xref: /illumos-gate/usr/src/cmd/sgs/rtld/common/elf.c (revision 06ca4e396ecc93ed45a333664a51558b7e84e8f5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  *	Copyright (c) 1988 AT&T
24  *	  All Rights Reserved
25  *
26  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
27  */
28 /*
29  * Copyright (c) 2012, Joyent, Inc.  All rights reserved.
30  * Copyright 2022 Oxide Computer Company
31  */
32 
33 /*
34  * Object file dependent support for ELF objects.
35  */
36 
37 #include	<stdio.h>
38 #include	<sys/procfs.h>
39 #include	<sys/mman.h>
40 #include	<sys/debug.h>
41 #include	<string.h>
42 #include	<limits.h>
43 #include	<dlfcn.h>
44 #include	<debug.h>
45 #include	<conv.h>
46 #include	"_rtld.h"
47 #include	"_audit.h"
48 #include	"_elf.h"
49 #include	"_inline_gen.h"
50 #include	"_inline_reloc.h"
51 #include	"msg.h"
52 
53 /*
54  * Default and secure dependency search paths.
55  */
56 static Spath_defn _elf_def_dirs[] = {
57 #if	defined(_ELF64)
58 	{ MSG_ORIG(MSG_PTH_LIB_64),		MSG_PTH_LIB_64_SIZE },
59 	{ MSG_ORIG(MSG_PTH_USRLIB_64),		MSG_PTH_USRLIB_64_SIZE },
60 #else
61 	{ MSG_ORIG(MSG_PTH_LIB),		MSG_PTH_LIB_SIZE },
62 	{ MSG_ORIG(MSG_PTH_USRLIB),		MSG_PTH_USRLIB_SIZE },
63 #endif
64 	{ 0, 0 }
65 };
66 
67 static Spath_defn _elf_sec_dirs[] = {
68 #if	defined(_ELF64)
69 	{ MSG_ORIG(MSG_PTH_LIBSE_64),		MSG_PTH_LIBSE_64_SIZE },
70 	{ MSG_ORIG(MSG_PTH_USRLIBSE_64),	MSG_PTH_USRLIBSE_64_SIZE },
71 #else
72 	{ MSG_ORIG(MSG_PTH_LIBSE),		MSG_PTH_LIBSE_SIZE },
73 	{ MSG_ORIG(MSG_PTH_USRLIBSE),		MSG_PTH_USRLIBSE_SIZE },
74 #endif
75 	{ 0, 0 }
76 };
77 
78 Alist	*elf_def_dirs = NULL;
79 Alist	*elf_sec_dirs = NULL;
80 
81 /*
82  * Defines for local functions.
83  */
84 static void	elf_dladdr(ulong_t, Rt_map *, Dl_info *, void **, int);
85 static Addr	elf_entry_point(void);
86 static int	elf_fix_name(const char *, Rt_map *, Alist **, Aliste, uint_t);
87 static Alist	**elf_get_def_dirs(void);
88 static Alist	**elf_get_sec_dirs(void);
89 static char	*elf_get_so(const char *, const char *, size_t, size_t);
90 static int	elf_needed(Lm_list *, Aliste, Rt_map *, int *);
91 
92 /*
93  * Functions and data accessed through indirect pointers.
94  */
95 Fct elf_fct = {
96 	elf_verify,
97 	elf_new_lmp,
98 	elf_entry_point,
99 	elf_needed,
100 	lookup_sym,
101 	elf_reloc,
102 	elf_get_def_dirs,
103 	elf_get_sec_dirs,
104 	elf_fix_name,
105 	elf_get_so,
106 	elf_dladdr,
107 	dlsym_handle
108 };
109 
110 /*
111  * Default and secure dependency search paths.
112  */
113 static Alist **
114 elf_get_def_dirs()
115 {
116 	if (elf_def_dirs == NULL)
117 		set_dirs(&elf_def_dirs, _elf_def_dirs, LA_SER_DEFAULT);
118 	return (&elf_def_dirs);
119 }
120 
121 static Alist **
122 elf_get_sec_dirs()
123 {
124 	if (elf_sec_dirs == NULL)
125 		set_dirs(&elf_sec_dirs, _elf_sec_dirs, LA_SER_SECURE);
126 	return (&elf_sec_dirs);
127 }
128 
129 /*
130  * For ELF objects we only need perform path expansion.  Latent support for
131  * other objects may require further work
132  */
133 static int
134 elf_fix_name(const char *name, Rt_map *clmp, Alist **alpp, Aliste alni,
135     uint_t orig)
136 {
137 	return (expand_paths(clmp, name, alpp, alni, orig, 0));
138 }
139 
140 /*
141  * Determine whether this object requires capabilities.
142  */
143 inline static int
144 elf_cap_check(Fdesc *fdp, Ehdr *ehdr, Rej_desc *rej)
145 {
146 	Phdr	*phdr;
147 	Cap	*cap = NULL;
148 	Dyn	*dyn = NULL;
149 	char	*str = NULL;
150 	Addr	base;
151 	uint_t	cnt, dyncnt;
152 
153 	/*
154 	 * If this is a shared object, the base address of the shared object is
155 	 * added to all address values defined within the object.  Otherwise, if
156 	 * this is an executable, all object addresses are used as is.
157 	 */
158 	if (ehdr->e_type == ET_EXEC)
159 		base = 0;
160 	else
161 		base = (Addr)ehdr;
162 
163 	/* LINTED */
164 	phdr = (Phdr *)((char *)ehdr + ehdr->e_phoff);
165 	for (cnt = 0; cnt < ehdr->e_phnum; cnt++, phdr++) {
166 		if (phdr->p_type == PT_DYNAMIC) {
167 			/* LINTED */
168 			dyn = (Dyn *)((uintptr_t)phdr->p_vaddr + base);
169 			dyncnt = phdr->p_filesz / sizeof (Dyn);
170 		} else if (phdr->p_type == PT_SUNWCAP) {
171 			/* LINTED */
172 			cap = (Cap *)((uintptr_t)phdr->p_vaddr + base);
173 		}
174 	}
175 
176 	if (cap) {
177 		/*
178 		 * From the .dynamic section, determine the associated string
179 		 * table.  Required for CA_SUNW_MACH and CA_SUNW_PLAT
180 		 * processing.
181 		 */
182 		while (dyn && dyncnt) {
183 			if (dyn->d_tag == DT_NULL) {
184 				break;
185 			} else if (dyn->d_tag == DT_STRTAB) {
186 				str = (char *)(dyn->d_un.d_ptr + base);
187 				break;
188 			}
189 			dyn++, dyncnt--;
190 		}
191 	}
192 
193 	/*
194 	 * Establish any alternative capabilities, and validate this object
195 	 * if it defines it's own capabilities information.
196 	 */
197 	return (cap_check_fdesc(fdp, cap, str, rej));
198 }
199 
200 /*
201  * Determine if we have been given an ELF file and if so determine if the file
202  * is compatible.  Returns 1 if true, else 0 and sets the reject descriptor
203  * with associated error information.
204  */
205 Fct *
206 elf_verify(caddr_t addr, size_t size, Fdesc *fdp, const char *name,
207     Rej_desc *rej)
208 {
209 	Ehdr	*ehdr;
210 	char	*caddr = (char *)addr;
211 
212 	/*
213 	 * Determine if we're an elf file.  If not simply return, we don't set
214 	 * any rejection information as this test allows use to scroll through
215 	 * the objects we support (ELF).
216 	 */
217 	if (size < sizeof (Ehdr) ||
218 	    caddr[EI_MAG0] != ELFMAG0 ||
219 	    caddr[EI_MAG1] != ELFMAG1 ||
220 	    caddr[EI_MAG2] != ELFMAG2 ||
221 	    caddr[EI_MAG3] != ELFMAG3) {
222 		return (NULL);
223 	}
224 
225 	/*
226 	 * Check class and encoding.
227 	 */
228 	/* LINTED */
229 	ehdr = (Ehdr *)addr;
230 	if (ehdr->e_ident[EI_CLASS] != M_CLASS) {
231 		rej->rej_type = SGS_REJ_CLASS;
232 		rej->rej_info = (uint_t)ehdr->e_ident[EI_CLASS];
233 		return (NULL);
234 	}
235 	if (ehdr->e_ident[EI_DATA] != M_DATA) {
236 		rej->rej_type = SGS_REJ_DATA;
237 		rej->rej_info = (uint_t)ehdr->e_ident[EI_DATA];
238 		return (NULL);
239 	}
240 	if ((ehdr->e_type != ET_REL) && (ehdr->e_type != ET_EXEC) &&
241 	    (ehdr->e_type != ET_DYN)) {
242 		rej->rej_type = SGS_REJ_TYPE;
243 		rej->rej_info = (uint_t)ehdr->e_type;
244 		return (NULL);
245 	}
246 
247 	/*
248 	 * Verify ELF version.
249 	 */
250 	if (ehdr->e_version > EV_CURRENT) {
251 		rej->rej_type = SGS_REJ_VERSION;
252 		rej->rej_info = (uint_t)ehdr->e_version;
253 		return (NULL);
254 	}
255 
256 	/*
257 	 * Verify machine specific flags.
258 	 */
259 	if (elf_mach_flags_check(rej, ehdr) == 0)
260 		return (NULL);
261 
262 	/*
263 	 * Verify any capability requirements.  Note, if this object is a shared
264 	 * object that is explicitly defined on the ldd(1) command line, and it
265 	 * contains an incompatible capabilities requirement, then inform the
266 	 * user, but continue processing.
267 	 */
268 	if (elf_cap_check(fdp, ehdr, rej) == 0) {
269 		Rt_map	*lmp = lml_main.lm_head;
270 
271 		if ((lml_main.lm_flags & LML_FLG_TRC_LDDSTUB) && lmp &&
272 		    (FLAGS1(lmp) & FL1_RT_LDDSTUB) && (NEXT(lmp) == NULL)) {
273 			/* LINTED */
274 			(void) printf(MSG_INTL(ldd_warn[rej->rej_type]), name,
275 			    rej->rej_str);
276 			return (&elf_fct);
277 		}
278 		return (NULL);
279 	}
280 	return (&elf_fct);
281 }
282 
283 /*
284  * The runtime linker employs lazy loading to provide the libraries needed for
285  * debugging, preloading .o's and dldump().  As these are seldom used, the
286  * standard startup of ld.so.1 doesn't initialize all the information necessary
287  * to perform plt relocation on ld.so.1's link-map.  The first time lazy loading
288  * is called we get here to perform these initializations:
289  *
290  *  -	elf_needed() is called to establish any ld.so.1 dependencies.  These
291  *	dependencies should all be lazy loaded, so this routine is typically a
292  *	no-op.  However, we call elf_needed() for completeness, in case any
293  *	NEEDED initialization is required.
294  *
295  *  -	For intel, ld.so.1's JMPSLOT relocations need relative updates. These
296  *	are by default skipped thus delaying all relative relocation processing
297  *	on every invocation of ld.so.1.
298  */
299 int
300 elf_rtld_load()
301 {
302 	Lm_list	*lml = &lml_rtld;
303 	Rt_map	*lmp = lml->lm_head;
304 
305 	if (lml->lm_flags & LML_FLG_PLTREL)
306 		return (1);
307 
308 	if (elf_needed(lml, ALIST_OFF_DATA, lmp, NULL) == 0)
309 		return (0);
310 
311 #if	defined(__i386)
312 	/*
313 	 * This is a kludge to give ld.so.1 a performance benefit on i386.
314 	 * It's based around two factors.
315 	 *
316 	 *  -	JMPSLOT relocations (PLT's) actually need a relative relocation
317 	 *	applied to the GOT entry so that they can find PLT0.
318 	 *
319 	 *  -	ld.so.1 does not exercise *any* PLT's before it has made a call
320 	 *	to elf_lazy_load().  This is because all dynamic dependencies
321 	 *	are recorded as lazy dependencies.
322 	 */
323 	(void) elf_reloc_relative_count((ulong_t)JMPREL(lmp),
324 	    (ulong_t)(PLTRELSZ(lmp) / RELENT(lmp)), (ulong_t)RELENT(lmp),
325 	    (ulong_t)ADDR(lmp), lmp, NULL, 0);
326 #endif
327 	lml->lm_flags |= LML_FLG_PLTREL;
328 	return (1);
329 }
330 
331 /*
332  * Lazy load an object.
333  */
334 Rt_map *
335 elf_lazy_load(Rt_map *clmp, Slookup *slp, uint_t ndx, const char *sym,
336     uint_t flags, Grp_hdl **hdl, int *in_nfavl)
337 {
338 	Alist		*palp = NULL;
339 	Rt_map		*nlmp;
340 	Dyninfo		*dip = &DYNINFO(clmp)[ndx], *pdip;
341 	const char	*name;
342 	Lm_list		*lml = LIST(clmp);
343 	Aliste		lmco;
344 
345 	/*
346 	 * If this dependency should be ignored, or has already been processed,
347 	 * we're done.
348 	 */
349 	if (((nlmp = (Rt_map *)dip->di_info) != NULL) ||
350 	    (dip->di_flags & (FLG_DI_IGNORE | FLG_DI_LDD_DONE)))
351 		return (nlmp);
352 
353 	/*
354 	 * If we're running under ldd(1), indicate that this dependency has been
355 	 * processed (see test above).  It doesn't matter whether the object is
356 	 * successfully loaded or not, this flag simply ensures that we don't
357 	 * repeatedly attempt to load an object that has already failed to load.
358 	 * To do so would create multiple failure diagnostics for the same
359 	 * object under ldd(1).
360 	 */
361 	if (lml->lm_flags & LML_FLG_TRC_ENABLE)
362 		dip->di_flags |= FLG_DI_LDD_DONE;
363 
364 	/*
365 	 * Determine the initial dependency name.
366 	 */
367 	name = dip->di_name;
368 	DBG_CALL(Dbg_file_lazyload(clmp, name, sym));
369 
370 	/*
371 	 * If this object needs to establish its own group, make sure a handle
372 	 * is created.
373 	 */
374 	if (dip->di_flags & FLG_DI_GROUP)
375 		flags |= (FLG_RT_SETGROUP | FLG_RT_PUBHDL);
376 
377 	/*
378 	 * Lazy dependencies are identified as DT_NEEDED entries with a
379 	 * DF_P1_LAZYLOAD flag in the previous DT_POSFLAG_1 element.  The
380 	 * dynamic information element that corresponds to the DT_POSFLAG_1
381 	 * entry is free, and thus used to store the present entrance
382 	 * identifier.  This identifier is used to prevent multiple attempts to
383 	 * load a failed lazy loadable dependency within the same runtime linker
384 	 * operation.  However, future attempts to reload this dependency are
385 	 * still possible.
386 	 */
387 	if (ndx && (pdip = dip - 1) && (pdip->di_flags & FLG_DI_POSFLAG1))
388 		pdip->di_info = (void *)slp->sl_id;
389 
390 	/*
391 	 * Expand the requested name if necessary.
392 	 */
393 	if (elf_fix_name(name, clmp, &palp, AL_CNT_NEEDED, 0) == 0)
394 		return (NULL);
395 
396 	/*
397 	 * Establish a link-map control list for this request.
398 	 */
399 	if ((lmco = create_cntl(lml, 0)) == 0) {
400 		remove_alist(&palp, 1);
401 		return (NULL);
402 	}
403 
404 	/*
405 	 * Load the associated object.
406 	 */
407 	dip->di_info = nlmp =
408 	    load_one(lml, lmco, palp, clmp, MODE(clmp), flags, hdl, in_nfavl);
409 
410 	/*
411 	 * Remove any expanded pathname infrastructure.  Reduce the pending lazy
412 	 * dependency count of the caller, together with the link-map lists
413 	 * count of objects that still have lazy dependencies pending.
