1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 27 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 28 */ 29 30 /* 31 * Programmatic interface to the run_time linker. 32 */ 33 34 #include <sys/debug.h> 35 #include <stdio.h> 36 #include <string.h> 37 #include <dlfcn.h> 38 #include <synch.h> 39 #include <limits.h> 40 #include <debug.h> 41 #include <conv.h> 42 #include "_rtld.h" 43 #include "_audit.h" 44 #include "_elf.h" 45 #include "_inline_gen.h" 46 #include "msg.h" 47 48 /* 49 * Determine who called us - given a pc determine in which object it resides. 50 * 51 * For dlopen() the link map of the caller must be passed to load_so() so that 52 * the appropriate search rules (4.x or 5.0) are used to locate any 53 * dependencies. Also, if we've been called from a 4.x module it may be 54 * necessary to fix the specified pathname so that it conforms with the 5.0 elf 55 * rules. 56 * 57 * For dlsym() the link map of the caller is used to determine RTLD_NEXT 58 * requests, together with requests based off of a dlopen(0). 59 * For dladdr() this routines provides a generic means of scanning all loaded 60 * segments. 61 */ 62 Rt_map * 63 _caller(caddr_t cpc, int flags) 64 { 65 Lm_list *lml; 66 Aliste idx1; 67 68 for (APLIST_TRAVERSE(dynlm_list, idx1, lml)) { 69 Aliste idx2; 70 Lm_cntl *lmc; 71 72 for (ALIST_TRAVERSE(lml->lm_lists, idx2, lmc)) { 73 Rt_map *lmp; 74 75 for (lmp = lmc->lc_head; lmp; 76 lmp = NEXT_RT_MAP(lmp)) { 77 78 if (find_segment(cpc, lmp)) 79 return (lmp); 80 } 81 } 82 } 83 84 /* 85 * No mapping can be determined. If asked for a default, assume this 86 * is from the executable. 87 */ 88 if (flags & CL_EXECDEF) 89 return ((Rt_map *)lml_main.lm_head); 90 91 return (0); 92 } 93 94 #pragma weak _dlerror = dlerror 95 96 /* 97 * External entry for dlerror(3dl). Returns a pointer to the string describing 98 * the last occurring error. The last occurring error is cleared. 99 */ 100 char * 101 dlerror() 102 { 103 char *error; 104 Rt_map *clmp; 105 int entry; 106 107 entry = enter(0); 108 109 clmp = _caller(caller(), CL_EXECDEF); 110 111 DBG_CALL(Dbg_dl_dlerror(clmp, lasterr)); 112 113 error = lasterr; 114 lasterr = NULL; 115 116 if (entry) 117 leave(LIST(clmp), 0); 118 return (error); 119 } 120 121 /* 122 * Add a dependency as a group descriptor to a group handle. Returns 0 on 123 * failure. On success, returns the group descriptor, and if alep is non-NULL 124 * the *alep is set to ALE_EXISTS if the dependency already exists, or to 125 * ALE_CREATE if the dependency is newly created. 126 */ 127 Grp_desc * 128 hdl_add(Grp_hdl *ghp, Rt_map *lmp, uint_t dflags, int *alep) 129 { 130 Grp_desc *gdp; 131 Aliste idx; 132 int ale = ALE_CREATE; 133 uint_t oflags; 134 135 /* 136 * Make sure this dependency hasn't already been recorded. 137 */ 138 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 139 if (gdp->gd_depend == lmp) { 140 ale = ALE_EXISTS; 141 break; 142 } 143 } 144 145 if (ale == ALE_CREATE) { 146 Grp_desc gd; 147 148 /* 149 * Create a new handle descriptor. 150 */ 151 gd.gd_depend = lmp; 152 gd.gd_flags = 0; 153 154 /* 155 * Indicate this object is a part of this handles group. 156 */ 157 if (aplist_append(&GROUPS(lmp), ghp, AL_CNT_GROUPS) == NULL) 158 return (NULL); 159 160 /* 161 * Append the new dependency to this handle. 162 */ 163 if ((gdp = alist_append(&ghp->gh_depends, &gd, 164 sizeof (Grp_desc), AL_CNT_DEPENDS)) == NULL) 165 return (NULL); 166 } 167 168 oflags = gdp->gd_flags; 169 gdp->gd_flags |= dflags; 170 171 if (DBG_ENABLED) { 172 if (ale == ALE_CREATE) { 173 DBG_CALL(Dbg_file_hdl_action(ghp, lmp, DBG_DEP_ADD, 174 gdp->gd_flags)); 175 } else if (gdp->gd_flags != oflags) { 176 DBG_CALL(Dbg_file_hdl_action(ghp, lmp, DBG_DEP_UPDATE, 177 gdp->gd_flags)); 178 } 179 } 180 181 if (alep) 182 *alep = ale; 183 return (gdp); 184 } 185 186 /* 187 * Create a handle. 188 * 189 * rlmp - represents the reference link-map for which the handle is being 190 * created. 191 * clmp - represents the caller who is requesting the handle. 192 * hflags - provide group handle flags (GPH_*) that affect the use of the 193 * handle, such as dlopen(0), or use or use of RTLD_FIRST. 194 * rdflags - provide group dependency flags for the reference link-map rlmp, 195 * such as whether the dependency can be used for dlsym(), can be 196 * relocated against, or whether this objects dependencies should 197 * be processed. 198 * cdflags - provide group dependency flags for the caller. 199 */ 200 Grp_hdl * 201 hdl_create(Lm_list *lml, Rt_map *rlmp, Rt_map *clmp, uint_t hflags, 202 uint_t rdflags, uint_t cdflags) 203 { 204 Grp_hdl *ghp = NULL, *aghp; 205 APlist **alpp; 206 Aliste idx; 207 208 /* 209 * For dlopen(0) the handle is maintained as part of the link-map list, 210 * otherwise the handle is associated with the reference link-map. 211 */ 212 if (hflags & GPH_ZERO) 213 alpp = &(lml->lm_handle); 214 else 215 alpp = &(HANDLES(rlmp)); 216 217 /* 218 * Objects can contain multiple handles depending on the handle flags 219 * supplied. Most RTLD flags pertain to the object itself and the 220 * bindings that it can achieve. Multiple handles for these flags 221 * don't make sense. But if the flag determines how the handle might 222 * be used, then multiple handles may exist. Presently this only makes 223 * sense for RTLD_FIRST. Determine if an appropriate handle already 224 * exists. 225 */ 226 for (APLIST_TRAVERSE(*alpp, idx, aghp)) { 227 if ((aghp->gh_flags & GPH_FIRST) == (hflags & GPH_FIRST)) { 228 ghp = aghp; 229 break; 230 } 231 } 232 233 if (ghp == NULL) { 234 uint_t ndx; 235 236 /* 237 * If this is the first request for this handle, allocate and 238 * initialize a new handle. 239 */ 240 DBG_CALL(Dbg_file_hdl_title(DBG_HDL_CREATE)); 241 242 if ((ghp = malloc(sizeof (Grp_hdl))) == NULL) 243 return (NULL); 244 245 /* 246 * Associate the handle with the link-map list or the reference 247 * link-map as appropriate. 248 */ 249 if (aplist_append(alpp, ghp, AL_CNT_GROUPS) == NULL) { 250 free(ghp); 251 return (NULL); 252 } 253 254 /* 255 * Record the existence of this handle for future verification. 256 */ 257 /* LINTED */ 258 ndx = (uintptr_t)ghp % HDLIST_SZ; 259 260 if (aplist_append(&hdl_alp[ndx], ghp, AL_CNT_HANDLES) == NULL) { 261 (void) aplist_delete_value(*alpp, ghp); 262 free(ghp); 263 return (NULL); 264 } 265 266 ghp->gh_depends = NULL; 267 ghp->gh_refcnt = 1; 268 ghp->gh_flags = hflags; 269 270 /* 271 * A dlopen(0) handle is identified by the GPH_ZERO flag, the 272 * head of the link-map list is defined as the owner. There is 273 * no need to maintain a list of dependencies, for when this 274 * handle is used (for dlsym()) a dynamic search through the 275 * entire link-map list provides for searching all objects with 276 * GLOBAL visibility. 277 */ 278 if (hflags & GPH_ZERO) { 279 ghp->gh_ownlmp = lml->lm_head; 280 ghp->gh_ownlml = lml; 281 } else { 282 ghp->gh_ownlmp = rlmp; 283 ghp->gh_ownlml = LIST(rlmp); 284 285 if (hdl_add(ghp, rlmp, rdflags, NULL) == NULL) 286 return (NULL); 287 288 /* 289 * If this new handle is a private handle, there's no 290 * need to track the caller, so we're done. 291 */ 292 if (hflags & GPH_PRIVATE) 293 return (ghp); 294 295 /* 296 * If this new handle is public, and isn't a special 297 * handle representing ld.so.1, indicate that a local 298 * group now exists. This state allows singleton 299 * searches to be optimized. 300 */ 301 if ((hflags & GPH_LDSO) == 0) 302 LIST(rlmp)->lm_flags |= LML_FLG_GROUPSEXIST; 303 } 304 } else { 305 /* 306 * If a handle already exists, bump its reference count. 307 * 308 * If the previous reference count was 0, then this is a handle 309 * that an earlier call to dlclose() was unable to remove. Such 310 * handles are put on the orphan list. As this handle is back 311 * in use, it must be removed from the orphan list. 312 * 313 * Note, handles associated with a link-map list itself (i.e. 314 * dlopen(0)) can have a reference count of 0. However, these 315 * handles are never deleted, and therefore are never moved to 316 * the orphan list. 317 */ 318 if ((ghp->gh_refcnt++ == 0) && 319 ((ghp->gh_flags & GPH_ZERO) == 0)) { 320 uint_t ndx; 321 322 /* LINTED */ 323 ndx = (uintptr_t)ghp % HDLIST_SZ; 324 325 (void) aplist_delete_value(hdl_alp[HDLIST_ORP], ghp); 326 (void) aplist_append(&hdl_alp[ndx], ghp, 327 AL_CNT_HANDLES); 328 329 if (DBG_ENABLED) { 330 Aliste idx; 331 Grp_desc *gdp; 332 333 DBG_CALL(Dbg_file_hdl_title(DBG_HDL_REINST)); 334 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) 335 DBG_CALL(Dbg_file_hdl_action(ghp, 336 gdp->gd_depend, DBG_DEP_REINST, 0)); 337 } 338 } 339 340 /* 341 * If we've been asked to create a private handle, there's no 342 * need to track the caller. 