1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 /* 31 * This file contains the functions responsible for opening the output file 32 * image, associating the appropriate input elf structures with the new image, 33 * and obtaining new elf structures to define the new image. 34 */ 35 #include <stdio.h> 36 #include <sys/stat.h> 37 #include <fcntl.h> 38 #include <link.h> 39 #include <errno.h> 40 #include <string.h> 41 #include <limits.h> 42 #include <debug.h> 43 #include <unistd.h> 44 #include "msg.h" 45 #include "_libld.h" 46 47 /* 48 * Determine a least common multiplier. Input sections contain an alignment 49 * requirement, which elf_update() uses to insure that the section is aligned 50 * correctly off of the base of the elf image. We must also insure that the 51 * sections mapping is congruent with this alignment requirement. For each 52 * input section associated with a loadable segment determine whether the 53 * segments alignment must be adjusted to compensate for a sections alignment 54 * requirements. 55 */ 56 Xword 57 ld_lcm(Xword a, Xword b) 58 { 59 Xword _r, _a, _b; 60 61 if ((_a = a) == 0) 62 return (b); 63 if ((_b = b) == 0) 64 return (a); 65 66 if (_a > _b) 67 _a = b, _b = a; 68 while ((_r = _b % _a) != 0) 69 _b = _a, _a = _r; 70 return ((a / _a) * b); 71 } 72 73 /* 74 * Open the output file and insure the correct access modes. 75 */ 76 uintptr_t 77 ld_open_outfile(Ofl_desc * ofl) 78 { 79 mode_t mode; 80 struct stat status; 81 82 /* 83 * Determine the required file mode from the type of output file we 84 * are creating. 85 */ 86 mode = (ofl->ofl_flags & (FLG_OF_EXEC | FLG_OF_SHAROBJ)) 87 ? 0777 : 0666; 88 89 /* Determine if the output file already exists */ 90 if (stat(ofl->ofl_name, &status) == 0) { 91 if ((status.st_mode & S_IFMT) != S_IFREG) { 92 /* 93 * It is not a regular file, so don't delete it 94 * or allow it to be deleted. This allows root 95 * users to specify /dev/null output file for 96 * verification links. 97 */ 98 ofl->ofl_flags1 |= FLG_OF1_NONREG; 99 } else { 100 /* 101 * It's a regular file, so unlink it. In standard 102 * Unix fashion, the old file will continue to 103 * exist until its link count drops to 0 and no 104 * process has the file open. In the meantime, we 105 * create a new file (inode) under the same name, 106 * available for new use. 107 * 108 * The advantage of this policy is that creating 109 * a new executable or sharable library does not 110 * corrupt existing processes using the old file. 111 * A possible disadvantage is that if the existing 112 * file has a (link_count > 1), the other names will 113 * continue to reference the old inode, thus 114 * breaking the link. 115 * 116 * A subtlety here is that POSIX says we are not 117 * supposed to replace a non-writable file, which 118 * is something that unlink() is happy to do. The 119 * only 100% reliable test against this is to open 120 * the file for non-destructive write access. If the 121 * open succeeds, we are clear to unlink it, and if 122 * not, then the error generated is the error we 123 * need to report. 