != SHN_UNDEF) {
1417 			srp->sr_dmap = ilmp;
1418 			srp->sr_sym = sym;
1419 			*binfo |= DBG_BINFO_FOUND;
1420 
1421 			if ((FLAGS(ilmp) & FLG_RT_OBJINTPO) ||
1422 			    ((FLAGS(ilmp) & FLG_RT_SYMINTPO) &&
1423 			    is_sym_interposer(ilmp, sym)))
1424 				*binfo |= DBG_BINFO_INTERPOSE;
1425 			break;
1426 
1427 		/*
1428 		 * If we find a match and the symbol is undefined, the
1429 		 * symbol type is a function, and the value of the symbol
1430 		 * is non zero, then this is a special case.  This allows
1431 		 * the resolution of a function address to the plt[] entry.
1432 		 * See SPARC ABI, Dynamic Linking, Function Addresses for
1433 		 * more details.
1434 		 */
1435 		} else if ((slp->sl_flags & LKUP_SPEC) &&
1436 		    (FLAGS(ilmp) & FLG_RT_ISMAIN) && (sym->st_value != 0) &&
1437 		    (ELF_ST_TYPE(sym->st_info) == STT_FUNC)) {
1438 			srp->sr_dmap = ilmp;
1439 			srp->sr_sym = sym;
1440 			*binfo |= (DBG_BINFO_FOUND | DBG_BINFO_PLTADDR);
1441 
1442 			if ((FLAGS(ilmp) & FLG_RT_OBJINTPO) ||
1443 			    ((FLAGS(ilmp) & FLG_RT_SYMINTPO) &&
1444 			    is_sym_interposer(ilmp, sym)))
1445 				*binfo |= DBG_BINFO_INTERPOSE;
1446 			return (1);
1447 		}
1448 
1449 		/*
1450 		 * Undefined symbol.
1451 		 */
1452 		return (0);
1453 	}
1454 
1455 	/*
1456 	 * We've found a match.  Determine if the defining object contains
1457 	 * symbol binding information.
1458 	 */
1459 	if ((sip = SYMINFO(ilmp)) != NULL)
1460 		sip += ndx;
1461 
1462 	/*
1463 	 * If this definition is a singleton, and we haven't followed a default
1464 	 * symbol search knowing that we're looking for a singleton (presumably
1465 	 * because the symbol definition has been changed since the referring
1466 	 * object was built), then reject this binding so that the caller can
1467 	 * fall back to a standard symbol search.
1468 	 */
1469 	if ((ELF_ST_VISIBILITY(sym->st_other) == STV_SINGLETON) &&
1470 	    (((slp->sl_flags & LKUP_STANDARD) == 0) ||
1471 	    (((slp->sl_flags & LKUP_SINGLETON) == 0) &&
1472 	    (LIST(ilmp)->lm_flags & LML_FLG_GROUPSEXIST)))) {
1473 		DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name,
1474 		    DBG_BNDREJ_SINGLE));
1475 		*binfo |= BINFO_REJSINGLE;
1476 		*binfo &= ~DBG_BINFO_MSK;
1477 		return (0);
1478 	}
1479 
1480 	/*
1481 	 * If this is a direct binding request, but the symbol definition has
1482 	 * disabled directly binding to it (presumably because the symbol
1483 	 * definition has been changed since the referring object was built),
1484 	 * reject this binding so that the caller can fall back to a standard
1485 	 * symbol search.
1486 	 */
1487 	if (sip && (slp->sl_flags & LKUP_DIRECT) &&
1488 	    (sip->si_flags & SYMINFO_FLG_NOEXTDIRECT)) {
1489 		DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name,
1490 		    DBG_BNDREJ_DIRECT));
1491 		*binfo |= BINFO_REJDIRECT;
1492 		*binfo &= ~DBG_BINFO_MSK;
1493 		return (0);
1494 	}
1495 
1496 	/*
1497 	 * If this is a binding request within an RTLD_GROUP family, and the
1498 	 * symbol has disabled directly binding to it, reject this binding so
1499 	 * that the caller can fall back to a standard symbol search.
1500 	 *
1501 	 * Effectively, an RTLD_GROUP family achieves what can now be
1502 	 * established with direct bindings.  However, various symbols have
1503 	 * been tagged as inappropriate for direct binding to (ie. libc:malloc).
1504 	 *
1505 	 * A symbol marked as no-direct cannot be used within a group without
1506 	 * first ensuring that the symbol has not been interposed upon outside
1507 	 * of the group.  A common example occurs when users implement their own
1508 	 * version of malloc() in the executable.  Such a malloc() interposes on
1509 	 * the libc:malloc, and this interposition must be honored within the
1510 	 * group as well.
1511 	 *
1512 	 * Following any rejection, LKUP_WORLD is established as a means of
1513 	 * overriding this test as we return to a standard search.
1514 	 */
1515 	if (sip && (sip->si_flags & SYMINFO_FLG_NOEXTDIRECT) &&
1516 	    ((MODE(slp->sl_cmap) & (RTLD_GROUP | RTLD_WORLD)) == RTLD_GROUP) &&
1517 	    ((slp->sl_flags & LKUP_WORLD) == 0)) {
1518 		DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name,
1519 		    DBG_BNDREJ_GROUP));
1520 		*binfo |= BINFO_REJGROUP;
1521 		*binfo &= ~DBG_BINFO_MSK;
1522 		return (0);
1523 	}
1524 
1525 	/*
1526 	 * If this symbol is associated with capabilities, then each of the
1527 	 * capabilities instances needs to be compared against the system
1528 	 * capabilities.  The best instance will be chosen to satisfy this
1529 	 * binding.
1530 	 */
1531 	if (CAP(ilmp) && CAPINFO(ilmp) && ELF_C_GROUP(CAPINFO(ilmp)[ndx]) &&
1532 	    (cap_match(srp, ndx, symtabptr, strtabptr) == 0))
1533 		return (0);
1534 
1535 	/*
1536 	 * Determine whether this object is acting as a filter.
1537 	 */
1538 	if (((flags1 = FLAGS1(ilmp)) & MSK_RT_FILTER) == 0)
1539 		return (1);
1540 
1541 	/*
1542 	 * Determine if this object offers per-symbol filtering, and if so,
1543 	 * whether this symbol references a filtee.
1544 	 */
1545 	if (sip && (flags1 & (FL1_RT_SYMSFLTR | FL1_RT_SYMAFLTR))) {
1546 		/*
1547 		 * If this is a standard filter reference, and no standard
1548 		 * filtees remain to be inspected, we're done.  If this is an
1549 		 * auxiliary filter reference, and no auxiliary filtees remain,
1550 		 * we'll fall through in case any object filtering is available.
1551 		 */
1552 		if ((sip->si_flags & SYMINFO_FLG_FILTER) &&
1553 		    (SYMSFLTRCNT(ilmp) == 0))
1554 			return (0);
1555 
1556 		if ((sip->si_flags & SYMINFO_FLG_FILTER) ||
1557 		    ((sip->si_flags & SYMINFO_FLG_AUXILIARY) &&
1558 		    SYMAFLTRCNT(ilmp))) {
1559 			Sresult	sr;
1560 
1561 			/*
1562 			 * Initialize a local symbol result descriptor, using
1563 			 * the original symbol name.
1564 			 */
1565 			SRESULT_INIT(sr, slp->sl_name);
1566 
1567 			/*
1568 			 * This symbol has an associated filtee.  Lookup the
1569 			 * symbol in the filtee, and if it is found return it.
1570 			 * If the symbol doesn't exist, and this is a standard
1571 			 * filter, return an error, otherwise fall through to
1572 			 * catch any object filtering that may be available.
1573 			 */
1574 			if (elf_lookup_filtee(slp, &sr, binfo, sip->si_boundto,
1575 			    in_nfavl)) {
1576 				*srp = sr;
1577 				return (1);
1578 			}
1579 			if (sip->si_flags & SYMINFO_FLG_FILTER)
1580 				return (0);
1581 		}
1582 	}
1583 
1584 	/*
1585 	 * Determine if this object provides global filtering.
1586 	 */
1587 	if (flags1 & (FL1_RT_OBJSFLTR | FL1_RT_OBJAFLTR)) {
1588 		if (OBJFLTRNDX(ilmp) != FLTR_DISABLED) {
1589 			Sresult	sr;
1590 
1591 			/*
1592 			 * Initialize a local symbol result descriptor, using
1593 			 * the original symbol name.
1594 			 */
1595 			SRESULT_INIT(sr, slp->sl_name);
1596 
1597 			/*
1598 			 * This object has an associated filtee.  Lookup the
1599 			 * symbol in the filtee, and if it is found return it.
1600 			 * If the symbol doesn't exist, and this is a standard
1601 			 * filter, return and error, otherwise return the symbol
1602 			 * within the filter itself.