343 */ 344 if (hflags & GPH_PRIVATE) { 345 /* 346 * Negate the reference count increment. 347 */ 348 ghp->gh_refcnt--; 349 return (ghp); 350 } else { 351 /* 352 * If a private handle already exists, promote this 353 * handle to public by initializing both the reference 354 * count and the handle flags. 355 */ 356 if (ghp->gh_flags & GPH_PRIVATE) { 357 ghp->gh_refcnt = 1; 358 ghp->gh_flags &= ~GPH_PRIVATE; 359 ghp->gh_flags |= hflags; 360 } 361 } 362 } 363 364 /* 365 * Keep track of the parent (caller). As this object can be referenced 366 * by different parents, this processing is carried out every time a 367 * handle is requested. 368 */ 369 if (clmp && (hdl_add(ghp, clmp, cdflags, NULL) == NULL)) 370 return (NULL); 371 372 return (ghp); 373 } 374 375 /* 376 * Initialize a handle that has been created for an object that is already 377 * loaded. The handle is initialized with the present dependencies of that 378 * object. Once this initialization has occurred, any new objects that might 379 * be loaded as dependencies (lazy-loading) are added to the handle as each new 380 * object is loaded. 381 */ 382 int 383 hdl_initialize(Grp_hdl *ghp, Rt_map *nlmp, int mode, int promote) 384 { 385 Aliste idx; 386 Grp_desc *gdp; 387 388 /* 389 * If the handle has already been initialized, and the initial object's 390 * mode hasn't been promoted, there's no need to recompute the modes of 391 * any dependencies. If the object we've added has just been opened, 392 * the objects dependencies will not yet have been processed. These 393 * dependencies will be added on later calls to load_one(). Otherwise, 394 * this object already exists, so add all of its dependencies to the 395 * handle were operating on. 396 */ 397 if (((ghp->gh_flags & GPH_INITIAL) && (promote == 0)) || 398 ((FLAGS(nlmp) & FLG_RT_ANALYZED) == 0)) { 399 ghp->gh_flags |= GPH_INITIAL; 400 return (1); 401 } 402 403 DBG_CALL(Dbg_file_hdl_title(DBG_HDL_ADD)); 404 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 405 Rt_map *lmp = gdp->gd_depend; 406 Aliste idx1; 407 Bnd_desc *bdp; 408 409 /* 410 * If this dependency doesn't indicate that its dependencies 411 * should be added to a handle, ignore it. This case identifies 412 * a parent of a dlopen(RTLD_PARENT) request. 413 */ 414 if ((gdp->gd_flags & GPD_ADDEPS) == 0) 415 continue; 416 417 for (APLIST_TRAVERSE(DEPENDS(lmp), idx1, bdp)) { 418 Rt_map *dlmp = bdp->b_depend; 419 420 if ((bdp->b_flags & BND_NEEDED) == 0) 421 continue; 422 423 if (hdl_add(ghp, dlmp, 424 (GPD_DLSYM | GPD_RELOC | GPD_ADDEPS), NULL) == NULL) 425 return (0); 426 427 (void) update_mode(dlmp, MODE(dlmp), mode); 428 } 429 } 430 ghp->gh_flags |= GPH_INITIAL; 431 return (1); 432 } 433 434 /* 435 * Sanity check a program-provided handle. 436 */ 437 static int 438 hdl_validate(Grp_hdl *ghp) 439 { 440 Aliste idx; 441 Grp_hdl *lghp; 442 uint_t ndx; 443 444 /* LINTED */ 445 ndx = (uintptr_t)ghp % HDLIST_SZ; 446 447 for (APLIST_TRAVERSE(hdl_alp[ndx], idx, lghp)) { 448 if ((lghp == ghp) && (ghp->gh_refcnt != 0)) 449 return (1); 450 } 451 return (0); 452 } 453 454 /* 455 * Core dlclose activity. 456 */ 457 int 458 dlclose_core(Grp_hdl *ghp, Rt_map *clmp, Lm_list *lml) 459 { 460 int error; 461 Rt_map *lmp; 462 463 /* 464 * If we're already at atexit() there's no point processing further, 465 * all objects have already been tsorted for fini processing. 466 */ 467 if (rtld_flags & RT_FL_ATEXIT) 468 return (0); 469 470 /* 471 * Diagnose what we're up to. 472 */ 473 if (ghp->gh_flags & GPH_ZERO) { 474 DBG_CALL(Dbg_dl_dlclose(clmp, MSG_ORIG(MSG_STR_ZERO), 475 DBG_DLCLOSE_IGNORE)); 476 } else { 477 DBG_CALL(Dbg_dl_dlclose(clmp, NAME(ghp->gh_ownlmp), 478 DBG_DLCLOSE_NULL)); 479 } 480 481 /* 482 * Decrement reference count of this object. 483 */ 484 if (--(ghp->gh_refcnt)) 485 return (0); 486 487 /* 488 * If this handle is special (dlopen(0)), then leave it around - it 489 * has little overhead. 490 */ 491 if (ghp->gh_flags & GPH_ZERO) 492 return (0); 493 494 /* 495 * If this handle is associated with an object that is not on the base 496 * link-map control list, or it has not yet been relocated, then this 497 * handle must have originated from an auditors interaction, or some 498 * permutation of RTLD_CONFGEN use (crle(1), moe(1), etc.). User code 499 * can only execute and bind to relocated objects on the base link-map 500 * control list. Outside of RTLD_CONFGEN use, a non-relocated object, 501 * or an object on a non-base link-map control list, is in the process 502 * of being loaded, and therefore we do not attempt to remove the 503 * handle. 504 */ 505 if (((lmp = ghp->gh_ownlmp) != NULL) && 506 ((MODE(lmp) & RTLD_CONFGEN) == 0) && 507 ((CNTL(lmp) != ALIST_OFF_DATA) || 508 ((FLAGS(lmp) & FLG_RT_RELOCED) == 0))) 509 return (0); 510 511 /* 512 * This handle is no longer being referenced, remove it. If this handle 513 * is part of an alternative link-map list, determine if the whole list 514 * can be removed also. 515 */ 516 error = remove_hdl(ghp, clmp, NULL); 517 518 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) == 0) 519 remove_lml(lml); 520 521 return (error); 522 } 523 524 /* 525 * Internal dlclose activity. Called from user level or directly for internal 526 * error cleanup. 527 */ 528 int 529 dlclose_intn(Grp_hdl *ghp, Rt_map *clmp) 530 { 531 Rt_map *nlmp = NULL; 532 Lm_list *olml = NULL; 533 int error; 534 535 /* 536 * Although we're deleting object(s) it's quite possible that additional 537 * objects get loaded from running the .fini section(s) of the objects 538 * being deleted. These objects will have been added to the same 539 * link-map list as those objects being deleted. Remember this list 540 * for later investigation. 541 */ 542 olml = ghp->gh_ownlml; 543 544 error = dlclose_core(ghp, clmp, olml); 545 546 /* 547 * Determine whether the original link-map list still exists. In the 548 * case of a dlclose of an alternative (dlmopen) link-map the whole 549 * list may have been removed. 550 */ 551 if (olml) { 552 Aliste idx; 553 Lm_list *lml; 554 555 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { 556 if (olml == lml) { 557 nlmp = olml->lm_head; 558 break; 559 } 560 } 561 } 562 load_completion(nlmp); 563 return (error); 564 } 565 566 /* 567 * Argument checking for dlclose. Only called via external entry. 568 */ 569 static int 570 dlclose_check(void *handle, Rt_map *clmp) 571 { 572 Grp_hdl *ghp = (Grp_hdl *)handle; 573 574 if (hdl_validate(ghp) == 0) { 575 Conv_inv_buf_t inv_buf; 576 577 (void) conv_invalid_val(&inv_buf, EC_NATPTR(ghp), 0); 578 DBG_CALL(Dbg_dl_dlclose(clmp, inv_buf.buf, DBG_DLCLOSE_NULL)); 579 580 eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL), 581 EC_NATPTR(handle)); 582 return (1); 583 } 584 return (dlclose_intn(ghp, clmp)); 585 } 586 587 #pragma weak _dlclose = dlclose 588 589 /* 590 * External entry for dlclose(3dl). Returns 0 for success, non-zero otherwise. 591 */ 592 int 593 dlclose(void *handle) 594 { 595 int error, entry; 596 Rt_map *clmp; 597 598 entry = enter(0); 599 600 clmp = _caller(caller(), CL_EXECDEF); 601 602 error = dlclose_check(handle, clmp); 603 604 if (entry) 605 leave(LIST(clmp), 0); 606 return (error); 607 } 608 609 static uint_t lmid = 0; 610 611 /* 612 * The addition of new link-map lists is assumed to be in small quantities. 613 * Here, we assign a unique link-map id for diagnostic use. Simply update the 614 * running link-map count until we max out. 615 */ 616 int 617 newlmid(Lm_list *lml) 618 { 619 char buffer[MSG_LMID_ALT_SIZE + 12]; 620 621 if (lmid == UINT_MAX) { 622 lml->lm_lmid = UINT_MAX; 623 (void) strncpy(buffer, MSG_ORIG(MSG_LMID_MAXED), 624 MSG_LMID_ALT_SIZE + 12); 625 } else { 626 lml->lm_lmid = lmid++; 627 (void) snprintf(buffer, MSG_LMID_ALT_SIZE + 12, 628 MSG_ORIG(MSG_LMID_FMT), MSG_ORIG(MSG_LMID_ALT), 629 lml->lm_lmid); 630 } 631 if ((lml->lm_lmidstr = strdup(buffer)) == NULL) 632 return (0); 633 634 return (1); 635 } 636 637 /* 638 * Core dlopen activity. 