414 	 */
415 	remove_alist(&palp, 1);
416 	if (--LAZY(clmp) == 0)
417 		LIST(clmp)->lm_lazy--;
418 
419 	/*
420 	 * Finish processing the objects associated with this request, and
421 	 * create an association between the caller and this dependency.
422 	 */
423 	if (nlmp && ((bind_one(clmp, nlmp, BND_NEEDED) == 0) ||
424 	    ((nlmp = analyze_lmc(lml, lmco, nlmp, clmp, in_nfavl)) == NULL) ||
425 	    (relocate_lmc(lml, lmco, clmp, nlmp, in_nfavl) == 0)))
426 		dip->di_info = nlmp = NULL;
427 
428 	/*
429 	 * If this lazyload has failed, and we've created a new link-map
430 	 * control list to which this request has added objects, then remove
431 	 * all the objects that have been associated to this request.
432 	 */
433 	if ((nlmp == NULL) && (lmco != ALIST_OFF_DATA))
434 		remove_lmc(lml, clmp, lmco, name);
435 
436 	/*
437 	 * Remove any temporary link-map control list.
438 	 */
439 	if (lmco != ALIST_OFF_DATA)
440 		remove_cntl(lml, lmco);
441 
442 	/*
443 	 * If this lazy loading failed, record the fact, and bump the lazy
444 	 * counts.
445 	 */
446 	if (nlmp == NULL) {
447 		dip->di_flags |= FLG_DI_LAZYFAIL;
448 		if (LAZY(clmp)++ == 0)
449 			LIST(clmp)->lm_lazy++;
450 	}
451 
452 	return (nlmp);
453 }
454 
455 /*
456  * Return the entry point of the ELF executable.
457  */
458 static Addr
459 elf_entry_point(void)
460 {
461 	Rt_map	*lmp = lml_main.lm_head;
462 	Ehdr	*ehdr = (Ehdr *)ADDR(lmp);
463 	Addr	addr = (Addr)(ehdr->e_entry);
464 
465 	if ((FLAGS(lmp) & FLG_RT_FIXED) == 0)
466 		addr += ADDR(lmp);
467 
468 	return (addr);
469 }
470 
471 /*
472  * Determine if a dependency requires a particular version and if so verify
473  * that the version exists in the dependency.
474  */
475 int
476 elf_verify_vers(const char *name, Rt_map *clmp, Rt_map *nlmp)
477 {
478 	Verneed		*vnd = VERNEED(clmp);
479 	int		_num, num = VERNEEDNUM(clmp);
480 	char		*cstrs = (char *)STRTAB(clmp);
481 	Lm_list		*lml = LIST(clmp);
482 
483 	/*
484 	 * Traverse the callers version needed information and determine if any
485 	 * specific versions are required from the dependency.
486 	 */
487 	DBG_CALL(Dbg_ver_need_title(LIST(clmp), NAME(clmp)));
488 	for (_num = 1; _num <= num; _num++,
489 	    vnd = (Verneed *)((Xword)vnd + vnd->vn_next)) {
490 		Half		cnt = vnd->vn_cnt;
491 		Vernaux		*vnap;
492 		char		*nstrs, *need;
493 
494 		/*
495 		 * Determine if a needed entry matches this dependency.
496 		 */
497 		need = (char *)(cstrs + vnd->vn_file);
498 		if (strcmp(name, need) != 0)
499 			continue;
500 
501 		if ((lml->lm_flags & LML_FLG_TRC_VERBOSE) &&
502 		    ((FLAGS1(clmp) & FL1_RT_LDDSTUB) == 0))
503 			(void) printf(MSG_INTL(MSG_LDD_VER_FIND), name);
504 
505 		/*
506 		 * Validate that each version required actually exists in the
507 		 * dependency.
508 		 */
509 		nstrs = (char *)STRTAB(nlmp);
510 
511 		for (vnap = (Vernaux *)((Xword)vnd + vnd->vn_aux); cnt;
512 		    cnt--, vnap = (Vernaux *)((Xword)vnap + vnap->vna_next)) {
513 			char		*version, *define;
514 			Verdef		*vdf = VERDEF(nlmp);
515 			ulong_t		_num, num = VERDEFNUM(nlmp);
516 			int		found = 0;
517 
518 			/*
519 			 * Skip validation of versions that are marked
520 			 * INFO. This optimization is used for versions
521 			 * that are inherited by another version. Verification
522 			 * of the inheriting version is sufficient.
523 			 *
524 			 * Such versions are recorded in the object for the
525 			 * benefit of VERSYM entries that refer to them. This
526 			 * provides a purely diagnostic benefit.
527 			 */
528 			if (vnap->vna_flags & VER_FLG_INFO)
529 				continue;
530 
531 			version = (char *)(cstrs + vnap->vna_name);
532 			DBG_CALL(Dbg_ver_need_entry(lml, 0, need, version));
533 
534 			for (_num = 1; _num <= num; _num++,
535 			    vdf = (Verdef *)((Xword)vdf + vdf->vd_next)) {
536 				Verdaux		*vdap;
537 
538 				if (vnap->vna_hash != vdf->vd_hash)
539 					continue;
540 
541 				vdap = (Verdaux *)((Xword)vdf + vdf->vd_aux);
542 				define = (char *)(nstrs + vdap->vda_name);
543 				if (strcmp(version, define) != 0)
544 					continue;
545 
546 				found++;
547 				break;
548 			}
549 
550 			/*
551 			 * If we're being traced print out any matched version
552 			 * when the verbose (-v) option is in effect.  Always
553 			 * print any unmatched versions.
554 			 */
555 			if (lml->lm_flags & LML_FLG_TRC_ENABLE) {
556 				/* BEGIN CSTYLED */
557 				if (found) {
558 				    if (!(lml->lm_flags & LML_FLG_TRC_VERBOSE))
559 					continue;
560 
561 				    (void) printf(MSG_ORIG(MSG_LDD_VER_FOUND),
562 					need, version, NAME(nlmp));
563 				} else {
564 				    if (rtld_flags & RT_FL_SILENCERR)
565 					continue;
566 
567 				    (void) printf(MSG_INTL(MSG_LDD_VER_NFOUND),
568 					need, version);
569 				}
570 				/* END CSTYLED */
571 				continue;
572 			}
573 
574 			/*
575 			 * If the version hasn't been found then this is a
576 			 * candidate for a fatal error condition.  Weak
577 			 * version definition requirements are silently
578 			 * ignored.  Also, if the image inspected for a version
579 			 * definition has no versioning recorded at all then
580 			 * silently ignore this (this provides better backward
581 			 * compatibility to old images created prior to
582 			 * versioning being available).  Both of these skipped
583 			 * diagnostics are available under tracing (see above).
584 			 */
585 			if ((found == 0) && (num != 0) &&
586 			    (!(vnap->vna_flags & VER_FLG_WEAK))) {
587 				eprintf(lml, ERR_FATAL,
588 				    MSG_INTL(MSG_VER_NFOUND), need, version,
589 				    NAME(clmp));
590 				return (0);
591 			}
592 		}
593 	}
594 	DBG_CALL(Dbg_ver_need_done(lml));
595 	return (1);
596 }
597 
598 /*
599  * Search through the dynamic section for DT_NEEDED entries and perform one
600  * of two functions.  If only the first argument is specified then load the
601  * defined shared object, otherwise add the link map representing the defined
602  * link map the the dlopen list.
603  */
604 static int
605 elf_needed(Lm_list *lml, Aliste lmco, Rt_map *clmp, int *in_nfavl)
606 {
607 	Alist		*palp = NULL;
608 	Dyn		*dyn;
609 	Dyninfo		*dip;
610 	Word		lmflags = lml->lm_flags;
611 
612 	/*
613 	 * A DYNINFO() structure is created during link-map generation that
614 	 * parallels the DYN() information, and defines any flags that
615 	 * influence a dependencies loading.
616 	 */
617 	for (dyn = DYN(clmp), dip = DYNINFO(clmp);
618 	    !(dip->di_flags & FLG_DI_IGNORE); dyn++, dip++) {
619 		uint_t		flags = 0, silent = 0;
620 		const char	*name = dip->di_name;
621 		Rt_map		*nlmp = NULL;
622 
623 		if ((dip->di_flags & FLG_DI_NEEDED) == 0)
624 			continue;
625 
626 		/*
627 		 * Skip any deferred dependencies, unless ldd(1) has forced
628 		 * their processing.  By default, deferred dependencies are
629 		 * only processed when an explicit binding to an individual
630 		 * deferred reference is made.
631 		 */
632 		if ((dip->di_flags & FLG_DI_DEFERRED) &&
633 		    ((rtld_flags & RT_FL_DEFERRED) == 0))
634 			continue;
635 
636 		/*
637 		 * NOTE, libc.so.1 can't be lazy loaded.  Although a lazy
638 		 * position flag won't be produced when a RTLDINFO .dynamic
639 		 * entry is found (introduced with the UPM in Solaris 10), it
640 		 * was possible to mark libc for lazy loading on previous
641 		 * releases.  To reduce the overhead of testing for this
642 		 * occurrence, only carry out this check for the first object
643 		 * on the link-map list (there aren't many applications built
644 		 * without libc).
645 		 */
646 		if ((dip->di_flags & FLG_DI_LAZY) && (lml->lm_head == clmp) &&
647 		    (strcmp(name, MSG_ORIG(MSG_FIL_LIBC)) == 0))
648 			dip->di_flags &= ~FLG_DI_LAZY;
649 
650 		/*
651 		 * Don't bring in lazy loaded objects yet unless we've been
652 		 * asked to attempt to load all available objects (crle(1) sets
653 		 * LD_FLAGS=loadavail).  Even under RTLD_NOW we don't process
654 		 * this - RTLD_NOW will cause relocation processing which in
655 		 * turn might trigger lazy loading, but its possible that the
656 		 * object has a lazy loaded file with no bindings (i.e., it
657 		 * should never have been a dependency in the first place).
658 		 */
659 		if (dip->di_flags & FLG_DI_LAZY) {
660 			if ((lmflags & LML_FLG_LOADAVAIL) == 0) {
661 				LAZY(clmp)++;
662 				continue;
663 			}
664 
665 			/*
666 			 * Silence any error messages - see description under
667 			 * elf_lookup_filtee().
668 			 */
669 			if ((rtld_flags & RT_FL_SILENCERR) == 0) {
670 				rtld_flags |= RT_FL_SILENCERR;
671 				silent = 1;
672 			}
673 		}
674 
675 		DBG_CALL(Dbg_file_needed(clmp, name));
676 
677 		/*
678 		 * If we're running under ldd(1), indicate that this dependency
679 		 * has been processed.  It doesn't matter whether the object is
680 		 * successfully loaded or not, this flag simply ensures that we
681 		 * don't repeatedly attempt to load an object that has already
682 		 * failed to load.  To do so would create multiple failure
683 		 * diagnostics for the same object under ldd(1).
684 		 */
685 		if (lml->lm_flags & LML_FLG_TRC_ENABLE)
686 			dip->di_flags |= FLG_DI_LDD_DONE;
687 
688 		/*
689 		 * Identify any group permission requirements.
690 		 */
691 		if (dip->di_flags & FLG_DI_GROUP)
692 			flags = (FLG_RT_SETGROUP | FLG_RT_PUBHDL);
693 
694 		/*
695 		 * Establish the objects name, load it and establish a binding
696 		 * with the caller.
697 		 */
698 		if ((elf_fix_name(name, clmp, &palp, AL_CNT_NEEDED, 0) == 0) ||
699 		    ((nlmp = load_one(lml, lmco, palp, clmp, MODE(clmp),
700 		    flags, 0, in_nfavl)) == NULL) ||
701 		    (bind_one(clmp, nlmp, BND_NEEDED) == 0))
702 			nlmp = NULL;
703 
704 		/*
705 		 * Clean up any infrastructure, including the removal of the
706 		 * error suppression state, if it had been previously set in
707 		 * this routine.
708 		 */
709 		remove_alist(&palp, 0);
710 
711 		if (silent)
712 			rtld_flags &= ~RT_FL_SILENCERR;
713 
714 		if ((dip->di_info = (void *)nlmp) == NULL) {
715 			/*
716 			 * If the object could not be mapped, continue if error
717 			 * suppression is established or we're here with ldd(1).
718 			 */
719 			if ((MODE(clmp) & RTLD_CONFGEN) || (lmflags &
720 			    (LML_FLG_LOADAVAIL | LML_FLG_TRC_ENABLE)))
721 				continue;
722 			else {
723 				remove_alist(&palp, 1);
724 				return (0);
725 			}
726 		}
727 	}
728 
729 	if (LAZY(clmp))
730 		lml->lm_lazy++;
731 
732 	remove_alist(&palp, 1);
733 	return (1);
734 }
735 
736 /*
737  * A null symbol interpretor.  Used if a filter has no associated filtees.
738  */
739 /* ARGSUSED0 */
740 static int
741 elf_null_find_sym(Slookup *slp, Sresult *srp, uint_t *binfo, int *in_nfavl)
742 {
743 	return (0);
744 }
745 
746 /*
747  * Disable filtee use.
748  */
749 static void
750 elf_disable_filtee(Rt_map *lmp, Dyninfo *dip)
751 {
752 	if ((dip->di_flags & FLG_DI_SYMFLTR) == 0) {
753 		/*
754 		 * If this is an object filter, null out the reference name.
755 		 */
756 		if (OBJFLTRNDX(lmp) != FLTR_DISABLED) {
757 			REFNAME(lmp) = NULL;
758 			OBJFLTRNDX(lmp) = FLTR_DISABLED;
759 
760 			/*
761 			 * Indicate that this filtee is no longer available.
762 			 */
763 			if (dip->di_flags & FLG_DI_STDFLTR)
764 				SYMINTP(lmp) = elf_null_find_sym;
765 
766 		}
767 	} else if (dip->di_flags & FLG_DI_STDFLTR) {
768 		/*
769 		 * Indicate that this standard filtee is no longer available.
770 		 */
771 		if (SYMSFLTRCNT(lmp))
772 			SYMSFLTRCNT(lmp)--;
773 	} else {
774 		/*
775 		 * Indicate that this auxiliary filtee is no longer available.
776 		 */
777 		if (SYMAFLTRCNT(lmp))
778 			SYMAFLTRCNT(lmp)--;
779 	}
780 	dip->di_flags &= ~MSK_DI_FILTER;
781 }
782 
783 /*
784  * Find symbol interpreter - filters.
785  * This function is called when the symbols from a shared object should
786  * be resolved from the shared objects filtees instead of from within itself.
787  *
788  * A symbol name of 0 is used to trigger filtee loading.
789  */
790 static int
791 _elf_lookup_filtee(Slookup *slp, Sresult *srp, uint_t *binfo, uint_t ndx,
792     int *in_nfavl)
793 {
794 	const char	*name = slp->sl_name, *filtees;
795 	Rt_map		*clmp = slp->sl_cmap;
796 	Rt_map		*ilmp = slp->sl_imap;
797 	Pdesc		*pdp;
798 	int		any;
799 	Dyninfo		*dip = &DYNINFO(ilmp)[ndx];
800 	Lm_list		*lml = LIST(ilmp);
801 	Aliste		idx;
802 
803 	/*
804 	 * Indicate that the filter has been used.  If a binding already exists
805 	 * to the caller, indicate that this object is referenced.  This insures
806 	 * we don't generate false unreferenced diagnostics from ldd -u/U or
807 	 * debugging.  Don't create a binding regardless, as this filter may
808 	 * have been dlopen()'ed.