1603 			 */
1604 			if (elf_lookup_filtee(slp, &sr, binfo, OBJFLTRNDX(ilmp),
1605 			    in_nfavl)) {
1606 				*srp = sr;
1607 				return (1);
1608 			}
1609 		}
1610 
1611 		if (flags1 & FL1_RT_OBJSFLTR)
1612 			return (0);
1613 	}
1614 	return (1);
1615 }
1616 
1617 /*
1618  * Create a new Rt_map structure for an ELF object and initialize
1619  * all values.
1620  */
1621 Rt_map *
1622 elf_new_lmp(Lm_list *lml, Aliste lmco, Fdesc *fdp, Addr addr, size_t msize,
1623     void *odyn, Rt_map *clmp, int *in_nfavl)
1624 {
1625 	const char	*name = fdp->fd_nname;
1626 	Rt_map		*lmp;
1627 	Ehdr		*ehdr = (Ehdr *)addr;
1628 	Phdr		*phdr, *tphdr = NULL, *dphdr = NULL, *uphdr = NULL;
1629 	Dyn		*dyn = (Dyn *)odyn;
1630 	Cap		*cap = NULL;
1631 	int		ndx;
1632 	Addr		base, fltr = 0, audit = 0, cfile = 0, crle = 0;
1633 	Xword		rpath = 0;
1634 	size_t		lmsz, rtsz, epsz, dynsz = 0;
1635 	uint_t		dyncnt = 0;
1636 
1637 	DBG_CALL(Dbg_file_elf(lml, name, addr, msize, lml->lm_lmidstr, lmco));
1638 
1639 	/*
1640 	 * If this is a shared object, the base address of the shared object is
1641 	 * added to all address values defined within the object.  Otherwise, if
1642 	 * this is an executable, all object addresses are used as is.
1643 	 */
1644 	if (ehdr->e_type == ET_EXEC)
1645 		base = 0;
1646 	else
1647 		base = addr;
1648 
1649 	/*
1650 	 * Traverse the program header table, picking off required items.  This
1651 	 * traversal also provides for the sizing of the PT_DYNAMIC section.
1652 	 */
1653 	phdr = (Phdr *)((uintptr_t)ehdr + ehdr->e_phoff);
1654 	for (ndx = 0; ndx < (int)ehdr->e_phnum; ndx++,
1655 	    phdr = (Phdr *)((uintptr_t)phdr + ehdr->e_phentsize)) {
1656 		switch (phdr->p_type) {
1657 		case PT_DYNAMIC:
1658 			dphdr = phdr;
1659 			dyn = (Dyn *)((uintptr_t)phdr->p_vaddr + base);
1660 			break;
1661 		case PT_TLS:
1662 			tphdr = phdr;
1663 			break;
1664 		case PT_SUNWCAP:
1665 			cap = (Cap *)((uintptr_t)phdr->p_vaddr + base);
1666 			break;
1667 		case PT_SUNW_UNWIND:
1668 		case PT_SUNW_EH_FRAME:
1669 			uphdr = phdr;
1670 			break;
1671 		default:
1672 			break;
1673 		}
1674 	}
1675 
1676 	/*
1677 	 * Determine the number of PT_DYNAMIC entries for the DYNINFO()
1678 	 * allocation.  Sadly, this is a little larger than we really need,
1679 	 * as there are typically padding DT_NULL entries.  However, adding
1680 	 * this data to the initial link-map allocation is a win.
1681 	 */
1682 	if (dyn) {
1683 		dyncnt = dphdr->p_filesz / sizeof (Dyn);
1684 		dynsz = dyncnt * sizeof (Dyninfo);
1685 	}
1686 
1687 	/*
1688 	 * Allocate space for the link-map, private elf information, and
1689 	 * DYNINFO() data.  Once these are allocated and initialized,
1690 	 * remove_so(0, lmp) can be used to tear down the link-map allocation
1691 	 * should any failures occur.
1692 	 */
1693 	rtsz = S_DROUND(sizeof (Rt_map));
1694 	epsz = S_DROUND(sizeof (Rt_elfp));
1695 	lmsz = rtsz + epsz + dynsz;
1696 	if ((lmp = calloc(lmsz, 1)) == NULL)
1697 		return (NULL);
1698 	ELFPRV(lmp) = (void *)((uintptr_t)lmp + rtsz);
1699 	DYNINFO(lmp) = (Dyninfo *)((uintptr_t)lmp + rtsz + epsz);
1700 	LMSIZE(lmp) = lmsz;
1701 
1702 	/*
1703 	 * All fields not filled in were set to 0 by calloc.
1704 	 */
1705 	NAME(lmp) = (char *)name;
1706 	ADDR(lmp) = addr;
1707 	MSIZE(lmp) = msize;
1708 	SYMINTP(lmp) = elf_find_sym;
1709 	FCT(lmp) = &elf_fct;
1710 	LIST(lmp) = lml;
1711 	OBJFLTRNDX(lmp) = FLTR_DISABLED;
1712 	SORTVAL(lmp) = -1;
1713 	DYN(lmp) = dyn;
1714 	DYNINFOCNT(lmp) = dyncnt;
1715 	PTUNWIND(lmp) = uphdr;
1716 
1717 	if (ehdr->e_type == ET_EXEC)
1718 		FLAGS(lmp) |= FLG_RT_FIXED;
1719 
1720 	/*
1721 	 * Fill in rest of the link map entries with information from the file's
1722 	 * dynamic structure.
1723 	 */
1724 	if (dyn) {
1725 		Dyninfo		*dip;
1726 		uint_t		dynndx;
1727 		Xword		pltpadsz = 0;
1728 		Rti_desc	*rti;
1729 		Dyn		*pdyn;
1730 		Word		lmtflags = lml->lm_tflags;
1731 		int		ignore = 0;
1732 
1733 		/*
1734 		 * Note, we use DT_NULL to terminate processing, and the
1735 		 * dynamic entry count as a fall back.  Normally, a DT_NULL
1736 		 * entry marks the end of the dynamic section.  Any non-NULL
1737 		 * items following the first DT_NULL are silently ignored.
1738 		 * This situation should only occur through use of elfedit(1)
1739 		 * or a similar tool.
1740 		 */
1741 		for (dynndx = 0, pdyn = NULL, dip = DYNINFO(lmp);
1742 		    dynndx < dyncnt; dynndx++, pdyn = dyn++, dip++) {
1743 
1744 			if (ignore) {
1745 				dip->di_flags |= FLG_DI_IGNORE;
1746 				continue;
1747 			}
1748 
1749 			switch ((Xword)dyn->d_tag) {
1750 			case DT_NULL:
1751 				dip->di_flags |= ignore = FLG_DI_IGNORE;
1752 				break;
1753 			case DT_POSFLAG_1:
1754 				dip->di_flags |= FLG_DI_POSFLAG1;
1755 				break;
1756 			case DT_NEEDED:
1757 			case DT_USED:
1758 				dip->di_flags |= FLG_DI_NEEDED;
1759 
1760 				/* BEGIN CSTYLED */
1761 				if (pdyn && (pdyn->d_tag == DT_POSFLAG_1)) {
1762 				    /*
1763 				     * Identify any non-deferred lazy load for
1764 				     * future processing, unless LD_NOLAZYLOAD
1765 				     * has been set.
1766 				     */
1767 				    if ((pdyn->d_un.d_val & DF_P1_LAZYLOAD) &&
1768 					((lmtflags & LML_TFLG_NOLAZYLD) == 0))
1769 					    dip->di_flags |= FLG_DI_LAZY;
1770 
1771 				    /*
1772 				     * Identify any group permission
1773 				     * requirements.
1774 				     */
1775 				    if (pdyn->d_un.d_val & DF_P1_GROUPPERM)
1776 					    dip->di_flags |= FLG_DI_GROUP;
1777 
1778 				    /*
1779 				     * Identify any deferred dependencies.
1780 				     */
1781 				    if (pdyn->d_un.d_val & DF_P1_DEFERRED)
1782 					    dip->di_flags |= FLG_DI_DEFERRED;
1783 				}
1784 				/* END CSTYLED */
1785 				break;
1786 			case DT_SYMTAB:
1787 				SYMTAB(lmp) = (void *)(dyn->d_un.d_ptr + base);
1788 				break;
1789 			case DT_SUNW_SYMTAB:
1790 				SUNWSYMTAB(lmp) =
1791 				    (void *)(dyn->d_un.d_ptr + base);
1792 				break;
1793 			case DT_SUNW_SYMSZ:
1794 				SUNWSYMSZ(lmp) = dyn->d_un.d_val;
1795 				break;
1796 			case DT_STRTAB:
1797 				STRTAB(lmp) = (void *)(dyn->d_un.d_ptr + base);
1798 				break;
1799 			case DT_SYMENT:
1800 				SYMENT(lmp) = dyn->d_un.d_val;
1801 				break;
1802 			case DT_FEATURE_1:
1803 				if (dyn->d_un.d_val & DTF_1_CONFEXP)
1804 					crle = 1;
1805 				break;
1806 			case DT_MOVESZ:
1807 				MOVESZ(lmp) = dyn->d_un.d_val;
1808 				FLAGS(lmp) |= FLG_RT_MOVE;
1809 				break;
1810 			case DT_MOVEENT:
1811 				MOVEENT(lmp) = dyn->d_un.d_val;
1812 				break;
1813 			case DT_MOVETAB:
1814 				MOVETAB(lmp) = (void *)(dyn->d_un.d_ptr + base);
1815 				break;
1816 			case DT_REL:
1817 			case DT_RELA:
1818 				/*
1819 				 * At this time, ld.so. can only handle one
1820 				 * type of relocation per object.