124 */ 125 if ((ofl->ofl_fd = open(ofl->ofl_name, O_RDWR, 126 mode)) < 0) { 127 int err = errno; 128 129 if (err != ENOENT) { 130 eprintf(ofl->ofl_lml, ERR_FATAL, 131 MSG_INTL(MSG_SYS_OPEN), 132 ofl->ofl_name, strerror(err)); 133 return (S_ERROR); 134 } 135 } else { 136 (void) close(ofl->ofl_fd); 137 } 138 139 if ((unlink(ofl->ofl_name) == -1) && 140 (errno != ENOENT)) { 141 int err = errno; 142 143 eprintf(ofl->ofl_lml, ERR_FATAL, 144 MSG_INTL(MSG_SYS_UNLINK), 145 ofl->ofl_name, strerror(err)); 146 return (S_ERROR); 147 } 148 } 149 } 150 151 /* 152 * Open (or create) the output file name (ofl_fd acts as a global 153 * flag to ldexit() signifying whether the output file should be 154 * removed or not on error). 155 */ 156 if ((ofl->ofl_fd = open(ofl->ofl_name, O_RDWR | O_CREAT | O_TRUNC, 157 mode)) < 0) { 158 int err = errno; 159 160 eprintf(ofl->ofl_lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 161 ofl->ofl_name, strerror(err)); 162 return (S_ERROR); 163 } 164 165 return (1); 166 } 167 168 169 /* 170 * If we are creating a memory model we need to update the present memory image. 171 * First we need to call elf_update(ELF_C_NULL) which will calculate the offsets 172 * of each section and its associated data buffers. From this information we 173 * can then determine what padding is required. 174 * Two actions are necessary to convert the present disc image into a memory 175 * image: 176 * 177 * o Loadable segments must be padded so that the next segments virtual 178 * address and file offset are the same. 179 * 180 * o NOBITS sections must be converted into allocated, null filled sections. 181 */ 182 static uintptr_t 183 pad_outfile(Ofl_desc *ofl) 184 { 185 Listnode *lnp; 186 off_t offset; 187 Elf_Scn *oscn = 0; 188 Sg_desc *sgp; 189 Ehdr *ehdr; 190 191 /* 192 * Update all the elf structures. This will assign offsets to the 193 * section headers and data buffers as they relate to the new image. 194 */ 195 if (elf_update(ofl->ofl_welf, ELF_C_NULL) == -1) { 196 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_UPDATE), 197 ofl->ofl_name); 198 return (S_ERROR); 199 } 200 if ((ehdr = elf_getehdr(ofl->ofl_welf)) == NULL) { 201 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETEHDR), 202 ofl->ofl_name); 203 return (S_ERROR); 204 } 205 206 /* 207 * Initialize the offset by skipping the Elf header and program 208 * headers. 209 */ 210 offset = ehdr->e_phoff + (ehdr->e_phnum * ehdr->e_phentsize); 211 212 /* 213 * Traverse the segment list looking for loadable segments. 214 */ 215 for (LIST_TRAVERSE(&ofl->ofl_segs, lnp, sgp)) { 216 Phdr *phdr = &(sgp->sg_phdr); 217 Os_desc *osp; 218 Aliste idx; 219 220 /* 221 * If we've already processed a loadable segment, the `scn' 222 * variable will be initialized to the last section that was 223 * part of that segment. Add sufficient padding to this section 224 * to cause the next segments virtual address and file offset to 225 * be the same. 226 */ 227 if (oscn && (phdr->p_type == PT_LOAD)) { 228 Elf_Data * data; 229 size_t size; 230 231 size = (size_t)(S_ROUND(offset, phdr->p_align) - 232 offset); 233 234 if ((data = elf_newdata(oscn)) == NULL) { 235 eprintf(ofl->ofl_lml, ERR_ELF, 236 MSG_INTL(MSG_ELF_NEWDATA), ofl->ofl_name); 237 return (S_ERROR); 238 } 239 if ((data->d_buf = libld_calloc(size, 1)) == 0) 240 return (S_ERROR); 241 242 data->d_type = ELF_T_BYTE; 243 data->d_size = size; 244 data->d_align = 1; 245 data->d_version = ofl->ofl_dehdr->e_version; 246 } 247 248 /* 249 * Traverse the output sections for this segment calculating the 250 * offset of each section. Retain the final section descriptor 251 * as this will be where any padding buffer will be added. 