1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 /* 31 * This file contains the functions responsible for opening the output file 32 * image, associating the appropriate input elf structures with the new image, 33 * and obtaining new elf structures to define the new image. 34 */ 35 #include <stdio.h> 36 #include <sys/stat.h> 37 #include <fcntl.h> 38 #include <link.h> 39 #include <errno.h> 40 #include <string.h> 41 #include <limits.h> 42 #include <debug.h> 43 #include <unistd.h> 44 #include "msg.h" 45 #include "_libld.h" 46 47 /* 48 * Determine a least common multiplier. Input sections contain an alignment 49 * requirement, which elf_update() uses to insure that the section is aligned 50 * correctly off of the base of the elf image. We must also insure that the 51 * sections mapping is congruent with this alignment requirement. For each 52 * input section associated with a loadable segment determine whether the 53 * segments alignment must be adjusted to compensate for a sections alignment 54 * requirements. 55 */ 56 Xword 57 ld_lcm(Xword a, Xword b) 58 { 59 Xword _r, _a, _b; 60 61 if ((_a = a) == 0) 62 return (b); 63 if ((_b = b) == 0) 64 return (a); 65 66 if (_a > _b) 67 _a = b, _b = a; 68 while ((_r = _b % _a) != 0) 69 _b = _a, _a = _r; 70 return ((a / _a) * b); 71 } 72 73 /* 74 * Open the output file and insure the correct access modes. 75 */ 76 uintptr_t 77 ld_open_outfile(Ofl_desc * ofl) 78 { 79 mode_t mode; 80 struct stat status; 81 82 /* 83 * Determine the required file mode from the type of output file we 84 * are creating. 85 */ 86 mode = (ofl->ofl_flags & (FLG_OF_EXEC | FLG_OF_SHAROBJ)) 87 ? 0777 : 0666; 88 89 /* Determine if the output file already exists */ 90 if (stat(ofl->ofl_name, &status) == 0) { 91 if ((status.st_mode & S_IFMT) != S_IFREG) { 92 /* 93 * It is not a regular file, so don't delete it 94 * or allow it to be deleted. This allows root 95 * users to specify /dev/null output file for 96 * verification links. 97 */ 98 ofl->ofl_flags1 |= FLG_OF1_NONREG; 99 } else { 100 /* 101 * It's a regular file, so unlink it. In standard 102 * Unix fashion, the old file will continue to 103 * exist until its link count drops to 0 and no 104 * process has the file open. In the meantime, we 105 * create a new file (inode) under the same name, 106 * available for new use. 107 * 108 * The advantage of this policy is that creating 109 * a new executable or sharable library does not 110 * corrupt existing processes using the old file. 111 * A possible disadvantage is that if the existing 112 * file has a (link_count > 1), the other names will 113 * continue to reference the old inode, thus 114 * breaking the link. 115 * 116 * A subtlety here is that POSIX says we are not 117 * supposed to replace a non-writable file, which 118 * is something that unlink() is happy to do. The 119 * only 100% reliable test against this is to open 120 * the file for non-destructive write access. If the 121 * open succeeds, we are clear to unlink it, and if 122 * not, then the error generated is the error we 123 * need to report. 