xref: /illumos-gate/usr/src/cmd/sgs/libelf/common/update.c (revision 2a1fd0ffe121888d44fdec321c25b53dcfaa9118)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  *	Copyright (c) 1988 AT&T
29  *	  All Rights Reserved
30  */
31 
32 #include <memory.h>
33 #include <malloc.h>
34 #include <limits.h>
35 
36 #include <sgs.h>
37 #include "decl.h"
38 #include "msg.h"
39 
40 /*
41  * This module is compiled twice, the second time having
42  * -D_ELF64 defined.  The following set of macros, along
43  * with machelf.h, represent the differences between the
44  * two compilations.  Be careful *not* to add any class-
45  * dependent code (anything that has elf32 or elf64 in the
46  * name) to this code without hiding it behind a switch-
47  * able macro like these.
48  */
49 #if	defined(_ELF64)
50 
51 #define	FSZ_LONG	ELF64_FSZ_XWORD
52 #define	ELFCLASS	ELFCLASS64
53 #define	_elf_snode_init	_elf64_snode_init
54 #define	_elfxx_cookscn	_elf64_cookscn
55 #define	_elf_upd_lib	_elf64_upd_lib
56 #define	elf_fsize	elf64_fsize
57 #define	_elf_entsz	_elf64_entsz
58 #define	_elf_msize	_elf64_msize
59 #define	_elf_upd_usr	_elf64_upd_usr
60 #define	wrt		wrt64
61 #define	elf_xlatetof	elf64_xlatetof
62 #define	_elfxx_update	_elf64_update
63 #define	_elfxx_swap_wrimage	_elf64_swap_wrimage
64 
65 #else	/* ELF32 */
66 
67 #define	FSZ_LONG	ELF32_FSZ_WORD
68 #define	ELFCLASS	ELFCLASS32
69 #define	_elf_snode_init	_elf32_snode_init
70 #define	_elfxx_cookscn	_elf32_cookscn
71 #define	_elf_upd_lib	_elf32_upd_lib
72 #define	elf_fsize	elf32_fsize
73 #define	_elf_entsz	_elf32_entsz
74 #define	_elf_msize	_elf32_msize
75 #define	_elf_upd_usr	_elf32_upd_usr
76 #define	wrt		wrt32
77 #define	elf_xlatetof	elf32_xlatetof
78 #define	_elfxx_update	_elf32_update
79 #define	_elfxx_swap_wrimage	_elf32_swap_wrimage
80 
81 #endif /* ELF64 */
82 
83 
84 #if	!(defined(_LP64) && defined(_ELF64))
85 #define	TEST_SIZE
86 
87 /*
88  * Handle the decision of whether the current linker can handle the
89  * desired object size, and if not, which error to issue.
90  *
91  * Input is the desired size. On failure, an error has been issued
92  * and 0 is returned. On success, 1 is returned.
93  */
94 static int
95 test_size(Lword hi)
96 {
97 #ifndef _LP64			/* 32-bit linker */
98 	/*
99 	 * A 32-bit libelf is limited to a 2GB output file. This limit
100 	 * is due to the fact that off_t is a signed value, and that
101 	 * libelf cannot support large file support:
102 	 *	- ABI reasons
103 	 *	- Memory use generally is 2x output file size anyway,
104 	 *		so lifting the file size limit will just send
105 	 *		you crashing into the 32-bit VM limit.
106 	 * If the output is an ELFCLASS64 object, or an ELFCLASS32 object
107 	 * under 4GB, switching to the 64-bit version of libelf will help.
108 	 * However, an ELFCLASS32 object must not exceed 4GB.
109 	 */
110 	if (hi > INT_MAX) {	/* Bigger than 2GB */
111 #ifndef _ELF64
112 		/* ELFCLASS32 object is fundamentally too big? */
113 		if (hi > UINT_MAX) {
114 			_elf_seterr(EFMT_FBIG_CLASS32, 0);
115 			return (0);
116 		}
117 #endif				/* _ELF64 */
118 
119 		/* Should switch to the 64-bit libelf? */
120 		_elf_seterr(EFMT_FBIG_LARGEFILE, 0);
121 		return (0);
122 	}
123 #endif				/* !_LP64 */
124 
125 
126 #if	defined(_LP64) && !defined(_ELF64)   /* 64-bit linker, ELFCLASS32 */
127 	/*
128 	 * A 64-bit linker can produce any size output
129 	 * file, but if the resulting file is ELFCLASS32,
130 	 * it must not exceed 4GB.
