xref: /illumos-gate/usr/src/cmd/sgs/elfdump/common/elfdump.c (revision f17620a4f72a29025a22655ba8735ccd20ae174f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright (c) 2015, Joyent, Inc. All rights reserved.
29  */
30 
31 /*
32  * Dump an elf file.
33  */
34 #include	<stddef.h>
35 #include	<sys/elf_386.h>
36 #include	<sys/elf_amd64.h>
37 #include	<sys/elf_SPARC.h>
38 #include	<_libelf.h>
39 #include	<dwarf.h>
40 #include	<stdio.h>
41 #include	<unistd.h>
42 #include	<errno.h>
43 #include	<strings.h>
44 #include	<debug.h>
45 #include	<conv.h>
46 #include	<msg.h>
47 #include	<_elfdump.h>
48 
49 
50 /*
51  * VERSYM_STATE is used to maintain information about the VERSYM section
52  * in the object being analyzed. It is filled in by versions(), and used
53  * by init_symtbl_state() when displaying symbol information.
54  *
55  * There are three forms of symbol versioning known to us:
56  *
57  * 1) The original form, introduced with Solaris 2.5, in which
58  *	the Versym contains indexes to Verdef records, and the
59  *	Versym values for UNDEF symbols resolved by other objects
60  *	are all set to 0.
61  * 2) The GNU form, which is backward compatible with the original
62  *	Solaris form, but which adds several extensions:
63  *	- The Versym also contains indexes to Verneed records, recording
64  *		which object/version contributed the external symbol at
65  *		link time. These indexes start with the next value following
66  *		the final Verdef index. The index is written to the previously
67  *		reserved vna_other field of the ELF Vernaux structure.
68  *	- The top bit of the Versym value is no longer part of the index,
69  *		but is used as a "hidden bit" to prevent binding to the symbol.
70  *	- Multiple implementations of a given symbol, contained in varying
71  *		versions are allowed, using special assembler pseudo ops,
72  *		and encoded in the symbol name using '@' characters.
73  * 3) Modified Solaris form, in which we adopt the first GNU extension
74  *	(Versym indexes to Verneed records), but not the others.
75  *
76  * elfdump can handle any of these cases. The presence of a DT_VERSYM
77  * dynamic element indicates a full GNU object. An object that lacks
78  * a DT_VERSYM entry, but which has non-zero vna_other fields in the Vernaux
79  * structures is a modified Solaris object. An object that has neither of
80  * these uses the original form.
81  *
82  * max_verndx contains the largest version index that can appear
83  * in a Versym entry. This can never be less than 1: In the case where
84  * there is no verdef/verneed sections, the [0] index is reserved
85  * for local symbols, and the [1] index for globals. If the original
86  * Solaris versioning rules are in effect and there is a verdef section,
87  * then max_verndex is the number of defined versions. If one of the
88  * other versioning forms is in effect, then:
89  *	1) If there is no verneed section, it is the same as for
90  *		original Solaris versioning.
91  *	2) If there is a verneed section, the vna_other field of the
92  *		Vernaux structs contain versions, and max_verndx is the
93  *		largest such index.
94  *
95  * If gnu_full is True, the object uses the full GNU form of versioning.
96  * The value of the gnu_full field is based on the presence of
97  * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and
98  * Solaris ld does not.
99  *
100  * The gnu_needed field is True if the Versym contains indexes to
101  * Verneed records, as indicated by non-zero vna_other fields in the Verneed
102  * section. If gnu_full is True, then gnu_needed will always be true.
103  * However, gnu_needed can be true without gnu_full. This is the modified
104  * Solaris form.
105  */
106 typedef struct {
107 	Cache	*cache;		/* Pointer to cache entry for VERSYM */
108 	Versym	*data;		/* Pointer to versym array */
109 	int	gnu_full;	/* True if object uses GNU versioning rules */
110 	int	gnu_needed;	/* True if object uses VERSYM indexes for */
111 				/*	VERNEED (subset of gnu_full) */
112 	int	max_verndx;	/* largest versym index value */
113 } VERSYM_STATE;
114 
115 /*
116  * SYMTBL_STATE is used to maintain information about a single symbol
117  * table section, for use by the routines that display symbol information.
118  */
119 typedef struct {
120 	const char	*file;		/* Name of file */
121 	Ehdr		*ehdr;		/* ELF header for file */
122 	Cache		*cache;		/* Cache of all section headers */
123 	uchar_t		osabi;		/* OSABI to use */
124 	Word		shnum;		/* # of sections in cache */
125 	Cache		*seccache;	/* Cache of symbol table section hdr */
126 	Word		secndx;		/* Index of symbol table section hdr */
127 	const char	*secname;	/* Name of section */
128 	uint_t		flags;		/* Command line option flags */
129 	struct {			/* Extended section index data */
130 		int	checked;	/* TRUE if already checked for shxndx */
131 		Word	*data;		/* NULL, or extended section index */
132 					/*	used for symbol table entries */
133 		uint_t	n;		/* # items in shxndx.data */
134 	} shxndx;
135 	VERSYM_STATE	*versym;	/* NULL, or associated VERSYM section */
136 	Sym		*sym;		/* Array of symbols */
137 	Word		symn;		/* # of symbols */
138 } SYMTBL_STATE;
139 
140 /*
141  * A variable of this type is used to track information related to
142  * .eh_frame and .eh_frame_hdr sections across calls to unwind_eh_frame().
143  */
144 typedef struct {
145 	Word		frame_cnt;	/* # .eh_frame sections seen */
146 	Word		frame_ndx;	/* Section index of 1st .eh_frame */
147 	Word		hdr_cnt;	/* # .eh_frame_hdr sections seen */
148 	Word		hdr_ndx;	/* Section index of 1st .eh_frame_hdr */
149 	uint64_t	frame_ptr;	/* Value of FramePtr field from first */
150 					/*	.eh_frame_hdr section */
151 	uint64_t	frame_base;	/* Data addr of 1st .eh_frame  */
152 } gnu_eh_state_t;
153 
154 /*
155  * C++ .exception_ranges entries make use of the signed ptrdiff_t
156  * type to record self-relative pointer values. We need a type
157  * for this that is matched to the ELFCLASS being processed.
158  */
159 #if	defined(_ELF64)
160 	typedef int64_t PTRDIFF_T;
161 #else
162 	typedef int32_t PTRDIFF_T;
163 #endif
164 
165 /*
166  * The Sun C++ ABI uses this struct to define each .exception_ranges
167  * entry. From the ABI:
168  *
169  * The field ret_addr is a self relative pointer to the start of the address
170  * range. The name was chosen because in the current implementation the range
171  * typically starts at the return address for a call site.
172  *
173  * The field length is the difference, in bytes, between the pc of the last
174  * instruction covered by the exception range and the first. When only a
175  * single call site is represented without optimization, this will equal zero.
176  *
177  * The field handler_addr is a relative pointer which stores the difference
178  * between the start of the exception range and the address of all code to
179  * catch exceptions and perform the cleanup for stack unwinding.
180  *
181  * The field type_block is a relative pointer which stores the difference
182  * between the start of the exception range and the address of an array used
183  * for storing a list of the types of exceptions which can be caught within
184  * the exception range.
185  */
186 typedef struct {
187 	PTRDIFF_T	ret_addr;
188 	Xword		length;
189 	PTRDIFF_T	handler_addr;
190 	PTRDIFF_T	type_block;
191 	Xword		reserved;
192 } exception_range_entry;
193 
194 /*
195  * Focal point for verifying symbol names.
196  */
197 static const char *
198 string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name)
199 {
200 	/*
201 	 * If an error in this routine is due to a property of the string
202 	 * section, as opposed to a bad offset into the section (a property of
203 	 * the referencing section), then we will detect the same error on
204 	 * every call involving those sections. We use these static variables
205 	 * to retain the information needed to only issue each such error once.
206 	 */
207 	static Cache	*last_refsec;	/* Last referencing section seen */
208 	static int	strsec_err;	/* True if error issued */
209 
210 	const char	*strs;
211 	Word		strn;
212 
213 	if ((strsec->c_data == NULL) || (strsec->c_data->d_buf == NULL))
214 		return (NULL);
215 
216 	strs = (char *)strsec->c_data->d_buf;
217 	strn = strsec->c_data->d_size;
218 
219 	/*
220 	 * We only print a diagnostic regarding a bad string table once per
221 	 * input section being processed. If the refsec has changed, reset
222 	 * our retained error state.
223 	 */
224 	if (last_refsec != refsec) {
225 		last_refsec = refsec;
226 		strsec_err = 0;
227 	}
228 
229 	/* Verify that strsec really is a string table */
230 	if (strsec->c_shdr->sh_type != SHT_STRTAB) {
231 		if (!strsec_err) {
232 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB),
233 			    file, strsec->c_ndx, refsec->c_ndx);
234 			strsec_err = 1;
235 		}
236 		return (MSG_INTL(MSG_STR_UNKNOWN));
237 	}
238 
239 	/*
240 	 * Is the string table offset within range of the available strings?
241 	 */
242 	if (name >= strn) {
243 		/*
244 		 * Do we have a empty string table?
245 		 */
246 		if (strs == NULL) {
247 			if (!strsec_err) {
248 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
249 				    file, strsec->c_name);
250 				strsec_err = 1;
251 			}
252 		} else {
253 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF),
254 			    file, refsec->c_name, EC_WORD(ndx), strsec->c_name,
255 			    EC_WORD(name), EC_WORD(strn - 1));
256 		}
257 
258 		/*
259 		 * Return the empty string so that the calling function can
260 		 * continue it's output diagnostics.
261 		 */
262 		return (MSG_INTL(MSG_STR_UNKNOWN));
263 	}
264 	return (strs + name);
265 }
266 
267 /*
268  * Relocations can reference section symbols and standard symbols.  If the
269  * former, establish the section name.
270  */
271 static const char *
272 relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum,
273     Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file)
274 {
275 	Sym		*sym;
276 	const char	*name;
277 
278 	if (symndx >= symnum) {
279 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX),
280 		    file, EC_WORD(symndx), EC_WORD(relndx));
281 		return (MSG_INTL(MSG_STR_UNKNOWN));
282 	}
283 
284 	sym = (Sym *)(syms + symndx);
285 	name = string(csec, symndx, strsec, file, sym->st_name);
286 
287 	/*
288 	 * If the symbol represents a section offset construct an appropriate
289 	 * string.  Note, although section symbol table entries typically have
290 	 * a NULL name pointer, entries do exist that point into the string
291 	 * table to their own NULL strings.
292 	 */
293 	if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) &&
294 	    ((sym->st_name == 0) || (*name == '\0'))) {
295 		(void) snprintf(secstr, secsz, MSG_INTL(MSG_STR_SECTION),
296 		    cache[sym->st_shndx].c_name);
297 		return ((const char *)secstr);
298 	}
299 
300 	return (name);
301 }
302 
303 /*
304  * Focal point for establishing a string table section.  Data such as the
305  * dynamic information simply points to a string table.  Data such as
306  * relocations, reference a symbol table, which in turn is associated with a
307  * string table.
308  */
309 static int
310 stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file,
311     Word *symnum, Cache **symsec, Cache **strsec)
312 {
313 	Shdr	*shdr = cache[ndx].c_shdr;
314 
315 	/*
316 	 * If symtab is non-zero, the ndx we are called with represents a
317 	 * shdr which links to a symbol table (which then links to a string
318 	 * table)
319 	 */
320 	if (symtab != 0) {
321 		/*
322 		 * Validate the symbol table linkage.
323 		 */
324 		if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
325 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
326 			    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
327 			return (0);
328 		}
329 
330 		/*
331 		 * Establish the symbol table index.
332 		 */
333 		ndx = shdr->sh_link;
334 		shdr = cache[ndx].c_shdr;
335 
336 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
337 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
338 			    file, cache[ndx].c_name);
339 			return (0);
340 		}
341 
342 		/*
343 		 * Obtain, and verify the symbol table data.
344 		 */
345 		if ((cache[ndx].c_data == NULL) ||
346 		    (cache[ndx].c_data->d_buf == NULL)) {
347 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
348 			    file, cache[ndx].c_name);
349 			return (0);
350 		}
351 
352 		/*
353 		 * Return symbol table information.