124 */ 125 if ((ofl->ofl_fd = open(ofl->ofl_name, O_RDWR, 126 mode)) < 0) { 127 int err = errno; 128 129 if (err != ENOENT) { 130 eprintf(ofl->ofl_lml, ERR_FATAL, 131 MSG_INTL(MSG_SYS_OPEN), 132 ofl->ofl_name, strerror(err)); 133 return (S_ERROR); 134 } 135 } else { 136 (void) close(ofl->ofl_fd); 137 } 138 139 if ((unlink(ofl->ofl_name) == -1) && 140 (errno != ENOENT)) { 141 int err = errno; 142 143 eprintf(ofl->ofl_lml, ERR_FATAL, 144 MSG_INTL(MSG_SYS_UNLINK), 145 ofl->ofl_name, strerror(err)); 146 return (S_ERROR); 147 } 148 } 149 } 150 151 /* 152 * Open (or create) the output file name (ofl_fd acts as a global 153 * flag to ldexit() signifying whether the output file should be 154 * removed or not on error). 155 */ 156 if ((ofl->ofl_fd = open(ofl->ofl_name, O_RDWR | O_CREAT | O_TRUNC, 157 mode)) < 0) { 158 int err = errno; 159 160 eprintf(ofl->ofl_lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 161 ofl->ofl_name, strerror(err)); 162 return (S_ERROR); 163 } 164 165 return (1); 166 } 167 168 169 /* 170 * If we are creating a memory model we need to update the present memory image. 171 * First we need to call elf_update(ELF_C_NULL) which will calculate the offsets 172 * of each section and its associated data buffers. From this information we 173 * can then determine what padding is required. 174 * Two actions are necessary to convert the present disc image into a memory 175 * image: 176 * 177 * o Loadable segments must be padded so that the next segments virtual 178 * address and file offset are the same. 179 * 180 * o NOBITS sections must be converted into allocated, null filled sections. 181 */ 182 static uintptr_t 183 pad_outfile(Ofl_desc *ofl) 184 { 185 Listnode *lnp; 186 off_t offset; 187 Elf_Scn *oscn = 0; 188 Sg_desc *sgp; 189 Ehdr *ehdr; 190 191 /* 192 * Update all the elf structures. This will assign offsets to the 193 * section headers and data buffers as they relate to the new image. 194 */ 195 if (elf_update(ofl->ofl_welf, ELF_C_NULL) == -1) { 196 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_UPDATE), 197 ofl->ofl_name); 198 return (S_ERROR); 199 } 200 if ((ehdr = elf_getehdr(ofl->ofl_welf)) == NULL) { 201 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETEHDR), 202 ofl->ofl_name); 203 return (S_ERROR); 204 } 205 206 /* 207 * Initialize the offset by skipping the Elf header and program 208 * headers. 209 */ 210 offset = ehdr->e_phoff + (ehdr->e_phnum * ehdr->e_phentsize); 211 212 /* 213 * Traverse the segment list looking for loadable segments. 214 */ 215 for (LIST_TRAVERSE(&ofl->ofl_segs, lnp, sgp)) { 216 Phdr *phdr = &(sgp->sg_phdr); 217 Os_desc *osp; 218 Aliste idx; 219 220 /* 221 * If we've already processed a loadable segment, the `scn' 222 * variable will be initialized to the last section that was 223 * part of that segment. Add sufficient padding to this section 224 * to cause the next segments virtual address and file offset to 225 * be the same. 226 */ 227 if (oscn && (phdr->p_type == PT_LOAD)) { 228 Elf_Data * data; 229 size_t size; 230 231 size = (size_t)(S_ROUND(offset, phdr->p_align) - 232 offset); 233 234 if ((data = elf_newdata(oscn)) == NULL) { 235 eprintf(ofl->ofl_lml, ERR_ELF, 236 MSG_INTL(MSG_ELF_NEWDATA), ofl->ofl_name); 237 return (S_ERROR); 238 } 239 if ((data->d_buf = libld_calloc(size, 1)) == 0) 240 return (S_ERROR); 241 242 data->d_type = ELF_T_BYTE; 243 data->d_size = size; 244 data->d_align = 1; 245 data->d_version = ofl->ofl_dehdr->e_version; 246 } 247 248 /* 249 * Traverse the output sections for this segment calculating the 250 * offset of each section. Retain the final section descriptor 251 * as this will be where any padding buffer will be added. 