252 */ 253 for (APLIST_TRAVERSE(sgp->sg_osdescs, idx, osp)) { 254 Shdr *shdr = osp->os_shdr; 255 256 offset = (off_t)S_ROUND(offset, shdr->sh_addralign); 257 offset += shdr->sh_size; 258 259 /* 260 * If this is a NOBITS output section convert all of 261 * its associated input sections into real, null filled, 262 * data buffers, and change the section to PROGBITS. 263 */ 264 if (shdr->sh_type == SHT_NOBITS) 265 shdr->sh_type = SHT_PROGBITS; 266 } 267 268 /* 269 * If this is a loadable segment retain the last output section 270 * descriptor. This acts both as a flag that a loadable 271 * segment has been seen, and as the segment to which a padding 272 * buffer will be added. 273 */ 274 if (phdr->p_type == PT_LOAD) 275 oscn = osp->os_scn; 276 } 277 return (1); 278 } 279 280 /* 281 * Create an output section. The first instance of an input section triggers 282 * the creation of a new output section. 283 */ 284 static uintptr_t 285 create_outsec(Ofl_desc *ofl, Sg_desc *sgp, Os_desc *osp, Word ptype, int shidx, 286 Boolean fixalign) 287 { 288 Elf_Scn *scn; 289 Shdr *shdr; 290 291 /* 292 * Get a section descriptor for the section. 293 */ 294 if ((scn = elf_newscn(ofl->ofl_welf)) == NULL) { 295 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_NEWSCN), 296 ofl->ofl_name); 297 return (S_ERROR); 298 } 299 osp->os_scn = scn; 300 301 /* 302 * Get a new section header table entry and copy the pertinent 303 * information from the in-core descriptor. 304 */ 305 if ((shdr = elf_getshdr(scn)) == NULL) { 306 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETSHDR), 307 ofl->ofl_name); 308 return (S_ERROR); 309 } 310 *shdr = *(osp->os_shdr); 311 osp->os_shdr = shdr; 312 313 /* 314 * If this is the first section within a loadable segment, and the 315 * alignment needs to be updated, record this section. 316 */ 317 if ((fixalign == TRUE) && (ptype == PT_LOAD) && (shidx == 1)) 318 sgp->sg_fscn = scn; 319 320 /* 321 * If not building a relocatable object, remove any of the 322 * following flags, as they have been acted upon and are not 323 * meaningful in the output: 324 * SHF_ORDERED, SHF_LINK_ORDER, SHF_GROUP 325 * For relocatable objects, we allow them to propagate to 326 * the output object to be handled by the next linker that 327 * sees them. 328 */ 329 if ((ofl->ofl_flags & FLG_OF_RELOBJ) == 0) 330 osp->os_shdr->sh_flags &= ~(ALL_SHF_ORDER|SHF_GROUP); 331 332 /* 333 * If this is a TLS section, save it so that the PT_TLS program header 334 * information can be established after the output image has been 335 * initially created. At this point, all TLS input sections are ordered 336 * as they will appear in the output image. 337 */ 338 if ((ofl->ofl_flags & FLG_OF_TLSPHDR) && 339 (osp->os_shdr->sh_flags & SHF_TLS) && 340 (list_appendc(&ofl->ofl_ostlsseg, osp) == 0)) 341 return (S_ERROR); 342 343 return (0); 344 } 345 346 /* 347 * Create the elf structures that allow the input data to be associated with the 348 * new image: 349 * 350 * o define the new elf image using elf_begin(), 351 * 352 * o obtain an elf header for the image, 353 * 354 * o traverse the input segments and create a program header array 355 * to define the required segments, 356 * 357 * o traverse the output sections for each segment assigning a new 358 * section descriptor and section header for each, 359 * 360 * o traverse the input sections associated with each output section 361 * and assign a new data descriptor to each (each output section 362 * becomes a linked list of input data buffers). 