1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * This file contains the functions responsible for opening the output file 33 * image, associating the appropriate input elf structures with the new image, 34 * and obtaining new elf structures to define the new image. 35 */ 36 #include <stdio.h> 37 #include <sys/stat.h> 38 #include <fcntl.h> 39 #include <link.h> 40 #include <errno.h> 41 #include <string.h> 42 #include <limits.h> 43 #include <debug.h> 44 #include <unistd.h> 45 #include "msg.h" 46 #include "_libld.h" 47 48 /* 49 * Determine a least common multiplier. Input sections contain an alignment 50 * requirement, which elf_update() uses to insure that the section is aligned 51 * correctly off of the base of the elf image. We must also insure that the 52 * sections mapping is congruent with this alignment requirement. For each 53 * input section associated with a loadable segment determine whether the 54 * segments alignment must be adjusted to compensate for a sections alignment 55 * requirements. 56 */ 57 Xword 58 ld_lcm(Xword a, Xword b) 59 { 60 Xword _r, _a, _b; 61 62 if ((_a = a) == 0) 63 return (b); 64 if ((_b = b) == 0) 65 return (a); 66 67 if (_a > _b) 68 _a = b, _b = a; 69 while ((_r = _b % _a) != 0) 70 _b = _a, _a = _r; 71 return ((a / _a) * b); 72 } 73 74 /* 75 * Open the output file and insure the correct access modes. 76 */ 77 uintptr_t 78 ld_open_outfile(Ofl_desc * ofl) 79 { 80 mode_t mode; 81 struct stat status; 82 83 /* 84 * Determine the required file mode from the type of output file we 85 * are creating. 86 */ 87 mode = (ofl->ofl_flags & (FLG_OF_EXEC | FLG_OF_SHAROBJ)) 88 ? 0777 : 0666; 89 90 /* Determine if the output file already exists */ 91 if (stat(ofl->ofl_name, &status) == 0) { 92 if ((status.st_mode & S_IFMT) != S_IFREG) { 93 /* 94 * It is not a regular file, so don't delete it 95 * or allow it to be deleted. This allows root 96 * users to specify /dev/null output file for 97 * verification links. 98 */ 99 ofl->ofl_flags1 |= FLG_OF1_NONREG; 100 } else { 101 /* 102 * It's a regular file, so unlink it. In standard 103 * Unix fashion, the old file will continue to 104 * exist until its link count drops to 0 and no 105 * process has the file open. In the meantime, we 106 * create a new file (inode) under the same name, 107 * available for new use. 108 * 109 * The advantage of this policy is that creating 110 * a new executable or sharable library does not 111 * corrupt existing processes using the old file. 112 * A possible disadvantage is that if the existing 113 * file has a (link_count > 1), the other names will 114 * continue to reference the old inode, thus 115 * breaking the link. 116 * 117 * A subtlety here is that POSIX says we are not 118 * supposed to replace a non-writable file, which 119 * is something that unlink() is happy to do. The 120 * only 100% reliable test against this is to open 121 * the file for non-destructive write access. If the 122 * open succeeds, we are clear to unlink it, and if 123 * not, then the error generated is the error we 124 * need to report. 