1821 				 */
1822 				REL(lmp) = (void *)(dyn->d_un.d_ptr + base);
1823 				break;
1824 			case DT_RELSZ:
1825 			case DT_RELASZ:
1826 				RELSZ(lmp) = dyn->d_un.d_val;
1827 				break;
1828 			case DT_RELENT:
1829 			case DT_RELAENT:
1830 				RELENT(lmp) = dyn->d_un.d_val;
1831 				break;
1832 			case DT_RELCOUNT:
1833 			case DT_RELACOUNT:
1834 				RELACOUNT(lmp) = (uint_t)dyn->d_un.d_val;
1835 				break;
1836 			case DT_HASH:
1837 				HASH(lmp) = (uint_t *)(dyn->d_un.d_ptr + base);
1838 				break;
1839 			case DT_PLTGOT:
1840 				PLTGOT(lmp) =
1841 				    (uint_t *)(dyn->d_un.d_ptr + base);
1842 				break;
1843 			case DT_PLTRELSZ:
1844 				PLTRELSZ(lmp) = dyn->d_un.d_val;
1845 				break;
1846 			case DT_JMPREL:
1847 				JMPREL(lmp) = (void *)(dyn->d_un.d_ptr + base);
1848 				break;
1849 			case DT_INIT:
1850 				if (dyn->d_un.d_ptr != 0)
1851 					INIT(lmp) =
1852 					    (void (*)())(dyn->d_un.d_ptr +
1853 					    base);
1854 				break;
1855 			case DT_FINI:
1856 				if (dyn->d_un.d_ptr != 0)
1857 					FINI(lmp) =
1858 					    (void (*)())(dyn->d_un.d_ptr +
1859 					    base);
1860 				break;
1861 			case DT_INIT_ARRAY:
1862 				INITARRAY(lmp) = (Addr *)(dyn->d_un.d_ptr +
1863 				    base);
1864 				break;
1865 			case DT_INIT_ARRAYSZ:
1866 				INITARRAYSZ(lmp) = (uint_t)dyn->d_un.d_val;
1867 				break;
1868 			case DT_FINI_ARRAY:
1869 				FINIARRAY(lmp) = (Addr *)(dyn->d_un.d_ptr +
1870 				    base);
1871 				break;
1872 			case DT_FINI_ARRAYSZ:
1873 				FINIARRAYSZ(lmp) = (uint_t)dyn->d_un.d_val;
1874 				break;
1875 			case DT_PREINIT_ARRAY:
1876 				PREINITARRAY(lmp) = (Addr *)(dyn->d_un.d_ptr +
1877 				    base);
1878 				break;
1879 			case DT_PREINIT_ARRAYSZ:
1880 				PREINITARRAYSZ(lmp) = (uint_t)dyn->d_un.d_val;
1881 				break;
1882 			case DT_RPATH:
1883 			case DT_RUNPATH:
1884 				rpath = dyn->d_un.d_val;
1885 				break;
1886 			case DT_FILTER:
1887 				dip->di_flags |= FLG_DI_STDFLTR;
1888 				fltr = dyn->d_un.d_val;
1889 				OBJFLTRNDX(lmp) = dynndx;
1890 				FLAGS1(lmp) |= FL1_RT_OBJSFLTR;
1891 				break;
1892 			case DT_AUXILIARY:
1893 				dip->di_flags |= FLG_DI_AUXFLTR;
1894 				if (!(rtld_flags & RT_FL_NOAUXFLTR)) {
1895 					fltr = dyn->d_un.d_val;
1896 					OBJFLTRNDX(lmp) = dynndx;
1897 				}
1898 				FLAGS1(lmp) |= FL1_RT_OBJAFLTR;
1899 				break;
1900 			case DT_SUNW_FILTER:
1901 				dip->di_flags |=
1902 				    (FLG_DI_STDFLTR | FLG_DI_SYMFLTR);
1903 				SYMSFLTRCNT(lmp)++;
1904 				FLAGS1(lmp) |= FL1_RT_SYMSFLTR;
1905 				break;
1906 			case DT_SUNW_AUXILIARY:
1907 				dip->di_flags |=
1908 				    (FLG_DI_AUXFLTR | FLG_DI_SYMFLTR);
1909 				if (!(rtld_flags & RT_FL_NOAUXFLTR)) {
1910 					SYMAFLTRCNT(lmp)++;
1911 				}
1912 				FLAGS1(lmp) |= FL1_RT_SYMAFLTR;
1913 				break;
1914 			case DT_DEPAUDIT:
1915 				if (!(rtld_flags & RT_FL_NOAUDIT)) {
1916 					audit = dyn->d_un.d_val;
1917 					FLAGS1(lmp) |= FL1_RT_DEPAUD;
1918 				}
1919 				break;
1920 			case DT_CONFIG:
1921 				cfile = dyn->d_un.d_val;
1922 				break;
1923 			case DT_DEBUG:
1924 				/*
1925 				 * DT_DEBUG entries are only created in
1926 				 * dynamic objects that require an interpretor
1927 				 * (ie. all dynamic executables and some shared
1928 				 * objects), and provide for a hand-shake with
1929 				 * old debuggers.  This entry is initialized to
1930 				 * zero by the link-editor.  If a debugger is
1931 				 * monitoring us, and has updated this entry,
1932 				 * set the debugger monitor flag, and finish
1933 				 * initializing the debugging structure.  See
1934 				 * setup().  Also, switch off any configuration
1935 				 * object use as most debuggers can't handle
1936 				 * fixed dynamic executables as dependencies.
1937 				 */
1938 				if (dyn->d_un.d_ptr)
1939 					rtld_flags |=
1940 					    (RT_FL_DEBUGGER | RT_FL_NOOBJALT);
1941 				dyn->d_un.d_ptr = (Addr)&r_debug;
1942 				break;
1943 			case DT_VERNEED:
1944 				VERNEED(lmp) = (Verneed *)(dyn->d_un.d_ptr +
1945 				    base);
1946 				break;
1947 			case DT_VERNEEDNUM:
1948 				/* LINTED */
1949 				VERNEEDNUM(lmp) = (int)dyn->d_un.d_val;
1950 				break;
1951 			case DT_VERDEF:
1952 				VERDEF(lmp) = (Verdef *)(dyn->d_un.d_ptr +
1953 				    base);
1954 				break;
1955 			case DT_VERDEFNUM:
1956 				/* LINTED */
1957 				VERDEFNUM(lmp) = (int)dyn->d_un.d_val;
1958 				break;
1959 			case DT_VERSYM:
1960 				/*
1961 				 * The Solaris ld does not produce DT_VERSYM,
1962 				 * but the GNU ld does, in order to support
1963 				 * their style of versioning, which differs
1964 				 * from ours in some ways, while using the
1965 				 * same data structures. The presence of
1966 				 * DT_VERSYM therefore means that GNU
1967 				 * versioning rules apply to the given file.
1968 				 * If DT_VERSYM is not present, then Solaris
1969 				 * versioning rules apply.
1970 				 */
1971 				VERSYM(lmp) = (Versym *)(dyn->d_un.d_ptr +
1972 				    base);
1973 				break;
1974 			case DT_BIND_NOW:
1975 				if ((dyn->d_un.d_val & DF_BIND_NOW) &&
1976 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
1977 					MODE(lmp) |= RTLD_NOW;
1978 					MODE(lmp) &= ~RTLD_LAZY;
1979 				}
1980 				break;
1981 			case DT_FLAGS:
1982 				FLAGS1(lmp) |= FL1_RT_DTFLAGS;
1983 				if (dyn->d_un.d_val & DF_SYMBOLIC)
1984 					FLAGS1(lmp) |= FL1_RT_SYMBOLIC;
1985 				if ((dyn->d_un.d_val & DF_BIND_NOW) &&
1986 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
1987 					MODE(lmp) |= RTLD_NOW;
1988 					MODE(lmp) &= ~RTLD_LAZY;
1989 				}
1990 				/*
1991 				 * Capture any static TLS use, and enforce that
1992 				 * this object be non-deletable.