131 	 */
132 	if (hi > UINT_MAX) {
133 		_elf_seterr(EFMT_FBIG_CLASS32, 0);
134 		return (0);
135 	}
136 #endif
137 
138 	return (1);
139 }
140 #endif				/* TEST_SIZE */
141 
142 /*
143  * Output file update
144  *	These functions walk an Elf structure, update its information,
145  *	and optionally write the output file.  Because the application
146  *	may control of the output file layout, two upd_... routines
147  *	exist.  They're similar but too different to merge cleanly.
148  *
149  *	The library defines a "dirty" bit to force parts of the file
150  *	to be written on update.  These routines ignore the dirty bit
151  *	and do everything.  A minimal update routine might be useful
152  *	someday.
153  */
154 
155 static size_t
156 _elf_upd_lib(Elf * elf)
157 {
158 	Lword		hi;
159 	Lword		hibit;
160 	Elf_Scn *	s;
161 	register Lword	sz;
162 	Ehdr *		eh = elf->ed_ehdr;
163 	unsigned	ver = eh->e_version;
164 	register char	*p = (char *)eh->e_ident;
165 	size_t		scncnt;
166 
167 	/*
168 	 * Ehdr and Phdr table go first
169 	 */
170 	p[EI_MAG0] = ELFMAG0;
171 	p[EI_MAG1] = ELFMAG1;
172 	p[EI_MAG2] = ELFMAG2;
173 	p[EI_MAG3] = ELFMAG3;
174 	p[EI_CLASS] = ELFCLASS;
175 	/* LINTED */
176 	p[EI_VERSION] = (Byte)ver;
177 	hi = elf_fsize(ELF_T_EHDR, 1, ver);
178 	/* LINTED */
179 	eh->e_ehsize = (Half)hi;
180 	if (eh->e_phnum != 0) {
181 		/* LINTED */
182 		eh->e_phentsize = (Half)elf_fsize(ELF_T_PHDR, 1, ver);
183 		/* LINTED */
184 		eh->e_phoff = (Off)hi;
185 		hi += eh->e_phentsize * eh->e_phnum;
186 	} else {
187 		eh->e_phoff = 0;
188 		eh->e_phentsize = 0;
189 	}
190 
191 	/*
192 	 * Obtain the first section header.  Typically, this section has NULL
193 	 * contents, however in the case of Extended ELF Sections this section
194 	 * is used to hold an alternative e_shnum, e_shstrndx and e_phnum.
195 	 * On initial allocation (see _elf_snode) the elements of this section
196 	 * would have been zeroed.  The e_shnum is initialized later, after the
197 	 * section header count has been determined.  The e_shstrndx and
198 	 * e_phnum may have already been initialized by the caller (for example,
199 	 * gelf_update_shdr() in mcs(1)).
200 	 */
201 	if ((s = elf->ed_hdscn) == 0) {
202 		eh->e_shnum = 0;
203 		scncnt = 0;
204 	} else {
205 		s = s->s_next;
206 		scncnt = 1;
207 	}
208 
209 	/*
210 	 * Loop through sections.  Compute section size before changing hi.
211 	 * Allow null buffers for NOBITS.
212 	 */
213 	hibit = 0;
214 	for (; s != 0; s = s->s_next) {
215 		register Dnode	*d;
216 		register Lword	fsz, j;
217 		Shdr *sh = s->s_shdr;
218 
219 		scncnt++;
220 		if (sh->sh_type == SHT_NULL) {
221 			*sh = _elf_snode_init.sb_shdr;
222 			continue;
223 		}
224 
225 		if ((s->s_myflags & SF_READY) == 0)
226 			(void) _elfxx_cookscn(s);
227 
228 		sh->sh_addralign = 1;
229 		if ((sz = (Lword)_elf_entsz(elf, sh->sh_type, ver)) != 0)
230 			/* LINTED */
231 			sh->sh_entsize = (Half)sz;
232 		sz = 0;
233 		for (d = s->s_hdnode; d != 0; d = d->db_next) {
234 			if ((fsz = elf_fsize(d->db_data.d_type,
235 			    1, ver)) == 0)
236 				return (0);
237 
238 			j = _elf_msize(d->db_data.d_type, ver);
239 			fsz *= (d->db_data.d_size / j);
240 			d->db_osz = (size_t)fsz;
241 			if ((j = d->db_data.d_align) > 1) {
242 				if (j > sh->sh_addralign)
243 					sh->sh_addralign = (Xword)j;
244 
245 				if (sz % j != 0)
246 					sz += j - sz % j;
247 			}
248 			d->db_data.d_off = (off_t)sz;
249 			d->db_xoff = sz;
250 			sz += fsz;
251 		}
252 
253 		sh->sh_size = (Xword) sz;
254 		/*
255 		 * We want to take into account the offsets for NOBITS
256 		 * sections and let the "sh_offsets" point to where
257 		 * the section would 'conceptually' fit within
258 		 * the file (as required by the ABI).