125 */ 126 if ((ofl->ofl_fd = open(ofl->ofl_name, O_RDWR, 127 mode)) < 0) { 128 int err = errno; 129 130 if (err != ENOENT) { 131 eprintf(ofl->ofl_lml, ERR_FATAL, 132 MSG_INTL(MSG_SYS_OPEN), 133 ofl->ofl_name, strerror(err)); 134 return (S_ERROR); 135 } 136 } else { 137 (void) close(ofl->ofl_fd); 138 } 139 140 if ((unlink(ofl->ofl_name) == -1) && 141 (errno != ENOENT)) { 142 int err = errno; 143 144 eprintf(ofl->ofl_lml, ERR_FATAL, 145 MSG_INTL(MSG_SYS_UNLINK), 146 ofl->ofl_name, strerror(err)); 147 return (S_ERROR); 148 } 149 } 150 } 151 152 /* 153 * Open (or create) the output file name (ofl_fd acts as a global 154 * flag to ldexit() signifying whether the output file should be 155 * removed or not on error). 156 */ 157 if ((ofl->ofl_fd = open(ofl->ofl_name, O_RDWR | O_CREAT | O_TRUNC, 158 mode)) < 0) { 159 int err = errno; 160 161 eprintf(ofl->ofl_lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 162 ofl->ofl_name, strerror(err)); 163 return (S_ERROR); 164 } 165 166 return (1); 167 } 168 169 170 /* 171 * If we are creating a memory model we need to update the present memory image. 172 * First we need to call elf_update(ELF_C_NULL) which will calculate the offsets 173 * of each section and its associated data buffers. From this information we 174 * can then determine what padding is required. 175 * Two actions are necessary to convert the present disc image into a memory 176 * image: 177 * 178 * o Loadable segments must be padded so that the next segments virtual 179 * address and file offset are the same. 180 * 181 * o NOBITS sections must be converted into allocated, null filled sections. 182 */ 183 static uintptr_t 184 pad_outfile(Ofl_desc *ofl) 185 { 186 Listnode *lnp; 187 off_t offset; 188 Elf_Scn *oscn = 0; 189 Sg_desc *sgp; 190 Ehdr *ehdr; 191 192 /* 193 * Update all the elf structures. This will assign offsets to the 194 * section headers and data buffers as they relate to the new image. 195 */ 196 if (elf_update(ofl->ofl_welf, ELF_C_NULL) == -1) { 197 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_UPDATE), 198 ofl->ofl_name); 199 return (S_ERROR); 200 } 201 if ((ehdr = elf_getehdr(ofl->ofl_welf)) == NULL) { 202 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETEHDR), 203 ofl->ofl_name); 204 return (S_ERROR); 205 } 206 207 /* 208 * Initialize the offset by skipping the Elf header and program 209 * headers. 210 */ 211 offset = ehdr->e_phoff + (ehdr->e_phnum * ehdr->e_phentsize); 212 213 /* 214 * Traverse the segment list looking for loadable segments. 215 */ 216 for (LIST_TRAVERSE(&ofl->ofl_segs, lnp, sgp)) { 217 Phdr *phdr = &(sgp->sg_phdr); 218 Os_desc **ospp, *osp; 219 Aliste off; 220 221 /* 222 * If we've already processed a loadable segment, the `scn' 223 * variable will be initialized to the last section that was 224 * part of that segment. Add sufficient padding to this section 225 * to cause the next segments virtual address and file offset to 226 * be the same. 227 */ 228 if (oscn && (phdr->p_type == PT_LOAD)) { 229 Elf_Data * data; 230 size_t size; 231 232 size = (size_t)(S_ROUND(offset, phdr->p_align) - 233 offset); 234 235 if ((data = elf_newdata(oscn)) == NULL) { 236 eprintf(ofl->ofl_lml, ERR_ELF, 237 MSG_INTL(MSG_ELF_NEWDATA), ofl->ofl_name); 238 return (S_ERROR); 239 } 240 if ((data->d_buf = libld_calloc(size, 1)) == 0) 241 return (S_ERROR); 242 243 data->d_type = ELF_T_BYTE; 244 data->d_size = size; 245 data->d_align = 1; 246 data->d_version = ofl->ofl_dehdr->e_version; 247 } 248 249 /* 250 * Traverse the output sections for this segment calculating the 251 * offset of each section. Retain the final section descriptor 252 * as this will be where any padding buffer will be added. 