1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 27 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 28 */ 29 30 /* 31 * Programmatic interface to the run_time linker. 32 */ 33 34 #include <sys/debug.h> 35 #include <stdio.h> 36 #include <string.h> 37 #include <dlfcn.h> 38 #include <synch.h> 39 #include <limits.h> 40 #include <debug.h> 41 #include <conv.h> 42 #include "_rtld.h" 43 #include "_audit.h" 44 #include "_elf.h" 45 #include "_inline_gen.h" 46 #include "msg.h" 47 48 /* 49 * Determine who called us - given a pc determine in which object it resides. 50 * 51 * For dlopen() the link map of the caller must be passed to load_so() so that 52 * the appropriate search rules (4.x or 5.0) are used to locate any 53 * dependencies. Also, if we've been called from a 4.x module it may be 54 * necessary to fix the specified pathname so that it conforms with the 5.0 elf 55 * rules. 56 * 57 * For dlsym() the link map of the caller is used to determine RTLD_NEXT 58 * requests, together with requests based off of a dlopen(0). 59 * For dladdr() this routines provides a generic means of scanning all loaded 60 * segments. 61 */ 62 Rt_map * 63 _caller(caddr_t cpc, int flags) 64 { 65 Lm_list *lml; 66 Aliste idx1; 67 68 for (APLIST_TRAVERSE(dynlm_list, idx1, lml)) { 69 Aliste idx2; 70 Lm_cntl *lmc; 71 72 for (ALIST_TRAVERSE(lml->lm_lists, idx2, lmc)) { 73 Rt_map *lmp; 74 75 for (lmp = lmc->lc_head; lmp; 76 lmp = NEXT_RT_MAP(lmp)) { 77 78 if (find_segment(cpc, lmp)) 79 return (lmp); 80 } 81 } 82 } 83 84 /* 85 * No mapping can be determined. If asked for a default, assume this 86 * is from the executable. 87 */ 88 if (flags & CL_EXECDEF) 89 return ((Rt_map *)lml_main.lm_head); 90 91 return (0); 92 } 93 94 #pragma weak _dlerror = dlerror 95 96 /* 97 * External entry for dlerror(3dl). Returns a pointer to the string describing 98 * the last occurring error. The last occurring error is cleared. 99 */ 100 char * 101 dlerror() 102 { 103 char *error; 104 Rt_map *clmp; 105 int entry; 106 107 entry = enter(0); 108 109 clmp = _caller(caller(), CL_EXECDEF); 110 111 DBG_CALL(Dbg_dl_dlerror(clmp, lasterr)); 112 113 error = lasterr; 114 lasterr = NULL; 115 116 if (entry) 117 leave(LIST(clmp), 0); 118 return (error); 119 } 120 121 /* 122 * Add a dependency as a group descriptor to a group handle. Returns 0 on 123 * failure. On success, returns the group descriptor, and if alep is non-NULL 124 * the *alep is set to ALE_EXISTS if the dependency already exists, or to 125 * ALE_CREATE if the dependency is newly created. 126 */ 127 Grp_desc * 128 hdl_add(Grp_hdl *ghp, Rt_map *lmp, uint_t dflags, int *alep) 129 { 130 Grp_desc *gdp; 131 Aliste idx; 132 int ale = ALE_CREATE; 133 uint_t oflags; 134 135 /* 136 * Make sure this dependency hasn't already been recorded. 137 */ 138 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 139 if (gdp->gd_depend == lmp) { 140 ale = ALE_EXISTS; 141 break; 142 } 143 } 144 145 if (ale == ALE_CREATE) { 146 Grp_desc gd; 147 148 /* 149 * Create a new handle descriptor. 150 */ 151 gd.gd_depend = lmp; 152 gd.gd_flags = 0; 153 154 /* 155 * Indicate this object is a part of this handles group. 156 */ 157 if (aplist_append(&GROUPS(lmp), ghp, AL_CNT_GROUPS) == NULL) 158 return (NULL); 159 160 /* 161 * Append the new dependency to this handle. 162 */ 163 if ((gdp = alist_append(&ghp->gh_depends, &gd, 164 sizeof (Grp_desc), AL_CNT_DEPENDS)) == NULL) 165 return (NULL); 166 } 167 168 oflags = gdp->gd_flags; 169 gdp->gd_flags |= dflags; 170 171 if (DBG_ENABLED) { 172 if (ale == ALE_CREATE) 173 DBG_CALL(Dbg_file_hdl_action(ghp, lmp, DBG_DEP_ADD, 174 gdp->gd_flags)); 175 else if (gdp->gd_flags != oflags) 176 DBG_CALL(Dbg_file_hdl_action(ghp, lmp, DBG_DEP_UPDATE, 177 gdp->gd_flags)); 178 } 179 180 if (alep) 181 *alep = ale; 182 return (gdp); 183 } 184 185 /* 186 * Create a handle. 187 * 188 * rlmp - represents the reference link-map for which the handle is being 189 * created. 190 * clmp - represents the caller who is requesting the handle. 191 * hflags - provide group handle flags (GPH_*) that affect the use of the 192 * handle, such as dlopen(0), or use or use of RTLD_FIRST. 193 * rdflags - provide group dependency flags for the reference link-map rlmp, 194 * such as whether the dependency can be used for dlsym(), can be 195 * relocated against, or whether this objects dependencies should 196 * be processed. 197 * cdflags - provide group dependency flags for the caller. 198 */ 199 Grp_hdl * 200 hdl_create(Lm_list *lml, Rt_map *rlmp, Rt_map *clmp, uint_t hflags, 201 uint_t rdflags, uint_t cdflags) 202 { 203 Grp_hdl *ghp = NULL, *aghp; 204 APlist **alpp; 205 Aliste idx; 206 207 /* 208 * For dlopen(0) the handle is maintained as part of the link-map list, 209 * otherwise the handle is associated with the reference link-map. 210 */ 211 if (hflags & GPH_ZERO) 212 alpp = &(lml->lm_handle); 213 else 214 alpp = &(HANDLES(rlmp)); 215 216 /* 217 * Objects can contain multiple handles depending on the handle flags 218 * supplied. Most RTLD flags pertain to the object itself and the 219 * bindings that it can achieve. Multiple handles for these flags 220 * don't make sense. But if the flag determines how the handle might 221 * be used, then multiple handles may exist. Presently this only makes 222 * sense for RTLD_FIRST. Determine if an appropriate handle already 223 * exists. 224 */ 225 for (APLIST_TRAVERSE(*alpp, idx, aghp)) { 226 if ((aghp->gh_flags & GPH_FIRST) == (hflags & GPH_FIRST)) { 227 ghp = aghp; 228 break; 229 } 230 } 231 232 if (ghp == NULL) { 233 uint_t ndx; 234 235 /* 236 * If this is the first request for this handle, allocate and 237 * initialize a new handle. 238 */ 239 DBG_CALL(Dbg_file_hdl_title(DBG_HDL_CREATE)); 240 241 if ((ghp = malloc(sizeof (Grp_hdl))) == NULL) 242 return (NULL); 243 244 /* 245 * Associate the handle with the link-map list or the reference 246 * link-map as appropriate. 247 */ 248 if (aplist_append(alpp, ghp, AL_CNT_GROUPS) == NULL) { 249 free(ghp); 250 return (NULL); 251 } 252 253 /* 254 * Record the existence of this handle for future verification. 255 */ 256 /* LINTED */ 257 ndx = (uintptr_t)ghp % HDLIST_SZ; 258 259 if (aplist_append(&hdl_alp[ndx], ghp, AL_CNT_HANDLES) == NULL) { 260 (void) aplist_delete_value(*alpp, ghp); 261 free(ghp); 262 return (NULL); 263 } 264 265 ghp->gh_depends = NULL; 266 ghp->gh_refcnt = 1; 267 ghp->gh_flags = hflags; 268 269 /* 270 * A dlopen(0) handle is identified by the GPH_ZERO flag, the 271 * head of the link-map list is defined as the owner. There is 272 * no need to maintain a list of dependencies, for when this 273 * handle is used (for dlsym()) a dynamic search through the 274 * entire link-map list provides for searching all objects with 275 * GLOBAL visibility. 276 */ 277 if (hflags & GPH_ZERO) { 278 ghp->gh_ownlmp = lml->lm_head; 279 ghp->gh_ownlml = lml; 280 } else { 281 ghp->gh_ownlmp = rlmp; 282 ghp->gh_ownlml = LIST(rlmp); 283 284 if (hdl_add(ghp, rlmp, rdflags, NULL) == NULL) 285 return (NULL); 286 287 /* 288 * If this new handle is a private handle, there's no 289 * need to track the caller, so we're done. 290 */ 291 if (hflags & GPH_PRIVATE) 292 return (ghp); 293 294 /* 295 * If this new handle is public, and isn't a special 296 * handle representing ld.so.1, indicate that a local 297 * group now exists. This state allows singleton 298 * searches to be optimized. 299 */ 300 if ((hflags & GPH_LDSO) == 0) 301 LIST(rlmp)->lm_flags |= LML_FLG_GROUPSEXIST; 302 } 303 } else { 304 /* 305 * If a handle already exists, bump its reference count. 306 * 307 * If the previous reference count was 0, then this is a handle 308 * that an earlier call to dlclose() was unable to remove. Such 309 * handles are put on the orphan list. As this handle is back 310 * in use, it must be removed from the orphan list. 311 * 312 * Note, handles associated with a link-map list itself (i.e. 313 * dlopen(0)) can have a reference count of 0. However, these 314 * handles are never deleted, and therefore are never moved to 315 * the orphan list. 316 */ 317 if ((ghp->gh_refcnt++ == 0) && 318 ((ghp->gh_flags & GPH_ZERO) == 0)) { 319 uint_t ndx; 320 321 /* LINTED */ 322 ndx = (uintptr_t)ghp % HDLIST_SZ; 323 324 (void) aplist_delete_value(hdl_alp[HDLIST_ORP], ghp); 325 (void) aplist_append(&hdl_alp[ndx], ghp, 326 AL_CNT_HANDLES); 327 328 if (DBG_ENABLED) { 329 Aliste idx; 330 Grp_desc *gdp; 331 332 DBG_CALL(Dbg_file_hdl_title(DBG_HDL_REINST)); 333 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) 334 DBG_CALL(Dbg_file_hdl_action(ghp, 335 gdp->gd_depend, DBG_DEP_REINST, 0)); 336 } 337 } 338 339 /* 340 * If we've been asked to create a private handle, there's no 341 * need to track the caller. 