259 		 *
260 		 * But - we must also make sure that the NOBITS does
261 		 * not take up any actual space in the file.  We preserve
262 		 * the actual offset into the file in the 'hibit' variable.
263 		 * When we come to the first non-NOBITS section after a
264 		 * encountering a NOBITS section the hi counter is restored
265 		 * to its proper place in the file.
266 		 */
267 		if (sh->sh_type == SHT_NOBITS) {
268 			if (hibit == 0)
269 				hibit = hi;
270 		} else {
271 			if (hibit) {
272 				hi = hibit;
273 				hibit = 0;
274 			}
275 		}
276 		j = sh->sh_addralign;
277 		if ((fsz = hi % j) != 0)
278 			hi += j - fsz;
279 
280 		/* LINTED */
281 		sh->sh_offset = (Off)hi;
282 		hi += sz;
283 	}
284 
285 	/*
286 	 * if last section was a 'NOBITS' section then we need to
287 	 * restore the 'hi' counter to point to the end of the last
288 	 * non 'NOBITS' section.
289 	 */
290 	if (hibit) {
291 		hi = hibit;
292 		hibit = 0;
293 	}
294 
295 	/*
296 	 * Shdr table last
297 	 */
298 	if (scncnt != 0) {
299 		if (hi % FSZ_LONG != 0)
300 			hi += FSZ_LONG - hi % FSZ_LONG;
301 		/* LINTED */
302 		eh->e_shoff = (Off)hi;
303 		/*
304 		 * If we are using 'extended sections' then the
305 		 * e_shnum is stored in the sh_size field of the
306 		 * first section header.
307 		 *
308 		 * NOTE: we set e_shnum to '0' because it's specified
309 		 * this way in the gABI, and in the hopes that
310 		 * this will cause less problems to unaware
311 		 * tools then if we'd set it to SHN_XINDEX (0xffff).
312 		 */
313 		if (scncnt < SHN_LORESERVE)
314 			eh->e_shnum = scncnt;
315 		else {
316 			Shdr	*sh;
317 			sh = (Shdr *)elf->ed_hdscn->s_shdr;
318 			sh->sh_size = scncnt;
319 			eh->e_shnum = 0;
320 		}
321 		/* LINTED */
322 		eh->e_shentsize = (Half)elf_fsize(ELF_T_SHDR, 1, ver);
323 		hi += eh->e_shentsize * scncnt;
324 	} else {
325 		eh->e_shoff = 0;
326 		eh->e_shentsize = 0;
327 	}
328 
329 #ifdef TEST_SIZE
330 	if (test_size(hi) == 0)
331 		return (0);
332 #endif
333 
334 	return ((size_t)hi);
335 }
336 
337 
338 
339 static size_t
340 _elf_upd_usr(Elf * elf)
341 {
342 	Lword		hi;
343 	Elf_Scn *	s;
344 	register Lword	sz;
345 	Ehdr *		eh = elf->ed_ehdr;
346 	unsigned	ver = eh->e_version;
347 	register char	*p = (char *)eh->e_ident;
348 	size_t		scncnt;
349 
350 	/*
351 	 * Ehdr and Phdr table go first
352 	 */
353 	p[EI_MAG0] = ELFMAG0;
354 	p[EI_MAG1] = ELFMAG1;
355 	p[EI_MAG2] = ELFMAG2;
356 	p[EI_MAG3] = ELFMAG3;
357 	p[EI_CLASS] = ELFCLASS;
358 	/* LINTED */
359 	p[EI_VERSION] = (Byte)ver;
360 	hi = elf_fsize(ELF_T_EHDR, 1, ver);
361 	/* LINTED */
362 	eh->e_ehsize = (Half)hi;
363 
364 	/*
365 	 * If phnum is zero, phoff "should" be zero too,
366 	 * but the application is responsible for it.
367 	 * Allow a non-zero value here and update the
368 	 * hi water mark accordingly.
369 	 */
370 
371 	if (eh->e_phnum != 0)
372 		/* LINTED */
373 		eh->e_phentsize = (Half)elf_fsize(ELF_T_PHDR, 1, ver);
374 	else
375 		eh->e_phentsize = 0;
376 	if ((sz = eh->e_phoff + eh->e_phentsize * eh->e_phnum) > hi)
377 		hi = sz;
378 
379 	/*
380 	 * Loop through sections, skipping index zero.
381 	 * Compute section size before changing hi.
382 	 * Allow null buffers for NOBITS.