253 */ 254 for (ALIST_TRAVERSE(sgp->sg_osdescs, off, ospp)) { 255 Shdr *shdr; 256 257 osp = *ospp; 258 shdr = osp->os_shdr; 259 260 offset = (off_t)S_ROUND(offset, shdr->sh_addralign); 261 offset += shdr->sh_size; 262 263 /* 264 * If this is a NOBITS output section convert all of 265 * its associated input sections into real, null filled, 266 * data buffers, and change the section to PROGBITS. 267 */ 268 if (shdr->sh_type == SHT_NOBITS) 269 shdr->sh_type = SHT_PROGBITS; 270 } 271 272 /* 273 * If this is a loadable segment retain the last output section 274 * descriptor. This acts both as a flag that a loadable 275 * segment has been seen, and as the segment to which a padding 276 * buffer will be added. 277 */ 278 if (phdr->p_type == PT_LOAD) 279 oscn = osp->os_scn; 280 } 281 return (1); 282 } 283 284 /* 285 * Create an output section. The first instance of an input section triggers 286 * the creation of a new output section. 287 */ 288 static uintptr_t 289 create_outsec(Ofl_desc *ofl, Sg_desc *sgp, Os_desc *osp, Word ptype, int shidx, 290 Boolean fixalign) 291 { 292 Elf_Scn *scn; 293 Shdr *shdr; 294 295 /* 296 * Get a section descriptor for the section. 297 */ 298 if ((scn = elf_newscn(ofl->ofl_welf)) == NULL) { 299 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_NEWSCN), 300 ofl->ofl_name); 301 return (S_ERROR); 302 } 303 osp->os_scn = scn; 304 305 /* 306 * Get a new section header table entry and copy the pertinent 307 * information from the in-core descriptor. 308 */ 309 if ((shdr = elf_getshdr(scn)) == NULL) { 310 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETSHDR), 311 ofl->ofl_name); 312 return (S_ERROR); 313 } 314 *shdr = *(osp->os_shdr); 315 osp->os_shdr = shdr; 316 317 /* 318 * If this is the first section within a loadable segment, and the 319 * alignment needs to be updated, record this section. 320 */ 321 if ((fixalign == TRUE) && (ptype == PT_LOAD) && (shidx == 1)) 322 sgp->sg_fscn = scn; 323 324 /* 325 * Remove any SHF_ORDERED or SHF_LINK_ORDER flags. If we are not 326 * building a relocatable object, remove any SHF_GROUP flag. 327 */ 328 osp->os_shdr->sh_flags &= ~ALL_SHF_ORDER; 329 if ((ofl->ofl_flags & FLG_OF_RELOBJ) == 0) 330 osp->os_shdr->sh_flags &= ~SHF_GROUP; 331 332 /* 333 * If this is a TLS section, save it so that the PT_TLS program header 334 * information can be established after the output image has been 335 * initially created. At this point, all TLS input sections are ordered 336 * as they will appear in the output image. 337 */ 338 if ((ofl->ofl_flags & FLG_OF_TLSPHDR) && 339 (osp->os_shdr->sh_flags & SHF_TLS) && 340 (list_appendc(&ofl->ofl_ostlsseg, osp) == 0)) 341 return (S_ERROR); 342 343 return (0); 344 } 345 346 /* 347 * Create the elf structures that allow the input data to be associated with the 348 * new image: 349 * 350 * o define the new elf image using elf_begin(), 351 * 352 * o obtain an elf header for the image, 353 * 354 * o traverse the input segments and create a program header array 355 * to define the required segments, 356 * 357 * o traverse the output sections for each segment assigning a new 358 * section descriptor and section header for each, 359 * 360 * o traverse the input sections associated with each output section 361 * and assign a new data descriptor to each (each output section 362 * becomes a linked list of input data buffers). 