342 */ 343 if (hflags & GPH_PRIVATE) { 344 /* 345 * Negate the reference count increment. 346 */ 347 ghp->gh_refcnt--; 348 return (ghp); 349 } else { 350 /* 351 * If a private handle already exists, promote this 352 * handle to public by initializing both the reference 353 * count and the handle flags. 354 */ 355 if (ghp->gh_flags & GPH_PRIVATE) { 356 ghp->gh_refcnt = 1; 357 ghp->gh_flags &= ~GPH_PRIVATE; 358 ghp->gh_flags |= hflags; 359 } 360 } 361 } 362 363 /* 364 * Keep track of the parent (caller). As this object can be referenced 365 * by different parents, this processing is carried out every time a 366 * handle is requested. 367 */ 368 if (clmp && (hdl_add(ghp, clmp, cdflags, NULL) == NULL)) 369 return (NULL); 370 371 return (ghp); 372 } 373 374 /* 375 * Initialize a handle that has been created for an object that is already 376 * loaded. The handle is initialized with the present dependencies of that 377 * object. Once this initialization has occurred, any new objects that might 378 * be loaded as dependencies (lazy-loading) are added to the handle as each new 379 * object is loaded. 380 */ 381 int 382 hdl_initialize(Grp_hdl *ghp, Rt_map *nlmp, int mode, int promote) 383 { 384 Aliste idx; 385 Grp_desc *gdp; 386 387 /* 388 * If the handle has already been initialized, and the initial object's 389 * mode hasn't been promoted, there's no need to recompute the modes of 390 * any dependencies. If the object we've added has just been opened, 391 * the objects dependencies will not yet have been processed. These 392 * dependencies will be added on later calls to load_one(). Otherwise, 393 * this object already exists, so add all of its dependencies to the 394 * handle were operating on. 395 */ 396 if (((ghp->gh_flags & GPH_INITIAL) && (promote == 0)) || 397 ((FLAGS(nlmp) & FLG_RT_ANALYZED) == 0)) { 398 ghp->gh_flags |= GPH_INITIAL; 399 return (1); 400 } 401 402 DBG_CALL(Dbg_file_hdl_title(DBG_HDL_ADD)); 403 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 404 Rt_map *lmp = gdp->gd_depend; 405 Aliste idx1; 406 Bnd_desc *bdp; 407 408 /* 409 * If this dependency doesn't indicate that its dependencies 410 * should be added to a handle, ignore it. This case identifies 411 * a parent of a dlopen(RTLD_PARENT) request. 412 */ 413 if ((gdp->gd_flags & GPD_ADDEPS) == 0) 414 continue; 415 416 for (APLIST_TRAVERSE(DEPENDS(lmp), idx1, bdp)) { 417 Rt_map *dlmp = bdp->b_depend; 418 419 if ((bdp->b_flags & BND_NEEDED) == 0) 420 continue; 421 422 if (hdl_add(ghp, dlmp, 423 (GPD_DLSYM | GPD_RELOC | GPD_ADDEPS), NULL) == NULL) 424 return (0); 425 426 (void) update_mode(dlmp, MODE(dlmp), mode); 427 } 428 } 429 ghp->gh_flags |= GPH_INITIAL; 430 return (1); 431 } 432 433 /* 434 * Sanity check a program-provided handle. 435 */ 436 static int 437 hdl_validate(Grp_hdl *ghp) 438 { 439 Aliste idx; 440 Grp_hdl *lghp; 441 uint_t ndx; 442 443 /* LINTED */ 444 ndx = (uintptr_t)ghp % HDLIST_SZ; 445 446 for (APLIST_TRAVERSE(hdl_alp[ndx], idx, lghp)) { 447 if ((lghp == ghp) && (ghp->gh_refcnt != 0)) 448 return (1); 449 } 450 return (0); 451 } 452 453 /* 454 * Core dlclose activity. 455 */ 456 int 457 dlclose_core(Grp_hdl *ghp, Rt_map *clmp, Lm_list *lml) 458 { 459 int error; 460 Rt_map *lmp; 461 462 /* 463 * If we're already at atexit() there's no point processing further, 464 * all objects have already been tsorted for fini processing. 465 */ 466 if (rtld_flags & RT_FL_ATEXIT) 467 return (0); 468 469 /* 470 * Diagnose what we're up to. 471 */ 472 if (ghp->gh_flags & GPH_ZERO) { 473 DBG_CALL(Dbg_dl_dlclose(clmp, MSG_ORIG(MSG_STR_ZERO), 474 DBG_DLCLOSE_IGNORE)); 475 } else { 476 DBG_CALL(Dbg_dl_dlclose(clmp, NAME(ghp->gh_ownlmp), 477 DBG_DLCLOSE_NULL)); 478 } 479 480 /* 481 * Decrement reference count of this object. 482 */ 483 if (--(ghp->gh_refcnt)) 484 return (0); 485 486 /* 487 * If this handle is special (dlopen(0)), then leave it around - it 488 * has little overhead. 489 */ 490 if (ghp->gh_flags & GPH_ZERO) 491 return (0); 492 493 /* 494 * If this handle is associated with an object that is not on the base 495 * link-map control list, or it has not yet been relocated, then this 496 * handle must have originated from an auditors interaction, or some 497 * permutation of RTLD_CONFGEN use (crle(1), moe(1), etc.). User code 498 * can only execute and bind to relocated objects on the base link-map 499 * control list. Outside of RTLD_CONFGEN use, a non-relocated object, 500 * or an object on a non-base link-map control list, is in the process 501 * of being loaded, and therefore we do not attempt to remove the 502 * handle. 503 */ 504 if (((lmp = ghp->gh_ownlmp) != NULL) && 505 ((MODE(lmp) & RTLD_CONFGEN) == 0) && 506 ((CNTL(lmp) != ALIST_OFF_DATA) || 507 ((FLAGS(lmp) & FLG_RT_RELOCED) == 0))) 508 return (0); 509 510 /* 511 * This handle is no longer being referenced, remove it. If this handle 512 * is part of an alternative link-map list, determine if the whole list 513 * can be removed also. 514 */ 515 error = remove_hdl(ghp, clmp, NULL); 516 517 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) == 0) 518 remove_lml(lml); 519 520 return (error); 521 } 522 523 /* 524 * Internal dlclose activity. Called from user level or directly for internal 525 * error cleanup. 526 */ 527 int 528 dlclose_intn(Grp_hdl *ghp, Rt_map *clmp) 529 { 530 Rt_map *nlmp = NULL; 531 Lm_list *olml = NULL; 532 int error; 533 534 /* 535 * Although we're deleting object(s) it's quite possible that additional 536 * objects get loaded from running the .fini section(s) of the objects 537 * being deleted. These objects will have been added to the same 538 * link-map list as those objects being deleted. Remember this list 539 * for later investigation. 540 */ 541 olml = ghp->gh_ownlml; 542 543 error = dlclose_core(ghp, clmp, olml); 544 545 /* 546 * Determine whether the original link-map list still exists. In the 547 * case of a dlclose of an alternative (dlmopen) link-map the whole 548 * list may have been removed. 549 */ 550 if (olml) { 551 Aliste idx; 552 Lm_list *lml; 553 554 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { 555 if (olml == lml) { 556 nlmp = olml->lm_head; 557 break; 558 } 559 } 560 } 561 load_completion(nlmp); 562 return (error); 563 } 564 565 /* 566 * Argument checking for dlclose. Only called via external entry. 567 */ 568 static int 569 dlclose_check(void *handle, Rt_map *clmp) 570 { 571 Grp_hdl *ghp = (Grp_hdl *)handle; 572 573 if (hdl_validate(ghp) == 0) { 574 Conv_inv_buf_t inv_buf; 575 576 (void) conv_invalid_val(&inv_buf, EC_NATPTR(ghp), 0); 577 DBG_CALL(Dbg_dl_dlclose(clmp, inv_buf.buf, DBG_DLCLOSE_NULL)); 578 579 eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL), 580 EC_NATPTR(handle)); 581 return (1); 582 } 583 return (dlclose_intn(ghp, clmp)); 584 } 585 586 #pragma weak _dlclose = dlclose 587 588 /* 589 * External entry for dlclose(3dl). Returns 0 for success, non-zero otherwise. 590 */ 591 int 592 dlclose(void *handle) 593 { 594 int error, entry; 595 Rt_map *clmp; 596 597 entry = enter(0); 598 599 clmp = _caller(caller(), CL_EXECDEF); 600 601 error = dlclose_check(handle, clmp); 602 603 if (entry) 604 leave(LIST(clmp), 0); 605 return (error); 606 } 607 608 static uint_t lmid = 0; 609 610 /* 611 * The addition of new link-map lists is assumed to be in small quantities. 612 * Here, we assign a unique link-map id for diagnostic use. Simply update the 613 * running link-map count until we max out. 614 */ 615 int 616 newlmid(Lm_list *lml) 617 { 618 char buffer[MSG_LMID_ALT_SIZE + 12]; 619 620 if (lmid == UINT_MAX) { 621 lml->lm_lmid = UINT_MAX; 622 (void) strncpy(buffer, MSG_ORIG(MSG_LMID_MAXED), 623 MSG_LMID_ALT_SIZE + 12); 624 } else { 625 lml->lm_lmid = lmid++; 626 (void) snprintf(buffer, MSG_LMID_ALT_SIZE + 12, 627 MSG_ORIG(MSG_LMID_FMT), MSG_ORIG(MSG_LMID_ALT), 628 lml->lm_lmid); 629 } 630 if ((lml->lm_lmidstr = strdup(buffer)) == NULL) 631 return (0); 632 633 return (1); 634 } 635 636 /* 637 * Core dlopen activity. 