363 */ 364 uintptr_t 365 ld_create_outfile(Ofl_desc *ofl) 366 { 367 Listnode *lnp1; 368 Sg_desc *sgp; 369 Os_desc *osp; 370 Is_desc *isp; 371 Elf_Data *tlsdata = 0; 372 Aliste idx; 373 ofl_flag_t flags = ofl->ofl_flags; 374 ofl_flag_t flags1 = ofl->ofl_flags1; 375 size_t ndx = 0, fndx = 0; 376 Elf_Cmd cmd; 377 Boolean fixalign = FALSE; 378 int fd, nseg = 0, shidx = 0, dataidx = 0, ptloadidx = 0; 379 380 /* 381 * If DF_1_NOHDR was set in map_parse() or FLG_OF1_VADDR was set, 382 * we need to do alignment adjustment. 383 */ 384 if ((flags1 & FLG_OF1_VADDR) || 385 (ofl->ofl_dtflags_1 & DF_1_NOHDR)) { 386 fixalign = TRUE; 387 } 388 389 if (flags1 & FLG_OF1_MEMORY) { 390 cmd = ELF_C_IMAGE; 391 fd = 0; 392 } else { 393 fd = ofl->ofl_fd; 394 cmd = ELF_C_WRITE; 395 } 396 397 /* 398 * If there are any ordered sections, handle them here. 399 */ 400 if ((ofl->ofl_ordered.head != NULL) && 401 (ld_sort_ordered(ofl) == S_ERROR)) 402 return (S_ERROR); 403 404 /* 405 * Tell the access library about our new temporary file. 406 */ 407 if ((ofl->ofl_welf = elf_begin(fd, cmd, 0)) == NULL) { 408 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_BEGIN), 409 ofl->ofl_name); 410 return (S_ERROR); 411 } 412 413 /* 414 * Obtain a new Elf header. 415 */ 416 if ((ofl->ofl_nehdr = elf_newehdr(ofl->ofl_welf)) == NULL) { 417 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_NEWEHDR), 418 ofl->ofl_name); 419 return (S_ERROR); 420 } 421 ofl->ofl_nehdr->e_machine = ofl->ofl_dehdr->e_machine; 422 423 DBG_CALL(Dbg_util_nl(ofl->ofl_lml, DBG_NL_STD)); 424 for (LIST_TRAVERSE(&ofl->ofl_segs, lnp1, sgp)) { 425 int frst = 0; 426 Phdr *phdr = &(sgp->sg_phdr); 427 Word ptype = phdr->p_type; 428 429 /* 430 * Count the number of segments that will go in the program 431 * header table. If a segment is empty, ignore it. 432 */ 433 if (!(flags & FLG_OF_RELOBJ)) { 434 if (ptype == PT_PHDR) { 435 /* 436 * If we are generating an interp section (and 437 * thus an associated PT_INTERP program header 438 * entry) also generate a PT_PHDR program header 439 * entry. This allows the kernel to generate 440 * the appropriate aux vector entries to pass to 441 * the interpreter (refer to exec/elf/elf.c). 442 * Note that if an image was generated with an 443 * interp section, but no associated PT_PHDR 444 * program header entry, the kernel will simply 445 * pass the interpreter an open file descriptor 446 * when the image is executed). 447 */ 448 if (ofl->ofl_osinterp) 449 nseg++; 450 } else if (ptype == PT_INTERP) { 451 if (ofl->ofl_osinterp) 452 nseg++; 453 } else if (ptype == PT_DYNAMIC) { 454 if (flags & FLG_OF_DYNAMIC) 455 nseg++; 456 } else if (ptype == PT_TLS) { 457 if (flags & FLG_OF_TLSPHDR) 458 nseg++; 459 #if defined(_ELF64) 460 } else if ((ld_targ.t_m.m_mach == EM_AMD64) && 461 (ptype == PT_SUNW_UNWIND)) { 462 if (ofl->ofl_unwindhdr) 463 nseg++; 464 #endif 465 } else if (ptype == PT_SUNWBSS) { 466 if (ofl->ofl_issunwbss) 