354 		 */
355 		if (symnum)
356 			*symnum = (shdr->sh_size / shdr->sh_entsize);
357 		if (symsec)
358 			*symsec = &cache[ndx];
359 	}
360 
361 	/*
362 	 * Validate the string table linkage.
363 	 */
364 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
365 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
366 		    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
367 		return (0);
368 	}
369 
370 	if (strsec)
371 		*strsec = &cache[shdr->sh_link];
372 
373 	return (1);
374 }
375 
376 /*
377  * Lookup a symbol and set Sym accordingly.
378  *
379  * entry:
380  *	name - Name of symbol to lookup
381  *	cache - Cache of all section headers
382  *	shnum - # of sections in cache
383  *	sym - Address of pointer to receive symbol
384  *	target - NULL, or section to which the symbol must be associated.
385  *	symtab - Symbol table to search for symbol
386  *	file - Name of file
387  *
388  * exit:
389  *	If the symbol is found, *sym is set to reference it, and True is
390  *	returned. If target is non-NULL, the symbol must reference the given
391  *	section --- otherwise the section is not checked.
392  *
393  *	If no symbol is found, False is returned.
394  */
395 static int
396 symlookup(const char *name, Cache *cache, Word shnum, Sym **sym,
397     Cache *target, Cache *symtab, const char *file)
398 {
399 	Shdr	*shdr;
400 	Word	symn, cnt;
401 	Sym	*syms;
402 
403 	if (symtab == 0)
404 		return (0);
405 
406 	shdr = symtab->c_shdr;
407 
408 	/*
409 	 * Determine the symbol data and number.
410 	 */
411 	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
412 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
413 		    file, symtab->c_name);
414 		return (0);
415 	}
416 	if ((symtab->c_data == NULL) || (symtab->c_data->d_buf == NULL))
417 		return (0);
418 
419 	/* LINTED */
420 	symn = (Word)(shdr->sh_size / shdr->sh_entsize);
421 	syms = (Sym *)symtab->c_data->d_buf;
422 
423 	/*
424 	 * Get the associated string table section.
425 	 */
426 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
427 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
428 		    file, symtab->c_name, EC_WORD(shdr->sh_link));
429 		return (0);
430 	}
431 
432 	/*
433 	 * Loop through the symbol table to find a match.
434 	 */
435 	*sym = NULL;
436 	for (cnt = 0; cnt < symn; syms++, cnt++) {
437 		const char	*symname;
438 
439 		symname = string(symtab, cnt, &cache[shdr->sh_link], file,
440 		    syms->st_name);
441 
442 		if (symname && (strcmp(name, symname) == 0) &&
443 		    ((target == NULL) || (target->c_ndx == syms->st_shndx))) {
444 			/*
445 			 * It is possible, though rare, for a local and
446 			 * global symbol of the same name to exist, each
447 			 * contributed by a different input object. If the
448 			 * symbol just found is local, remember it, but
449 			 * continue looking.
450 			 */
451 			*sym = syms;
452 			if (ELF_ST_BIND(syms->st_info) != STB_LOCAL)
453 				break;
454 		}
455 	}
456 
457 	return (*sym != NULL);
458 }
459 
460 /*
461  * Print section headers.
462  */
463 static void
464 sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi)
465 {
466 	size_t	seccnt;
467 
468 	for (seccnt = 1; seccnt < shnum; seccnt++) {
469 		Cache		*_cache = &cache[seccnt];
470 		Shdr		*shdr = _cache->c_shdr;
471 		const char	*secname = _cache->c_name;
472 
473 		/*
474 		 * Although numerous section header entries can be zero, it's
475 		 * usually a sign of trouble if the type is zero.
476 		 */
477 		if (shdr->sh_type == 0) {
478 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE),
479 			    file, secname, EC_WORD(shdr->sh_type));
480 		}
481 
482 		if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type))
483 			continue;
484 
485 		/*
486 		 * Identify any sections that are suspicious.  A .got section
487 		 * shouldn't exist in a relocatable object.
488 		 */
489 		if (ehdr->e_type == ET_REL) {
490 			if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT),
491 			    MSG_ELF_GOT_SIZE) == 0) {
492 				(void) fprintf(stderr,
493 				    MSG_INTL(MSG_GOT_UNEXPECTED), file,
494 				    secname);
495 			}
496 		}
497 
498 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
499 		dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname);
500 		Elf_shdr(0, osabi, ehdr->e_machine, shdr);
501 	}
502 }
503 
504 /*
505  * Obtain a specified Phdr entry.
506  */
507 static Phdr *
508 getphdr(Word phnum, Word *type_arr, Word type_cnt, const char *file, Elf *elf,
509     size_t *phndx)
510 {
511 	Word	cnt, tcnt;
512 	Phdr	*phdr;
513 
514 	if (phndx != NULL)
515 		*phndx = 0;
516 
517 	if ((phdr = elf_getphdr(elf)) == NULL) {
518 		failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
519 		return (NULL);
520 	}
521 
522 	for (cnt = 0; cnt < phnum; phdr++, cnt++) {
523 		for (tcnt = 0; tcnt < type_cnt; tcnt++) {
524 			if (phdr->p_type == type_arr[tcnt]) {
525 				if (phndx != NULL) {
526 					*phndx = cnt;
527 				}
528 				return (phdr);
529 			}
530 		}
531 	}
532 	return (NULL);
533 }
534 
535 /*
536  * Display the contents of GNU/amd64 .eh_frame and .eh_frame_hdr
537  * sections.
538  *
539  * entry:
540  *	cache - Cache of all section headers
541  *	shndx - Index of .eh_frame or .eh_frame_hdr section to be displayed
542  *	shnum - Total number of sections which exist
543  *	uphdr - NULL, or unwind program header associated with
544  *		the .eh_frame_hdr section.
545  *	ehdr - ELF header for file
546  *	eh_state - Data used across calls to this routine. The
547  *		caller should zero it before the first call, and
548  *		pass it on every call.
549  *	osabi - OSABI to use in displaying information
550  *	file - Name of file
551  *	flags - Command line option flags
552  */
553 static void
554 unwind_eh_frame(Cache *cache, Word shndx, Word shnum, Phdr *uphdr, Ehdr *ehdr,
555     gnu_eh_state_t *eh_state, uchar_t osabi, const char *file, uint_t flags)
556 {
557 #if	defined(_ELF64)
558 #define	MSG_UNW_BINSRTAB2	MSG_UNW_BINSRTAB2_64
559 #define	MSG_UNW_BINSRTABENT	MSG_UNW_BINSRTABENT_64
560 #else
561 #define	MSG_UNW_BINSRTAB2	MSG_UNW_BINSRTAB2_32
562 #define	MSG_UNW_BINSRTABENT	MSG_UNW_BINSRTABENT_32
563 #endif
564 
565 	Cache			*_cache = &cache[shndx];
566 	Shdr			*shdr = _cache->c_shdr;
567 	uchar_t			*data = (uchar_t *)(_cache->c_data->d_buf);
568 	size_t			datasize = _cache->c_data->d_size;
569 	Conv_dwarf_ehe_buf_t	dwarf_ehe_buf;
570 	uint64_t		ndx, frame_ptr, fde_cnt, tabndx;
571 	uint_t			vers, frame_ptr_enc, fde_cnt_enc, table_enc;
572 	uint64_t		initloc, initloc0 = 0;
573 	uint64_t		gotaddr = 0;
574 	int			cnt;
575 
576 	for (cnt = 1; cnt < shnum; cnt++) {
577 		if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
578 		    MSG_ELF_GOT_SIZE) == 0) {
579 			gotaddr = cache[cnt].c_shdr->sh_addr;
580 			break;
581 		}
582 	}
583 
584 	if ((data == NULL) || (datasize == 0)) {
585 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
586 		    file, _cache ->c_name);
587 		return;
588 	}
589 
590 	/*
591 	 * Is this a .eh_frame_hdr?
592 	 */
593 	if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) ||
594 	    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
595 	    MSG_SCN_FRMHDR_SIZE) == 0)) {
596 		/*
597 		 * There can only be a single .eh_frame_hdr.
598 		 * Flag duplicates.
599 		 */
600 		if (++eh_state->hdr_cnt > 1)
601 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTEHFRMHDR),
602 			    file, EC_WORD(shndx), _cache->c_name);
603 
604 		dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR));
605 		ndx = 0;
606 
607 		vers = data[ndx++];
608 		frame_ptr_enc = data[ndx++];
609 		fde_cnt_enc = data[ndx++];
610 		table_enc = data[ndx++];
611 
612 		dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers);
613 
614 		switch (dwarf_ehe_extract(data, datasize, &ndx,
615 		    &frame_ptr, frame_ptr_enc, ehdr->e_ident, B_TRUE,
616 		    shdr->sh_addr, ndx, gotaddr)) {
617 		case DW_OVERFLOW:
618 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW),
619 			    file, _cache->c_name);
620 			return;
621 		case DW_BAD_ENCODING:
622 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC),
623 			    file, _cache->c_name, frame_ptr_enc);
624 			return;
625 		case DW_SUCCESS:
626 			break;
627 		}
628 		if (eh_state->hdr_cnt == 1) {
629 			eh_state->hdr_ndx = shndx;
630 			eh_state->frame_ptr = frame_ptr;
631 		}
632 
633 		dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC),
634 		    conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf),
635 		    EC_XWORD(frame_ptr));
636 
637 		switch (dwarf_ehe_extract(data, datasize, &ndx, &fde_cnt,
638 		    fde_cnt_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx,
639 		    gotaddr)) {
640 		case DW_OVERFLOW:
641 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW),
642 			    file, _cache->c_name);
643 			return;
644 		case DW_BAD_ENCODING:
645 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC),
646 			    file, _cache->c_name, fde_cnt_enc);
647 			return;
648 		case DW_SUCCESS:
649 			break;
650 		}
651 
652 		dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC),
653 		    conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf),
654 		    EC_XWORD(fde_cnt));
655 		dbg_print(0, MSG_ORIG(MSG_UNW_TABENC),
656 		    conv_dwarf_ehe(table_enc, &dwarf_ehe_buf));
657 		dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1));
658 		dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2));
659 
660 		for (tabndx = 0; tabndx < fde_cnt; tabndx++) {
661 			uint64_t table;
662 
663 			switch (dwarf_ehe_extract(data, datasize, &ndx,
664 			    &initloc, table_enc, ehdr->e_ident, B_TRUE,
665 			    shdr->sh_addr, ndx, gotaddr)) {
666 			case DW_OVERFLOW:
667 				(void) fprintf(stderr,
668 				    MSG_INTL(MSG_ERR_DWOVRFLW), file,
669 				    _cache->c_name);
670 				return;
671 			case DW_BAD_ENCODING:
672 				(void) fprintf(stderr,
673 				    MSG_INTL(MSG_ERR_DWBADENC), file,
674 				    _cache->c_name, table_enc);
675 				return;
676 			case DW_SUCCESS:
677 				break;
678 			}
679 			if ((tabndx != 0) && (initloc0 > initloc))
680 				(void) fprintf(stderr,
681 				    MSG_INTL(MSG_ERR_BADSORT), file,
682 				    _cache->c_name, EC_WORD(tabndx));
683 			switch (dwarf_ehe_extract(data, datasize, &ndx, &table,
684 			    table_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr,
685 			    ndx, gotaddr)) {
686 			case DW_OVERFLOW:
687 				(void) fprintf(stderr,
688 				    MSG_INTL(MSG_ERR_DWOVRFLW), file,
689 				    _cache->c_name);
690 				return;
691 			case DW_BAD_ENCODING:
692 				(void) fprintf(stderr,
693 				    MSG_INTL(MSG_ERR_DWBADENC), file,
694 				    _cache->c_name, table_enc);
695 				return;
696 			case DW_SUCCESS:
697 				break;
698 			}
699 
700 			dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT),
701 			    EC_XWORD(initloc),
702 			    EC_XWORD(table));
703 			initloc0 = initloc;
704 		}
705 	} else {		/* Display the .eh_frame section */
706 		eh_state->frame_cnt++;
707 		if (eh_state->frame_cnt == 1) {
708 			eh_state->frame_ndx = shndx;
709 			eh_state->frame_base = shdr->sh_addr;
710 		} else if ((eh_state->frame_cnt >  1) &&
711 		    (ehdr->e_type != ET_REL)) {
712 			Conv_inv_buf_t	inv_buf;
713 
714 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_MULTEHFRM),
715 			    file, EC_WORD(shndx), _cache->c_name,
716 			    conv_ehdr_type(osabi, ehdr->e_type, 0, &inv_buf));
717 		}
718 		dump_eh_frame(file, _cache->c_name, data, datasize,
719 		    shdr->sh_addr, ehdr->e_machine, ehdr->e_ident, gotaddr);
720 	}
721 
722 	/*
723 	 * If we've seen the .eh_frame_hdr and the first .eh_frame section,
724 	 * compare the header frame_ptr to the address of the actual frame
725 	 * section to ensure the link-editor got this right.  Note, this
726 	 * diagnostic is only produced when unwind information is explicitly
727 	 * asked for, as shared objects built with an older ld(1) may reveal
728 	 * this inconsistency.  Although an inconsistency, it doesn't seem to
729 	 * have any adverse effect on existing tools.