638 */ 639 static Grp_hdl * 640 dlmopen_core(Lm_list *lml, Lm_list *olml, const char *path, int mode, 641 Rt_map *clmp, uint_t flags, uint_t orig, int *in_nfavl) 642 { 643 Alist *palp = NULL; 644 Rt_map *nlmp; 645 Grp_hdl *ghp; 646 Aliste olmco, nlmco; 647 648 DBG_CALL(Dbg_dl_dlopen(clmp, 649 (path ? path : MSG_ORIG(MSG_STR_ZERO)), in_nfavl, mode)); 650 651 /* 652 * Having diagnosed the originally defined modes, assign any defaults 653 * or corrections. 654 */ 655 if (((mode & (RTLD_GROUP | RTLD_WORLD)) == 0) && 656 ((mode & RTLD_NOLOAD) == 0)) 657 mode |= (RTLD_GROUP | RTLD_WORLD); 658 if ((mode & RTLD_NOW) && (rtld_flags2 & RT_FL2_BINDLAZY)) { 659 mode &= ~RTLD_NOW; 660 mode |= RTLD_LAZY; 661 } 662 663 /* 664 * If the path specified is null then we're operating on global 665 * objects. Associate a dummy handle with the link-map list. 666 */ 667 if (path == NULL) { 668 Grp_hdl *ghp; 669 uint_t hflags, rdflags, cdflags; 670 int promote = 0; 671 672 /* 673 * Establish any flags for the handle (Grp_hdl). 674 * 675 * - This is a dummy, public, handle (0) that provides for a 676 * dynamic search of all global objects within the process. 677 * - Use of the RTLD_FIRST mode indicates that only the first 678 * dependency on the handle (the referenced object) can be 679 * used to satisfy dlsym() requests. 680 */ 681 hflags = (GPH_PUBLIC | GPH_ZERO); 682 if (mode & RTLD_FIRST) 683 hflags |= GPH_FIRST; 684 685 /* 686 * Establish the flags for the referenced dependency descriptor 687 * (Grp_desc). 688 * 689 * - The referenced object is available for dlsym(). 690 * - The referenced object is available to relocate against. 691 * - The referenced object should have it's dependencies 692 * added to this handle. 693 */ 694 rdflags = (GPD_DLSYM | GPD_RELOC | GPD_ADDEPS); 695 696 /* 697 * Establish the flags for this callers dependency descriptor 698 * (Grp_desc). 699 * 700 * - The explicit creation of a handle creates a descriptor 701 * for the referenced object and the parent (caller). 702 * - Use of the RTLD_PARENT flag indicates that the parent 703 * can be relocated against. 704 */ 705 cdflags = GPD_PARENT; 706 if (mode & RTLD_PARENT) 707 cdflags |= GPD_RELOC; 708 709 if ((ghp = hdl_create(lml, 0, clmp, hflags, rdflags, 710 cdflags)) == NULL) 711 return (NULL); 712 713 /* 714 * Traverse the main link-map control list, updating the mode 715 * of any objects as necessary. Call the relocation engine if 716 * this mode promotes the existing state of any relocations. 717 * crle()'s first pass loads all objects necessary for building 718 * a configuration file, however none of them are relocated. 719 * crle()'s second pass relocates objects in preparation for 720 * dldump()'ing using dlopen(0, RTLD_NOW). 721 */ 722 if ((mode & (RTLD_NOW | RTLD_CONFGEN)) == RTLD_CONFGEN) 723 return (ghp); 724 725 for (nlmp = lml->lm_head; nlmp; nlmp = NEXT_RT_MAP(nlmp)) { 726 if (((MODE(nlmp) & RTLD_GLOBAL) == 0) || 727 (FLAGS(nlmp) & FLG_RT_DELETE)) 728 continue; 729 730 if (update_mode(nlmp, MODE(nlmp), mode)) 731 promote = 1; 732 } 733 if (promote) 734 (void) relocate_lmc(lml, ALIST_OFF_DATA, clmp, 735 lml->lm_head, in_nfavl); 736 737 return (ghp); 738 } 739 740 /* 741 * Fix the pathname. If this object expands to multiple paths (ie. 742 * $ISALIST or $HWCAP have been used), then make sure the user has also 743 * furnished the RTLD_FIRST flag. As yet, we don't support opening 744 * more than one object at a time, so enforcing the RTLD_FIRST flag 745 * provides flexibility should we be able to support dlopening more 746 * than one object in the future. 747 */ 748 if (LM_FIX_NAME(clmp)(path, clmp, &palp, AL_CNT_NEEDED, orig) == 0) 749 return (NULL); 750 751 if ((palp->al_arritems > 1) && ((mode & RTLD_FIRST) == 0)) { 752 remove_alist(&palp, 1); 753 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_5)); 754 return (NULL); 755 } 756 757 /* 758 * Establish a link-map control list for this request, and load the 759 * associated object. 760 */ 761 if ((nlmco = create_cntl(lml, 1)) == 0) { 762 remove_alist(&palp, 1); 763 return (NULL); 764 } 765 olmco = nlmco; 766 767 nlmp = load_one(lml, nlmco, palp, clmp, mode, (flags | FLG_RT_PUBHDL), 768 &ghp, in_nfavl); 769 770 /* 771 * Remove any expanded pathname infrastructure, and if the dependency 772 * couldn't be loaded, cleanup. 773 */ 774 remove_alist(&palp, 1); 775 if (nlmp == NULL) { 776 remove_cntl(lml, olmco); 777 return (NULL); 778 } 779 780 /* 781 * If loading an auditor was requested, and the auditor already existed, 782 * then the link-map returned will be to the original auditor. The new 783 * link-map list that was initially created, and the associated link-map 784 * control list are no longer needed. As the auditor is already loaded, 785 * we're probably done, but fall through in case additional relocations 786 * would be triggered by the mode of the caller. 787 */ 788 if ((flags & FLG_RT_AUDIT) && (LIST(nlmp) != lml)) { 789 remove_cntl(lml, olmco); 790 lml = LIST(nlmp); 791 olmco = 0; 792 nlmco = ALIST_OFF_DATA; 793 } 794 795 /* 796 * Finish processing the objects associated with this request. 797 */ 798 if (((nlmp = analyze_lmc(lml, nlmco, nlmp, clmp, in_nfavl)) == NULL) || 799 (relocate_lmc(lml, nlmco, clmp, nlmp, in_nfavl) == 0)) { 800 ghp = NULL; 801 nlmp = NULL; 802 } 803 804 /* 805 * If the dlopen has failed, clean up any objects that might have been 806 * loaded successfully on this new link-map control list. 807 */ 808 if (olmco && (nlmp == NULL)) 809 remove_lmc(lml, clmp, olmco, path); 810 811 /* 812 * Finally, remove any temporary link-map control list. Note, if this 813 * operation successfully established a new link-map list, then a base 814 * link-map control list will have been created, which must remain. 815 */ 816 if (olmco && ((nlmp == NULL) || (olml != (Lm_list *)LM_ID_NEWLM))) 817 remove_cntl(lml, olmco); 818 819 return (ghp); 820 } 821 822 /* 823 * dlopen() and dlsym() operations are the means by which a process can 824 * test for the existence of required dependencies. If the necessary 825 * dependencies don't exist, then associated functionality can't be used. 826 * However, the lack of dependencies can be fixed, and the dlopen() and 827 * dlsym() requests can be repeated. As we use a "not-found" AVL tree to 828 * cache any failed full path loads, secondary dlopen() and dlsym() requests 829 * will fail, even if the dependencies have been installed. 830 * 831 * dlopen() and dlsym() retry any failures by removing the "not-found" AVL 832 * tree. Should any dependencies be found, their names are added to the 833 * FullPath AVL tree. This routine removes any new "not-found" AVL tree, 834 * so that the dlopen() or dlsym() can replace the original "not-found" tree. 835 */ 836 inline static void 837 nfavl_remove(avl_tree_t *avlt) 838 { 839 PathNode *pnp; 840 void *cookie = NULL; 841 842 if (avlt) { 843 while ((pnp = avl_destroy_nodes(avlt, &cookie)) != NULL) 844 free(pnp); 845 846 avl_destroy(avlt); 847 free(avlt); 848 } 849 } 850 851 /* 852 * Internal dlopen() activity. Called from user level or directly for internal 853 * opens that require a handle. 854 */ 855 Grp_hdl * 856 dlmopen_intn(Lm_list *lml, const char *path, int mode, Rt_map *clmp, 857 uint_t flags, uint_t orig) 858 { 859 Lm_list *olml = lml; 860 Rt_map *dlmp = NULL; 861 Grp_hdl *ghp; 862 int in_nfavl = 0; 863 864 /* 865 * Check for magic link-map list values: 866 * 867 * LM_ID_BASE: Operate on the PRIMARY (executables) link map 868 * LM_ID_LDSO: Operation on ld.so.1's link map 869 * LM_ID_NEWLM: Create a new link-map. 870 */ 871 if (lml == (Lm_list *)LM_ID_NEWLM) { 872 if ((lml = calloc(sizeof (Lm_list), 1)) == NULL) 873 return (NULL); 874 875 /* 876 * Establish the new link-map flags from the callers and those 877 * explicitly provided. 878 */ 879 lml->lm_tflags = LIST(clmp)->lm_tflags; 880 if (flags & FLG_RT_AUDIT) { 881 /* 882 * Unset any auditing flags - an auditor shouldn't be 883 * audited. Insure all audit dependencies are loaded. 