252 */ 253 for (APLIST_TRAVERSE(sgp->sg_osdescs, idx, osp)) { 254 Shdr *shdr = osp->os_shdr; 255 256 offset = (off_t)S_ROUND(offset, shdr->sh_addralign); 257 offset += shdr->sh_size; 258 259 /* 260 * If this is a NOBITS output section convert all of 261 * its associated input sections into real, null filled, 262 * data buffers, and change the section to PROGBITS. 263 */ 264 if (shdr->sh_type == SHT_NOBITS) 265 shdr->sh_type = SHT_PROGBITS; 266 } 267 268 /* 269 * If this is a loadable segment retain the last output section 270 * descriptor. This acts both as a flag that a loadable 271 * segment has been seen, and as the segment to which a padding 272 * buffer will be added. 273 */ 274 if (phdr->p_type == PT_LOAD) 275 oscn = osp->os_scn; 276 } 277 return (1); 278 } 279 280 /* 281 * Create an output section. The first instance of an input section triggers 282 * the creation of a new output section. 283 */ 284 static uintptr_t 285 create_outsec(Ofl_desc *ofl, Sg_desc *sgp, Os_desc *osp, Word ptype, int shidx, 286 Boolean fixalign) 287 { 288 Elf_Scn *scn; 289 Shdr *shdr; 290 291 /* 292 * Get a section descriptor for the section. 293 */ 294 if ((scn = elf_newscn(ofl->ofl_welf)) == NULL) { 295 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_NEWSCN), 296 ofl->ofl_name); 297 return (S_ERROR); 298 } 299 osp->os_scn = scn; 300 301 /* 302 * Get a new section header table entry and copy the pertinent 303 * information from the in-core descriptor. 304 */ 305 if ((shdr = elf_getshdr(scn)) == NULL) { 306 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETSHDR), 307 ofl->ofl_name); 308 return (S_ERROR); 309 } 310 *shdr = *(osp->os_shdr); 311 osp->os_shdr = shdr; 312 313 /* 314 * If this is the first section within a loadable segment, and the 315 * alignment needs to be updated, record this section. 316 */ 317 if ((fixalign == TRUE) && (ptype == PT_LOAD) && (shidx == 1)) 318 sgp->sg_fscn = scn; 319 320 /* 321 * If not building a relocatable object, remove any of the 322 * following flags, as they have been acted upon and are not 323 * meaningful in the output: 324 * SHF_ORDERED, SHF_LINK_ORDER, SHF_GROUP 325 * For relocatable objects, we allow them to propagate to 326 * the output object to be handled by the next linker that 327 * sees them. 328 */ 329 if ((ofl->ofl_flags & FLG_OF_RELOBJ) == 0) 330 osp->os_shdr->sh_flags &= ~(ALL_SHF_ORDER|SHF_GROUP); 331 332 /* 333 * If this is a TLS section, save it so that the PT_TLS program header 334 * information can be established after the output image has been 335 * initially created. At this point, all TLS input sections are ordered 336 * as they will appear in the output image. 337 */ 338 if ((ofl->ofl_flags & FLG_OF_TLSPHDR) && 339 (osp->os_shdr->sh_flags & SHF_TLS) && 340 (list_appendc(&ofl->ofl_ostlsseg, osp) == 0)) 341 return (S_ERROR); 342 343 return (0); 344 } 345 346 /* 347 * Create the elf structures that allow the input data to be associated with the 348 * new image: 349 * 350 * o define the new elf image using elf_begin(), 351 * 352 * o obtain an elf header for the image, 353 * 354 * o traverse the input segments and create a program header array 355 * to define the required segments, 356 * 357 * o traverse the output sections for each segment assigning a new 358 * section descriptor and section header for each, 359 * 360 * o traverse the input sections associated with each output section 361 * and assign a new data descriptor to each (each output section 362 * becomes a linked list of input data buffers). 