809 	 */
810 	if (name && (ilmp != clmp)) {
811 		Word	tracing = (LIST(clmp)->lm_flags &
812 		    (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED));
813 
814 		if (tracing || DBG_ENABLED) {
815 			Bnd_desc	*bdp;
816 			Aliste		idx;
817 
818 			FLAGS1(ilmp) |= FL1_RT_USED;
819 
820 			if ((tracing & LML_FLG_TRC_UNREF) || DBG_ENABLED) {
821 				for (APLIST_TRAVERSE(CALLERS(ilmp), idx, bdp)) {
822 					if (bdp->b_caller == clmp) {
823 						bdp->b_flags |= BND_REFER;
824 						break;
825 					}
826 				}
827 			}
828 		}
829 	}
830 
831 	/*
832 	 * If this is the first call to process this filter, establish the
833 	 * filtee list.  If a configuration file exists, determine if any
834 	 * filtee associations for this filter, and its filtee reference, are
835 	 * defined.  Otherwise, process the filtee reference.  Any token
836 	 * expansion is also completed at this point (i.e., $PLATFORM).
837 	 */
838 	filtees = dip->di_name;
839 	if (dip->di_info == NULL) {
840 		if (rtld_flags2 & RT_FL2_FLTCFG) {
841 			elf_config_flt(lml, PATHNAME(ilmp), filtees,
842 			    (Alist **)&dip->di_info, AL_CNT_FILTEES);
843 		}
844 		if (dip->di_info == NULL) {
845 			DBG_CALL(Dbg_file_filter(lml, NAME(ilmp), filtees, 0));
846 			if ((lml->lm_flags &
847 			    (LML_FLG_TRC_VERBOSE | LML_FLG_TRC_SEARCH)) &&
848 			    ((FLAGS1(ilmp) & FL1_RT_LDDSTUB) == 0))
849 				(void) printf(MSG_INTL(MSG_LDD_FIL_FILTER),
850 				    NAME(ilmp), filtees);
851 
852 			if (expand_paths(ilmp, filtees, (Alist **)&dip->di_info,
853 			    AL_CNT_FILTEES, 0, 0) == 0) {
854 				elf_disable_filtee(ilmp, dip);
855 				return (0);
856 			}
857 		}
858 	}
859 
860 	/*
861 	 * Traverse the filtee list, dlopen()'ing any objects specified and
862 	 * using their group handle to lookup the symbol.
863 	 */
864 	any = 0;
865 	for (ALIST_TRAVERSE((Alist *)dip->di_info, idx, pdp)) {
866 		int	mode;
867 		Grp_hdl	*ghp;
868 		Rt_map	*nlmp = NULL;
869 
870 		if (pdp->pd_plen == 0)
871 			continue;
872 
873 		/*
874 		 * Establish the mode of the filtee from the filter.  As filtees
875 		 * are loaded via a dlopen(), make sure that RTLD_GROUP is set
876 		 * and the filtees aren't global.  It would be nice to have
877 		 * RTLD_FIRST used here also, but as filters got out long before
878 		 * RTLD_FIRST was introduced it's a little too late now.
879 		 */
880 		mode = MODE(ilmp) | RTLD_GROUP;
881 		mode &= ~RTLD_GLOBAL;
882 
883 		/*
884 		 * Insure that any auxiliary filter can locate symbols from its
885 		 * caller.
886 		 */
887 		if (dip->di_flags & FLG_DI_AUXFLTR)
888 			mode |= RTLD_PARENT;
889 
890 		/*
891 		 * Process any capability directory.  Establish a new link-map
892 		 * control list from which to analyze any newly added objects.
893 		 */
894 		if ((pdp->pd_info == NULL) && (pdp->pd_flags & PD_TKN_CAP)) {
895 			const char	*dir = pdp->pd_pname;
896 			Aliste		lmco;
897 
898 			/*
899 			 * Establish a link-map control list for this request.
900 			 */
901 			if ((lmco = create_cntl(lml, 0)) == 0)
902 				return (0);
903 
904 			/*
905 			 * Determine the capability filtees.  If none can be
906 			 * found, provide suitable diagnostics.
907 			 */
908 			DBG_CALL(Dbg_cap_filter(lml, dir, ilmp));
909 			if (cap_filtees((Alist **)&dip->di_info, idx, dir,
910 			    lmco, ilmp, clmp, filtees, mode,
911 			    (FLG_RT_PUBHDL | FLG_RT_CAP), in_nfavl) == 0) {
912 				if ((lml->lm_flags & LML_FLG_TRC_ENABLE) &&
913 				    (dip->di_flags & FLG_DI_AUXFLTR) &&
914 				    (rtld_flags & RT_FL_WARNFLTR)) {
915 					(void) printf(
916 					    MSG_INTL(MSG_LDD_CAP_NFOUND), dir);
917 				}
918 				DBG_CALL(Dbg_cap_filter(lml, dir, 0));
919 			}
920 
921 			/*
922 			 * Re-establish the originating path name descriptor,
923 			 * as the expansion of capabilities filtees may have
924 			 * re-allocated the controlling Alist.  Mark this
925 			 * original pathname descriptor as unused so that the
926 			 * descriptor isn't revisited for processing.  Any real
927 			 * capabilities filtees have been added as new pathname
928 			 * descriptors following this descriptor.
929 			 */
930 			pdp = alist_item((Alist *)dip->di_info, idx);
931 			pdp->pd_flags &= ~PD_TKN_CAP;
932 			pdp->pd_plen = 0;
933 
934 			/*
935 			 * Now that any capability objects have been processed,
936 			 * remove any temporary link-map control list.
937 			 */
938 			if (lmco != ALIST_OFF_DATA)
939 				remove_cntl(lml, lmco);
940 		}
941 
942 		if (pdp->pd_plen == 0)
943 			continue;
944 
945 		/*
946 		 * Process an individual filtee.
947 		 */
948 		if (pdp->pd_info == NULL) {
949 			const char	*filtee = pdp->pd_pname;
950 			int		audit = 0;
951 
952 			DBG_CALL(Dbg_file_filtee(lml, NAME(ilmp), filtee, 0));
953 
954 			ghp = NULL;
955 
956 			/*
957 			 * Determine if the reference link map is already
958 			 * loaded.  As an optimization compare the filtee with
959 			 * our interpretor.  The most common filter is
960 			 * libdl.so.1, which is a filter on ld.so.1.
961 			 */
962 #if	defined(_ELF64)
963 			if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD_64)) == 0) {
964 #else
965 			if (strcmp(filtee, MSG_ORIG(MSG_PTH_RTLD)) == 0) {
966 #endif
967 				uint_t	hflags, rdflags, cdflags;
968 
969 				/*
970 				 * Establish any flags for the handle (Grp_hdl).
971 				 *
972 				 *  -	This is a special, public, ld.so.1
973 				 *	handle.
974 				 *  -	Only the first object on this handle
975 				 *	can supply symbols.
976 				 *  -	This handle provides a filtee.
977 				 *
978 				 * Essentially, this handle allows a caller to
979 				 * reference the dl*() family of interfaces from
980 				 * ld.so.1.
981 				 */
982 				hflags = (GPH_PUBLIC | GPH_LDSO |
983 				    GPH_FIRST | GPH_FILTEE);
984 
985 				/*
986 				 * Establish the flags for the referenced
987 				 * dependency descriptor (Grp_desc).
988 				 *
989 				 *  -	ld.so.1 is available for dlsym().
990 				 *  -	ld.so.1 is available to relocate
991 				 *	against.
992 				 *  -	There's no need to add an dependencies
993 				 *	to this handle.
994 				 */
995 				rdflags = (GPD_DLSYM | GPD_RELOC);
996 
997 				/*
998 				 * Establish the flags for this callers
999 				 * dependency descriptor (Grp_desc).
1000 				 *
1001 				 *  -   The explicit creation of a handle
1002 				 *	creates a descriptor for the referenced
1003 				 *	object and the parent (caller).
1004 				 */
1005 				cdflags = GPD_PARENT;
1006 
1007 				nlmp = lml_rtld.lm_head;
1008 				if ((ghp = hdl_create(&lml_rtld, nlmp, ilmp,
1009 				    hflags, rdflags, cdflags)) == NULL)
1010 					nlmp = NULL;
1011 
1012 				/*
1013 				 * Establish the filter handle to prevent any
1014 				 * recursion.
1015 				 */
1016 				if (nlmp && ghp)
1017 					pdp->pd_info = (void *)ghp;
1018 
1019 				/*
1020 				 * Audit the filter/filtee established.  Ignore
1021 				 * any return from the auditor, as we can't
1022 				 * allow ignore filtering to ld.so.1, otherwise
1023 				 * nothing is going to work.
1024 				 */
1025 				if (nlmp && ((lml->lm_tflags | AFLAGS(ilmp)) &
1026 				    LML_TFLG_AUD_OBJFILTER))
1027 					(void) audit_objfilter(ilmp, filtees,
1028 					    nlmp, 0);
1029 
1030 			} else {
1031 				Rej_desc	rej = { 0 };
1032 				Fdesc		fd = { 0 };
1033 				Aliste		lmco;
1034 
1035 				/*
1036 				 * Trace the inspection of this file, determine
1037 				 * any auditor substitution, and seed the file
1038 				 * descriptor with the originating name.
1039 				 */
1040 				if (load_trace(lml, pdp, clmp, &fd) == NULL)
1041 					continue;
1042 
1043 				/*
1044 				 * Establish a link-map control list for this
1045 				 * request.
1046 				 */
1047 				if ((lmco = create_cntl(lml, 0)) == 0)
1048 					return (0);
1049 
1050 				/*
1051 				 * Locate and load the filtee.
1052 				 */
1053 				if ((nlmp = load_path(lml, lmco, ilmp, mode,
1054 				    FLG_RT_PUBHDL, &ghp, &fd, &rej,
1055 				    in_nfavl)) == NULL)
1056 					file_notfound(LIST(ilmp), filtee, ilmp,
1057 					    FLG_RT_PUBHDL, &rej);
1058 
1059 				filtee = pdp->pd_pname;
1060 
1061 				/*
1062 				 * Establish the filter handle to prevent any
1063 				 * recursion.
1064 				 */
1065 				if (nlmp && ghp) {
1066 					ghp->gh_flags |= GPH_FILTEE;
1067 					pdp->pd_info = (void *)ghp;
1068 
1069 					FLAGS1(nlmp) |= FL1_RT_USED;
1070 				}
1071 
1072 				/*
1073 				 * Audit the filter/filtee established.  A
1074 				 * return of 0 indicates the auditor wishes to
1075 				 * ignore this filtee.
1076 				 */
1077 				if (nlmp && ((lml->lm_tflags | FLAGS1(ilmp)) &
1078 				    LML_TFLG_AUD_OBJFILTER)) {
1079 					if (audit_objfilter(ilmp, filtees,
1080 					    nlmp, 0) == 0) {
1081 						audit = 1;
1082 						nlmp = NULL;
1083 					}
1084 				}
1085 
1086 				/*
1087 				 * Finish processing the objects associated with
1088 				 * this request.  Create an association between
1089 				 * this object and the originating filter to
1090 				 * provide sufficient information to tear down
1091 				 * this filtee if necessary.
1092 				 */
1093 				if (nlmp && ghp && (((nlmp = analyze_lmc(lml,
1094 				    lmco, nlmp, clmp, in_nfavl)) == NULL) ||
1095 				    (relocate_lmc(lml, lmco, ilmp, nlmp,
1096 				    in_nfavl) == 0)))
1097 					nlmp = NULL;
1098 
1099 				/*
1100 				 * If the filtee has been successfully
1101 				 * processed, then create an association
1102 				 * between the filter and filtee.  This
1103 				 * association provides sufficient information
1104 				 * to tear down the filter and filtee if
1105 				 * necessary.
1106 				 */
1107 				DBG_CALL(Dbg_file_hdl_title(DBG_HDL_ADD));
1108 				if (nlmp && ghp && (hdl_add(ghp, ilmp,
1109 				    GPD_FILTER, NULL) == NULL))
1110 					nlmp = NULL;
1111 
1112 				/*
1113 				 * Generate a diagnostic if the filtee couldn't
1114 				 * be loaded.
1115 				 */
1116 				if (nlmp == NULL)
1117 					DBG_CALL(Dbg_file_filtee(lml, 0, filtee,
1118 					    audit));
1119 
1120 				/*
1121 				 * If this filtee loading has failed, and we've
1122 				 * created a new link-map control list to which
1123 				 * this request has added objects, then remove
1124 				 * all the objects that have been associated to
1125 				 * this request.
1126 				 */
1127 				if ((nlmp == NULL) && (lmco != ALIST_OFF_DATA))
1128 					remove_lmc(lml, clmp, lmco, name);
1129 
1130 				/*
1131 				 * Remove any temporary link-map control list.
1132 				 */
1133 				if (lmco != ALIST_OFF_DATA)
1134 					remove_cntl(lml, lmco);
1135 			}
1136 
1137 			/*
1138 			 * If the filtee couldn't be loaded, null out the
1139 			 * path name descriptor entry, and continue the search.
1140 			 * Otherwise, the group handle is retained for future
1141 			 * symbol searches.
1142 			 */
1143 			if (nlmp == NULL) {
1144 				pdp->pd_info = NULL;
1145 				pdp->pd_plen = 0;
1146 				continue;
1147 			}
1148 		}
1149 
1150 		ghp = (Grp_hdl *)pdp->pd_info;
1151 
1152 		/*
1153 		 * If name is NULL, we're here to trigger filtee loading.
1154 		 * Skip the symbol lookup so that we'll continue looking for
1155 		 * additional filtees.
1156 		 */
1157 		if (name) {
1158 			Grp_desc	*gdp;
1159 			int		ret = 0;
1160 			Aliste		idx;
1161 			Slookup		sl = *slp;
1162 
1163 			sl.sl_flags |= (LKUP_FIRST | LKUP_DLSYM);
1164 			any++;
1165 
1166 			/*
1167 			 * Look for the symbol in the handles dependencies.
1168 			 */
1169 			for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
1170 				if ((gdp->gd_flags & GPD_DLSYM) == 0)
1171 					continue;
1172 
1173 				/*
1174 				 * If our parent is a dependency don't look at
1175 				 * it (otherwise we are in a recursive loop).
1176 				 * This situation can occur with auxiliary
1177 				 * filters if the filtee has a dependency on the
1178 				 * filter.  This dependency isn't necessary as
1179 				 * auxiliary filters are opened RTLD_PARENT, but
1180 				 * users may still unknowingly add an explicit
1181 				 * dependency to the parent.
1182 				 */
1183 				if ((sl.sl_imap = gdp->gd_depend) == ilmp)
1184 					continue;
1185 
1186 				if (((ret = SYMINTP(sl.sl_imap)(&sl, srp, binfo,
1187 				    in_nfavl)) != 0) ||
1188 				    (ghp->gh_flags & GPH_FIRST))
1189 					break;
1190 			}
1191 
1192 			/*
1193 			 * If a symbol has been found, indicate the binding
1194 			 * and return the symbol.
1195 			 */
1196 			if (ret) {
1197 				*binfo |= DBG_BINFO_FILTEE;
1198 				return (1);
1199 			}
1200 		}
1201 
1202 		/*
1203 		 * If this object is tagged to terminate filtee processing we're
1204 		 * done.
1205 		 */
1206 		if (FLAGS1(ghp->gh_ownlmp) & FL1_RT_ENDFILTE)
1207 			break;
1208 	}
1209 
1210 	/*
1211 	 * If we're just here to trigger filtee loading then we're done.
1212 	 */
1213 	if (name == NULL)
1214 		return (0);
1215 
1216 	/*
1217 	 * If no filtees have been found for a filter, clean up any path name
1218 	 * descriptors and disable their search completely.  For auxiliary
1219 	 * filters we can reselect the symbol search function so that we never
1220 	 * enter this routine again for this object.  For standard filters we
1221 	 * use the null symbol routine.