467 nseg++; 468 } else if (ptype == PT_SUNWDTRACE) { 469 if (ofl->ofl_dtracesym) 470 nseg++; 471 } else if (ptype == PT_SUNWCAP) { 472 if (ofl->ofl_oscap) 473 nseg++; 474 } else if (sgp->sg_flags & FLG_SG_EMPTY) { 475 nseg++; 476 } else if (sgp->sg_osdescs != NULL) { 477 if ((sgp->sg_flags & FLG_SG_PHREQ) == 0) { 478 /* 479 * If this is a segment for which 480 * we are not making a program header, 481 * don't increment nseg 482 */ 483 ptype = (sgp->sg_phdr).p_type = PT_NULL; 484 } else if (ptype != PT_NULL) 485 nseg++; 486 } 487 } 488 489 /* 490 * If the first loadable segment has the ?N flag, 491 * then ?N will be on. 492 */ 493 if ((ptype == PT_LOAD) && (ptloadidx == 0)) { 494 ptloadidx++; 495 if (sgp->sg_flags & FLG_SG_NOHDR) { 496 fixalign = TRUE; 497 ofl->ofl_dtflags_1 |= DF_1_NOHDR; 498 } 499 } 500 501 shidx = 0; 502 for (APLIST_TRAVERSE(sgp->sg_osdescs, idx, osp)) { 503 Listnode *lnp2; 504 505 dataidx = 0; 506 for (LIST_TRAVERSE(&(osp->os_isdescs), lnp2, isp)) { 507 Elf_Data * data; 508 Ifl_desc * ifl = isp->is_file; 509 510 /* 511 * An input section in the list that has 512 * been previously marked to be discarded 513 * should be completely ignored. 514 */ 515 if (isp->is_flags & FLG_IS_DISCARD) 516 continue; 517 518 /* 519 * At this point we know whether a section has 520 * been referenced. If it hasn't, and the whole 521 * file hasn't been referenced (which would have 522 * been caught in ignore_section_processing()), 523 * give a diagnostic (-D unused,detail) or 524 * discard the section if -zignore is in effect. 525 */ 526 if (ifl && 527 (((ifl->ifl_flags & FLG_IF_FILEREF) == 0) || 528 ((ptype == PT_LOAD) && 529 ((isp->is_flags & FLG_IS_SECTREF) == 0) && 530 (isp->is_shdr->sh_size > 0)))) { 531 Lm_list *lml = ofl->ofl_lml; 532 533 if (ifl->ifl_flags & FLG_IF_IGNORE) { 534 isp->is_flags |= FLG_IS_DISCARD; 535 DBG_CALL(Dbg_unused_sec(lml, 536 isp)); 537 continue; 538 } else { 539 DBG_CALL(Dbg_unused_sec(lml, 540 isp)); 541 } 542 } 543 544 /* 545 * If this section provides no data, and isn't 546 * referenced, then it can be discarded as well. 547 * Note, if this is the first input section 548 * associated to an output section, let it 549 * through, there may be a legitimate reason why 550 * the user wants a null section. Discarding 551 * additional sections is intended to remove the 552 * empty clutter the compilers have a habit of 553 * creating. Don't provide an unused diagnostic 554 * as these sections aren't typically the users 555 * creation. 556 */ 557 if (ifl && dataidx && 558 ((isp->is_flags & FLG_IS_SECTREF) == 0) && 559 (isp->is_shdr->sh_size == 0)) { 560 isp->is_flags |= FLG_IS_DISCARD; 561 continue; 562 } 563 564 /* 565 * The first input section triggers the creation 566 * of the associated output section. 567 */ 568 if (osp->os_scn == NULL) { 569 shidx++; 570 571 if (create_outsec(ofl, sgp, osp, ptype, 572 shidx, fixalign) == S_ERROR) 573 return (S_ERROR); 574 } 575 576 dataidx++; 577 578 /* 579 * Create a new output data buffer for each 580 * input data buffer, thus linking the new 581 * buffers to the new elf output structures. 