884 */ 885 lml->lm_tflags &= ~LML_TFLG_AUD_MASK; 886 lml->lm_tflags |= (LML_TFLG_NOLAZYLD | 887 LML_TFLG_LOADFLTR | LML_TFLG_NOAUDIT); 888 } 889 890 if (aplist_append(&dynlm_list, lml, AL_CNT_DYNLIST) == NULL) { 891 free(lml); 892 return (NULL); 893 } 894 if (newlmid(lml) == 0) { 895 (void) aplist_delete_value(dynlm_list, lml); 896 free(lml); 897 return (NULL); 898 } 899 } else if ((uintptr_t)lml < LM_ID_NUM) { 900 if ((uintptr_t)lml == LM_ID_BASE) 901 lml = &lml_main; 902 else if ((uintptr_t)lml == LM_ID_LDSO) 903 lml = &lml_rtld; 904 } 905 906 /* 907 * Open the required object on the associated link-map list. 908 */ 909 ghp = dlmopen_core(lml, olml, path, mode, clmp, flags, orig, &in_nfavl); 910 911 /* 912 * If the object could not be found it is possible that the "not-found" 913 * AVL tree had indicated that the file does not exist. In case the 914 * file system has changed since this "not-found" recording was made, 915 * retry the dlopen() with a clean "not-found" AVL tree. 916 */ 917 if ((ghp == NULL) && in_nfavl) { 918 avl_tree_t *oavlt = nfavl; 919 920 nfavl = NULL; 921 ghp = dlmopen_core(lml, olml, path, mode, clmp, flags, orig, 922 NULL); 923 924 /* 925 * If the file is found, then its full path name will have been 926 * registered in the FullPath AVL tree. Remove any new 927 * "not-found" AVL information, and restore the former AVL tree. 928 */ 929 nfavl_remove(nfavl); 930 nfavl = oavlt; 931 } 932 933 /* 934 * Establish the new link-map from which .init processing will begin. 935 * Ignore .init firing when constructing a configuration file (crle(1)). 936 */ 937 if (ghp && ((mode & RTLD_CONFGEN) == 0)) 938 dlmp = ghp->gh_ownlmp; 939 940 /* 941 * If loading an auditor was requested, and the auditor already existed, 942 * then the link-map returned will be to the original auditor. Remove 943 * the link-map control list that was created for this request. 944 */ 945 if (dlmp && (flags & FLG_RT_AUDIT) && (LIST(dlmp) != lml)) { 946 remove_lml(lml); 947 lml = LIST(dlmp); 948 } 949 950 /* 951 * If this load failed, remove any alternative link-map list. 952 */ 953 if ((ghp == NULL) && 954 ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) == 0)) { 955 remove_lml(lml); 956 lml = NULL; 957 } 958 959 /* 960 * Finish this load request. If objects were loaded, .init processing 961 * is computed. Finally, the debuggers are informed of the link-map 962 * lists being stable. 963 */ 964 load_completion(dlmp); 965 966 return (ghp); 967 } 968 969 /* 970 * Argument checking for dlopen. Only called via external entry. 971 */ 972 static Grp_hdl * 973 dlmopen_check(Lm_list *lml, const char *path, int mode, Rt_map *clmp) 974 { 975 /* 976 * Verify that a valid pathname has been supplied. 977 */ 978 if (path && (*path == '\0')) { 979 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLPATH)); 980 return (0); 981 } 982 983 /* 984 * Historically we've always verified the mode is either RTLD_NOW or 985 * RTLD_LAZY. RTLD_NOLOAD is valid by itself. Use of LM_ID_NEWLM 986 * requires a specific pathname, and use of RTLD_PARENT is meaningless. 987 */ 988 if ((mode & (RTLD_NOW | RTLD_LAZY | RTLD_NOLOAD)) == 0) { 989 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_1)); 990 return (0); 991 } 992 if ((mode & (RTLD_NOW | RTLD_LAZY)) == (RTLD_NOW | RTLD_LAZY)) { 993 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_2)); 994 return (0); 995 } 996 if ((lml == (Lm_list *)LM_ID_NEWLM) && (path == NULL)) { 997 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_3)); 998 return (0); 999 } 1000 if ((lml == (Lm_list *)LM_ID_NEWLM) && (mode & RTLD_PARENT)) { 1001 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_4)); 1002 return (0); 1003 } 1004 1005 return (dlmopen_intn(lml, path, mode, clmp, 0, 0)); 1006 } 1007 1008 #pragma weak _dlopen = dlopen 1009 1010 /* 1011 * External entry for dlopen(3dl). On success, returns a pointer (handle) to 1012 * the structure containing information about the newly added object, ie. can 1013 * be used by dlsym(). On failure, returns a null pointer. 1014 */ 1015 void * 1016 dlopen(const char *path, int mode) 1017 { 1018 int entry; 1019 Rt_map *clmp; 1020 Grp_hdl *ghp; 1021 Lm_list *lml; 1022 1023 entry = enter(0); 1024 1025 clmp = _caller(caller(), CL_EXECDEF); 1026 lml = LIST(clmp); 1027 1028 ghp = dlmopen_check(lml, path, mode, clmp); 1029 1030 if (entry) 1031 leave(lml, 0); 1032 return ((void *)ghp); 1033 } 1034 1035 #pragma weak _dlmopen = dlmopen 1036 1037 /* 1038 * External entry for dlmopen(3dl). 1039 */ 1040 void * 1041 dlmopen(Lmid_t lmid, const char *path, int mode) 1042 { 1043 int entry; 1044 Rt_map *clmp; 1045 Grp_hdl *ghp; 1046 1047 entry = enter(0); 1048 1049 clmp = _caller(caller(), CL_EXECDEF); 1050 1051 ghp = dlmopen_check((Lm_list *)lmid, path, mode, clmp); 1052 1053 if (entry) 1054 leave(LIST(clmp), 0); 1055 return ((void *)ghp); 1056 } 1057 1058 /* 1059 * Handle processing for dlsym. 1060 */ 1061 int 1062 dlsym_handle(Grp_hdl *ghp, Slookup *slp, Sresult *srp, uint_t *binfo, 1063 int *in_nfavl) 1064 { 1065 Rt_map *nlmp, * lmp = ghp->gh_ownlmp; 1066 Rt_map *clmp = slp->sl_cmap; 1067 const char *name = slp->sl_name; 1068 Slookup sl = *slp; 1069 1070 sl.sl_flags = (LKUP_FIRST | LKUP_DLSYM | LKUP_SPEC); 1071 1072 /* 1073 * Continue processing a dlsym request. Lookup the required symbol in 1074 * each link-map specified by the handle. 1075 * 1076 * To leverage off of lazy loading, dlsym() requests can result in two 1077 * passes. The first descends the link-maps of any objects already in 1078 * the address space. If the symbol isn't located, and lazy 1079 * dependencies still exist, then a second pass is made to load these 1080 * dependencies if applicable. This model means that in the case where 1081 * a symbol exists in more than one object, the one located may not be 1082 * constant - this is the standard issue with lazy loading. In addition, 1083 * attempting to locate a symbol that doesn't exist will result in the 1084 * loading of all lazy dependencies on the given handle, which can 1085 * defeat some of the advantages of lazy loading (look out JVM). 1086 */ 1087 if (ghp->gh_flags & GPH_ZERO) { 1088 Lm_list *lml; 1089 uint_t lazy = 0; 1090 1091 /* 1092 * If this symbol lookup is triggered from a dlopen(0) handle, 1093 * traverse the present link-map list looking for promiscuous 1094 * entries. 1095 */ 1096 for (nlmp = lmp; nlmp; nlmp = NEXT_RT_MAP(nlmp)) { 1097 /* 1098 * If this handle indicates we're only to look in the 1099 * first object check whether we're done. 1100 */ 1101 if ((nlmp != lmp) && (ghp->gh_flags & GPH_FIRST)) 1102 return (0); 1103 1104 if (!(MODE(nlmp) & RTLD_GLOBAL)) 1105 continue; 1106 if ((FLAGS(nlmp) & FLG_RT_DELETE) && 1107 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 1108 continue; 1109 1110 sl.sl_imap = nlmp; 1111 if (LM_LOOKUP_SYM(clmp)(&sl, srp, binfo, in_nfavl)) 1112 return (1); 1113 1114 /* 1115 * Keep track of any global pending lazy loads. 1116 */ 1117 lazy += LAZY(nlmp); 1118 } 1119 1120 /* 1121 * If we're unable to locate the symbol and this link-map list 1122 * still has pending lazy dependencies, start loading them in an 1123 * attempt to exhaust the search. Note that as we're already 1124 * traversing a dynamic linked list of link-maps there's no 1125 * need for elf_lazy_find_sym() to descend the link-maps itself. 1126 */ 1127 lml = LIST(lmp); 1128 if (lazy) { 1129 DBG_CALL(Dbg_syms_lazy_rescan(lml, name)); 1130 1131 sl.sl_flags |= LKUP_NODESCENT; 1132 1133 for (nlmp = lmp; nlmp; nlmp = NEXT_RT_MAP(nlmp)) { 1134 1135 if (!(MODE(nlmp) & RTLD_GLOBAL) || !LAZY(nlmp)) 1136 continue; 1137 if ((FLAGS(nlmp) & FLG_RT_DELETE) && 1138 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 1139 continue; 1140 1141 sl.sl_imap = nlmp; 1142 if (elf_lazy_find_sym(&sl, srp, binfo, 1143 in_nfavl)) 1144 return (1); 1145 } 1146 } 1147 } else { 1148 /* 1149 * Traverse the dlopen() handle searching all presently loaded 1150 * link-maps. 1151 */ 1152 Grp_desc *gdp; 1153 Aliste idx; 1154 uint_t lazy = 0; 1155 1156 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 1157 nlmp = gdp->gd_depend; 1158 1159 if ((gdp->gd_flags & GPD_DLSYM) == 0) 1160 continue; 1161 1162 sl.sl_imap = nlmp; 1163 if (LM_LOOKUP_SYM(clmp)(&sl, srp, binfo, in_nfavl)) 1164 return (1); 1165 1166 if (ghp->gh_flags & GPH_FIRST) 1167 return (0); 1168 1169 /* 1170 * Keep track of any pending lazy loads associated 1171 * with this handle. 1172 */ 1173 lazy += LAZY(nlmp); 1174 } 1175 1176 /* 1177 * If we're unable to locate the symbol and this handle still 1178 * has pending lazy dependencies, start loading the lazy 1179 * dependencies, in an attempt to exhaust the search. 1180 */ 1181 if (lazy) { 1182 DBG_CALL(Dbg_syms_lazy_rescan(LIST(lmp), name)); 1183 1184 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 1185 nlmp = gdp->gd_depend; 1186 1187 if (((gdp->gd_flags & GPD_DLSYM) == 0) || 1188 (LAZY(nlmp) == 0)) 1189 continue; 1190 1191 sl.sl_imap = nlmp; 1192 if (elf_lazy_find_sym(&sl, srp, binfo, 1193 in_nfavl)) 1194 return (1); 1195 } 1196 } 1197 } 1198 return (0); 1199 } 1200 1201 /* 1202 * Determine whether a symbol resides in a caller. This may be a reference, 1203 * which is associated with a specific dependency. 