363 */ 364 uintptr_t 365 ld_create_outfile(Ofl_desc *ofl) 366 { 367 Listnode *lnp1; 368 Sg_desc *sgp; 369 Os_desc **ospp; 370 Is_desc *isp; 371 Elf_Data *tlsdata = 0; 372 Aliste off; 373 Word flags = ofl->ofl_flags; 374 size_t ndx = 0, fndx = 0; 375 Elf_Cmd cmd; 376 Boolean fixalign = FALSE; 377 int fd, nseg = 0, shidx = 0, dataidx = 0, ptloadidx = 0; 378 379 /* 380 * If DF_1_NOHDR was set in map_parse() or FLG_OF1_VADDR was set, 381 * we need to do alignment adjustment. 382 */ 383 if ((ofl->ofl_flags1 & FLG_OF1_VADDR) || 384 (ofl->ofl_dtflags_1 & DF_1_NOHDR)) { 385 fixalign = TRUE; 386 } 387 388 if (flags & FLG_OF_MEMORY) { 389 cmd = ELF_C_IMAGE; 390 fd = 0; 391 } else { 392 fd = ofl->ofl_fd; 393 cmd = ELF_C_WRITE; 394 } 395 396 /* 397 * If there are any ordered sections, handle them here. 398 */ 399 if ((ofl->ofl_ordered.head != NULL) && 400 (ld_sort_ordered(ofl) == S_ERROR)) 401 return (S_ERROR); 402 403 /* 404 * Tell the access library about our new temporary file. 405 */ 406 if ((ofl->ofl_welf = elf_begin(fd, cmd, 0)) == NULL) { 407 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_BEGIN), 408 ofl->ofl_name); 409 return (S_ERROR); 410 } 411 412 /* 413 * Obtain a new Elf header. 414 */ 415 if ((ofl->ofl_nehdr = elf_newehdr(ofl->ofl_welf)) == NULL) { 416 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_NEWEHDR), 417 ofl->ofl_name); 418 return (S_ERROR); 419 } 420 ofl->ofl_nehdr->e_machine = ofl->ofl_dehdr->e_machine; 421 422 DBG_CALL(Dbg_util_nl(ofl->ofl_lml, DBG_NL_STD)); 423 for (LIST_TRAVERSE(&ofl->ofl_segs, lnp1, sgp)) { 424 int frst = 0; 425 Phdr *phdr = &(sgp->sg_phdr); 426 Word ptype = phdr->p_type; 427 428 /* 429 * Count the number of segments that will go in the program 430 * header table. If a segment is empty, ignore it. 431 */ 432 if (!(flags & FLG_OF_RELOBJ)) { 433 if (ptype == PT_PHDR) { 434 /* 435 * If we are generating an interp section (and 436 * thus an associated PT_INTERP program header 437 * entry) also generate a PT_PHDR program header 438 * entry. This allows the kernel to generate 439 * the appropriate aux vector entries to pass to 440 * the interpreter (refer to exec/elf/elf.c). 441 * Note that if an image was generated with an 442 * interp section, but no associated PT_PHDR 443 * program header entry, the kernel will simply 444 * pass the interpreter an open file descriptor 445 * when the image is executed). 446 */ 447 if (ofl->ofl_osinterp) 448 nseg++; 449 } else if (ptype == PT_INTERP) { 450 if (ofl->ofl_osinterp) 451 nseg++; 452 } else if (ptype == PT_DYNAMIC) { 453 if (flags & FLG_OF_DYNAMIC) 454 nseg++; 455 } else if (ptype == PT_TLS) { 456 if (flags & FLG_OF_TLSPHDR) 457 nseg++; 458 #if (defined(__i386) || defined(__amd64)) && defined(_ELF64) 459 } else if (ptype == PT_SUNW_UNWIND) { 460 if (ofl->ofl_unwindhdr) 461 nseg++; 462 #endif 463 } else if (ptype == PT_SUNWBSS) { 464 if (ofl->ofl_issunwbss) 465 nseg++; 466 } else if (ptype == PT_SUNWSTACK) { 