xref: /illumos-gate/usr/src/cmd/sgs/elfedit/common/elfedit.c (revision 3d393ee6c37fa10ac512ed6d36109ad616dc7c1a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include	<sys/types.h>
29 #include	<sys/stat.h>
30 #include	<sys/wait.h>
31 #include	<stdarg.h>
32 #include	<fcntl.h>
33 #include	<stdlib.h>
34 #include	<stdio.h>
35 #include	<signal.h>
36 #include	<dirent.h>
37 #include	<libelf.h>
38 #include	<gelf.h>
39 #include	<conv.h>
40 #include	<dlfcn.h>
41 #include	<link.h>
42 #include	<stdarg.h>
43 #include	<libgen.h>
44 #include	<libintl.h>
45 #include	<locale.h>
46 #include	<unistd.h>
47 #include	<errno.h>
48 #include	<ctype.h>
49 #include	<limits.h>
50 #include	<strings.h>
51 #include	<sgs.h>
52 #include	"msg.h"
53 #include	"_elfedit.h"
54 #include	<debug.h>	/* liblddb */
55 
56 
57 
58 /*
59  * Column at which elfedit_format_command_usage() will wrap the
60  * generated usage string if the wrap argument is True (1).
61  */
62 #define	USAGE_WRAP_COL 55
63 
64 
65 
66 
67 /*
68  * Type used to represent a string buffer that can grow as needed
69  * to hold strings of arbitrary length. The user should declare
70  * variables of this type sa static. The strbuf_ensure_size() function
71  * is used to ensure that it has a minimum desired size.
72  */
73 typedef struct {
74 	char *buf;		/* String buffer */
75 	size_t n;		/* Size of buffer */
76 } STRBUF;
77 
78 
79 
80 
81 /*
82  * Types used by tokenize_user_cmd() to represent the result of
83  * spliting a user command into individual tokens.
84  */
85 typedef struct {
86 	char	*tok_str;	/* Token string */
87 	size_t	tok_len;	/* strlen(str) */
88 	size_t	tok_line_off;	/* Token offset in original string */
89 } TOK_ELT;
90 typedef struct {
91 	size_t	tokst_cmd_len;	/* Length of original user command, without */
92 				/*	newline or NULL termination chars */
93 	size_t	tokst_str_size;	/* Space needed to hold all the resulting */
94 				/*	tokens, including terminating NULL */
95 	TOK_ELT	*tokst_buf;	/* The array of tokens */
96 	size_t	tokst_cnt;	/* # of tokens in array */
97 	size_t	tokst_bufsize;	/* capacity of array */
98 } TOK_STATE;
99 
100 
101 
102 
103 /* State block used by gettok_init() and gettok() */
104 typedef struct {
105 	const char	*gtok_buf;	/* Addr of buffer containing string */
106 	char		*gtok_cur_buf;	/* Addr withing buffer for next token */
107 	int		gtok_inc_null_final; /* True if final NULL token used */
108 	int		gtok_null_seen;	/* True when NULL byte seen */
109 	TOK_ELT		gtok_last_token; /* Last token parsed */
110 
111 } GETTOK_STATE;
112 
113 
114 
115 
116 /*
117  * The elfedit_cpl_*() functions are used for command line completion.
118  * Currently this uses the tecla library, but to allow for changing the
119  * library used, we hide all tecla interfaces from our modules. Instead,
120  * cmd_match_fcn() builds an ELFEDIT_CPL_STATE struct, and we pass the
121  * address of that struct as an opaque handle to the modules. Since the
122  * pointer is opaque, the contents of ELFEDIT_CPL_STATE are free to change
123  * as necessary.
124  */
125 typedef struct {
126 	WordCompletion	*ecpl_cpl;		/* tecla handle */
127 	const char	*ecpl_line;		/* raw input line */
128 	int		ecpl_word_start;	/* start offset within line */
129 	int		ecpl_word_end;		/* offset just past token */
130 	/*
131 	 * ecpl_add_mod_colon is a secret handshake between
132 	 * elfedit_cpl_command() and  elfedit_cpl_add_match(). It adds
133 	 * ':' to end of matched modules.
134 	 */
135 	int		ecpl_add_mod_colon;
136 	const char	*ecpl_token_str;	/* token being completed */
137 	size_t		ecpl_token_len;		/* strlen(ecpl_token_str) */
138 } ELFEDIT_CPL_STATE;
139 
140 
141 
142 
143 /* This structure maintains elfedit global state */
144 STATE_T state;
145 
146 
147 
148 /*
149  * Define a pair of static global variables that contain the
150  * ISA strings that correspond to %i and %I tokens in module search
151  * paths.
152  *
153  *	isa_i_str - The ISA string for the currently running program
154  *	isa_I_str - For 64-bit programs, the same as isa_i_str. For
155  *		32-bit programs, an empty string.
156  */
157 #ifdef __sparc
158 #ifdef __sparcv9
159 static const char *isa_i_str = MSG_ORIG(MSG_ISA_SPARC_64);
160 static const char *isa_I_str = MSG_ORIG(MSG_ISA_SPARC_64);
161 #else
162 static const char *isa_i_str = MSG_ORIG(MSG_ISA_SPARC_32);
163 static const char *isa_I_str = MSG_ORIG(MSG_STR_EMPTY);
164 #endif
165 #endif
166 
167 #ifdef __i386
168 static const char *isa_i_str = MSG_ORIG(MSG_ISA_X86_32);
169 static const char *isa_I_str = MSG_ORIG(MSG_STR_EMPTY);
170 #endif
171 #ifdef __amd64
172 static const char *isa_i_str = MSG_ORIG(MSG_ISA_X86_64);
173 static const char *isa_I_str = MSG_ORIG(MSG_ISA_X86_64);
174 #endif
175 
176 
177 
178 /* Forward declarations */
179 static void free_user_cmds(void);
180 static void elfedit_pager_cleanup(void);
181 
182 
183 
184 /*
185  * We supply this function for the msg module
186  */
187 const char *
188 _elfedit_msg(Msg mid)
189 {
190 	return (gettext(MSG_ORIG(mid)));
191 }
192 
193 
194 /*
195  * Copy at most min(cpsize, dstsize-1) bytes from src into dst,
196  * truncating src if necessary.  The  result is always null-terminated.
197  *
198  * entry:
199  *	dst - Destination buffer
200  *	src - Source string
201  *	dstsize - sizeof(dst)
202  *
203  * note:
204  *	This is similar to strncpy(), but with two modifications:
205  *	1) You specify the number of characters to copy, not just
206  *		the size of the destination. Hence, you can copy non-NULL
207  *		terminated strings.
208  *	2) The destination is guaranteed to be NULL terminated. strncpy()
209  *		does not terminate a completely full buffer.
210  */
211 static void
212 elfedit_strnbcpy(char *dst, const char *src, size_t cpsize, size_t dstsize)
213 {
214 	if (cpsize >= dstsize)
215 		cpsize = dstsize - 1;
216 	if (cpsize > 0)
217 		(void) strncpy(dst, src, cpsize + 1);
218 	dst[cpsize] = '\0';
219 }
220 
221 
222 /*
223  * Calls exit() on behalf of elfedit.
224  */
225 void
226 elfedit_exit(int status)
227 {
228 	if (state.file.present) {
229 		/* Exiting with unflushed changes pending? Issue debug notice */
230 		if (state.file.dirty)
231 			elfedit_msg(ELFEDIT_MSG_DEBUG,
232 			    MSG_INTL(MSG_DEBUG_DIRTYEXIT));
233 
234 		/*
235 		 * If the edit file is marked for unlink on exit, then
236 		 * take care of it here.
237 		 */
238 		if (state.file.unlink_on_exit) {
239 			elfedit_msg(ELFEDIT_MSG_DEBUG,
240 			    MSG_INTL(MSG_DEBUG_UNLINKFILE),
241 			    state.file.outfile);
242 			(void) unlink(state.file.outfile);
243 		}
244 	}
245 
246 	exit(status);
247 }
248 
249 
250 /*
251  * Standard message function for elfedit. All user visible
252  * output, for error or informational reasons, should go through
253  * this function.
254  *
255  * entry:
256  *	type - Type of message. One of the ELFEDIT_MSG_* values.
257  *	format, ... - As per the printf() family
258  *
259  * exit:
260  *	The desired message has been output. For informational
261  *	messages, control returns to the caller. For errors,
262  *	this routine will terminate execution or strip the execution
263  *	stack and return control directly to the outer control loop.
264  *	In either case, the caller will not receive control.
265  */
266 /*PRINTFLIKE2*/
267 void
268 elfedit_msg(elfedit_msg_t type, const char *format, ...)
269 {
270 	typedef enum {			/* What to do after finished */
271 		DISP_RET = 0,		/* Return to caller */
272 		DISP_JMP = 1, 		/* if (interactive) longjmp else exit */
273 		DISP_EXIT = 2		/* exit under all circumstances */
274 	} DISP;
275 
276 	va_list args;
277 	FILE *stream = stderr;
278 	DISP disp = DISP_RET;
279 	int do_output = 1;
280 	int need_prefix = 1;
281 
282 	va_start(args, format);
283 
284 	switch (type) {
285 	case ELFEDIT_MSG_ERR:
286 	case ELFEDIT_MSG_CMDUSAGE:
287 		disp = DISP_JMP;
288 		break;
289 	case ELFEDIT_MSG_FATAL:
290 		disp = DISP_EXIT;
291 		break;
292 	case ELFEDIT_MSG_USAGE:
293 		need_prefix = 0;
294 		break;
295 	case ELFEDIT_MSG_DEBUG:
296 		if (!(state.flags & ELFEDIT_F_DEBUG))
297 			return;
298 		stream = stdout;
299 		break;
300 	case ELFEDIT_MSG_QUIET:
301 		do_output = 0;
302 		disp = DISP_JMP;
303 		break;
304 	}
305 
306 
307 	/*
308 	 * If there is a pager process running, we are returning to the
309 	 * caller, and the output is going to stdout, then let the
310 	 * pager handle it instead of writing it directly from this process.
311 	 * That way, the output gets paged along with everything else.
312 	 *
313 	 * If there is a pager process running, and we are not returning
314 	 * to the caller, then end the pager process now, before we generate
315 	 * any new output. This allows for any text buffered in the pager
316 	 * pipe to be output before the new stuff.
317 	 */
318 	if (state.pager.fptr != NULL) {
319 		if (disp == DISP_RET) {
320 			if (stream == stdout)
321 				stream = state.pager.fptr;
322 		} else {
323 			elfedit_pager_cleanup();
324 		}
325 	}
326 
327 	/*
328 	 * If this message is coming from within the libtecla command
329 	 * completion code, call gl_normal_io() to give the library notice.
330 	 * That function sets the tty back to cooked mode and advances
331 	 * the cursor to the beginning of the next line so that our output
332 	 * will appear properly. When we return to the command completion code,
333 	 * tecla will re-enter raw mode and redraw the current command line.
334 	 */
335 	if (state.input.in_tecla)
336 		(void) gl_normal_io(state.input.gl);
337 
338 	if (do_output) {
339 		if (need_prefix)
340 			(void) fprintf(stream, MSG_ORIG(MSG_STR_ELFEDIT));
341 		(void) vfprintf(stream, format, args);
342 		(void) fflush(stream);
343 	}
344 	va_end(args);
345 
346 	/*
347 	 * If this is an error, then we do not return to the caller.
348 	 * The action taken depends on whether the outer loop has registered
349 	 * a jump buffer for us or not.
350 	 */
351 	if (disp != DISP_RET) {
352 		if (state.msg_jbuf.active && (disp == DISP_JMP)) {
353 			/* Free the user command list */
354 			free_user_cmds();
355 
356 			/* Clean up to reflect effect of non-local goto */
357 			state.input.in_tecla = FALSE;
358 
359 			/* Jump to the outer loop to resume */
360 			siglongjmp(state.msg_jbuf.env, 1);
361 		} else {
362 			elfedit_exit(1);
363 		}
364 	}
365 }
366 
367 
368 /*
369  * Wrapper on elfedit_msg() that issues an error that results from
370  * a call to libelf.
371  *
372  * entry:
373  *	file - Name of ELF object
374  *	libelf_rtn_name - Name of routine that was called
375  *
376  * exit:
377  *	An error has been issued that shows the routine called
378  *	and the libelf error string for it from elf_errmsg().
379  *	This routine does not return to the caller.
380  */
381 void
382 elfedit_elferr(const char *file, const char *libelf_rtn_name)
383 {
384 	const char *errstr = elf_errmsg(elf_errno());
385 
386 	elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_LIBELF), file,
387 	    libelf_rtn_name, errstr ? errstr : MSG_INTL(MSG_FMT_UNKNOWN));
388 }
389 
390 
391 /*
392  * Start an output pager process for elfedit_printf()/elfedit_write() to use.
393  *
394  * note:
395  *	If this elfedit session is not interactive, then no pager is
396  *	started. Paging is only intended for interactive use. The caller
397  *	is not supposed to worry about this point, but simply to use
398  *	this function to flag situations in which paging might be needed.
399  */
400 void
401 elfedit_pager_init(void)
402 {
403 	const char	*errstr;
404 	const char	*cmd;
405 	int		err;
406 
407 	/*
408 	 * If there is no pager process running, start one.
409 	 * Only do this for interactive sessions --- elfedit_pager()
410 	 * won't use a pager in batch mode.
411 	 */
412 	if (state.msg_jbuf.active && state.input.full_tty &&
413 	    (state.pager.fptr == NULL)) {
414 		/*
415 		 * If the user has the PAGER environment variable set,
416 		 * then we will use that program. Otherwise we default
417 		 * to /bin/more.
418 		 */
419 		cmd = getenv(MSG_ORIG(MSG_STR_PAGER));
420 		if ((cmd == NULL) || (*cmd == '\0'))
421 			cmd = MSG_ORIG(MSG_STR_BINMORE);
422 
423 		/*
424 		 * The popen() manpage says that on failure, it "may set errno",
425 		 * which is somewhat ambiguous. We explicitly zero it here, and
426 		 * assume that any change is due to popen() failing.
427 		 */
428 		errno = 0;
429 		state.pager.fptr = popen(cmd, MSG_ORIG(MSG_STR_W));
430 		if (state.pager.fptr == NULL) {
431 			err = errno;
432 			errstr = (err == 0) ? MSG_INTL(MSG_ERR_UNKNOWNSYSERR) :
433 			    strerror(err);
434 			elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTEXEC),
435 			    MSG_ORIG(MSG_STR_ELFEDIT), cmd, errstr);
436 		}
437 	}
438 }
439 
440 
441 /*
442  * If there is a pager process present, close it out.
443  *
444  * note:
445  *	This function is called from within elfedit_msg(), and as
446  *	such, must not use elfedit_msg() to report errors. Furthermore,
447  *	any such errors are not a sufficient reason to terminate the process
448  *	or to longjmp(). This is a rare case where errors are written
449  *	directly to stderr.
450  */
451 static void
452 elfedit_pager_cleanup(void)
453 {
454 	if (state.pager.fptr != NULL) {
455 		if (pclose(state.pager.fptr) == -1)
456 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_PAGERFINI));
457 
458 		state.pager.fptr = NULL;
459 	}
460 }
461 
462 
463 /*
464  * Print general formtted text for the user, using printf()-style
465  * formatting. Uses the pager process if one has been started, or
466  * stdout otherwise.
467  */
468 void
469 elfedit_printf(const char *format, ...)
470 {
471 	va_list	args;
472 	int	err;
473 	FILE	*fptr;
474 	int	pager;
475 	int	broken_pipe = 0;
476 
477 	/*
478 	 * If there is a pager process, then use it. Otherwise write
479 	 * directly to stdout.
480 	 */
481 	pager = (state.pager.fptr != NULL);
482 	fptr = pager ? state.pager.fptr : stdout;
483 
484 	va_start(args, format);
485 	errno = 0;
486 	err = vfprintf(fptr, format, args);
487 
488 	/* Did we fail because a child pager process has exited? */
489 	broken_pipe = pager && (err < 0) && (errno == EPIPE);
490 
491 	va_end(args);
492 
493 	/*
494 	 * On error, we simply issue the error without cleaning up
495 	 * the pager process. The message code handles that as a standard
496 	 * part of error processing.
497 	 *
498 	 * We handle failure due to an exited pager process differently
499 	 * than a normal error, because it is usually due to the user
500 	 * intentionally telling it to.
501 	 */
502 	if (err < 0) {
503 		if (broken_pipe)
504 			elfedit_msg(ELFEDIT_MSG_QUIET, MSG_ORIG(MSG_STR_NULL));
505 		else
506 			elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_PRINTF));
507 	}
508 }
509 
510 
511 /*
512  * Some our modules use liblddb routines to format ELF output.
513  * In order to ensure that such output is sent to the pager pipe
514  * when there is one, and stdout otherwise, we redefine the dbg_print()
515  * function here.
516  *
517  * This item should be defined NODIRECT.
518  */
519 /* PRINTFLIKE2 */
520 void
521 dbg_print(Lm_list *lml, const char *format, ...)
522 {
523 	va_list	ap;
524 	int	err;
525 	FILE	*fptr;
526 	int	pager;
527 	int	broken_pipe = 0;
528 
529 #if	defined(lint)
530 	/*
531 	 * The lml argument is only meaningful for diagnostics sent to ld.so.1.
532 	 * Supress the lint error by making a dummy assignment.
533 	 */
534 	lml = 0;
535 #endif
536 
537 	/*
538 	 * If there is a pager process, then use it. Otherwise write
539 	 * directly to stdout.
540 	 */
541 	pager = (state.pager.fptr != NULL);
542 	fptr = pager ? state.pager.fptr : stdout;
543 
544 	va_start(ap, format);
545 	errno = 0;
546 	err = vfprintf(fptr, format, ap);
547 	if (err >= 0)
548 		err = fprintf(fptr, MSG_ORIG(MSG_STR_NL));
549 
550 	/* Did we fail because a child pager process has exited? */
551 	broken_pipe = (err < 0) && pager && (errno == EPIPE);
552 
553 	va_end(ap);
554 
555 	/*
556 	 * On error, we simply issue the error without cleaning up
557 	 * the pager process. The message code handles that as a standard
558 	 * part of error processing.