639 */ 640 static Grp_hdl * 641 dlmopen_core(Lm_list *lml, Lm_list *olml, const char *path, int mode, 642 Rt_map *clmp, uint_t flags, uint_t orig, int *in_nfavl) 643 { 644 Alist *palp = NULL; 645 Rt_map *nlmp; 646 Grp_hdl *ghp; 647 Aliste olmco, nlmco; 648 649 DBG_CALL(Dbg_dl_dlopen(clmp, 650 (path ? path : MSG_ORIG(MSG_STR_ZERO)), in_nfavl, mode)); 651 652 /* 653 * Having diagnosed the originally defined modes, assign any defaults 654 * or corrections. 655 */ 656 if (((mode & (RTLD_GROUP | RTLD_WORLD)) == 0) && 657 ((mode & RTLD_NOLOAD) == 0)) 658 mode |= (RTLD_GROUP | RTLD_WORLD); 659 if ((mode & RTLD_NOW) && (rtld_flags2 & RT_FL2_BINDLAZY)) { 660 mode &= ~RTLD_NOW; 661 mode |= RTLD_LAZY; 662 } 663 664 /* 665 * If the path specified is null then we're operating on global 666 * objects. Associate a dummy handle with the link-map list. 667 */ 668 if (path == NULL) { 669 Grp_hdl *ghp; 670 uint_t hflags, rdflags, cdflags; 671 int promote = 0; 672 673 /* 674 * Establish any flags for the handle (Grp_hdl). 675 * 676 * - This is a dummy, public, handle (0) that provides for a 677 * dynamic search of all global objects within the process. 678 * - Use of the RTLD_FIRST mode indicates that only the first 679 * dependency on the handle (the referenced object) can be 680 * used to satisfy dlsym() requests. 681 */ 682 hflags = (GPH_PUBLIC | GPH_ZERO); 683 if (mode & RTLD_FIRST) 684 hflags |= GPH_FIRST; 685 686 /* 687 * Establish the flags for the referenced dependency descriptor 688 * (Grp_desc). 689 * 690 * - The referenced object is available for dlsym(). 691 * - The referenced object is available to relocate against. 692 * - The referenced object should have it's dependencies 693 * added to this handle. 694 */ 695 rdflags = (GPD_DLSYM | GPD_RELOC | GPD_ADDEPS); 696 697 /* 698 * Establish the flags for this callers dependency descriptor 699 * (Grp_desc). 700 * 701 * - The explicit creation of a handle creates a descriptor 702 * for the referenced object and the parent (caller). 703 * - Use of the RTLD_PARENT flag indicates that the parent 704 * can be relocated against. 705 */ 706 cdflags = GPD_PARENT; 707 if (mode & RTLD_PARENT) 708 cdflags |= GPD_RELOC; 709 710 if ((ghp = hdl_create(lml, 0, clmp, hflags, rdflags, 711 cdflags)) == NULL) 712 return (NULL); 713 714 /* 715 * Traverse the main link-map control list, updating the mode 716 * of any objects as necessary. Call the relocation engine if 717 * this mode promotes the existing state of any relocations. 718 * crle()'s first pass loads all objects necessary for building 719 * a configuration file, however none of them are relocated. 720 * crle()'s second pass relocates objects in preparation for 721 * dldump()'ing using dlopen(0, RTLD_NOW). 722 */ 723 if ((mode & (RTLD_NOW | RTLD_CONFGEN)) == RTLD_CONFGEN) 724 return (ghp); 725 726 for (nlmp = lml->lm_head; nlmp; nlmp = NEXT_RT_MAP(nlmp)) { 727 if (((MODE(nlmp) & RTLD_GLOBAL) == 0) || 728 (FLAGS(nlmp) & FLG_RT_DELETE)) 729 continue; 730 731 if (update_mode(nlmp, MODE(nlmp), mode)) 732 promote = 1; 733 } 734 if (promote) 735 (void) relocate_lmc(lml, ALIST_OFF_DATA, clmp, 736 lml->lm_head, in_nfavl); 737 738 return (ghp); 739 } 740 741 /* 742 * Fix the pathname. If this object expands to multiple paths (ie. 743 * $ISALIST or $HWCAP have been used), then make sure the user has also 744 * furnished the RTLD_FIRST flag. As yet, we don't support opening 745 * more than one object at a time, so enforcing the RTLD_FIRST flag 746 * provides flexibility should we be able to support dlopening more 747 * than one object in the future. 748 */ 749 if (LM_FIX_NAME(clmp)(path, clmp, &palp, AL_CNT_NEEDED, orig) == 0) 750 return (NULL); 751 752 if ((palp->al_arritems > 1) && ((mode & RTLD_FIRST) == 0)) { 753 remove_alist(&palp, 1); 754 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_5)); 755 return (NULL); 756 } 757 758 /* 759 * Establish a link-map control list for this request, and load the 760 * associated object. 761 */ 762 if ((nlmco = create_cntl(lml, 1)) == 0) { 763 remove_alist(&palp, 1); 764 return (NULL); 765 } 766 olmco = nlmco; 767 768 nlmp = load_one(lml, nlmco, palp, clmp, mode, (flags | FLG_RT_PUBHDL), 769 &ghp, in_nfavl); 770 771 /* 772 * Remove any expanded pathname infrastructure, and if the dependency 773 * couldn't be loaded, cleanup. 774 */ 775 remove_alist(&palp, 1); 776 if (nlmp == NULL) { 777 remove_cntl(lml, olmco); 778 return (NULL); 779 } 780 781 /* 782 * If loading an auditor was requested, and the auditor already existed, 783 * then the link-map returned will be to the original auditor. The new 784 * link-map list that was initially created, and the associated link-map 785 * control list are no longer needed. As the auditor is already loaded, 786 * we're probably done, but fall through in case additional relocations 787 * would be triggered by the mode of the caller. 788 */ 789 if ((flags & FLG_RT_AUDIT) && (LIST(nlmp) != lml)) { 790 remove_cntl(lml, olmco); 791 lml = LIST(nlmp); 792 olmco = 0; 793 nlmco = ALIST_OFF_DATA; 794 } 795 796 /* 797 * Finish processing the objects associated with this request. 798 */ 799 if (((nlmp = analyze_lmc(lml, nlmco, nlmp, clmp, in_nfavl)) == NULL) || 800 (relocate_lmc(lml, nlmco, clmp, nlmp, in_nfavl) == 0)) { 801 ghp = NULL; 802 nlmp = NULL; 803 } 804 805 /* 806 * If the dlopen has failed, clean up any objects that might have been 807 * loaded successfully on this new link-map control list. 808 */ 809 if (olmco && (nlmp == NULL)) 810 remove_lmc(lml, clmp, olmco, path); 811 812 /* 813 * Finally, remove any temporary link-map control list. Note, if this 814 * operation successfully established a new link-map list, then a base 815 * link-map control list will have been created, which must remain. 816 */ 817 if (olmco && ((nlmp == NULL) || (olml != (Lm_list *)LM_ID_NEWLM))) 818 remove_cntl(lml, olmco); 819 820 return (ghp); 821 } 822 823 /* 824 * dlopen() and dlsym() operations are the means by which a process can 825 * test for the existence of required dependencies. If the necessary 826 * dependencies don't exist, then associated functionality can't be used. 827 * However, the lack of dependencies can be fixed, and the dlopen() and 828 * dlsym() requests can be repeated. As we use a "not-found" AVL tree to 829 * cache any failed full path loads, secondary dlopen() and dlsym() requests 830 * will fail, even if the dependencies have been installed. 831 * 832 * dlopen() and dlsym() retry any failures by removing the "not-found" AVL 833 * tree. Should any dependencies be found, their names are added to the 834 * FullPath AVL tree. This routine removes any new "not-found" AVL tree, 835 * so that the dlopen() or dlsym() can replace the original "not-found" tree. 836 */ 837 inline static void 838 nfavl_remove(avl_tree_t *avlt) 839 { 840 PathNode *pnp; 841 void *cookie = NULL; 842 843 if (avlt) { 844 while ((pnp = avl_destroy_nodes(avlt, &cookie)) != NULL) 845 free(pnp); 846 847 avl_destroy(avlt); 848 free(avlt); 849 } 850 } 851 852 /* 853 * Internal dlopen() activity. Called from user level or directly for internal 854 * opens that require a handle. 855 */ 856 Grp_hdl * 857 dlmopen_intn(Lm_list *lml, const char *path, int mode, Rt_map *clmp, 858 uint_t flags, uint_t orig) 859 { 860 Lm_list *olml = lml; 861 Rt_map *dlmp = NULL; 862 Grp_hdl *ghp; 863 int in_nfavl = 0; 864 865 /* 866 * Check for magic link-map list values: 867 * 868 * LM_ID_BASE: Operate on the PRIMARY (executables) link map 869 * LM_ID_LDSO: Operation on ld.so.1's link map 870 * LM_ID_NEWLM: Create a new link-map. 871 */ 872 if (lml == (Lm_list *)LM_ID_NEWLM) { 873 if ((lml = calloc(1, sizeof (Lm_list))) == NULL) 874 return (NULL); 875 876 /* 877 * Establish the new link-map flags from the callers and those 878 * explicitly provided. 879 */ 880 lml->lm_tflags = LIST(clmp)->lm_tflags; 881 if (flags & FLG_RT_AUDIT) { 882 /* 883 * Unset any auditing flags - an auditor shouldn't be 884 * audited. Insure all audit dependencies are loaded. 