730 	 */
731 	if (((flags & FLG_MASK_SHOW) != FLG_MASK_SHOW) &&
732 	    (eh_state->hdr_cnt > 0) && (eh_state->frame_cnt > 0) &&
733 	    (eh_state->frame_ptr != eh_state->frame_base))
734 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADEHFRMPTR),
735 		    file, EC_WORD(eh_state->hdr_ndx),
736 		    cache[eh_state->hdr_ndx].c_name,
737 		    EC_XWORD(eh_state->frame_ptr),
738 		    EC_WORD(eh_state->frame_ndx),
739 		    cache[eh_state->frame_ndx].c_name,
740 		    EC_XWORD(eh_state->frame_base));
741 #undef MSG_UNW_BINSRTAB2
742 #undef MSG_UNW_BINSRTABENT
743 }
744 
745 /*
746  * Convert a self relative pointer into an address. A self relative
747  * pointer adds the address where the pointer resides to the offset
748  * contained in the pointer. The benefit is that the value of the
749  * pointer does not require relocation.
750  *
751  * entry:
752  *	base_addr - Address of the pointer.
753  *	delta - Offset relative to base_addr giving desired address
754  *
755  * exit:
756  *	The computed address is returned.
757  *
758  * note:
759  *	base_addr is an unsigned value, while ret_addr is signed. This routine
760  *	used explicit testing and casting to explicitly control type
761  *	conversion, and ensure that we handle the maximum possible range.
762  */
763 static Addr
764 srelptr(Addr base_addr, PTRDIFF_T delta)
765 {
766 	if (delta < 0)
767 		return (base_addr - (Addr) (-delta));
768 
769 	return (base_addr + (Addr) delta);
770 }
771 
772 /*
773  * Byte swap a PTRDIFF_T value.
774  */
775 static PTRDIFF_T
776 swap_ptrdiff(PTRDIFF_T value)
777 {
778 	PTRDIFF_T r;
779 	uchar_t	*dst = (uchar_t *)&r;
780 	uchar_t	*src = (uchar_t *)&value;
781 
782 	UL_ASSIGN_BSWAP_XWORD(dst, src);
783 	return (r);
784 }
785 
786 /*
787  * Display exception_range_entry items from the .exception_ranges section
788  * of a Sun C++ object.
789  */
790 static void
791 unwind_exception_ranges(Cache *_cache, const char *file, int do_swap)
792 {
793 	/*
794 	 * Translate a PTRDIFF_T self-relative address field of
795 	 * an exception_range_entry struct into an address.
796 	 *
797 	 * entry:
798 	 *	exc_addr - Address of base of exception_range_entry struct
799 	 *	cur_ent - Pointer to data in the struct to be translated
800 	 *
801 	 *	_f - Field of struct to be translated
802 	 */
803 #define	SRELPTR(_f) \
804 	srelptr(exc_addr + offsetof(exception_range_entry, _f), cur_ent->_f)
805 
806 #if	defined(_ELF64)
807 #define	MSG_EXR_TITLE	MSG_EXR_TITLE_64
808 #define	MSG_EXR_ENTRY	MSG_EXR_ENTRY_64
809 #else
810 #define	MSG_EXR_TITLE	MSG_EXR_TITLE_32
811 #define	MSG_EXR_ENTRY	MSG_EXR_ENTRY_32
812 #endif
813 
814 	exception_range_entry	scratch, *ent, *cur_ent = &scratch;
815 	char			index[MAXNDXSIZE];
816 	Word			i, nelts;
817 	Addr			addr, addr0 = 0, offset = 0;
818 	Addr			exc_addr = _cache->c_shdr->sh_addr;
819 
820 	dbg_print(0, MSG_INTL(MSG_EXR_TITLE));
821 	ent = (exception_range_entry *)(_cache->c_data->d_buf);
822 	nelts = _cache->c_data->d_size / sizeof (exception_range_entry);
823 
824 	for (i = 0; i < nelts; i++, ent++) {
825 		if (do_swap) {
826 			/*
827 			 * Copy byte swapped values into the scratch buffer.
828 			 * The reserved field is not used, so we skip it.
829 			 */
830 			scratch.ret_addr = swap_ptrdiff(ent->ret_addr);
831 			scratch.length = BSWAP_XWORD(ent->length);
832 			scratch.handler_addr = swap_ptrdiff(ent->handler_addr);
833 			scratch.type_block = swap_ptrdiff(ent->type_block);
834 		} else {
835 			cur_ent = ent;
836 		}
837 
838 		/*
839 		 * The table is required to be sorted by the address
840 		 * derived from ret_addr, to allow binary searching. Ensure
841 		 * that addresses grow monotonically.
842 		 */
843 		addr = SRELPTR(ret_addr);
844 		if ((i != 0) && (addr0 > addr))
845 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORT),
846 			    file, _cache->c_name, EC_WORD(i));
847 
848 		(void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
849 		    EC_XWORD(i));
850 		dbg_print(0, MSG_INTL(MSG_EXR_ENTRY), index, EC_ADDR(offset),
851 		    EC_ADDR(addr), EC_ADDR(cur_ent->length),
852 		    EC_ADDR(SRELPTR(handler_addr)),
853 		    EC_ADDR(SRELPTR(type_block)));
854 
855 		addr0 = addr;
856 		exc_addr += sizeof (exception_range_entry);
857 		offset += sizeof (exception_range_entry);
858 	}
859 
860 #undef SRELPTR
861 #undef MSG_EXR_TITLE
862 #undef MSG_EXR_ENTRY
863 }
864 
865 
866 /*
867  * For program headers which reflect a single section, check that their values
868  * and that of the section match.
869  */
870 static void
871 check_phdr_v_shdr(Phdr *phdr, size_t phndx,
872     uchar_t osabi, Half mach, Cache *cache, const char *file)
873 {
874 	Conv_inv_buf_t	inv_buf;
875 
876 #define	CHECK(str, pfield, sfield)					\
877 	if (phdr->pfield != cache->c_shdr->sfield) {			\
878 		fprintf(stderr, MSG_INTL(MSG_SHDR_PHDR_MISMATCH),	\
879 		    file,						\
880 		    cache->c_ndx,					\
881 		    cache->c_name,					\
882 		    str,						\
883 		    conv_phdr_type(osabi, mach, phdr->p_type,		\
884 		    CONV_FMT_ALT_CF, &inv_buf),				\
885 		    #sfield,						\
886 		    cache->c_shdr->sfield,				\
887 		    phndx,						\
888 		    #pfield,						\
889 		    phdr->pfield);					\
890 	}
891 
892 	CHECK(MSG_INTL(MSG_STR_VADDR), p_vaddr, sh_addr);
893 	CHECK(MSG_INTL(MSG_STR_OFFSET), p_offset, sh_offset);
894 	CHECK(MSG_INTL(MSG_STR_FILESIZE), p_filesz, sh_size);
895 	CHECK(MSG_INTL(MSG_STR_MEMSIZE), p_memsz, sh_size);
896 	CHECK(MSG_INTL(MSG_STR_ALIGNMENT), p_align, sh_addralign);
897 
898 #undef CHECK
899 }
900 
901 
902 /*
903  * Display information from unwind/exception sections:
904  *
905  * -	GNU/amd64 .eh_frame and .eh_frame_hdr
906  * -	Sun C++ .exception_ranges
907  *
908  */
909 static void
910 unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, uchar_t osabi,
911     const char *file, Elf *elf, uint_t flags)
912 {
913 	static Word phdr_types[] = { PT_SUNW_UNWIND, PT_SUNW_EH_FRAME };
914 
915 	Word			cnt;
916 	Phdr			*uphdr = NULL;
917 	size_t			phndx;
918 	gnu_eh_state_t		eh_state;
919 
920 	/*
921 	 * Historical background: .eh_frame and .eh_frame_hdr sections
922 	 * come from the GNU compilers (particularly C++), and are used
923 	 * under all architectures. Their format is based on DWARF. When
924 	 * the amd64 ABI was defined, these sections were adopted wholesale
925 	 * from the existing practice.
926 	 *
927 	 * When amd64 support was added to Solaris, support for these
928 	 * sections was added, using the SHT_AMD64_UNWIND section type
929 	 * to identify them. At first, we ignored them in objects for
930 	 * non-amd64 targets, but later broadened our support to include
931 	 * other architectures in order to better support gcc-generated
932 	 * objects.
933 	 *
934 	 * .exception_ranges implement the same basic concepts, but
935 	 * were invented at Sun for the Sun C++ compiler.
936 	 *
937 	 * We match these sections by name, rather than section type,
938 	 * because they can come in as either SHT_AMD64_UNWIND, or as
939 	 * SHT_PROGBITS, and because the type isn't enough to determine
940 	 * how they should be interpreted.
941 	 */
942 	/* Find the program header for .eh_frame_hdr if present */
943 	if (phnum) {
944 		uphdr = getphdr(phnum, phdr_types,
945 		    sizeof (phdr_types) / sizeof (*phdr_types), file, elf,
946 		    &phndx);
947 	}
948 
949 	/*
950 	 * eh_state is used to retain data used by unwind_eh_frame()
951 	 * across calls.
952 	 */
953 	bzero(&eh_state, sizeof (eh_state));
954 
955 	for (cnt = 1; cnt < shnum; cnt++) {
956 		Cache		*_cache = &cache[cnt];
957 		Shdr		*shdr = _cache->c_shdr;
958 		int		is_exrange;
959 
960 		/*
961 		 * Skip sections of the wrong type. On amd64, they
962 		 * can be SHT_AMD64_UNWIND. On all platforms, they
963 		 * can be SHT_PROGBITS (including amd64, if using
964 		 * the GNU compilers).
965 		 *
966 		 * Skip anything other than these two types. The name
967 		 * test below will thin out the SHT_PROGBITS that don't apply.
968 		 */
969 		if ((shdr->sh_type != SHT_PROGBITS) &&
970 		    (shdr->sh_type != SHT_AMD64_UNWIND))
971 			continue;
972 
973 		/*
974 		 * Only sections with certain well known names are of interest.
975 		 * These are:
976 		 *
977 		 *	.eh_frame - amd64/GNU-compiler unwind sections
978 		 *	.eh_frame_hdr - Sorted table referencing .eh_frame
979 		 *	.exception_ranges - Sun C++ unwind sections
980 		 *
981 		 * We do a prefix comparison, allowing for naming conventions
982 		 * like .eh_frame.foo, hence the use of strncmp() rather than
983 		 * strcmp(). This means that we only really need to test for
984 		 * .eh_frame, as it's a prefix of .eh_frame_hdr.