559 	 *
560 	 * We handle failure due to an exited pager process differently
561 	 * than a normal error, because it is usually due to the user
562 	 * intentionally telling it to.
563 	 */
564 	if (err < 0) {
565 		if (broken_pipe)
566 			elfedit_msg(ELFEDIT_MSG_QUIET, MSG_ORIG(MSG_STR_NULL));
567 		else
568 			elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_PRINTF));
569 	}
570 }
571 
572 
573 /*
574  * Write raw bytes of text in a manner similar to fwrite().
575  * Uses the pager process if one has been started, or
576  * stdout otherwise.
577  */
578 void
579 elfedit_write(const void *ptr, size_t size)
580 {
581 	FILE	*fptr;
582 	int	err;
583 
584 	/*
585 	 * If there is a pager process, then use it. Otherwise write
586 	 * directly to stdout.
587 	 */
588 	fptr = (state.pager.fptr == NULL) ? stdout : state.pager.fptr;
589 
590 	if (fwrite(ptr, 1, size, fptr) != size) {
591 		err = errno;
592 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_FWRITE),
593 		    strerror(err));
594 	}
595 }
596 
597 
598 /*
599  * Convert the NULL terminated string to the form used by the C
600  * language to represent literal strings. See conv_str_to_c_literal()
601  * for details.
602  *
603  * This routine differs from conv_str_to_c_literal() in two ways:
604  *	1) String is NULL terminated instead of counted
605  *	2) Signature of outfunc
606  *
607  * entry:
608  *	str - String to be processed
609  *	outfunc - Function to be called to move output characters. Note
610  *		that this function has the same signature as elfedit_write(),
611  *		and that function can be used to write the characters to
612  *		the output.
613  *
614  * exit:
615  *	The string has been processed, with the resulting data passed
616  *	to outfunc for processing.
617  */
618 static void
619 elfedit_str_to_c_literal_cb(const void *ptr, size_t size, void *uvalue)
620 {
621 	elfedit_write_func_t *outfunc = (elfedit_write_func_t *)uvalue;
622 
623 	(* outfunc)(ptr, size);
624 
625 }
626 void
627 elfedit_str_to_c_literal(const char *str, elfedit_write_func_t *outfunc)
628 {
629 	conv_str_to_c_literal(str, strlen(str),
630 	    elfedit_str_to_c_literal_cb, (void *) outfunc);
631 }
632 
633 
634 /*
635  * Wrappers on malloc() and realloc() that check the result for success
636  * and issue an error if not. The caller can use the result of these
637  * functions without checking for a NULL pointer, as we do not return to
638  * the caller in the failure case.
639  */
640 void *
641 elfedit_malloc(const char *item_name, size_t size)
642 {
643 	void *m;
644 
645 	m = malloc(size);
646 	if (m == NULL) {
647 		int err = errno;
648 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_MALLOC),
649 		    item_name, strerror(err));
650 	}
651 
652 	return (m);
653 }
654 
655 void *
656 elfedit_realloc(const char *item_name, void *ptr, size_t size)
657 {
658 	void *m;
659 
660 	m = realloc(ptr, size);
661 	if (m == NULL) {
662 		int err = errno;
663 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_MALLOC),
664 		    item_name, strerror(err));
665 	}
666 
667 	return (m);
668 }
669 
670 
671 /*
672  * Ensure that the given buffer has room for n bytes of data.
673  */
674 static void
675 strbuf_ensure_size(STRBUF *str, size_t size)
676 {
677 #define	INITIAL_STR_ALLOC 128
678 
679 	size_t n;
680 
681 	n = (str->n == 0) ? INITIAL_STR_ALLOC : str->n;
682 	while (size > n)	/* Double buffer until string fits */
683 		n *= 2;
684 	if (n != str->n) {		/* Alloc new string buffer if needed */
685 		str->buf = elfedit_realloc(MSG_INTL(MSG_ALLOC_UCMDSTR),
686 		    str->buf, n);
687 		str->n = n;
688 	}
689 
690 #undef	INITIAL_STR_ALLOC
691 }
692 
693 
694 /*
695  * Extract the argument/option information for the next item referenced
696  * by optarg, and advance the pointer to the next item.
697  *
698  * entry:
699  *	optarg - Address of pointer to argument or option array
700  *	item - Struct to be filled in.
701  *
702  * exit:
703  *	The item block has been filled in with the information for
704  *	the next item in the optarg array. *optarg has been advanced
705  *	to the next item.
706  */
707 void
708 elfedit_next_optarg(elfedit_cmd_optarg_t **optarg, elfedit_optarg_item_t *item)
709 {
710 	/*
711 	 * Array of inheritable options/arguments. Indexed by one less
712 	 * than the corresponding ELFEDIT_STDOA_ value.
713 	 */
714 	static const elfedit_optarg_item_t stdoa[] = {
715 		/* ELFEDIT_STDOA_O */
716 		{ MSG_ORIG(MSG_STR_MINUS_O), MSG_ORIG(MSG_STR_OUTSTYLE),
717 		    /* MSG_INTL(MSG_STDOA_OPTDESC_O) */
718 		    (elfedit_i18nhdl_t)MSG_STDOA_OPTDESC_O,
719 		    ELFEDIT_CMDOA_F_VALUE },
720 
721 		/* ELFEDIT_STDOA_AND */
722 		{ MSG_ORIG(MSG_STR_MINUS_AND), NULL,
723 		    /* MSG_INTL(MSG_STDOA_OPTDESC_AND) */
724 		    (elfedit_i18nhdl_t)MSG_STDOA_OPTDESC_AND, 0 },
725 
726 		/* ELFEDIT_STDOA_CMP */
727 		{ MSG_ORIG(MSG_STR_MINUS_CMP), NULL,
728 		    /* MSG_INTL(MSG_STDOA_OPTDESC_CMP) */
729 		    (elfedit_i18nhdl_t)MSG_STDOA_OPTDESC_CMP, 0 },
730 
731 		/* ELFEDIT_STDOA_OR */
732 		{ MSG_ORIG(MSG_STR_MINUS_OR), NULL,
733 		    /* MSG_INTL(MSG_STDOA_OPTDESC_OR) */
734 		    (elfedit_i18nhdl_t)MSG_STDOA_OPTDESC_OR, 0 },
735 	};
736 
737 	elfedit_cmd_optarg_t *oa;
738 
739 
740 	/* Grab first item, advance the callers pointer over it */
741 	oa = (*optarg)++;
742 
743 	if (oa->oa_flags & ELFEDIT_CMDOA_F_INHERIT) {
744 		/* Values are pre-chewed in the stdoa array above */
745 		*item = stdoa[((uintptr_t)oa->oa_name) - 1];
746 
747 		/*
748 		 * Set the inherited flag so that elfedit_optarg_helpstr()
749 		 * can tell who is responsible for translating the help string.
750 		 */
751 		item->oai_flags |= ELFEDIT_CMDOA_F_INHERIT;
752 	} else {	/* Non-inherited item */
753 		item->oai_name = oa->oa_name;
754 		if ((oa->oa_flags & ELFEDIT_CMDOA_F_VALUE) != 0) {
755 			item->oai_vname = oa[1].oa_name;
756 
757 			/* Advance users pointer past value element */
758 			(*optarg)++;
759 		} else {
760 			item->oai_vname = NULL;
761 		}
762 		item->oai_help = oa->oa_help;
763 		item->oai_flags = oa->oa_flags;
764 	}
765 
766 	/*
767 	 * The module determines the idmask and excmask fields whether
768 	 * or not inheritance is in play.
769 	 */
770 	item->oai_idmask = oa->oa_idmask;
771 	item->oai_excmask = oa->oa_excmask;
772 }
773 
774 
775 
776 /*
777  * Return the help string for an option/argument item, as returned
778  * by elfedit_next_optarg(). This routine handles the details of
779  * knowing whether the string is provided by elfedit itself (inherited),
780  * or needs to be translated by the module.
781  */
782 const char *
783 elfedit_optarg_helpstr(elfeditGC_module_t *mod, elfedit_optarg_item_t *item)
784 {
785 	/*
786 	 * The help string from an inherited item comes right out
787 	 * of the main elfedit string table.
788 	 */
789 	if (item->oai_flags & ELFEDIT_CMDOA_F_INHERIT)
790 		return (MSG_INTL((Msg) item->oai_help));
791 
792 	/*
793 	 * If the string is defined by the module, then we need to
794 	 * have the module translate it for us.
795 	 */
796 	return ((* mod->mod_i18nhdl_to_str)(item->oai_help));
797 }
798 
799 
800 
801 /*
802  * Used by usage_optarg() to insert a character into the output buffer,
803  * advancing the buffer pointer and current column, and reducing the
804  * amount of remaining space.
805  */
806 static void
807 usage_optarg_insert_ch(int ch, char **cur, size_t *n, size_t *cur_col)
808 {
809 
810 	*(*cur)++ = ch;
811 	**cur = '\0';
812 	(*n)--;
813 	(*cur_col)++;
814 }
815 
816 /*
817  * Used by usage_optarg() to insert a string into the output
818  * buffer, advancing the buffer pointer and current column, and reducing
819  * the amount of remaining space.
820  */
821 static void
822 usage_optarg_insert_str(char **cur, size_t *n, size_t *cur_col,
823     const char *format, ...)
824 {
825 	size_t len;
826 	va_list args;
827 
828 	va_start(args, format);
829 	len = vsnprintf(*cur, *n, format, args);
830 	va_end(args);
831 
832 	*cur += len;
833 	*n -= len;
834 	*cur_col += len;
835 }
836 /*
837  * Used by usage_optarg() to insert an optarg item string into the output
838  * buffer, advancing the buffer pointer and current column, and reducing
839  * the amount of remaining space.
840  */
841 static void
842 usage_optarg_insert_item(elfedit_optarg_item_t *item, char **cur,
843     size_t *n, size_t *cur_col)
844 {
845 	size_t len;
846 
847 	if (item->oai_flags & ELFEDIT_CMDOA_F_VALUE) {
848 		len = snprintf(*cur, *n, MSG_ORIG(MSG_STR_HLPOPTARG2),
849 		    item->oai_name, item->oai_vname);
850 	} else {
851 		len = snprintf(*cur, *n, MSG_ORIG(MSG_STR_HLPOPTARG),
852 		    item->oai_name);
853 	}
854 	*cur += len;
855 	*n -= len;
856 	*cur_col += len;
857 }
858 
859 
860 
861 /*
862  * Write the options/arguments to the usage string.
863  *
864  * entry:
865  *	main_buf_n - Size of main buffer from which buf and buf_n are
866  *		allocated.
867  *	buf - Address of pointer to where next item is to be placed.
868  *	buf_n - Address of count of remaining bytes in buffer
869  *	buf_cur_col - Address of current output column for current line
870  *		of generated string.
871  *	optarg - Options list
872  *	isopt - True if these are options, false for arguments.
873  *	wrap_str - String to indent wrapped lines. If NULL, lines
874  *		are not wrapped
875  */
876 static void
877 usage_optarg(size_t main_buf_n, char **buf, size_t *buf_n, size_t *buf_cur_col,
878     elfedit_cmd_optarg_t *optarg, int isopt, const char *wrap_str)
879 {
880 	/*
881 	 * An option can be combined into a simple format if it lacks
882 	 * these flags and is only one character in length.
883 	 */
884 	static const elfedit_cmd_oa_flag_t exflags =
885 	    (ELFEDIT_CMDOA_F_VALUE | ELFEDIT_CMDOA_F_MULT);
886 
887 	/*
888 	 * A static buffer, which is grown as needed to accomodate
889 	 * the maximum usage string seen.
890 	 */
891 	static STRBUF simple_str;
892 
893 	char			*cur = *buf;
894 	size_t			n = *buf_n;
895 	size_t			cur_col = *buf_cur_col;
896 	int			len;
897 	int			use_simple = 0;
898 	elfedit_optarg_item_t	item;
899 	elfedit_cmd_oa_mask_t	optmask = 0;
900 	int			use_bkt;
901 
902 	/*
903 	 * If processing options, pull the 1-character ones that don't have
904 	 * an associated value and don't have any mutual exclusion issues into
905 	 * a single combination string to go at the beginning of the usage.
906 	 */
907 	if (isopt) {
908 		elfedit_cmd_optarg_t *tmp_optarg = optarg;
909 		char *s;
910 
911 		/*
912 		 * The simple string is guaranteed to fit in the same
913 		 * amount of space reserved for the main buffer.
914 		 */
915 		strbuf_ensure_size(&simple_str, main_buf_n);
916 		s = simple_str.buf;
917 		*s++ = ' ';
918 		*s++ = '[';
919 		*s++ = '-';
920 		while (tmp_optarg->oa_name != NULL) {
921 			elfedit_next_optarg(&tmp_optarg, &item);
922 			if (((item.oai_flags & exflags) == 0) &&
923 			    (item.oai_name[2] == '\0') &&
924 			    (item.oai_excmask == 0)) {
925 				optmask |= item.oai_idmask;
926 				*s++ = item.oai_name[1];
927 			}
928 		}
929 
930 		/*
931 		 * If we found more than one, then finish the string and
932 		 * add it. Don't do this for a single option, because
933 		 * it looks better in that case if the option shows up
934 		 * in alphabetical order rather than being hoisted.
935 		 */
936 		use_simple = (s > (simple_str.buf + 4));
937 		if (use_simple) {
938 			*s++ = ']';
939 			*s++ = '\0';
940 			usage_optarg_insert_str(&cur, &n, &cur_col,
941 			    MSG_ORIG(MSG_STR_HLPOPTARG), simple_str.buf);
942 		} else {
943 			/* Not using it, so reset the cumulative options mask */
944 			optmask = 0;
945 		}
946 	}
947 
948 	while (optarg->oa_name != NULL) {
949 		elfedit_next_optarg(&optarg, &item);
950 
951 		if (isopt) {
952 			/*
953 			 * If this is an option that was pulled into the
954 			 * combination string above, then skip over it.
955 			 */
956 			if (use_simple && ((item.oai_flags & exflags) == 0) &&
957 			    (item.oai_name[2] == '\0') &&
958 			    (item.oai_excmask == 0))
959 				continue;
960 
961 			/*
962 			 * If this is a mutual exclusion option that was
963 			 * picked up out of order by a previous iteration
964 			 * of this loop, then skip over it.
965 			 */
966 			if ((optmask & item.oai_idmask) != 0)
967 				continue;
968 
969 			/* Add this item to the accumulating options mask */
970 			optmask |= item.oai_idmask;
971 		}
972 
973 		/* Wrap line, or insert blank separator */
974 		if ((wrap_str != NULL) && (cur_col > USAGE_WRAP_COL)) {
975 			len = snprintf(cur, n, MSG_ORIG(MSG_FMT_WRAPUSAGE),
976 			    wrap_str);
977 			cur += len;
978 			n -= len;
979 			cur_col = len - 1;   /* Don't count the newline */
980 		} else {
981 			usage_optarg_insert_ch(' ', &cur, &n, &cur_col);
982 		}
983 
984 		use_bkt = (item.oai_flags & ELFEDIT_CMDOA_F_OPT) || isopt;
985 		if (use_bkt)
986 			usage_optarg_insert_ch('[', &cur, &n, &cur_col);
987 
988 		/* Add the item to the buffer */
989 		usage_optarg_insert_item(&item, &cur, &n, &cur_col);
990 
991 		/*
992 		 * If this item has a non-zero mutual exclusion mask,
993 		 * then look for the other items and display them all
994 		 * together with alternation (|). Note that plain arguments
995 		 * cannot have a non-0 exclusion mask, so this is
996 		 * effectively options-only (isopt != 0).
997 		 */
998 		if (item.oai_excmask != 0) {
999 			elfedit_cmd_optarg_t *tmp_optarg = optarg;
1000 			elfedit_optarg_item_t tmp_item;
1001 
1002 			/*
1003 			 * When showing alternation, elipses for multiple
1004 			 * copies need to appear inside the [] brackets.
1005 			 */
1006 			if (item.oai_flags & ELFEDIT_CMDOA_F_MULT)
1007 				usage_optarg_insert_str(&cur, &n, &cur_col,
1008 				    MSG_ORIG(MSG_STR_ELIPSES));
1009 
1010 
1011 			while (tmp_optarg->oa_name != NULL) {
1012 				elfedit_next_optarg(&tmp_optarg, &tmp_item);
1013 				if ((item.oai_excmask & tmp_item.oai_idmask) ==
1014 				    0)
1015 					continue;
1016 				usage_optarg_insert_str(&cur, &n, &cur_col,
1017 				    MSG_ORIG(MSG_STR_SP_BAR_SP));
1018 				usage_optarg_insert_item(&tmp_item,
1019 				    &cur, &n, &cur_col);
1020 
1021 				/*
1022 				 * Add it to the mask of seen options.
1023 				 * This will keep us from showing it twice.
1024 				 */
1025 				optmask |= tmp_item.oai_idmask;
1026 			}
1027 		}
1028 		if (use_bkt)
1029 			usage_optarg_insert_ch(']', &cur, &n, &cur_col);
1030 
1031 		/*
1032 		 * If alternation was not shown above (non-zero exclusion mask)
1033 		 * then the elipses for multiple copies are shown outside
1034 		 * any [] brackets.
1035 		 */
1036 		if ((item.oai_excmask == 0) &&
1037 		    (item.oai_flags & ELFEDIT_CMDOA_F_MULT))
1038 			usage_optarg_insert_str(&cur, &n, &cur_col,
1039 			    MSG_ORIG(MSG_STR_ELIPSES));
1040 
1041 	}
1042 
1043 	*buf = cur;
1044 	*buf_n = n;
1045 	*buf_cur_col = cur_col;
1046 }
1047 
1048 
1049 
1050 /*
1051  * Format the usage string for a command into a static buffer and
1052  * return the pointer to the user. The resultant string is valid
1053  * until the next call to this routine, and which point it
1054  * will be overwritten or the memory is freed.
1055  *
1056  * entry:
1057  *	mod, cmd - Module and command definitions for command to be described
1058  *	wrap_str - NULL, or string to be used to indent when
1059  *		lines are wrapped. If NULL, no wrapping is done, and
1060  *		all output is on a single line.
1061  *	cur_col - Starting column at which the string will be displayed.