467 nseg++; 468 } else if (ptype == PT_SUNWDTRACE) { 469 if (ofl->ofl_dtracesym) 470 nseg++; 471 } else if (ptype == PT_SUNWCAP) { 472 if (ofl->ofl_oscap) 473 nseg++; 474 } else if ((sgp->sg_osdescs != NULL) || 475 (sgp->sg_flags & FLG_SG_EMPTY)) { 476 if (((sgp->sg_flags & FLG_SG_EMPTY) == 0) && 477 ((sgp->sg_flags & FLG_SG_PHREQ) == 0)) { 478 /* 479 * If this is a segment for which 480 * we are not making a program header, 481 * don't increment nseg 482 */ 483 ptype = (sgp->sg_phdr).p_type = PT_NULL; 484 } else if (ptype != PT_NULL) 485 nseg++; 486 } 487 } 488 489 /* 490 * If the first loadable segment has the ?N flag, 491 * then ?N will be on. 492 */ 493 if ((ptype == PT_LOAD) && (ptloadidx == 0)) { 494 ptloadidx++; 495 if (sgp->sg_flags & FLG_SG_NOHDR) { 496 fixalign = TRUE; 497 ofl->ofl_dtflags_1 |= DF_1_NOHDR; 498 } 499 } 500 501 shidx = 0; 502 for (ALIST_TRAVERSE(sgp->sg_osdescs, off, ospp)) { 503 Listnode *lnp2; 504 Os_desc *osp = *ospp; 505 506 dataidx = 0; 507 for (LIST_TRAVERSE(&(osp->os_isdescs), lnp2, isp)) { 508 Elf_Data * data; 509 Ifl_desc * ifl = isp->is_file; 510 511 /* 512 * At this point we know whether a section has 513 * been referenced. If it hasn't, and the whole 514 * file hasn't been referenced (which would have 515 * been caught in ignore_section_processing()), 516 * give a diagnostic (-D unused,detail) or 517 * discard the section if -zignore is in effect. 518 */ 519 if (ifl && 520 (((ifl->ifl_flags & FLG_IF_FILEREF) == 0) || 521 ((ptype == PT_LOAD) && 522 ((isp->is_flags & FLG_IS_SECTREF) == 0) && 523 (isp->is_shdr->sh_size > 0)))) { 524 Lm_list *lml = ofl->ofl_lml; 525 526 if (ifl->ifl_flags & FLG_IF_IGNORE) { 527 isp->is_flags |= FLG_IS_DISCARD; 528 DBG_CALL(Dbg_unused_sec(lml, isp)); 529 continue; 530 } else 531 DBG_CALL(Dbg_unused_sec(lml, isp)); 532 } 533 534 /* 535 * If this section provides no data, and isn't 536 * referenced, then it can be discarded as well. 537 * Note, if this is the first input section 538 * associated to an output section, let it 539 * through, there may be a legitimate reason why 540 * the user wants a null section. Discarding 541 * additional sections is intended to remove the 542 * empty clutter the compilers have a habit of 543 * creating. Don't provide an unused diagnostic 544 * as these sections aren't typically the users 545 * creation. 546 */ 547 if (ifl && dataidx && 548 ((isp->is_flags & FLG_IS_SECTREF) == 0) && 549 (isp->is_shdr->sh_size == 0)) { 550 isp->is_flags |= FLG_IS_DISCARD; 551 continue; 552 } 553 554 /* 555 * The first input section triggers the creation 556 * of the associated output section. 557 */ 558 if (osp->os_scn == NULL) { 559 shidx++; 560 561 if (create_outsec(ofl, sgp, osp, ptype, 562 shidx, fixalign) == S_ERROR) 563 return (S_ERROR); 564 } 565 566 dataidx++; 567 568 /* 569 * Create a new output data buffer for each 570 * input data buffer, thus linking the new 571 * buffers to the new elf output structures. 