985 		 */
986 		is_exrange =  strncmp(_cache->c_name,
987 		    MSG_ORIG(MSG_SCN_EXRANGE), MSG_SCN_EXRANGE_SIZE) == 0;
988 		if ((strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM),
989 		    MSG_SCN_FRM_SIZE) != 0) && !is_exrange)
990 			continue;
991 
992 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
993 			continue;
994 
995 		if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
996 			continue;
997 
998 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
999 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name);
1000 
1001 		if (is_exrange) {
1002 			unwind_exception_ranges(_cache, file,
1003 			    _elf_sys_encoding() != ehdr->e_ident[EI_DATA]);
1004 		} else {
1005 			if ((uphdr != NULL) && (strcmp(_cache->c_name,
1006 			    MSG_ORIG(MSG_SCN_FRMHDR)) == 0)) {
1007 				check_phdr_v_shdr(uphdr, phndx, osabi,
1008 				    ehdr->e_machine, _cache, file);
1009 			}
1010 
1011 			unwind_eh_frame(cache, cnt, shnum, uphdr, ehdr,
1012 			    &eh_state, osabi, file, flags);
1013 		}
1014 	}
1015 }
1016 
1017 /*
1018  * Initialize a symbol table state structure
1019  *
1020  * entry:
1021  *	state - State structure to be initialized
1022  *	cache - Cache of all section headers
1023  *	shnum - # of sections in cache
1024  *	secndx - Index of symbol table section
1025  *	ehdr - ELF header for file
1026  *	versym - Information about versym section
1027  *	file - Name of file
1028  *	flags - Command line option flags
1029  */
1030 static int
1031 init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx,
1032     Ehdr *ehdr, uchar_t osabi, VERSYM_STATE *versym, const char *file,
1033     uint_t flags)
1034 {
1035 	Shdr *shdr;
1036 
1037 	state->file = file;
1038 	state->ehdr = ehdr;
1039 	state->cache = cache;
1040 	state->osabi = osabi;
1041 	state->shnum = shnum;
1042 	state->seccache = &cache[secndx];
1043 	state->secndx = secndx;
1044 	state->secname = state->seccache->c_name;
1045 	state->flags = flags;
1046 	state->shxndx.checked = 0;
1047 	state->shxndx.data = NULL;
1048 	state->shxndx.n = 0;
1049 
1050 	shdr = state->seccache->c_shdr;
1051 
1052 	/*
1053 	 * Check the symbol data and per-item size.
1054 	 */
1055 	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
1056 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1057 		    file, state->secname);
1058 		return (0);
1059 	}
1060 	if ((state->seccache->c_data == NULL) ||
1061 	    (state->seccache->c_data->d_buf == NULL))
1062 		return (0);
1063 
1064 	/* LINTED */
1065 	state->symn = (Word)(shdr->sh_size / shdr->sh_entsize);
1066 	state->sym = (Sym *)state->seccache->c_data->d_buf;
1067 
1068 	/*
1069 	 * Check associated string table section.
1070 	 */
1071 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1072 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1073 		    file, state->secname, EC_WORD(shdr->sh_link));
1074 		return (0);
1075 	}
1076 
1077 	/*
1078 	 * Determine if there is a associated Versym section
1079 	 * with this Symbol Table.
1080 	 */
1081 	if (versym && versym->cache &&
1082 	    (versym->cache->c_shdr->sh_link == state->secndx))
1083 		state->versym = versym;
1084 	else
1085 		state->versym = NULL;
1086 
1087 
1088 	return (1);
1089 }
1090 
1091 /*
1092  * Determine the extended section index used for symbol tables entries.
1093  */
1094 static void
1095 symbols_getxindex(SYMTBL_STATE *state)
1096 {
1097 	uint_t	symn;
1098 	Word	symcnt;
1099 
1100 	state->shxndx.checked = 1;   /* Note that we've been called */
1101 	for (symcnt = 1; symcnt < state->shnum; symcnt++) {
1102 		Cache	*_cache = &state->cache[symcnt];
1103 		Shdr	*shdr = _cache->c_shdr;
1104 
1105 		if ((shdr->sh_type != SHT_SYMTAB_SHNDX) ||
1106 		    (shdr->sh_link != state->secndx))
1107 			continue;
1108 
1109 		if (shdr->sh_entsize == 0)
1110 			symn = 0;
1111 		else
1112 			symn = (uint_t)(shdr->sh_size / shdr->sh_entsize);
1113 
1114 		if (symn == 0)
1115 			continue;
1116 
1117 		if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
1118 			continue;
1119 
1120 		state->shxndx.data = _cache->c_data->d_buf;
1121 		state->shxndx.n = symn;
1122 		return;
1123 	}
1124 }
1125 
1126 /*
1127  * Produce a line of output for the given symbol
1128  *
1129  * entry:
1130  *	state - Symbol table state
1131  *	symndx - Index of symbol within the table
1132  *	info - Value of st_info (indicates local/global range)
1133  *	symndx_disp - Index to display. This may not be the same
1134  *		as symndx if the display is relative to the logical
1135  *		combination of the SUNW_ldynsym/dynsym tables.
1136  *	sym - Symbol to display
1137  */
1138 static void
1139 output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx,
1140     Sym *sym)
1141 {
1142 	/*
1143 	 * Symbol types for which we check that the specified
1144 	 * address/size land inside the target section.
1145 	 */
1146 	static const int addr_symtype[] = {
1147 		0,			/* STT_NOTYPE */
1148 		1,			/* STT_OBJECT */
1149 		1,			/* STT_FUNC */
1150 		0,			/* STT_SECTION */
1151 		0,			/* STT_FILE */
1152 		1,			/* STT_COMMON */
1153 		0,			/* STT_TLS */
1154 		0,			/* 7 */
1155 		0,			/* 8 */
1156 		0,			/* 9 */
1157 		0,			/* 10 */
1158 		0,			/* 11 */
1159 		0,			/* 12 */
1160 		0,			/* STT_SPARC_REGISTER */
1161 		0,			/* 14 */
1162 		0,			/* 15 */
1163 	};
1164 #if STT_NUM != (STT_TLS + 1)
1165 #error "STT_NUM has grown. Update addr_symtype[]"
1166 #endif
1167 
1168 	char		index[MAXNDXSIZE];
1169 	const char	*symname, *sec;
1170 	Versym		verndx;
1171 	int		gnuver;
1172 	uchar_t		type;
1173 	Shdr		*tshdr;
1174 	Word		shndx = 0;
1175 	Conv_inv_buf_t	inv_buf;
1176 
1177 	/* Ensure symbol index is in range */
1178 	if (symndx >= state->symn) {
1179 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYMNDX),
1180 		    state->file, state->secname, EC_WORD(symndx));
1181 		return;
1182 	}
1183 
1184 	/*
1185 	 * If we are using extended symbol indexes, find the
1186 	 * corresponding SHN_SYMTAB_SHNDX table.
1187 	 */
1188 	if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0))
1189 		symbols_getxindex(state);
1190 
1191 	/* LINTED */
1192 	symname = string(state->seccache, symndx,
1193 	    &state->cache[state->seccache->c_shdr->sh_link], state->file,
1194 	    sym->st_name);
1195 
1196 	tshdr = NULL;
1197 	sec = NULL;
1198 
1199 	if (state->ehdr->e_type == ET_CORE) {
1200 		sec = (char *)MSG_INTL(MSG_STR_UNKNOWN);
1201 	} else if (state->flags & FLG_CTL_FAKESHDR) {
1202 		/*
1203 		 * If we are using fake section headers derived from
1204 		 * the program headers, then the section indexes
1205 		 * in the symbols do not correspond to these headers.
1206 		 * The section names are not available, so all we can
1207 		 * do is to display them in numeric form.
1208 		 */
1209 		sec = conv_sym_shndx(state->osabi, state->ehdr->e_machine,
1210 		    sym->st_shndx, CONV_FMT_DECIMAL, &inv_buf);
1211 	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1212 	    (sym->st_shndx < state->shnum)) {
1213 		shndx = sym->st_shndx;
1214 		tshdr = state->cache[shndx].c_shdr;
1215 		sec = state->cache[shndx].c_name;
1216 	} else if (sym->st_shndx == SHN_XINDEX) {
1217 		if (state->shxndx.data) {
1218 			Word	_shxndx;
1219 
1220 			if (symndx > state->shxndx.n) {
1221 				(void) fprintf(stderr,
1222 				    MSG_INTL(MSG_ERR_BADSYMXINDEX1),
1223 				    state->file, state->secname,
1224 				    EC_WORD(symndx));
1225 			} else if ((_shxndx =
1226 			    state->shxndx.data[symndx]) > state->shnum) {
1227 				(void) fprintf(stderr,
1228 				    MSG_INTL(MSG_ERR_BADSYMXINDEX2),
1229 				    state->file, state->secname,
1230 				    EC_WORD(symndx), EC_WORD(_shxndx));
1231 			} else {
1232 				shndx = _shxndx;
1233 				tshdr = state->cache[shndx].c_shdr;
1234 				sec = state->cache[shndx].c_name;
1235 			}
1236 		} else {
1237 			(void) fprintf(stderr,
1238 			    MSG_INTL(MSG_ERR_BADSYMXINDEX3),
1239 			    state->file, state->secname, EC_WORD(symndx));
1240 		}
1241 	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1242 	    (sym->st_shndx >= state->shnum)) {
1243 		(void) fprintf(stderr,
1244 		    MSG_INTL(MSG_ERR_BADSYM5), state->file,
1245 		    state->secname, EC_WORD(symndx),
1246 		    demangle(symname, state->flags), sym->st_shndx);
1247 	}
1248 
1249 	/*
1250 	 * If versioning is available display the
1251 	 * version index. If not, then use 0.
1252 	 */
1253 	if (state->versym) {
1254 		Versym test_verndx;
1255 
1256 		verndx = test_verndx = state->versym->data[symndx];
1257 		gnuver = state->versym->gnu_full;
1258 
1259 		/*
1260 		 * Check to see if this is a defined symbol with a
1261 		 * version index that is outside the valid range for
1262 		 * the file. The interpretation of this depends on
1263 		 * the style of versioning used by the object.
1264 		 *
1265 		 * Versions >= VER_NDX_LORESERVE have special meanings,
1266 		 * and are exempt from this checking.
1267 		 *
1268 		 * GNU style version indexes use the top bit of the
1269 		 * 16-bit index value (0x8000) as the "hidden bit".
1270 		 * We must mask off this bit in order to compare
1271 		 * the version against the maximum value.
1272 		 */
1273 		if (gnuver)
1274 			test_verndx &= ~0x8000;
1275 
1276 		if ((test_verndx > state->versym->max_verndx) &&
1277 		    (verndx < VER_NDX_LORESERVE))
1278 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER),
1279 			    state->file, state->secname, EC_WORD(symndx),
1280 			    EC_HALF(test_verndx), state->versym->max_verndx);
1281 	} else {
1282 		verndx = 0;
1283 		gnuver = 0;
1284 	}
1285 
1286 	/*
1287 	 * Error checking for TLS.
1288 	 */
1289 	type = ELF_ST_TYPE(sym->st_info);
1290 	if (type == STT_TLS) {
1291 		if (tshdr &&
1292 		    (sym->st_shndx != SHN_UNDEF) &&
1293 		    ((tshdr->sh_flags & SHF_TLS) == 0)) {
1294 			(void) fprintf(stderr,
1295 			    MSG_INTL(MSG_ERR_BADSYM3), state->file,
1296 			    state->secname, EC_WORD(symndx),
1297 			    demangle(symname, state->flags));
1298 		}
1299 	} else if ((type != STT_SECTION) && sym->st_size &&
1300 	    tshdr && (tshdr->sh_flags & SHF_TLS)) {
1301 		(void) fprintf(stderr,
1302 		    MSG_INTL(MSG_ERR_BADSYM4), state->file,
1303 		    state->secname, EC_WORD(symndx),
1304 		    demangle(symname, state->flags));
1305 	}
1306 
1307 	/*
1308 	 * If a symbol with non-zero size has a type that
1309 	 * specifies an address, then make sure the location
1310 	 * it references is actually contained within the
1311 	 * section.  UNDEF symbols don't count in this case,
1312 	 * so we ignore them.
1313 	 *
1314 	 * The meaning of the st_value field in a symbol
1315 	 * depends on the type of object. For a relocatable
1316 	 * object, it is the offset within the section.
1317 	 * For sharable objects, it is the offset relative to
1318 	 * the base of the object, and for other types, it is
1319 	 * the virtual address. To get an offset within the
1320 	 * section for non-ET_REL files, we subtract the
1321 	 * base address of the section.
1322 	 */
1323 	if (addr_symtype[type] && (sym->st_size > 0) &&
1324 	    (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) ||
1325 	    (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) {
1326 		Word v = sym->st_value;
1327 		if (state->ehdr->e_type != ET_REL)
1328 			v -= tshdr->sh_addr;
1329 		if (((v + sym->st_size) > tshdr->sh_size)) {
1330 			(void) fprintf(stderr,
1331 			    MSG_INTL(MSG_ERR_BADSYM6), state->file,
1332 			    state->secname, EC_WORD(symndx),
1333 			    demangle(symname, state->flags),
1334 			    EC_WORD(shndx), EC_XWORD(tshdr->sh_size),
1335 			    EC_XWORD(sym->st_value), EC_XWORD(sym->st_size));
1336 		}
1337 	}
1338 
1339 	/*
1340 	 * A typical symbol table uses the sh_info field to indicate one greater
1341 	 * than the symbol table index of the last local symbol, STB_LOCAL.