1204 */ 1205 inline static Sym * 1206 sym_lookup_in_caller(Rt_map *clmp, Slookup *slp, Sresult *srp, uint_t *binfo) 1207 { 1208 if (THIS_IS_ELF(clmp) && SYMINTP(clmp)(slp, srp, binfo, NULL)) { 1209 Sym *sym = srp->sr_sym; 1210 1211 slp->sl_rsymndx = (((ulong_t)sym - 1212 (ulong_t)SYMTAB(clmp)) / SYMENT(clmp)); 1213 slp->sl_rsym = sym; 1214 return (sym); 1215 } 1216 return (NULL); 1217 } 1218 1219 /* 1220 * Core dlsym activity. Selects symbol lookup method from handle. 1221 */ 1222 static void * 1223 dlsym_core(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp, 1224 int *in_nfavl) 1225 { 1226 Sym *sym; 1227 int ret = 0; 1228 Syminfo *sip; 1229 Slookup sl; 1230 Sresult sr; 1231 uint_t binfo; 1232 1233 /* 1234 * Initialize the symbol lookup data structure. 1235 * 1236 * Standard relocations are evaluated using the symbol index of the 1237 * associated relocation symbol. This index provides for loading 1238 * any lazy dependency and establishing a direct binding if necessary. 1239 * If a dlsym() operation originates from an object that contains a 1240 * symbol table entry for the same name, then we need to establish the 1241 * symbol index so that any dependency requirements can be triggered. 1242 * 1243 * Therefore, the first symbol lookup that is carried out is for the 1244 * symbol name within the calling object. If this symbol exists, the 1245 * symbols index is computed, added to the Slookup data, and thus used 1246 * to seed the real symbol lookup. 1247 */ 1248 SLOOKUP_INIT(sl, name, clmp, clmp, ld_entry_cnt, elf_hash(name), 1249 0, 0, 0, LKUP_SYMNDX); 1250 SRESULT_INIT(sr, name); 1251 sym = sym_lookup_in_caller(clmp, &sl, &sr, &binfo); 1252 1253 SRESULT_INIT(sr, name); 1254 1255 if (sym && (ELF_ST_VISIBILITY(sym->st_other) == STV_SINGLETON)) { 1256 Rt_map *hlmp = LIST(clmp)->lm_head; 1257 1258 /* 1259 * If a symbol reference is known, and that reference indicates 1260 * that the symbol is a singleton, then the search for the 1261 * symbol must follow the default search path. 1262 */ 1263 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0, 1264 DBG_DLSYM_SINGLETON)); 1265 1266 sl.sl_imap = hlmp; 1267 if (handle == RTLD_PROBE) 1268 sl.sl_flags = LKUP_NOFALLBACK; 1269 else 1270 sl.sl_flags = LKUP_SPEC; 1271 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1272 1273 } else if (handle == RTLD_NEXT) { 1274 Rt_map *nlmp; 1275 1276 /* 1277 * If this handle is RTLD_NEXT determine whether a lazy load 1278 * from the caller might provide the next object. This mimics 1279 * the lazy loading initialization normally carried out by 1280 * lookup_sym(), however here, we must do this up-front, as 1281 * lookup_sym() will be used to inspect the next object. 1282 */ 1283 if ((sl.sl_rsymndx) && ((sip = SYMINFO(clmp)) != NULL)) { 1284 /* LINTED */ 1285 sip = (Syminfo *)((char *)sip + 1286 (sl.sl_rsymndx * SYMINENT(clmp))); 1287 1288 if ((sip->si_flags & SYMINFO_FLG_DIRECT) && 1289 (sip->si_boundto < SYMINFO_BT_LOWRESERVE)) 1290 (void) elf_lazy_load(clmp, &sl, 1291 sip->si_boundto, name, 0, NULL, in_nfavl); 1292 1293 /* 1294 * Clear the symbol index, so as not to confuse 1295 * lookup_sym() of the next object. 1296 */ 1297 sl.sl_rsymndx = 0; 1298 sl.sl_rsym = NULL; 1299 } 1300 1301 /* 1302 * If the handle is RTLD_NEXT, start searching in the next link 1303 * map from the callers. Determine permissions from the 1304 * present link map. Indicate to lookup_sym() that we're on an 1305 * RTLD_NEXT request so that it will use the callers link map to 1306 * start any possible lazy dependency loading. 1307 */ 1308 sl.sl_imap = nlmp = NEXT_RT_MAP(clmp); 1309 1310 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 1311 (nlmp ? NAME(nlmp) : MSG_INTL(MSG_STR_NULL)), 1312 DBG_DLSYM_NEXT)); 1313 1314 if (nlmp == NULL) 1315 return (0); 1316 1317 sl.sl_flags = LKUP_NEXT; 1318 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1319 1320 } else if (handle == RTLD_SELF) { 1321 /* 1322 * If the handle is RTLD_SELF start searching from the caller. 1323 */ 1324 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, NAME(clmp), 1325 DBG_DLSYM_SELF)); 1326 1327 sl.sl_imap = clmp; 1328 sl.sl_flags = (LKUP_SPEC | LKUP_SELF); 1329 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1330 1331 } else if (handle == RTLD_DEFAULT) { 1332 Rt_map *hlmp = LIST(clmp)->lm_head; 1333 1334 /* 1335 * If the handle is RTLD_DEFAULT mimic the standard symbol 1336 * lookup as would be triggered by a relocation. 1337 */ 1338 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0, 1339 DBG_DLSYM_DEFAULT)); 1340 1341 sl.sl_imap = hlmp; 1342 sl.sl_flags = LKUP_SPEC; 1343 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1344 1345 } else if (handle == RTLD_PROBE) { 1346 Rt_map *hlmp = LIST(clmp)->lm_head; 1347 1348 /* 1349 * If the handle is RTLD_PROBE, mimic the standard symbol 1350 * lookup as would be triggered by a relocation, however do 1351 * not fall back to a lazy loading rescan if the symbol can't be 1352 * found within the currently loaded objects. Note, a lazy 1353 * loaded dependency required by the caller might still get 1354 * loaded to satisfy this request, but no exhaustive lazy load 1355 * rescan is carried out. 1356 */ 1357 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0, 1358 DBG_DLSYM_PROBE)); 1359 1360 sl.sl_imap = hlmp; 1361 sl.sl_flags = LKUP_NOFALLBACK; 1362 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1363 1364 } else { 1365 Grp_hdl *ghp = (Grp_hdl *)handle; 1366 1367 /* 1368 * Look in the shared object specified by the handle and in all 1369 * of its dependencies. 1370 */ 1371 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 1372 NAME(ghp->gh_ownlmp), DBG_DLSYM_DEF)); 1373 1374 ret = LM_DLSYM(clmp)(ghp, &sl, &sr, &binfo, in_nfavl); 1375 } 1376 1377 if (ret && ((sym = sr.sr_sym) != NULL)) { 1378 Lm_list *lml = LIST(clmp); 1379 Addr addr = sym->st_value; 1380 1381 *dlmp = sr.sr_dmap; 1382 if (!(FLAGS(*dlmp) & FLG_RT_FIXED)) 1383 addr += ADDR(*dlmp); 1384 1385 /* 1386 * Indicate that the defining object is now used. 1387 */ 1388 if (*dlmp != clmp) 1389 FLAGS1(*dlmp) |= FL1_RT_USED; 1390 1391 DBG_CALL(Dbg_bind_global(clmp, 0, 0, (Xword)-1, PLT_T_NONE, 1392 *dlmp, addr, sym->st_value, sr.sr_name, binfo)); 1393 1394 if ((lml->lm_tflags | AFLAGS(clmp) | AFLAGS(*dlmp)) & 1395 LML_TFLG_AUD_SYMBIND) { 1396 uint_t sb_flags = LA_SYMB_DLSYM; 1397 /* LINTED */ 1398 uint_t symndx = (uint_t)(((Xword)sym - 1399 (Xword)SYMTAB(*dlmp)) / SYMENT(*dlmp)); 1400 addr = audit_symbind(clmp, *dlmp, sym, symndx, addr, 1401 &sb_flags); 1402 } 1403 return ((void *)addr); 1404 } 1405 1406 return (NULL); 1407 } 1408 1409 /* 1410 * Internal dlsym activity. Called from user level or directly for internal 1411 * symbol lookup. 1412 */ 1413 void * 1414 dlsym_intn(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp) 1415 { 1416 Rt_map *llmp = NULL; 1417 void *error; 1418 Aliste idx; 1419 Grp_desc *gdp; 1420 int in_nfavl = 0; 1421 1422 /* 1423 * While looking for symbols it's quite possible that additional objects 1424 * get loaded from lazy loading. These objects will have been added to 1425 * the same link-map list as those objects on the handle. Remember this 1426 * list for later investigation. 1427 */ 1428 if ((handle == RTLD_NEXT) || (handle == RTLD_DEFAULT) || 1429 (handle == RTLD_SELF) || (handle == RTLD_PROBE)) 1430 llmp = LIST(clmp)->lm_tail; 1431 else { 1432 Grp_hdl *ghp = (Grp_hdl *)handle; 1433 1434 if (ghp->gh_ownlmp) 1435 llmp = LIST(ghp->gh_ownlmp)->lm_tail; 1436 else { 1437 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 1438 if ((llmp = 1439 LIST(gdp->gd_depend)->lm_tail) != NULL) 1440 break; 1441 } 1442 } 1443 } 1444 1445 error = dlsym_core(handle, name, clmp, dlmp, &in_nfavl); 1446 1447 /* 1448 * If the symbol could not be found it is possible that the "not-found" 1449 * AVL tree had indicated that a required file does not exist. In case 1450 * the file system has changed since this "not-found" recording was 1451 * made, retry the dlsym() with a clean "not-found" AVL tree. 1452 */ 1453 if ((error == NULL) && in_nfavl) { 1454 avl_tree_t *oavlt = nfavl; 1455 1456 nfavl = NULL; 1457 error = dlsym_core(handle, name, clmp, dlmp, NULL); 1458 1459 /* 1460 * If the symbol is found, then any file that was loaded will 1461 * have had its full path name registered in the FullPath AVL 1462 * tree. Remove any new "not-found" AVL information, and 1463 * restore the former AVL tree. 1464 */ 1465 nfavl_remove(nfavl); 1466 nfavl = oavlt; 1467 } 1468 1469 if (error == NULL) { 1470 /* 1471 * Cache the error message, as Java tends to fall through this 1472 * code many times. 