1222 	 */
1223 	if (any == 0) {
1224 		remove_alist((Alist **)&(dip->di_info), 1);
1225 		elf_disable_filtee(ilmp, dip);
1226 	}
1227 
1228 	return (0);
1229 }
1230 
1231 /*
1232  * Focal point for disabling error messages for auxiliary filters.  As an
1233  * auxiliary filter allows for filtee use, but provides a fallback should a
1234  * filtee not exist (or fail to load), any errors generated as a consequence of
1235  * trying to load the filtees are typically suppressed.  Setting RT_FL_SILENCERR
1236  * suppresses errors generated by eprintf(), but ensures a debug diagnostic is
1237  * produced.  ldd(1) employs printf(), and here the selection of whether to
1238  * print a diagnostic in regards to auxiliary filters is a little more complex.
1239  *
1240  *   -	The determination of whether to produce an ldd message, or a fatal
1241  *	error message is driven by LML_FLG_TRC_ENABLE.
1242  *   -	More detailed ldd messages may also be driven off of LML_FLG_TRC_WARN,
1243  *	(ldd -d/-r), LML_FLG_TRC_VERBOSE (ldd -v), LML_FLG_TRC_SEARCH (ldd -s),
1244  *	and LML_FLG_TRC_UNREF/LML_FLG_TRC_UNUSED (ldd -U/-u).
1245  *   -	If the calling object is lddstub, then several classes of message are
1246  *	suppressed.  The user isn't trying to diagnose lddstub, this is simply
1247  *	a stub executable employed to preload a user specified library against.
1248  *   -	If RT_FL_SILENCERR is in effect then any generic ldd() messages should
1249  *	be suppressed.  All detailed ldd messages should still be produced.
1250  */
1251 int
1252 elf_lookup_filtee(Slookup *slp, Sresult *srp, uint_t *binfo, uint_t ndx,
1253     int *in_nfavl)
1254 {
1255 	Dyninfo	*dip = &DYNINFO(slp->sl_imap)[ndx];
1256 	int	ret, silent = 0;
1257 
1258 	/*
1259 	 * Make sure this entry is still acting as a filter.  We may have tried
1260 	 * to process this previously, and disabled it if the filtee couldn't
1261 	 * be processed.  However, other entries may provide different filtees
1262 	 * that are yet to be completed.
1263 	 */
1264 	if (dip->di_flags == 0)
1265 		return (0);
1266 
1267 	/*
1268 	 * Indicate whether an error message is required should this filtee not
1269 	 * be found, based on the type of filter.
1270 	 */
1271 	if ((dip->di_flags & FLG_DI_AUXFLTR) &&
1272 	    ((rtld_flags & (RT_FL_WARNFLTR | RT_FL_SILENCERR)) == 0)) {
1273 		rtld_flags |= RT_FL_SILENCERR;
1274 		silent = 1;
1275 	}
1276 
1277 	ret = _elf_lookup_filtee(slp, srp, binfo, ndx, in_nfavl);
1278 
1279 	if (silent)
1280 		rtld_flags &= ~RT_FL_SILENCERR;
1281 
1282 	return (ret);
1283 }
1284 
1285 /*
1286  * Compute the elf hash value (as defined in the ELF access library).
1287  * The form of the hash table is:
1288  *
1289  *	|--------------|
1290  *	| # of buckets |
1291  *	|--------------|
1292  *	| # of chains  |
1293  *	|--------------|
1294  *	|   bucket[]   |
1295  *	|--------------|
1296  *	|   chain[]    |
1297  *	|--------------|
1298  */
1299 ulong_t
1300 elf_hash(const char *name)
1301 {
1302 	uint_t	hval = 0;
1303 
1304 	while (*name) {
1305 		uint_t	g;
1306 		hval = (hval << 4) + *name++;
1307 		if ((g = (hval & 0xf0000000)) != 0)
1308 			hval ^= g >> 24;
1309 		hval &= ~g;
1310 	}
1311 	return ((ulong_t)hval);
1312 }
1313 
1314 /*
1315  * Look up a symbol.  The callers lookup information is passed in the Slookup
1316  * structure, and any resultant binding information is returned in the Sresult
1317  * structure.
1318  */
1319 int
1320 elf_find_sym(Slookup *slp, Sresult *srp, uint_t *binfo, int *in_nfavl)
1321 {
1322 	const char	*name = slp->sl_name;
1323 	Rt_map		*ilmp = slp->sl_imap;
1324 	ulong_t		hash = slp->sl_hash;
1325 	uint_t		ndx, hashoff, buckets, *chainptr;
1326 	Sym		*sym, *symtabptr;
1327 	char		*strtabptr, *strtabname;
1328 	uint_t		flags1;
1329 	Syminfo		*sip;
1330 
1331 	/*
1332 	 * If we're only here to establish a symbols index, skip the diagnostic
1333 	 * used to trace a symbol search.
1334 	 */
1335 	if ((slp->sl_flags & LKUP_SYMNDX) == 0)
1336 		DBG_CALL(Dbg_syms_lookup(ilmp, name, MSG_ORIG(MSG_STR_ELF)));
1337 
1338 	if (HASH(ilmp) == NULL)
1339 		return (0);
1340 
1341 	buckets = HASH(ilmp)[0];
1342 	/* LINTED */
1343 	hashoff = ((uint_t)hash % buckets) + 2;
1344 
1345 	/*
1346 	 * Get the first symbol from the hash chain and initialize the string
1347 	 * and symbol table pointers.
1348 	 */
1349 	if ((ndx = HASH(ilmp)[hashoff]) == 0)
1350 		return (0);
1351 
1352 	chainptr = HASH(ilmp) + 2 + buckets;
1353 	strtabptr = STRTAB(ilmp);
1354 	symtabptr = SYMTAB(ilmp);
1355 
1356 	while (ndx) {
1357 		sym = symtabptr + ndx;
1358 		strtabname = strtabptr + sym->st_name;
1359 
1360 		/*
1361 		 * Compare the symbol found with the name required.  If the
1362 		 * names don't match continue with the next hash entry.
1363 		 */
1364 		if ((*strtabname++ != *name) || strcmp(strtabname, &name[1])) {
1365 			hashoff = ndx + buckets + 2;
1366 			if ((ndx = chainptr[ndx]) != 0)
1367 				continue;
1368 			return (0);
1369 		}
1370 
1371 		/*
1372 		 * Symbols that are defined as hidden within an object usually
1373 		 * have any references from within the same object bound at
1374 		 * link-edit time, thus ld.so.1 is not involved.  However, if
1375 		 * these are capabilities symbols, then references to them must
1376 		 * be resolved at runtime.  A hidden symbol can only be bound
1377 		 * to by the object that defines the symbol.
1378 		 */
1379 		if ((sym->st_shndx != SHN_UNDEF) &&
1380 		    (ELF_ST_VISIBILITY(sym->st_other) == STV_HIDDEN) &&
1381 		    (slp->sl_cmap != ilmp))
1382 			return (0);
1383 
1384 		/*
1385 		 * The Solaris ld does not put DT_VERSYM in the dynamic
1386 		 * section, but the GNU ld does. The GNU runtime linker
1387 		 * interprets the top bit of the 16-bit Versym value
1388 		 * (0x8000) as the "hidden" bit. If this bit is set,
1389 		 * the linker is supposed to act as if that symbol does
1390 		 * not exist. The hidden bit supports their versioning
1391 		 * scheme, which allows multiple incompatible functions
1392 		 * with the same name to exist at different versions
1393 		 * within an object. The Solaris linker does not support this
1394 		 * mechanism, or the model of interface evolution that
1395 		 * it allows, but we honor the hidden bit in GNU ld
1396 		 * produced objects in order to interoperate with them.
1397 		 */
1398 		if (VERSYM(ilmp) && (VERSYM(ilmp)[ndx] & 0x8000)) {
1399 			DBG_CALL(Dbg_syms_ignore_gnuver(ilmp, name,
1400 			    ndx, VERSYM(ilmp)[ndx]));
1401 			return (0);
1402 		}
1403 
1404 		/*
1405 		 * If we're only here to establish a symbol's index, we're done.
1406 		 */
1407 		if (slp->sl_flags & LKUP_SYMNDX) {
1408 			srp->sr_dmap = ilmp;
1409 			srp->sr_sym = sym;
1410 			return (1);
1411 		}
1412 
1413 		/*
1414 		 * If we find a match and the symbol is defined, capture the
1415 		 * symbol pointer and the link map in which it was found.
1416 		 */
1417 		if (sym->st_shndx != SHN_UNDEF) {
1418 			srp->sr_dmap = ilmp;
1419 			srp->sr_sym = sym;
1420 			*binfo |= DBG_BINFO_FOUND;
1421 
1422 			if ((FLAGS(ilmp) & FLG_RT_OBJINTPO) ||
1423 			    ((FLAGS(ilmp) & FLG_RT_SYMINTPO) &&
1424 			    is_sym_interposer(ilmp, sym)))
1425 				*binfo |= DBG_BINFO_INTERPOSE;
1426 			break;
1427 
1428 		/*
1429 		 * If we find a match and the symbol is undefined, the
1430 		 * symbol type is a function, and the value of the symbol
1431 		 * is non zero, then this is a special case.  This allows
1432 		 * the resolution of a function address to the plt[] entry.
1433 		 * See SPARC ABI, Dynamic Linking, Function Addresses for
1434 		 * more details.
1435 		 */
1436 		} else if ((slp->sl_flags & LKUP_SPEC) &&
1437 		    (FLAGS(ilmp) & FLG_RT_ISMAIN) && (sym->st_value != 0) &&
1438 		    (ELF_ST_TYPE(sym->st_info) == STT_FUNC)) {
1439 			srp->sr_dmap = ilmp;
1440 			srp->sr_sym = sym;
1441 			*binfo |= (DBG_BINFO_FOUND | DBG_BINFO_PLTADDR);
1442 
1443 			if ((FLAGS(ilmp) & FLG_RT_OBJINTPO) ||
1444 			    ((FLAGS(ilmp) & FLG_RT_SYMINTPO) &&
1445 			    is_sym_interposer(ilmp, sym)))
1446 				*binfo |= DBG_BINFO_INTERPOSE;
1447 			return (1);
1448 		}
1449 
1450 		/*
1451 		 * Undefined symbol.
1452 		 */
1453 		return (0);
1454 	}
1455 
1456 	/*
1457 	 * We've found a match.  Determine if the defining object contains
1458 	 * symbol binding information.
1459 	 */
1460 	if ((sip = SYMINFO(ilmp)) != NULL)
1461 		sip += ndx;
1462 
1463 	/*
1464 	 * If this definition is a singleton, and we haven't followed a default
1465 	 * symbol search knowing that we're looking for a singleton (presumably
1466 	 * because the symbol definition has been changed since the referring
1467 	 * object was built), then reject this binding so that the caller can
1468 	 * fall back to a standard symbol search.
1469 	 */
1470 	if ((ELF_ST_VISIBILITY(sym->st_other) == STV_SINGLETON) &&
1471 	    (((slp->sl_flags & LKUP_STANDARD) == 0) ||
1472 	    (((slp->sl_flags & LKUP_SINGLETON) == 0) &&
1473 	    (LIST(ilmp)->lm_flags & LML_FLG_GROUPSEXIST)))) {
1474 		DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name,
1475 		    DBG_BNDREJ_SINGLE));
1476 		*binfo |= BINFO_REJSINGLE;
1477 		*binfo &= ~DBG_BINFO_MSK;
1478 		return (0);
1479 	}
1480 
1481 	/*
1482 	 * If this is a direct binding request, but the symbol definition has
1483 	 * disabled directly binding to it (presumably because the symbol
1484 	 * definition has been changed since the referring object was built),
1485 	 * reject this binding so that the caller can fall back to a standard
1486 	 * symbol search.
1487 	 */
1488 	if (sip && (slp->sl_flags & LKUP_DIRECT) &&
1489 	    (sip->si_flags & SYMINFO_FLG_NOEXTDIRECT)) {
1490 		DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name,
1491 		    DBG_BNDREJ_DIRECT));
1492 		*binfo |= BINFO_REJDIRECT;
1493 		*binfo &= ~DBG_BINFO_MSK;
1494 		return (0);
1495 	}
1496 
1497 	/*
1498 	 * If this is a binding request within an RTLD_GROUP family, and the
1499 	 * symbol has disabled directly binding to it, reject this binding so
1500 	 * that the caller can fall back to a standard symbol search.
1501 	 *
1502 	 * Effectively, an RTLD_GROUP family achieves what can now be
1503 	 * established with direct bindings.  However, various symbols have
1504 	 * been tagged as inappropriate for direct binding to (ie. libc:malloc).
1505 	 *
1506 	 * A symbol marked as no-direct cannot be used within a group without
1507 	 * first ensuring that the symbol has not been interposed upon outside
1508 	 * of the group.  A common example occurs when users implement their own
1509 	 * version of malloc() in the executable.  Such a malloc() interposes on
1510 	 * the libc:malloc, and this interposition must be honored within the
1511 	 * group as well.
1512 	 *
1513 	 * Following any rejection, LKUP_WORLD is established as a means of
1514 	 * overriding this test as we return to a standard search.
1515 	 */
1516 	if (sip && (sip->si_flags & SYMINFO_FLG_NOEXTDIRECT) &&
1517 	    ((MODE(slp->sl_cmap) & (RTLD_GROUP | RTLD_WORLD)) == RTLD_GROUP) &&
1518 	    ((slp->sl_flags & LKUP_WORLD) == 0)) {
1519 		DBG_CALL(Dbg_bind_reject(slp->sl_cmap, ilmp, name,
1520 		    DBG_BNDREJ_GROUP));
1521 		*binfo |= BINFO_REJGROUP;
1522 		*binfo &= ~DBG_BINFO_MSK;
1523 		return (0);
1524 	}
1525 
1526 	/*
1527 	 * If this symbol is associated with capabilities, then each of the
1528 	 * capabilities instances needs to be compared against the system
1529 	 * capabilities.  The best instance will be chosen to satisfy this
1530 	 * binding.
1531 	 */
1532 	if (CAP(ilmp) && CAPINFO(ilmp) && ELF_C_GROUP(CAPINFO(ilmp)[ndx]) &&
1533 	    (cap_match(srp, ndx, symtabptr, strtabptr) == 0))
1534 		return (0);
1535 
1536 	/*
1537 	 * Determine whether this object is acting as a filter.
1538 	 */
1539 	if (((flags1 = FLAGS1(ilmp)) & MSK_RT_FILTER) == 0)
1540 		return (1);
1541 
1542 	/*
1543 	 * Determine if this object offers per-symbol filtering, and if so,
1544 	 * whether this symbol references a filtee.
1545 	 */
1546 	if (sip && (flags1 & (FL1_RT_SYMSFLTR | FL1_RT_SYMAFLTR))) {
1547 		/*
1548 		 * If this is a standard filter reference, and no standard
1549 		 * filtees remain to be inspected, we're done.  If this is an
1550 		 * auxiliary filter reference, and no auxiliary filtees remain,
1551 		 * we'll fall through in case any object filtering is available.
1552 		 */
1553 		if ((sip->si_flags & SYMINFO_FLG_FILTER) &&
1554 		    (SYMSFLTRCNT(ilmp) == 0))
1555 			return (0);
1556 
1557 		if ((sip->si_flags & SYMINFO_FLG_FILTER) ||
1558 		    ((sip->si_flags & SYMINFO_FLG_AUXILIARY) &&
1559 		    SYMAFLTRCNT(ilmp))) {
1560 			Sresult	sr;
1561 
1562 			/*
1563 			 * Initialize a local symbol result descriptor, using
1564 			 * the original symbol name.
1565 			 */
1566 			SRESULT_INIT(sr, slp->sl_name);
1567 
1568 			/*
1569 			 * This symbol has an associated filtee.  Lookup the
1570 			 * symbol in the filtee, and if it is found return it.