1993 				 */
1994 				if (dyn->d_un.d_val & DF_STATIC_TLS) {
1995 					FLAGS1(lmp) |= FL1_RT_TLSSTAT;
1996 					MODE(lmp) |= RTLD_NODELETE;
1997 				}
1998 				break;
1999 			case DT_FLAGS_1:
2000 				if (dyn->d_un.d_val & DF_1_DISPRELPND)
2001 					FLAGS1(lmp) |= FL1_RT_DISPREL;
2002 				if (dyn->d_un.d_val & DF_1_GROUP)
2003 					FLAGS(lmp) |=
2004 					    (FLG_RT_SETGROUP | FLG_RT_PUBHDL);
2005 				if ((dyn->d_un.d_val & DF_1_NOW) &&
2006 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
2007 					MODE(lmp) |= RTLD_NOW;
2008 					MODE(lmp) &= ~RTLD_LAZY;
2009 				}
2010 				if (dyn->d_un.d_val & DF_1_NODELETE)
2011 					MODE(lmp) |= RTLD_NODELETE;
2012 				if (dyn->d_un.d_val & DF_1_INITFIRST)
2013 					FLAGS(lmp) |= FLG_RT_INITFRST;
2014 				if (dyn->d_un.d_val & DF_1_NOOPEN)
2015 					FLAGS(lmp) |= FLG_RT_NOOPEN;
2016 				if (dyn->d_un.d_val & DF_1_LOADFLTR)
2017 					FLAGS(lmp) |= FLG_RT_LOADFLTR;
2018 				if (dyn->d_un.d_val & DF_1_NODUMP)
2019 					FLAGS(lmp) |= FLG_RT_NODUMP;
2020 				if (dyn->d_un.d_val & DF_1_CONFALT)
2021 					crle = 1;
2022 				if (dyn->d_un.d_val & DF_1_DIRECT)
2023 					FLAGS1(lmp) |= FL1_RT_DIRECT;
2024 				if (dyn->d_un.d_val & DF_1_NODEFLIB)
2025 					FLAGS1(lmp) |= FL1_RT_NODEFLIB;
2026 				if (dyn->d_un.d_val & DF_1_ENDFILTEE)
2027 					FLAGS1(lmp) |= FL1_RT_ENDFILTE;
2028 				if (dyn->d_un.d_val & DF_1_TRANS)
2029 					FLAGS(lmp) |= FLG_RT_TRANS;
2030 
2031 				/*
2032 				 * Global auditing is only meaningful when
2033 				 * specified by the initiating object of the
2034 				 * process - typically the dynamic executable.
2035 				 * If this is the initiating object, its link-
2036 				 * map will not yet have been added to the
2037 				 * link-map list, and consequently the link-map
2038 				 * list is empty.  (see setup()).
2039 				 */
2040 				if (dyn->d_un.d_val & DF_1_GLOBAUDIT) {
2041 					if (lml_main.lm_head == NULL)
2042 						FLAGS1(lmp) |= FL1_RT_GLOBAUD;
2043 					else
2044 						DBG_CALL(Dbg_audit_ignore(lmp));
2045 				}
2046 
2047 				/*
2048 				 * If this object identifies itself as an
2049 				 * interposer, but relocation processing has
2050 				 * already started, then demote it.  It's too
2051 				 * late to guarantee complete interposition.
2052 				 */
2053 				/* BEGIN CSTYLED */
2054 				if (dyn->d_un.d_val &
2055 				    (DF_1_INTERPOSE | DF_1_SYMINTPOSE)) {
2056 				    if (lml->lm_flags & LML_FLG_STARTREL) {
2057 					DBG_CALL(Dbg_util_intoolate(lmp));
2058 					if (lml->lm_flags & LML_FLG_TRC_ENABLE)
2059 					    (void) printf(
2060 						MSG_INTL(MSG_LDD_REL_ERR2),
2061 						NAME(lmp));
2062 				    } else if (dyn->d_un.d_val & DF_1_INTERPOSE)
2063 					FLAGS(lmp) |= FLG_RT_OBJINTPO;
2064 				    else
2065 					FLAGS(lmp) |= FLG_RT_SYMINTPO;
2066 				}
2067 				/* END CSTYLED */
2068 				break;
2069 			case DT_SYMINFO:
2070 				SYMINFO(lmp) = (Syminfo *)(dyn->d_un.d_ptr +
2071 				    base);
2072 				break;
2073 			case DT_SYMINENT:
2074 				SYMINENT(lmp) = dyn->d_un.d_val;
2075 				break;
2076 			case DT_PLTPAD:
2077 				PLTPAD(lmp) = (void *)(dyn->d_un.d_ptr + base);
2078 				break;
2079 			case DT_PLTPADSZ:
2080 				pltpadsz = dyn->d_un.d_val;
2081 				break;
2082 			case DT_SUNW_RTLDINF:
2083 				/*
2084 				 * Maintain a list of RTLDINFO structures.
2085 				 * Typically, libc is the only supplier, and
2086 				 * only one structure is provided.  However,
2087 				 * multiple suppliers and multiple structures
2088 				 * are supported.  For example, one structure
2089 				 * may provide thread_init, and another
2090 				 * structure may provide atexit reservations.
2091 				 */
2092 				if ((rti = alist_append(&lml->lm_rti, NULL,
2093 				    sizeof (Rti_desc),
2094 				    AL_CNT_RTLDINFO)) == NULL) {
2095 					remove_so(0, lmp, clmp);
2096 					return (NULL);
2097 				}
2098 				rti->rti_lmp = lmp;
2099 				rti->rti_info = (void *)(dyn->d_un.d_ptr +
2100 				    base);
2101 				break;
2102 			case DT_SUNW_SORTENT:
2103 				SUNWSORTENT(lmp) = dyn->d_un.d_val;
2104 				break;
2105 			case DT_SUNW_SYMSORT:
2106 				SUNWSYMSORT(lmp) =
2107 				    (void *)(dyn->d_un.d_ptr + base);
2108 				break;
2109 			case DT_SUNW_SYMSORTSZ:
2110 				SUNWSYMSORTSZ(lmp) = dyn->d_un.d_val;
2111 				break;
2112 			case DT_DEPRECATED_SPARC_REGISTER:
2113 			case M_DT_REGISTER:
2114 				dip->di_flags |= FLG_DI_REGISTER;
2115 				FLAGS(lmp) |= FLG_RT_REGSYMS;
2116 				break;
2117 			case DT_SUNW_CAP:
2118 				CAP(lmp) = (void *)(dyn->d_un.d_ptr + base);
2119 				break;
2120 			case DT_SUNW_CAPINFO:
2121 				CAPINFO(lmp) = (void *)(dyn->d_un.d_ptr + base);
2122 				break;
2123 			case DT_SUNW_CAPCHAIN:
2124 				CAPCHAIN(lmp) = (void *)(dyn->d_un.d_ptr +
2125 				    base);
2126 				break;
2127 			case DT_SUNW_CAPCHAINENT:
2128 				CAPCHAINENT(lmp) = dyn->d_un.d_val;
2129 				break;
2130 			case DT_SUNW_CAPCHAINSZ:
2131 				CAPCHAINSZ(lmp) = dyn->d_un.d_val;
2132 				break;
2133 			}
2134 		}
2135 
2136 		/*
2137 		 * Update any Dyninfo string pointers now that STRTAB() is
2138 		 * known.
2139 		 */
2140 		for (dynndx = 0, dyn = DYN(lmp), dip = DYNINFO(lmp);
2141 		    !(dip->di_flags & FLG_DI_IGNORE); dyn++, dip++) {
2142 
2143 			switch ((Xword)dyn->d_tag) {
2144 			case DT_NEEDED:
2145 			case DT_USED:
2146 			case DT_FILTER:
2147 			case DT_AUXILIARY:
2148 			case DT_SUNW_FILTER:
2149 			case DT_SUNW_AUXILIARY:
2150 				dip->di_name = STRTAB(lmp) + dyn->d_un.d_val;
2151 				break;
2152 			}
2153 		}
2154 
2155 		/*
2156 		 * Assign any padding.
2157 		 */
2158 		if (PLTPAD(lmp)) {
2159 			if (pltpadsz == (Xword)0)
2160 				PLTPAD(lmp) = NULL;
2161 			else
2162 				PLTPADEND(lmp) = (void *)((Addr)PLTPAD(lmp) +
2163 				    pltpadsz);
2164 		}
2165 	}
2166 
2167 	/*
2168 	 * A dynsym contains only global functions. We want to have
2169 	 * a version of it that also includes local functions, so that
2170 	 * dladdr() will be able to report names for local functions
2171 	 * when used to generate a stack trace for a stripped file.
2172 	 * This version of the dynsym is provided via DT_SUNW_SYMTAB.