1473 */ 1474 if (nosym_str == NULL) 1475 nosym_str = MSG_INTL(MSG_GEN_NOSYM); 1476 eprintf(LIST(clmp), ERR_FATAL, nosym_str, name); 1477 } 1478 1479 load_completion(llmp); 1480 return (error); 1481 } 1482 1483 /* 1484 * Argument checking for dlsym. Only called via external entry. 1485 */ 1486 static void * 1487 dlsym_check(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp) 1488 { 1489 /* 1490 * Verify the arguments. 1491 */ 1492 if (name == NULL) { 1493 eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_ILLSYM)); 1494 return (NULL); 1495 } 1496 if ((handle != RTLD_NEXT) && (handle != RTLD_DEFAULT) && 1497 (handle != RTLD_SELF) && (handle != RTLD_PROBE) && 1498 (hdl_validate((Grp_hdl *)handle) == 0)) { 1499 eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL), 1500 EC_NATPTR(handle)); 1501 return (NULL); 1502 } 1503 return (dlsym_intn(handle, name, clmp, dlmp)); 1504 } 1505 1506 1507 #pragma weak _dlsym = dlsym 1508 1509 /* 1510 * External entry for dlsym(). On success, returns the address of the specified 1511 * symbol. On error returns a null. 1512 */ 1513 void * 1514 dlsym(void *handle, const char *name) 1515 { 1516 int entry; 1517 Rt_map *clmp, *dlmp = NULL; 1518 void *addr; 1519 1520 entry = enter(0); 1521 1522 clmp = _caller(caller(), CL_EXECDEF); 1523 1524 addr = dlsym_check(handle, name, clmp, &dlmp); 1525 1526 if (entry) { 1527 if (dlmp) 1528 is_dep_init(dlmp, clmp); 1529 leave(LIST(clmp), 0); 1530 } 1531 return (addr); 1532 } 1533 1534 /* 1535 * Core dladdr activity. 1536 */ 1537 static void 1538 dladdr_core(Rt_map *almp, void *addr, Dl_info_t *dlip, void **info, int flags) 1539 { 1540 /* 1541 * Set up generic information and any defaults. 1542 */ 1543 dlip->dli_fname = PATHNAME(almp); 1544 1545 dlip->dli_fbase = (void *)ADDR(almp); 1546 dlip->dli_sname = NULL; 1547 dlip->dli_saddr = NULL; 1548 1549 /* 1550 * Determine the nearest symbol to this address. 1551 */ 1552 LM_DLADDR(almp)((ulong_t)addr, almp, dlip, info, flags); 1553 } 1554 1555 #pragma weak _dladdr = dladdr 1556 1557 /* 1558 * External entry for dladdr(3dl) and dladdr1(3dl). Returns an information 1559 * structure that reflects the symbol closest to the address specified. 1560 */ 1561 int 1562 dladdr(void *addr, Dl_info_t *dlip) 1563 { 1564 int entry, ret; 1565 Rt_map *clmp, *almp; 1566 Lm_list *clml; 1567 1568 entry = enter(0); 1569 1570 clmp = _caller(caller(), CL_EXECDEF); 1571 clml = LIST(clmp); 1572 1573 DBG_CALL(Dbg_dl_dladdr(clmp, addr)); 1574 1575 /* 1576 * Use our calling technique to determine what object is associated 1577 * with the supplied address. If a caller can't be determined, 1578 * indicate the failure. 1579 */ 1580 if ((almp = _caller(addr, CL_NONE)) == NULL) { 1581 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_INVADDR), 1582 EC_NATPTR(addr)); 1583 ret = 0; 1584 } else { 1585 dladdr_core(almp, addr, dlip, 0, 0); 1586 ret = 1; 1587 } 1588 1589 if (entry) 1590 leave(clml, 0); 1591 return (ret); 1592 } 1593 1594 #pragma weak _dladdr1 = dladdr1 1595 1596 int 1597 dladdr1(void *addr, Dl_info_t *dlip, void **info, int flags) 1598 { 1599 int entry, ret = 1; 1600 Rt_map *clmp, *almp; 1601 Lm_list *clml; 1602 1603 entry = enter(0); 1604 1605 clmp = _caller(caller(), CL_EXECDEF); 1606 clml = LIST(clmp); 1607 1608 DBG_CALL(Dbg_dl_dladdr(clmp, addr)); 1609 1610 /* 1611 * Validate any flags. 1612 */ 1613 if (flags) { 1614 int request; 1615 1616 if (((request = (flags & RTLD_DL_MASK)) != RTLD_DL_SYMENT) && 1617 (request != RTLD_DL_LINKMAP)) { 1618 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLFLAGS), 1619 flags); 1620 ret = 0; 1621 1622 } else if (info == NULL) { 1623 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLINFO), 1624 flags); 1625 ret = 0; 1626 } 1627 } 1628 1629 /* 1630 * Use our calling technique to determine what object is associated 1631 * with the supplied address. If a caller can't be determined, 1632 * indicate the failure. 1633 */ 1634 if (ret) { 1635 if ((almp = _caller(addr, CL_NONE)) == NULL) { 1636 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_INVADDR), 1637 EC_NATPTR(addr)); 1638 ret = 0; 1639 } else 1640 dladdr_core(almp, addr, dlip, info, flags); 1641 } 1642 1643 if (entry) 1644 leave(clml, 0); 1645 return (ret); 1646 } 1647 1648 /* 1649 * Core dldump activity. 1650 */ 1651 static int 1652 dldump_core(Rt_map *clmp, Rt_map *lmp, const char *ipath, const char *opath, 1653 int flags) 1654 { 1655 Lm_list *lml = LIST(clmp); 1656 Addr addr = 0; 1657 1658 /* 1659 * Verify any arguments first. 1660 */ 1661 if ((opath == NULL) || (opath[0] == '\0') || 1662 ((lmp == NULL) && (ipath[0] == '\0'))) { 1663 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLPATH)); 1664 return (1); 1665 } 1666 1667 /* 1668 * If an input file is specified make sure its one of our dependencies 1669 * on the main link-map list. Note, this has really all evolved for 1670 * crle(), which uses libcrle.so on an alternative link-map to trigger 1671 * dumping objects from the main link-map list. If we ever want to 1672 * dump objects from alternative link-maps, this model is going to 1673 * have to be revisited. 1674 */ 1675 if (lmp == NULL) { 1676 if ((lmp = is_so_loaded(&lml_main, ipath, NULL)) == NULL) { 1677 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_NOFILE), 1678 ipath); 1679 return (1); 1680 } 1681 if (FLAGS(lmp) & FLG_RT_ALTER) { 1682 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_ALTER), ipath); 1683 return (1); 1684 } 1685 if (FLAGS(lmp) & FLG_RT_NODUMP) { 1686 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_NODUMP), 1687 ipath); 1688 return (1); 1689 } 1690 } 1691 1692 /* 1693 * If the object being dump'ed isn't fixed identify its mapping. 1694 */ 1695 if (!(FLAGS(lmp) & FLG_RT_FIXED)) 1696 addr = ADDR(lmp); 1697 1698 /* 1699 * As rt_dldump() will effectively lazy load the necessary support 1700 * libraries, make sure ld.so.1 is initialized for plt relocations. 1701 */ 1702 if (elf_rtld_load() == 0) 1703 return (0); 1704 1705 /* 1706 * Dump the required image. 1707 */ 1708 return (rt_dldump(lmp, opath, flags, addr)); 1709 } 1710 1711 #pragma weak _dldump = dldump 1712 1713 /* 1714 * External entry for dldump(3c). Returns 0 on success, non-zero otherwise. 1715 */ 1716 int 1717 dldump(const char *ipath, const char *opath, int flags) 1718 { 1719 int error, entry; 1720 Rt_map *clmp, *lmp; 1721 1722 entry = enter(0); 1723 1724 clmp = _caller(caller(), CL_EXECDEF); 1725 1726 if (ipath) { 1727 lmp = NULL; 1728 } else { 1729 lmp = lml_main.lm_head; 1730 ipath = NAME(lmp); 1731 } 1732 1733 DBG_CALL(Dbg_dl_dldump(clmp, ipath, opath, flags)); 1734 1735 error = dldump_core(clmp, lmp, ipath, opath, flags); 1736 1737 if (entry) 1738 leave(LIST(clmp), 0); 1739 return (error); 1740 } 1741 1742 /* 1743 * get_linkmap_id() translates Lm_list * pointers to the Link_map id as used by 1744 * the rtld_db and dlmopen() interfaces. It checks to see if the Link_map is 1745 * one of the primary ones and if so returns it's special token: 1746 * LM_ID_BASE 1747 * LM_ID_LDSO 1748 * 1749 * If it's not one of the primary link_map id's it will instead returns a 1750 * pointer to the Lm_list structure which uniquely identifies the Link_map. 1751 */ 1752 Lmid_t 1753 get_linkmap_id(Lm_list *lml) 1754 { 1755 if (lml->lm_flags & LML_FLG_BASELM) 1756 return (LM_ID_BASE); 1757 if (lml->lm_flags & LML_FLG_RTLDLM) 1758 return (LM_ID_LDSO); 1759 1760 return ((Lmid_t)lml); 1761 } 1762 1763 /* 1764 * Set a new deferred dependency name. 1765 */ 1766 static int 1767 set_def_need(Lm_list *lml, Dyninfo *dyip, const char *name) 1768 { 1769 /* 1770 * If this dependency has already been established, then this dlinfo() 1771 * call is too late. 1772 */ 1773 if (dyip->di_info) { 1774 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_DEF_DEPLOADED), 1775 dyip->di_name); 1776 return (-1); 1777 } 1778 1779 /* 1780 * Assign the new dependency name. 1781 */ 1782 DBG_CALL(Dbg_file_deferred(lml, dyip->di_name, name)); 1783 dyip->di_flags |= FLG_DI_DEF_DONE; 1784 dyip->di_name = name; 1785 return (0); 1786 } 1787 1788 /* 1789 * Extract information for a dlopen() handle. 