363 */ 364 uintptr_t 365 ld_create_outfile(Ofl_desc *ofl) 366 { 367 Listnode *lnp1; 368 Sg_desc *sgp; 369 Os_desc *osp; 370 Is_desc *isp; 371 Elf_Data *tlsdata = 0; 372 Aliste idx; 373 ofl_flag_t flags = ofl->ofl_flags; 374 ofl_flag_t flags1 = ofl->ofl_flags1; 375 size_t ndx = 0, fndx = 0; 376 Elf_Cmd cmd; 377 Boolean fixalign = FALSE; 378 int fd, nseg = 0, shidx = 0, dataidx = 0, ptloadidx = 0; 379 380 /* 381 * If DF_1_NOHDR was set in map_parse() or FLG_OF1_VADDR was set, 382 * we need to do alignment adjustment. 383 */ 384 if ((flags1 & FLG_OF1_VADDR) || 385 (ofl->ofl_dtflags_1 & DF_1_NOHDR)) { 386 fixalign = TRUE; 387 } 388 389 if (flags1 & FLG_OF1_MEMORY) { 390 cmd = ELF_C_IMAGE; 391 fd = 0; 392 } else { 393 fd = ofl->ofl_fd; 394 cmd = ELF_C_WRITE; 395 } 396 397 /* 398 * If there are any ordered sections, handle them here. 399 */ 400 if ((ofl->ofl_ordered.head != NULL) && 401 (ld_sort_ordered(ofl) == S_ERROR)) 402 return (S_ERROR); 403 404 /* 405 * Tell the access library about our new temporary file. 406 */ 407 if ((ofl->ofl_welf = elf_begin(fd, cmd, 0)) == NULL) { 408 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_BEGIN), 409 ofl->ofl_name); 410 return (S_ERROR); 411 } 412 413 /* 414 * Obtain a new Elf header. 415 */ 416 if ((ofl->ofl_nehdr = elf_newehdr(ofl->ofl_welf)) == NULL) { 417 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_NEWEHDR), 418 ofl->ofl_name); 419 return (S_ERROR); 420 } 421 ofl->ofl_nehdr->e_machine = ofl->ofl_dehdr->e_machine; 422 423 DBG_CALL(Dbg_util_nl(ofl->ofl_lml, DBG_NL_STD)); 424 for (LIST_TRAVERSE(&ofl->ofl_segs, lnp1, sgp)) { 425 int frst = 0; 426 Phdr *phdr = &(sgp->sg_phdr); 427 Word ptype = phdr->p_type; 428 429 /* 430 * Count the number of segments that will go in the program 431 * header table. If a segment is empty, ignore it. 432 */ 433 if (!(flags & FLG_OF_RELOBJ)) { 434 if (ptype == PT_PHDR) { 435 /* 436 * If we are generating an interp section (and 437 * thus an associated PT_INTERP program header 438 * entry) also generate a PT_PHDR program header 439 * entry. This allows the kernel to generate 440 * the appropriate aux vector entries to pass to 441 * the interpreter (refer to exec/elf/elf.c). 442 * Note that if an image was generated with an 443 * interp section, but no associated PT_PHDR 444 * program header entry, the kernel will simply 445 * pass the interpreter an open file descriptor 446 * when the image is executed). 447 */ 448 if (ofl->ofl_osinterp) 449 nseg++; 450 } else if (ptype == PT_INTERP) { 451 if (ofl->ofl_osinterp) 452 nseg++; 453 } else if (ptype == PT_DYNAMIC) { 454 if (flags & FLG_OF_DYNAMIC) 455 nseg++; 456 } else if (ptype == PT_TLS) { 457 if (flags & FLG_OF_TLSPHDR) 458 nseg++; 459 #if defined(_ELF64) 460 } else if ((ld_targ.t_m.m_mach == EM_AMD64) && 461 (ptype == PT_SUNW_UNWIND)) { 462 if (ofl->ofl_unwindhdr) 463 nseg++; 464 #endif 465 } else if (ptype == PT_SUNWDTRACE) { 466 if (ofl->ofl_dtracesym) 467 nseg++; 468 } else if (ptype == PT_SUNWCAP) { 469 if (ofl->ofl_oscap) 470 nseg++; 471 } else if (sgp->sg_flags & FLG_SG_EMPTY) { 472 nseg++; 473 } else if (sgp->sg_osdescs != NULL) { 474 if ((sgp->sg_flags & FLG_SG_PHREQ) == 0) { 475 /* 476 * If this is a segment for which 477 * we are not making a program header, 478 * don't increment nseg 479 */ 480 ptype = (sgp->sg_phdr).p_type = PT_NULL; 481 } else if (ptype != PT_NULL) 482 nseg++; 483 } 484 } 485 486 /* 487 * Establish any processing unique to the first loadable 488 * segment. 