1062  *		Ignored if wrap_str is NULL.
1063  */
1064 const char *
1065 elfedit_format_command_usage(elfeditGC_module_t *mod, elfeditGC_cmd_t *cmd,
1066     const char *wrap_str, size_t cur_col)
1067 {
1068 
1069 	/*
1070 	 * A static buffer, which is grown as needed to accomodate
1071 	 * the maximum usage string seen.
1072 	 */
1073 	static STRBUF str;
1074 
1075 	elfedit_cmd_optarg_t	*optarg;
1076 	size_t			len, n, elipses_len;
1077 	char			*cur;
1078 	elfedit_optarg_item_t	item;
1079 
1080 	/*
1081 	 * Estimate a worst case size for the usage string:
1082 	 *	- module name
1083 	 *	- lengths of the strings
1084 	 *	- every option or argument is enclosed in brackets
1085 	 *	- space in between each item, with an alternation (" | ")
1086 	 *	- elipses will be displayed with each option and argument
1087 	 */
1088 	n = strlen(mod->mod_name) + strlen(cmd->cmd_name[0]) + 6;
1089 	elipses_len = strlen(MSG_ORIG(MSG_STR_ELIPSES));
1090 	if ((optarg = cmd->cmd_opt) != NULL)
1091 		while (optarg->oa_name != NULL) {
1092 			elfedit_next_optarg(&optarg, &item);
1093 			n += strlen(item.oai_name) + 5 + elipses_len;
1094 		}
1095 	if ((optarg = cmd->cmd_args) != NULL)
1096 		while (optarg->oa_name != NULL) {
1097 			elfedit_next_optarg(&optarg, &item);
1098 			n += strlen(item.oai_name) + 5 + elipses_len;
1099 		}
1100 	n++;			/* Null termination */
1101 
1102 	/*
1103 	 * If wrapping lines, we insert a newline and then wrap_str
1104 	 * every USAGE_WRAP_COL characters.
1105 	 */
1106 	if (wrap_str != NULL)
1107 		n += ((n + USAGE_WRAP_COL) / USAGE_WRAP_COL) *
1108 		    (strlen(wrap_str) + 1);
1109 
1110 	strbuf_ensure_size(&str, n);
1111 
1112 	/* Command name */
1113 	cur = str.buf;
1114 	n = str.n;
1115 	if (strcmp(mod->mod_name, MSG_ORIG(MSG_MOD_SYS)) == 0)
1116 		len = snprintf(cur, n, MSG_ORIG(MSG_FMT_SYSCMD),
1117 		    cmd->cmd_name[0]);
1118 	else
1119 		len = snprintf(cur, n, MSG_ORIG(MSG_FMT_MODCMD),
1120 		    mod->mod_name, cmd->cmd_name[0]);
1121 	cur += len;
1122 	n -= len;
1123 	cur_col += len;
1124 
1125 	if (cmd->cmd_opt != NULL)
1126 		usage_optarg(str.n, &cur, &n, &cur_col, cmd->cmd_opt,
1127 		    1, wrap_str);
1128 	if (cmd->cmd_args != NULL)
1129 		usage_optarg(str.n, &cur, &n, &cur_col, cmd->cmd_args,
1130 		    0, wrap_str);
1131 
1132 	return (str.buf);
1133 }
1134 
1135 /*
1136  * Wrapper on elfedit_msg() that issues an ELFEDIT_MSG_USAGE
1137  * error giving usage information for the command currently
1138  * referenced by state.cur_cmd.
1139  */
1140 void
1141 elfedit_command_usage(void)
1142 {
1143 	elfedit_msg(ELFEDIT_MSG_CMDUSAGE, MSG_INTL(MSG_USAGE_CMD),
1144 	    elfedit_format_command_usage(state.cur_cmd->ucmd_mod,
1145 	    state.cur_cmd->ucmd_cmd, NULL, 0));
1146 }
1147 
1148 
1149 /*
1150  * This function allows the loadable modules to get the command line
1151  * flags.
1152  */
1153 elfedit_flag_t
1154 elfedit_flags(void)
1155 {
1156 	return (state.flags);
1157 }
1158 
1159 /*
1160  * This function is used to register a per-command invocation output style
1161  * that will momentarily override the global output style for the duration
1162  * of the current command. This function must only be called by an
1163  * active command.
1164  *
1165  * entry:
1166  *	str - One of the valid strings for the output style
1167  */
1168 void
1169 elfedit_set_cmd_outstyle(const char *str)
1170 {
1171 	if ((state.cur_cmd != NULL) && (str != NULL)) {
1172 		if (elfedit_atooutstyle(str, &state.cur_cmd->ucmd_ostyle) == 0)
1173 			elfedit_msg(ELFEDIT_MSG_ERR,
1174 			    MSG_INTL(MSG_ERR_BADOSTYLE), str);
1175 		state.cur_cmd->ucmd_ostyle_set = 1;
1176 	}
1177 }
1178 
1179 /*
1180  * This function allows the loadable modules to get the output style.
1181  */
1182 elfedit_outstyle_t
1183 elfedit_outstyle(void)
1184 {
1185 	/*
1186 	 * If there is an active  per-command output style,
1187 	 * return it.
1188 	 */
1189 	if ((state.cur_cmd != NULL) && (state.cur_cmd->ucmd_ostyle_set))
1190 		return (state.cur_cmd->ucmd_ostyle);
1191 
1192 
1193 	return (state.outstyle);
1194 }
1195 
1196 /*
1197  * Return the command descriptor of the currently executing command.
1198  * For use only by the modules or code called by the modules.
1199  */
1200 elfeditGC_cmd_t *
1201 elfedit_curcmd(void)
1202 {
1203 	return (state.cur_cmd->ucmd_cmd);
1204 }
1205 
1206 /*
1207  * Build a dynamically allocated elfedit_obj_state_t struct that
1208  * contains a cache of the ELF file contents. This pre-chewed form
1209  * is fed to each command, reducing the amount of ELF boilerplate
1210  * code each command needs to contain.
1211  *
1212  * entry:
1213  *	file - Name of file to process
1214  *
1215  * exit:
1216  *	Fills state.elf with the necessary information for the open file.
1217  *
1218  * note: The resulting elfedit_obj_state_t is allocated from a single
1219  *	piece of memory, such that a single call to free() suffices
1220  *	to release it as well as any memory it references.
1221  */
1222 static void
1223 init_obj_state(const char *file)
1224 {
1225 	int	fd;
1226 	Elf	*elf;
1227 	int	open_flag;
1228 
1229 	/*
1230 	 * In readonly mode, we open the file readonly so that it is
1231 	 * impossible to modify the file by accident. This also allows
1232 	 * us to access readonly files, perhaps in a case where we don't
1233 	 * intend to change it.
1234 	 *
1235 	 * We always use ELF_C_RDWR with elf_begin(), even in a readonly
1236 	 * session. This allows us to modify the in-memory image, which
1237 	 * can be useful when examining a file, even though we don't intend
1238 	 * to modify the on-disk data. The file is not writable in
1239 	 * this case, and we don't call elf_update(), so it is safe to do so.
1240 	 */
1241 	open_flag = ((state.flags & ELFEDIT_F_READONLY) ? O_RDONLY : O_RDWR);
1242 	if ((fd = open(file, open_flag)) == -1) {
1243 		int err = errno;
1244 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTOPNFILE),
1245 		    file, strerror(err));
1246 	}
1247 	(void) elf_version(EV_CURRENT);
1248 	elf = elf_begin(fd, ELF_C_RDWR, NULL);
1249 	if (elf == NULL) {
1250 		(void) close(fd);
1251 		elfedit_elferr(file, MSG_ORIG(MSG_ELF_BEGIN));
1252 		/*NOTREACHED*/
1253 	}
1254 
1255 	/* We only handle standalone ELF files */
1256 	switch (elf_kind(elf)) {
1257 	case ELF_K_AR:
1258 		(void) close(fd);
1259 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_NOAR), file);
1260 		break;
1261 	case ELF_K_ELF:
1262 		break;
1263 	default:
1264 		(void) close(fd);
1265 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_UNRECELFFILE),
1266 		    file);
1267 		break;
1268 	}
1269 
1270 	/*
1271 	 * Tell libelf that we take responsibility for object layout.
1272 	 * Otherwise, it will compute "proper" values for layout and
1273 	 * alignment fields, and these values can overwrite the values
1274 	 * set in the elfedit session. We are modifying existing
1275 	 * objects --- the layout concerns have already been dealt
1276 	 * with when the object was built.
1277 	 */
1278 	(void) elf_flagelf(elf, ELF_C_SET, ELF_F_LAYOUT);
1279 
1280 	/* Fill in state.elf.obj_state */
1281 	state.elf.elfclass = gelf_getclass(elf);
1282 	switch (state.elf.elfclass) {
1283 	case ELFCLASS32:
1284 		elfedit32_init_obj_state(file, fd, elf);
1285 		break;
1286 	case ELFCLASS64:
1287 		elfedit64_init_obj_state(file, fd, elf);
1288 		break;
1289 	default:
1290 		(void) close(fd);
1291 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_BADELFCLASS),
1292 		    file);
1293 		break;
1294 	}
1295 }
1296 
1297 
1298 #ifdef DEBUG_MODULE_LIST
1299 /*
1300  * Debug routine. Dump the module list to stdout.
1301  */
1302 static void
1303 dbg_module_list(char *title)
1304 {
1305 	MODLIST_T *m;
1306 
1307 	printf("<MODULE LIST: %s>\n", title);
1308 	for (m = state.modlist; m != NULL; m = m->next) {
1309 		printf("Module: >%s<\n", m->mod->mod_name);
1310 		printf("    hdl:  %llx\n", m->dl_hdl);
1311 		printf("    path: >%s<\n", m->path ? m->path : "<builtin>");
1312 	}
1313 	printf("<END OF MODULE LIST>\n");
1314 }
1315 #endif
1316 
1317 
1318 /*
1319  * Search the module list for the named module.
1320  *
1321  * entry:
1322  *	name - Name of module to find
1323  *	insdef - Address of variable to receive address of predecessor
1324  *		node to the desired one.
1325  *
1326  * exit:
1327  *	If the module is it is found, this routine returns the pointer to
1328  *	its MODLIST_T structure. *insdef references the predecessor node, or
1329  *	is NULL if the found item is at the head of the list.
1330  *
1331  *	If the module is not found, NULL is returned. *insdef references
1332  *	the predecessor node of the position where an entry for this module
1333  *	would be placed, or NULL if it would go at the beginning.
1334  */
1335 static MODLIST_T *
1336 module_loaded(const char *name, MODLIST_T **insdef)
1337 {
1338 	MODLIST_T	*moddef;
1339 	int		cmp;
1340 
1341 	*insdef = NULL;
1342 	moddef = state.modlist;
1343 	if (moddef != NULL) {
1344 		cmp = strcasecmp(name, moddef->ml_mod->mod_name);
1345 		if (cmp == 0) {		/* Desired module is first in list */
1346 			return (moddef);
1347 		} else if (cmp > 0) {	/* cmp > 0: Insert in middle/end */
1348 			*insdef = moddef;
1349 			moddef = moddef->ml_next;
1350 			cmp = -1;
1351 			while (moddef && (cmp < 0)) {
1352 				cmp = strcasecmp(moddef->ml_mod->mod_name,
1353 				    name);
1354 				if (cmp == 0)
1355 					return (moddef);
1356 				if (cmp < 0) {
1357 					*insdef = moddef;
1358 					moddef = (*insdef)->ml_next;
1359 				}
1360 			}
1361 		}
1362 	}
1363 
1364 	return (NULL);
1365 }
1366 
1367 
1368 /*
1369  * Determine if a file is a sharable object based on its file path.
1370  * If path ends in a .so, followed optionally by a period and 1 or more
1371  * digits, we say that it is and return a pointer to the first character
1372  * of the suffix. Otherwise NULL is returned.
1373  */
1374 static const char *
1375 path_is_so(const char *path)
1376 {
1377 	int		dotso_len;
1378 	const char	*tail;
1379 	size_t		len;
1380 
1381 	len = strlen(path);
1382 	if (len == 0)
1383 		return (NULL);
1384 	tail = path + len;
1385 	if (isdigit(*(tail - 1))) {
1386 		while ((tail > path) && isdigit(*(tail - 1)))
1387 			tail--;
1388 		if ((tail <= path) || (*tail != '.'))
1389 			return (NULL);
1390 	}
1391 	dotso_len = strlen(MSG_ORIG(MSG_STR_DOTSO));
1392 	if ((tail - path) < dotso_len)
1393 		return (NULL);
1394 	tail -= dotso_len;
1395 	if (strncmp(tail, MSG_ORIG(MSG_STR_DOTSO), dotso_len) == 0)
1396 		return (tail);
1397 
1398 	return (NULL);
1399 }
1400 
1401 
1402 /*
1403  * Locate the start of the unsuffixed file name within path. Returns pointer
1404  * to first character of that name in path.
1405  *
1406  * entry:
1407  *	path - Path to be examined.
1408  *	tail - NULL, or pointer to position at tail of path from which
1409  *		the search for '/' characters should start. If NULL,
1410  *		strlen() is used to locate the end of the string.
1411  *	buf - NULL, or buffer to receive a copy of the characters that
1412  *		lie between the start of the filename and tail.
1413  *	bufsize - sizeof(buf)
1414  *
1415  * exit:
1416  *	The pointer to the first character of the unsuffixed file name
1417  *	within path is returned. If buf is non-NULL, the characters
1418  *	lying between that point and tail (or the end of path if tail
1419  *	is NULL) are copied into buf.
1420  */
1421 static const char *
1422 elfedit_basename(const char *path, const char *tail, char *buf, size_t bufsiz)
1423 {
1424 	const char 	*s;
1425 
1426 	if (tail == NULL)
1427 		tail = path + strlen(path);
1428 	s = tail;
1429 	while ((s > path) && (*(s - 1) != '/'))
1430 		s--;
1431 	if (buf != NULL)
1432 		elfedit_strnbcpy(buf, s, tail - s, bufsiz);
1433 	return (s);
1434 }
1435 
1436 
1437 /*
1438  * Issue an error on behalf of load_module(), taking care to release
1439  * resources that routine may have aquired:
1440  *
1441  * entry:
1442  *	moddef - NULL, or a module definition to be released via free()
1443  *	dl_hdl - NULL, or a handle to a sharable object to release via
1444  *		dlclose().
1445  *	dl_path - If dl_hdl is non-NULL, the path to the sharable object
1446  *		file that was loaded.
1447  *	format - A format string to pass to elfedit_msg(), containing
1448  *		no more than (3) %s format codes, and no other format codes.
1449  *	[s1-s4] - Strings to pass to elfedit_msg() to satisfy the four
1450  *		allowed %s codes in format. Should be set to NULL if the
1451  *		format string does not need them.
1452  *
1453  * note:
1454  *	This routine makes a copy of the s1-s4 strings before freeing any
1455  *	memory or unmapping the sharable library. It is therefore safe to
1456  *	use strings from moddef, or from the sharable library (which will
1457  *	be unmapped) to satisfy the other arguments s1-s4.
1458  */
1459 static void
1460 load_module_err(MODLIST_T *moddef, void *dl_hdl, const char *dl_path,
1461     const char *format, const char *s1, const char *s2, const char *s3,
1462     const char *s4)
1463 {
1464 #define	SCRBUFSIZE (PATH_MAX + 256)   /* A path, plus some extra */
1465 
1466 	char s1_buf[SCRBUFSIZE];
1467 	char s2_buf[SCRBUFSIZE];
1468 	char s3_buf[SCRBUFSIZE];
1469 	char s4_buf[SCRBUFSIZE];
1470 
1471 	/*
1472 	 * The caller may provide strings for s1-s3 that are from
1473 	 * moddef. If we free moddef, the printf() will die on access
1474 	 * to free memory. We could push back on the user and force
1475 	 * each call to carefully make copies of such data. However, this
1476 	 * is an easy case to miss. Furthermore, this is an error case,
1477 	 * and machine efficiency is not the main issue. We therefore make
1478 	 * copies of the s1-s3 strings here into auto variables, and then
1479 	 * use those copies. The user is freed from worrying about it.
1480 	 *
1481 	 * We use oversized stack based buffers instead of malloc() to
1482 	 * reduce the number of ways that things can go wrong while
1483 	 * reporting the error.
1484 	 */
1485 	if (s1 != NULL)
1486 		(void) strlcpy(s1_buf, s1, sizeof (s1_buf));
1487 	if (s2 != NULL)
1488 		(void) strlcpy(s2_buf, s2, sizeof (s2_buf));
1489 	if (s3 != NULL)
1490 		(void) strlcpy(s3_buf, s3, sizeof (s3_buf));
1491 	if (s4 != NULL)
1492 		(void) strlcpy(s4_buf, s4, sizeof (s4_buf));
1493 
1494 
1495 	if (moddef != NULL)
1496 		free(moddef);
1497 
1498 	if ((dl_hdl != NULL) && (dlclose(dl_hdl) != 0))
1499 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTDLCLOSE),
1500 		    dl_path, dlerror());
1501 
1502 	elfedit_msg(ELFEDIT_MSG_ERR, format, s1_buf, s2_buf, s3_buf, s4_buf);
1503 #undef	SCRBUFSIZE
1504 }
1505 
1506 
1507 /*
1508  * Load a module sharable object for load_module().
1509  *
1510  * entry:
1511  *	path - Path of file to open
1512  *	moddef - If this function issues a non-returning error, it will
1513  *		first return the memory referenced by moddef. This argument
1514  *		is not used otherwise.
1515  *	must_exist - If True, we consider it to be an error if the file given
1516  *		by path does not exist. If False, no error is issued
1517  *		and a NULL value is quietly returned.
1518  *
1519  * exit:
1520  *	Returns a handle to the loaded object on success, or NULL if no
1521  *	file was loaded.
1522  */
1523 static void *
1524 load_module_dlopen(const char *path, MODLIST_T *moddef, int must_exist)
1525 {
1526 	int	fd;
1527 	void	*hdl;
1528 
1529 	/*
1530 	 * If the file is not required to exist, and it doesn't, then
1531 	 * we want to quietly return without an error.