383 	 */
384 
385 	if ((s = elf->ed_hdscn) == 0) {
386 		eh->e_shnum = 0;
387 		scncnt = 0;
388 	} else {
389 		scncnt = 1;
390 		s = s->s_next;
391 	}
392 	for (; s != 0; s = s->s_next) {
393 		register Dnode	*d;
394 		register Lword	fsz, j;
395 		Shdr *sh = s->s_shdr;
396 
397 		if ((s->s_myflags & SF_READY) == 0)
398 			(void) _elfxx_cookscn(s);
399 
400 		++scncnt;
401 		sz = 0;
402 		for (d = s->s_hdnode; d != 0; d = d->db_next) {
403 			if ((fsz = elf_fsize(d->db_data.d_type, 1,
404 			    ver)) == 0)
405 				return (0);
406 			j = _elf_msize(d->db_data.d_type, ver);
407 			fsz *= (d->db_data.d_size / j);
408 			d->db_osz = (size_t)fsz;
409 
410 			if ((sh->sh_type != SHT_NOBITS) &&
411 			    ((j = (d->db_data.d_off + d->db_osz)) > sz))
412 				sz = j;
413 		}
414 		if (sh->sh_size < sz) {
415 			_elf_seterr(EFMT_SCNSZ, 0);
416 			return (0);
417 		}
418 		if ((sh->sh_type != SHT_NOBITS) &&
419 		    (hi < sh->sh_offset + sh->sh_size))
420 			hi = sh->sh_offset + sh->sh_size;
421 	}
422 
423 	/*
424 	 * Shdr table last.  Comment above for phnum/phoff applies here.
425 	 */
426 	if (scncnt != 0) {
427 		/* LINTED */
428 		eh->e_shentsize = (Half)elf_fsize(ELF_T_SHDR, 1, ver);
429 		if (scncnt < SHN_LORESERVE) {
430 			eh->e_shnum = scncnt;
431 		} else {
432 			Shdr *sh;
433 			sh = (Shdr *)elf->ed_hdscn->s_shdr;
434 			sh->sh_size = scncnt;
435 			eh->e_shnum = 0;
436 		}
437 	} else {
438 		eh->e_shentsize = 0;
439 	}
440 
441 	if ((sz = eh->e_shoff + eh->e_shentsize * scncnt) > hi)
442 		hi = sz;
443 
444 #ifdef TEST_SIZE
445 	if (test_size(hi) == 0)
446 		return (0);
447 #endif
448 
449 	return ((size_t)hi);
450 }
451 
452 
453 static size_t
454 wrt(Elf * elf, Xword outsz, unsigned fill, int update_cmd)
455 {
456 	Elf_Data		dst, src;
457 	unsigned		flag;
458 	Xword			hi, sz;
459 	char			*image;
460 	Elf_Scn			*s;
461 	Ehdr			*eh = elf->ed_ehdr;
462 	unsigned		ver = eh->e_version;
463 	unsigned		encode;
464 	int			byte;
465 	_elf_execfill_func_t	*execfill_func;
466 
467 	/*
468 	 * If this is an ELF_C_WRIMAGE write, then we encode into the
469 	 * byte order of the system we are running on rather than that of
470 	 * of the object. For ld.so.1, this is the same order, but
471 	 * for 'ld', it might not be in the case where we are cross
472 	 * linking an object for a different target. In this later case,
473 	 * the linker-host byte order is necessary so that the linker can
474 	 * manipulate the resulting  image. It is expected that the linker
475 	 * will call elf_swap_wrimage() if necessary to convert the image
476 	 * to the target byte order.
477 	 */
478 	encode = (update_cmd == ELF_C_WRIMAGE) ? _elf_sys_encoding() :
479 	    eh->e_ident[EI_DATA];
480 
481 	/*
482 	 * Two issues can cause trouble for the output file.
483 	 * First, begin() with ELF_C_RDWR opens a file for both
484 	 * read and write.  On the write update(), the library
485 	 * has to read everything it needs before truncating
486 	 * the file.  Second, using mmap for both read and write
487 	 * is too tricky.  Consequently, the library disables mmap
488 	 * on the read side.  Using mmap for the output saves swap
489 	 * space, because that mapping is SHARED, not PRIVATE.
490 	 *
491 	 * If the file is write-only, there can be nothing of
492 	 * interest to bother with.
493 	 *
494 	 * The following reads the entire file, which might be
495 	 * more than necessary.  Better safe than sorry.