885 */ 886 lml->lm_tflags &= ~LML_TFLG_AUD_MASK; 887 lml->lm_tflags |= (LML_TFLG_NOLAZYLD | 888 LML_TFLG_LOADFLTR | LML_TFLG_NOAUDIT); 889 } 890 891 if (aplist_append(&dynlm_list, lml, AL_CNT_DYNLIST) == NULL) { 892 free(lml); 893 return (NULL); 894 } 895 if (newlmid(lml) == 0) { 896 (void) aplist_delete_value(dynlm_list, lml); 897 free(lml); 898 return (NULL); 899 } 900 } else if ((uintptr_t)lml < LM_ID_NUM) { 901 if ((uintptr_t)lml == LM_ID_BASE) 902 lml = &lml_main; 903 else if ((uintptr_t)lml == LM_ID_LDSO) 904 lml = &lml_rtld; 905 } 906 907 /* 908 * Open the required object on the associated link-map list. 909 */ 910 ghp = dlmopen_core(lml, olml, path, mode, clmp, flags, orig, &in_nfavl); 911 912 /* 913 * If the object could not be found it is possible that the "not-found" 914 * AVL tree had indicated that the file does not exist. In case the 915 * file system has changed since this "not-found" recording was made, 916 * retry the dlopen() with a clean "not-found" AVL tree. 917 */ 918 if ((ghp == NULL) && in_nfavl) { 919 avl_tree_t *oavlt = nfavl; 920 921 nfavl = NULL; 922 ghp = dlmopen_core(lml, olml, path, mode, clmp, flags, orig, 923 NULL); 924 925 /* 926 * If the file is found, then its full path name will have been 927 * registered in the FullPath AVL tree. Remove any new 928 * "not-found" AVL information, and restore the former AVL tree. 929 */ 930 nfavl_remove(nfavl); 931 nfavl = oavlt; 932 } 933 934 /* 935 * Establish the new link-map from which .init processing will begin. 936 * Ignore .init firing when constructing a configuration file (crle(1)). 937 */ 938 if (ghp && ((mode & RTLD_CONFGEN) == 0)) 939 dlmp = ghp->gh_ownlmp; 940 941 /* 942 * If loading an auditor was requested, and the auditor already existed, 943 * then the link-map returned will be to the original auditor. Remove 944 * the link-map control list that was created for this request. 945 */ 946 if (dlmp && (flags & FLG_RT_AUDIT) && (LIST(dlmp) != lml)) { 947 remove_lml(lml); 948 lml = LIST(dlmp); 949 } 950 951 /* 952 * If this load failed, remove any alternative link-map list. 953 */ 954 if ((ghp == NULL) && 955 ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) == 0)) { 956 remove_lml(lml); 957 lml = NULL; 958 } 959 960 /* 961 * Finish this load request. If objects were loaded, .init processing 962 * is computed. Finally, the debuggers are informed of the link-map 963 * lists being stable. 964 */ 965 load_completion(dlmp); 966 967 return (ghp); 968 } 969 970 /* 971 * Argument checking for dlopen. Only called via external entry. 972 */ 973 static Grp_hdl * 974 dlmopen_check(Lm_list *lml, const char *path, int mode, Rt_map *clmp) 975 { 976 /* 977 * Verify that a valid pathname has been supplied. 978 */ 979 if (path && (*path == '\0')) { 980 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLPATH)); 981 return (0); 982 } 983 984 /* 985 * Historically we've always verified the mode is either RTLD_NOW or 986 * RTLD_LAZY. RTLD_NOLOAD is valid by itself. Use of LM_ID_NEWLM 987 * requires a specific pathname, and use of RTLD_PARENT is meaningless. 988 */ 989 if ((mode & (RTLD_NOW | RTLD_LAZY | RTLD_NOLOAD)) == 0) { 990 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_1)); 991 return (0); 992 } 993 if ((mode & (RTLD_NOW | RTLD_LAZY)) == (RTLD_NOW | RTLD_LAZY)) { 994 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_2)); 995 return (0); 996 } 997 if ((lml == (Lm_list *)LM_ID_NEWLM) && (path == NULL)) { 998 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_3)); 999 return (0); 1000 } 1001 if ((lml == (Lm_list *)LM_ID_NEWLM) && (mode & RTLD_PARENT)) { 1002 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_4)); 1003 return (0); 1004 } 1005 1006 return (dlmopen_intn(lml, path, mode, clmp, 0, 0)); 1007 } 1008 1009 #pragma weak _dlopen = dlopen 1010 1011 /* 1012 * External entry for dlopen(3dl). On success, returns a pointer (handle) to 1013 * the structure containing information about the newly added object, ie. can 1014 * be used by dlsym(). On failure, returns a null pointer. 1015 */ 1016 void * 1017 dlopen(const char *path, int mode) 1018 { 1019 int entry; 1020 Rt_map *clmp; 1021 Grp_hdl *ghp; 1022 Lm_list *lml; 1023 1024 entry = enter(0); 1025 1026 clmp = _caller(caller(), CL_EXECDEF); 1027 lml = LIST(clmp); 1028 1029 ghp = dlmopen_check(lml, path, mode, clmp); 1030 1031 if (entry) 1032 leave(lml, 0); 1033 return ((void *)ghp); 1034 } 1035 1036 #pragma weak _dlmopen = dlmopen 1037 1038 /* 1039 * External entry for dlmopen(3dl). 1040 */ 1041 void * 1042 dlmopen(Lmid_t lmid, const char *path, int mode) 1043 { 1044 int entry; 1045 Rt_map *clmp; 1046 Grp_hdl *ghp; 1047 1048 entry = enter(0); 1049 1050 clmp = _caller(caller(), CL_EXECDEF); 1051 1052 ghp = dlmopen_check((Lm_list *)lmid, path, mode, clmp); 1053 1054 if (entry) 1055 leave(LIST(clmp), 0); 1056 return ((void *)ghp); 1057 } 1058 1059 /* 1060 * Handle processing for dlsym. 1061 */ 1062 int 1063 dlsym_handle(Grp_hdl *ghp, Slookup *slp, Sresult *srp, uint_t *binfo, 1064 int *in_nfavl) 1065 { 1066 Rt_map *nlmp, * lmp = ghp->gh_ownlmp; 1067 Rt_map *clmp = slp->sl_cmap; 1068 const char *name = slp->sl_name; 1069 Slookup sl = *slp; 1070 1071 sl.sl_flags = (LKUP_FIRST | LKUP_DLSYM | LKUP_SPEC); 1072 1073 /* 1074 * Continue processing a dlsym request. Lookup the required symbol in 1075 * each link-map specified by the handle. 1076 * 1077 * To leverage off of lazy loading, dlsym() requests can result in two 1078 * passes. The first descends the link-maps of any objects already in 1079 * the address space. If the symbol isn't located, and lazy 1080 * dependencies still exist, then a second pass is made to load these 1081 * dependencies if applicable. This model means that in the case where 1082 * a symbol exists in more than one object, the one located may not be 1083 * constant - this is the standard issue with lazy loading. In addition, 1084 * attempting to locate a symbol that doesn't exist will result in the 1085 * loading of all lazy dependencies on the given handle, which can 1086 * defeat some of the advantages of lazy loading (look out JVM). 1087 */ 1088 if (ghp->gh_flags & GPH_ZERO) { 1089 Lm_list *lml; 1090 uint_t lazy = 0; 1091 1092 /* 1093 * If this symbol lookup is triggered from a dlopen(0) handle, 1094 * traverse the present link-map list looking for promiscuous 1095 * entries. 1096 */ 1097 for (nlmp = lmp; nlmp; nlmp = NEXT_RT_MAP(nlmp)) { 1098 /* 1099 * If this handle indicates we're only to look in the 1100 * first object check whether we're done. 1101 */ 1102 if ((nlmp != lmp) && (ghp->gh_flags & GPH_FIRST)) 1103 return (0); 1104 1105 if (!(MODE(nlmp) & RTLD_GLOBAL)) 1106 continue; 1107 if ((FLAGS(nlmp) & FLG_RT_DELETE) && 1108 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 1109 continue; 1110 1111 sl.sl_imap = nlmp; 1112 if (LM_LOOKUP_SYM(clmp)(&sl, srp, binfo, in_nfavl)) 1113 return (1); 1114 1115 /* 1116 * Keep track of any global pending lazy loads. 1117 */ 1118 lazy += LAZY(nlmp); 1119 } 1120 1121 /* 1122 * If we're unable to locate the symbol and this link-map list 1123 * still has pending lazy dependencies, start loading them in an 1124 * attempt to exhaust the search. Note that as we're already 1125 * traversing a dynamic linked list of link-maps there's no 1126 * need for elf_lazy_find_sym() to descend the link-maps itself. 1127 */ 1128 lml = LIST(lmp); 1129 if (lazy) { 1130 DBG_CALL(Dbg_syms_lazy_rescan(lml, name)); 1131 1132 sl.sl_flags |= LKUP_NODESCENT; 1133 1134 for (nlmp = lmp; nlmp; nlmp = NEXT_RT_MAP(nlmp)) { 1135 1136 if (!(MODE(nlmp) & RTLD_GLOBAL) || !LAZY(nlmp)) 1137 continue; 1138 if ((FLAGS(nlmp) & FLG_RT_DELETE) && 1139 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 1140 continue; 1141 1142 sl.sl_imap = nlmp; 1143 if (elf_lazy_find_sym(&sl, srp, binfo, 1144 in_nfavl)) 1145 return (1); 1146 } 1147 } 1148 } else { 1149 /* 1150 * Traverse the dlopen() handle searching all presently loaded 1151 * link-maps. 1152 */ 1153 Grp_desc *gdp; 1154 Aliste idx; 1155 uint_t lazy = 0; 1156 1157 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 1158 nlmp = gdp->gd_depend; 1159 1160 if ((gdp->gd_flags & GPD_DLSYM) == 0) 1161 continue; 1162 1163 sl.sl_imap = nlmp; 1164 if (LM_LOOKUP_SYM(clmp)(&sl, srp, binfo, in_nfavl)) 1165 return (1); 1166 1167 if (ghp->gh_flags & GPH_FIRST) 1168 return (0); 1169 1170 /* 1171 * Keep track of any pending lazy loads associated 1172 * with this handle. 1173 */ 1174 lazy += LAZY(nlmp); 1175 } 1176 1177 /* 1178 * If we're unable to locate the symbol and this handle still 1179 * has pending lazy dependencies, start loading the lazy 1180 * dependencies, in an attempt to exhaust the search. 1181 */ 1182 if (lazy) { 1183 DBG_CALL(Dbg_syms_lazy_rescan(LIST(lmp), name)); 1184 1185 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 1186 nlmp = gdp->gd_depend; 1187 1188 if (((gdp->gd_flags & GPD_DLSYM) == 0) || 1189 (LAZY(nlmp) == 0)) 1190 continue; 1191 1192 sl.sl_imap = nlmp; 1193 if (elf_lazy_find_sym(&sl, srp, binfo, 1194 in_nfavl)) 1195 return (1); 1196 } 1197 } 1198 } 1199 return (0); 1200 } 1201 1202 /* 1203 * Determine whether a symbol resides in a caller. This may be a reference, 1204 * which is associated with a specific dependency. 