2173 	 *
2174 	 * In producing DT_SUNW_SYMTAB, ld uses a non-obvious trick
2175 	 * in order to avoid having to have two copies of the global
2176 	 * symbols held in DT_SYMTAB: The local symbols are placed in
2177 	 * a separate section than the globals in the dynsym, but the
2178 	 * linker conspires to put the data for these two sections adjacent
2179 	 * to each other. DT_SUNW_SYMTAB points at the top of the local
2180 	 * symbols, and DT_SUNW_SYMSZ is the combined length of both tables.
2181 	 *
2182 	 * If the two sections are not adjacent, then something went wrong
2183 	 * at link time. We use ASSERT to kill the process if this is
2184 	 * a debug build. In a production build, we will silently ignore
2185 	 * the presence of the .ldynsym and proceed. We can detect this
2186 	 * situation by checking to see that DT_SYMTAB lies in
2187 	 * the range given by DT_SUNW_SYMTAB/DT_SUNW_SYMSZ.
2188 	 */
2189 	if ((SUNWSYMTAB(lmp) != NULL) &&
2190 	    (((char *)SYMTAB(lmp) <= (char *)SUNWSYMTAB(lmp)) ||
2191 	    (((char *)SYMTAB(lmp) >=
2192 	    (SUNWSYMSZ(lmp) + (char *)SUNWSYMTAB(lmp)))))) {
2193 		ASSERT(0);
2194 		SUNWSYMTAB(lmp) = NULL;
2195 		SUNWSYMSZ(lmp) = 0;
2196 	}
2197 
2198 	/*
2199 	 * If configuration file use hasn't been disabled, and a configuration
2200 	 * file hasn't already been set via an environment variable, see if any
2201 	 * application specific configuration file is specified.  An LD_CONFIG
2202 	 * setting is used first, but if this image was generated via crle(1)
2203 	 * then a default configuration file is a fall-back.
2204 	 */
2205 	if ((!(rtld_flags & RT_FL_NOCFG)) && (config->c_name == NULL)) {
2206 		if (cfile)
2207 			config->c_name = (const char *)(cfile +
2208 			    (char *)STRTAB(lmp));
2209 		else if (crle)
2210 			rtld_flags |= RT_FL_CONFAPP;
2211 	}
2212 
2213 	if (rpath)
2214 		RPATH(lmp) = (char *)(rpath + (char *)STRTAB(lmp));
2215 	if (fltr)
2216 		REFNAME(lmp) = (char *)(fltr + (char *)STRTAB(lmp));
2217 
2218 	/*
2219 	 * For Intel ABI compatibility.  It's possible that a JMPREL can be
2220 	 * specified without any other relocations (e.g. a dynamic executable
2221 	 * normally only contains .plt relocations).  If this is the case then
2222 	 * no REL, RELSZ or RELENT will have been created.  For us to be able
2223 	 * to traverse the .plt relocations under LD_BIND_NOW we need to know
2224 	 * the RELENT for these relocations.  Refer to elf_reloc() for more
2225 	 * details.
2226 	 */
2227 	if (!RELENT(lmp) && JMPREL(lmp))
2228 		RELENT(lmp) = sizeof (M_RELOC);
2229 
2230 	/*
2231 	 * Establish any per-object auditing.  If we're establishing main's
2232 	 * link-map its too early to go searching for audit objects so just
2233 	 * hold the object name for later (see setup()).
2234 	 */
2235 	if (audit) {
2236 		char	*cp = audit + (char *)STRTAB(lmp);
2237 
2238 		if (*cp) {
2239 			if (((AUDITORS(lmp) =
2240 			    calloc(1, sizeof (Audit_desc))) == NULL) ||
2241 			    ((AUDITORS(lmp)->ad_name = strdup(cp)) == NULL)) {
2242 				remove_so(0, lmp, clmp);
2243 				return (NULL);
2244 			}
2245 			if (lml_main.lm_head) {
2246 				if (audit_setup(lmp, AUDITORS(lmp), 0,
2247 				    in_nfavl) == 0) {
2248 					remove_so(0, lmp, clmp);
2249 					return (NULL);
2250 				}
2251 				AFLAGS(lmp) |= AUDITORS(lmp)->ad_flags;
2252 				lml->lm_flags |= LML_FLG_LOCAUDIT;
2253 			}
2254 		}
2255 	}
2256 
2257 	if (tphdr && (tls_assign(lml, lmp, tphdr) == 0)) {
2258 		remove_so(0, lmp, clmp);
2259 		return (NULL);
2260 	}
2261 
2262 	/*
2263 	 * A capabilities section should be identified by a DT_SUNW_CAP entry,
2264 	 * and if non-empty object capabilities are included, a PT_SUNWCAP
2265 	 * header should reference the section.  Make sure CAP() is set
2266 	 * regardless.
2267 	 */
2268 	if ((CAP(lmp) == NULL) && cap)
2269 		CAP(lmp) = cap;
2270 
2271 	/*
2272 	 * Make sure any capabilities information or chain can be handled.
2273 	 */
2274 	if (CAPINFO(lmp) && (CAPINFO(lmp)[0] > CAPINFO_CURRENT))
2275 		CAPINFO(lmp) = NULL;
2276 	if (CAPCHAIN(lmp) && (CAPCHAIN(lmp)[0] > CAPCHAIN_CURRENT))
2277 		CAPCHAIN(lmp) = NULL;
2278 
2279 	/*
2280 	 * As part of processing dependencies, a file descriptor is populated
2281 	 * with capabilities information following validation.
2282 	 */
2283 	if (fdp->fd_flags & FLG_FD_ALTCHECK) {
2284 		FLAGS1(lmp) |= FL1_RT_ALTCHECK;
2285 		CAPSET(lmp) = fdp->fd_scapset;
2286 
2287 		if (fdp->fd_flags & FLG_FD_ALTCAP)
2288 			FLAGS1(lmp) |= FL1_RT_ALTCAP;
2289 
2290 	} else if ((cap = CAP(lmp)) != NULL) {
2291 		/*
2292 		 * Processing of the a.out and ld.so.1 does not involve a file
2293 		 * descriptor as exec() did all the work, so capture the
2294 		 * capabilities for these cases.
2295 		 */
2296 		while (cap->c_tag != CA_SUNW_NULL) {
2297 			switch (cap->c_tag) {
2298 			case CA_SUNW_HW_1:
2299 				CAPSET(lmp).sc_hw_1 = cap->c_un.c_val;
2300 				break;
2301 			case CA_SUNW_SF_1:
2302 				CAPSET(lmp).sc_sf_1 = cap->c_un.c_val;
2303 				break;
2304 			case CA_SUNW_HW_2:
2305 				CAPSET(lmp).sc_hw_2 = cap->c_un.c_val;
2306 				break;
2307 			case CA_SUNW_PLAT:
2308 				CAPSET(lmp).sc_plat = STRTAB(lmp) +
2309 				    cap->c_un.c_ptr;
2310 				break;
2311 			case CA_SUNW_MACH:
2312 				CAPSET(lmp).sc_mach = STRTAB(lmp) +
2313 				    cap->c_un.c_ptr;
2314 				break;
2315 			}
2316 			cap++;
2317 		}
2318 	}
2319 
2320 	/*
2321 	 * If a capabilities chain table exists, duplicate it.  The chain table
2322 	 * is inspected for each initial call to a capabilities family lead
2323 	 * symbol.  From this chain, each family member is inspected to
2324 	 * determine the 'best' family member.  The chain table is then updated
2325 	 * so that the best member is immediately selected for any further
2326 	 * family searches.
2327 	 */
2328 	if (CAPCHAIN(lmp)) {
2329 		Capchain	*capchain;
2330 
2331 		if ((capchain = calloc(CAPCHAINSZ(lmp), 1)) == NULL)
2332 			return (NULL);
2333 		(void) memcpy(capchain, CAPCHAIN(lmp), CAPCHAINSZ(lmp));
2334 		CAPCHAIN(lmp) = capchain;
2335 	}
2336 
2337 	/*
2338 	 * Add the mapped object to the end of the link map list.
2339 	 */
2340 	lm_append(lml, lmco, lmp);
2341 
2342 	/*
2343 	 * Start the system loading in the ELF information we'll be processing.
2344 	 */
2345 	if (REL(lmp)) {
2346 		(void) madvise((void *)ADDR(lmp), (uintptr_t)REL(lmp) +
2347 		    (uintptr_t)RELSZ(lmp) - (uintptr_t)ADDR(lmp),
2348 		    MADV_WILLNEED);
2349 	}
2350 	return (lmp);
2351 }
2352 
2353 /*
2354  * Build full pathname of shared object from given directory name and filename.