496 	 */
497 
498 	if ((elf->ed_myflags & EDF_READ) &&
499 	    (_elf_vm(elf, (size_t)0, elf->ed_fsz) != OK_YES))
500 		return (0);
501 
502 	flag = elf->ed_myflags & EDF_WRALLOC;
503 	if ((image = _elf_outmap(elf->ed_fd, outsz, &flag)) == 0)
504 		return (0);
505 
506 	if (flag == 0)
507 		elf->ed_myflags |= EDF_IMALLOC;
508 
509 	/*
510 	 * If an error occurs below, a "dirty" bit may be cleared
511 	 * improperly.  To save a second pass through the file,
512 	 * this code sets the dirty bit on the elf descriptor
513 	 * when an error happens, assuming that will "cover" any
514 	 * accidents.
515 	 */
516 
517 	/*
518 	 * Hi is needed only when 'fill' is non-zero.
519 	 * Fill is non-zero only when the library
520 	 * calculates file/section/data buffer offsets.
521 	 * The lib guarantees they increase monotonically.
522 	 * That guarantees proper filling below.
523 	 */
524 
525 
526 	/*
527 	 * Ehdr first
528 	 */
529 
530 	src.d_buf = (Elf_Void *)eh;
531 	src.d_type = ELF_T_EHDR;
532 	src.d_size = sizeof (Ehdr);
533 	src.d_version = EV_CURRENT;
534 	dst.d_buf = (Elf_Void *)image;
535 	dst.d_size = eh->e_ehsize;
536 	dst.d_version = ver;
537 	if (elf_xlatetof(&dst, &src, encode) == 0)
538 		return (0);
539 	elf->ed_ehflags &= ~ELF_F_DIRTY;
540 	hi = eh->e_ehsize;
541 
542 	/*
543 	 * Phdr table if one exists
544 	 */
545 
546 	if (eh->e_phnum != 0) {
547 		unsigned	work;
548 		/*
549 		 * Unlike other library data, phdr table is
550 		 * in the user version.  Change src buffer
551 		 * version here, fix it after translation.
552 		 */
553 
554 		src.d_buf = (Elf_Void *)elf->ed_phdr;
555 		src.d_type = ELF_T_PHDR;
556 		src.d_size = elf->ed_phdrsz;
557 		ELFACCESSDATA(work, _elf_work)
558 		src.d_version = work;
559 		dst.d_buf = (Elf_Void *)(image + eh->e_phoff);
560 		dst.d_size = eh->e_phnum * eh->e_phentsize;
561 		hi = (Xword)(eh->e_phoff + dst.d_size);
562 		if (elf_xlatetof(&dst, &src, encode) == 0) {
563 			elf->ed_uflags |= ELF_F_DIRTY;
564 			return (0);
565 		}
566 		elf->ed_phflags &= ~ELF_F_DIRTY;
567 		src.d_version = EV_CURRENT;
568 	}
569 
570 	/*
571 	 * Loop through sections
572 	 */
573 
574 	ELFACCESSDATA(byte, _elf_byte);
575 	ELFACCESSDATA(execfill_func, _elf_execfill_func);
576 	for (s = elf->ed_hdscn; s != 0; s = s->s_next) {
577 		register Dnode	*d, *prevd;
578 		Xword		off = 0;
579 		Shdr		*sh = s->s_shdr;
580 		char		*start = image + sh->sh_offset;
581 		char		*here;
582 		_elf_execfill_func_t	*execfill;
583 
584 		/* Only use the execfill function on SHF_EXECINSTR sections */
585 		execfill = (sh->sh_flags & SHF_EXECINSTR) ?
586 		    execfill_func : NULL;
587 
588 		/*
589 		 * Just "clean" DIRTY flag for "empty" sections.  Even if
590 		 * NOBITS needs padding, the next thing in the
591 		 * file will provide it.  (And if this NOBITS is
592 		 * the last thing in the file, no padding needed.)
593 		 */
594 		if ((sh->sh_type == SHT_NOBITS) ||
595 		    (sh->sh_type == SHT_NULL)) {
596 			d = s->s_hdnode, prevd = 0;
597 			for (; d != 0; prevd = d, d = d->db_next)
598 				d->db_uflags &= ~ELF_F_DIRTY;
599 			continue;
600 		}
601 		/*
602 		 * Clear out the memory between the end of the last
603 		 * section and the begining of this section.
604 		 */
605 		if (fill && (sh->sh_offset > hi)) {
606 			sz = sh->sh_offset - hi;
607 			(void) memset(start - sz, byte, sz);
608 		}
609 
610 
611 		for (d = s->s_hdnode, prevd = 0;
612 		    d != 0; prevd = d, d = d->db_next) {
613 			d->db_uflags &= ~ELF_F_DIRTY;
614 			here = start + d->db_data.d_off;
615 
616 			/*
617 			 * Clear out the memory between the end of the
618 			 * last update and the start of this data buffer.
619 			 *
620 			 * These buffers represent input sections that have
621 			 * been concatenated into an output section, so if
622 			 * the output section is executable (SHF_EXECINSTR)
623 			 * and a fill function has been registered, use the
624 			 * function. Otherwise, use the fill byte.