572 * Simply make the new data buffers point to 573 * the old data. 574 */ 575 if ((data = elf_newdata(osp->os_scn)) == NULL) { 576 eprintf(ofl->ofl_lml, ERR_ELF, 577 MSG_INTL(MSG_ELF_NEWDATA), 578 ofl->ofl_name); 579 return (S_ERROR); 580 } 581 *data = *(isp->is_indata); 582 isp->is_indata = data; 583 584 if ((fixalign == TRUE) && (ptype == PT_LOAD) && 585 (shidx == 1) && (dataidx == 1)) 586 data->d_align = sgp->sg_addralign; 587 588 /* 589 * Save the first TLS data buffer, as this is 590 * the start of the TLS segment. Realign this 591 * buffer based on the alignment requirements 592 * of all the TLS input sections. 593 */ 594 if ((ofl->ofl_flags & FLG_OF_TLSPHDR) && 595 (isp->is_shdr->sh_flags & SHF_TLS)) { 596 if (tlsdata == 0) 597 tlsdata = data; 598 tlsdata->d_align = 599 ld_lcm(tlsdata->d_align, 600 isp->is_shdr->sh_addralign); 601 } 602 603 #if defined(_ELF64) && defined(_ILP32) 604 /* 605 * 4106312, the 32-bit ELF64 version of ld 606 * needs to be able to create large .bss 607 * sections. The d_size member of Elf_Data 608 * only allows 32-bits in _ILP32, so we build 609 * multiple data-items that each fit into 32- 610 * bits. libelf (4106398) can summ these up 611 * into a 64-bit quantity. This only works 612 * for NOBITS sections which don't have any 613 * real data to maintain and don't require 614 * large file support. 615 */ 616 if (isp->is_shdr->sh_type == SHT_NOBITS) { 617 Xword sz = isp->is_shdr->sh_size; 618 619 while (sz >> 32) { 620 data->d_size = SIZE_MAX; 621 sz -= (Xword)SIZE_MAX; 622 623 data = elf_newdata(osp->os_scn); 624 if (data == NULL) 625 return (S_ERROR); 626 } 627 data->d_size = (size_t)sz; 628 } 629 #endif 630 631 /* 632 * If this segment requires rounding realign the 633 * first data buffer associated with the first 634 * section. 635 */ 636 if ((frst++ == 0) && 637 (sgp->sg_flags & FLG_SG_ROUND)) { 638 Xword align; 639 640 if (data->d_align) 641 align = (Xword) 642 S_ROUND(data->d_align, 643 sgp->sg_round); 644 else 645 align = sgp->sg_round; 646 647 data->d_align = (size_t)align; 648 } 649 } 650 651 /* 652 * Clear the szoutrels counter so that it can be used 653 * again in the building of relocs. See machrel.c. 654 */ 655 osp->os_szoutrels = 0; 656 } 657 } 658 659 /* 660 * Build an empty PHDR. 661 */ 662 if (nseg) { 663 if ((ofl->ofl_phdr = elf_newphdr(ofl->ofl_welf, 664 nseg)) == NULL) { 665 eprintf(ofl->ofl_lml, ERR_ELF, 666 MSG_INTL(MSG_ELF_NEWPHDR), ofl->ofl_name); 667 return (S_ERROR); 668 } 669 } 670 671 /* 672 * If we need to generate a memory model, pad the image. 673 */ 674 if (flags & FLG_OF_MEMORY) { 675 if (pad_outfile(ofl) == S_ERROR) 676 return (S_ERROR); 677 } 678 679 /* 680 * After all the basic input file processing, all data pointers are 681 * referencing two types of memory: 682 * 683 * o allocated memory, ie. elf structures, internal link 684 * editor structures, and any new sections that have been 685 * created. 686 * 687 * o original input file mmap'ed memory, ie. the actual data 688 * sections of the input file images. 689 * 690 * Up until now, the only memory modifications have been carried out on 691 * the allocated memory. Before carrying out any relocations, write the 692 * new output file image and reassign any necessary data pointers to the 693 * output files memory image. This insures that any relocation 694 * modifications are made to the output file image and not to the input 695 * file image, thus preventing the creation of dirty pages and reducing 696 * the overall swap space requirement. 697 * 698 * Write out the elf structure so as to create the new file image. 