2355  */
2356 static char *
2357 elf_get_so(const char *dir, const char *file, size_t dlen, size_t flen)
2358 {
2359 	static char	pname[PATH_MAX];
2360 
2361 	(void) strncpy(pname, dir, dlen);
2362 	pname[dlen++] = '/';
2363 	(void) strncpy(&pname[dlen], file, flen + 1);
2364 	return (pname);
2365 }
2366 
2367 /*
2368  * The copy relocation is recorded in a copy structure which will be applied
2369  * after all other relocations are carried out.  This provides for copying data
2370  * that must be relocated itself (ie. pointers in shared objects).  This
2371  * structure also provides a means of binding RTLD_GROUP dependencies to any
2372  * copy relocations that have been taken from any group members.
2373  *
2374  * If the size of the .bss area available for the copy information is not the
2375  * same as the source of the data inform the user if we're under ldd(1) control
2376  * (this checking was only established in 5.3, so by only issuing an error via
2377  * ldd(1) we maintain the standard set by previous releases).
2378  */
2379 int
2380 elf_copy_reloc(char *name, Sym *rsym, Rt_map *rlmp, void *radd, Sym *dsym,
2381     Rt_map *dlmp, const void *dadd)
2382 {
2383 	Rel_copy	rc;
2384 	Lm_list		*lml = LIST(rlmp);
2385 
2386 	rc.r_name = name;
2387 	rc.r_rsym = rsym;		/* the new reference symbol and its */
2388 	rc.r_rlmp = rlmp;		/*	associated link-map */
2389 	rc.r_dlmp = dlmp;		/* the defining link-map */
2390 	rc.r_dsym = dsym;		/* the original definition */
2391 	rc.r_radd = radd;
2392 	rc.r_dadd = dadd;
2393 
2394 	if (rsym->st_size > dsym->st_size)
2395 		rc.r_size = (size_t)dsym->st_size;
2396 	else
2397 		rc.r_size = (size_t)rsym->st_size;
2398 
2399 	if (alist_append(&COPY_R(dlmp), &rc, sizeof (Rel_copy),
2400 	    AL_CNT_COPYREL) == NULL) {
2401 		if (!(lml->lm_flags & LML_FLG_TRC_WARN))
2402 			return (0);
2403 		else
2404 			return (1);
2405 	}
2406 	if (!(FLAGS1(dlmp) & FL1_RT_COPYTOOK)) {
2407 		if (aplist_append(&COPY_S(rlmp), dlmp,
2408 		    AL_CNT_COPYREL) == NULL) {
2409 			if (!(lml->lm_flags & LML_FLG_TRC_WARN))
2410 				return (0);
2411 			else
2412 				return (1);
2413 		}
2414 		FLAGS1(dlmp) |= FL1_RT_COPYTOOK;
2415 	}
2416 
2417 	/*
2418 	 * If we are tracing (ldd), warn the user if
2419 	 *	1) the size from the reference symbol differs from the
2420 	 *	   copy definition. We can only copy as much data as the
2421 	 *	   reference (dynamic executables) entry allows.
2422 	 *	2) the copy definition has STV_PROTECTED visibility.
2423 	 */
2424 	if (lml->lm_flags & LML_FLG_TRC_WARN) {
2425 		if (rsym->st_size != dsym->st_size) {
2426 			(void) printf(MSG_INTL(MSG_LDD_CPY_SIZDIF),
2427 			    _conv_reloc_type(M_R_COPY), demangle(name),
2428 			    NAME(rlmp), EC_XWORD(rsym->st_size),
2429 			    NAME(dlmp), EC_XWORD(dsym->st_size));
2430 			if (rsym->st_size > dsym->st_size)
2431 				(void) printf(MSG_INTL(MSG_LDD_CPY_INSDATA),
2432 				    NAME(dlmp));
2433 			else
2434 				(void) printf(MSG_INTL(MSG_LDD_CPY_DATRUNC),
2435 				    NAME(rlmp));
2436 		}
2437 
2438 		if (ELF_ST_VISIBILITY(dsym->st_other) == STV_PROTECTED) {
2439 			(void) printf(MSG_INTL(MSG_LDD_CPY_PROT),
2440 			    _conv_reloc_type(M_R_COPY), demangle(name),
2441 			    NAME(dlmp));
2442 		}
2443 	}
2444 
2445 	DBG_CALL(Dbg_reloc_apply_val(lml, ELF_DBG_RTLD, (Xword)radd,
2446 	    (Xword)rc.r_size));
2447 	return (1);
2448 }
2449 
2450 /*
2451  * Determine the symbol location of an address within a link-map.  Look for
2452  * the nearest symbol (whose value is less than or equal to the required
2453  * address).  This is the object specific part of dladdr().
2454  */
2455 static void
2456 elf_dladdr(ulong_t addr, Rt_map *lmp, Dl_info *dlip, void **info, int flags)
2457 {
2458 	ulong_t		ndx, cnt, base, _value;
2459 	Sym		*sym, *_sym = NULL;
2460 	const char	*str;
2461 	int		_flags;
2462 	uint_t		*dynaddr_ndx;
2463 	uint_t		dynaddr_n = 0;
2464 	ulong_t		value;
2465 
2466 	/*
2467 	 * If SUNWSYMTAB() is non-NULL, then it sees a special version of
2468 	 * the dynsym that starts with any local function symbols that exist in
2469 	 * the library and then moves to the data held in SYMTAB(). In this
2470 	 * case, SUNWSYMSZ tells us how long the symbol table is. The
2471 	 * availability of local function symbols will enhance the results
2472 	 * we can provide.
2473 	 *
2474 	 * If SUNWSYMTAB() is non-NULL, then there might also be a
2475 	 * SUNWSYMSORT() vector associated with it. SUNWSYMSORT() contains
2476 	 * an array of indices into SUNWSYMTAB, sorted by increasing
2477 	 * address. We can use this to do an O(log N) search instead of a
2478 	 * brute force search.
2479 	 *
2480 	 * If SUNWSYMTAB() is NULL, then SYMTAB() references a dynsym that
2481 	 * contains only global symbols. In that case, the length of
2482 	 * the symbol table comes from the nchain field of the related
2483 	 * symbol lookup hash table.
2484 	 */
2485 	str = STRTAB(lmp);
2486 	if (SUNWSYMSZ(lmp) == 0) {
2487 		sym = SYMTAB(lmp);
2488 		/*
2489 		 * If we don't have a .hash table there are no symbols
2490 		 * to look at.
2491 		 */
2492 		if (HASH(lmp) == NULL)
2493 			return;
2494 		cnt = HASH(lmp)[1];
2495 	} else {
2496 		sym = SUNWSYMTAB(lmp);
2497 		cnt = SUNWSYMSZ(lmp) / SYMENT(lmp);
2498 		dynaddr_ndx = SUNWSYMSORT(lmp);
2499 		if (dynaddr_ndx != NULL)
2500 			dynaddr_n = SUNWSYMSORTSZ(lmp) / SUNWSORTENT(lmp);
2501 	}
2502 
2503 	if (FLAGS(lmp) & FLG_RT_FIXED)
2504 		base = 0;
2505 	else
2506 		base = ADDR(lmp);
2507 
2508 	if (dynaddr_n > 0) {		/* Binary search */
2509 		long	low = 0, low_bnd;
2510 		long	high = dynaddr_n - 1, high_bnd;
2511 		long	mid;
2512 		Sym	*mid_sym;
2513 
2514 		/*
2515 		 * Note that SUNWSYMSORT only contains symbols types that
2516 		 * supply memory addresses, so there's no need to check and
2517 		 * filter out any other types.
2518 		 */
2519 		low_bnd = low;
2520 		high_bnd = high;
2521 		while (low <= high) {
2522 			mid = (low + high) / 2;
2523 			mid_sym = &sym[dynaddr_ndx[mid]];
2524 			value = mid_sym->st_value + base;
2525 			if (addr < value) {
2526 				if ((sym[dynaddr_ndx[high]].st_value + base) >=
2527 				    addr)
2528 					high_bnd = high;
2529 				high = mid - 1;
2530 			} else if (addr > value) {
2531 				if ((sym[dynaddr_ndx[low]].st_value + base) <=
2532 				    addr)
2533 					low_bnd = low;
2534 				low = mid + 1;
2535 			} else {
2536 				_sym = mid_sym;
2537 				_value = value;
2538 				break;
2539 			}
2540 		}
2541 		/*
2542 		 * If the above didn't find it exactly, then we must
2543 		 * return the closest symbol with a value that doesn't
2544 		 * exceed the one we are looking for. If that symbol exists,
2545 		 * it will lie in the range bounded by low_bnd and
2546 		 * high_bnd. This is a linear search, but a short one.
2547 		 */
2548 		if (_sym == NULL) {
2549 			for (mid = low_bnd; mid <= high_bnd; mid++) {
2550 				mid_sym = &sym[dynaddr_ndx[mid]];
2551 				value = mid_sym->st_value + base;
2552 				if (addr >= value) {
2553 					_sym = mid_sym;
2554 					_value = value;
2555 				} else {
2556 					break;
2557 				}
2558 			}
2559 		}
2560 	} else {			/* Linear search */
2561 		for (_value = 0, sym++, ndx = 1; ndx < cnt; ndx++, sym++) {
2562 			/*
2563 			 * Skip expected symbol types that are not functions
2564 			 * or data:
2565 			 *	- A symbol table starts with an undefined symbol
2566 			 *		in slot 0. If we are using SUNWSYMTAB(),
2567 			 *		there will be a second undefined symbol
2568 			 *		right before the globals.