1532 	 */
1533 	if (!must_exist) {
1534 		fd = open(path, O_RDONLY);
1535 		if (fd >= 0) {
1536 			(void) close(fd);
1537 		} else if (errno == ENOENT) {
1538 			return (NULL);
1539 		}
1540 	}
1541 
1542 	if ((hdl = dlopen(path, RTLD_LAZY|RTLD_FIRST)) == NULL)
1543 		load_module_err(moddef, NULL, NULL,
1544 		    MSG_INTL(MSG_ERR_CNTDLOPEN), path, dlerror(), NULL, NULL);
1545 
1546 	return (hdl);
1547 }
1548 
1549 
1550 /*
1551  * Sanity check option arguments to prevent common errors. The rest of
1552  * elfedit assumes these tests have been done, and does not check
1553  * again.
1554  */
1555 static void
1556 validate_optarg(elfedit_cmd_optarg_t *optarg, int isopt, MODLIST_T *moddef,
1557     const char *mod_name, const char *cmd_name,
1558     void *dl_hdl, const char *dl_path)
1559 {
1560 #define	FAIL(_msg) errmsg = _msg; goto fail
1561 
1562 	Msg errmsg;
1563 	elfedit_cmd_oa_mask_t	optmask = 0;
1564 
1565 	for (; optarg->oa_name != NULL; optarg++) {
1566 		/*
1567 		 * If ELFEDIT_CMDOA_F_INHERIT is set:
1568 		 *	- oa_name must be a value in the range of
1569 		 *		known ELFEDIT_STDOA_ values.
1570 		 *	- oa_help must be NULL
1571 		 *	- ELFEDIT_CMDOA_F_INHERIT must be the only flag set
1572 		 */
1573 		if (optarg->oa_flags & ELFEDIT_CMDOA_F_INHERIT) {
1574 			if ((((uintptr_t)optarg->oa_name) >
1575 			    ELFEDIT_NUM_STDOA) ||
1576 			    (optarg->oa_help != 0) ||
1577 			    (optarg->oa_flags != ELFEDIT_CMDOA_F_INHERIT))
1578 				/*
1579 				 * Can't use FAIL --- oa_name is not a valid
1580 				 * string, and load_module_err() looks at args.
1581 				 */
1582 				load_module_err(moddef, dl_hdl, dl_path,
1583 				    MSG_INTL(MSG_ERR_BADSTDOA), dl_path,
1584 				    mod_name, cmd_name, NULL);
1585 			continue;
1586 		}
1587 
1588 		if (isopt) {
1589 			/*
1590 			 * Option name must start with a '-', and must
1591 			 * have at one following character.
1592 			 */
1593 			if (optarg->oa_name[0] != '-') {
1594 				/* MSG_INTL(MSG_ERR_OPT_MODPRE) */
1595 				FAIL(MSG_ERR_OPT_MODPRE);
1596 			}
1597 			if (optarg->oa_name[1] == '\0') {
1598 				/* MSG_INTL(MSG_ERR_OPT_MODLEN) */
1599 				FAIL(MSG_ERR_OPT_MODLEN);
1600 			}
1601 
1602 			/*
1603 			 * oa_idmask must be 0, or it must have a single
1604 			 * bit set (a power of 2).oa_excmask must be 0
1605 			 * if oa_idmask is 0
1606 			 */
1607 			if (optarg->oa_idmask == 0) {
1608 				if (optarg->oa_excmask != 0) {
1609 					/* MSG_INTL(MSG_ERR_OPT_EXCMASKN0) */
1610 					FAIL(MSG_ERR_OPT_EXCMASKN0);
1611 				}
1612 			} else {
1613 				if (elfedit_bits_set(optarg->oa_idmask,
1614 				    sizeof (optarg->oa_idmask)) != 1) {
1615 					/* MSG_INTL(MSG_ERR_OPT_IDMASKPOW2) */
1616 					FAIL(MSG_ERR_OPT_IDMASKPOW2);
1617 				}
1618 
1619 				/* Non-zero idmask must be unique */
1620 				if ((optarg->oa_idmask & optmask) != 0) {
1621 					/* MSG_INTL(MSG_ERR_OPT_IDMASKUNIQ) */
1622 					FAIL(MSG_ERR_OPT_IDMASKUNIQ);
1623 				}
1624 
1625 				/* Add this one to the overall mask */
1626 				optmask |= optarg->oa_idmask;
1627 			}
1628 		} else {
1629 			/*
1630 			 * Argument name cannot start with a'-', and must
1631 			 * not be a null string.
1632 			 */
1633 			if (optarg->oa_name[0] == '-') {
1634 				/* MSG_INTL(MSG_ERR_ARG_MODPRE) */
1635 				FAIL(MSG_ERR_ARG_MODPRE);
1636 			}
1637 			if (optarg->oa_name[1] == '\0') {
1638 				/* MSG_INTL(MSG_ERR_ARG_MODLEN) */
1639 				FAIL(MSG_ERR_ARG_MODLEN);
1640 			}
1641 
1642 
1643 			/* oa_idmask and oa_excmask must both be 0 */
1644 			if ((optarg->oa_idmask != 0) ||
1645 			    (optarg->oa_excmask != 0)) {
1646 				/* MSG_INTL(MSG_ERR_ARG_MASKNOT0) */
1647 				FAIL(MSG_ERR_ARG_MASKNOT0);
1648 			}
1649 
1650 		}
1651 
1652 		/*
1653 		 * If it takes a value, make sure that we are
1654 		 * processing options, because CMDOA_F_VALUE is not
1655 		 * allowed for plain arguments. Then check the following
1656 		 * item in the list:
1657 		 *	- There must be a following item.
1658 		 *	- oa_name must be non-NULL. This is the only field
1659 		 *		that is used by elfedit.
1660 		 *	- oa_help, oa_flags, oa_idmask, and oa_excmask
1661 		 *		must be 0.
1662 		 */
1663 		if (optarg->oa_flags & ELFEDIT_CMDOA_F_VALUE) {
1664 			elfedit_cmd_optarg_t *oa1 = optarg + 1;
1665 
1666 			if (!isopt) {
1667 				/* MSG_INTL(MSG_ERR_ARG_CMDOA_VAL) */
1668 				FAIL(MSG_ERR_ARG_CMDOA_VAL);
1669 			}
1670 
1671 			if ((optarg + 1)->oa_name == NULL) {
1672 				/* MSG_INTL(MSG_ERR_BADMODOPTVAL) */
1673 				FAIL(MSG_ERR_BADMODOPTVAL);
1674 			}
1675 
1676 			if (oa1->oa_name == NULL) {
1677 				/* MSG_INTL(MSG_ERR_CMDOA_VALNAM) */
1678 				FAIL(MSG_ERR_CMDOA_VALNAM);
1679 			}
1680 			if ((oa1->oa_help != NULL) || (oa1->oa_flags != 0) ||
1681 			    (oa1->oa_idmask != 0) || (oa1->oa_excmask != 0)) {
1682 				/* MSG_INTL(MSG_ERR_CMDOA_VALNOT0) */
1683 				FAIL(MSG_ERR_CMDOA_VALNOT0);
1684 			}
1685 			optarg++;
1686 		}
1687 	}
1688 
1689 
1690 	return;
1691 
1692 fail:
1693 	load_module_err(moddef, dl_hdl, dl_path, MSG_INTL(errmsg),
1694 	    dl_path, mod_name, cmd_name, optarg->oa_name);
1695 }
1696 
1697 /*
1698  * Look up the specified module, loading the module if necessary,
1699  * and return its definition, or NULL on failure.
1700  *
1701  * entry:
1702  *	name - Name of module to load. If name contains a '/' character or has
1703  *		a ".so" suffix, then it is taken to be an absolute file path,
1704  *		and is used directly as is. If name does not contain a '/'
1705  *		character, then we look for it against the locations in
1706  *		the module path, addint the '.so' suffix, and taking the first
1707  *		one we find.
1708  *	must_exist - If True, we consider it to be an error if we are unable
1709  *		to locate a file to load and the module does not already exist.
1710  *		If False, NULL is returned quietly in this case.
1711  *	allow_abs - True if absolute paths are allowed. False to disallow
1712  *		them.
1713  *
1714  * note:
1715  *	If the path is absolute, then we load the file and take the module
1716  *	name from the data returned by its elfedit_init() function. If a
1717  *	module of that name is already loaded, it is unloaded and replaced
1718  *	with the new one.
1719  *
1720  *	If the path is non absolute, then we check to see if the module has
1721  *	already been loaded, and if so, we return that module definition.
1722  *	In this case, nothing new is loaded. If the module has not been loaded,
1723  *	we search the path for it and load it. If the module name provided
1724  *	by the elfedit_init() function does not match the name of the file,
1725  *	an error results.
1726  */
1727 elfeditGC_module_t *
1728 elfedit_load_module(const char *name, int must_exist, int allow_abs)
1729 {
1730 	elfedit_init_func_t	*init_func;
1731 	elfeditGC_module_t	*mod;
1732 	MODLIST_T		*moddef, *insdef;
1733 	const char		*path;
1734 	char			path_buf[PATH_MAX + 1];
1735 	void			*hdl;
1736 	size_t			i;
1737 	int			is_abs_path;
1738 	elfeditGC_cmd_t		*cmd;
1739 
1740 	/*
1741 	 * If the name includes a .so suffix, or has any '/' characters,
1742 	 * then it is an absolute path that we use as is to load the named
1743 	 * file. Otherwise, we iterate over the path, adding the .so suffix
1744 	 * and load the first file that matches.
1745 	 */
1746 	is_abs_path = (path_is_so(name) != NULL) ||
1747 	    (name != elfedit_basename(name, NULL, NULL, 0));
1748 
1749 	if (is_abs_path && !allow_abs)
1750 		load_module_err(NULL, NULL, NULL,
1751 		    MSG_INTL(MSG_ERR_UNRECMOD), name, NULL, NULL, NULL);
1752 
1753 	/*
1754 	 * If this is a non-absolute path, search for the module already
1755 	 * having been loaded, and return it if so.
1756 	 */
1757 	if (!is_abs_path) {
1758 		moddef = module_loaded(name, &insdef);
1759 		if (moddef != NULL)
1760 			return (moddef->ml_mod);
1761 		/*
1762 		 * As a result of module_loaded(), insdef now contains the
1763 		 * immediate predecessor node for the new one, or NULL if
1764 		 * it goes at the front. In the absolute-path case, we take
1765 		 * care of this below, after the sharable object is loaded.
1766 		 */
1767 	}
1768 
1769 	/*
1770 	 * malloc() a module definition block before trying to dlopen().
1771 	 * Doing things in the other order can cause the dlopen()'d object
1772 	 * to leak: If elfedit_malloc() fails, it can cause a jump to the
1773 	 * outer command loop without returning to the caller. Hence,
1774 	 * there will be no opportunity to clean up. Allocaing the module
1775 	 * first allows us to free it if necessary.
1776 	 */
1777 	moddef = elfedit_malloc(MSG_INTL(MSG_ALLOC_MODDEF),
1778 	    sizeof (*moddef) + PATH_MAX + 1);
1779 	moddef->ml_path = ((char *)moddef) + sizeof (*moddef);
1780 
1781 	if (is_abs_path) {
1782 		path = name;
1783 		hdl = load_module_dlopen(name, moddef, must_exist);
1784 	} else {
1785 		hdl = NULL;
1786 		path = path_buf;
1787 		for (i = 0; i < state.modpath.n; i++) {
1788 			if (snprintf(path_buf, sizeof (path_buf),
1789 			    MSG_ORIG(MSG_FMT_BLDSOPATH), state.modpath.seg[i],
1790 			    name) > sizeof (path_buf))
1791 				load_module_err(moddef, NULL, NULL,
1792 				    MSG_INTL(MSG_ERR_PATHTOOLONG),
1793 				    state.modpath.seg[i], name, NULL, NULL);
1794 			hdl = load_module_dlopen(path, moddef, 0);
1795 		}
1796 		if (must_exist && (hdl == NULL))
1797 			load_module_err(moddef, NULL, NULL,
1798 			    MSG_INTL(MSG_ERR_UNRECMOD), name, NULL, NULL, NULL);
1799 	}
1800 
1801 	if (hdl == NULL) {
1802 		free(moddef);
1803 		return (NULL);
1804 	}
1805 
1806 	if (state.elf.elfclass == ELFCLASS32) {
1807 		init_func = (elfedit_init_func_t *)
1808 		    dlsym(hdl, MSG_ORIG(MSG_STR_ELFEDITINIT32));
1809 	} else {
1810 		init_func = (elfedit_init_func_t *)
1811 		    dlsym(hdl, MSG_ORIG(MSG_STR_ELFEDITINIT64));
1812 	}
1813 	if (init_func == NULL)
1814 		load_module_err(moddef, hdl, path,
1815 		    MSG_INTL(MSG_ERR_SONOTMOD), path, NULL, NULL, NULL);
1816 
1817 	/*
1818 	 * Note that the init function will be passing us an
1819 	 * elfedit[32|64]_module_t pointer, which we cast to the
1820 	 * generic module pointer type in order to be able to manage
1821 	 * either type with one set of code.
1822 	 */
1823 	if (!(mod = (elfeditGC_module_t *)(* init_func)(ELFEDIT_VER_CURRENT)))
1824 		load_module_err(moddef, hdl, path,
1825 		    MSG_INTL(MSG_ERR_BADMODLOAD), path, NULL, NULL, NULL);
1826 
1827 	/*
1828 	 * Enforce some rules, to help module developers:
1829 	 *	- The primary name of a command must not be
1830 	 *		the empty string ("").
1831 	 *	- Options must start with a '-' followed by at least
1832 	 *		one character.
1833 	 *	- Arguments and options must be well formed.
1834 	 */
1835 	for (cmd = mod->mod_cmds; cmd->cmd_func != NULL; cmd++) {
1836 		if (**cmd->cmd_name == '\0')
1837 			load_module_err(moddef, hdl, path,
1838 			    MSG_INTL(MSG_ERR_NULLPRICMDNAM), mod->mod_name,
1839 			    NULL, NULL, NULL);
1840 
1841 		if (cmd->cmd_args != NULL)
1842 			validate_optarg(cmd->cmd_args, 0, moddef, mod->mod_name,
1843 			    cmd->cmd_name[0], hdl, path);
1844 		if (cmd->cmd_opt != NULL)
1845 			validate_optarg(cmd->cmd_opt, 1, moddef, mod->mod_name,
1846 			    cmd->cmd_name[0], hdl, path);
1847 	}
1848 
1849 	/*
1850 	 * Check the name the module provides. How we handle this depends
1851 	 * on whether the path is absolute or the result of a path search.
1852 	 */
1853 	if (is_abs_path) {
1854 		MODLIST_T *old_moddef = module_loaded(mod->mod_name, &insdef);
1855 
1856 		if (old_moddef != NULL) {	/* Replace existing */
1857 			free(moddef);		/* Rare case: Don't need it */
1858 			/*
1859 			 * Be sure we don't unload builtin modules!
1860 			 * These have a NULL dl_hdl field.
1861 			 */
1862 			if (old_moddef->ml_dl_hdl == NULL)
1863 				load_module_err(NULL, hdl, path,
1864 				    MSG_INTL(MSG_ERR_CNTULSMOD),
1865 				    old_moddef->ml_mod->mod_name, NULL,
1866 				    NULL, NULL);
1867 
1868 			/* Unload existing */
1869 			if (dlclose(old_moddef->ml_dl_hdl) != 0)
1870 				elfedit_msg(ELFEDIT_MSG_ERR,
1871 				    MSG_INTL(MSG_ERR_CNTDLCLOSE),
1872 				    old_moddef->ml_path, dlerror());
1873 			elfedit_msg(ELFEDIT_MSG_DEBUG,
1874 			    MSG_INTL(MSG_DEBUG_MODUNLOAD),
1875 			    old_moddef->ml_mod->mod_name, old_moddef->ml_path);
1876 			old_moddef->ml_mod = mod;
1877 			old_moddef->ml_dl_hdl = hdl;
1878 			(void) strlcpy((char *)old_moddef->ml_path, path,
1879 			    PATH_MAX + 1);
1880 			elfedit_msg(ELFEDIT_MSG_DEBUG,
1881 			    MSG_INTL(MSG_DEBUG_MODLOAD),
1882 			    old_moddef->ml_mod->mod_name, path);
1883 			return (old_moddef->ml_mod);
1884 		}
1885 		/*
1886 		 * insdef now contains the insertion point for the absolute
1887 		 * path case.
1888 		 */
1889 	} else {
1890 		/* If the names don't match, then error */
1891 		if (strcasecmp(name, mod->mod_name) != 0)
1892 			load_module_err(moddef, hdl, path,
1893 			    MSG_INTL(MSG_ERR_BADMODNAME),
1894 			    mod->mod_name, name, path, NULL);
1895 	}
1896 
1897 	/*
1898 	 * Link module into the module list. If insdef is NULL,
1899 	 * it goes at the head. If insdef is non-NULL, it goes immediately
1900 	 * after
1901 	 */
1902 	if (insdef == NULL) {
1903 		moddef->ml_next = state.modlist;
1904 		state.modlist = moddef;
1905 	} else {
1906 		moddef->ml_next = insdef->ml_next;
1907 		insdef->ml_next = moddef;
1908 	}
1909 	moddef->ml_mod = mod;
1910 	moddef->ml_dl_hdl = hdl;
1911 	(void) strlcpy((char *)moddef->ml_path, path, PATH_MAX + 1);
1912 
1913 	elfedit_msg(ELFEDIT_MSG_DEBUG, MSG_INTL(MSG_DEBUG_MODLOAD),
1914 	    moddef->ml_mod->mod_name, path);
1915 
1916 	return (moddef->ml_mod);
1917 }
1918 
1919 
1920 /*
1921  * Unload the specified module
1922  */
1923 void
1924 elfedit_unload_module(const char *name)
1925 {
1926 	MODLIST_T	*moddef, *insdef;
1927 
1928 	moddef = module_loaded(name, &insdef);
1929 	if (moddef == NULL)
1930 		return;
1931 
1932 	/* Built in modules cannot be unloaded. They have a NULL dl_hdl field */
1933 	if (moddef->ml_dl_hdl == NULL)
1934 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTULSMOD),
1935 		    moddef->ml_mod->mod_name);
1936 
1937 	/*
1938 	 * When we unload it, the name string goes with it. So
1939 	 * announce it while we still can without having to make a copy.