699 */ 700 if ((ofl->ofl_size = (size_t)elf_update(ofl->ofl_welf, 701 ELF_C_WRIMAGE)) == (size_t)-1) { 702 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_UPDATE), 703 ofl->ofl_name); 704 return (S_ERROR); 705 } 706 707 /* 708 * Initialize the true `ofl' information with the memory images address 709 * and size. This will be used to write() out the image once any 710 * relocation processing has been completed. We also use this image 711 * information to setup a new Elf descriptor, which is used to obtain 712 * all the necessary elf pointers within the new output image. 713 */ 714 if ((ofl->ofl_elf = elf_begin(0, ELF_C_IMAGE, 715 ofl->ofl_welf)) == NULL) { 716 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_BEGIN), 717 ofl->ofl_name); 718 return (S_ERROR); 719 } 720 if ((ofl->ofl_nehdr = elf_getehdr(ofl->ofl_elf)) == NULL) { 721 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETEHDR), 722 ofl->ofl_name); 723 return (S_ERROR); 724 } 725 if (!(flags & FLG_OF_RELOBJ)) 726 if ((ofl->ofl_phdr = elf_getphdr(ofl->ofl_elf)) == NULL) { 727 eprintf(ofl->ofl_lml, ERR_ELF, 728 MSG_INTL(MSG_ELF_GETPHDR), ofl->ofl_name); 729 return (S_ERROR); 730 } 731 732 /* 733 * Reinitialize the section descriptors, section headers and obtain new 734 * output data buffer pointers (these will be used to perform any 735 * relocations). 736 */ 737 for (LIST_TRAVERSE(&ofl->ofl_segs, lnp1, sgp)) { 738 Phdr *_phdr = &(sgp->sg_phdr); 739 Os_desc **ospp; 740 Aliste off; 741 Boolean recorded = FALSE; 742 743 for (ALIST_TRAVERSE(sgp->sg_osdescs, off, ospp)) { 744 Os_desc *osp = *ospp; 745 746 /* 747 * Make sure that an output section was originally 748 * created. Input sections that had been marked as 749 * discarded may have made an output section 750 * unnecessary. Remove this alist entry so that 751 * future output section descriptor processing doesn't 752 * have to compensate for this empty section. 753 */ 754 if (osp->os_scn == NULL) { 755 (void) alist_delete(sgp->sg_osdescs, 0, &off); 756 continue; 757 } 758 759 if ((osp->os_scn = elf_getscn(ofl->ofl_elf, ++ndx)) == 760 NULL) { 761 eprintf(ofl->ofl_lml, ERR_ELF, 762 MSG_INTL(MSG_ELF_GETSCN), ofl->ofl_name, 763 ndx); 764 return (S_ERROR); 765 } 766 if ((osp->os_shdr = elf_getshdr(osp->os_scn)) == 767 NULL) { 768 eprintf(ofl->ofl_lml, ERR_ELF, 769 MSG_INTL(MSG_ELF_GETSHDR), ofl->ofl_name); 770 return (S_ERROR); 771 } 772 if ((fixalign == TRUE) && (sgp->sg_fscn != 0) && 773 (recorded == FALSE)) { 774 Elf_Scn *scn; 775 776 scn = sgp->sg_fscn; 777 if ((fndx = elf_ndxscn(scn)) == SHN_UNDEF) { 778 eprintf(ofl->ofl_lml, ERR_ELF, 779 MSG_INTL(MSG_ELF_NDXSCN), 780 ofl->ofl_name); 781 return (S_ERROR); 782 } 783 if (ndx == fndx) { 784 sgp->sg_fscn = osp->os_scn; 785 recorded = TRUE; 786 } 787 } 788 789 if ((osp->os_outdata = 790 elf_getdata(osp->os_scn, NULL)) == NULL) { 791 eprintf(ofl->ofl_lml, ERR_ELF, 792 MSG_INTL(MSG_ELF_GETDATA), ofl->ofl_name); 793 return (S_ERROR); 794 } 795 796 /* 797 * If this section is part of a loadable segment insure 798 * that the segments alignment is appropriate. 799 */ 800 if (_phdr->p_type == PT_LOAD) { 801 _phdr->p_align = ld_lcm(_phdr->p_align, 802 osp->os_shdr->sh_addralign); 803 } 804 } 805 } 806 return (1); 807 } 808