1571 			 * If the symbol doesn't exist, and this is a standard
1572 			 * filter, return an error, otherwise fall through to
1573 			 * catch any object filtering that may be available.
1574 			 */
1575 			if (elf_lookup_filtee(slp, &sr, binfo, sip->si_boundto,
1576 			    in_nfavl)) {
1577 				*srp = sr;
1578 				return (1);
1579 			}
1580 			if (sip->si_flags & SYMINFO_FLG_FILTER)
1581 				return (0);
1582 		}
1583 	}
1584 
1585 	/*
1586 	 * Determine if this object provides global filtering.
1587 	 */
1588 	if (flags1 & (FL1_RT_OBJSFLTR | FL1_RT_OBJAFLTR)) {
1589 		if (OBJFLTRNDX(ilmp) != FLTR_DISABLED) {
1590 			Sresult	sr;
1591 
1592 			/*
1593 			 * Initialize a local symbol result descriptor, using
1594 			 * the original symbol name.
1595 			 */
1596 			SRESULT_INIT(sr, slp->sl_name);
1597 
1598 			/*
1599 			 * This object has an associated filtee.  Lookup the
1600 			 * symbol in the filtee, and if it is found return it.
1601 			 * If the symbol doesn't exist, and this is a standard
1602 			 * filter, return and error, otherwise return the symbol
1603 			 * within the filter itself.
1604 			 */
1605 			if (elf_lookup_filtee(slp, &sr, binfo, OBJFLTRNDX(ilmp),
1606 			    in_nfavl)) {
1607 				*srp = sr;
1608 				return (1);
1609 			}
1610 		}
1611 
1612 		if (flags1 & FL1_RT_OBJSFLTR)
1613 			return (0);
1614 	}
1615 	return (1);
1616 }
1617 
1618 /*
1619  * Create a new Rt_map structure for an ELF object and initialize
1620  * all values.
1621  */
1622 Rt_map *
1623 elf_new_lmp(Lm_list *lml, Aliste lmco, Fdesc *fdp, Addr addr, size_t msize,
1624     void *odyn, Rt_map *clmp, int *in_nfavl)
1625 {
1626 	const char	*name = fdp->fd_nname;
1627 	Rt_map		*lmp;
1628 	Ehdr		*ehdr = (Ehdr *)addr;
1629 	Phdr		*phdr, *tphdr = NULL, *dphdr = NULL, *uphdr = NULL;
1630 	Dyn		*dyn = (Dyn *)odyn;
1631 	Cap		*cap = NULL;
1632 	int		ndx;
1633 	Addr		base, fltr = 0, audit = 0, cfile = 0, crle = 0;
1634 	Xword		rpath = 0;
1635 	size_t		lmsz, rtsz, epsz, dynsz = 0;
1636 	uint_t		dyncnt = 0;
1637 
1638 	DBG_CALL(Dbg_file_elf(lml, name, addr, msize, lml->lm_lmidstr, lmco));
1639 
1640 	/*
1641 	 * If this is a shared object, the base address of the shared object is
1642 	 * added to all address values defined within the object.  Otherwise, if
1643 	 * this is an executable, all object addresses are used as is.
1644 	 */
1645 	if (ehdr->e_type == ET_EXEC)
1646 		base = 0;
1647 	else
1648 		base = addr;
1649 
1650 	/*
1651 	 * Traverse the program header table, picking off required items.  This
1652 	 * traversal also provides for the sizing of the PT_DYNAMIC section.
1653 	 */
1654 	phdr = (Phdr *)((uintptr_t)ehdr + ehdr->e_phoff);
1655 	for (ndx = 0; ndx < (int)ehdr->e_phnum; ndx++,
1656 	    phdr = (Phdr *)((uintptr_t)phdr + ehdr->e_phentsize)) {
1657 		switch (phdr->p_type) {
1658 		case PT_DYNAMIC:
1659 			dphdr = phdr;
1660 			dyn = (Dyn *)((uintptr_t)phdr->p_vaddr + base);
1661 			break;
1662 		case PT_TLS:
1663 			tphdr = phdr;
1664 			break;
1665 		case PT_SUNWCAP:
1666 			cap = (Cap *)((uintptr_t)phdr->p_vaddr + base);
1667 			break;
1668 		case PT_SUNW_UNWIND:
1669 		case PT_SUNW_EH_FRAME:
1670 			uphdr = phdr;
1671 			break;
1672 		default:
1673 			break;
1674 		}
1675 	}
1676 
1677 	/*
1678 	 * Determine the number of PT_DYNAMIC entries for the DYNINFO()
1679 	 * allocation.  Sadly, this is a little larger than we really need,
1680 	 * as there are typically padding DT_NULL entries.  However, adding
1681 	 * this data to the initial link-map allocation is a win.
1682 	 */
1683 	if (dyn) {
1684 		dyncnt = dphdr->p_filesz / sizeof (Dyn);
1685 		dynsz = dyncnt * sizeof (Dyninfo);
1686 	}
1687 
1688 	/*
1689 	 * Allocate space for the link-map, private elf information, and
1690 	 * DYNINFO() data.  Once these are allocated and initialized,
1691 	 * remove_so(0, lmp) can be used to tear down the link-map allocation
1692 	 * should any failures occur.
1693 	 */
1694 	rtsz = S_DROUND(sizeof (Rt_map));
1695 	epsz = S_DROUND(sizeof (Rt_elfp));
1696 	lmsz = rtsz + epsz + dynsz;
1697 	if ((lmp = calloc(lmsz, 1)) == NULL)
1698 		return (NULL);
1699 	ELFPRV(lmp) = (void *)((uintptr_t)lmp + rtsz);
1700 	DYNINFO(lmp) = (Dyninfo *)((uintptr_t)lmp + rtsz + epsz);
1701 	LMSIZE(lmp) = lmsz;
1702 
1703 	/*
1704 	 * All fields not filled in were set to 0 by calloc.
1705 	 */
1706 	NAME(lmp) = (char *)name;
1707 	ADDR(lmp) = addr;
1708 	MSIZE(lmp) = msize;
1709 	SYMINTP(lmp) = elf_find_sym;
1710 	FCT(lmp) = &elf_fct;
1711 	LIST(lmp) = lml;
1712 	OBJFLTRNDX(lmp) = FLTR_DISABLED;
1713 	SORTVAL(lmp) = -1;
1714 	DYN(lmp) = dyn;
1715 	DYNINFOCNT(lmp) = dyncnt;
1716 	PTUNWIND(lmp) = uphdr;
1717 
1718 	if (ehdr->e_type == ET_EXEC)
1719 		FLAGS(lmp) |= FLG_RT_FIXED;
1720 
1721 	/*
1722 	 * Fill in rest of the link map entries with information from the file's
1723 	 * dynamic structure.
1724 	 */
1725 	if (dyn) {
1726 		Dyninfo		*dip;
1727 		uint_t		dynndx;
1728 		Xword		pltpadsz = 0;
1729 		Rti_desc	*rti;
1730 		Dyn		*pdyn;
1731 		Word		lmtflags = lml->lm_tflags;
1732 		int		ignore = 0;
1733 
1734 		/*
1735 		 * Note, we use DT_NULL to terminate processing, and the
1736 		 * dynamic entry count as a fall back.  Normally, a DT_NULL
1737 		 * entry marks the end of the dynamic section.  Any non-NULL
1738 		 * items following the first DT_NULL are silently ignored.
1739 		 * This situation should only occur through use of elfedit(1)
1740 		 * or a similar tool.
1741 		 */
1742 		for (dynndx = 0, pdyn = NULL, dip = DYNINFO(lmp);
1743 		    dynndx < dyncnt; dynndx++, pdyn = dyn++, dip++) {
1744 
1745 			if (ignore) {
1746 				dip->di_flags |= FLG_DI_IGNORE;
1747 				continue;
1748 			}
1749 
1750 			switch ((Xword)dyn->d_tag) {
1751 			case DT_NULL:
1752 				dip->di_flags |= ignore = FLG_DI_IGNORE;
1753 				break;
1754 			case DT_POSFLAG_1:
1755 				dip->di_flags |= FLG_DI_POSFLAG1;
1756 				break;
1757 			case DT_NEEDED:
1758 			case DT_USED:
1759 				dip->di_flags |= FLG_DI_NEEDED;
1760 
1761 				/* BEGIN CSTYLED */
1762 				if (pdyn && (pdyn->d_tag == DT_POSFLAG_1)) {
1763 				    /*
1764 				     * Identify any non-deferred lazy load for
1765 				     * future processing, unless LD_NOLAZYLOAD
1766 				     * has been set.
1767 				     */
1768 				    if ((pdyn->d_un.d_val & DF_P1_LAZYLOAD) &&
1769 					((lmtflags & LML_TFLG_NOLAZYLD) == 0))
1770 					    dip->di_flags |= FLG_DI_LAZY;
1771 
1772 				    /*
1773 				     * Identify any group permission
1774 				     * requirements.
1775 				     */
1776 				    if (pdyn->d_un.d_val & DF_P1_GROUPPERM)
1777 					    dip->di_flags |= FLG_DI_GROUP;
1778 
1779 				    /*
1780 				     * Identify any deferred dependencies.
1781 				     */
1782 				    if (pdyn->d_un.d_val & DF_P1_DEFERRED)
1783 					    dip->di_flags |= FLG_DI_DEFERRED;
1784 				}
1785 				/* END CSTYLED */
1786 				break;
1787 			case DT_SYMTAB:
1788 				SYMTAB(lmp) = (void *)(dyn->d_un.d_ptr + base);
1789 				break;
1790 			case DT_SUNW_SYMTAB:
1791 				SUNWSYMTAB(lmp) =
1792 				    (void *)(dyn->d_un.d_ptr + base);
1793 				break;
1794 			case DT_SUNW_SYMSZ:
1795 				SUNWSYMSZ(lmp) = dyn->d_un.d_val;
1796 				break;
1797 			case DT_STRTAB:
1798 				STRTAB(lmp) = (void *)(dyn->d_un.d_ptr + base);
1799 				break;
1800 			case DT_SYMENT:
1801 				SYMENT(lmp) = dyn->d_un.d_val;
1802 				break;
1803 			case DT_FEATURE_1:
1804 				if (dyn->d_un.d_val & DTF_1_CONFEXP)
1805 					crle = 1;
1806 				break;
1807 			case DT_MOVESZ:
1808 				MOVESZ(lmp) = dyn->d_un.d_val;
1809 				FLAGS(lmp) |= FLG_RT_MOVE;
1810 				break;
1811 			case DT_MOVEENT:
1812 				MOVEENT(lmp) = dyn->d_un.d_val;
1813 				break;
1814 			case DT_MOVETAB:
1815 				MOVETAB(lmp) = (void *)(dyn->d_un.d_ptr + base);
1816 				break;
1817 			case DT_REL:
1818 			case DT_RELA:
1819 				/*
1820 				 * At this time, ld.so. can only handle one
1821 				 * type of relocation per object.
1822 				 */
1823 				REL(lmp) = (void *)(dyn->d_un.d_ptr + base);
1824 				break;
1825 			case DT_RELSZ:
1826 			case DT_RELASZ:
1827 				RELSZ(lmp) = dyn->d_un.d_val;
1828 				break;
1829 			case DT_RELENT:
1830 			case DT_RELAENT:
1831 				RELENT(lmp) = dyn->d_un.d_val;
1832 				break;
1833 			case DT_RELCOUNT:
1834 			case DT_RELACOUNT:
1835 				RELACOUNT(lmp) = (uint_t)dyn->d_un.d_val;
1836 				break;
1837 			case DT_HASH:
1838 				HASH(lmp) = (uint_t *)(dyn->d_un.d_ptr + base);
1839 				break;
1840 			case DT_PLTGOT:
1841 				PLTGOT(lmp) =
1842 				    (uint_t *)(dyn->d_un.d_ptr + base);
1843 				break;
1844 			case DT_PLTRELSZ:
1845 				PLTRELSZ(lmp) = dyn->d_un.d_val;
1846 				break;
1847 			case DT_JMPREL:
1848 				JMPREL(lmp) = (void *)(dyn->d_un.d_ptr + base);
1849 				break;
1850 			case DT_INIT:
1851 				if (dyn->d_un.d_ptr != 0)
1852 					INIT(lmp) =
1853 					    (void (*)())(dyn->d_un.d_ptr +
1854 					    base);
1855 				break;
1856 			case DT_FINI:
1857 				if (dyn->d_un.d_ptr != 0)
1858 					FINI(lmp) =
1859 					    (void (*)())(dyn->d_un.d_ptr +
1860 					    base);
1861 				break;
1862 			case DT_INIT_ARRAY:
1863 				INITARRAY(lmp) = (Addr *)(dyn->d_un.d_ptr +
1864 				    base);
1865 				break;
1866 			case DT_INIT_ARRAYSZ:
1867 				INITARRAYSZ(lmp) = (uint_t)dyn->d_un.d_val;
1868 				break;
1869 			case DT_FINI_ARRAY:
1870 				FINIARRAY(lmp) = (Addr *)(dyn->d_un.d_ptr +
1871 				    base);
1872 				break;
1873 			case DT_FINI_ARRAYSZ:
1874 				FINIARRAYSZ(lmp) = (uint_t)dyn->d_un.d_val;
1875 				break;
1876 			case DT_PREINIT_ARRAY:
1877 				PREINITARRAY(lmp) = (Addr *)(dyn->d_un.d_ptr +
1878 				    base);
1879 				break;
1880 			case DT_PREINIT_ARRAYSZ:
1881 				PREINITARRAYSZ(lmp) = (uint_t)dyn->d_un.d_val;
1882 				break;
1883 			case DT_RPATH:
1884 			case DT_RUNPATH:
1885 				rpath = dyn->d_un.d_val;
1886 				break;
1887 			case DT_FILTER:
1888 				dip->di_flags |= FLG_DI_STDFLTR;
1889 				fltr = dyn->d_un.d_val;
1890 				OBJFLTRNDX(lmp) = dynndx;
1891 				FLAGS1(lmp) |= FL1_RT_OBJSFLTR;
1892 				break;
1893 			case DT_AUXILIARY:
1894 				dip->di_flags |= FLG_DI_AUXFLTR;
1895 				if (!(rtld_flags & RT_FL_NOAUXFLTR)) {
1896 					fltr = dyn->d_un.d_val;
1897 					OBJFLTRNDX(lmp) = dynndx;
1898 				}
1899 				FLAGS1(lmp) |= FL1_RT_OBJAFLTR;
1900 				break;
1901 			case DT_SUNW_FILTER:
1902 				dip->di_flags |=
1903 				    (FLG_DI_STDFLTR | FLG_DI_SYMFLTR);
1904 				SYMSFLTRCNT(lmp)++;
1905 				FLAGS1(lmp) |= FL1_RT_SYMSFLTR;
1906 				break;
1907 			case DT_SUNW_AUXILIARY:
1908 				dip->di_flags |=
1909 				    (FLG_DI_AUXFLTR | FLG_DI_SYMFLTR);
1910 				if (!(rtld_flags & RT_FL_NOAUXFLTR)) {
1911 					SYMAFLTRCNT(lmp)++;
1912 				}
1913 				FLAGS1(lmp) |= FL1_RT_SYMAFLTR;
1914 				break;
1915 			case DT_DEPAUDIT:
1916 				if (!(rtld_flags & RT_FL_NOAUDIT)) {
1917 					audit = dyn->d_un.d_val;
1918 					FLAGS1(lmp) |= FL1_RT_DEPAUD;
1919 				}
1920 				break;
1921 			case DT_CONFIG:
1922 				cfile = dyn->d_un.d_val;
1923 				break;
1924 			case DT_DEBUG:
1925 				/*
1926 				 * DT_DEBUG entries are only created in
1927 				 * dynamic objects that require an interpretor
1928 				 * (ie. all dynamic executables and some shared
1929 				 * objects), and provide for a hand-shake with
1930 				 * old debuggers.  This entry is initialized to
1931 				 * zero by the link-editor.  If a debugger is
1932 				 * monitoring us, and has updated this entry,
1933 				 * set the debugger monitor flag, and finish
1934 				 * initializing the debugging structure.  See
1935 				 * setup().  Also, switch off any configuration
1936 				 * object use as most debuggers can't handle
1937 				 * fixed dynamic executables as dependencies.