489 */ 490 if ((ptype == PT_LOAD) && (ptloadidx == 0)) { 491 ptloadidx++; 492 493 /* 494 * If the first loadable segment has the ?N flag then 495 * alignments of following segments need to be fixed, 496 * plus a .dynamic FLAGS1 setting is required. 497 */ 498 if (sgp->sg_flags & FLG_SG_NOHDR) { 499 fixalign = TRUE; 500 ofl->ofl_dtflags_1 |= DF_1_NOHDR; 501 } 502 } 503 504 shidx = 0; 505 for (APLIST_TRAVERSE(sgp->sg_osdescs, idx, osp)) { 506 Listnode *lnp2; 507 508 dataidx = 0; 509 for (LIST_TRAVERSE(&(osp->os_isdescs), lnp2, isp)) { 510 Elf_Data * data; 511 Ifl_desc * ifl = isp->is_file; 512 513 /* 514 * An input section in the list that has 515 * been previously marked to be discarded 516 * should be completely ignored. 517 */ 518 if (isp->is_flags & FLG_IS_DISCARD) 519 continue; 520 521 /* 522 * At this point we know whether a section has 523 * been referenced. If it hasn't, and the whole 524 * file hasn't been referenced (which would have 525 * been caught in ignore_section_processing()), 526 * give a diagnostic (-D unused,detail) or 527 * discard the section if -zignore is in effect. 528 */ 529 if (ifl && 530 (((ifl->ifl_flags & FLG_IF_FILEREF) == 0) || 531 ((ptype == PT_LOAD) && 532 ((isp->is_flags & FLG_IS_SECTREF) == 0) && 533 (isp->is_shdr->sh_size > 0)))) { 534 Lm_list *lml = ofl->ofl_lml; 535 536 if (ifl->ifl_flags & FLG_IF_IGNORE) { 537 isp->is_flags |= FLG_IS_DISCARD; 538 DBG_CALL(Dbg_unused_sec(lml, 539 isp)); 540 continue; 541 } else { 542 DBG_CALL(Dbg_unused_sec(lml, 543 isp)); 544 } 545 } 546 547 /* 548 * If this section provides no data, and isn't 549 * referenced, then it can be discarded as well. 550 * Note, if this is the first input section 551 * associated to an output section, let it 552 * through, there may be a legitimate reason why 553 * the user wants a null section. Discarding 554 * additional sections is intended to remove the 555 * empty clutter the compilers have a habit of 556 * creating. Don't provide an unused diagnostic 557 * as these sections aren't typically the users 558 * creation. 559 */ 560 if (ifl && dataidx && 561 ((isp->is_flags & FLG_IS_SECTREF) == 0) && 562 (isp->is_shdr->sh_size == 0)) { 563 isp->is_flags |= FLG_IS_DISCARD; 564 continue; 565 } 566 567 /* 568 * The first input section triggers the creation 569 * of the associated output section. 570 */ 571 if (osp->os_scn == NULL) { 572 shidx++; 573 574 if (create_outsec(ofl, sgp, osp, ptype, 575 shidx, fixalign) == S_ERROR) 576 return (S_ERROR); 577 } 578 579 dataidx++; 580 581 /* 582 * Create a new output data buffer for each 583 * input data buffer, thus linking the new 584 * buffers to the new elf output structures. 