582 * Simply make the new data buffers point to 583 * the old data. 584 */ 585 if ((data = elf_newdata(osp->os_scn)) == NULL) { 586 eprintf(ofl->ofl_lml, ERR_ELF, 587 MSG_INTL(MSG_ELF_NEWDATA), 588 ofl->ofl_name); 589 return (S_ERROR); 590 } 591 *data = *(isp->is_indata); 592 isp->is_indata = data; 593 594 if ((fixalign == TRUE) && (ptype == PT_LOAD) && 595 (shidx == 1) && (dataidx == 1)) 596 data->d_align = sgp->sg_addralign; 597 598 /* 599 * Save the first TLS data buffer, as this is 600 * the start of the TLS segment. Realign this 601 * buffer based on the alignment requirements 602 * of all the TLS input sections. 603 */ 604 if ((flags & FLG_OF_TLSPHDR) && 605 (isp->is_shdr->sh_flags & SHF_TLS)) { 606 if (tlsdata == 0) 607 tlsdata = data; 608 tlsdata->d_align = 609 ld_lcm(tlsdata->d_align, 610 isp->is_shdr->sh_addralign); 611 } 612 613 #if defined(_ELF64) && defined(_ILP32) 614 /* 615 * 4106312, the 32-bit ELF64 version of ld 616 * needs to be able to create large .bss 617 * sections. The d_size member of Elf_Data 618 * only allows 32-bits in _ILP32, so we build 619 * multiple data-items that each fit into 32- 620 * bits. libelf (4106398) can summ these up 621 * into a 64-bit quantity. This only works 622 * for NOBITS sections which don't have any 623 * real data to maintain and don't require 624 * large file support. 625 */ 626 if (isp->is_shdr->sh_type == SHT_NOBITS) { 627 Xword sz = isp->is_shdr->sh_size; 628 629 while (sz >> 32) { 630 data->d_size = SIZE_MAX; 631 sz -= (Xword)SIZE_MAX; 632 633 data = elf_newdata(osp->os_scn); 634 if (data == NULL) 635 return (S_ERROR); 636 } 637 data->d_size = (size_t)sz; 638 } 639 #endif 640 641 /* 642 * If this segment requires rounding realign the 643 * first data buffer associated with the first 644 * section. 645 */ 646 if ((frst++ == 0) && 647 (sgp->sg_flags & FLG_SG_ROUND)) { 648 Xword align; 649 650 if (data->d_align) 651 align = (Xword) 652 S_ROUND(data->d_align, 653 sgp->sg_round); 654 else 655 align = sgp->sg_round; 656 657 data->d_align = (size_t)align; 658 } 659 } 660 661 /* 662 * Clear the szoutrels counter so that it can be used 663 * again in the building of relocs. See machrel.c. 664 */ 665 osp->os_szoutrels = 0; 666 } 667 } 668 669 /* 670 * Build an empty PHDR. 671 */ 672 if (nseg) { 673 if ((ofl->ofl_phdr = elf_newphdr(ofl->ofl_welf, 674 nseg)) == NULL) { 675 eprintf(ofl->ofl_lml, ERR_ELF, 676 MSG_INTL(MSG_ELF_NEWPHDR), ofl->ofl_name); 677 return (S_ERROR); 678 } 679 } 680 681 /* 682 * If we need to generate a memory model, pad the image. 683 */ 684 if (flags1 & FLG_OF1_MEMORY) { 685 if (pad_outfile(ofl) == S_ERROR) 686 return (S_ERROR); 687 } 688 689 /* 690 * After all the basic input file processing, all data pointers are 691 * referencing two types of memory: 692 * 693 * o allocated memory, ie. elf structures, internal link 694 * editor structures, and any new sections that have been 695 * created. 696 * 697 * o original input file mmap'ed memory, ie. the actual data 698 * sections of the input file images. 699 * 700 * Up until now, the only memory modifications have been carried out on 701 * the allocated memory. Before carrying out any relocations, write the 702 * new output file image and reassign any necessary data pointers to the 703 * output files memory image. This insures that any relocation 704 * modifications are made to the output file image and not to the input 705 * file image, thus preventing the creation of dirty pages and reducing 706 * the overall swap space requirement. 