1938 				 */
1939 				if (dyn->d_un.d_ptr)
1940 					rtld_flags |=
1941 					    (RT_FL_DEBUGGER | RT_FL_NOOBJALT);
1942 				dyn->d_un.d_ptr = (Addr)&r_debug;
1943 				break;
1944 			case DT_VERNEED:
1945 				VERNEED(lmp) = (Verneed *)(dyn->d_un.d_ptr +
1946 				    base);
1947 				break;
1948 			case DT_VERNEEDNUM:
1949 				/* LINTED */
1950 				VERNEEDNUM(lmp) = (int)dyn->d_un.d_val;
1951 				break;
1952 			case DT_VERDEF:
1953 				VERDEF(lmp) = (Verdef *)(dyn->d_un.d_ptr +
1954 				    base);
1955 				break;
1956 			case DT_VERDEFNUM:
1957 				/* LINTED */
1958 				VERDEFNUM(lmp) = (int)dyn->d_un.d_val;
1959 				break;
1960 			case DT_VERSYM:
1961 				/*
1962 				 * The Solaris ld does not produce DT_VERSYM,
1963 				 * but the GNU ld does, in order to support
1964 				 * their style of versioning, which differs
1965 				 * from ours in some ways, while using the
1966 				 * same data structures. The presence of
1967 				 * DT_VERSYM therefore means that GNU
1968 				 * versioning rules apply to the given file.
1969 				 * If DT_VERSYM is not present, then Solaris
1970 				 * versioning rules apply.
1971 				 */
1972 				VERSYM(lmp) = (Versym *)(dyn->d_un.d_ptr +
1973 				    base);
1974 				break;
1975 			case DT_BIND_NOW:
1976 				if ((dyn->d_un.d_val & DF_BIND_NOW) &&
1977 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
1978 					MODE(lmp) |= RTLD_NOW;
1979 					MODE(lmp) &= ~RTLD_LAZY;
1980 				}
1981 				break;
1982 			case DT_FLAGS:
1983 				FLAGS1(lmp) |= FL1_RT_DTFLAGS;
1984 				if (dyn->d_un.d_val & DF_SYMBOLIC)
1985 					FLAGS1(lmp) |= FL1_RT_SYMBOLIC;
1986 				if ((dyn->d_un.d_val & DF_BIND_NOW) &&
1987 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
1988 					MODE(lmp) |= RTLD_NOW;
1989 					MODE(lmp) &= ~RTLD_LAZY;
1990 				}
1991 				/*
1992 				 * Capture any static TLS use, and enforce that
1993 				 * this object be non-deletable.
1994 				 */
1995 				if (dyn->d_un.d_val & DF_STATIC_TLS) {
1996 					FLAGS1(lmp) |= FL1_RT_TLSSTAT;
1997 					MODE(lmp) |= RTLD_NODELETE;
1998 				}
1999 				break;
2000 			case DT_FLAGS_1:
2001 				if (dyn->d_un.d_val & DF_1_DISPRELPND)
2002 					FLAGS1(lmp) |= FL1_RT_DISPREL;
2003 				if (dyn->d_un.d_val & DF_1_GROUP)
2004 					FLAGS(lmp) |=
2005 					    (FLG_RT_SETGROUP | FLG_RT_PUBHDL);
2006 				if ((dyn->d_un.d_val & DF_1_NOW) &&
2007 				    ((rtld_flags2 & RT_FL2_BINDLAZY) == 0)) {
2008 					MODE(lmp) |= RTLD_NOW;
2009 					MODE(lmp) &= ~RTLD_LAZY;
2010 				}
2011 				if (dyn->d_un.d_val & DF_1_NODELETE)
2012 					MODE(lmp) |= RTLD_NODELETE;
2013 				if (dyn->d_un.d_val & DF_1_INITFIRST)
2014 					FLAGS(lmp) |= FLG_RT_INITFRST;
2015 				if (dyn->d_un.d_val & DF_1_NOOPEN)
2016 					FLAGS(lmp) |= FLG_RT_NOOPEN;
2017 				if (dyn->d_un.d_val & DF_1_LOADFLTR)
2018 					FLAGS(lmp) |= FLG_RT_LOADFLTR;
2019 				if (dyn->d_un.d_val & DF_1_NODUMP)
2020 					FLAGS(lmp) |= FLG_RT_NODUMP;
2021 				if (dyn->d_un.d_val & DF_1_CONFALT)
2022 					crle = 1;
2023 				if (dyn->d_un.d_val & DF_1_DIRECT)
2024 					FLAGS1(lmp) |= FL1_RT_DIRECT;
2025 				if (dyn->d_un.d_val & DF_1_NODEFLIB)
2026 					FLAGS1(lmp) |= FL1_RT_NODEFLIB;
2027 				if (dyn->d_un.d_val & DF_1_ENDFILTEE)
2028 					FLAGS1(lmp) |= FL1_RT_ENDFILTE;
2029 				if (dyn->d_un.d_val & DF_1_TRANS)
2030 					FLAGS(lmp) |= FLG_RT_TRANS;
2031 
2032 				/*
2033 				 * Global auditing is only meaningful when
2034 				 * specified by the initiating object of the
2035 				 * process - typically the dynamic executable.
2036 				 * If this is the initiating object, its link-
2037 				 * map will not yet have been added to the
2038 				 * link-map list, and consequently the link-map
2039 				 * list is empty.  (see setup()).
2040 				 */
2041 				if (dyn->d_un.d_val & DF_1_GLOBAUDIT) {
2042 					if (lml_main.lm_head == NULL)
2043 						FLAGS1(lmp) |= FL1_RT_GLOBAUD;
2044 					else
2045 						DBG_CALL(Dbg_audit_ignore(lmp));
2046 				}
2047 
2048 				/*
2049 				 * If this object identifies itself as an
2050 				 * interposer, but relocation processing has
2051 				 * already started, then demote it.  It's too
2052 				 * late to guarantee complete interposition.
2053 				 */
2054 				/* BEGIN CSTYLED */
2055 				if (dyn->d_un.d_val &
2056 				    (DF_1_INTERPOSE | DF_1_SYMINTPOSE)) {
2057 				    if (lml->lm_flags & LML_FLG_STARTREL) {
2058 					DBG_CALL(Dbg_util_intoolate(lmp));
2059 					if (lml->lm_flags & LML_FLG_TRC_ENABLE)
2060 					    (void) printf(
2061 						MSG_INTL(MSG_LDD_REL_ERR2),
2062 						NAME(lmp));
2063 				    } else if (dyn->d_un.d_val & DF_1_INTERPOSE)
2064 					FLAGS(lmp) |= FLG_RT_OBJINTPO;
2065 				    else
2066 					FLAGS(lmp) |= FLG_RT_SYMINTPO;
2067 				}
2068 				/* END CSTYLED */
2069 				break;
2070 			case DT_SYMINFO:
2071 				SYMINFO(lmp) = (Syminfo *)(dyn->d_un.d_ptr +
2072 				    base);
2073 				break;
2074 			case DT_SYMINENT:
2075 				SYMINENT(lmp) = dyn->d_un.d_val;
2076 				break;
2077 			case DT_PLTPAD:
2078 				PLTPAD(lmp) = (void *)(dyn->d_un.d_ptr + base);
2079 				break;
2080 			case DT_PLTPADSZ:
2081 				pltpadsz = dyn->d_un.d_val;
2082 				break;
2083 			case DT_SUNW_RTLDINF:
2084 				/*
2085 				 * Maintain a list of RTLDINFO structures.
2086 				 * Typically, libc is the only supplier, and
2087 				 * only one structure is provided.  However,
2088 				 * multiple suppliers and multiple structures
2089 				 * are supported.  For example, one structure
2090 				 * may provide thread_init, and another
2091 				 * structure may provide atexit reservations.
2092 				 */
2093 				if ((rti = alist_append(&lml->lm_rti, NULL,
2094 				    sizeof (Rti_desc),
2095 				    AL_CNT_RTLDINFO)) == NULL) {
2096 					remove_so(0, lmp, clmp);
2097 					return (NULL);
2098 				}
2099 				rti->rti_lmp = lmp;
2100 				rti->rti_info = (void *)(dyn->d_un.d_ptr +
2101 				    base);
2102 				break;
2103 			case DT_SUNW_SORTENT:
2104 				SUNWSORTENT(lmp) = dyn->d_un.d_val;
2105 				break;
2106 			case DT_SUNW_SYMSORT:
2107 				SUNWSYMSORT(lmp) =
2108 				    (void *)(dyn->d_un.d_ptr + base);
2109 				break;
2110 			case DT_SUNW_SYMSORTSZ:
2111 				SUNWSYMSORTSZ(lmp) = dyn->d_un.d_val;
2112 				break;
2113 			case DT_DEPRECATED_SPARC_REGISTER:
2114 			case M_DT_REGISTER:
2115 				dip->di_flags |= FLG_DI_REGISTER;
2116 				FLAGS(lmp) |= FLG_RT_REGSYMS;
2117 				break;
2118 			case DT_SUNW_CAP:
2119 				CAP(lmp) = (void *)(dyn->d_un.d_ptr + base);
2120 				break;
2121 			case DT_SUNW_CAPINFO:
2122 				CAPINFO(lmp) = (void *)(dyn->d_un.d_ptr + base);
2123 				break;
2124 			case DT_SUNW_CAPCHAIN:
2125 				CAPCHAIN(lmp) = (void *)(dyn->d_un.d_ptr +
2126 				    base);
2127 				break;
2128 			case DT_SUNW_CAPCHAINENT:
2129 				CAPCHAINENT(lmp) = dyn->d_un.d_val;
2130 				break;
2131 			case DT_SUNW_CAPCHAINSZ:
2132 				CAPCHAINSZ(lmp) = dyn->d_un.d_val;
2133 				break;
2134 			}
2135 		}
2136 
2137 		/*
2138 		 * Update any Dyninfo string pointers now that STRTAB() is
2139 		 * known.
2140 		 */
2141 		for (dynndx = 0, dyn = DYN(lmp), dip = DYNINFO(lmp);
2142 		    !(dip->di_flags & FLG_DI_IGNORE); dyn++, dip++) {
2143 
2144 			switch ((Xword)dyn->d_tag) {
2145 			case DT_NEEDED:
2146 			case DT_USED:
2147 			case DT_FILTER:
2148 			case DT_AUXILIARY:
2149 			case DT_SUNW_FILTER:
2150 			case DT_SUNW_AUXILIARY:
2151 				dip->di_name = STRTAB(lmp) + dyn->d_un.d_val;
2152 				break;
2153 			}
2154 		}
2155 
2156 		/*
2157 		 * Assign any padding.
2158 		 */
2159 		if (PLTPAD(lmp)) {
2160 			if (pltpadsz == (Xword)0)
2161 				PLTPAD(lmp) = NULL;
2162 			else
2163 				PLTPADEND(lmp) = (void *)((Addr)PLTPAD(lmp) +
2164 				    pltpadsz);
2165 		}
2166 	}
2167 
2168 	/*
2169 	 * A dynsym contains only global functions. We want to have
2170 	 * a version of it that also includes local functions, so that
2171 	 * dladdr() will be able to report names for local functions
2172 	 * when used to generate a stack trace for a stripped file.
2173 	 * This version of the dynsym is provided via DT_SUNW_SYMTAB.
2174 	 *
2175 	 * In producing DT_SUNW_SYMTAB, ld uses a non-obvious trick
2176 	 * in order to avoid having to have two copies of the global
2177 	 * symbols held in DT_SYMTAB: The local symbols are placed in
2178 	 * a separate section than the globals in the dynsym, but the
2179 	 * linker conspires to put the data for these two sections adjacent
2180 	 * to each other. DT_SUNW_SYMTAB points at the top of the local
2181 	 * symbols, and DT_SUNW_SYMSZ is the combined length of both tables.
2182 	 *
2183 	 * If the two sections are not adjacent, then something went wrong
2184 	 * at link time. We use ASSERT to kill the process if this is
2185 	 * a debug build. In a production build, we will silently ignore
2186 	 * the presence of the .ldynsym and proceed. We can detect this
2187 	 * situation by checking to see that DT_SYMTAB lies in
2188 	 * the range given by DT_SUNW_SYMTAB/DT_SUNW_SYMSZ.
2189 	 */
2190 	if ((SUNWSYMTAB(lmp) != NULL) &&
2191 	    (((char *)SYMTAB(lmp) <= (char *)SUNWSYMTAB(lmp)) ||
2192 	    (((char *)SYMTAB(lmp) >=
2193 	    (SUNWSYMSZ(lmp) + (char *)SUNWSYMTAB(lmp)))))) {
2194 		ASSERT(0);
2195 		SUNWSYMTAB(lmp) = NULL;
2196 		SUNWSYMSZ(lmp) = 0;
2197 	}
2198 
2199 	/*
2200 	 * If configuration file use hasn't been disabled, and a configuration
2201 	 * file hasn't already been set via an environment variable, see if any
2202 	 * application specific configuration file is specified.  An LD_CONFIG
2203 	 * setting is used first, but if this image was generated via crle(1)
2204 	 * then a default configuration file is a fall-back.
2205 	 */
2206 	if ((!(rtld_flags & RT_FL_NOCFG)) && (config->c_name == NULL)) {
2207 		if (cfile)
2208 			config->c_name = (const char *)(cfile +
2209 			    (char *)STRTAB(lmp));
2210 		else if (crle)
2211 			rtld_flags |= RT_FL_CONFAPP;
2212 	}
2213 
2214 	if (rpath)
2215 		RPATH(lmp) = (char *)(rpath + (char *)STRTAB(lmp));
2216 	if (fltr)
2217 		REFNAME(lmp) = (char *)(fltr + (char *)STRTAB(lmp));
2218 
2219 	/*
2220 	 * For Intel ABI compatibility.  It's possible that a JMPREL can be
2221 	 * specified without any other relocations (e.g. a dynamic executable
2222 	 * normally only contains .plt relocations).  If this is the case then
2223 	 * no REL, RELSZ or RELENT will have been created.  For us to be able
2224 	 * to traverse the .plt relocations under LD_BIND_NOW we need to know
2225 	 * the RELENT for these relocations.  Refer to elf_reloc() for more
2226 	 * details.
2227 	 */
2228 	if (!RELENT(lmp) && JMPREL(lmp))
2229 		RELENT(lmp) = sizeof (M_RELOC);
2230 
2231 	/*
2232 	 * Establish any per-object auditing.  If we're establishing main's
2233 	 * link-map its too early to go searching for audit objects so just
2234 	 * hold the object name for later (see setup()).