585 * Simply make the new data buffers point to 586 * the old data. 587 */ 588 if ((data = elf_newdata(osp->os_scn)) == NULL) { 589 eprintf(ofl->ofl_lml, ERR_ELF, 590 MSG_INTL(MSG_ELF_NEWDATA), 591 ofl->ofl_name); 592 return (S_ERROR); 593 } 594 *data = *(isp->is_indata); 595 isp->is_indata = data; 596 597 if ((fixalign == TRUE) && (ptype == PT_LOAD) && 598 (shidx == 1) && (dataidx == 1)) 599 data->d_align = sgp->sg_addralign; 600 601 /* 602 * Save the first TLS data buffer, as this is 603 * the start of the TLS segment. Realign this 604 * buffer based on the alignment requirements 605 * of all the TLS input sections. 606 */ 607 if ((flags & FLG_OF_TLSPHDR) && 608 (isp->is_shdr->sh_flags & SHF_TLS)) { 609 if (tlsdata == 0) 610 tlsdata = data; 611 tlsdata->d_align = 612 ld_lcm(tlsdata->d_align, 613 isp->is_shdr->sh_addralign); 614 } 615 616 #if defined(_ELF64) && defined(_ILP32) 617 /* 618 * 4106312, the 32-bit ELF64 version of ld 619 * needs to be able to create large .bss 620 * sections. The d_size member of Elf_Data 621 * only allows 32-bits in _ILP32, so we build 622 * multiple data-items that each fit into 32- 623 * bits. libelf (4106398) can summ these up 624 * into a 64-bit quantity. This only works 625 * for NOBITS sections which don't have any 626 * real data to maintain and don't require 627 * large file support. 628 */ 629 if (isp->is_shdr->sh_type == SHT_NOBITS) { 630 Xword sz = isp->is_shdr->sh_size; 631 632 while (sz >> 32) { 633 data->d_size = SIZE_MAX; 634 sz -= (Xword)SIZE_MAX; 635 636 data = elf_newdata(osp->os_scn); 637 if (data == NULL) 638 return (S_ERROR); 639 } 640 data->d_size = (size_t)sz; 641 } 642 #endif 643 644 /* 645 * If this segment requires rounding realign the 646 * first data buffer associated with the first 647 * section. 648 */ 649 if ((frst++ == 0) && 650 (sgp->sg_flags & FLG_SG_ROUND)) { 651 Xword align; 652 653 if (data->d_align) 654 align = (Xword) 655 S_ROUND(data->d_align, 656 sgp->sg_round); 657 else 658 align = sgp->sg_round; 659 660 data->d_align = (size_t)align; 661 } 662 } 663 664 /* 665 * Clear the szoutrels counter so that it can be used 666 * again in the building of relocs. See machrel.c. 667 */ 668 osp->os_szoutrels = 0; 669 } 670 } 671 672 /* 673 * Build an empty PHDR. 674 */ 675 if (nseg) { 676 if ((ofl->ofl_phdr = elf_newphdr(ofl->ofl_welf, 677 nseg)) == NULL) { 678 eprintf(ofl->ofl_lml, ERR_ELF, 679 MSG_INTL(MSG_ELF_NEWPHDR), ofl->ofl_name); 680 return (S_ERROR); 681 } 682 } 683 684 /* 685 * If we need to generate a memory model, pad the image. 686 */ 687 if (flags1 & FLG_OF1_MEMORY) { 688 if (pad_outfile(ofl) == S_ERROR) 689 return (S_ERROR); 690 } 691 692 /* 693 * After all the basic input file processing, all data pointers are 694 * referencing two types of memory: 695 * 696 * o allocated memory, ie. elf structures, internal link 697 * editor structures, and any new sections that have been 698 * created. 699 * 700 * o original input file mmap'ed memory, ie. the actual data 701 * sections of the input file images. 702 * 703 * Up until now, the only memory modifications have been carried out on 704 * the allocated memory. Before carrying out any relocations, write the 705 * new output file image and reassign any necessary data pointers to the 706 * output files memory image. This insures that any relocation 707 * modifications are made to the output file image and not to the input 708 * file image, thus preventing the creation of dirty pages and reducing 709 * the overall swap space requirement. 