707 * 708 * Write out the elf structure so as to create the new file image. 709 */ 710 if ((ofl->ofl_size = (size_t)elf_update(ofl->ofl_welf, 711 ELF_C_WRIMAGE)) == (size_t)-1) { 712 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_UPDATE), 713 ofl->ofl_name); 714 return (S_ERROR); 715 } 716 717 /* 718 * Initialize the true `ofl' information with the memory images address 719 * and size. This will be used to write() out the image once any 720 * relocation processing has been completed. We also use this image 721 * information to setup a new Elf descriptor, which is used to obtain 722 * all the necessary elf pointers within the new output image. 723 */ 724 if ((ofl->ofl_elf = elf_begin(0, ELF_C_IMAGE, 725 ofl->ofl_welf)) == NULL) { 726 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_BEGIN), 727 ofl->ofl_name); 728 return (S_ERROR); 729 } 730 if ((ofl->ofl_nehdr = elf_getehdr(ofl->ofl_elf)) == NULL) { 731 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETEHDR), 732 ofl->ofl_name); 733 return (S_ERROR); 734 } 735 if (!(flags & FLG_OF_RELOBJ)) 736 if ((ofl->ofl_phdr = elf_getphdr(ofl->ofl_elf)) == NULL) { 737 eprintf(ofl->ofl_lml, ERR_ELF, 738 MSG_INTL(MSG_ELF_GETPHDR), ofl->ofl_name); 739 return (S_ERROR); 740 } 741 742 /* 743 * Reinitialize the section descriptors, section headers and obtain new 744 * output data buffer pointers (these will be used to perform any 745 * relocations). 746 */ 747 for (LIST_TRAVERSE(&ofl->ofl_segs, lnp1, sgp)) { 748 Phdr *_phdr = &(sgp->sg_phdr); 749 Os_desc *osp; 750 Aliste idx; 751 Boolean recorded = FALSE; 752 753 for (APLIST_TRAVERSE(sgp->sg_osdescs, idx, osp)) { 754 /* 755 * Make sure that an output section was originally 756 * created. Input sections that had been marked as 757 * discarded may have made an output section 758 * unnecessary. Remove this alist entry so that 759 * future output section descriptor processing doesn't 760 * have to compensate for this empty section. 761 */ 762 if (osp->os_scn == NULL) { 763 aplist_delete(sgp->sg_osdescs, &idx); 764 continue; 765 } 766 767 if ((osp->os_scn = elf_getscn(ofl->ofl_elf, ++ndx)) == 768 NULL) { 769 eprintf(ofl->ofl_lml, ERR_ELF, 770 MSG_INTL(MSG_ELF_GETSCN), ofl->ofl_name, 771 ndx); 772 return (S_ERROR); 773 } 774 if ((osp->os_shdr = elf_getshdr(osp->os_scn)) == 775 NULL) { 776 eprintf(ofl->ofl_lml, ERR_ELF, 777 MSG_INTL(MSG_ELF_GETSHDR), ofl->ofl_name); 778 return (S_ERROR); 779 } 780 if ((fixalign == TRUE) && (sgp->sg_fscn != 0) && 781 (recorded == FALSE)) { 782 Elf_Scn *scn; 783 784 scn = sgp->sg_fscn; 785 if ((fndx = elf_ndxscn(scn)) == SHN_UNDEF) { 786 eprintf(ofl->ofl_lml, ERR_ELF, 787 MSG_INTL(MSG_ELF_NDXSCN), 788 ofl->ofl_name); 789 return (S_ERROR); 790 } 791 if (ndx == fndx) { 792 sgp->sg_fscn = osp->os_scn; 793 recorded = TRUE; 794 } 795 } 796 797 if ((osp->os_outdata = 798 elf_getdata(osp->os_scn, NULL)) == NULL) { 799 eprintf(ofl->ofl_lml, ERR_ELF, 800 MSG_INTL(MSG_ELF_GETDATA), ofl->ofl_name); 801 return (S_ERROR); 802 } 803 804 /* 805 * If this section is part of a loadable segment insure 806 * that the segments alignment is appropriate. 807 */ 808 if (_phdr->p_type == PT_LOAD) { 809 _phdr->p_align = ld_lcm(_phdr->p_align, 810 osp->os_shdr->sh_addralign); 811 } 812 } 813 } 814 return (1); 815 } 816