2235 	 */
2236 	if (audit) {
2237 		char	*cp = audit + (char *)STRTAB(lmp);
2238 
2239 		if (*cp) {
2240 			if (((AUDITORS(lmp) =
2241 			    calloc(1, sizeof (Audit_desc))) == NULL) ||
2242 			    ((AUDITORS(lmp)->ad_name = strdup(cp)) == NULL)) {
2243 				remove_so(0, lmp, clmp);
2244 				return (NULL);
2245 			}
2246 			if (lml_main.lm_head) {
2247 				if (audit_setup(lmp, AUDITORS(lmp), 0,
2248 				    in_nfavl) == 0) {
2249 					remove_so(0, lmp, clmp);
2250 					return (NULL);
2251 				}
2252 				AFLAGS(lmp) |= AUDITORS(lmp)->ad_flags;
2253 				lml->lm_flags |= LML_FLG_LOCAUDIT;
2254 			}
2255 		}
2256 	}
2257 
2258 	if (tphdr && (tls_assign(lml, lmp, tphdr) == 0)) {
2259 		remove_so(0, lmp, clmp);
2260 		return (NULL);
2261 	}
2262 
2263 	/*
2264 	 * A capabilities section should be identified by a DT_SUNW_CAP entry,
2265 	 * and if non-empty object capabilities are included, a PT_SUNWCAP
2266 	 * header should reference the section.  Make sure CAP() is set
2267 	 * regardless.
2268 	 */
2269 	if ((CAP(lmp) == NULL) && cap)
2270 		CAP(lmp) = cap;
2271 
2272 	/*
2273 	 * Make sure any capabilities information or chain can be handled.
2274 	 */
2275 	if (CAPINFO(lmp) && (CAPINFO(lmp)[0] > CAPINFO_CURRENT))
2276 		CAPINFO(lmp) = NULL;
2277 	if (CAPCHAIN(lmp) && (CAPCHAIN(lmp)[0] > CAPCHAIN_CURRENT))
2278 		CAPCHAIN(lmp) = NULL;
2279 
2280 	/*
2281 	 * As part of processing dependencies, a file descriptor is populated
2282 	 * with capabilities information following validation.
2283 	 */
2284 	if (fdp->fd_flags & FLG_FD_ALTCHECK) {
2285 		FLAGS1(lmp) |= FL1_RT_ALTCHECK;
2286 		CAPSET(lmp) = fdp->fd_scapset;
2287 
2288 		if (fdp->fd_flags & FLG_FD_ALTCAP)
2289 			FLAGS1(lmp) |= FL1_RT_ALTCAP;
2290 
2291 	} else if ((cap = CAP(lmp)) != NULL) {
2292 		/*
2293 		 * Processing of the executable and ld.so.1 does not involve a
2294 		 * file descriptor as exec() did all the work, so capture the
2295 		 * capabilities for these cases.
2296 		 */
2297 		while (cap->c_tag != CA_SUNW_NULL) {
2298 			switch (cap->c_tag) {
2299 			case CA_SUNW_HW_1:
2300 				CAPSET(lmp).sc_hw_1 = cap->c_un.c_val;
2301 				break;
2302 			case CA_SUNW_SF_1:
2303 				CAPSET(lmp).sc_sf_1 = cap->c_un.c_val;
2304 				break;
2305 			case CA_SUNW_HW_2:
2306 				CAPSET(lmp).sc_hw_2 = cap->c_un.c_val;
2307 				break;
2308 			case CA_SUNW_PLAT:
2309 				CAPSET(lmp).sc_plat = STRTAB(lmp) +
2310 				    cap->c_un.c_ptr;
2311 				break;
2312 			case CA_SUNW_MACH:
2313 				CAPSET(lmp).sc_mach = STRTAB(lmp) +
2314 				    cap->c_un.c_ptr;
2315 				break;
2316 			case CA_SUNW_HW_3:
2317 				CAPSET(lmp).sc_hw_3 = cap->c_un.c_val;
2318 				break;
2319 			}
2320 			cap++;
2321 		}
2322 	}
2323 
2324 	/*
2325 	 * If a capabilities chain table exists, duplicate it.  The chain table
2326 	 * is inspected for each initial call to a capabilities family lead
2327 	 * symbol.  From this chain, each family member is inspected to
2328 	 * determine the 'best' family member.  The chain table is then updated
2329 	 * so that the best member is immediately selected for any further
2330 	 * family searches.
2331 	 */
2332 	if (CAPCHAIN(lmp)) {
2333 		Capchain	*capchain;
2334 
2335 		if ((capchain = calloc(CAPCHAINSZ(lmp), 1)) == NULL)
2336 			return (NULL);
2337 		(void) memcpy(capchain, CAPCHAIN(lmp), CAPCHAINSZ(lmp));
2338 		CAPCHAIN(lmp) = capchain;
2339 	}
2340 
2341 	/*
2342 	 * Add the mapped object to the end of the link map list.
2343 	 */
2344 	lm_append(lml, lmco, lmp);
2345 
2346 	/*
2347 	 * Start the system loading in the ELF information we'll be processing.
2348 	 */
2349 	if (REL(lmp)) {
2350 		(void) madvise((void *)ADDR(lmp), (uintptr_t)REL(lmp) +
2351 		    (uintptr_t)RELSZ(lmp) - (uintptr_t)ADDR(lmp),
2352 		    MADV_WILLNEED);
2353 	}
2354 	return (lmp);
2355 }
2356 
2357 /*
2358  * Build full pathname of shared object from given directory name and filename.
2359  */
2360 static char *
2361 elf_get_so(const char *dir, const char *file, size_t dlen, size_t flen)
2362 {
2363 	static char	pname[PATH_MAX];
2364 
2365 	(void) strncpy(pname, dir, dlen);
2366 	pname[dlen++] = '/';
2367 	(void) strncpy(&pname[dlen], file, flen + 1);
2368 	return (pname);
2369 }
2370 
2371 /*
2372  * The copy relocation is recorded in a copy structure which will be applied
2373  * after all other relocations are carried out.  This provides for copying data
2374  * that must be relocated itself (ie. pointers in shared objects).  This
2375  * structure also provides a means of binding RTLD_GROUP dependencies to any
2376  * copy relocations that have been taken from any group members.
2377  *
2378  * If the size of the .bss area available for the copy information is not the
2379  * same as the source of the data inform the user if we're under ldd(1) control
2380  * (this checking was only established in 5.3, so by only issuing an error via
2381  * ldd(1) we maintain the standard set by previous releases).
2382  */
2383 int
2384 elf_copy_reloc(char *name, Sym *rsym, Rt_map *rlmp, void *radd, Sym *dsym,
2385     Rt_map *dlmp, const void *dadd)
2386 {
2387 	Rel_copy	rc;
2388 	Lm_list		*lml = LIST(rlmp);
2389 
2390 	rc.r_name = name;
2391 	rc.r_rsym = rsym;		/* the new reference symbol and its */
2392 	rc.r_rlmp = rlmp;		/*	associated link-map */
2393 	rc.r_dlmp = dlmp;		/* the defining link-map */
2394 	rc.r_dsym = dsym;		/* the original definition */
2395 	rc.r_radd = radd;
2396 	rc.r_dadd = dadd;
2397 
2398 	if (rsym->st_size > dsym->st_size)
2399 		rc.r_size = (size_t)dsym->st_size;
2400 	else
2401 		rc.r_size = (size_t)rsym->st_size;
2402 
2403 	if (alist_append(&COPY_R(dlmp), &rc, sizeof (Rel_copy),
2404 	    AL_CNT_COPYREL) == NULL) {
2405 		if (!(lml->lm_flags & LML_FLG_TRC_WARN))
2406 			return (0);
2407 		else
2408 			return (1);
2409 	}
2410 	if (!(FLAGS1(dlmp) & FL1_RT_COPYTOOK)) {
2411 		if (aplist_append(&COPY_S(rlmp), dlmp,
2412 		    AL_CNT_COPYREL) == NULL) {
2413 			if (!(lml->lm_flags & LML_FLG_TRC_WARN))
2414 				return (0);
2415 			else
2416 				return (1);
2417 		}
2418 		FLAGS1(dlmp) |= FL1_RT_COPYTOOK;
2419 	}
2420 
2421 	/*
2422 	 * If we are tracing (ldd), warn the user if
2423 	 *	1) the size from the reference symbol differs from the
2424 	 *	   copy definition. We can only copy as much data as the
2425 	 *	   reference (dynamic executables) entry allows.
2426 	 *	2) the copy definition has STV_PROTECTED visibility.
2427 	 */
2428 	if (lml->lm_flags & LML_FLG_TRC_WARN) {
2429 		if (rsym->st_size != dsym->st_size) {
2430 			(void) printf(MSG_INTL(MSG_LDD_CPY_SIZDIF),
2431 			    _conv_reloc_type(M_R_COPY), demangle(name),
2432 			    NAME(rlmp), EC_XWORD(rsym->st_size),
2433 			    NAME(dlmp), EC_XWORD(dsym->st_size));
2434 			if (rsym->st_size > dsym->st_size)
2435 				(void) printf(MSG_INTL(MSG_LDD_CPY_INSDATA),
2436 				    NAME(dlmp));
2437 			else
2438 				(void) printf(MSG_INTL(MSG_LDD_CPY_DATRUNC),
2439 				    NAME(rlmp));
2440 		}
2441 
2442 		if (ELF_ST_VISIBILITY(dsym->st_other) == STV_PROTECTED) {
2443 			(void) printf(MSG_INTL(MSG_LDD_CPY_PROT),
2444 			    _conv_reloc_type(M_R_COPY), demangle(name),
2445 			    NAME(dlmp));
2446 		}
2447 	}
2448 
2449 	DBG_CALL(Dbg_reloc_apply_val(lml, ELF_DBG_RTLD, (Xword)radd,
2450 	    (Xword)rc.r_size));
2451 	return (1);
2452 }
2453 
2454 /*
2455  * Determine the symbol location of an address within a link-map.  Look for
2456  * the nearest symbol (whose value is less than or equal to the required
2457  * address).  This is the object specific part of dladdr().
2458  */
2459 static void
2460 elf_dladdr(ulong_t addr, Rt_map *lmp, Dl_info *dlip, void **info, int flags)
2461 {
2462 	ulong_t		ndx, cnt, base, _value;
2463 	Sym		*sym, *_sym = NULL;
2464 	const char	*str;
2465 	int		_flags;
2466 	uint_t		*dynaddr_ndx;
2467 	uint_t		dynaddr_n = 0;
2468 	ulong_t		value;
2469 
2470 	/*
2471 	 * If SUNWSYMTAB() is non-NULL, then it sees a special version of
2472 	 * the dynsym that starts with any local function symbols that exist in
2473 	 * the library and then moves to the data held in SYMTAB(). In this
2474 	 * case, SUNWSYMSZ tells us how long the symbol table is. The
2475 	 * availability of local function symbols will enhance the results
2476 	 * we can provide.
2477 	 *
2478 	 * If SUNWSYMTAB() is non-NULL, then there might also be a
2479 	 * SUNWSYMSORT() vector associated with it. SUNWSYMSORT() contains
2480 	 * an array of indices into SUNWSYMTAB, sorted by increasing
2481 	 * address. We can use this to do an O(log N) search instead of a
2482 	 * brute force search.
2483 	 *
2484 	 * If SUNWSYMTAB() is NULL, then SYMTAB() references a dynsym that
2485 	 * contains only global symbols. In that case, the length of
2486 	 * the symbol table comes from the nchain field of the related
2487 	 * symbol lookup hash table.
2488 	 */
2489 	str = STRTAB(lmp);
2490 	if (SUNWSYMSZ(lmp) == 0) {
2491 		sym = SYMTAB(lmp);
2492 		/*
2493 		 * If we don't have a .hash table there are no symbols
2494 		 * to look at.
2495 		 */
2496 		if (HASH(lmp) == NULL)
2497 			return;
2498 		cnt = HASH(lmp)[1];
2499 	} else {
2500 		sym = SUNWSYMTAB(lmp);
2501 		cnt = SUNWSYMSZ(lmp) / SYMENT(lmp);
2502 		dynaddr_ndx = SUNWSYMSORT(lmp);
2503 		if (dynaddr_ndx != NULL)
2504 			dynaddr_n = SUNWSYMSORTSZ(lmp) / SUNWSORTENT(lmp);
2505 	}
2506 
2507 	if (FLAGS(lmp) & FLG_RT_FIXED)
2508 		base = 0;
2509 	else
2510 		base = ADDR(lmp);
2511 
2512 	if (dynaddr_n > 0) {		/* Binary search */
2513 		long	low = 0, low_bnd;
2514 		long	high = dynaddr_n - 1, high_bnd;
2515 		long	mid;
2516 		Sym	*mid_sym;
2517 
2518 		/*
2519 		 * Note that SUNWSYMSORT only contains symbols types that
2520 		 * supply memory addresses, so there's no need to check and
2521 		 * filter out any other types.
2522 		 */
2523 		low_bnd = low;
2524 		high_bnd = high;
2525 		while (low <= high) {
2526 			mid = (low + high) / 2;
2527 			mid_sym = &sym[dynaddr_ndx[mid]];
2528 			value = mid_sym->st_value + base;
2529 			if (addr < value) {
2530 				if ((sym[dynaddr_ndx[high]].st_value + base) >=
2531 				    addr)
2532 					high_bnd = high;
2533 				high = mid - 1;
2534 			} else if (addr > value) {
2535 				if ((sym[dynaddr_ndx[low]].st_value + base) <=
2536 				    addr)
2537 					low_bnd = low;
2538 				low = mid + 1;
2539 			} else {
2540 				_sym = mid_sym;
2541 				_value = value;
2542 				break;
2543 			}
2544 		}
2545 		/*
2546 		 * If the above didn't find it exactly, then we must
2547 		 * return the closest symbol with a value that doesn't
2548 		 * exceed the one we are looking for. If that symbol exists,
2549 		 * it will lie in the range bounded by low_bnd and
2550 		 * high_bnd. This is a linear search, but a short one.
2551 		 */
2552 		if (_sym == NULL) {
2553 			for (mid = low_bnd; mid <= high_bnd; mid++) {
2554 				mid_sym = &sym[dynaddr_ndx[mid]];
2555 				value = mid_sym->st_value + base;
2556 				if (addr >= value) {
2557 					_sym = mid_sym;
2558 					_value = value;
2559 				} else {
2560 					break;
2561 				}
2562 			}
2563 		}
2564 	} else {			/* Linear search */
2565 		for (_value = 0, sym++, ndx = 1; ndx < cnt; ndx++, sym++) {
2566 			/*
2567 			 * Skip expected symbol types that are not functions
2568 			 * or data:
2569 			 *	- A symbol table starts with an undefined symbol
2570 			 *		in slot 0. If we are using SUNWSYMTAB(),
2571 			 *		there will be a second undefined symbol
2572 			 *		right before the globals.
2573 			 *	- The local part of SUNWSYMTAB() contains a
2574 			 *		series of function symbols. Each section
2575 			 *		starts with an initial STT_FILE symbol.
2576 			 */
2577 			if ((sym->st_shndx == SHN_UNDEF) ||
2578 			    (ELF_ST_TYPE(sym->st_info) == STT_FILE))
2579 				continue;
2580 
2581 			value = sym->st_value + base;
2582 			if (value > addr)
2583 				continue;
2584 			if (value < _value)
2585 				continue;
2586 
2587 			_sym = sym;
2588 			_value = value;
2589 
2590 			/*
2591 			 * Note, because we accept local and global symbols
2592 			 * we could find a section symbol that matches the
2593 			 * associated address, which means that the symbol
2594 			 * name will be null.  In this case continue the
2595 			 * search in case we can find a global symbol of
2596 			 * the same value.
2597 			 */
2598 			if ((value == addr) &&
2599 			    (ELF_ST_TYPE(sym->st_info) != STT_SECTION))
2600 				break;
2601 		}
2602 	}
2603 
2604 	_flags = flags & RTLD_DL_MASK;
2605 	if (_sym) {
2606 		if (_flags == RTLD_DL_SYMENT)
2607 			*info = (void *)_sym;
2608 		else if (_flags == RTLD_DL_LINKMAP)
2609 			*info = (void *)lmp;
2610 
2611 		dlip->dli_sname = str + _sym->st_name;
2612 		dlip->dli_saddr = (void *)_value;
2613 	} else {
2614 		/*
2615 		 * addr lies between the beginning of the mapped segment and
2616 		 * the first global symbol. We have no symbol to return
2617 		 * and the caller requires one. We use _START_, the base
2618 		 * address of the mapping.