1205 */ 1206 inline static Sym * 1207 sym_lookup_in_caller(Rt_map *clmp, Slookup *slp, Sresult *srp, uint_t *binfo) 1208 { 1209 if (THIS_IS_ELF(clmp) && SYMINTP(clmp)(slp, srp, binfo, NULL)) { 1210 Sym *sym = srp->sr_sym; 1211 1212 slp->sl_rsymndx = (((ulong_t)sym - 1213 (ulong_t)SYMTAB(clmp)) / SYMENT(clmp)); 1214 slp->sl_rsym = sym; 1215 return (sym); 1216 } 1217 return (NULL); 1218 } 1219 1220 /* 1221 * Core dlsym activity. Selects symbol lookup method from handle. 1222 */ 1223 static void * 1224 dlsym_core(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp, 1225 int *in_nfavl) 1226 { 1227 Sym *sym; 1228 int ret = 0; 1229 Syminfo *sip; 1230 Slookup sl; 1231 Sresult sr; 1232 uint_t binfo; 1233 1234 /* 1235 * Initialize the symbol lookup data structure. 1236 * 1237 * Standard relocations are evaluated using the symbol index of the 1238 * associated relocation symbol. This index provides for loading 1239 * any lazy dependency and establishing a direct binding if necessary. 1240 * If a dlsym() operation originates from an object that contains a 1241 * symbol table entry for the same name, then we need to establish the 1242 * symbol index so that any dependency requirements can be triggered. 1243 * 1244 * Therefore, the first symbol lookup that is carried out is for the 1245 * symbol name within the calling object. If this symbol exists, the 1246 * symbols index is computed, added to the Slookup data, and thus used 1247 * to seed the real symbol lookup. 1248 */ 1249 SLOOKUP_INIT(sl, name, clmp, clmp, ld_entry_cnt, elf_hash(name), 1250 0, 0, 0, LKUP_SYMNDX); 1251 SRESULT_INIT(sr, name); 1252 sym = sym_lookup_in_caller(clmp, &sl, &sr, &binfo); 1253 1254 SRESULT_INIT(sr, name); 1255 1256 if (sym && (ELF_ST_VISIBILITY(sym->st_other) == STV_SINGLETON)) { 1257 Rt_map *hlmp = LIST(clmp)->lm_head; 1258 1259 /* 1260 * If a symbol reference is known, and that reference indicates 1261 * that the symbol is a singleton, then the search for the 1262 * symbol must follow the default search path. 1263 */ 1264 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0, 1265 DBG_DLSYM_SINGLETON)); 1266 1267 sl.sl_imap = hlmp; 1268 if (handle == RTLD_PROBE) 1269 sl.sl_flags = LKUP_NOFALLBACK; 1270 else 1271 sl.sl_flags = LKUP_SPEC; 1272 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1273 1274 } else if (handle == RTLD_NEXT) { 1275 Rt_map *nlmp; 1276 1277 /* 1278 * If this handle is RTLD_NEXT determine whether a lazy load 1279 * from the caller might provide the next object. This mimics 1280 * the lazy loading initialization normally carried out by 1281 * lookup_sym(), however here, we must do this up-front, as 1282 * lookup_sym() will be used to inspect the next object. 1283 */ 1284 if ((sl.sl_rsymndx) && ((sip = SYMINFO(clmp)) != NULL)) { 1285 /* LINTED */ 1286 sip = (Syminfo *)((char *)sip + 1287 (sl.sl_rsymndx * SYMINENT(clmp))); 1288 1289 if ((sip->si_flags & SYMINFO_FLG_DIRECT) && 1290 (sip->si_boundto < SYMINFO_BT_LOWRESERVE)) 1291 (void) elf_lazy_load(clmp, &sl, 1292 sip->si_boundto, name, 0, NULL, in_nfavl); 1293 1294 /* 1295 * Clear the symbol index, so as not to confuse 1296 * lookup_sym() of the next object. 1297 */ 1298 sl.sl_rsymndx = 0; 1299 sl.sl_rsym = NULL; 1300 } 1301 1302 /* 1303 * If the handle is RTLD_NEXT, start searching in the next link 1304 * map from the callers. Determine permissions from the 1305 * present link map. Indicate to lookup_sym() that we're on an 1306 * RTLD_NEXT request so that it will use the callers link map to 1307 * start any possible lazy dependency loading. 1308 */ 1309 sl.sl_imap = nlmp = NEXT_RT_MAP(clmp); 1310 1311 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 1312 (nlmp ? NAME(nlmp) : MSG_INTL(MSG_STR_NULL)), 1313 DBG_DLSYM_NEXT)); 1314 1315 if (nlmp == NULL) 1316 return (0); 1317 1318 sl.sl_flags = LKUP_NEXT; 1319 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1320 1321 } else if (handle == RTLD_SELF) { 1322 /* 1323 * If the handle is RTLD_SELF start searching from the caller. 1324 */ 1325 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, NAME(clmp), 1326 DBG_DLSYM_SELF)); 1327 1328 sl.sl_imap = clmp; 1329 sl.sl_flags = (LKUP_SPEC | LKUP_SELF); 1330 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1331 1332 } else if (handle == RTLD_DEFAULT) { 1333 Rt_map *hlmp = LIST(clmp)->lm_head; 1334 1335 /* 1336 * If the handle is RTLD_DEFAULT mimic the standard symbol 1337 * lookup as would be triggered by a relocation. 1338 */ 1339 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0, 1340 DBG_DLSYM_DEFAULT)); 1341 1342 sl.sl_imap = hlmp; 1343 sl.sl_flags = LKUP_SPEC; 1344 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1345 1346 } else if (handle == RTLD_PROBE) { 1347 Rt_map *hlmp = LIST(clmp)->lm_head; 1348 1349 /* 1350 * If the handle is RTLD_PROBE, mimic the standard symbol 1351 * lookup as would be triggered by a relocation, however do 1352 * not fall back to a lazy loading rescan if the symbol can't be 1353 * found within the currently loaded objects. Note, a lazy 1354 * loaded dependency required by the caller might still get 1355 * loaded to satisfy this request, but no exhaustive lazy load 1356 * rescan is carried out. 1357 */ 1358 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0, 1359 DBG_DLSYM_PROBE)); 1360 1361 sl.sl_imap = hlmp; 1362 sl.sl_flags = LKUP_NOFALLBACK; 1363 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1364 1365 } else { 1366 Grp_hdl *ghp = (Grp_hdl *)handle; 1367 1368 /* 1369 * Look in the shared object specified by the handle and in all 1370 * of its dependencies. 1371 */ 1372 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 1373 NAME(ghp->gh_ownlmp), DBG_DLSYM_DEF)); 1374 1375 ret = LM_DLSYM(clmp)(ghp, &sl, &sr, &binfo, in_nfavl); 1376 } 1377 1378 if (ret && ((sym = sr.sr_sym) != NULL)) { 1379 Lm_list *lml = LIST(clmp); 1380 Addr addr = sym->st_value; 1381 1382 *dlmp = sr.sr_dmap; 1383 if (!(FLAGS(*dlmp) & FLG_RT_FIXED)) 1384 addr += ADDR(*dlmp); 1385 1386 /* 1387 * Indicate that the defining object is now used. 1388 */ 1389 if (*dlmp != clmp) 1390 FLAGS1(*dlmp) |= FL1_RT_USED; 1391 1392 DBG_CALL(Dbg_bind_global(clmp, 0, 0, (Xword)-1, PLT_T_NONE, 1393 *dlmp, addr, sym->st_value, sr.sr_name, binfo)); 1394 1395 if ((lml->lm_tflags | AFLAGS(clmp) | AFLAGS(*dlmp)) & 1396 LML_TFLG_AUD_SYMBIND) { 1397 uint_t sb_flags = LA_SYMB_DLSYM; 1398 /* LINTED */ 1399 uint_t symndx = (uint_t)(((Xword)sym - 1400 (Xword)SYMTAB(*dlmp)) / SYMENT(*dlmp)); 1401 addr = audit_symbind(clmp, *dlmp, sym, symndx, addr, 1402 &sb_flags); 1403 } 1404 return ((void *)addr); 1405 } 1406 1407 return (NULL); 1408 } 1409 1410 /* 1411 * Internal dlsym activity. Called from user level or directly for internal 1412 * symbol lookup. 1413 */ 1414 void * 1415 dlsym_intn(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp) 1416 { 1417 Rt_map *llmp = NULL; 1418 void *error; 1419 Aliste idx; 1420 Grp_desc *gdp; 1421 int in_nfavl = 0; 1422 1423 /* 1424 * While looking for symbols it's quite possible that additional objects 1425 * get loaded from lazy loading. These objects will have been added to 1426 * the same link-map list as those objects on the handle. Remember this 1427 * list for later investigation. 1428 */ 1429 if ((handle == RTLD_NEXT) || (handle == RTLD_DEFAULT) || 1430 (handle == RTLD_SELF) || (handle == RTLD_PROBE)) 1431 llmp = LIST(clmp)->lm_tail; 1432 else { 1433 Grp_hdl *ghp = (Grp_hdl *)handle; 1434 1435 if (ghp->gh_ownlmp) 1436 llmp = LIST(ghp->gh_ownlmp)->lm_tail; 1437 else { 1438 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 1439 if ((llmp = 1440 LIST(gdp->gd_depend)->lm_tail) != NULL) 1441 break; 1442 } 1443 } 1444 } 1445 1446 error = dlsym_core(handle, name, clmp, dlmp, &in_nfavl); 1447 1448 /* 1449 * If the symbol could not be found it is possible that the "not-found" 1450 * AVL tree had indicated that a required file does not exist. In case 1451 * the file system has changed since this "not-found" recording was 1452 * made, retry the dlsym() with a clean "not-found" AVL tree. 1453 */ 1454 if ((error == NULL) && in_nfavl) { 1455 avl_tree_t *oavlt = nfavl; 1456 1457 nfavl = NULL; 1458 error = dlsym_core(handle, name, clmp, dlmp, NULL); 1459 1460 /* 1461 * If the symbol is found, then any file that was loaded will 1462 * have had its full path name registered in the FullPath AVL 1463 * tree. Remove any new "not-found" AVL information, and 1464 * restore the former AVL tree. 1465 */ 1466 nfavl_remove(nfavl); 1467 nfavl = oavlt; 1468 } 1469 1470 if (error == NULL) { 1471 /* 1472 * Cache the error message, as Java tends to fall through this 1473 * code many times. 