710 * 711 * Write out the elf structure so as to create the new file image. 712 */ 713 if ((ofl->ofl_size = (size_t)elf_update(ofl->ofl_welf, 714 ELF_C_WRIMAGE)) == (size_t)-1) { 715 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_UPDATE), 716 ofl->ofl_name); 717 return (S_ERROR); 718 } 719 720 /* 721 * Initialize the true `ofl' information with the memory images address 722 * and size. This will be used to write() out the image once any 723 * relocation processing has been completed. We also use this image 724 * information to setup a new Elf descriptor, which is used to obtain 725 * all the necessary elf pointers within the new output image. 726 */ 727 if ((ofl->ofl_elf = elf_begin(0, ELF_C_IMAGE, 728 ofl->ofl_welf)) == NULL) { 729 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_BEGIN), 730 ofl->ofl_name); 731 return (S_ERROR); 732 } 733 if ((ofl->ofl_nehdr = elf_getehdr(ofl->ofl_elf)) == NULL) { 734 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETEHDR), 735 ofl->ofl_name); 736 return (S_ERROR); 737 } 738 if (!(flags & FLG_OF_RELOBJ)) 739 if ((ofl->ofl_phdr = elf_getphdr(ofl->ofl_elf)) == NULL) { 740 eprintf(ofl->ofl_lml, ERR_ELF, 741 MSG_INTL(MSG_ELF_GETPHDR), ofl->ofl_name); 742 return (S_ERROR); 743 } 744 745 /* 746 * Reinitialize the section descriptors, section headers and obtain new 747 * output data buffer pointers (these will be used to perform any 748 * relocations). 749 */ 750 for (LIST_TRAVERSE(&ofl->ofl_segs, lnp1, sgp)) { 751 Phdr *_phdr = &(sgp->sg_phdr); 752 Os_desc *osp; 753 Aliste idx; 754 Boolean recorded = FALSE; 755 756 for (APLIST_TRAVERSE(sgp->sg_osdescs, idx, osp)) { 757 /* 758 * Make sure that an output section was originally 759 * created. Input sections that had been marked as 760 * discarded may have made an output section 761 * unnecessary. Remove this alist entry so that 762 * future output section descriptor processing doesn't 763 * have to compensate for this empty section. 764 */ 765 if (osp->os_scn == NULL) { 766 aplist_delete(sgp->sg_osdescs, &idx); 767 continue; 768 } 769 770 if ((osp->os_scn = elf_getscn(ofl->ofl_elf, ++ndx)) == 771 NULL) { 772 eprintf(ofl->ofl_lml, ERR_ELF, 773 MSG_INTL(MSG_ELF_GETSCN), ofl->ofl_name, 774 ndx); 775 return (S_ERROR); 776 } 777 if ((osp->os_shdr = elf_getshdr(osp->os_scn)) == 778 NULL) { 779 eprintf(ofl->ofl_lml, ERR_ELF, 780 MSG_INTL(MSG_ELF_GETSHDR), ofl->ofl_name); 781 return (S_ERROR); 782 } 783 if ((fixalign == TRUE) && (sgp->sg_fscn != 0) && 784 (recorded == FALSE)) { 785 Elf_Scn *scn; 786 787 scn = sgp->sg_fscn; 788 if ((fndx = elf_ndxscn(scn)) == SHN_UNDEF) { 789 eprintf(ofl->ofl_lml, ERR_ELF, 790 MSG_INTL(MSG_ELF_NDXSCN), 791 ofl->ofl_name); 792 return (S_ERROR); 793 } 794 if (ndx == fndx) { 795 sgp->sg_fscn = osp->os_scn; 796 recorded = TRUE; 797 } 798 } 799 800 if ((osp->os_outdata = 801 elf_getdata(osp->os_scn, NULL)) == NULL) { 802 eprintf(ofl->ofl_lml, ERR_ELF, 803 MSG_INTL(MSG_ELF_GETDATA), ofl->ofl_name); 804 return (S_ERROR); 805 } 806 807 /* 808 * If this section is part of a loadable segment insure 809 * that the segments alignment is appropriate. 810 */ 811 if (_phdr->p_type == PT_LOAD) { 812 _phdr->p_align = ld_lcm(_phdr->p_align, 813 osp->os_shdr->sh_addralign); 814 } 815 } 816 } 817 return (1); 818 } 819