2569 			 *	- The local part of SUNWSYMTAB() contains a
2570 			 *		series of function symbols. Each section
2571 			 *		starts with an initial STT_FILE symbol.
2572 			 */
2573 			if ((sym->st_shndx == SHN_UNDEF) ||
2574 			    (ELF_ST_TYPE(sym->st_info) == STT_FILE))
2575 				continue;
2576 
2577 			value = sym->st_value + base;
2578 			if (value > addr)
2579 				continue;
2580 			if (value < _value)
2581 				continue;
2582 
2583 			_sym = sym;
2584 			_value = value;
2585 
2586 			/*
2587 			 * Note, because we accept local and global symbols
2588 			 * we could find a section symbol that matches the
2589 			 * associated address, which means that the symbol
2590 			 * name will be null.  In this case continue the
2591 			 * search in case we can find a global symbol of
2592 			 * the same value.
2593 			 */
2594 			if ((value == addr) &&
2595 			    (ELF_ST_TYPE(sym->st_info) != STT_SECTION))
2596 				break;
2597 		}
2598 	}
2599 
2600 	_flags = flags & RTLD_DL_MASK;
2601 	if (_sym) {
2602 		if (_flags == RTLD_DL_SYMENT)
2603 			*info = (void *)_sym;
2604 		else if (_flags == RTLD_DL_LINKMAP)
2605 			*info = (void *)lmp;
2606 
2607 		dlip->dli_sname = str + _sym->st_name;
2608 		dlip->dli_saddr = (void *)_value;
2609 	} else {
2610 		/*
2611 		 * addr lies between the beginning of the mapped segment and
2612 		 * the first global symbol. We have no symbol to return
2613 		 * and the caller requires one. We use _START_, the base
2614 		 * address of the mapping.
2615 		 */
2616 
2617 		if (_flags == RTLD_DL_SYMENT) {
2618 			/*
2619 			 * An actual symbol struct is needed, so we
2620 			 * construct one for _START_. To do this in a
2621 			 * fully accurate way requires a different symbol
2622 			 * for each mapped segment. This requires the
2623 			 * use of dynamic memory and a mutex. That's too much
2624 			 * plumbing for a fringe case of limited importance.
2625 			 *
2626 			 * Fortunately, we can simplify:
2627 			 *    - Only the st_size and st_info fields are useful
2628 			 *	outside of the linker internals. The others
2629 			 *	reference things that outside code cannot see,
2630 			 *	and can be set to 0.
2631 			 *    - It's just a label and there is no size
2632 			 *	to report. So, the size should be 0.
2633 			 * This means that only st_info needs a non-zero
2634 			 * (constant) value. A static struct will suffice.
2635 			 * It must be const (readonly) so the caller can't
2636 			 * change its meaning for subsequent callers.
2637 			 */
2638 			static const Sym fsym = { 0, 0, 0,
2639 			    ELF_ST_INFO(STB_LOCAL, STT_OBJECT) };
2640 			*info = (void *) &fsym;
2641 		}
2642 
2643 		dlip->dli_sname = MSG_ORIG(MSG_SYM_START);
2644 		dlip->dli_saddr = (void *) ADDR(lmp);
2645 	}
2646 }
2647 
2648 /*
2649  * This routine is called as a last fall-back to search for a symbol from a
2650  * standard relocation or dlsym().  To maintain lazy loadings goal of reducing
2651  * the number of objects mapped, any symbol search is first carried out using
2652  * the objects that already exist in the process (either on a link-map list or
2653  * handle).  If a symbol can't be found, and lazy dependencies are still
2654  * pending, this routine loads the dependencies in an attempt to locate the
2655  * symbol.
2656  */
2657 int
2658 elf_lazy_find_sym(Slookup *slp, Sresult *srp, uint_t *binfo, int *in_nfavl)
2659 {
2660 	static APlist	*alist = NULL;
2661 	Aliste		idx1;
2662 	Rt_map		*lmp1, *lmp = slp->sl_imap, *clmp = slp->sl_cmap;
2663 	const char	*name = slp->sl_name;
2664 	Slookup		sl1 = *slp;
2665 	Lm_list		*lml;
2666 	Lm_cntl		*lmc;
2667 
2668 	/*
2669 	 * It's quite possible we've been here before to process objects,
2670 	 * therefore reinitialize our dynamic list.
2671 	 */
2672 	if (alist)
2673 		aplist_reset(alist);
2674 
2675 	/*
2676 	 * Discard any relocation index from further symbol searches.  This
2677 	 * index has already been used to trigger any necessary lazy-loads,
2678 	 * and it might be because one of these lazy loads has failed that
2679 	 * we're performing this fallback.  By removing the relocation index
2680 	 * we don't try and perform the same failed lazy loading activity again.
2681 	 */
2682 	sl1.sl_rsymndx = 0;
2683 
2684 	/*
2685 	 * Determine the callers link-map list so that we can monitor whether
2686 	 * new objects have been added.
2687 	 */
2688 	lml = LIST(clmp);
2689 	lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(clmp));
2690 
2691 	/*
2692 	 * Generate a local list of new objects to process.  This list can grow
2693 	 * as each object supplies its own lazy dependencies.
2694 	 */
2695 	if (aplist_append(&alist, lmp, AL_CNT_LAZYFIND) == NULL)
2696 		return (0);
2697 
2698 	for (APLIST_TRAVERSE(alist, idx1, lmp1)) {
2699 		uint_t	dynndx;
2700 		Dyninfo	*dip, *pdip;
2701 
2702 		/*
2703 		 * Loop through the lazy DT_NEEDED entries examining each object
2704 		 * for the required symbol.  If the symbol is not found, the
2705 		 * object is in turn added to the local alist, so that the
2706 		 * objects lazy DT_NEEDED entries can be examined.
2707 		 */
2708 		lmp = lmp1;
2709 		for (dynndx = 0, dip = DYNINFO(lmp), pdip = NULL;
2710 		    !(dip->di_flags & FLG_DI_IGNORE); dynndx++, pdip = dip++) {
2711 			Grp_hdl		*ghp;
2712 			Grp_desc	*gdp;
2713 			Rt_map		*nlmp, *llmp;
2714 			Slookup		sl2;
2715 			Sresult		sr;
2716 			Aliste		idx2;
2717 
2718 			if (((dip->di_flags & FLG_DI_LAZY) == 0) ||
2719 			    dip->di_info)
2720 				continue;
2721 
2722 			/*
2723 			 * If this object has already failed to lazy load, and
2724 			 * we're still processing the same runtime linker
2725 			 * operation that produced the failure, don't bother
2726 			 * to try and load the object again.
2727 			 */
2728 			if ((dip->di_flags & FLG_DI_LAZYFAIL) && pdip &&
2729 			    (pdip->di_flags & FLG_DI_POSFLAG1)) {
2730 				if (pdip->di_info == (void *)ld_entry_cnt)
2731 					continue;
2732 
2733 				dip->di_flags &= ~FLG_DI_LAZYFAIL;
2734 				pdip->di_info = NULL;
2735 			}
2736 
2737 			/*
2738 			 * Determine the last link-map presently on the callers
2739 			 * link-map control list.
2740 			 */
2741 			llmp = lmc->lc_tail;
2742 
2743 			/*
2744 			 * Try loading this lazy dependency.  If the object
2745 			 * can't be loaded, consider this non-fatal and continue
2746 			 * the search.  Lazy loaded dependencies need not exist
2747 			 * and their loading should only turn out to be fatal
2748 			 * if they are required to satisfy a relocation.
2749 			 *
2750 			 * A successful lazy load can mean one of two things:
2751 			 *
2752 			 *  -	new objects have been loaded, in which case the
2753 			 *	objects will have been analyzed, relocated, and
2754 			 *	finally moved to the callers control list.
2755 			 *  -	the objects are already loaded, and this lazy
2756 			 *	load has simply associated the referenced object
2757 			 *	with it's lazy dependencies.
2758 			 *
2759 			 * If new objects are loaded, look in these objects
2760 			 * first.  Note, a new object can be the object being
2761 			 * referenced by this lazy load, however we can also
2762 			 * descend into multiple lazy loads as we relocate this
2763 			 * reference.
2764 			 *
2765 			 * If the symbol hasn't been found, use the referenced
2766 			 * objects handle, as it might have dependencies on
2767 			 * objects that are already loaded.  Note that existing
2768 			 * objects might have already been searched and skipped
2769 			 * as non-available to this caller.   However, a lazy
2770 			 * load might have caused the promotion of modes, or
2771 			 * added this object to the family of the caller.  In
2772 			 * either case, the handle associated with the object
2773 			 * is then used to carry out the symbol search.