1474 */ 1475 if (nosym_str == NULL) 1476 nosym_str = MSG_INTL(MSG_GEN_NOSYM); 1477 eprintf(LIST(clmp), ERR_FATAL, nosym_str, name); 1478 } 1479 1480 load_completion(llmp); 1481 return (error); 1482 } 1483 1484 /* 1485 * Argument checking for dlsym. Only called via external entry. 1486 */ 1487 static void * 1488 dlsym_check(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp) 1489 { 1490 /* 1491 * Verify the arguments. 1492 */ 1493 if (name == NULL) { 1494 eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_ILLSYM)); 1495 return (NULL); 1496 } 1497 if ((handle != RTLD_NEXT) && (handle != RTLD_DEFAULT) && 1498 (handle != RTLD_SELF) && (handle != RTLD_PROBE) && 1499 (hdl_validate((Grp_hdl *)handle) == 0)) { 1500 eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL), 1501 EC_NATPTR(handle)); 1502 return (NULL); 1503 } 1504 return (dlsym_intn(handle, name, clmp, dlmp)); 1505 } 1506 1507 1508 #pragma weak _dlsym = dlsym 1509 1510 /* 1511 * External entry for dlsym(). On success, returns the address of the specified 1512 * symbol. On error returns a null. 1513 */ 1514 void * 1515 dlsym(void *handle, const char *name) 1516 { 1517 int entry; 1518 Rt_map *clmp, *dlmp = NULL; 1519 void *addr; 1520 1521 entry = enter(0); 1522 1523 clmp = _caller(caller(), CL_EXECDEF); 1524 1525 addr = dlsym_check(handle, name, clmp, &dlmp); 1526 1527 if (entry) { 1528 if (dlmp) 1529 is_dep_init(dlmp, clmp); 1530 leave(LIST(clmp), 0); 1531 } 1532 return (addr); 1533 } 1534 1535 /* 1536 * Core dladdr activity. 1537 */ 1538 static void 1539 dladdr_core(Rt_map *almp, void *addr, Dl_info_t *dlip, void **info, int flags) 1540 { 1541 /* 1542 * Set up generic information and any defaults. 1543 */ 1544 dlip->dli_fname = PATHNAME(almp); 1545 1546 dlip->dli_fbase = (void *)ADDR(almp); 1547 dlip->dli_sname = NULL; 1548 dlip->dli_saddr = NULL; 1549 1550 /* 1551 * Determine the nearest symbol to this address. 1552 */ 1553 LM_DLADDR(almp)((ulong_t)addr, almp, dlip, info, flags); 1554 } 1555 1556 #pragma weak _dladdr = dladdr 1557 1558 /* 1559 * External entry for dladdr(3dl) and dladdr1(3dl). Returns an information 1560 * structure that reflects the symbol closest to the address specified. 1561 */ 1562 int 1563 dladdr(void *addr, Dl_info_t *dlip) 1564 { 1565 int entry, ret; 1566 Rt_map *clmp, *almp; 1567 Lm_list *clml; 1568 1569 entry = enter(0); 1570 1571 clmp = _caller(caller(), CL_EXECDEF); 1572 clml = LIST(clmp); 1573 1574 DBG_CALL(Dbg_dl_dladdr(clmp, addr)); 1575 1576 /* 1577 * Use our calling technique to determine what object is associated 1578 * with the supplied address. If a caller can't be determined, 1579 * indicate the failure. 1580 */ 1581 if ((almp = _caller(addr, CL_NONE)) == NULL) { 1582 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_INVADDR), 1583 EC_NATPTR(addr)); 1584 ret = 0; 1585 } else { 1586 dladdr_core(almp, addr, dlip, 0, 0); 1587 ret = 1; 1588 } 1589 1590 if (entry) 1591 leave(clml, 0); 1592 return (ret); 1593 } 1594 1595 #pragma weak _dladdr1 = dladdr1 1596 1597 int 1598 dladdr1(void *addr, Dl_info_t *dlip, void **info, int flags) 1599 { 1600 int entry, ret = 1; 1601 Rt_map *clmp, *almp; 1602 Lm_list *clml; 1603 1604 entry = enter(0); 1605 1606 clmp = _caller(caller(), CL_EXECDEF); 1607 clml = LIST(clmp); 1608 1609 DBG_CALL(Dbg_dl_dladdr(clmp, addr)); 1610 1611 /* 1612 * Validate any flags. 1613 */ 1614 if (flags) { 1615 int request; 1616 1617 if (((request = (flags & RTLD_DL_MASK)) != RTLD_DL_SYMENT) && 1618 (request != RTLD_DL_LINKMAP)) { 1619 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLFLAGS), 1620 flags); 1621 ret = 0; 1622 1623 } else if (info == NULL) { 1624 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLINFO), 1625 flags); 1626 ret = 0; 1627 } 1628 } 1629 1630 /* 1631 * Use our calling technique to determine what object is associated 1632 * with the supplied address. If a caller can't be determined, 1633 * indicate the failure. 1634 */ 1635 if (ret) { 1636 if ((almp = _caller(addr, CL_NONE)) == NULL) { 1637 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_INVADDR), 1638 EC_NATPTR(addr)); 1639 ret = 0; 1640 } else 1641 dladdr_core(almp, addr, dlip, info, flags); 1642 } 1643 1644 if (entry) 1645 leave(clml, 0); 1646 return (ret); 1647 } 1648 1649 /* 1650 * Core dldump activity. 1651 */ 1652 static int 1653 dldump_core(Rt_map *clmp, Rt_map *lmp, const char *ipath, const char *opath, 1654 int flags) 1655 { 1656 Lm_list *lml = LIST(clmp); 1657 Addr addr = 0; 1658 1659 /* 1660 * Verify any arguments first. 1661 */ 1662 if ((opath == NULL) || (opath[0] == '\0') || 1663 ((lmp == NULL) && (ipath[0] == '\0'))) { 1664 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLPATH)); 1665 return (1); 1666 } 1667 1668 /* 1669 * If an input file is specified make sure its one of our dependencies 1670 * on the main link-map list. Note, this has really all evolved for 1671 * crle(), which uses libcrle.so on an alternative link-map to trigger 1672 * dumping objects from the main link-map list. If we ever want to 1673 * dump objects from alternative link-maps, this model is going to 1674 * have to be revisited. 1675 */ 1676 if (lmp == NULL) { 1677 if ((lmp = is_so_loaded(&lml_main, ipath, NULL)) == NULL) { 1678 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_NOFILE), 1679 ipath); 1680 return (1); 1681 } 1682 if (FLAGS(lmp) & FLG_RT_ALTER) { 1683 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_ALTER), ipath); 1684 return (1); 1685 } 1686 if (FLAGS(lmp) & FLG_RT_NODUMP) { 1687 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_NODUMP), 1688 ipath); 1689 return (1); 1690 } 1691 } 1692 1693 /* 1694 * If the object being dump'ed isn't fixed identify its mapping. 1695 */ 1696 if (!(FLAGS(lmp) & FLG_RT_FIXED)) 1697 addr = ADDR(lmp); 1698 1699 /* 1700 * As rt_dldump() will effectively lazy load the necessary support 1701 * libraries, make sure ld.so.1 is initialized for plt relocations. 1702 */ 1703 if (elf_rtld_load() == 0) 1704 return (0); 1705 1706 /* 1707 * Dump the required image. 1708 */ 1709 return (rt_dldump(lmp, opath, flags, addr)); 1710 } 1711 1712 #pragma weak _dldump = dldump 1713 1714 /* 1715 * External entry for dldump(3c). Returns 0 on success, non-zero otherwise. 1716 */ 1717 int 1718 dldump(const char *ipath, const char *opath, int flags) 1719 { 1720 int error, entry; 1721 Rt_map *clmp, *lmp; 1722 1723 entry = enter(0); 1724 1725 clmp = _caller(caller(), CL_EXECDEF); 1726 1727 if (ipath) { 1728 lmp = NULL; 1729 } else { 1730 lmp = lml_main.lm_head; 1731 ipath = NAME(lmp); 1732 } 1733 1734 DBG_CALL(Dbg_dl_dldump(clmp, ipath, opath, flags)); 1735 1736 error = dldump_core(clmp, lmp, ipath, opath, flags); 1737 1738 if (entry) 1739 leave(LIST(clmp), 0); 1740 return (error); 1741 } 1742 1743 /* 1744 * get_linkmap_id() translates Lm_list * pointers to the Link_map id as used by 1745 * the rtld_db and dlmopen() interfaces. It checks to see if the Link_map is 1746 * one of the primary ones and if so returns it's special token: 1747 * LM_ID_BASE 1748 * LM_ID_LDSO 1749 * 1750 * If it's not one of the primary link_map id's it will instead returns a 1751 * pointer to the Lm_list structure which uniquely identifies the Link_map. 1752 */ 1753 Lmid_t 1754 get_linkmap_id(Lm_list *lml) 1755 { 1756 if (lml->lm_flags & LML_FLG_BASELM) 1757 return (LM_ID_BASE); 1758 if (lml->lm_flags & LML_FLG_RTLDLM) 1759 return (LM_ID_LDSO); 1760 1761 return ((Lmid_t)lml); 1762 } 1763 1764 /* 1765 * Set a new deferred dependency name. 1766 */ 1767 static int 1768 set_def_need(Lm_list *lml, Dyninfo *dyip, const char *name) 1769 { 1770 /* 1771 * If this dependency has already been established, then this dlinfo() 1772 * call is too late. 1773 */ 1774 if (dyip->di_info) { 1775 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_DEF_DEPLOADED), 1776 dyip->di_name); 1777 return (-1); 1778 } 1779 1780 /* 1781 * Assign the new dependency name. 1782 */ 1783 DBG_CALL(Dbg_file_deferred(lml, dyip->di_name, name)); 1784 dyip->di_flags |= FLG_DI_DEF_DONE; 1785 dyip->di_name = name; 1786 return (0); 1787 } 1788 1789 /* 1790 * Extract information for a dlopen() handle. 