625 			 */
626 			if (fill && (d->db_data.d_off > off)) {
627 				sz = (Xword)(d->db_data.d_off - off);
628 				if (execfill != NULL)
629 					(* execfill)(start,
630 					    here - start - sz, sz);
631 				else
632 					(void) memset(here - sz, byte, sz);
633 			}
634 
635 			if ((d->db_myflags & DBF_READY) == 0) {
636 				SCNLOCK(s);
637 				if (_elf_locked_getdata(s, &prevd->db_data) !=
638 				    &d->db_data) {
639 					elf->ed_uflags |= ELF_F_DIRTY;
640 					SCNUNLOCK(s);
641 					return (0);
642 				}
643 				SCNUNLOCK(s);
644 			}
645 			dst.d_buf = (Elf_Void *)here;
646 			dst.d_size = d->db_osz;
647 
648 			/*
649 			 * Copy the translated bits out to the destination
650 			 * image.
651 			 */
652 			if (elf_xlatetof(&dst, &d->db_data, encode) == 0) {
653 				elf->ed_uflags |= ELF_F_DIRTY;
654 				return (0);
655 			}
656 
657 			off = (Xword)(d->db_data.d_off + dst.d_size);
658 		}
659 		hi = sh->sh_offset + sh->sh_size;
660 	}
661 
662 	/*
663 	 * Shdr table last
664 	 */
665 
666 	if (fill && (eh->e_shoff > hi)) {
667 		sz = eh->e_shoff - hi;
668 		(void) memset(image + hi, byte, sz);
669 	}
670 
671 	src.d_type = ELF_T_SHDR;
672 	src.d_size = sizeof (Shdr);
673 	dst.d_buf = (Elf_Void *)(image + eh->e_shoff);
674 	dst.d_size = eh->e_shentsize;
675 	for (s = elf->ed_hdscn; s != 0; s = s->s_next) {
676 		assert((uintptr_t)dst.d_buf < ((uintptr_t)image + outsz));
677 		s->s_shflags &= ~ELF_F_DIRTY;
678 		s->s_uflags &= ~ELF_F_DIRTY;
679 		src.d_buf = s->s_shdr;
680 
681 		if (elf_xlatetof(&dst, &src, encode) == 0) {
682 			elf->ed_uflags |= ELF_F_DIRTY;
683 			return (0);
684 		}
685 
686 		dst.d_buf = (char *)dst.d_buf + eh->e_shentsize;
687 	}
688 	/*
689 	 * ELF_C_WRIMAGE signifyes that we build the memory image, but
690 	 * that we do not actually write it to disk.  This is used
691 	 * by ld(1) to build up a full image of an elf file and then
692 	 * to process the file before it's actually written out to
693 	 * disk.  This saves ld(1) the overhead of having to write
694 	 * the image out to disk twice.
695 	 */
696 	if (update_cmd == ELF_C_WRIMAGE) {
697 		elf->ed_uflags &= ~ELF_F_DIRTY;
698 		elf->ed_wrimage = image;
699 		elf->ed_wrimagesz = outsz;
700 		return (outsz);
701 	}
702 
703 	if (_elf_outsync(elf->ed_fd, image, outsz,
704 	    ((elf->ed_myflags & EDF_IMALLOC) ? 0 : 1)) != 0) {
705 		elf->ed_uflags &= ~ELF_F_DIRTY;
706 		elf->ed_myflags &= ~EDF_IMALLOC;
707 		return (outsz);
708 	}
709 
710 	elf->ed_uflags |= ELF_F_DIRTY;
711 	return (0);
712 }
713 
714 
715 
716 
717 /*
718  * The following is a private interface between the linkers (ld & ld.so.1)
719  * and libelf:
720  *
721  * elf_update(elf, ELF_C_WRIMAGE)
722  *	This will cause full image representing the elf file
723  *	described by the elf pointer to be built in memory.  If the
724  *	elf pointer has a valid file descriptor associated with it
725  *	we will attempt to build the memory image from mmap()'ed
726  *	storage.  If the elf descriptor does not have a valid
727  *	file descriptor (opened with elf_begin(0, ELF_C_IMAGE, 0))
728  *	then the image will be allocated from dynamic memory (malloc()).
729  *
730  *	elf_update() will return the size of the memory image built
731  *	when sucessful.
732  *
733  *	When a subsequent call to elf_update() with ELF_C_WRITE as
734  *	the command is performed it will sync the image created
735  *	by ELF_C_WRIMAGE to disk (if fd available) and
736  *	free the memory allocated.