2619 		 */
2620 
2621 		if (_flags == RTLD_DL_SYMENT) {
2622 			/*
2623 			 * An actual symbol struct is needed, so we
2624 			 * construct one for _START_. To do this in a
2625 			 * fully accurate way requires a different symbol
2626 			 * for each mapped segment. This requires the
2627 			 * use of dynamic memory and a mutex. That's too much
2628 			 * plumbing for a fringe case of limited importance.
2629 			 *
2630 			 * Fortunately, we can simplify:
2631 			 *    - Only the st_size and st_info fields are useful
2632 			 *	outside of the linker internals. The others
2633 			 *	reference things that outside code cannot see,
2634 			 *	and can be set to 0.
2635 			 *    - It's just a label and there is no size
2636 			 *	to report. So, the size should be 0.
2637 			 * This means that only st_info needs a non-zero
2638 			 * (constant) value. A static struct will suffice.
2639 			 * It must be const (readonly) so the caller can't
2640 			 * change its meaning for subsequent callers.
2641 			 */
2642 			static const Sym fsym = { 0, 0, 0,
2643 			    ELF_ST_INFO(STB_LOCAL, STT_OBJECT) };
2644 			*info = (void *) &fsym;
2645 		}
2646 
2647 		dlip->dli_sname = MSG_ORIG(MSG_SYM_START);
2648 		dlip->dli_saddr = (void *) ADDR(lmp);
2649 	}
2650 }
2651 
2652 /*
2653  * This routine is called as a last fall-back to search for a symbol from a
2654  * standard relocation or dlsym().  To maintain lazy loadings goal of reducing
2655  * the number of objects mapped, any symbol search is first carried out using
2656  * the objects that already exist in the process (either on a link-map list or
2657  * handle).  If a symbol can't be found, and lazy dependencies are still
2658  * pending, this routine loads the dependencies in an attempt to locate the
2659  * symbol.
2660  */
2661 int
2662 elf_lazy_find_sym(Slookup *slp, Sresult *srp, uint_t *binfo, int *in_nfavl)
2663 {
2664 	static APlist	*alist = NULL;
2665 	Aliste		idx1;
2666 	Rt_map		*lmp1, *lmp = slp->sl_imap, *clmp = slp->sl_cmap;
2667 	const char	*name = slp->sl_name;
2668 	Slookup		sl1 = *slp;
2669 	Lm_list		*lml;
2670 	Lm_cntl		*lmc;
2671 
2672 	/*
2673 	 * It's quite possible we've been here before to process objects,
2674 	 * therefore reinitialize our dynamic list.
2675 	 */
2676 	if (alist)
2677 		aplist_reset(alist);
2678 
2679 	/*
2680 	 * Discard any relocation index from further symbol searches.  This
2681 	 * index has already been used to trigger any necessary lazy-loads,
2682 	 * and it might be because one of these lazy loads has failed that
2683 	 * we're performing this fallback.  By removing the relocation index
2684 	 * we don't try and perform the same failed lazy loading activity again.
2685 	 */
2686 	sl1.sl_rsymndx = 0;
2687 
2688 	/*
2689 	 * Determine the callers link-map list so that we can monitor whether
2690 	 * new objects have been added.
2691 	 */
2692 	lml = LIST(clmp);
2693 	lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(clmp));
2694 
2695 	/*
2696 	 * Generate a local list of new objects to process.  This list can grow
2697 	 * as each object supplies its own lazy dependencies.
2698 	 */
2699 	if (aplist_append(&alist, lmp, AL_CNT_LAZYFIND) == NULL)
2700 		return (0);
2701 
2702 	for (APLIST_TRAVERSE(alist, idx1, lmp1)) {
2703 		uint_t	dynndx;
2704 		Dyninfo	*dip, *pdip;
2705 
2706 		/*
2707 		 * Loop through the lazy DT_NEEDED entries examining each object
2708 		 * for the required symbol.  If the symbol is not found, the
2709 		 * object is in turn added to the local alist, so that the
2710 		 * objects lazy DT_NEEDED entries can be examined.
2711 		 */
2712 		lmp = lmp1;
2713 		for (dynndx = 0, dip = DYNINFO(lmp), pdip = NULL;
2714 		    !(dip->di_flags & FLG_DI_IGNORE); dynndx++, pdip = dip++) {
2715 			Grp_hdl		*ghp;
2716 			Grp_desc	*gdp;
2717 			Rt_map		*nlmp, *llmp;
2718 			Slookup		sl2;
2719 			Sresult		sr;
2720 			Aliste		idx2;
2721 
2722 			if (((dip->di_flags & FLG_DI_LAZY) == 0) ||
2723 			    dip->di_info)
2724 				continue;
2725 
2726 			/*
2727 			 * If this object has already failed to lazy load, and
2728 			 * we're still processing the same runtime linker
2729 			 * operation that produced the failure, don't bother
2730 			 * to try and load the object again.
2731 			 */
2732 			if ((dip->di_flags & FLG_DI_LAZYFAIL) && pdip &&
2733 			    (pdip->di_flags & FLG_DI_POSFLAG1)) {
2734 				if (pdip->di_info == (void *)ld_entry_cnt)
2735 					continue;
2736 
2737 				dip->di_flags &= ~FLG_DI_LAZYFAIL;
2738 				pdip->di_info = NULL;
2739 			}
2740 
2741 			/*
2742 			 * Determine the last link-map presently on the callers
2743 			 * link-map control list.
2744 			 */
2745 			llmp = lmc->lc_tail;
2746 
2747 			/*
2748 			 * Try loading this lazy dependency.  If the object
2749 			 * can't be loaded, consider this non-fatal and continue
2750 			 * the search.  Lazy loaded dependencies need not exist
2751 			 * and their loading should only turn out to be fatal
2752 			 * if they are required to satisfy a relocation.
2753 			 *
2754 			 * A successful lazy load can mean one of two things:
2755 			 *
2756 			 *  -	new objects have been loaded, in which case the
2757 			 *	objects will have been analyzed, relocated, and
2758 			 *	finally moved to the callers control list.
2759 			 *  -	the objects are already loaded, and this lazy
2760 			 *	load has simply associated the referenced object
2761 			 *	with it's lazy dependencies.
2762 			 *
2763 			 * If new objects are loaded, look in these objects
2764 			 * first.  Note, a new object can be the object being
2765 			 * referenced by this lazy load, however we can also
2766 			 * descend into multiple lazy loads as we relocate this
2767 			 * reference.
2768 			 *
2769 			 * If the symbol hasn't been found, use the referenced
2770 			 * objects handle, as it might have dependencies on
2771 			 * objects that are already loaded.  Note that existing
2772 			 * objects might have already been searched and skipped
2773 			 * as non-available to this caller.   However, a lazy
2774 			 * load might have caused the promotion of modes, or
2775 			 * added this object to the family of the caller.  In
2776 			 * either case, the handle associated with the object
2777 			 * is then used to carry out the symbol search.
2778 			 */
2779 			if ((nlmp = elf_lazy_load(lmp, &sl1, dynndx, name,
2780 			    FLG_RT_PRIHDL, &ghp, in_nfavl)) == NULL)
2781 				continue;
2782 
2783 			if (NEXT_RT_MAP(llmp)) {
2784 				/*
2785 				 * Look in any new objects.
2786 				 */
2787 				sl1.sl_imap = NEXT_RT_MAP(llmp);
2788 				sl1.sl_flags &= ~LKUP_STDRELOC;
2789 
2790 				/*
2791 				 * Initialize a local symbol result descriptor,
2792 				 * using the original symbol name.
2793 				 */
2794 				SRESULT_INIT(sr, slp->sl_name);
2795 
2796 				if (lookup_sym(&sl1, &sr, binfo, in_nfavl)) {
2797 					*srp = sr;
2798 					return (1);
2799 				}
2800 			}
2801 
2802 			/*
2803 			 * Use the objects handle to inspect the family of
2804 			 * objects associated with the handle.  Note, there's
2805 			 * a possibility of overlap with the above search,
2806 			 * should a lazy load bring in new objects and
2807 			 * reference existing objects.
2808 			 */
2809 			sl2 = sl1;
2810 			for (ALIST_TRAVERSE(ghp->gh_depends, idx2, gdp)) {
2811 				if ((gdp->gd_depend != NEXT_RT_MAP(llmp)) &&
2812 				    (gdp->gd_flags & GPD_DLSYM)) {
2813 
2814 					sl2.sl_imap = gdp->gd_depend;
2815 					sl2.sl_flags |= LKUP_FIRST;
2816 
2817 					/*
2818 					 * Initialize a local symbol result
2819 					 * descriptor, using the original
2820 					 * symbol name.
2821 					 */
2822 					SRESULT_INIT(sr, slp->sl_name);
2823 
2824 					if (lookup_sym(&sl2, &sr, binfo,
2825 					    in_nfavl)) {
2826 						*srp = sr;
2827 						return (1);
2828 					}
2829 				}
2830 			}
2831 
2832 			/*
2833 			 * Some dlsym() operations are already traversing a
2834 			 * link-map (dlopen(0)), and thus there's no need to
2835 			 * save them on the dynamic dependency list.
2836 			 */
2837 			if (slp->sl_flags & LKUP_NODESCENT)
2838 				continue;
2839 
2840 			if (aplist_test(&alist, nlmp, AL_CNT_LAZYFIND) == 0)
2841 				return (0);
2842 		}
2843 	}
2844 
2845 	return (0);
2846 }
2847 
2848 /*
2849  * Warning message for bad r_offset.
2850  */
2851 void
2852 elf_reloc_bad(Rt_map *lmp, void *rel, uchar_t rtype, ulong_t roffset,
2853     ulong_t rsymndx)
2854 {
2855 	const char	*name = NULL;
2856 	Lm_list		*lml = LIST(lmp);
2857 	int		trace;
2858 
2859 	if ((lml->lm_flags & LML_FLG_TRC_ENABLE) &&
2860 	    (((rtld_flags & RT_FL_SILENCERR) == 0) ||
2861 	    (lml->lm_flags & LML_FLG_TRC_VERBOSE)))
2862 		trace = 1;
2863 	else
2864 		trace = 0;
2865 
2866 	if ((trace == 0) && (DBG_ENABLED == 0))
2867 		return;
2868 
2869 	if (rsymndx) {
2870 		Sym	*symref = (Sym *)((ulong_t)SYMTAB(lmp) +
2871 		    (rsymndx * SYMENT(lmp)));
2872 
2873 		if (ELF_ST_BIND(symref->st_info) != STB_LOCAL)
2874 			name = (char *)(STRTAB(lmp) + symref->st_name);
2875 	}
2876 
2877 	if (name == NULL)
2878 		name = MSG_INTL(MSG_STR_UNKNOWN);
2879 
2880 	if (trace) {
2881 		const char *rstr;
2882 
2883 		rstr = _conv_reloc_type((uint_t)rtype);
2884 		(void) printf(MSG_INTL(MSG_LDD_REL_ERR1), rstr, name,
2885 		    EC_ADDR(roffset));
2886 		return;
2887 	}
2888 
2889 	Dbg_reloc_error(lml, ELF_DBG_RTLD, M_MACH, M_REL_SHT_TYPE, rel, name);
2890 }
2891 
2892 /*
2893  * Resolve a static TLS relocation.
2894  */
2895 long
2896 elf_static_tls(Rt_map *lmp, Sym *sym, void *rel, uchar_t rtype, char *name,
2897     ulong_t roffset, long value)
2898 {
2899 	Lm_list	*lml = LIST(lmp);
2900 
2901 	/*
2902 	 * Relocations against a static TLS block have limited support once
2903 	 * process initialization has completed.  Any error condition should be
2904 	 * discovered by testing for DF_STATIC_TLS as part of loading an object,
2905 	 * however individual relocations are tested in case the dynamic flag
2906 	 * had not been set when this object was built.
2907 	 */
2908 	if (PTTLS(lmp) == NULL) {
2909 		DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH,
2910 		    M_REL_SHT_TYPE, rel, NULL, 0, name));
2911 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_BADTLS),
2912 		    _conv_reloc_type((uint_t)rtype), NAME(lmp),
2913 		    name ? demangle(name) : MSG_INTL(MSG_STR_UNKNOWN));
2914 		return (0);
2915 	}
2916 
2917 	/*
2918 	 * If no static TLS has been set aside for this object, determine if
2919 	 * any can be obtained.  Enforce that any object using static TLS is
2920 	 * non-deletable.
2921 	 */
2922 	if (TLSSTATOFF(lmp) == 0) {
2923 		FLAGS1(lmp) |= FL1_RT_TLSSTAT;
2924 		MODE(lmp) |= RTLD_NODELETE;
2925 
2926 		if (tls_assign(lml, lmp, PTTLS(lmp)) == 0) {
2927 			DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH,
2928 			    M_REL_SHT_TYPE, rel, NULL, 0, name));
2929 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_BADTLS),
2930 			    _conv_reloc_type((uint_t)rtype), NAME(lmp),
2931 			    name ? demangle(name) : MSG_INTL(MSG_STR_UNKNOWN));
2932 			return (0);
2933 		}
2934 	}
2935 
2936 	/*
2937 	 * Typically, a static TLS offset is maintained as a symbols value.
2938 	 * For local symbols that are not apart of the dynamic symbol table,
2939 	 * the TLS relocation points to a section symbol, and the static TLS
2940 	 * offset was deposited in the associated GOT table.  Make sure the GOT
2941 	 * is cleared, so that the value isn't reused in do_reloc().
2942 	 */
2943 	if (ELF_ST_BIND(sym->st_info) == STB_LOCAL) {
2944 		if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION)) {
2945 			value = *(long *)roffset;
2946 			*(long *)roffset = 0;
2947 		} else {
2948 			value = sym->st_value;
2949 		}
2950 	}
2951 	return (-(TLSSTATOFF(lmp) - value));
2952 }
2953 
2954 /*
2955  * If the symbol is not found and the reference was not to a weak symbol, report
2956  * an error.  Weak references may be unresolved.
2957  */
2958 int
2959 elf_reloc_error(Rt_map *lmp, const char *name, void *rel, uint_t binfo)
2960 {
2961 	Lm_list	*lml = LIST(lmp);
2962 
2963 	/*
2964 	 * Under crle(1), relocation failures are ignored.
2965 	 */
2966 	if (lml->lm_flags & LML_FLG_IGNRELERR)
2967 		return (1);
2968 
2969 	/*
2970 	 * Under ldd(1), unresolved references are reported.  However, if the
2971 	 * original reference is EXTERN or PARENT these references are ignored
2972 	 * unless ldd's -p option is in effect.
2973 	 */
2974 	if (lml->lm_flags & LML_FLG_TRC_WARN) {
2975 		if (((binfo & DBG_BINFO_REF_MSK) == 0) ||
2976 		    ((lml->lm_flags & LML_FLG_TRC_NOPAREXT) != 0)) {
2977 			(void) printf(MSG_INTL(MSG_LDD_SYM_NFOUND),
2978 			    demangle(name), NAME(lmp));
2979 		}
2980 		return (1);
2981 	}
2982 
2983 	/*
2984 	 * Otherwise, the unresolved references is fatal.
2985 	 */
2986 	DBG_CALL(Dbg_reloc_in(lml, ELF_DBG_RTLD, M_MACH, M_REL_SHT_TYPE, rel,
2987 	    NULL, 0, name));
2988 	eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp),
2989 	    demangle(name));
2990 
2991 	return (0);
2992 }
2993