2774 			 */
2775 			if ((nlmp = elf_lazy_load(lmp, &sl1, dynndx, name,
2776 			    FLG_RT_PRIHDL, &ghp, in_nfavl)) == NULL)
2777 				continue;
2778 
2779 			if (NEXT_RT_MAP(llmp)) {
2780 				/*
2781 				 * Look in any new objects.
2782 				 */
2783 				sl1.sl_imap = NEXT_RT_MAP(llmp);
2784 				sl1.sl_flags &= ~LKUP_STDRELOC;
2785 
2786 				/*
2787 				 * Initialize a local symbol result descriptor,
2788 				 * using the original symbol name.
2789 				 */
2790 				SRESULT_INIT(sr, slp->sl_name);
2791 
2792 				if (lookup_sym(&sl1, &sr, binfo, in_nfavl)) {
2793 					*srp = sr;
2794 					return (1);
2795 				}
2796 			}
2797 
2798 			/*
2799 			 * Use the objects handle to inspect the family of
2800 			 * objects associated with the handle.  Note, there's
2801 			 * a possibility of overlap with the above search,
2802 			 * should a lazy load bring in new objects and
2803 			 * reference existing objects.
2804 			 */
2805 			sl2 = sl1;
2806 			for (ALIST_TRAVERSE(ghp->gh_depends, idx2, gdp)) {
2807 				if ((gdp->gd_depend != NEXT_RT_MAP(llmp)) &&
2808 				    (gdp->gd_flags & GPD_DLSYM)) {
2809 
2810 					sl2.sl_imap = gdp->gd_depend;
2811 					sl2.sl_flags |= LKUP_FIRST;
2812 
2813 					/*
2814 					 * Initialize a local symbol result
2815 					 * descriptor, using the original
2816 					 * symbol name.
2817 					 */
2818 					SRESULT_INIT(sr, slp->sl_name);
2819 
2820 					if (lookup_sym(&sl2, &sr, binfo,
2821 					    in_nfavl)) {
2822 						*srp = sr;
2823 						return (1);
2824 					}
2825 				}
2826 			}
2827 
2828 			/*
2829 			 * Some dlsym() operations are already traversing a
2830 			 * link-map (dlopen(0)), and thus there's no need to
2831 			 * save them on the dynamic dependency list.
2832 			 */
2833 			if (slp->sl_flags & LKUP_NODESCENT)
2834 				continue;
2835 
2836 			if (aplist_test(&alist, nlmp, AL_CNT_LAZYFIND) == 0)
2837 				return (0);
2838 		}
2839 	}
2840 
2841 	return (0);
2842 }
2843 
2844 /*
2845  * Warning message for bad r_offset.
2846  */
2847 void
2848 elf_reloc_bad(Rt_map *lmp, void *rel, uchar_t rtype, ulong_t roffset,
2849     ulong_t rsymndx)
2850 {
2851 	const char	*name = NULL;
2852 	Lm_list		*lml = LIST(lmp);
2853 	int		trace;
2854 
2855 	if ((lml->lm_flags & LML_FLG_TRC_ENABLE) &&
2856 	    (((rtld_flags & RT_FL_SILENCERR) == 0) ||
2857 	    (lml->lm_flags & LML_FLG_TRC_VERBOSE)))
2858 		trace = 1;
2859 	else
2860 		trace = 0;
2861 
2862 	if ((trace == 0) && (DBG_ENABLED == 0))
2863 		return;
2864 
2865 	if (rsymndx) {
2866 		Sym	*symref = (Sym *)((ulong_t)SYMTAB(lmp) +
2867 		    (rsymndx * SYMENT(lmp)));
2868 
2869 		if (ELF_ST_BIND(symref->st_info) != STB_LOCAL)
2870 			name = (char *)(STRTAB(lmp) + symref->st_name);
2871 	}
2872 
2873 	if (name == NULL)
2874 		name = MSG_INTL(MSG_STR_UNKNOWN);
2875 
2876 	if (trace) {
2877 		const char *rstr;
2878 
2879 		rstr = _conv_reloc_type((uint_t)rtype);
2880 		(void) printf(MSG_INTL(MSG_LDD_REL_ERR1), rstr, name,
2881 		    EC_ADDR(roffset));
2882 		return;
2883 	}
2884 
2885 	Dbg_reloc_error(lml, ELF_DBG_RTLD, M_MACH, M_REL_SHT_TYPE, rel, name);
2886 }
2887 
2888 /*
2889  * Resolve a static TLS relocation.
2890  */
2891 long
2892 elf_static_tls(Rt_map *lmp, Sym *sym, void *rel, uchar_t rtype, char *name,
2893     ulong_t roffset, long value)
2894 {
2895 	Lm_list	*lml = LIST(lmp);
2896 
2897 	/*
2898 	 * Relocations against a static TLS block have limited support once
2899 	 * process initialization has completed.  Any error condition should be
2900 	 * discovered by testing for DF_STATIC_TLS as part of loading an object,
2901 	 * however individual relocations are tested in case the dynamic flag
2902 	 * had not been set when this object was built.
2903 	 */
2904 	if (PTTLS(lmp) == NULL) {
2905 		DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH,
2906 		    M_REL_SHT_TYPE, rel, NULL, 0, name));
2907 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_BADTLS),
2908 		    _conv_reloc_type((uint_t)rtype), NAME(lmp),
2909 		    name ? demangle(name) : MSG_INTL(MSG_STR_UNKNOWN));
2910 		return (0);
2911 	}
2912 
2913 	/*
2914 	 * If no static TLS has been set aside for this object, determine if
2915 	 * any can be obtained.  Enforce that any object using static TLS is
2916 	 * non-deletable.
2917 	 */
2918 	if (TLSSTATOFF(lmp) == 0) {
2919 		FLAGS1(lmp) |= FL1_RT_TLSSTAT;
2920 		MODE(lmp) |= RTLD_NODELETE;
2921 
2922 		if (tls_assign(lml, lmp, PTTLS(lmp)) == 0) {
2923 			DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH,
2924 			    M_REL_SHT_TYPE, rel, NULL, 0, name));
2925 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_BADTLS),
2926 			    _conv_reloc_type((uint_t)rtype), NAME(lmp),
2927 			    name ? demangle(name) : MSG_INTL(MSG_STR_UNKNOWN));
2928 			return (0);
2929 		}
2930 	}
2931 
2932 	/*
2933 	 * Typically, a static TLS offset is maintained as a symbols value.
2934 	 * For local symbols that are not apart of the dynamic symbol table,
2935 	 * the TLS relocation points to a section symbol, and the static TLS
2936 	 * offset was deposited in the associated GOT table.  Make sure the GOT
2937 	 * is cleared, so that the value isn't reused in do_reloc().
2938 	 */
2939 	if (ELF_ST_BIND(sym->st_info) == STB_LOCAL) {
2940 		if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION)) {
2941 			value = *(long *)roffset;
2942 			*(long *)roffset = 0;
2943 		} else {
2944 			value = sym->st_value;
2945 		}
2946 	}
2947 	return (-(TLSSTATOFF(lmp) - value));
2948 }
2949 
2950 /*
2951  * If the symbol is not found and the reference was not to a weak symbol, report
2952  * an error.  Weak references may be unresolved.
2953  */
2954 int
2955 elf_reloc_error(Rt_map *lmp, const char *name, void *rel, uint_t binfo)
2956 {
2957 	Lm_list	*lml = LIST(lmp);
2958 
2959 	/*
2960 	 * Under crle(1), relocation failures are ignored.
2961 	 */
2962 	if (lml->lm_flags & LML_FLG_IGNRELERR)
2963 		return (1);
2964 
2965 	/*
2966 	 * Under ldd(1), unresolved references are reported.  However, if the
2967 	 * original reference is EXTERN or PARENT these references are ignored
2968 	 * unless ldd's -p option is in effect.
2969 	 */
2970 	if (lml->lm_flags & LML_FLG_TRC_WARN) {
2971 		if (((binfo & DBG_BINFO_REF_MSK) == 0) ||
2972 		    ((lml->lm_flags & LML_FLG_TRC_NOPAREXT) != 0)) {
2973 			(void) printf(MSG_INTL(MSG_LDD_SYM_NFOUND),
2974 			    demangle(name), NAME(lmp));
2975 		}
2976 		return (1);
2977 	}
2978 
2979 	/*
2980 	 * Otherwise, the unresolved references is fatal.
2981 	 */
2982 	DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH, M_REL_SHT_TYPE, rel,
2983 	    NULL, 0, name));
2984 	eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp),
2985 	    demangle(name));
2986 
2987 	return (0);
2988 }
2989