737  */
738 
739 off_t
740 _elfxx_update(Elf * elf, Elf_Cmd cmd)
741 {
742 	size_t		sz;
743 	unsigned	u;
744 	Ehdr		*eh = elf->ed_ehdr;
745 
746 	if (elf == 0)
747 		return (-1);
748 
749 	ELFWLOCK(elf)
750 	switch (cmd) {
751 	default:
752 		_elf_seterr(EREQ_UPDATE, 0);
753 		ELFUNLOCK(elf)
754 		return (-1);
755 
756 	case ELF_C_WRIMAGE:
757 		if ((elf->ed_myflags & EDF_WRITE) == 0) {
758 			_elf_seterr(EREQ_UPDWRT, 0);
759 			ELFUNLOCK(elf)
760 			return (-1);
761 		}
762 		break;
763 	case ELF_C_WRITE:
764 		if ((elf->ed_myflags & EDF_WRITE) == 0) {
765 			_elf_seterr(EREQ_UPDWRT, 0);
766 			ELFUNLOCK(elf)
767 			return (-1);
768 		}
769 		if (elf->ed_wrimage) {
770 			if (elf->ed_myflags & EDF_WRALLOC) {
771 				free(elf->ed_wrimage);
772 				/*
773 				 * The size is still returned even
774 				 * though nothing is actually written
775 				 * out.  This is just to be consistant
776 				 * with the rest of the interface.
777 				 */
778 				sz = elf->ed_wrimagesz;
779 				elf->ed_wrimage = 0;
780 				elf->ed_wrimagesz = 0;
781 				ELFUNLOCK(elf);
782 				return ((off_t)sz);
783 			}
784 			sz = _elf_outsync(elf->ed_fd, elf->ed_wrimage,
785 			    elf->ed_wrimagesz,
786 			    (elf->ed_myflags & EDF_IMALLOC ? 0 : 1));
787 			elf->ed_myflags &= ~EDF_IMALLOC;
788 			elf->ed_wrimage = 0;
789 			elf->ed_wrimagesz = 0;
790 			ELFUNLOCK(elf);
791 			return ((off_t)sz);
792 		}
793 		/* FALLTHROUGH */
794 	case ELF_C_NULL:
795 		break;
796 	}
797 
798 	if (eh == 0) {
799 		_elf_seterr(ESEQ_EHDR, 0);
800 		ELFUNLOCK(elf)
801 		return (-1);
802 	}
803 
804 	if ((u = eh->e_version) > EV_CURRENT) {
805 		_elf_seterr(EREQ_VER, 0);
806 		ELFUNLOCK(elf)
807 		return (-1);
808 	}
809 
810 	if (u == EV_NONE)
811 		eh->e_version = EV_CURRENT;
812 
813 	if ((u = eh->e_ident[EI_DATA]) == ELFDATANONE) {
814 		unsigned	encode;
815 
816 		ELFACCESSDATA(encode, _elf_encode)
817 		if (encode == ELFDATANONE) {
818 			_elf_seterr(EREQ_ENCODE, 0);
819 			ELFUNLOCK(elf)
820 			return (-1);
821 		}
822 		/* LINTED */
823 		eh->e_ident[EI_DATA] = (Byte)encode;
824 	}
825 
826 	u = 1;
827 	if (elf->ed_uflags & ELF_F_LAYOUT) {
828 		sz = _elf_upd_usr(elf);
829 		u = 0;
830 	} else
831 		sz = _elf_upd_lib(elf);
832 
833 	if ((sz != 0) && ((cmd == ELF_C_WRITE) || (cmd == ELF_C_WRIMAGE)))
834 		sz = wrt(elf, (Xword)sz, u, cmd);
835 
836 	if (sz == 0) {
837 		ELFUNLOCK(elf)
838 		return (-1);
839 	}
840 
841 	ELFUNLOCK(elf)
842 	return ((off_t)sz);
843 }
844 
845 
846 /*
847  * When wrt() processes an ELF_C_WRIMAGE request, the resulting image
848  * gets the byte order (encoding) of the platform running the linker
849  * rather than that of the target host. This allows the linker to modify
850  * the image, prior to flushing it to the output file. This routine
851  * is used to re-translate such an image into the byte order of the
852  * target host.