1791 */ 1792 static int 1793 dlinfo_core(void *handle, int request, void *p, Rt_map *clmp) 1794 { 1795 Conv_inv_buf_t inv_buf; 1796 char *handlename; 1797 Lm_list *lml = LIST(clmp); 1798 Rt_map *lmp = NULL; 1799 1800 /* 1801 * Determine whether a handle is provided. A handle isn't needed for 1802 * all operations, but it is validated here for the initial diagnostic. 1803 */ 1804 if (handle == RTLD_SELF) { 1805 lmp = clmp; 1806 } else { 1807 Grp_hdl *ghp = (Grp_hdl *)handle; 1808 1809 if (hdl_validate(ghp)) 1810 lmp = ghp->gh_ownlmp; 1811 } 1812 if (lmp) { 1813 handlename = NAME(lmp); 1814 } else { 1815 (void) conv_invalid_val(&inv_buf, EC_NATPTR(handle), 0); 1816 handlename = inv_buf.buf; 1817 } 1818 1819 DBG_CALL(Dbg_dl_dlinfo(clmp, handlename, request, p)); 1820 1821 /* 1822 * Validate the request and return buffer. 1823 */ 1824 if ((request > RTLD_DI_MAX) || (p == NULL)) { 1825 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLVAL)); 1826 return (-1); 1827 } 1828 1829 /* 1830 * Return configuration cache name and address. 1831 */ 1832 if (request == RTLD_DI_CONFIGADDR) { 1833 Dl_info_t *dlip = (Dl_info_t *)p; 1834 1835 if ((config->c_name == NULL) || (config->c_bgn == 0) || 1836 (config->c_end == 0)) { 1837 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_NOCONFIG)); 1838 return (-1); 1839 } 1840 dlip->dli_fname = config->c_name; 1841 dlip->dli_fbase = (void *)config->c_bgn; 1842 return (0); 1843 } 1844 1845 /* 1846 * Return profiled object name (used by ldprof audit library). 1847 */ 1848 if (request == RTLD_DI_PROFILENAME) { 1849 if (profile_name == NULL) { 1850 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_NOPROFNAME)); 1851 return (-1); 1852 } 1853 1854 *(const char **)p = profile_name; 1855 return (0); 1856 } 1857 if (request == RTLD_DI_PROFILEOUT) { 1858 /* 1859 * If a profile destination directory hasn't been specified 1860 * provide a default. 1861 */ 1862 if (profile_out == NULL) 1863 profile_out = MSG_ORIG(MSG_PTH_VARTMP); 1864 1865 *(const char **)p = profile_out; 1866 return (0); 1867 } 1868 1869 /* 1870 * Obtain or establish a termination signal. 1871 */ 1872 if (request == RTLD_DI_GETSIGNAL) { 1873 *(int *)p = killsig; 1874 return (0); 1875 } 1876 1877 if (request == RTLD_DI_SETSIGNAL) { 1878 sigset_t set; 1879 int sig = *(int *)p; 1880 1881 /* 1882 * Determine whether the signal is in range. 1883 */ 1884 (void) sigfillset(&set); 1885 if (sigismember(&set, sig) != 1) { 1886 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_INVSIG), sig); 1887 return (-1); 1888 } 1889 1890 killsig = sig; 1891 return (0); 1892 } 1893 1894 /* 1895 * For any other request a link-map is required. Verify the handle. 1896 */ 1897 if (lmp == NULL) { 1898 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL), 1899 EC_NATPTR(handle)); 1900 return (-1); 1901 } 1902 1903 /* 1904 * Obtain the process arguments, environment and auxv. Note, as the 1905 * environment can be modified by the user (putenv(3c)), reinitialize 1906 * the environment pointer on each request. 1907 */ 1908 if (request == RTLD_DI_ARGSINFO) { 1909 Dl_argsinfo_t *aip = (Dl_argsinfo_t *)p; 1910 Lm_list *lml = LIST(lmp); 1911 1912 *aip = argsinfo; 1913 if (lml->lm_flags & LML_FLG_ENVIRON) 1914 aip->dla_envp = *(lml->lm_environ); 1915 1916 return (0); 1917 } 1918 1919 /* 1920 * Return Lmid_t of the Link-Map list that the specified object is 1921 * loaded on. 1922 */ 1923 if (request == RTLD_DI_LMID) { 1924 *(Lmid_t *)p = get_linkmap_id(LIST(lmp)); 1925 return (0); 1926 } 1927 1928 /* 1929 * Return a pointer to the Link-Map structure associated with the 1930 * specified object. 1931 */ 1932 if (request == RTLD_DI_LINKMAP) { 1933 *(Link_map **)p = (Link_map *)lmp; 1934 return (0); 1935 } 1936 1937 /* 1938 * Return search path information, or the size of the buffer required 1939 * to store the information. 1940 */ 1941 if ((request == RTLD_DI_SERINFO) || (request == RTLD_DI_SERINFOSIZE)) { 1942 Spath_desc sd = { search_rules, NULL, 0 }; 1943 Pdesc *pdp; 1944 Dl_serinfo_t *info; 1945 Dl_serpath_t *path; 1946 char *strs; 1947 size_t size = sizeof (Dl_serinfo_t); 1948 uint_t cnt = 0; 1949 1950 info = (Dl_serinfo_t *)p; 1951 path = &info->dls_serpath[0]; 1952 strs = (char *)&info->dls_serpath[info->dls_cnt]; 1953 1954 /* 1955 * Traverse search path entries for this object. 1956 */ 1957 while ((pdp = get_next_dir(&sd, lmp, 0)) != NULL) { 1958 size_t _size; 1959 1960 if (pdp->pd_pname == NULL) 1961 continue; 1962 1963 /* 1964 * If configuration information exists, it's possible 1965 * this path has been identified as non-existent, if so 1966 * ignore it. 1967 */ 1968 if (pdp->pd_info) { 1969 Rtc_obj *dobj = (Rtc_obj *)pdp->pd_info; 1970 if (dobj->co_flags & RTC_OBJ_NOEXIST) 1971 continue; 1972 } 1973 1974 /* 1975 * Keep track of search path count and total info size. 1976 */ 1977 if (cnt++) 1978 size += sizeof (Dl_serpath_t); 1979 _size = pdp->pd_plen + 1; 1980 size += _size; 1981 1982 if (request == RTLD_DI_SERINFOSIZE) 1983 continue; 1984 1985 /* 1986 * If we're filling in search path information, confirm 1987 * there's sufficient space. 1988 */ 1989 if (size > info->dls_size) { 1990 eprintf(lml, ERR_FATAL, 1991 MSG_INTL(MSG_ARG_SERSIZE), 1992 EC_OFF(info->dls_size)); 1993 return (-1); 1994 } 1995 if (cnt > info->dls_cnt) { 1996 eprintf(lml, ERR_FATAL, 1997 MSG_INTL(MSG_ARG_SERCNT), info->dls_cnt); 1998 return (-1); 1999 } 2000 2001 /* 2002 * Append the path to the information buffer. 2003 */ 2004 (void) strcpy(strs, pdp->pd_pname); 2005 path->dls_name = strs; 2006 path->dls_flags = (pdp->pd_flags & LA_SER_MASK); 2007 2008 strs = strs + _size; 2009 path++; 2010 } 2011 2012 /* 2013 * If we're here to size the search buffer fill it in. 2014 */ 2015 if (request == RTLD_DI_SERINFOSIZE) { 2016 info->dls_size = size; 2017 info->dls_cnt = cnt; 2018 } 2019 2020 return (0); 2021 } 2022 2023 /* 2024 * Return the origin of the object associated with this link-map. 2025 * Basically return the dirname(1) of the objects fullpath. 2026 */ 2027 if (request == RTLD_DI_ORIGIN) { 2028 char *str = (char *)p; 2029 2030 (void) strncpy(str, ORIGNAME(lmp), DIRSZ(lmp)); 2031 str += DIRSZ(lmp); 2032 *str = '\0'; 2033 2034 return (0); 2035 } 2036 2037 /* 2038 * Return the number of object mappings, or the mapping information for 2039 * this object. 2040 */ 2041 if (request == RTLD_DI_MMAPCNT) { 2042 uint_t *cnt = (uint_t *)p; 2043 2044 *cnt = MMAPCNT(lmp); 2045 return (0); 2046 } 2047 if (request == RTLD_DI_MMAPS) { 2048 Dl_mapinfo_t *mip = (Dl_mapinfo_t *)p; 2049 2050 if (mip->dlm_acnt && mip->dlm_maps) { 2051 uint_t cnt = 0; 2052 2053 while ((cnt < mip->dlm_acnt) && (cnt < MMAPCNT(lmp))) { 2054 mip->dlm_maps[cnt] = MMAPS(lmp)[cnt]; 2055 cnt++; 2056 } 2057 mip->dlm_rcnt = cnt; 2058 } 2059 return (0); 2060 } 2061 2062 /* 2063 * Assign a new dependency name to a deferred dependency. 2064 */ 2065 if ((request == RTLD_DI_DEFERRED) || 2066 (request == RTLD_DI_DEFERRED_SYM)) { 2067 Dl_definfo_t *dfip = (Dl_definfo_t *)p; 2068 Dyninfo *dyip; 2069 const char *dname, *rname; 2070 2071 /* 2072 * Verify the names. 2073 */ 2074 if ((dfip->dld_refname == NULL) || 2075 (dfip->dld_depname == NULL)) { 2076 eprintf(LIST(clmp), ERR_FATAL, 2077 MSG_INTL(MSG_ARG_ILLNAME)); 2078 return (-1); 2079 } 2080 2081 dname = dfip->dld_depname; 2082 rname = dfip->dld_refname; 2083 2084 /* 2085 * A deferred dependency can be determined by referencing a 2086 * symbol family member that is associated to the dependency, 2087 * or by looking for the dependency by its name. 2088 */ 2089 if (request == RTLD_DI_DEFERRED_SYM) { 2090 Slookup sl; 2091 Sresult sr; 2092 uint_t binfo; 2093 Syminfo *sip; 2094 2095 /* 2096 * Lookup the symbol in the associated object. 2097 */ 2098 SLOOKUP_INIT(sl, rname, lmp, lmp, ld_entry_cnt, 2099 elf_hash(rname), 0, 0, 0, LKUP_SYMNDX); 2100 SRESULT_INIT(sr, rname); 2101 if (sym_lookup_in_caller(clmp, &sl, &sr, 2102 &binfo) == NULL) { 2103 eprintf(LIST(clmp), ERR_FATAL, 2104 MSG_INTL(MSG_DEF_NOSYMFOUND), rname); 2105 return (-1); 2106 } 2107 2108 /* 2109 * Use the symbols index to reference the Syminfo entry 2110 * and thus find the associated dependency. 2111 */ 2112 if (sl.sl_rsymndx && ((sip = SYMINFO(clmp)) != NULL)) { 2113 /* LINTED */ 2114 sip = (Syminfo *)((char *)sip + 2115 (sl.sl_rsymndx * SYMINENT(lmp))); 2116 2117 if ((sip->si_flags & SYMINFO_FLG_DEFERRED) && 2118 (sip->si_boundto < SYMINFO_BT_LOWRESERVE) && 2119 ((dyip = DYNINFO(lmp)) != NULL)) { 2120 dyip += sip->si_boundto; 2121 2122 if (!