1940 	 */
1941 	elfedit_msg(ELFEDIT_MSG_DEBUG, MSG_INTL(MSG_DEBUG_MODUNLOAD),
1942 	    moddef->ml_mod->mod_name, moddef->ml_path);
1943 
1944 	/*
1945 	 * Close it before going further. On failure, we'll jump, and the
1946 	 * record will remain in the module list. On success,
1947 	 * we'll retain control, and can safely remove it.
1948 	 */
1949 	if (dlclose(moddef->ml_dl_hdl) != 0)
1950 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTDLCLOSE),
1951 		    moddef->ml_path, dlerror());
1952 
1953 	/* Unlink the record from the module list */
1954 	if (insdef == NULL)
1955 		state.modlist = moddef->ml_next;
1956 	else
1957 		insdef->ml_next = moddef->ml_next;
1958 
1959 	/* Release the memory */
1960 	free(moddef);
1961 }
1962 
1963 
1964 /*
1965  * Load all sharable objects found in the specified directory.
1966  *
1967  * entry:
1968  *	dirpath - Path of directory to process.
1969  *	must_exist - If True, it is an error if diropen() fails to open
1970  *		the given directory. Of False, we quietly ignore it and return.
1971  *	abs_path - If True, files are loaded using their literal paths.
1972  *		If False, their module name is extracted from the dirpath
1973  *		and a path based search is used to locate it.
1974  */
1975 void
1976 elfedit_load_moddir(const char *dirpath, int must_exist, int abs_path)
1977 {
1978 	char		path[PATH_MAX + 1];
1979 	DIR		*dir;
1980 	struct dirent	*dp;
1981 	const char 	*tail;
1982 
1983 	dir = opendir(dirpath);
1984 	if (dir == NULL) {
1985 		int err = errno;
1986 
1987 		if (!must_exist && (err == ENOENT))
1988 			return;
1989 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTOPNDIR),
1990 		    dirpath, strerror(err));
1991 		/*NOTREACHED*/
1992 	}
1993 
1994 	while (dp = readdir(dir)) {
1995 		if ((tail = path_is_so(dp->d_name)) != NULL) {
1996 			if (abs_path) {
1997 				(void) snprintf(path, sizeof (path),
1998 				    MSG_ORIG(MSG_FMT_BLDPATH), dirpath,
1999 				    dp->d_name);
2000 			} else {
2001 				(void) elfedit_basename(dp->d_name, tail,
2002 				    path, sizeof (path));
2003 			}
2004 			(void) elfedit_load_module(path, must_exist, 1);
2005 		}
2006 	}
2007 	(void) closedir(dir);
2008 }
2009 
2010 
2011 /*
2012  * Follow the module load path, and load the first module found for each
2013  * given name.
2014  */
2015 void
2016 elfedit_load_modpath(void)
2017 {
2018 	size_t		i;
2019 
2020 	for (i = 0; i < state.modpath.n; i++)
2021 		elfedit_load_moddir(state.modpath.seg[i], 0, 0);
2022 }
2023 
2024 /*
2025  * Given a module definition, look for the specified command.
2026  * Returns the command if found, and NULL otherwise.
2027  */
2028 static elfeditGC_cmd_t *
2029 find_cmd(elfeditGC_module_t *mod, const char *name)
2030 {
2031 	elfeditGC_cmd_t *cmd;
2032 	const char **cmd_name;
2033 
2034 	for (cmd = mod->mod_cmds; cmd->cmd_func != NULL; cmd++)
2035 		for (cmd_name = cmd->cmd_name; *cmd_name; cmd_name++)
2036 			if (strcasecmp(name, *cmd_name) == 0) {
2037 				if (cmd_name != cmd->cmd_name)
2038 					elfedit_msg(ELFEDIT_MSG_DEBUG,
2039 					    MSG_INTL(MSG_DEBUG_CMDALIAS),
2040 					    mod->mod_name, *cmd_name,
2041 					    mod->mod_name, *cmd->cmd_name);
2042 				return (cmd);
2043 			}
2044 
2045 	return (NULL);
2046 }
2047 
2048 
2049 /*
2050  * Given a command name, return its command definition.
2051  *
2052  * entry:
2053  *	name - Command to be looked up
2054  *	must_exist - If True, we consider it to be an error if the command
2055  *		does not exist. If False, NULL is returned quietly in
2056  *		this case.
2057  *	mod_ret - NULL, or address of a variable to receive the
2058  *		module definition block of the module containing
2059  *		the command.
2060  *
2061  * exit:
2062  *	On success, returns a pointer to the command definition, and
2063  *	if mod_ret is non-NULL, *mod_ret receives a pointer to the
2064  *	module definition. On failure, must_exist determines the
2065  *	action taken: If must_exist is True, an error is issued and
2066  *	control does not return to the caller. If must_exist is False,
2067  *	NULL is quietly returned.
2068  *
2069  * note:
2070  *	A ':' in name is used to delimit the module and command names.
2071  *	If it is omitted, or if it is the first non-whitespace character
2072  *	in the name, then the built in sys: module is implied.
2073  */
2074 elfeditGC_cmd_t *
2075 elfedit_find_command(const char *name, int must_exist,
2076     elfeditGC_module_t **mod_ret)
2077 {
2078 	elfeditGC_module_t	*mod;
2079 	const char		*mod_str;
2080 	const char		*cmd_str;
2081 	char			mod_buf[ELFEDIT_MAXMODNAM + 1];
2082 	size_t			n;
2083 	elfeditGC_cmd_t		*cmd;
2084 
2085 
2086 	cmd_str = strstr(name, MSG_ORIG(MSG_STR_COLON));
2087 	if (cmd_str == NULL) {		/* No module name -> sys: */
2088 		mod_str = MSG_ORIG(MSG_MOD_SYS);
2089 		cmd_str = name;
2090 	} else if (cmd_str == name) {	/* Empty module name -> sys: */
2091 		mod_str = MSG_ORIG(MSG_MOD_SYS);
2092 		cmd_str++;		/* Skip the colon */
2093 	} else {			/* Have both module and command */
2094 		n = cmd_str - name;
2095 		if (n >= sizeof (mod_buf)) {
2096 			if (must_exist)
2097 				elfedit_msg(ELFEDIT_MSG_ERR,
2098 				    MSG_INTL(MSG_ERR_MODNAMTOOLONG), name);
2099 			return (NULL);
2100 		}
2101 		(void) strlcpy(mod_buf, name, n + 1);
2102 		mod_str = mod_buf;
2103 		cmd_str++;
2104 	}
2105 
2106 	/* Lookup/load module. Won't return on error */
2107 	mod = elfedit_load_module(mod_str, must_exist, 0);
2108 	if (mod == NULL)
2109 		return (NULL);
2110 
2111 	/* Locate the command */
2112 	cmd = find_cmd(mod, cmd_str);
2113 	if (cmd == NULL) {
2114 		if (must_exist) {
2115 			/*
2116 			 * Catch empty command in order to provide
2117 			 * a better error message.
2118 			 */
2119 			if (*cmd_str == '\0') {
2120 				elfedit_msg(ELFEDIT_MSG_ERR,
2121 				    MSG_INTL(MSG_ERR_MODNOCMD), mod_str);
2122 			} else {
2123 				elfedit_msg(ELFEDIT_MSG_ERR,
2124 				    MSG_INTL(MSG_ERR_UNRECCMD),
2125 				    mod_str, cmd_str);
2126 			}
2127 		}
2128 	} else {
2129 		if (mod_ret != NULL)
2130 			*mod_ret = mod;
2131 	}
2132 	return (cmd);
2133 }
2134 
2135 
2136 /*
2137  * Release all user command blocks found on state.ucmd
2138  */
2139 static void
2140 free_user_cmds(void)
2141 {
2142 	USER_CMD_T *next;
2143 
2144 	while (state.ucmd.list) {
2145 		next = state.ucmd.list->ucmd_next;
2146 		free(state.ucmd.list);
2147 		state.ucmd.list = next;
2148 	}
2149 	state.ucmd.tail = NULL;
2150 	state.ucmd.n = 0;
2151 	state.cur_cmd = NULL;
2152 }
2153 
2154 
2155 /*
2156  * Process all user command blocks found on state.ucmd, and then
2157  * remove them from the list.
2158  */
2159 static void
2160 dispatch_user_cmds()
2161 {
2162 	USER_CMD_T		*ucmd;
2163 	elfedit_cmdret_t	cmd_ret;
2164 
2165 	ucmd = state.ucmd.list;
2166 	if (ucmd) {
2167 		/* Do them, in order */
2168 		for (; ucmd; ucmd = ucmd->ucmd_next) {
2169 			state.cur_cmd = ucmd;
2170 			if (!state.msg_jbuf.active)
2171 				elfedit_msg(ELFEDIT_MSG_DEBUG,
2172 				    MSG_INTL(MSG_DEBUG_EXECCMD),
2173 				    ucmd->ucmd_orig_str);
2174 			/*
2175 			 * The cmd_func field is the generic definition.
2176 			 * We need to cast it to the type that matches
2177 			 * the proper ELFCLASS before calling it.
2178 			 */
2179 			if (state.elf.elfclass == ELFCLASS32) {
2180 				elfedit32_cmd_func_t *cmd_func =
2181 				    (elfedit32_cmd_func_t *)
2182 				    ucmd->ucmd_cmd->cmd_func;
2183 
2184 				cmd_ret = (* cmd_func)(state.elf.obj_state.s32,
2185 				    ucmd->ucmd_argc, ucmd->ucmd_argv);
2186 			} else {
2187 				elfedit64_cmd_func_t *cmd_func =
2188 				    (elfedit64_cmd_func_t *)
2189 				    ucmd->ucmd_cmd->cmd_func;
2190 
2191 				cmd_ret = (* cmd_func)(state.elf.obj_state.s64,
2192 				    ucmd->ucmd_argc, ucmd->ucmd_argv);
2193 			}
2194 			state.cur_cmd = NULL;
2195 			/* If a pager was started, wrap it up */
2196 			elfedit_pager_cleanup();
2197 
2198 			switch (cmd_ret) {
2199 			case ELFEDIT_CMDRET_MOD:
2200 				/*
2201 				 * Command modified the output ELF image,
2202 				 * mark the file as needing a flush to disk.
2203 				 */
2204 				state.file.dirty = 1;
2205 				break;
2206 			case ELFEDIT_CMDRET_FLUSH:
2207 				/*
2208 				 * Command flushed the output file,
2209 				 * clear the dirty bit.
2210 				 */
2211 				state.file.dirty = 0;
2212 			}
2213 		}
2214 		free_user_cmds();
2215 	}
2216 }
2217 
2218 
2219 /*
2220  * Given the pointer to the character following a '\' character in
2221  * a C style literal, return the ASCII character code it represents,
2222  * and advance the string pointer to the character following the last
2223  * character in the escape sequence.
2224  *
2225  * entry:
2226  *	str - Address of string pointer to first character following
2227  *		the backslash.
2228  *
2229  * exit:
2230  *	If the character is not valid, an error is thrown and this routine
2231  *	does not return to its caller. Otherwise, it returns the ASCII
2232  *	code for the translated character, and *str has been advanced.
2233  */
2234 static int
2235 translate_c_esc(char **str)
2236 {
2237 	char *s = *str;
2238 	int	ch;
2239 	int	i;
2240 
2241 	ch = *s++;
2242 	switch (ch) {
2243 	case 'a':
2244 		ch = '\a';
2245 		break;
2246 	case 'b':
2247 		ch = '\b';
2248 		break;
2249 	case 'f':
2250 		ch = '\f';
2251 		break;
2252 	case 'n':
2253 		ch = '\n';
2254 		break;
2255 	case 'r':
2256 		ch = '\r';
2257 		break;
2258 	case 't':
2259 		ch = '\t';
2260 		break;
2261 	case 'v':
2262 		ch = '\v';
2263 		break;
2264 
2265 	case '0':
2266 	case '1':
2267 	case '2':
2268 	case '3':
2269 	case '4':
2270 	case '5':
2271 	case '6':
2272 	case '7':
2273 		/* Octal constant: There can be up to 3 digits */
2274 		ch -= '0';
2275 		for (i = 0; i < 2; i++) {
2276 			if ((*s < '0') || (*s > '7'))
2277 				break;
2278 			ch = (ch << 3) + (*s++ - '0');
2279 		}
2280 		break;
2281 
2282 	/*
2283 	 * There are some cases where ch already has the desired value.
2284 	 * These cases exist simply to remove the special meaning that
2285 	 * character would otherwise have. We need to match them to
2286 	 * prevent them from falling into the default error case.
2287 	 */
2288 	case '\\':
2289 	case '\'':
2290 	case '"':
2291 		break;
2292 
2293 	default:
2294 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_BADCESC), ch);
2295 		break;
2296 	}
2297 
2298 	*str = s;
2299 	return (ch);
2300 }
2301 
2302 
2303 /*
2304  * Prepare a GETTOK_STATE struct for gettok().
2305  *
2306  * entry:
2307  *	gettok_state - gettok state block to use
2308  *	str - Writable buffer to tokenize. Note that gettok()
2309  *		is allowed to change the contents of this buffer.
2310  *	inc_null_final - If the line ends in whitespace instead of
2311  *		immediately hitting a NULL, and inc_null_final is TRUE,
2312  *		then a null final token is generated. Otherwise trailing
2313  *		whitespace is ignored.
2314  */
2315 static void
2316 gettok_init(GETTOK_STATE *gettok_state, char *buf, int inc_null_final)
2317 {
2318 	gettok_state->gtok_buf = gettok_state->gtok_cur_buf = buf;
2319 	gettok_state->gtok_inc_null_final = inc_null_final;
2320 	gettok_state->gtok_null_seen = 0;
2321 }
2322 
2323 
2324 /*
2325  * Locate the next token from the buffer.
2326  *
2327  * entry:
2328  *	gettok_state - State of gettok() operation. Initialized
2329  *		by gettok_init(), and passed to gettok().
2330  *
2331  * exit:
2332  *	If a token is found, gettok_state->gtok_last_token is filled in
2333  *	with the details and True (1) is returned. If no token is found,
2334  *	False (1) is returned, and the contents of
2335  *	gettok_state->gtok_last_token are undefined.
2336  *
2337  * note:
2338  *	- The token returned references the memory in gettok_state->gtok_buf.
2339  *		The caller should not modify the buffer until all such
2340  *		pointers have been discarded.
2341  *	- This routine will modify the contents of gettok_state->gtok_buf
2342  *		as necessary to remove quotes and eliminate escape
2343  *		(\)characters.
2344  */
2345 static int
2346 gettok(GETTOK_STATE *gettok_state)
2347 {
2348 	char	*str = gettok_state->gtok_cur_buf;
2349 	char	*look;
2350 	int	quote_ch = '\0';
2351 
2352 	/* Skip leading whitespace */
2353 	while (isspace(*str))
2354 		str++;
2355 
2356 	if (*str == '\0') {
2357 		/*
2358 		 * If user requested it, and there was whitespace at the
2359 		 * end, then generate one last null token.
2360 		 */
2361 		if (gettok_state->gtok_inc_null_final &&
2362 		    !gettok_state->gtok_null_seen) {
2363 			gettok_state->gtok_inc_null_final = 0;
2364 			gettok_state->gtok_null_seen = 1;
2365 			gettok_state->gtok_last_token.tok_str = str;
2366 			gettok_state->gtok_last_token.tok_len = 0;
2367 			gettok_state->gtok_last_token.tok_line_off =
2368 			    str - gettok_state->gtok_buf;
2369 			return (1);
2370 		}
2371 		gettok_state->gtok_null_seen = 1;
2372 		return (0);
2373 	}
2374 
2375 	/*
2376 	 * Read token: The standard delimiter is whitespace, but
2377 	 * we honor either single or double quotes. Also, we honor
2378 	 * backslash escapes.
2379 	 */
2380 	gettok_state->gtok_last_token.tok_str = look = str;
2381 	gettok_state->gtok_last_token.tok_line_off =
2382 	    look - gettok_state->gtok_buf;
2383 	for (; *look; look++) {
2384 		if (*look == quote_ch) {	/* Terminates active quote */
2385 			quote_ch = '\0';
2386 			continue;
2387 		}
2388 
2389 		if (quote_ch == '\0') {		/* No quote currently active */
2390 			if ((*look == '\'') || (*look == '"')) {
2391 				quote_ch = *look;	/* New active quote */
2392 				continue;
2393 			}
2394 			if (isspace(*look))
2395 				break;
2396 		}
2397 
2398 		/*
2399 		 * The semantics of the backslash character depends on
2400 		 * the quote style in use:
2401 		 *	- Within single quotes, backslash is not
2402 		 *		an escape character, and is taken literally.
2403 		 *	- If outside of quotes, the backslash is an escape
2404 		 *		character. The backslash is ignored and the
2405 		 *		following character is taken literally, losing
2406 		 *		any special properties it normally has.
2407 		 *	- Within double quotes, backslash works like a
2408 		 *		backslash escape within a C literal. Certain
2409 		 *		escapes are recognized and replaced with their
2410 		 *		special character. Any others are an error.