1790 */ 1791 static int 1792 dlinfo_core(void *handle, int request, void *p, Rt_map *clmp) 1793 { 1794 Conv_inv_buf_t inv_buf; 1795 char *handlename; 1796 Lm_list *lml = LIST(clmp); 1797 Rt_map *lmp = NULL; 1798 1799 /* 1800 * Determine whether a handle is provided. A handle isn't needed for 1801 * all operations, but it is validated here for the initial diagnostic. 1802 */ 1803 if (handle == RTLD_SELF) { 1804 lmp = clmp; 1805 } else { 1806 Grp_hdl *ghp = (Grp_hdl *)handle; 1807 1808 if (hdl_validate(ghp)) 1809 lmp = ghp->gh_ownlmp; 1810 } 1811 if (lmp) { 1812 handlename = NAME(lmp); 1813 } else { 1814 (void) conv_invalid_val(&inv_buf, EC_NATPTR(handle), 0); 1815 handlename = inv_buf.buf; 1816 } 1817 1818 DBG_CALL(Dbg_dl_dlinfo(clmp, handlename, request, p)); 1819 1820 /* 1821 * Validate the request and return buffer. 1822 */ 1823 if ((request > RTLD_DI_MAX) || (p == NULL)) { 1824 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLVAL)); 1825 return (-1); 1826 } 1827 1828 /* 1829 * Return configuration cache name and address. 1830 */ 1831 if (request == RTLD_DI_CONFIGADDR) { 1832 Dl_info_t *dlip = (Dl_info_t *)p; 1833 1834 if ((config->c_name == NULL) || (config->c_bgn == 0) || 1835 (config->c_end == 0)) { 1836 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_NOCONFIG)); 1837 return (-1); 1838 } 1839 dlip->dli_fname = config->c_name; 1840 dlip->dli_fbase = (void *)config->c_bgn; 1841 return (0); 1842 } 1843 1844 /* 1845 * Return profiled object name (used by ldprof audit library). 1846 */ 1847 if (request == RTLD_DI_PROFILENAME) { 1848 if (profile_name == NULL) { 1849 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_NOPROFNAME)); 1850 return (-1); 1851 } 1852 1853 *(const char **)p = profile_name; 1854 return (0); 1855 } 1856 if (request == RTLD_DI_PROFILEOUT) { 1857 /* 1858 * If a profile destination directory hasn't been specified 1859 * provide a default. 1860 */ 1861 if (profile_out == NULL) 1862 profile_out = MSG_ORIG(MSG_PTH_VARTMP); 1863 1864 *(const char **)p = profile_out; 1865 return (0); 1866 } 1867 1868 /* 1869 * Obtain or establish a termination signal. 1870 */ 1871 if (request == RTLD_DI_GETSIGNAL) { 1872 *(int *)p = killsig; 1873 return (0); 1874 } 1875 1876 if (request == RTLD_DI_SETSIGNAL) { 1877 sigset_t set; 1878 int sig = *(int *)p; 1879 1880 /* 1881 * Determine whether the signal is in range. 1882 */ 1883 (void) sigfillset(&set); 1884 if (sigismember(&set, sig) != 1) { 1885 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_INVSIG), sig); 1886 return (-1); 1887 } 1888 1889 killsig = sig; 1890 return (0); 1891 } 1892 1893 /* 1894 * For any other request a link-map is required. Verify the handle. 1895 */ 1896 if (lmp == NULL) { 1897 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL), 1898 EC_NATPTR(handle)); 1899 return (-1); 1900 } 1901 1902 /* 1903 * Obtain the process arguments, environment and auxv. Note, as the 1904 * environment can be modified by the user (putenv(3c)), reinitialize 1905 * the environment pointer on each request. 1906 */ 1907 if (request == RTLD_DI_ARGSINFO) { 1908 Dl_argsinfo_t *aip = (Dl_argsinfo_t *)p; 1909 Lm_list *lml = LIST(lmp); 1910 1911 *aip = argsinfo; 1912 if (lml->lm_flags & LML_FLG_ENVIRON) 1913 aip->dla_envp = *(lml->lm_environ); 1914 1915 return (0); 1916 } 1917 1918 /* 1919 * Return Lmid_t of the Link-Map list that the specified object is 1920 * loaded on. 1921 */ 1922 if (request == RTLD_DI_LMID) { 1923 *(Lmid_t *)p = get_linkmap_id(LIST(lmp)); 1924 return (0); 1925 } 1926 1927 /* 1928 * Return a pointer to the Link-Map structure associated with the 1929 * specified object. 1930 */ 1931 if (request == RTLD_DI_LINKMAP) { 1932 *(Link_map **)p = (Link_map *)lmp; 1933 return (0); 1934 } 1935 1936 /* 1937 * Return search path information, or the size of the buffer required 1938 * to store the information. 1939 */ 1940 if ((request == RTLD_DI_SERINFO) || (request == RTLD_DI_SERINFOSIZE)) { 1941 Spath_desc sd = { search_rules, NULL, 0 }; 1942 Pdesc *pdp; 1943 Dl_serinfo_t *info; 1944 Dl_serpath_t *path; 1945 char *strs; 1946 size_t size = sizeof (Dl_serinfo_t); 1947 uint_t cnt = 0; 1948 1949 info = (Dl_serinfo_t *)p; 1950 path = &info->dls_serpath[0]; 1951 strs = (char *)&info->dls_serpath[info->dls_cnt]; 1952 1953 /* 1954 * Traverse search path entries for this object. 1955 */ 1956 while ((pdp = get_next_dir(&sd, lmp, 0)) != NULL) { 1957 size_t _size; 1958 1959 if (pdp->pd_pname == NULL) 1960 continue; 1961 1962 /* 1963 * If configuration information exists, it's possible 1964 * this path has been identified as non-existent, if so 1965 * ignore it. 1966 */ 1967 if (pdp->pd_info) { 1968 Rtc_obj *dobj = (Rtc_obj *)pdp->pd_info; 1969 if (dobj->co_flags & RTC_OBJ_NOEXIST) 1970 continue; 1971 } 1972 1973 /* 1974 * Keep track of search path count and total info size. 1975 */ 1976 if (cnt++) 1977 size += sizeof (Dl_serpath_t); 1978 _size = pdp->pd_plen + 1; 1979 size += _size; 1980 1981 if (request == RTLD_DI_SERINFOSIZE) 1982 continue; 1983 1984 /* 1985 * If we're filling in search path information, confirm 1986 * there's sufficient space. 1987 */ 1988 if (size > info->dls_size) { 1989 eprintf(lml, ERR_FATAL, 1990 MSG_INTL(MSG_ARG_SERSIZE), 1991 EC_OFF(info->dls_size)); 1992 return (-1); 1993 } 1994 if (cnt > info->dls_cnt) { 1995 eprintf(lml, ERR_FATAL, 1996 MSG_INTL(MSG_ARG_SERCNT), info->dls_cnt); 1997 return (-1); 1998 } 1999 2000 /* 2001 * Append the path to the information buffer. 2002 */ 2003 (void) strcpy(strs, pdp->pd_pname); 2004 path->dls_name = strs; 2005 path->dls_flags = (pdp->pd_flags & LA_SER_MASK); 2006 2007 strs = strs + _size; 2008 path++; 2009 } 2010 2011 /* 2012 * If we're here to size the search buffer fill it in. 2013 */ 2014 if (request == RTLD_DI_SERINFOSIZE) { 2015 info->dls_size = size; 2016 info->dls_cnt = cnt; 2017 } 2018 2019 return (0); 2020 } 2021 2022 /* 2023 * Return the origin of the object associated with this link-map. 2024 * Basically return the dirname(1) of the objects fullpath. 2025 */ 2026 if (request == RTLD_DI_ORIGIN) { 2027 char *str = (char *)p; 2028 2029 (void) strncpy(str, ORIGNAME(lmp), DIRSZ(lmp)); 2030 str += DIRSZ(lmp); 2031 *str = '\0'; 2032 2033 return (0); 2034 } 2035 2036 /* 2037 * Return the number of object mappings, or the mapping information for 2038 * this object. 2039 */ 2040 if (request == RTLD_DI_MMAPCNT) { 2041 uint_t *cnt = (uint_t *)p; 2042 2043 *cnt = MMAPCNT(lmp); 2044 return (0); 2045 } 2046 if (request == RTLD_DI_MMAPS) { 2047 Dl_mapinfo_t *mip = (Dl_mapinfo_t *)p; 2048 2049 if (mip->dlm_acnt && mip->dlm_maps) { 2050 uint_t cnt = 0; 2051 2052 while ((cnt < mip->dlm_acnt) && (cnt < MMAPCNT(lmp))) { 2053 mip->dlm_maps[cnt] = MMAPS(lmp)[cnt]; 2054 cnt++; 2055 } 2056 mip->dlm_rcnt = cnt; 2057 } 2058 return (0); 2059 } 2060 2061 /* 2062 * Assign a new dependency name to a deferred dependency. 2063 */ 2064 if ((request == RTLD_DI_DEFERRED) || 2065 (request == RTLD_DI_DEFERRED_SYM)) { 2066 Dl_definfo_t *dfip = (Dl_definfo_t *)p; 2067 Dyninfo *dyip; 2068 const char *dname, *rname; 2069 2070 /* 2071 * Verify the names. 2072 */ 2073 if ((dfip->dld_refname == NULL) || 2074 (dfip->dld_depname == NULL)) { 2075 eprintf(LIST(clmp), ERR_FATAL, 2076 MSG_INTL(MSG_ARG_ILLNAME)); 2077 return (-1); 2078 } 2079 2080 dname = dfip->dld_depname; 2081 rname = dfip->dld_refname; 2082 2083 /* 2084 * A deferred dependency can be determined by referencing a 2085 * symbol family member that is associated to the dependency, 2086 * or by looking for the dependency by its name. 2087 */ 2088 if (request == RTLD_DI_DEFERRED_SYM) { 2089 Slookup sl; 2090 Sresult sr; 2091 uint_t binfo; 2092 Syminfo *sip; 2093 2094 /* 2095 * Lookup the symbol in the associated object. 2096 */ 2097 SLOOKUP_INIT(sl, rname, lmp, lmp, ld_entry_cnt, 2098 elf_hash(rname), 0, 0, 0, LKUP_SYMNDX); 2099 SRESULT_INIT(sr, rname); 2100 if (sym_lookup_in_caller(clmp, &sl, &sr, 2101 &binfo) == NULL) { 2102 eprintf(LIST(clmp), ERR_FATAL, 2103 MSG_INTL(MSG_DEF_NOSYMFOUND), rname); 2104 return (-1); 2105 } 2106 2107 /* 2108 * Use the symbols index to reference the Syminfo entry 2109 * and thus find the associated dependency. 2110 */ 2111 if (sl.sl_rsymndx && ((sip = SYMINFO(clmp)) != NULL)) { 2112 /* LINTED */ 2113 sip = (Syminfo *)((char *)sip + 2114 (sl.sl_rsymndx * SYMINENT(lmp))); 2115 2116 if ((sip->si_flags & SYMINFO_FLG_DEFERRED) && 2117 (sip->si_boundto < SYMINFO_BT_LOWRESERVE) && 2118 ((dyip = DYNINFO(lmp)) != NULL)) { 2119 dyip += sip->si_boundto; 2120 2121 if (!