1342 	 * Therefore, symbol indexes less than sh_info should have local
1343 	 * binding.  Symbol indexes greater than, or equal to sh_info, should
1344 	 * have global binding.  Note, we exclude UNDEF/NOTY symbols with zero
1345 	 * value and size, as these symbols may be the result of an mcs(1)
1346 	 * section deletion.
1347 	 */
1348 	if (info) {
1349 		uchar_t	bind = ELF_ST_BIND(sym->st_info);
1350 
1351 		if ((symndx < info) && (bind != STB_LOCAL)) {
1352 			(void) fprintf(stderr,
1353 			    MSG_INTL(MSG_ERR_BADSYM7), state->file,
1354 			    state->secname, EC_WORD(symndx),
1355 			    demangle(symname, state->flags), EC_XWORD(info));
1356 
1357 		} else if ((symndx >= info) && (bind == STB_LOCAL) &&
1358 		    ((sym->st_shndx != SHN_UNDEF) ||
1359 		    (ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) ||
1360 		    (sym->st_size != 0) || (sym->st_value != 0))) {
1361 			(void) fprintf(stderr,
1362 			    MSG_INTL(MSG_ERR_BADSYM8), state->file,
1363 			    state->secname, EC_WORD(symndx),
1364 			    demangle(symname, state->flags), EC_XWORD(info));
1365 		}
1366 	}
1367 
1368 	(void) snprintf(index, MAXNDXSIZE,
1369 	    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx));
1370 	Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index, state->osabi,
1371 	    state->ehdr->e_machine, sym, verndx, gnuver, sec, symname);
1372 }
1373 
1374 /*
1375  * Process a SHT_SUNW_cap capabilities section.
1376  */
1377 static int
1378 cap_section(const char *file, Cache *cache, Word shnum, Cache *ccache,
1379     uchar_t osabi, Ehdr *ehdr, uint_t flags)
1380 {
1381 	SYMTBL_STATE	state;
1382 	Word		cnum, capnum, nulls, symcaps;
1383 	int		descapndx, objcap, title;
1384 	Cap		*cap = (Cap *)ccache->c_data->d_buf;
1385 	Shdr		*cishdr = NULL, *cshdr = ccache->c_shdr;
1386 	Cache		*cicache = NULL, *strcache = NULL;
1387 	Capinfo		*capinfo = NULL;
1388 	Word		capinfonum = 0;
1389 	const char	*strs = NULL;
1390 	size_t		strs_size = 0;
1391 
1392 	if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) {
1393 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1394 		    file, ccache->c_name);
1395 		return (0);
1396 	}
1397 
1398 	/*
1399 	 * If this capabilities section is associated with symbols, then the
1400 	 * sh_link field points to the associated capabilities information
1401 	 * section.  The sh_link field of the capabilities information section
1402 	 * points to the associated symbol table.
1403 	 */
1404 	if (cshdr->sh_link) {
1405 		Cache	*scache;
1406 		Shdr	*sshdr;
1407 
1408 		/*
1409 		 * Validate that the sh_link field points to a capabilities
1410 		 * information section.
1411 		 */
1412 		if (cshdr->sh_link >= shnum) {
1413 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1414 			    file, ccache->c_name, EC_WORD(cshdr->sh_link));
1415 			return (0);
1416 		}
1417 
1418 		cicache = &cache[cshdr->sh_link];
1419 		cishdr = cicache->c_shdr;
1420 
1421 		if (cishdr->sh_type != SHT_SUNW_capinfo) {
1422 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP),
1423 			    file, ccache->c_name, EC_WORD(cshdr->sh_link));
1424 			return (0);
1425 		}
1426 
1427 		capinfo = cicache->c_data->d_buf;
1428 		capinfonum = (Word)(cishdr->sh_size / cishdr->sh_entsize);
1429 
1430 		/*
1431 		 * Validate that the sh_link field of the capabilities
1432 		 * information section points to a valid symbol table.
1433 		 */
1434 		if ((cishdr->sh_link == 0) || (cishdr->sh_link >= shnum)) {
1435 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1436 			    file, cicache->c_name, EC_WORD(cishdr->sh_link));
1437 			return (0);
1438 		}
1439 		scache = &cache[cishdr->sh_link];
1440 		sshdr = scache->c_shdr;
1441 
1442 		if ((sshdr->sh_type != SHT_SYMTAB) &&
1443 		    (sshdr->sh_type != SHT_DYNSYM)) {
1444 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO1),
1445 			    file, cicache->c_name, EC_WORD(cishdr->sh_link));
1446 			return (0);
1447 		}
1448 
1449 		if (!init_symtbl_state(&state, cache, shnum,
1450 		    cishdr->sh_link, ehdr, osabi, NULL, file, flags))
1451 			return (0);
1452 	}
1453 
1454 	/*
1455 	 * If this capabilities section contains capability string entries,
1456 	 * then determine the associated string table.  Capabilities entries
1457 	 * that define names require that the capability section indicate
1458 	 * which string table to use via sh_info.
1459 	 */
1460 	if (cshdr->sh_info) {
1461 		Shdr	*strshdr;
1462 
1463 		/*
1464 		 * Validate that the sh_info field points to a string table.
1465 		 */
1466 		if (cshdr->sh_info >= shnum) {
1467 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1468 			    file, ccache->c_name, EC_WORD(cshdr->sh_info));
1469 			return (0);
1470 		}
1471 
1472 		strcache = &cache[cshdr->sh_info];
1473 		strshdr = strcache->c_shdr;
1474 
1475 		if (strshdr->sh_type != SHT_STRTAB) {
1476 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP),
1477 			    file, ccache->c_name, EC_WORD(cshdr->sh_info));
1478 			return (0);
1479 		}
1480 		strs = (const char *)strcache->c_data->d_buf;
1481 		strs_size = strcache->c_data->d_size;
1482 	}
1483 
1484 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1485 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name);
1486 
1487 	capnum = (Word)(cshdr->sh_size / cshdr->sh_entsize);
1488 
1489 	nulls = symcaps = 0;
1490 	objcap = title = 1;
1491 	descapndx = -1;
1492 
1493 	/*
1494 	 * Traverse the capabilities section printing each capability group.
1495 	 * The first capabilities group defines any object capabilities.  Any
1496 	 * following groups define symbol capabilities.  In the case where no
1497 	 * object capabilities exist, but symbol capabilities do, a single
1498 	 * CA_SUNW_NULL terminator for the object capabilities exists.
1499 	 */
1500 	for (cnum = 0; cnum < capnum; cap++, cnum++) {
1501 		if (cap->c_tag == CA_SUNW_NULL) {
1502 			/*
1503 			 * A CA_SUNW_NULL tag terminates a capabilities group.
1504 			 * If the first capabilities tag is CA_SUNW_NULL, then
1505 			 * no object capabilities exist.
1506 			 */
1507 			if ((nulls++ == 0) && (cnum == 0))
1508 				objcap = 0;
1509 			title = 1;
1510 		} else {
1511 			if (title) {
1512 				if (nulls == 0) {
1513 					/*
1514 					 * If this capabilities group represents
1515 					 * the object capabilities (i.e., no
1516 					 * CA_SUNW_NULL tag has been processed
1517 					 * yet), then display an object
1518 					 * capabilities title.
1519 					 */
1520 					dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1521 					dbg_print(0,
1522 					    MSG_INTL(MSG_OBJ_CAP_TITLE));
1523 				} else {
1524 					/*
1525 					 * If this is a symbols capabilities
1526 					 * group (i.e., a CA_SUNW_NULL tag has
1527 					 * already be found that terminates
1528 					 * the object capabilities group), then
1529 					 * display a symbol capabilities title,
1530 					 * and retain this capabilities index
1531 					 * for later processing.
1532 					 */
1533 					dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1534 					dbg_print(0,
1535 					    MSG_INTL(MSG_SYM_CAP_TITLE));
1536 					descapndx = cnum;
1537 				}
1538 				Elf_cap_title(0);
1539 				title = 0;
1540 			}
1541 
1542 			/*
1543 			 * Print the capabilities data.
1544 			 *
1545 			 * Note that CA_SUNW_PLAT, CA_SUNW_MACH and CA_SUNW_ID
1546 			 * entries require a string table, which should have
1547 			 * already been established.
1548 			 */
1549 			if ((strs == NULL) && ((cap->c_tag == CA_SUNW_PLAT) ||
1550 			    (cap->c_tag == CA_SUNW_MACH) ||
1551 			    (cap->c_tag == CA_SUNW_ID))) {
1552 				(void) fprintf(stderr,
1553 				    MSG_INTL(MSG_WARN_INVCAP3), file,
1554 				    EC_WORD(elf_ndxscn(ccache->c_scn)),
1555 				    ccache->c_name, EC_WORD(cshdr->sh_info));
1556 			}
1557 			Elf_cap_entry(0, cap, cnum, strs, strs_size,
1558 			    ehdr->e_machine);
1559 		}
1560 
1561 		/*
1562 		 * If this CA_SUNW_NULL tag terminates a symbol capabilities
1563 		 * group, determine the associated symbols.
1564 		 */
1565 		if ((cap->c_tag == CA_SUNW_NULL) && (nulls > 1) &&
1566 		    (descapndx != -1)) {
1567 			Capinfo	*cip;
1568 			Word	inum;
1569 
1570 			symcaps++;
1571 
1572 			/*
1573 			 * Make sure we've discovered a SHT_SUNW_capinfo table.
1574 			 */
1575 			if ((cip = capinfo) == NULL) {
1576 				(void) fprintf(stderr,
1577 				    MSG_INTL(MSG_ERR_INVCAP), file,
1578 				    ccache->c_name, EC_WORD(cshdr->sh_link));
1579 				return (0);
1580 			}
1581 
1582 			/*
1583 			 * Determine what symbols reference this capabilities
1584 			 * group.
1585 			 */
1586 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1587 			dbg_print(0, MSG_INTL(MSG_CAPINFO_ENTRIES));
1588 			Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1589 
1590 			for (inum = 1, cip++; inum < capinfonum;
1591 			    inum++, cip++) {
1592 				Word	gndx = (Word)ELF_C_GROUP(*cip);
1593 
1594 				if (gndx && (gndx == descapndx)) {
1595 					output_symbol(&state, inum, 0,
1596 					    inum, state.sym + inum);
1597 				}
1598 			}
1599 			descapndx = -1;
1600 			continue;
1601 		}
1602 
1603 		/*
1604 		 * An SF1_SUNW_ADDR32 software capability tag in a 32-bit
1605 		 * object is suspicious as it has no effect.
1606 		 */
1607 		if ((cap->c_tag == CA_SUNW_SF_1) &&
1608 		    (ehdr->e_ident[EI_CLASS] == ELFCLASS32) &&
1609 		    (cap->c_un.c_val & SF1_SUNW_ADDR32)) {
1610 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INADDR32SF1),
1611 			    file, ccache->c_name);
1612 		}
1613 	}
1614 
1615 	/*
1616 	 * If this is a dynamic object, with symbol capabilities, then a
1617 	 * .SUNW_capchain section should exist.  This section contains a chain
1618 	 * of symbol indexes for each capabilities family.  This is the list
1619 	 * that is searched by ld.so.1 to determine the best capabilities
1620 	 * candidate.
1621 	 *
1622 	 * Note, more than one capabilities lead symbol can point to the same
1623 	 * family chain.  For example, a weak/global pair of symbols can both
1624 	 * represent the same family of capabilities symbols.  Therefore, to
1625 	 * display all possible families we traverse the capabilities
1626 	 * information section looking for CAPINFO_SUNW_GLOB lead symbols.
1627 	 * From these we determine the associated capabilities chain to inspect.
1628 	 */
1629 	if (symcaps &&
1630 	    ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
1631 		Capinfo		*cip;
1632 		Capchain	*chain;
1633 		Cache		*chcache;
1634 		Shdr		*chshdr;
1635 		Word		chainnum, inum;
1636 
1637 		/*
1638 		 * Validate that the sh_info field of the capabilities
1639 		 * information section points to a capabilities chain section.