2411 		 */
2412 		if (*look == '\\') {
2413 			if (quote_ch == '\'') {
2414 				*str++ = *look;
2415 				continue;
2416 			}
2417 
2418 			look++;
2419 			if (*look == '\0') {	/* Esc applied to NULL term? */
2420 				elfedit_msg(ELFEDIT_MSG_ERR,
2421 				    MSG_INTL(MSG_ERR_ESCEOL));
2422 				/*NOTREACHED*/
2423 			}
2424 
2425 			if (quote_ch == '"') {
2426 				*str++ = translate_c_esc(&look);
2427 				look--;		/* for() will advance by 1 */
2428 				continue;
2429 			}
2430 		}
2431 
2432 		if (look != str)
2433 			*str = *look;
2434 		str++;
2435 	}
2436 
2437 	/* Don't allow unterminated quoted tokens */
2438 	if (quote_ch != '\0')
2439 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_UNTERMQUOTE),
2440 		    quote_ch);
2441 
2442 	gettok_state->gtok_last_token.tok_len = str -
2443 	    gettok_state->gtok_last_token.tok_str;
2444 	gettok_state->gtok_null_seen = *look == '\0';
2445 	if (!gettok_state->gtok_null_seen)
2446 		look++;
2447 	*str = '\0';
2448 	gettok_state->gtok_cur_buf = look;
2449 
2450 #ifdef DEBUG_GETTOK
2451 	printf("GETTOK >");
2452 	elfedit_str_to_c_literal(gettok_state->gtok_last_token.tok_str,
2453 	    elfedit_write);
2454 	printf("< \tlen(%d) offset(%d)\n",
2455 	    gettok_state->gtok_last_token.tok_len,
2456 	    gettok_state->gtok_last_token.tok_line_off);
2457 #endif
2458 
2459 	return (1);
2460 }
2461 
2462 
2463 /*
2464  * Tokenize the user command string, and return a pointer to the
2465  * TOK_STATE buffer maintained by this function. That buffer contains
2466  * the tokenized strings.
2467  *
2468  * entry:
2469  *	user_cmd_str - String to tokenize
2470  *	len - # of characters in user_cmd_str to examine. If
2471  *		(len < 0), then the complete string is processed
2472  *		stopping with the NULL termination. Otherwise,
2473  *		processing stops after len characters, and any
2474  *		remaining characters are ignored.
2475  *	inc_null_final - If True, and if user_cmd_str has whitespace
2476  *		at the end following the last non-null token, then
2477  *		a final null token will be included. If False, null
2478  *		tokens are ignored.
2479  *
2480  * note:
2481  *	This routine returns pointers to internally allocated memory.
2482  *	The caller must not alter anything contained in the TOK_STATE
2483  *	buffer returned. Furthermore, the the contents of TOK_STATE
2484  *	are only valid until the next call to tokenize_user_cmd().
2485  */
2486 static TOK_STATE *
2487 tokenize_user_cmd(const char *user_cmd_str, size_t len, int inc_null_final)
2488 {
2489 #define	INITIAL_TOK_ALLOC 5
2490 
2491 	/*
2492 	 * As we parse the user command, we need temporary space to
2493 	 * hold the tokens. We do this by dynamically allocating a string
2494 	 * buffer and a token array, and doubling them as necessary. This
2495 	 * is a single threaded application, so static variables suffice.
2496 	 */
2497 	static STRBUF str;
2498 	static TOK_STATE tokst;
2499 
2500 	GETTOK_STATE	gettok_state;
2501 	size_t		n;
2502 
2503 	/*
2504 	 * Make a copy we can modify. If (len == 0), take the entire
2505 	 * string. Otherwise limit it to the specified length.
2506 	 */
2507 	tokst.tokst_cmd_len = strlen(user_cmd_str);
2508 	if ((len > 0) && (len < tokst.tokst_cmd_len))
2509 		tokst.tokst_cmd_len = len;
2510 	tokst.tokst_cmd_len++;	/* Room for NULL termination */
2511 	strbuf_ensure_size(&str, tokst.tokst_cmd_len);
2512 	(void) strlcpy(str.buf, user_cmd_str, tokst.tokst_cmd_len);
2513 
2514 	/* Trim off any newline character that might be present */
2515 	if ((tokst.tokst_cmd_len > 1) &&
2516 	    (str.buf[tokst.tokst_cmd_len - 2] == '\n')) {
2517 		tokst.tokst_cmd_len--;
2518 		str.buf[tokst.tokst_cmd_len - 1] = '\0';
2519 	}
2520 
2521 	/* Tokenize the user command string into tok struct */
2522 	gettok_init(&gettok_state, str.buf, inc_null_final);
2523 	tokst.tokst_str_size = 0;	/* Space needed for token strings */
2524 	for (tokst.tokst_cnt = 0; gettok(&gettok_state) != 0;
2525 	    tokst.tokst_cnt++) {
2526 		/* If we need more room, expand the token buffer */
2527 		if (tokst.tokst_cnt >= tokst.tokst_bufsize) {
2528 			n = (tokst.tokst_bufsize == 0) ?
2529 			    INITIAL_TOK_ALLOC : (tokst.tokst_bufsize * 2);
2530 			tokst.tokst_buf = elfedit_realloc(
2531 			    MSG_INTL(MSG_ALLOC_TOKBUF), tokst.tokst_buf,
2532 			    n * sizeof (*tokst.tokst_buf));
2533 			tokst.tokst_bufsize = n;
2534 		}
2535 		tokst.tokst_str_size +=
2536 		    gettok_state.gtok_last_token.tok_len + 1;
2537 		tokst.tokst_buf[tokst.tokst_cnt] = gettok_state.gtok_last_token;
2538 	}
2539 	/* fold the command token to lowercase */
2540 	if (tokst.tokst_cnt > 0) {
2541 		char *s;
2542 
2543 		for (s = tokst.tokst_buf[0].tok_str; *s; s++)
2544 			if (isupper(*s))
2545 				*s = tolower(*s);
2546 	}
2547 
2548 	return (&tokst);
2549 
2550 #undef	INITIAL_TOK_ALLOC
2551 }
2552 
2553 
2554 /*
2555  * Parse the user command string, and put an entry for it at the end
2556  * of state.ucmd.
2557  */
2558 static void
2559 parse_user_cmd(const char *user_cmd_str)
2560 {
2561 	TOK_STATE	*tokst;
2562 	char		*s;
2563 	size_t		n;
2564 	size_t		len;
2565 	USER_CMD_T	*ucmd;
2566 	elfeditGC_module_t *mod;
2567 	elfeditGC_cmd_t	*cmd;
2568 
2569 	/*
2570 	 * Break it into tokens. If there are none, then it is
2571 	 * an empty command and is ignored.
2572 	 */
2573 	tokst = tokenize_user_cmd(user_cmd_str, -1, 0);
2574 	if (tokst->tokst_cnt == 0)
2575 		return;
2576 
2577 	/* Find the command. Won't return on error */
2578 	cmd = elfedit_find_command(tokst->tokst_buf[0].tok_str, 1, &mod);
2579 
2580 	/*
2581 	 * If there is no ELF file being edited, then only commands
2582 	 * from the sys: module are allowed.
2583 	 */
2584 	if ((state.file.present == 0) &&
2585 	    (strcmp(mod->mod_name, MSG_ORIG(MSG_MOD_SYS)) != 0))
2586 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_NOFILSYSONLY),
2587 		    mod->mod_name, cmd->cmd_name[0]);
2588 
2589 
2590 	/* Allocate, fill in, and insert a USER_CMD_T block */
2591 	n = S_DROUND(sizeof (USER_CMD_T));
2592 	ucmd = elfedit_malloc(MSG_INTL(MSG_ALLOC_UCMD),
2593 	    n + (sizeof (char *) * (tokst->tokst_cnt - 1)) +
2594 	    tokst->tokst_cmd_len + tokst->tokst_str_size);
2595 	ucmd->ucmd_next = NULL;
2596 	ucmd->ucmd_argc = tokst->tokst_cnt - 1;
2597 	/*LINTED E_BAD_PTR_CAST_ALIGN*/
2598 	ucmd->ucmd_argv = (const char **)(n + (char *)ucmd);
2599 	ucmd->ucmd_orig_str = (char *)(ucmd->ucmd_argv + ucmd->ucmd_argc);
2600 	(void) strncpy(ucmd->ucmd_orig_str, user_cmd_str, tokst->tokst_cmd_len);
2601 	ucmd->ucmd_mod = mod;
2602 	ucmd->ucmd_cmd = cmd;
2603 	ucmd->ucmd_ostyle_set = 0;
2604 	s = ucmd->ucmd_orig_str + tokst->tokst_cmd_len;
2605 	for (n = 1; n < tokst->tokst_cnt; n++) {
2606 		len = tokst->tokst_buf[n].tok_len + 1;
2607 		ucmd->ucmd_argv[n - 1] = s;
2608 		(void) strncpy(s, tokst->tokst_buf[n].tok_str, len);
2609 		s += len;
2610 	}
2611 	if (state.ucmd.list == NULL) {
2612 		state.ucmd.list = state.ucmd.tail = ucmd;
2613 	} else {
2614 		state.ucmd.tail->ucmd_next = ucmd;
2615 		state.ucmd.tail = ucmd;
2616 	}
2617 	state.ucmd.n++;
2618 }
2619 
2620 
2621 /*
2622  * Copy infile to a new file with the name given by outfile.
2623  */
2624 static void
2625 create_outfile(const char *infile, const char *outfile)
2626 {
2627 	pid_t pid;
2628 	int statloc;
2629 	struct stat statbuf;
2630 
2631 
2632 	pid = fork();
2633 	switch (pid) {
2634 	case -1:			/* Unable to create process */
2635 		{
2636 			int err = errno;
2637 			elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTFORK),
2638 			    strerror(err));
2639 		}
2640 		/*NOTREACHED*/
2641 		return;
2642 
2643 	case 0:
2644 		(void) execl(MSG_ORIG(MSG_STR_BINCP),
2645 		    MSG_ORIG(MSG_STR_BINCP), infile, outfile, NULL);
2646 		/*
2647 		 * exec() only returns on error. This is the child process,
2648 		 * so we want to stay away from the usual error mechanism
2649 		 * and handle things directly.
2650 		 */
2651 		{
2652 			int err = errno;
2653 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_CNTEXEC),
2654 			    MSG_ORIG(MSG_STR_ELFEDIT),
2655 			    MSG_ORIG(MSG_STR_BINCP), strerror(err));
2656 		}
2657 		exit(1);
2658 		/*NOTREACHED*/
2659 	}
2660 
2661 	/* This is the parent: Wait for the child to terminate */
2662 	if (waitpid(pid, &statloc,  0) != pid) {
2663 		int err = errno;
2664 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTWAIT),
2665 		    strerror(err));
2666 	}
2667 	/*
2668 	 * If the child failed, then terminate the process. There is no
2669 	 * need for an error message, because the child will have taken
2670 	 * care of that.
2671 	 */
2672 	if (!WIFEXITED(statloc) || (WEXITSTATUS(statloc) != 0))
2673 		exit(1);
2674 
2675 	/* Make sure the copy allows user write access */
2676 	if (stat(outfile, &statbuf) == -1) {
2677 		int err = errno;
2678 		(void) unlink(outfile);
2679 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTSTAT),
2680 		    outfile, strerror(err));
2681 	}
2682 	if ((statbuf.st_mode & S_IWUSR) == 0) {
2683 		/* Only keep permission bits, and add user write */
2684 		statbuf.st_mode |= S_IWUSR;
2685 		statbuf.st_mode &= 07777;   /* Only keep the permission bits */
2686 		if (chmod(outfile, statbuf.st_mode) == -1) {
2687 			int err = errno;
2688 			(void) unlink(outfile);
2689 			elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTCHMOD),
2690 			    outfile, strerror(err));
2691 		}
2692 	}
2693 }
2694 
2695 /*
2696  * Given a module path string, determine how long the resulting path will
2697  * be when all % tokens have been expanded.
2698  *
2699  * entry:
2700  *	path - Path for which expanded length is desired
2701  *	origin_root - Root of $ORIGIN  tree containing running elfedit program
2702  *
2703  * exit:
2704  *	Returns the value strlen() will give for the expanded path.
2705  */
2706 static size_t
2707 modpath_strlen(const char *path, const char *origin_root)
2708 {
2709 	size_t len = 0;
2710 	const char *s;
2711 
2712 	s = path;
2713 	len = 0;
2714 	for (s = path; *s != '\0'; s++) {
2715 		if (*s == '%') {
2716 			s++;
2717 			switch (*s) {
2718 			case 'i':	/* ISA of running elfedit */
2719 				len += strlen(isa_i_str);
2720 				break;
2721 			case 'I':	/* "" for 32-bit, same as %i for 64 */
2722 				len += strlen(isa_I_str);
2723 				break;
2724 			case 'o':	/* Insert default path */
2725 				len +=
2726 				    modpath_strlen(MSG_ORIG(MSG_STR_MODPATH),
2727 				    origin_root);
2728 				break;
2729 			case 'r':	/* root of tree with running elfedit */
2730 				len += strlen(origin_root);
2731 				break;
2732 
2733 			case '%':	/* %% is reduced to just '%' */
2734 				len++;
2735 				break;
2736 			default:	/* All other % codes are reserved */
2737 				elfedit_msg(ELFEDIT_MSG_ERR,
2738 				    MSG_INTL(MSG_ERR_BADPATHCODE), *s);
2739 				/*NOTREACHED*/
2740 				break;
2741 			}
2742 		} else {	/* Non-% character passes straight through */
2743 			len++;
2744 		}
2745 	}
2746 
2747 	return (len);
2748 }
2749 
2750 
2751 /*
2752  * Given a module path string, and a buffer large enough to hold the results,
2753  * fill the buffer with the expanded path.
2754  *
2755  * entry:
2756  *	path - Path for which expanded length is desired
2757  *	origin_root - Root of tree containing running elfedit program
2758  *	buf - Buffer to receive the result. buf must as large or larger
2759  *		than the value given by modpath_strlen().
2760  *
2761  * exit:
2762  *	Returns pointer to location following the last character
2763  *	written to buf. A NULL byte is written to that address.
2764  */
2765 static char *
2766 modpath_expand(const char *path, const char *origin_root, char *buf)
2767 {
2768 	size_t len;
2769 	const char *cp_str;
2770 
2771 	for (; *path != '\0'; path++) {
2772 		if (*path == '%') {
2773 			path++;
2774 			cp_str = NULL;
2775 			switch (*path) {
2776 			case 'i':	/* ISA of running elfedit */
2777 				cp_str = isa_i_str;
2778 				break;
2779 			case 'I':	/* "" for 32-bit, same as %i for 64 */
2780 				cp_str = isa_I_str;
2781 				break;
2782 			case 'o':	/* Insert default path */
2783 				buf = modpath_expand(MSG_ORIG(MSG_STR_MODPATH),
2784 				    origin_root, buf);
2785 				break;
2786 			case 'r':
2787 				cp_str = origin_root;
2788 				break;
2789 			case '%':	/* %% is reduced to just '%' */
2790 				*buf++ = *path;
2791 				break;
2792 			default:	/* All other % codes are reserved */
2793 				elfedit_msg(ELFEDIT_MSG_ERR,
2794 				    MSG_INTL(MSG_ERR_BADPATHCODE), *path);
2795 				/*NOTREACHED*/
2796 				break;
2797 			}
2798 			if ((cp_str != NULL) && ((len = strlen(cp_str)) > 0)) {
2799 				bcopy(cp_str, buf, len);
2800 				buf += len;
2801 			}
2802 		} else {	/* Non-% character passes straight through */
2803 			*buf++ = *path;
2804 		}
2805 	}
2806 
2807 	*buf = '\0';
2808 	return (buf);
2809 }
2810 
2811 
2812 /*
2813  * Establish the module search path: state.modpath
2814  *
2815  * The path used comes from the following sources, taking the first
2816  * one that has a value, and ignoring any others:
2817  *
2818  *	- ELFEDIT_PATH environment variable
2819  *	- -L command line argument
2820  *	- Default value
2821  *
2822  * entry:
2823  *	path - NULL, or the value of the -L command line argument
2824  *
2825  * exit:
2826  *	state.modpath has been filled in
2827  */
2828 static void
2829 establish_modpath(const char *cmdline_path)
2830 {
2831 	char origin_root[PATH_MAX + 1];	/* Where elfedit binary is */
2832 	const char	*path;		/* Initial path */
2833 	char		*expath;	/* Expanded path */
2834 	size_t		len;
2835 	char		*src, *dst;
2836 
2837 	path = getenv(MSG_ORIG(MSG_STR_ENVVAR));
2838 	if (path == NULL)
2839 		path = cmdline_path;
2840 	if (path == NULL)
2841 		path = MSG_ORIG(MSG_STR_MODPATH);
2842 
2843 
2844 	/*
2845 	 * Root of tree containing running for running program. 32-bit elfedit
2846 	 * is installed in /usr/bin, and 64-bit elfedit is one level lower
2847 	 * in an ISA-specific subdirectory. So, we find the root by
2848 	 * getting the $ORGIN of the current running program, and trimming
2849 	 * off the last 2 (32-bit) or 3 (64-bit) directories.
2850 	 *
2851 	 * On a standard system, this will simply yield '/'. However,
2852 	 * doing it this way allows us to run elfedit from a proto area,
2853 	 * and pick up modules from the same proto area instead of those
2854 	 * installed on the system.
2855 	 */
2856 	if (dlinfo(RTLD_SELF, RTLD_DI_ORIGIN, &origin_root) == -1)
2857 		elfedit_msg(ELFEDIT_MSG_ERR, MSG_INTL(MSG_ERR_CNTGETORIGIN));
2858 	len = (sizeof (char *) == 8) ? 3 : 2;
2859 	src = origin_root + strlen(origin_root);
2860 	while ((src > origin_root) && (len > 0)) {
2861 		if (*(src - 1) == '/')
2862 			len--;
2863 		src--;
2864 	}
2865 	*src = '\0';
2866 
2867 
2868 	/*
2869 	 * Calculate space needed to hold expanded path. Note that
2870 	 * this assumes that MSG_STR_MODPATH will never contain a '%o'
2871 	 * code, and so, the expansion is not recursive. The codes allowed
2872 	 * are:
2873 	 *	%i - ISA of running elfedit (sparc, sparcv9, etc)
2874 	 *	%I - 64-bit ISA: Same as %i for 64-bit versions of elfedit,
2875 	 *		but yields empty string for 32-bit ISAs.
2876 	 *	%o - The original (default) path.
2877 	 *	%r - Root of tree holding elfedit program.
2878 	 *	%% - A single %
2879 	 *
2880 	 * A % followed by anything else is an error. This allows us to
2881 	 * add new codes in the future without backward compatability issues.
2882 	 */
2883 	len = modpath_strlen(path, origin_root);
2884 
2885 	expath = elfedit_malloc(MSG_INTL(MSG_ALLOC_EXPATH), len + 1);
2886 	(void) modpath_expand(path, origin_root, expath);
2887 
2888 	/*
2889 	 * Count path segments, eliminate extra '/', and replace ':'
2890 	 * with NULL.