853  */
854 int
855 _elfxx_swap_wrimage(Elf *elf)
856 {
857 	Elf_Data	dst, src;
858 	Elf_Scn		*s;
859 	Ehdr		*eh;
860 	Half		e_phnum;
861 	unsigned	ver;
862 	unsigned	encode;
863 
864 	/*
865 	 * Ehdr first
866 	 */
867 
868 	ELFWLOCK(elf);
869 	eh = elf->ed_ehdr;
870 	e_phnum = eh->e_phnum;
871 	ver = eh->e_version;
872 	encode = eh->e_ident[EI_DATA];
873 
874 	src.d_buf = dst.d_buf = (Elf_Void *)eh;
875 	src.d_type = dst.d_type = ELF_T_EHDR;
876 	src.d_size = dst.d_size = sizeof (Ehdr);
877 	src.d_version = dst.d_version = ver;
878 	if (elf_xlatetof(&dst, &src, encode) == 0) {
879 		ELFUNLOCK(elf);
880 		return (1);
881 	}
882 
883 	/*
884 	 * Phdr table if one exists
885 	 */
886 
887 	if (e_phnum != 0) {
888 		unsigned	work;
889 		/*
890 		 * Unlike other library data, phdr table is
891 		 * in the user version.
892 		 */
893 
894 		src.d_buf = dst.d_buf = (Elf_Void *)elf->ed_phdr;
895 		src.d_type = dst.d_type = ELF_T_PHDR;
896 		src.d_size = dst.d_size = elf->ed_phdrsz;
897 		ELFACCESSDATA(work, _elf_work)
898 		src.d_version = dst.d_version = work;
899 		if (elf_xlatetof(&dst, &src, encode) == 0) {
900 			ELFUNLOCK(elf);
901 			return (1);
902 		}
903 	}
904 
905 	/*
906 	 * Loop through sections
907 	 */
908 
909 	for (s = elf->ed_hdscn; s != 0; s = s->s_next) {
910 		register Dnode	*d, *prevd;
911 		Shdr		*sh = s->s_shdr;
912 
913 		if ((sh->sh_type == SHT_NOBITS) || (sh->sh_type == SHT_NULL))
914 			continue;
915 
916 		for (d = s->s_hdnode, prevd = 0;
917 		    d != 0; prevd = d, d = d->db_next) {
918 
919 			if ((d->db_myflags & DBF_READY) == 0) {
920 				SCNLOCK(s);
921 				if (_elf_locked_getdata(s, &prevd->db_data) !=
922 				    &d->db_data) {
923 					SCNUNLOCK(s);
924 					ELFUNLOCK(elf);
925 					return (1);
926 				}
927 				SCNUNLOCK(s);
928 			}
929 
930 			dst = d->db_data;
931 			if (elf_xlatetof(&dst, &d->db_data, encode) == 0) {
932 				ELFUNLOCK(elf);
933 				return (1);
934 			}
935 		}
936 	}
937 
938 	/*
939 	 * Shdr table
940 	 */
941 
942 	src.d_type = dst.d_type = ELF_T_SHDR;
943 	src.d_version = dst.d_version = ver;
944 	for (s = elf->ed_hdscn; s != 0; s = s->s_next) {
945 		src.d_buf = dst.d_buf = s->s_shdr;
946 		src.d_size = dst.d_size = sizeof (Shdr);
947 		if (elf_xlatetof(&dst, &src, encode) == 0) {
948 			ELFUNLOCK(elf);
949 			return (1);
950 		}
951 	}
952 
953 	ELFUNLOCK(elf);
954 	return (0);
955 }
956 
957 
958 
959 #ifndef _ELF64
960 /* class-independent, only needs to be compiled once */
961 
962 off_t
963 elf_update(Elf *elf, Elf_Cmd cmd)
964 {
965 	if (elf == 0)
966 		return (-1);
967 
968 	if (elf->ed_class == ELFCLASS32)
969 		return (_elf32_update(elf, cmd));
970 	else if (elf->ed_class == ELFCLASS64) {
971 		return (_elf64_update(elf, cmd));
972 	}
973 
974 	_elf_seterr(EREQ_CLASS, 0);
975 	return (-1);
976 }
977 
978 int
979 _elf_swap_wrimage(Elf *elf)
980 {
981 	if (elf == 0)
982 		return (0);
983 
984 	if (elf->ed_class == ELFCLASS32)
985 		return (_elf32_swap_wrimage(elf));
986 
987 	if (elf->ed_class == ELFCLASS64)
988 		return (_elf64_swap_wrimage(elf));
989 
990 	_elf_seterr(EREQ_CLASS, 0);
991 	return (0);
992 }
993 
994 /*
995  * 4106312, 4106398, This is an ad-hoc means for the 32-bit
996  * Elf64 version of libld.so.3 to get around the limitation
997  * of a 32-bit d_off field.  This is only intended to be
998  * used by libld to relocate symbols in large NOBITS sections.
999  */
1000 Elf64_Off
1001 _elf_getxoff(Elf_Data * d)
1002 {
1003 	return (((Dnode *)d)->db_xoff);
1004 }
1005 #endif /* !_ELF64 */
1006