1640 		 */
1641 		if (cishdr->sh_info >= shnum) {
1642 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1643 			    file, cicache->c_name, EC_WORD(cishdr->sh_info));
1644 			return (0);
1645 		}
1646 
1647 		chcache = &cache[cishdr->sh_info];
1648 		chshdr = chcache->c_shdr;
1649 
1650 		if (chshdr->sh_type != SHT_SUNW_capchain) {
1651 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO2),
1652 			    file, cicache->c_name, EC_WORD(cishdr->sh_info));
1653 			return (0);
1654 		}
1655 
1656 		chainnum = (Word)(chshdr->sh_size / chshdr->sh_entsize);
1657 		chain = (Capchain *)chcache->c_data->d_buf;
1658 
1659 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1660 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAPCHAIN), chcache->c_name);
1661 
1662 		/*
1663 		 * Traverse the capabilities information section looking for
1664 		 * CAPINFO_SUNW_GLOB lead capabilities symbols.
1665 		 */
1666 		cip = capinfo;
1667 		for (inum = 1, cip++; inum < capinfonum; inum++, cip++) {
1668 			const char	*name;
1669 			Sym		*sym;
1670 			Word		sndx, cndx;
1671 			Word		gndx = (Word)ELF_C_GROUP(*cip);
1672 
1673 			if ((gndx == 0) || (gndx != CAPINFO_SUNW_GLOB))
1674 				continue;
1675 
1676 			/*
1677 			 * Determine the symbol that is associated with this
1678 			 * capability information entry, and use this to
1679 			 * identify this capability family.
1680 			 */
1681 			sym = (Sym *)(state.sym + inum);
1682 			name = string(cicache, inum, strcache, file,
1683 			    sym->st_name);
1684 
1685 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1686 			dbg_print(0, MSG_INTL(MSG_CAPCHAIN_TITLE), name);
1687 			dbg_print(0, MSG_INTL(MSG_CAPCHAIN_ENTRY));
1688 
1689 			cndx = (Word)ELF_C_SYM(*cip);
1690 
1691 			/*
1692 			 * Traverse this families chain and identify each
1693 			 * family member.
1694 			 */
1695 			for (;;) {
1696 				char	_chain[MAXNDXSIZE], _symndx[MAXNDXSIZE];
1697 
1698 				if (cndx >= chainnum) {
1699 					(void) fprintf(stderr,
1700 					    MSG_INTL(MSG_ERR_INVCAPINFO3), file,
1701 					    cicache->c_name, EC_WORD(inum),
1702 					    EC_WORD(cndx));
1703 					break;
1704 				}
1705 				if ((sndx = chain[cndx]) == 0)
1706 					break;
1707 
1708 				/*
1709 				 * Determine this entries symbol reference.
1710 				 */
1711 				if (sndx > state.symn) {
1712 					(void) fprintf(stderr,
1713 					    MSG_INTL(MSG_ERR_CHBADSYMNDX), file,
1714 					    EC_WORD(sndx), chcache->c_name,
1715 					    EC_WORD(cndx));
1716 					name = MSG_INTL(MSG_STR_UNKNOWN);
1717 				} else {
1718 					sym = (Sym *)(state.sym + sndx);
1719 					name = string(chcache, sndx,
1720 					    strcache, file, sym->st_name);
1721 				}
1722 
1723 				/*
1724 				 * Display the family member.
1725 				 */
1726 				(void) snprintf(_chain, MAXNDXSIZE,
1727 				    MSG_ORIG(MSG_FMT_INTEGER), cndx);
1728 				(void) snprintf(_symndx, MAXNDXSIZE,
1729 				    MSG_ORIG(MSG_FMT_INDEX2), EC_WORD(sndx));
1730 				dbg_print(0, MSG_ORIG(MSG_FMT_CHAIN_INFO),
1731 				    _chain, _symndx, demangle(name, flags));
1732 
1733 				cndx++;
1734 			}
1735 		}
1736 	}
1737 	return (objcap);
1738 }
1739 
1740 /*
1741  * Print the capabilities.
1742  *
1743  * A .SUNW_cap section can contain one or more, CA_SUNW_NULL terminated,
1744  * capabilities groups.  The first group defines the object capabilities.
1745  * This group defines the minimum capability requirements of the entire
1746  * object file.  If this is a dynamic object, this group should be associated
1747  * with a PT_SUNWCAP program header.
1748  *
1749  * Additional capabilities groups define the association of individual symbols
1750  * to specific capabilities.
1751  */
1752 static void
1753 cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr,
1754     uchar_t osabi, Elf *elf, uint_t flags)
1755 {
1756 	Word		cnt;
1757 	Shdr		*cshdr = NULL;
1758 	Cache		*ccache = NULL;
1759 	Phdr		*uphdr = NULL;
1760 	size_t		phndx;
1761 
1762 	/*
1763 	 * Determine if a global capabilities header exists.
1764 	 */
1765 	if (phnum) {
1766 		Phdr	*phdr;
1767 
1768 		if ((phdr = elf_getphdr(elf)) == NULL) {
1769 			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
1770 			return;
1771 		}
1772 
1773 		for (cnt = 0; cnt < phnum; phdr++, cnt++) {
1774 			if (phdr->p_type == PT_SUNWCAP) {
1775 				uphdr = phdr;
1776 				phndx = cnt;
1777 				break;
1778 			}
1779 		}
1780 	}
1781 
1782 	/*
1783 	 * Determine if a capabilities section exists.
1784 	 */
1785 	for (cnt = 1; cnt < shnum; cnt++) {
1786 		Cache	*_cache = &cache[cnt];
1787 		Shdr	*shdr = _cache->c_shdr;
1788 
1789 		/*
1790 		 * Process any capabilities information.
1791 		 */
1792 		if (shdr->sh_type == SHT_SUNW_cap) {
1793 			if (cap_section(file, cache, shnum, _cache, osabi,
1794 			    ehdr, flags)) {
1795 				/*
1796 				 * If this section defined an object capability
1797 				 * group, retain the section information for
1798 				 * program header validation.
1799 				 */
1800 				ccache = _cache;
1801 				cshdr = shdr;
1802 			}
1803 			continue;
1804 		}
1805 	}
1806 
1807 	if ((cshdr == NULL) && (uphdr == NULL))
1808 		return;
1809 
1810 	if ((uphdr != NULL) && (cshdr == NULL))
1811 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file);
1812 
1813 	/*
1814 	 * If this object is an executable or shared object, and it provided
1815 	 * an object capabilities group, then the group should have an
1816 	 * accompanying PT_SUNWCAP program header.
1817 	 */
1818 	if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
1819 		if (uphdr == NULL) {
1820 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2),
1821 			    file, EC_WORD(elf_ndxscn(ccache->c_scn)),
1822 			    ccache->c_name);
1823 		} else {
1824 			check_phdr_v_shdr(uphdr, phndx, osabi, ehdr->e_machine,
1825 			    ccache, file);
1826 		}
1827 	}
1828 }
1829 
1830 /*
1831  * Print the interpreter.
1832  */
1833 static void
1834 interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf,
1835     Ehdr *ehdr)
1836 {
1837 	static Word phdr_types[] = { PT_INTERP };
1838 
1839 
1840 	Word	cnt;
1841 	Shdr	*ishdr = NULL;
1842 	Cache	*icache = NULL;
1843 	Phdr	*iphdr = NULL;
1844 	size_t	phndx;
1845 
1846 	/*
1847 	 * Determine if an interp header exists.
1848 	 */
1849 	if (phnum) {
1850 		iphdr = getphdr(phnum, phdr_types,
1851 		    sizeof (phdr_types) / sizeof (*phdr_types), file, elf,
1852 		    &phndx);
1853 	}
1854 
1855 	if (iphdr == NULL)
1856 		return;
1857 
1858 	/*
1859 	 * Determine if an interp section exists.
1860 	 */
1861 	for (cnt = 1; cnt < shnum; cnt++) {
1862 		Cache	*_cache = &cache[cnt];
1863 		Shdr	*shdr = _cache->c_shdr;
1864 
1865 		/*
1866 		 * Scan sections to find a section which contains the PT_INTERP
1867 		 * string.  The target section can't be in a NOBITS section.
1868 		 */
1869 		if ((shdr->sh_type == SHT_NOBITS) ||
1870 		    (iphdr->p_offset < shdr->sh_offset) ||
1871 		    (iphdr->p_offset + iphdr->p_filesz) >
1872 		    (shdr->sh_offset + shdr->sh_size))
1873 			continue;
1874 
1875 		icache = _cache;
1876 		ishdr = shdr;
1877 		break;
1878 	}
1879 
1880 	/*
1881 	 * Print the interpreter string based on the offset defined in the
1882 	 * program header, as this is the offset used by the kernel.
1883 	 */
1884 	if ((ishdr != NULL) &&
1885 	    (icache != NULL) &&
1886 	    (icache->c_data != NULL) &&
1887 	    (icache->c_data->d_buf != NULL) &&
1888 	    (icache->c_data->d_size > 0)) {
1889 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1890 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name);
1891 		dbg_print(0, MSG_ORIG(MSG_FMT_INDENT),
1892 		    (char *)icache->c_data->d_buf +
1893 		    (iphdr->p_offset - ishdr->sh_offset));
1894 	} else {
1895 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file);
1896 	}
1897 
1898 	/*
1899 	 * If there are any inconsistences between the program header and
1900 	 * section information, flag them.
1901 	 */
1902 	if (icache != NULL) {
1903 		check_phdr_v_shdr(iphdr, phndx, ELFOSABI_SOLARIS,
1904 		    ehdr->e_machine, icache, file);
1905 	}
1906 }
1907 
1908 /*
1909  * Print the syminfo section.
1910  */
1911 static void
1912 syminfo(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
1913 {
1914 	Shdr		*infoshdr;
1915 	Syminfo		*info;
1916 	Sym		*syms;
1917 	Dyn		*dyns;
1918 	Word		infonum, cnt, ndx, symnum, dynnum;
1919 	Cache		*infocache = NULL, *dyncache = NULL, *symsec, *strsec;
1920 	Boolean		*dynerr = NULL;
1921 
1922 	for (cnt = 1; cnt < shnum; cnt++) {
1923 		if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) {
1924 			infocache = &cache[cnt];
1925 			break;
1926 		}
1927 	}
1928 	if (infocache == NULL)
1929 		return;
1930 
1931 	infoshdr = infocache->c_shdr;
1932 	if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) {
1933 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1934 		    file, infocache->c_name);
1935 		return;
1936 	}
1937 	if ((infocache->c_data == NULL) || (infocache->c_data->d_buf == NULL))
1938 		return;
1939 
1940 	infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize);
1941 	info = (Syminfo *)infocache->c_data->d_buf;
1942 
1943 	/*
1944 	 * If there is no associated dynamic section, determine if one
1945 	 * is needed, and if so issue a warning. If there is an
1946 	 * associated dynamic section, validate it and get the data buffer
1947 	 * for it.
1948 	 */
1949 	dyns = NULL;
1950 	dynnum = 0;
1951 	if (infoshdr->sh_info == 0) {
1952 		Syminfo	*_info = info + 1;
1953 
1954 		for (ndx = 1; ndx < infonum; ndx++, _info++) {
1955 			if ((_info->si_flags == 0) && (_info->si_boundto == 0))
1956 				continue;
1957 
1958 			if (_info->si_boundto < SYMINFO_BT_LOWRESERVE)
1959 				(void) fprintf(stderr,
1960 				    MSG_INTL(MSG_ERR_BADSHINFO), file,
1961 				    infocache->c_name,
1962 				    EC_WORD(infoshdr->sh_info));
1963 		}
1964 	} else if ((infoshdr->sh_info >= shnum) ||
1965 	    (cache[infoshdr->sh_info].c_shdr->sh_type != SHT_DYNAMIC)) {
1966 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
1967 		    file, infocache->c_name, EC_WORD(infoshdr->sh_info));
1968 	} else {
1969 		dyncache = &cache[infoshdr->sh_info];
1970 		if ((dyncache->c_data == NULL) ||
1971 		    ((dyns = dyncache->c_data->d_buf) == NULL)) {
1972 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1973 			    file, dyncache->c_name);
1974 		}
1975 		if (dyns != NULL) {
1976 			if ((dyncache->c_shdr->sh_entsize == 0) ||
1977 			    (dyncache->c_shdr->sh_size == 0)) {
1978 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1979 				    file, dyncache->c_name);
1980 				return;
1981 			}
1982 
1983 			dynnum = dyncache->c_shdr->sh_size /
1984 			    dyncache->c_shdr->sh_entsize;
1985 
1986 			/*
1987 			 * We validate the type of dynamic elements referenced
1988 			 * from the syminfo. This array is used report any
1989 			 * bad dynamic entries.