2891 	 */
2892 	state.modpath.n = 1;
2893 	for (src = dst = expath; *src; src++) {
2894 		if (*src == '/') {
2895 			switch (*(src + 1)) {
2896 			case '/':
2897 			case ':':
2898 			case '\0':
2899 				continue;
2900 			}
2901 		}
2902 		if (*src == ':') {
2903 			state.modpath.n++;
2904 			*dst = '\0';
2905 		} else if (src != dst) {
2906 			*dst = *src;
2907 		}
2908 		dst++;
2909 	}
2910 	if (src != dst)
2911 		*dst = '\0';
2912 
2913 	state.modpath.seg = elfedit_malloc(MSG_INTL(MSG_ALLOC_PATHARR),
2914 	    sizeof (state.modpath.seg[0]) * state.modpath.n);
2915 
2916 	src = expath;
2917 	for (len = 0; len < state.modpath.n; len++) {
2918 		if (*src == '\0') {
2919 			state.modpath.seg[len] = MSG_ORIG(MSG_STR_DOT);
2920 			src++;
2921 		} else {
2922 			state.modpath.seg[len] = src;
2923 			src += strlen(src) + 1;
2924 		}
2925 	}
2926 }
2927 
2928 /*
2929  * When interactive (reading commands from a tty), we catch
2930  * SIGINT in order to restart the outer command loop.
2931  */
2932 /*ARGSUSED*/
2933 static void
2934 sigint_handler(int sig, siginfo_t *sip, void *ucp)
2935 {
2936 	/* Jump to the outer loop to resume */
2937 	if (state.msg_jbuf.active) {
2938 		state.msg_jbuf.active = 0;
2939 		siglongjmp(state.msg_jbuf.env, 1);
2940 	}
2941 }
2942 
2943 
2944 static void
2945 usage(int full)
2946 {
2947 	elfedit_msg(ELFEDIT_MSG_USAGE, MSG_INTL(MSG_USAGE_BRIEF));
2948 	if (full) {
2949 		elfedit_msg(ELFEDIT_MSG_USAGE, MSG_INTL(MSG_USAGE_DETAIL1));
2950 		elfedit_msg(ELFEDIT_MSG_USAGE, MSG_INTL(MSG_USAGE_DETAIL2));
2951 		elfedit_msg(ELFEDIT_MSG_USAGE, MSG_INTL(MSG_USAGE_DETAIL3));
2952 		elfedit_msg(ELFEDIT_MSG_USAGE, MSG_INTL(MSG_USAGE_DETAIL4));
2953 		elfedit_msg(ELFEDIT_MSG_USAGE, MSG_INTL(MSG_USAGE_DETAIL5));
2954 		elfedit_msg(ELFEDIT_MSG_USAGE, MSG_INTL(MSG_USAGE_DETAIL6));
2955 		elfedit_msg(ELFEDIT_MSG_USAGE, MSG_INTL(MSG_USAGE_DETAIL_LAST));
2956 	}
2957 	elfedit_exit(2);
2958 }
2959 
2960 
2961 /*
2962  * In order to complete commands, we need to know about them,
2963  * which means that we need to force all the modules to be
2964  * loaded. This is a relatively expensive operation, so we use
2965  * this function, which avoids doing it more than once in a session.
2966  */
2967 static void
2968 elfedit_cpl_load_modules(void)
2969 {
2970 	static int loaded;
2971 
2972 	if (!loaded) {
2973 		elfedit_load_modpath();
2974 		loaded = 1;	/* Don't do it again */
2975 	}
2976 }
2977 
2978 /*
2979  * Compare the token to the given string, and if they share a common
2980  * initial sequence, add the tail of string to the tecla command completion
2981  * buffer:
2982  *
2983  * entry:
2984  *	cpldata - Current completion state
2985  *	str - String to match against token
2986  *	casefold - True to allow case insensitive completion, False
2987  *		if case must match exactly.
2988  */
2989 void
2990 elfedit_cpl_match(void *cpldata, const char *str, int casefold)
2991 {
2992 	ELFEDIT_CPL_STATE *cstate = (ELFEDIT_CPL_STATE *) cpldata;
2993 	const char	*cont_suffix;
2994 	const char	*type_suffix;
2995 
2996 	/*
2997 	 * Reasons to return immediately:
2998 	 *	- NULL strings have no completion value
2999 	 *	- The string is shorter than the existing item being completed
3000 	 */
3001 	if ((str == NULL) || (*str == '\0') ||
3002 	    ((cstate->ecpl_token_len != 0) &&
3003 	    ((strlen(str) < cstate->ecpl_token_len))))
3004 		return;
3005 
3006 	/* If the string does not share the existing prefix, don't use it */
3007 	if (casefold) {
3008 		if (strncasecmp(cstate->ecpl_token_str, str,
3009 		    cstate->ecpl_token_len) != 0)
3010 			return;
3011 	} else {
3012 		if (strncmp(cstate->ecpl_token_str, str,
3013 		    cstate->ecpl_token_len) != 0)
3014 			return;
3015 	}
3016 
3017 	if (cstate->ecpl_add_mod_colon) {
3018 		cont_suffix = type_suffix = MSG_ORIG(MSG_STR_COLON);
3019 	} else {
3020 		cont_suffix = MSG_ORIG(MSG_STR_SPACE);
3021 		type_suffix = NULL;
3022 	}
3023 	(void) cpl_add_completion(cstate->ecpl_cpl, cstate->ecpl_line,
3024 	    cstate->ecpl_word_start, cstate->ecpl_word_end,
3025 	    str + cstate->ecpl_token_len, type_suffix, cont_suffix);
3026 
3027 }
3028 
3029 
3030 /*
3031  * Convenience wrapper on elfedit_cpl_match(): Format an unsigned
3032  * 32-bit integer as a string and enter the result for command completion.
3033  */
3034 void
3035 elfedit_cpl_ndx(void *cpldata, uint_t ndx)
3036 {
3037 	Conv_inv_buf_t	buf;
3038 
3039 	(void) snprintf(buf.buf, sizeof (buf.buf),
3040 	    MSG_ORIG(MSG_FMT_WORDVAL), ndx);
3041 	elfedit_cpl_match(cpldata, buf.buf, 0);
3042 }
3043 
3044 
3045 /*
3046  * Compare the token to the names of the commands from the given module,
3047  * and if they share a common initial sequence, add the tail of string
3048  * to the tecla command completion buffer:
3049  *
3050  * entry:
3051  *	tok_buf - Token user has entered
3052  *	tok_len - strlen(tok_buf)
3053  *	mod - Module definition from which commands should be matched
3054  *	cpl, line, word_start, word_end, cont_suffix - As documented
3055  *		for gl_get_line() and cpl_add_completion.
3056  */
3057 static void
3058 match_module_cmds(ELFEDIT_CPL_STATE *cstate, elfeditGC_module_t *mod)
3059 {
3060 	elfeditGC_cmd_t *cmd;
3061 	const char **cmd_name;
3062 
3063 	for (cmd = mod->mod_cmds; cmd->cmd_func != NULL; cmd++)
3064 		for (cmd_name = cmd->cmd_name; *cmd_name; cmd_name++)
3065 			elfedit_cpl_match(cstate, *cmd_name, 1);
3066 }
3067 
3068 
3069 /*
3070  * Compare the token to the known module names, and add those that
3071  * match to the list of alternatives via elfedit_cpl_match().
3072  *
3073  * entry:
3074  *	load_all_modules - If True, causes all modules to be loaded
3075  *		before processing is done. If False, only the modules
3076  *		currently seen will be used.
3077  */
3078 void
3079 elfedit_cpl_module(void *cpldata, int load_all_modules)
3080 {
3081 	ELFEDIT_CPL_STATE	*cstate = (ELFEDIT_CPL_STATE *) cpldata;
3082 	MODLIST_T		*modlist;
3083 
3084 	if (load_all_modules)
3085 		elfedit_cpl_load_modules();
3086 
3087 	for (modlist = state.modlist; modlist != NULL;
3088 	    modlist = modlist->ml_next) {
3089 		elfedit_cpl_match(cstate, modlist->ml_mod->mod_name, 1);
3090 	}
3091 }
3092 
3093 
3094 /*
3095  * Compare the token to all the known commands, and add those that
3096  * match to the list of alternatives.
3097  *
3098  * note:
3099  *	This routine will force modules to be loaded as necessary to
3100  *	obtain the names it needs to match.
3101  */
3102 void
3103 elfedit_cpl_command(void *cpldata)
3104 {
3105 	ELFEDIT_CPL_STATE	*cstate = (ELFEDIT_CPL_STATE *) cpldata;
3106 	ELFEDIT_CPL_STATE	colon_state;
3107 	const char		*colon_pos;
3108 	MODLIST_T		*modlist;
3109 	MODLIST_T		*insdef;
3110 	char			buf[128];
3111 
3112 	/*
3113 	 * Is there a colon in the command? If so, locate its offset within
3114 	 * the raw input line.
3115 	 */
3116 	for (colon_pos = cstate->ecpl_token_str;
3117 	    *colon_pos && (*colon_pos != ':'); colon_pos++)
3118 		;
3119 
3120 	/*
3121 	 * If no colon was seen, then we are completing a module name,
3122 	 * or one of the commands from 'sys:'
3123 	 */
3124 	if (*colon_pos == '\0') {
3125 		/*
3126 		 * Setting cstate->add_mod_colon tells elfedit_cpl_match()
3127 		 * to add an implicit ':' to the names it matches. We use it
3128 		 * here so the user doesn't have to enter the ':' manually.
3129 		 * Hiding this in the opaque state instead of making it
3130 		 * an argument to that function gives us the ability to
3131 		 * change it later without breaking the published interface.
3132 		 */
3133 		cstate->ecpl_add_mod_colon = 1;
3134 		elfedit_cpl_module(cpldata, 1);
3135 		cstate->ecpl_add_mod_colon = 0;
3136 
3137 		/* Add bare (no sys: prefix) commands from the sys: module */
3138 		match_module_cmds(cstate,
3139 		    elfedit_load_module(MSG_ORIG(MSG_MOD_SYS), 1, 0));
3140 
3141 		return;
3142 	}
3143 
3144 	/*
3145 	 * A colon was seen, so we have a module name. Extract the name,
3146 	 * substituting 'sys' for the case where the given name is empty.
3147 	 */
3148 	if (colon_pos == 0)
3149 		(void) strlcpy(buf, MSG_ORIG(MSG_MOD_SYS), sizeof (buf));
3150 	else
3151 		elfedit_strnbcpy(buf, cstate->ecpl_token_str,
3152 		    colon_pos - cstate->ecpl_token_str, sizeof (buf));
3153 
3154 	/*
3155 	 * Locate the module. If it isn't already loaded, make an explicit
3156 	 * attempt to load it and try again. If a module definition is
3157 	 * obtained, process the commands it supplies.
3158 	 */
3159 	modlist = module_loaded(buf, &insdef);
3160 	if (modlist == NULL) {
3161 		(void) elfedit_load_module(buf, 0, 0);
3162 		modlist = module_loaded(buf, &insdef);
3163 	}
3164 	if (modlist != NULL) {
3165 		/*
3166 		 * Make a copy of the cstate, and adjust the line and
3167 		 * token so that the new one starts just past the colon
3168 		 * character. We know that the colon exists because
3169 		 * of the preceeding test that found it. Therefore, we do
3170 		 * not need to test against running off the end of the
3171 		 * string here.
3172 		 */
3173 		colon_state = *cstate;
3174 		while (colon_state.ecpl_line[colon_state.ecpl_word_start] !=
3175 		    ':')
3176 			colon_state.ecpl_word_start++;
3177 		while (*colon_state.ecpl_token_str != ':') {
3178 			colon_state.ecpl_token_str++;
3179 			colon_state.ecpl_token_len--;
3180 		}
3181 		/* Skip past the ':' character */
3182 		colon_state.ecpl_word_start++;
3183 		colon_state.ecpl_token_str++;
3184 		colon_state.ecpl_token_len--;
3185 
3186 		match_module_cmds(&colon_state, modlist->ml_mod);
3187 	}
3188 }
3189 
3190 
3191 /*
3192  * Command completion function for use with libtacla.
3193  */
3194 /*ARGSUSED1*/
3195 static int
3196 cmd_match_fcn(WordCompletion *cpl, void *data, const char *line, int word_end)
3197 {
3198 	const char		*argv[ELFEDIT_MAXCPLARGS];
3199 	ELFEDIT_CPL_STATE	cstate;
3200 	TOK_STATE		*tokst;
3201 	int			ndx;
3202 	int			i;
3203 	elfeditGC_module_t	*mod;
3204 	elfeditGC_cmd_t		*cmd;
3205 	int			num_opt;
3206 	int			opt_term_seen;
3207 	int			skip_one;
3208 	elfedit_cmd_optarg_t	*optarg;
3209 	elfedit_optarg_item_t	item;
3210 	int			ostyle_ndx = -1;
3211 
3212 	/*
3213 	 * For debugging, enable the following block. It tells the tecla
3214 	 * library that the program using is going to write to stdout.
3215 	 * It will put the tty back into normal mode, and it will cause
3216 	 * tecla to redraw the current input line when it gets control back.
3217 	 */
3218 #ifdef DEBUG_CMD_MATCH
3219 	gl_normal_io(state.input.gl);
3220 #endif
3221 
3222 	/*
3223 	 * Tokenize the line up through word_end. The last token in
3224 	 * the list is the one requiring completion.
3225 	 */
3226 	tokst = tokenize_user_cmd(line, word_end, 1);
3227 	if (tokst->tokst_cnt == 0)
3228 		return (0);
3229 
3230 	/* Set up the cstate block, containing the completion state */
3231 	ndx = tokst->tokst_cnt - 1;	/* Index of token to complete */
3232 	cstate.ecpl_cpl = cpl;
3233 	cstate.ecpl_line = line;
3234 	cstate.ecpl_word_start = tokst->tokst_buf[ndx].tok_line_off;
3235 	cstate.ecpl_word_end = word_end;
3236 	cstate.ecpl_add_mod_colon = 0;
3237 	cstate.ecpl_token_str = tokst->tokst_buf[ndx].tok_str;
3238 	cstate.ecpl_token_len = tokst->tokst_buf[ndx].tok_len;
3239 
3240 	/*
3241 	 * If there is only one token, then we are completing the
3242 	 * command itself.
3243 	 */
3244 	if (ndx == 0) {
3245 		elfedit_cpl_command(&cstate);
3246 		return (0);
3247 	}
3248 
3249 	/*
3250 	 * There is more than one token. Use the first one to
3251 	 * locate the definition for the command. If we don't have
3252 	 * a definition for the command, then there's nothing more
3253 	 * we can do.
3254 	 */
3255 	cmd = elfedit_find_command(tokst->tokst_buf[0].tok_str, 0, &mod);
3256 	if (cmd == NULL)
3257 		return (0);
3258 
3259 	/*
3260 	 * Since we know the command, give them a quick usage message.
3261 	 * It may be that they just need a quick reminder about the form
3262 	 * of the command and the options.
3263 	 */
3264 	(void) gl_normal_io(state.input.gl);
3265 	elfedit_printf(MSG_INTL(MSG_USAGE_CMD),
3266 	    elfedit_format_command_usage(mod, cmd, NULL, 0));
3267 
3268 
3269 	/*
3270 	 * We have a generous setting for ELFEDIT_MAXCPLARGS, so there
3271 	 * should always be plenty of room. If there's not room, we
3272 	 * can't proceed.
3273 	 */
3274 	if (ndx >= ELFEDIT_MAXCPLARGS)
3275 		return (0);
3276 
3277 	/*
3278 	 * Put pointers to the tokens into argv, and determine how
3279 	 * many of the tokens are optional arguments.
3280 	 *
3281 	 * We consider the final optional argument to be the rightmost
3282 	 * argument that starts with a '-'. If a '--' is seen, then
3283 	 * we stop there, and any argument that follows is a plain argument
3284 	 * (even if it starts with '-').
3285 	 *
3286 	 * We look for an inherited '-o' option, because we are willing
3287 	 * to supply command completion for these values.
3288 	 */
3289 	num_opt = 0;
3290 	opt_term_seen = 0;
3291 	skip_one = 0;
3292 	for (i = 0; i < ndx; i++) {
3293 		argv[i] = tokst->tokst_buf[i + 1].tok_str;
3294 		if (opt_term_seen || skip_one) {
3295 			skip_one = 0;
3296 			continue;
3297 		}
3298 		skip_one = 0;
3299 		ostyle_ndx = -1;
3300 		if ((strcmp(argv[i], MSG_ORIG(MSG_STR_MINUS_MINUS)) == NULL) ||
3301 		    (*argv[i] != '-')) {
3302 			opt_term_seen = 1;
3303 			continue;
3304 		}
3305 		num_opt = i + 1;
3306 		/*
3307 		 * If it is a recognised ELFEDIT_CMDOA_F_VALUE option,
3308 		 * then the item following it is the associated value.
3309 		 * Check for this and skip the value.
3310 		 *
3311 		 * At the same time, look for STDOA_OPT_O inherited
3312 		 * options. We want to identify the index of any such
3313 		 * item. Although the option is simply "-o", we are willing
3314 		 * to treat any option that starts with "-o" as a potential
3315 		 * STDOA_OPT_O. This lets us to command completion for things
3316 		 * like "-onum", and is otherwise harmless, the only cost
3317 		 * being a few additional strcmps by the cpl code.
3318 		 */
3319 		if ((optarg = cmd->cmd_opt) == NULL)
3320 			continue;
3321 		while (optarg->oa_name != NULL) {
3322 			int is_ostyle_optarg =
3323 			    (optarg->oa_flags & ELFEDIT_CMDOA_F_INHERIT) &&
3324 			    (optarg->oa_name == ELFEDIT_STDOA_OPT_O);
3325 
3326 			elfedit_next_optarg(&optarg, &item);
3327 			if (item.oai_flags & ELFEDIT_CMDOA_F_VALUE) {
3328 				if (is_ostyle_optarg && (strncmp(argv[i],
3329 				    MSG_ORIG(MSG_STR_MINUS_O), 2) == 0))
3330 					ostyle_ndx = i + 1;
3331 
3332 				if (strcmp(item.oai_name, argv[i]) == 0) {
3333 					num_opt = i + 2;
3334 					skip_one = 1;
3335 					break;
3336 				}
3337 				/*
3338 				 * If it didn't match "-o" exactly, but it is
3339 				 * ostyle_ndx, then it is a potential combined
3340 				 * STDOA_OPT_O, as discussed above. It counts
3341 				 * as a single argument.