(dyip->di_flags & FLG_DI_IGNORE)) 2123 return (set_def_need(lml, 2124 dyip, dname)); 2125 } 2126 } 2127 2128 /* 2129 * No deferred symbol found. 2130 */ 2131 eprintf(LIST(clmp), ERR_FATAL, 2132 MSG_INTL(MSG_DEF_NOSYMFOUND), rname); 2133 return (-1); 2134 2135 } else { 2136 Dyn *dyn; 2137 2138 /* 2139 * Using the target objects dependency information, find 2140 * the associated deferred dependency. 2141 */ 2142 for (dyn = DYN(lmp), dyip = DYNINFO(lmp); 2143 !(dyip->di_flags & FLG_DI_IGNORE); dyn++, dyip++) { 2144 const char *oname; 2145 2146 if ((dyip->di_flags & FLG_DI_DEFERRED) == 0) 2147 continue; 2148 2149 if (strcmp(rname, dyip->di_name) == 0) 2150 return (set_def_need(lml, dyip, dname)); 2151 2152 /* 2153 * If this dependency name has been changed by 2154 * a previous dlinfo(), check the original 2155 * dynamic entry string. The user might be 2156 * attempting to re-change an entry using the 2157 * original name as the reference. 2158 */ 2159 if ((dyip->di_flags & FLG_DI_DEF_DONE) == 0) 2160 continue; 2161 2162 oname = STRTAB(lmp) + dyn->d_un.d_val; 2163 if (strcmp(rname, oname) == 0) 2164 return (set_def_need(lml, dyip, dname)); 2165 } 2166 2167 /* 2168 * No deferred dependency found. 2169 */ 2170 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_DEF_NODEPFOUND), 2171 rname); 2172 return (-1); 2173 } 2174 } 2175 return (0); 2176 } 2177 2178 #pragma weak _dlinfo = dlinfo 2179 2180 /* 2181 * External entry for dlinfo(3dl). 2182 */ 2183 int 2184 dlinfo(void *handle, int request, void *p) 2185 { 2186 int error, entry; 2187 Rt_map *clmp; 2188 2189 entry = enter(0); 2190 2191 clmp = _caller(caller(), CL_EXECDEF); 2192 2193 error = dlinfo_core(handle, request, p, clmp); 2194 2195 if (entry) 2196 leave(LIST(clmp), 0); 2197 return (error); 2198 } 2199 2200 /* 2201 * GNU defined function to iterate through the program headers for all 2202 * currently loaded dynamic objects. The caller supplies a callback function 2203 * which is called for each object. 2204 * 2205 * entry: 2206 * callback - Callback function to call. The arguments to the callback 2207 * function are: 2208 * info - Address of dl_phdr_info structure 2209 * size - sizeof (struct dl_phdr_info) 2210 * data - Caller supplied value. 2211 * data - Value supplied by caller, which is passed to callback without 2212 * examination. 2213 * 2214 * exit: 2215 * callback is called for each dynamic ELF object in the process address 2216 * space, halting when a non-zero value is returned, or when the last 2217 * object has been processed. The return value from the last call 2218 * to callback is returned. 2219 * 2220 * note: 2221 * The Linux implementation has added additional fields to the 2222 * dl_phdr_info structure over time. The callback function is 2223 * supposed to use the size field to determine which fields are 2224 * present, and to avoid attempts to access non-existent fields. 2225 * We have added those fields that are compatible with Solaris, and 2226 * which are used by GNU C++ (g++) runtime exception handling support. 2227 * 2228 * note: 2229 * We issue a callback for every ELF object mapped into the process 2230 * address space at the time this routine is entered. These callbacks 2231 * are arbitrary functions that can do anything, including possibly 2232 * causing new objects to be mapped into the process, or unmapped. 2233 * This complicates matters: 2234 * 2235 * - Adding new objects can cause the alists to be reallocated 2236 * or for contents to move. This can happen explicitly via 2237 * dlopen(), or implicitly via lazy loading. One might consider 2238 * simply banning dlopen from a callback, but lazy loading must 2239 * be allowed, in which case there's no reason to ban dlopen(). 2240 * 2241 * - Removing objects can leave us holding references to freed 2242 * memory that must not be accessed, and can cause the list 2243 * items to move in a way that would cause us to miss reporting 2244 * one, or double report others. 2245 * 2246 * - We cannot allocate memory to build a separate data structure, 2247 * because the interface to dl_iterate_phdr() does not have a 2248 * way to communicate allocation errors back to the caller. 2249 * Even if we could, it would be difficult to do so efficiently. 2250 * 2251 * - It is possible for dl_iterate_phdr() to be called recursively 2252 * from a callback, and there is no way for us to detect or manage 2253 * this effectively, particularly as the user might use longjmp() 2254 * to skip past us on return. Hence, we must be reentrant 2255 * (stateless), further precluding the option of building a 2256 * separate data structure. 2257 * 2258 * Despite these constraints, we are able to traverse the link-map 2259 * lists safely: 2260 * 2261 * - Once interposer (preload) objects have been processed at 2262 * startup, we know that new objects are always placed at the 2263 * end of the list. Hence, if we are reading a list when that 2264 * happens, the new object will not alter the part of the list 2265 * that we've already processed. 2266 * 2267 * - The alist _TRAVERSE macros recalculate the address of the 2268 * current item from scratch on each iteration, rather than 2269 * incrementing a pointer. Hence, alist additions that occur 2270 * in mid-traverse will not cause confusion. 2271 * 2272 * There is one limitation: We cannot continue operation if an object 2273 * is removed from the process from within a callback. We detect when 2274 * this happens and return immediately with a -1 return value. 2275 * 2276 * note: 2277 * As currently implemented, if a callback causes an object to be loaded, 2278 * that object may or may not be reported by the current invocation of 2279 * dl_iterate_phdr(), based on whether or not we have already processed 2280 * the link-map list that receives it. If we want to prevent this, it 2281 * can be done efficiently by associating the current value of cnt_map 2282 * with each new Rt_map entered into the system. Then this function can 2283 * use that to detect and skip new objects that enter the system in 2284 * mid-iteration. However, the Linux documentation is ambiguous on whether 2285 * this is necessary, and it does not appear to matter in practice. 2286 * We have therefore chosen not to do so at this time. 2287 */ 2288 int 2289 dl_iterate_phdr(int (*callback)(struct dl_phdr_info *, size_t, void *), 2290 void *data) 2291 { 2292 struct dl_phdr_info info; 2293 u_longlong_t l_cnt_map = cnt_map; 2294 u_longlong_t l_cnt_unmap = cnt_unmap; 2295 Lm_list *lml, *clml; 2296 Lm_cntl *lmc; 2297 Rt_map *lmp, *clmp; 2298 Aliste idx1, idx2; 2299 Ehdr *ehdr; 2300 int ret = 0; 2301 int entry; 2302 2303 entry = enter(0); 2304 clmp = _caller(caller(), CL_EXECDEF); 2305 clml = LIST(clmp); 2306 2307 DBG_CALL(Dbg_dl_iphdr_enter(clmp, cnt_map, cnt_unmap)); 2308 2309 /* Issue a callback for each ELF object in the process */ 2310 for (APLIST_TRAVERSE(dynlm_list, idx1, lml)) { 2311 for (ALIST_TRAVERSE(lml->lm_lists, idx2, lmc)) { 2312 for (lmp = lmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) { 2313 #if defined(_sparc) && !defined(_LP64) 2314 /* 2315 * On 32-bit sparc, the possibility exists that 2316 * this object is not ELF. 2317 */ 2318 if (THIS_IS_NOT_ELF(lmp)) 2319 continue; 2320 #endif 2321 /* Prepare the object information structure */ 2322 ehdr = (Ehdr *) ADDR(lmp); 2323 info.dlpi_addr = (ehdr->e_type == ET_EXEC) ? 2324 0 : ADDR(lmp); 2325 info.dlpi_name = lmp->rt_pathname; 2326 info.dlpi_phdr = (Phdr *) 2327 (ADDR(lmp) + ehdr->e_phoff); 2328 info.dlpi_phnum = ehdr->e_phnum; 2329 info.dlpi_adds = cnt_map; 2330 info.dlpi_subs = cnt_unmap; 2331 2332 /* Issue the callback */ 2333 DBG_CALL(Dbg_dl_iphdr_callback(clml, &info)); 2334 leave(clml, thr_flg_reenter); 2335 ret = (* callback)(&info, sizeof (info), data); 2336 (void) enter(thr_flg_reenter); 2337 2338 /* Return immediately on non-zero result */ 2339 if (ret != 0) 2340 goto done; 2341 2342 /* Adapt to object mapping changes */ 2343 if ((cnt_map == l_cnt_map) && 2344 (cnt_unmap == l_cnt_unmap)) 2345 continue; 2346 2347 DBG_CALL(Dbg_dl_iphdr_mapchange(clml, cnt_map, 2348 cnt_unmap)); 2349 2350 /* Stop if an object was unmapped */ 2351 if (cnt_unmap == l_cnt_unmap) { 2352 l_cnt_map = cnt_map; 2353 continue; 2354 } 2355 2356 ret = -1; 2357 DBG_CALL(Dbg_dl_iphdr_unmap_ret(clml)); 2358 goto done; 2359 } 2360 } 2361 } 2362 2363 done: 2364 if (entry) 2365 leave(LIST(clmp), 0); 2366 return (ret); 2367 } 2368