1990 			 */
1991 			if ((dynerr = calloc(dynnum, sizeof (*dynerr))) ==
1992 			    NULL) {
1993 				int err = errno;
1994 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
1995 				    file, strerror(err));
1996 				return;
1997 			}
1998 		}
1999 	}
2000 
2001 	/*
2002 	 * Get the data buffer for the associated symbol table and string table.
2003 	 */
2004 	if (stringtbl(cache, 1, cnt, shnum, file,
2005 	    &symnum, &symsec, &strsec) == 0)
2006 		return;
2007 
2008 	syms = symsec->c_data->d_buf;
2009 
2010 	/*
2011 	 * Loop through the syminfo entries.
2012 	 */
2013 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2014 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name);
2015 	Elf_syminfo_title(0);
2016 
2017 	for (ndx = 1, info++; ndx < infonum; ndx++, info++) {
2018 		Sym		*sym;
2019 		const char	*needed, *name;
2020 		Word		expect_dt;
2021 		Word		boundto = info->si_boundto;
2022 
2023 		if ((info->si_flags == 0) && (boundto == 0))
2024 			continue;
2025 
2026 		sym = &syms[ndx];
2027 		name = string(infocache, ndx, strsec, file, sym->st_name);
2028 
2029 		/* Is si_boundto set to one of the reserved values? */
2030 		if (boundto >= SYMINFO_BT_LOWRESERVE) {
2031 			Elf_syminfo_entry(0, ndx, info, name, NULL);
2032 			continue;
2033 		}
2034 
2035 		/*
2036 		 * si_boundto is referencing a dynamic section. If we don't
2037 		 * have one, an error was already issued above, so it suffices
2038 		 * to display an empty string. If we are out of bounds, then
2039 		 * report that and then display an empty string.
2040 		 */
2041 		if ((dyns == NULL) || (boundto >= dynnum)) {
2042 			if (dyns != NULL)
2043 				(void) fprintf(stderr,
2044 				    MSG_INTL(MSG_ERR_BADSIDYNNDX), file,
2045 				    infocache->c_ndx, infocache->c_name,
2046 				    EC_WORD(ndx), EC_WORD(dynnum - 1),
2047 				    EC_WORD(boundto));
2048 			Elf_syminfo_entry(0, ndx, info, name,
2049 			    MSG_ORIG(MSG_STR_EMPTY));
2050 			continue;
2051 		}
2052 
2053 		/*
2054 		 * The si_boundto reference expects a specific dynamic element
2055 		 * type at the given index. The dynamic element is always a
2056 		 * string that gives an object name. The specific type depends
2057 		 * on the si_flags present. Ensure that we've got the right
2058 		 * type.
2059 		 */
2060 		if (info->si_flags & SYMINFO_FLG_FILTER)
2061 			expect_dt = DT_SUNW_FILTER;
2062 		else if (info->si_flags & SYMINFO_FLG_AUXILIARY)
2063 			expect_dt = DT_SUNW_AUXILIARY;
2064 		else if (info->si_flags & (SYMINFO_FLG_DIRECT |
2065 		    SYMINFO_FLG_LAZYLOAD | SYMINFO_FLG_DIRECTBIND))
2066 			expect_dt = DT_NEEDED;
2067 		else
2068 			expect_dt = DT_NULL;   /* means we ignore the type */
2069 
2070 		if ((dyns[boundto].d_tag != expect_dt) &&
2071 		    (expect_dt != DT_NULL)) {
2072 			Conv_inv_buf_t	buf1, buf2;
2073 
2074 			/* Only complain about each dynamic element once */
2075 			if (!dynerr[boundto]) {
2076 				(void) fprintf(stderr,
2077 				    MSG_INTL(MSG_ERR_BADSIDYNTAG),
2078 				    file, infocache->c_ndx, infocache->c_name,
2079 				    EC_WORD(ndx), dyncache->c_ndx,
2080 				    dyncache->c_name, EC_WORD(boundto),
2081 				    conv_dyn_tag(expect_dt, osabi,
2082 				    ehdr->e_machine, CONV_FMT_ALT_CF, &buf1),
2083 				    conv_dyn_tag(dyns[boundto].d_tag, osabi,
2084 				    ehdr->e_machine, CONV_FMT_ALT_CF, &buf2));
2085 				dynerr[boundto] = TRUE;
2086 			}
2087 		}
2088 
2089 		/*
2090 		 * Whether or not the DT item we're pointing at is
2091 		 * of the right type, if it's a type we recognize as
2092 		 * providing a string, go ahead and show it. Otherwise
2093 		 * an empty string.
2094 		 */
2095 		switch (dyns[boundto].d_tag) {
2096 		case DT_NEEDED:
2097 		case DT_SONAME:
2098 		case DT_RPATH:
2099 		case DT_RUNPATH:
2100 		case DT_CONFIG:
2101 		case DT_DEPAUDIT:
2102 		case DT_USED:
2103 		case DT_AUDIT:
2104 		case DT_SUNW_AUXILIARY:
2105 		case DT_SUNW_FILTER:
2106 		case DT_FILTER:
2107 		case DT_AUXILIARY:
2108 			needed = string(infocache, boundto,
2109 			    strsec, file, dyns[boundto].d_un.d_val);
2110 			break;
2111 		default:
2112 			needed = MSG_ORIG(MSG_STR_EMPTY);
2113 		}
2114 		Elf_syminfo_entry(0, ndx, info, name, needed);
2115 	}
2116 	if (dyns != NULL)
2117 		free(dynerr);
2118 }
2119 
2120 /*
2121  * Print version definition section entries.
2122  */
2123 static void
2124 version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache,
2125     const char *file)
2126 {
2127 	Word	cnt;
2128 	char	index[MAXNDXSIZE];
2129 
2130 	Elf_ver_def_title(0);
2131 
2132 	for (cnt = 1; cnt <= vdf_num; cnt++,
2133 	    vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) {
2134 		Conv_ver_flags_buf_t	ver_flags_buf;
2135 		const char		*name, *dep;
2136 		Half			vcnt = vdf->vd_cnt - 1;
2137 		Half			ndx = vdf->vd_ndx;
2138 		Verdaux	*vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux);
2139 
2140 		/*
2141 		 * Obtain the name and first dependency (if any).
2142 		 */
2143 		name = string(vcache, cnt, scache, file, vdap->vda_name);
2144 		vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
2145 		if (vcnt)
2146 			dep = string(vcache, cnt, scache, file, vdap->vda_name);
2147 		else
2148 			dep = MSG_ORIG(MSG_STR_EMPTY);
2149 
2150 		(void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
2151 		    EC_XWORD(ndx));
2152 		Elf_ver_line_1(0, index, name, dep,
2153 		    conv_ver_flags(vdf->vd_flags, 0, &ver_flags_buf));
2154 
2155 		/*
2156 		 * Print any additional dependencies.
2157 		 */
2158 		if (vcnt) {
2159 			vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
2160 			for (vcnt--; vcnt; vcnt--,
2161 			    vdap = (Verdaux *)((uintptr_t)vdap +
2162 			    vdap->vda_next)) {
2163 				dep = string(vcache, cnt, scache, file,
2164 				    vdap->vda_name);
2165 				Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep);
2166 			}
2167 		}
2168 	}
2169 }
2170 
2171 /*
2172  * Print version needed section entries.
2173  *
2174  * entry:
2175  *	vnd - Address of verneed data
2176  *	vnd_num - # of Verneed entries
2177  *	vcache - Cache of verneed section being processed
2178  *	scache - Cache of associated string table section
2179  *	file - Name of object being processed.
2180  *	versym - Information about versym section
2181  *
2182  * exit:
2183  *	The versions have been printed. If GNU style versioning
2184  *	is in effect, versym->max_verndx has been updated to
2185  *	contain the largest version index seen.
2186  *
2187  * note:
2188  *	The versym section of an object that follows the original
2189  *	Solaris versioning rules only contains indexes into the verdef
2190  *	section. Symbols defined in other objects (UNDEF) are given
2191  *	a version of 0, indicating that they are not defined by
2192  *	this file, and the Verneed entries do not have associated version
2193  *	indexes. For these reasons, we do not display a version index
2194  *	for original-style Verneed sections.
2195  *
2196  *	The GNU versioning extensions alter this: Symbols defined in other
2197  *	objects receive a version index in the range above those defined
2198  *	by the Verdef section, and the vna_other field of the Vernaux
2199  *	structs inside the Verneed section contain the version index for
2200  *	that item. We therefore  display the index when showing the
2201  *	contents of a GNU style Verneed section. You should not
2202  *	necessarily expect these indexes to appear in sorted
2203  *	order --- it seems that the GNU ld assigns the versions as
2204  *	symbols are encountered during linking, and then the results
2205  *	are assembled into the Verneed section afterwards.
2206  */
2207 static void
2208 version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache,
2209     const char *file, VERSYM_STATE *versym)
2210 {
2211 	Word		cnt;
2212 	char		index[MAXNDXSIZE];
2213 	const char	*index_str;
2214 
2215 	Elf_ver_need_title(0, versym->gnu_needed);
2216 
2217 	for (cnt = 1; cnt <= vnd_num; cnt++,
2218 	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
2219 		Conv_ver_flags_buf_t	ver_flags_buf;
2220 		const char		*name, *dep;
2221 		Half			vcnt = vnd->vn_cnt;
2222 		Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
2223 
2224 		/*
2225 		 * Obtain the name of the needed file and the version name
2226 		 * within it that we're dependent on.  Note that the count
2227 		 * should be at least one, otherwise this is a pretty bogus
2228 		 * entry.
2229 		 */
2230 		name = string(vcache, cnt, scache, file, vnd->vn_file);
2231 		if (vcnt)
2232 			dep = string(vcache, cnt, scache, file, vnap->vna_name);
2233 		else
2234 			dep = MSG_INTL(MSG_STR_NULL);
2235 
2236 		if (vnap->vna_other == 0) {	/* Traditional form */
2237 			index_str = MSG_ORIG(MSG_STR_EMPTY);
2238 		} else {			/* GNU form */
2239 			index_str = index;
2240 			/* Format the version index value */
2241 			(void) snprintf(index, MAXNDXSIZE,
2242 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other));
2243 			if (vnap->vna_other > versym->max_verndx)
2244 				versym->max_verndx = vnap->vna_other;
2245 		}
2246 		Elf_ver_line_1(0, index_str, name, dep,
2247 		    conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf));
2248 
2249 		/*
2250 		 * Print any additional version dependencies.
2251 		 */
2252 		if (vcnt) {
2253 			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
2254 			for (vcnt--; vcnt; vcnt--,
2255 			    vnap = (Vernaux *)((uintptr_t)vnap +
2256 			    vnap->vna_next)) {
2257 				dep = string(vcache, cnt, scache, file,
2258 				    vnap->vna_name);
2259 				if (vnap->vna_other > 0) {
2260 					/* Format the next index value */
2261 					(void) snprintf(index, MAXNDXSIZE,
2262 					    MSG_ORIG(MSG_FMT_INDEX),
2263 					    EC_XWORD(vnap->vna_other));
2264 					Elf_ver_line_1(0, index,
2265 					    MSG_ORIG(MSG_STR_EMPTY), dep,
2266 					    conv_ver_flags(vnap->vna_flags,
2267 					    0, &ver_flags_buf));
2268 					if (vnap->vna_other >
2269 					    versym->max_verndx)
2270 						versym->max_verndx =
2271 						    vnap->vna_other;
2272 				} else {
2273 					Elf_ver_line_3(0,
2274 					    MSG_ORIG(MSG_STR_EMPTY), dep,
2275 					    conv_ver_flags(vnap->vna_flags,
2276 					    0, &ver_flags_buf));
2277 				}
2278 			}
2279 		}
2280 	}
2281 }
2282 
2283 /*
2284  * Examine the Verneed section for information related to GNU
2285  * style Versym indexing:
2286  *	- A non-zero vna_other field indicates that Versym indexes can
2287  *		reference Verneed records.