3342 				 */
3343 				if (ostyle_ndx == ndx)
3344 					break;
3345 			}
3346 		}
3347 	}
3348 
3349 #ifdef DEBUG_CMD_MATCH
3350 	(void) printf("NDX(%d) NUM_OPT(%d) ostyle_ndx(%d)\n", ndx, num_opt,
3351 	    ostyle_ndx);
3352 #endif
3353 
3354 	if (ostyle_ndx != -1) {
3355 		/*
3356 		 * If ostyle_ndx is one less than ndx, and ndx is
3357 		 * the same as num_opt, then we have a definitive
3358 		 * STDOA_OPT_O inherited outstyle option. We supply
3359 		 * the value strings, and are done.
3360 		 */
3361 		if ((ostyle_ndx == (ndx - 1)) && (ndx == num_opt)) {
3362 			elfedit_cpl_atoconst(&cstate, ELFEDIT_CONST_OUTSTYLE);
3363 			return (0);
3364 		}
3365 
3366 		/*
3367 		 * If ostyle is the same as ndx, then we have an option
3368 		 * staring with "-o" that may end up being a STDOA_OPT_O,
3369 		 * and we are still inside that token. In this case, we
3370 		 * supply completion strings that include the leading
3371 		 * "-o" followed by the values, without a space
3372 		 * (i.e. "-onum"). We then fall through, allowing any
3373 		 * other options starting with "-o" to be added
3374 		 * below. elfedit_cpl_match() will throw out the incorrect
3375 		 * options, so it is harmless to add these extra items in
3376 		 * the worst case, and useful otherwise.
3377 		 */
3378 		if (ostyle_ndx == ndx)
3379 			elfedit_cpl_atoconst(&cstate,
3380 			    ELFEDIT_CONST_OUTSTYLE_MO);
3381 	}
3382 
3383 	/*
3384 	 * If (ndx <= num_opt), then the token needing completion
3385 	 * is an option. If the leading '-' is there, then we should fill
3386 	 * in all of the option alternatives. If anything follows the '-'
3387 	 * though, we assume that the user has already figured out what
3388 	 * option to use, and we leave well enough alone.
3389 	 *
3390 	 * Note that we are intentionally ignoring a related case
3391 	 * where supplying option strings would be legal: In the case
3392 	 * where we are one past the last option (ndx == (num_opt + 1)),
3393 	 * and the current option is an empty string, the argument can
3394 	 * be either a plain argument or an option --- the user needs to
3395 	 * enter the next character before we can tell. It would be
3396 	 * OK to enter the option strings in this case. However, consider
3397 	 * what happens when the first plain argument to the command does
3398 	 * not provide any command completion (e.g. it is a plain integer).
3399 	 * In this case, tecla will see that all the alternatives start
3400 	 * with '-', and will insert a '-' into the input. If the user
3401 	 * intends the next argument to be plain, they will have to delete
3402 	 * this '-', which is annoying. Worse than that, they may be confused
3403 	 * by it, and think that the plain argument is not allowed there.
3404 	 * The best solution is to not supply option strings unless the
3405 	 * user first enters the '-'.
3406 	 */
3407 	if ((ndx <= num_opt) && (argv[ndx - 1][0] == '-')) {
3408 		if ((optarg = cmd->cmd_opt) != NULL) {
3409 			while (optarg->oa_name != NULL) {
3410 				elfedit_next_optarg(&optarg, &item);
3411 				elfedit_cpl_match(&cstate, item.oai_name, 1);
3412 			}
3413 		}
3414 		return (0);
3415 	}
3416 
3417 	/*
3418 	 * At this point we know that ndx and num_opt are not equal.
3419 	 * If num_opt is larger than ndx, then we have an ELFEDIT_CMDOA_F_VALUE
3420 	 * argument at the end, and the following value has not been entered.
3421 	 *
3422 	 * If ndx is greater than num_opt, it means that we are looking
3423 	 * at a plain argument (or in the case where (ndx == (num_opt + 1)),
3424 	 * a *potential* plain argument.
3425 	 *
3426 	 * If the command has a completion function registered, then we
3427 	 * hand off the remaining work to it. The cmd_cplfunc field is
3428 	 * the generic definition. We need to cast it to the type that matches
3429 	 * the proper ELFCLASS before calling it.
3430 	 */
3431 	if (state.elf.elfclass == ELFCLASS32) {
3432 		elfedit32_cmdcpl_func_t *cmdcpl_func =
3433 		    (elfedit32_cmdcpl_func_t *)cmd->cmd_cplfunc;
3434 
3435 		if (cmdcpl_func != NULL)
3436 			(* cmdcpl_func)(state.elf.obj_state.s32,
3437 			    &cstate, ndx, argv, num_opt);
3438 	} else {
3439 		elfedit64_cmdcpl_func_t *cmdcpl_func =
3440 		    (elfedit64_cmdcpl_func_t *)cmd->cmd_cplfunc;
3441 
3442 		if (cmdcpl_func != NULL)
3443 			(* cmdcpl_func)(state.elf.obj_state.s64,
3444 			    &cstate, ndx, argv, num_opt);
3445 	}
3446 
3447 	return (0);
3448 }
3449 
3450 
3451 /*
3452  * Read a line of input from stdin, and return pointer to it.
3453  *
3454  * This routine uses a private buffer, so the contents of the returned
3455  * string are only good until the next call.
3456  */
3457 static const char *
3458 read_cmd(void)
3459 {
3460 	char *s;
3461 
3462 	if (state.input.full_tty) {
3463 		state.input.in_tecla = TRUE;
3464 		s = gl_get_line(state.input.gl,
3465 		    MSG_ORIG(MSG_STR_PROMPT), NULL, -1);
3466 		state.input.in_tecla = FALSE;
3467 		/*
3468 		 * gl_get_line() returns NULL for EOF or for error. EOF is fine,
3469 		 * but we need to catch and report anything else. Since
3470 		 * reading from stdin is critical to our operation, an
3471 		 * error implies that we cannot recover and must exit.
3472 		 */
3473 		if ((s == NULL) &&
3474 		    (gl_return_status(state.input.gl) == GLR_ERROR)) {
3475 			elfedit_msg(ELFEDIT_MSG_FATAL, MSG_INTL(MSG_ERR_GLREAD),
3476 			    gl_error_message(state.input.gl, NULL, 0));
3477 		}
3478 	} else {
3479 		/*
3480 		 * This should be a dynamically sized buffer, but for now,
3481 		 * I'm going to take a simpler path.
3482 		 */
3483 		static char cmd_buf[ELFEDIT_MAXCMD + 1];
3484 
3485 		s = fgets(cmd_buf, sizeof (cmd_buf), stdin);
3486 	}
3487 
3488 	/* Return user string, or 'quit' on EOF */
3489 	return (s ? s : MSG_ORIG(MSG_SYS_CMD_QUIT));
3490 }
3491 
3492 int
3493 main(int argc, char **argv, char **envp)
3494 {
3495 	/*
3496 	 * Note: This function can use setjmp()/longjmp() which does
3497 	 * not preserve the values of auto/register variables. Hence,
3498 	 * variables that need their values preserved across a jump must
3499 	 * be marked volatile, or must not be auto/register.
3500 	 *
3501 	 * Volatile can be messy, because it requires explictly casting
3502 	 * away the attribute when passing it to functions, or declaring
3503 	 * those functions with the attribute as well. In a single threaded
3504 	 * program like this one, an easier approach is to make things
3505 	 * static. That can be done here, or by putting things in the
3506 	 * 'state' structure.
3507 	 */
3508 
3509 	int		c, i;
3510 	int		num_batch = 0;
3511 	char		**batch_list = NULL;
3512 	const char	*modpath = NULL;
3513 
3514 	/*
3515 	 * Always have liblddb display unclipped section names.
3516 	 * This global is exported by liblddb, and declared in debug.h.
3517 	 */
3518 	dbg_desc->d_extra |= DBG_E_LONG;
3519 
3520 	opterr = 0;
3521 	while ((c = getopt(argc, argv, MSG_ORIG(MSG_STR_OPTIONS))) != EOF) {
3522 		switch (c) {
3523 		case 'a':
3524 			state.flags |= ELFEDIT_F_AUTOPRINT;
3525 			break;
3526 
3527 		case 'd':
3528 			state.flags |= ELFEDIT_F_DEBUG;
3529 			break;
3530 
3531 		case 'e':
3532 			/*
3533 			 * Delay parsing the -e options until after the call to
3534 			 * conv_check_native() so that we won't bother loading
3535 			 * modules of the wrong class.
3536 			 */
3537 			if (batch_list == NULL)
3538 				batch_list = elfedit_malloc(
3539 				    MSG_INTL(MSG_ALLOC_BATCHLST),
3540 				    sizeof (*batch_list) * (argc - 1));
3541 			batch_list[num_batch++] = optarg;
3542 			break;
3543 
3544 		case 'L':
3545 			modpath = optarg;
3546 			break;
3547 
3548 		case 'o':
3549 			if (elfedit_atooutstyle(optarg, &state.outstyle) == 0)
3550 				usage(1);
3551 			break;
3552 
3553 		case 'r':
3554 			state.flags |= ELFEDIT_F_READONLY;
3555 			break;
3556 
3557 		case '?':
3558 			usage(1);
3559 		}
3560 	}
3561 
3562 	/*
3563 	 * We allow 0, 1, or 2 files:
3564 	 *
3565 	 * The no-file case is an extremely limited mode, in which the
3566 	 * only commands allowed to execute come from the sys: module.
3567 	 * This mode exists primarily to allow easy access to the help
3568 	 * facility.
3569 	 *
3570 	 * To get full access to elfedit's capablities, there must
3571 	 * be an input file. If this is not a readonly
3572 	 * session, then an optional second output file is allowed.
3573 	 *
3574 	 * In the case where two files are given and the session is
3575 	 * readonly, use a full usage message, because the simple
3576 	 * one isn't enough for the user to understand their error.
3577 	 * Otherwise, the simple usage message suffices.
3578 	 */
3579 	argc = argc - optind;
3580 	if ((argc == 2) && (state.flags & ELFEDIT_F_READONLY))
3581 		usage(1);
3582 	if (argc > 2)
3583 		usage(0);
3584 
3585 	state.file.present = (argc != 0);
3586 
3587 	/*
3588 	 * If we have a file to edit, and unless told otherwise by the
3589 	 * caller, we try to run the 64-bit version of this program
3590 	 * when the system is capable of it. If that fails, then we
3591 	 * continue on with the currently running version.
3592 	 *
3593 	 * To force 32-bit execution on a 64-bit host, set the
3594 	 * LD_NOEXEC_64 environment variable to a non-empty value.
3595 	 *
3596 	 * There is no reason to bother with this if in "no file" mode.
3597 	 */
3598 	if (state.file.present != 0)
3599 		(void) conv_check_native(argv, envp);
3600 
3601 	elfedit_msg(ELFEDIT_MSG_DEBUG, MSG_INTL(MSG_DEBUG_VERSION),
3602 	    (sizeof (char *) == 8) ? 64 : 32);
3603 
3604 	/*
3605 	 * Put a module definition for the builtin system module on the
3606 	 * module list. We know it starts out empty, so we do not have
3607 	 * to go through a more general insertion process than this.
3608 	 */
3609 	state.modlist = elfedit_sys_init(ELFEDIT_VER_CURRENT);
3610 
3611 	/* Establish the search path for loadable modules */
3612 	establish_modpath(modpath);
3613 
3614 	/*
3615 	 * Now that we are running the final version of this program,
3616 	 * deal with the input/output file(s).
3617 	 */
3618 	if (state.file.present == 0) {
3619 		/*
3620 		 * This is arbitrary --- we simply need to be able to
3621 		 * load modules so that we can access their help strings
3622 		 * and command completion functions. Without a file, we
3623 		 * will refuse to call commands from any module other
3624 		 * than sys. Those commands have been written to be aware
3625 		 * of the case where there is no input file, and are
3626 		 * therefore safe to run.
3627 		 */
3628 		state.elf.elfclass = ELFCLASS32;
3629 		elfedit_msg(ELFEDIT_MSG_DEBUG, MSG_INTL(MSG_DEBUG_NOFILE));
3630 
3631 	} else {
3632 		state.file.infile = argv[optind];
3633 		if (argc == 1) {
3634 			state.file.outfile = state.file.infile;
3635 			if (state.flags & ELFEDIT_F_READONLY)
3636 				elfedit_msg(ELFEDIT_MSG_DEBUG,
3637 				    MSG_INTL(MSG_DEBUG_READONLY));
3638 			else
3639 				elfedit_msg(ELFEDIT_MSG_DEBUG,
3640 				    MSG_INTL(MSG_DEBUG_INPLACEWARN),
3641 				    state.file.infile);
3642 		} else {
3643 			state.file.outfile = argv[optind + 1];
3644 			create_outfile(state.file.infile, state.file.outfile);
3645 			elfedit_msg(ELFEDIT_MSG_DEBUG,
3646 			    MSG_INTL(MSG_DEBUG_CPFILE),
3647 			    state.file.infile, state.file.outfile);
3648 			/*
3649 			 * We are editing a copy of the original file that we
3650 			 * just created. If we should exit before the edits are
3651 			 * updated, then we want to unlink this copy so that we
3652 			 * don't leave junk lying around. Once an update
3653 			 * succeeds however, we'll leave it in place even
3654 			 * if an error occurs afterwards.
3655 			 */
3656 			state.file.unlink_on_exit = 1;
3657 			optind++;	/* Edit copy instead of the original */
3658 		}
3659 
3660 		init_obj_state(state.file.outfile);
3661 	}
3662 
3663 
3664 	/*
3665 	 * Process commands.
3666 	 *
3667 	 * If any -e options were used, then do them and
3668 	 * immediately exit. On error, exit immediately without
3669 	 * updating the target ELF file. On success, the 'write'
3670 	 * and 'quit' commands are implicit in this mode.
3671 	 *
3672 	 * If no -e options are used, read commands from stdin.
3673 	 * quit must be explicitly used. Exit is implicit on EOF.
3674 	 * If stdin is a tty, then errors do not cause the editor
3675 	 * to terminate. Rather, the error message is printed, and the
3676 	 * user prompted to continue.
3677 	 */
3678 	if (batch_list != NULL) {	/* -e was used */
3679 		/* Compile the commands */
3680 		for (i = 0; i < num_batch; i++)
3681 			parse_user_cmd(batch_list[i]);
3682 		free(batch_list);
3683 
3684 		/*
3685 		 * 'write' and 'quit' are implicit in this mode.
3686 		 * Add them as well.
3687 		 */
3688 		if ((state.flags & ELFEDIT_F_READONLY) == 0)
3689 			parse_user_cmd(MSG_ORIG(MSG_SYS_CMD_WRITE));
3690 		parse_user_cmd(MSG_ORIG(MSG_SYS_CMD_QUIT));
3691 
3692 		/* And run them. This won't return, thanks to the 'quit' */
3693 		dispatch_user_cmds();
3694 	} else {
3695 		state.input.is_tty = isatty(fileno(stdin));
3696 		state.input.full_tty = state.input.is_tty &&
3697 		    isatty(fileno(stdout));
3698 
3699 		if (state.input.full_tty) {
3700 			struct sigaction act;
3701 
3702 			act.sa_sigaction = sigint_handler;
3703 			(void) sigemptyset(&act.sa_mask);
3704 			act.sa_flags = 0;
3705 			if (sigaction(SIGINT, &act, NULL) == -1) {
3706 				int err = errno;
3707 				elfedit_msg(ELFEDIT_MSG_ERR,
3708 				    MSG_INTL(MSG_ERR_SIGACTION), strerror(err));
3709 			}
3710 			/*
3711 			 * If pager process exits before we are done
3712 			 * writing, we can see SIGPIPE. Prevent it
3713 			 * from killing the process.
3714 			 */
3715 			(void) sigignore(SIGPIPE);
3716 
3717 			/* Open tecla handle for command line editing */
3718 			state.input.gl = new_GetLine(ELFEDIT_MAXCMD,
3719 			    ELFEDIT_MAXHIST);
3720 			/* Register our command completion function */
3721 			(void) gl_customize_completion(state.input.gl,
3722 			    NULL, cmd_match_fcn);
3723 
3724 			/*
3725 			 * Make autoprint the default for interactive
3726 			 * sessions.
3727 			 */
3728 			state.flags |= ELFEDIT_F_AUTOPRINT;
3729 		}
3730 		for (;;) {
3731 			/*
3732 			 * If this is an interactive session, then use
3733 			 * sigsetjmp()/siglongjmp() to recover from bad
3734 			 * commands and keep going. A non-0 return from
3735 			 * sigsetjmp() means that an error just occurred.
3736 			 * In that case, we simply restart this loop.
3737 			 */
3738 			if (state.input.is_tty) {
3739 				if (sigsetjmp(state.msg_jbuf.env, 1) != 0) {
3740 					if (state.input.full_tty)
3741 						gl_abandon_line(state.input.gl);
3742 					continue;
3743 				}
3744 				state.msg_jbuf.active = TRUE;
3745 			}
3746 
3747 			/*
3748 			 * Force all output out before each command.
3749 			 * This is a no-OP when a tty is in use, but
3750 			 * in a pipeline, it ensures that the block
3751 			 * mode buffering doesn't delay output past
3752 			 * the completion of each command.
3753 			 *
3754 			 * If we didn't do this, the output would eventually
3755 			 * arrive at its destination, but the lag can be
3756 			 * annoying when you pipe the output into a tool
3757 			 * that displays the results in real time.
3758 			 */
3759 			(void) fflush(stdout);
3760 			(void) fflush(stderr);
3761 
3762 			parse_user_cmd(read_cmd());
3763 			dispatch_user_cmds();
3764 			state.msg_jbuf.active = FALSE;
3765 		}
3766 	}
3767 
3768 
3769 	/*NOTREACHED*/
3770 	return (0);
3771 }
3772