(dyip->di_flags & FLG_DI_IGNORE)) 2122 return (set_def_need(lml, 2123 dyip, dname)); 2124 } 2125 } 2126 2127 /* 2128 * No deferred symbol found. 2129 */ 2130 eprintf(LIST(clmp), ERR_FATAL, 2131 MSG_INTL(MSG_DEF_NOSYMFOUND), rname); 2132 return (-1); 2133 2134 } else { 2135 Dyn *dyn; 2136 2137 /* 2138 * Using the target objects dependency information, find 2139 * the associated deferred dependency. 2140 */ 2141 for (dyn = DYN(lmp), dyip = DYNINFO(lmp); 2142 !(dyip->di_flags & FLG_DI_IGNORE); dyn++, dyip++) { 2143 const char *oname; 2144 2145 if ((dyip->di_flags & FLG_DI_DEFERRED) == 0) 2146 continue; 2147 2148 if (strcmp(rname, dyip->di_name) == 0) 2149 return (set_def_need(lml, dyip, dname)); 2150 2151 /* 2152 * If this dependency name has been changed by 2153 * a previous dlinfo(), check the original 2154 * dynamic entry string. The user might be 2155 * attempting to re-change an entry using the 2156 * original name as the reference. 2157 */ 2158 if ((dyip->di_flags & FLG_DI_DEF_DONE) == 0) 2159 continue; 2160 2161 oname = STRTAB(lmp) + dyn->d_un.d_val; 2162 if (strcmp(rname, oname) == 0) 2163 return (set_def_need(lml, dyip, dname)); 2164 } 2165 2166 /* 2167 * No deferred dependency found. 2168 */ 2169 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_DEF_NODEPFOUND), 2170 rname); 2171 return (-1); 2172 } 2173 } 2174 return (0); 2175 } 2176 2177 #pragma weak _dlinfo = dlinfo 2178 2179 /* 2180 * External entry for dlinfo(3dl). 2181 */ 2182 int 2183 dlinfo(void *handle, int request, void *p) 2184 { 2185 int error, entry; 2186 Rt_map *clmp; 2187 2188 entry = enter(0); 2189 2190 clmp = _caller(caller(), CL_EXECDEF); 2191 2192 error = dlinfo_core(handle, request, p, clmp); 2193 2194 if (entry) 2195 leave(LIST(clmp), 0); 2196 return (error); 2197 } 2198 2199 /* 2200 * GNU defined function to iterate through the program headers for all 2201 * currently loaded dynamic objects. The caller supplies a callback function 2202 * which is called for each object. 2203 * 2204 * entry: 2205 * callback - Callback function to call. The arguments to the callback 2206 * function are: 2207 * info - Address of dl_phdr_info structure 2208 * size - sizeof (struct dl_phdr_info) 2209 * data - Caller supplied value. 2210 * data - Value supplied by caller, which is passed to callback without 2211 * examination. 2212 * 2213 * exit: 2214 * callback is called for each dynamic ELF object in the process address 2215 * space, halting when a non-zero value is returned, or when the last 2216 * object has been processed. The return value from the last call 2217 * to callback is returned. 2218 * 2219 * note: 2220 * The Linux implementation has added additional fields to the 2221 * dl_phdr_info structure over time. The callback function is 2222 * supposed to use the size field to determine which fields are 2223 * present, and to avoid attempts to access non-existent fields. 2224 * We have added those fields that are compatible with Solaris, and 2225 * which are used by GNU C++ (g++) runtime exception handling support. 2226 * 2227 * note: 2228 * We issue a callback for every ELF object mapped into the process 2229 * address space at the time this routine is entered. These callbacks 2230 * are arbitrary functions that can do anything, including possibly 2231 * causing new objects to be mapped into the process, or unmapped. 2232 * This complicates matters: 2233 * 2234 * - Adding new objects can cause the alists to be reallocated 2235 * or for contents to move. This can happen explicitly via 2236 * dlopen(), or implicitly via lazy loading. One might consider 2237 * simply banning dlopen from a callback, but lazy loading must 2238 * be allowed, in which case there's no reason to ban dlopen(). 2239 * 2240 * - Removing objects can leave us holding references to freed 2241 * memory that must not be accessed, and can cause the list 2242 * items to move in a way that would cause us to miss reporting 2243 * one, or double report others. 2244 * 2245 * - We cannot allocate memory to build a separate data structure, 2246 * because the interface to dl_iterate_phdr() does not have a 2247 * way to communicate allocation errors back to the caller. 2248 * Even if we could, it would be difficult to do so efficiently. 2249 * 2250 * - It is possible for dl_iterate_phdr() to be called recursively 2251 * from a callback, and there is no way for us to detect or manage 2252 * this effectively, particularly as the user might use longjmp() 2253 * to skip past us on return. Hence, we must be reentrant 2254 * (stateless), further precluding the option of building a 2255 * separate data structure. 2256 * 2257 * Despite these constraints, we are able to traverse the link-map 2258 * lists safely: 2259 * 2260 * - Once interposer (preload) objects have been processed at 2261 * startup, we know that new objects are always placed at the 2262 * end of the list. Hence, if we are reading a list when that 2263 * happens, the new object will not alter the part of the list 2264 * that we've already processed. 2265 * 2266 * - The alist _TRAVERSE macros recalculate the address of the 2267 * current item from scratch on each iteration, rather than 2268 * incrementing a pointer. Hence, alist additions that occur 2269 * in mid-traverse will not cause confusion. 2270 * 2271 * There is one limitation: We cannot continue operation if an object 2272 * is removed from the process from within a callback. We detect when 2273 * this happens and return immediately with a -1 return value. 2274 * 2275 * note: 2276 * As currently implemented, if a callback causes an object to be loaded, 2277 * that object may or may not be reported by the current invocation of 2278 * dl_iterate_phdr(), based on whether or not we have already processed 2279 * the link-map list that receives it. If we want to prevent this, it 2280 * can be done efficiently by associating the current value of cnt_map 2281 * with each new Rt_map entered into the system. Then this function can 2282 * use that to detect and skip new objects that enter the system in 2283 * mid-iteration. However, the Linux documentation is ambiguous on whether 2284 * this is necessary, and it does not appear to matter in practice. 2285 * We have therefore chosen not to do so at this time. 2286 */ 2287 int 2288 dl_iterate_phdr(int (*callback)(struct dl_phdr_info *, size_t, void *), 2289 void *data) 2290 { 2291 struct dl_phdr_info info; 2292 u_longlong_t l_cnt_map = cnt_map; 2293 u_longlong_t l_cnt_unmap = cnt_unmap; 2294 Lm_list *lml, *clml; 2295 Lm_cntl *lmc; 2296 Rt_map *lmp, *clmp; 2297 Aliste idx1, idx2; 2298 Ehdr *ehdr; 2299 int ret = 0; 2300 int entry; 2301 2302 entry = enter(0); 2303 clmp = _caller(caller(), CL_EXECDEF); 2304 clml = LIST(clmp); 2305 2306 DBG_CALL(Dbg_dl_iphdr_enter(clmp, cnt_map, cnt_unmap)); 2307 2308 /* Issue a callback for each ELF object in the process */ 2309 for (APLIST_TRAVERSE(dynlm_list, idx1, lml)) { 2310 for (ALIST_TRAVERSE(lml->lm_lists, idx2, lmc)) { 2311 for (lmp = lmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) { 2312 #if defined(_sparc) && !defined(_LP64) 2313 /* 2314 * On 32-bit sparc, the possibility exists that 2315 * this object is not ELF. 2316 */ 2317 if (THIS_IS_NOT_ELF(lmp)) 2318 continue; 2319 #endif 2320 /* Prepare the object information structure */ 2321 ehdr = (Ehdr *) ADDR(lmp); 2322 info.dlpi_addr = (ehdr->e_type == ET_EXEC) ? 2323 0 : ADDR(lmp); 2324 info.dlpi_name = lmp->rt_pathname; 2325 info.dlpi_phdr = (Phdr *) 2326 (ADDR(lmp) + ehdr->e_phoff); 2327 info.dlpi_phnum = ehdr->e_phnum; 2328 info.dlpi_adds = cnt_map; 2329 info.dlpi_subs = cnt_unmap; 2330 2331 /* Issue the callback */ 2332 DBG_CALL(Dbg_dl_iphdr_callback(clml, &info)); 2333 leave(clml, thr_flg_reenter); 2334 ret = (* callback)(&info, sizeof (info), data); 2335 (void) enter(thr_flg_reenter); 2336 2337 /* Return immediately on non-zero result */ 2338 if (ret != 0) 2339 goto done; 2340 2341 /* Adapt to object mapping changes */ 2342 if ((cnt_map == l_cnt_map) && 2343 (cnt_unmap == l_cnt_unmap)) 2344 continue; 2345 2346 DBG_CALL(Dbg_dl_iphdr_mapchange(clml, cnt_map, 2347 cnt_unmap)); 2348 2349 /* Stop if an object was unmapped */ 2350 if (cnt_unmap == l_cnt_unmap) { 2351 l_cnt_map = cnt_map; 2352 continue; 2353 } 2354 2355 ret = -1; 2356 DBG_CALL(Dbg_dl_iphdr_unmap_ret(clml)); 2357 goto done; 2358 } 2359 } 2360 } 2361 2362 done: 2363 if (entry) 2364 leave(LIST(clmp), 0); 2365 return (ret); 2366 } 2367