2288  *	- If the object uses GNU style Versym indexing, the
2289  *	  maximum index value is needed to detect bad Versym entries.
2290  *
2291  * entry:
2292  *	vnd - Address of verneed data
2293  *	vnd_num - # of Verneed entries
2294  *	versym - Information about versym section
2295  *
2296  * exit:
2297  *	If a non-zero vna_other field is seen, versym->gnu_needed is set.
2298  *
2299  *	versym->max_verndx has been updated to contain the largest
2300  *	version index seen.
2301  */
2302 static void
2303 update_gnu_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym)
2304 {
2305 	Word		cnt;
2306 
2307 	for (cnt = 1; cnt <= vnd_num; cnt++,
2308 	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
2309 		Half	vcnt = vnd->vn_cnt;
2310 		Vernaux	*vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
2311 
2312 		/*
2313 		 * A non-zero value of vna_other indicates that this
2314 		 * object references VERNEED items from the VERSYM
2315 		 * array.
2316 		 */
2317 		if (vnap->vna_other != 0) {
2318 			versym->gnu_needed = 1;
2319 			if (vnap->vna_other > versym->max_verndx)
2320 				versym->max_verndx = vnap->vna_other;
2321 		}
2322 
2323 		/*
2324 		 * Check any additional version dependencies.
2325 		 */
2326 		if (vcnt) {
2327 			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
2328 			for (vcnt--; vcnt; vcnt--,
2329 			    vnap = (Vernaux *)((uintptr_t)vnap +
2330 			    vnap->vna_next)) {
2331 				if (vnap->vna_other == 0)
2332 					continue;
2333 
2334 				versym->gnu_needed = 1;
2335 				if (vnap->vna_other > versym->max_verndx)
2336 					versym->max_verndx = vnap->vna_other;
2337 			}
2338 		}
2339 	}
2340 }
2341 
2342 /*
2343  * Display version section information if the flags require it.
2344  * Return version information needed by other output.
2345  *
2346  * entry:
2347  *	cache - Cache of all section headers
2348  *	shnum - # of sections in cache
2349  *	file - Name of file
2350  *	flags - Command line option flags
2351  *	versym - VERSYM_STATE block to be filled in.
2352  */
2353 static void
2354 versions(Cache *cache, Word shnum, const char *file, uint_t flags,
2355     VERSYM_STATE *versym)
2356 {
2357 	GElf_Word	cnt;
2358 	Cache		*verdef_cache = NULL, *verneed_cache = NULL;
2359 
2360 
2361 	/* Gather information about the version sections */
2362 	versym->max_verndx = 1;
2363 	for (cnt = 1; cnt < shnum; cnt++) {
2364 		Cache		*_cache = &cache[cnt];
2365 		Shdr		*shdr = _cache->c_shdr;
2366 		Dyn		*dyn;
2367 		ulong_t		numdyn;
2368 
2369 		switch (shdr->sh_type) {
2370 		case SHT_DYNAMIC:
2371 			/*
2372 			 * The GNU ld puts a DT_VERSYM entry in the dynamic
2373 			 * section so that the runtime linker can use it to
2374 			 * implement their versioning rules. They allow multiple
2375 			 * incompatible functions with the same name to exist
2376 			 * in different versions. The Solaris ld does not
2377 			 * support this mechanism, and as such, does not
2378 			 * produce DT_VERSYM. We use this fact to determine
2379 			 * which ld produced this object, and how to interpret
2380 			 * the version values.
2381 			 */
2382 			if ((shdr->sh_entsize == 0) ||
2383 			    (shdr->sh_size == 0) ||
2384 			    (_cache->c_data == NULL) ||
2385 			    (_cache->c_data->d_buf == NULL))
2386 				continue;
2387 			numdyn = shdr->sh_size / shdr->sh_entsize;
2388 			dyn = (Dyn *)_cache->c_data->d_buf;
2389 			for (; numdyn-- > 0; dyn++)
2390 				if (dyn->d_tag == DT_VERSYM) {
2391 					versym->gnu_full =
2392 					    versym->gnu_needed = 1;
2393 					break;
2394 				}
2395 			break;
2396 
2397 		case SHT_SUNW_versym:
2398 			/* Record data address for later symbol processing */
2399 			if (_cache->c_data != NULL) {
2400 				versym->cache = _cache;
2401 				versym->data = _cache->c_data->d_buf;
2402 				continue;
2403 			}
2404 			break;
2405 
2406 		case SHT_SUNW_verdef:
2407 		case SHT_SUNW_verneed:
2408 			/*
2409 			 * Ensure the data is non-NULL and the number
2410 			 * of items is non-zero. Otherwise, we don't
2411 			 * understand the section, and will not use it.
2412 			 */
2413 			if ((_cache->c_data == NULL) ||
2414 			    (_cache->c_data->d_buf == NULL)) {
2415 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2416 				    file, _cache->c_name);
2417 				continue;
2418 			}
2419 			if (shdr->sh_info == 0) {
2420 				(void) fprintf(stderr,
2421 				    MSG_INTL(MSG_ERR_BADSHINFO),
2422 				    file, _cache->c_name,
2423 				    EC_WORD(shdr->sh_info));
2424 				continue;
2425 			}
2426 
2427 			/* Make sure the string table index is in range */
2428 			if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
2429 				(void) fprintf(stderr,
2430 				    MSG_INTL(MSG_ERR_BADSHLINK), file,
2431 				    _cache->c_name, EC_WORD(shdr->sh_link));
2432 				continue;
2433 			}
2434 
2435 			/*
2436 			 * The section is usable. Save the cache entry.
2437 			 */
2438 			if (shdr->sh_type == SHT_SUNW_verdef) {
2439 				verdef_cache = _cache;
2440 				/*
2441 				 * Under Solaris rules, if there is a verdef
2442 				 * section, the max versym index is number
2443 				 * of version definitions it supplies.
2444 				 */
2445 				versym->max_verndx = shdr->sh_info;
2446 			} else {
2447 				verneed_cache = _cache;
2448 			}
2449 			break;
2450 		}
2451 	}
2452 
2453 	/*
2454 	 * If there is a Verneed section, examine it for information
2455 	 * related to GNU style versioning.
2456 	 */
2457 	if (verneed_cache != NULL)
2458 		update_gnu_verndx((Verneed *)verneed_cache->c_data->d_buf,
2459 		    verneed_cache->c_shdr->sh_info, versym);
2460 
2461 	/*
2462 	 * Now that all the information is available, display the
2463 	 * Verdef and Verneed section contents, if requested.
2464 	 */
2465 	if ((flags & FLG_SHOW_VERSIONS) == 0)
2466 		return;
2467 	if (verdef_cache != NULL) {
2468 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2469 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF),
2470 		    verdef_cache->c_name);
2471 		version_def((Verdef *)verdef_cache->c_data->d_buf,
2472 		    verdef_cache->c_shdr->sh_info, verdef_cache,
2473 		    &cache[verdef_cache->c_shdr->sh_link], file);
2474 	}
2475 	if (verneed_cache != NULL) {
2476 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2477 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED),
2478 		    verneed_cache->c_name);
2479 		/*
2480 		 * If GNU versioning applies to this object, version_need()
2481 		 * will update versym->max_verndx, and it is not
2482 		 * necessary to call update_gnu_verndx().
2483 		 */
2484 		version_need((Verneed *)verneed_cache->c_data->d_buf,
2485 		    verneed_cache->c_shdr->sh_info, verneed_cache,
2486 		    &cache[verneed_cache->c_shdr->sh_link], file, versym);
2487 	}
2488 }
2489 
2490 /*
2491  * Search for and process any symbol tables.
2492  */
2493 void
2494 symbols(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
2495     VERSYM_STATE *versym, const char *file, uint_t flags)
2496 {
2497 	SYMTBL_STATE state;
2498 	Cache *_cache;
2499 	Word secndx;
2500 
2501 	for (secndx = 1; secndx < shnum; secndx++) {
2502 		Word		symcnt;
2503 		Shdr		*shdr;
2504 
2505 		_cache = &cache[secndx];
2506 		shdr = _cache->c_shdr;
2507 
2508 		if ((shdr->sh_type != SHT_SYMTAB) &&
2509 		    (shdr->sh_type != SHT_DYNSYM) &&
2510 		    ((shdr->sh_type != SHT_SUNW_LDYNSYM) ||
2511 		    (osabi != ELFOSABI_SOLARIS)))
2512 			continue;
2513 		if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type))
2514 			continue;
2515 
2516 		if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr,
2517 		    osabi, versym, file, flags))
2518 			continue;
2519 		/*
2520 		 * Loop through the symbol tables entries.
2521 		 */
2522 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2523 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname);
2524 		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
2525 
2526 		for (symcnt = 0; symcnt < state.symn; symcnt++)
2527 			output_symbol(&state, symcnt, shdr->sh_info, symcnt,
2528 			    state.sym + symcnt);
2529 	}
2530 }
2531 
2532 /*
2533  * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections.
2534  * These sections are always associated with the .SUNW_ldynsym./.dynsym pair.
2535  */
2536 static void
2537 sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
2538     VERSYM_STATE *versym, const char *file, uint_t flags)
2539 {
2540 	SYMTBL_STATE	ldynsym_state,	dynsym_state;
2541 	Cache		*sortcache,	*symcache;
2542 	Shdr		*sortshdr,	*symshdr;
2543 	Word		sortsecndx,	symsecndx;
2544 	Word		ldynsym_cnt;
2545 	Word		*ndx;
2546 	Word		ndxn;
2547 	int		output_cnt = 0;
2548 	Conv_inv_buf_t	inv_buf;
2549 
2550 	for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) {
2551 
2552 		sortcache = &cache[sortsecndx];
2553 		sortshdr = sortcache->c_shdr;
2554 
2555 		if ((sortshdr->sh_type != SHT_SUNW_symsort) &&
2556 		    (sortshdr->sh_type != SHT_SUNW_tlssort))
2557 			continue;
2558 		if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx,
2559 		    sortshdr->sh_type))
2560 			continue;
2561 
2562 		/*
2563 		 * If the section references a SUNW_ldynsym, then we
2564 		 * expect to see the associated .dynsym immediately
2565 		 * following. If it references a .dynsym, there is no
2566 		 * SUNW_ldynsym. If it is any other type, then we don't
2567 		 * know what to do with it.
2568 		 */
2569 		if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) {
2570 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
2571 			    file, sortcache->c_name,
2572 			    EC_WORD(sortshdr->sh_link));
2573 			continue;
2574 		}
2575 		symcache = &cache[sortshdr->sh_link];
2576 		symshdr = symcache->c_shdr;
2577 		symsecndx = sortshdr->sh_link;
2578 		ldynsym_cnt = 0;
2579 		switch (symshdr->sh_type) {
2580 		case SHT_SUNW_LDYNSYM:
2581 			if (!init_symtbl_state(&ldynsym_state, cache, shnum,
2582 			    symsecndx, ehdr, osabi, versym, file, flags))
2583 				continue;
2584 			ldynsym_cnt = ldynsym_state.symn;
2585 			/*
2586 			 * We know that the dynsym follows immediately
2587 			 * after the SUNW_ldynsym, and so, should be at
2588 			 * (sortshdr->sh_link + 1). However, elfdump is a
2589 			 * diagnostic tool, so we do the full paranoid
2590 			 * search instead.
2591 			 */
2592 			for (symsecndx = 1; symsecndx < shnum; symsecndx++) {
2593 				symcache = &cache[symsecndx];
2594 				symshdr = symcache->c_shdr;
2595 				if (symshdr->sh_type == SHT_DYNSYM)
2596 					break;
2597 			}
2598 			if (symsecndx >= shnum) {	/* Dynsym not found! */
2599 				(void) fprintf(stderr,
2600 				    MSG_INTL(MSG_ERR_NODYNSYM),
2601 				    file, sortcache->c_name);
2602 				continue;
2603 			}
2604 			/* Fallthrough to process associated dynsym */
2605 			/* FALLTHROUGH */
2606 		case SHT_DYNSYM:
2607 			if (!init_symtbl_state(&dynsym_state, cache, shnum,
2608 			    symsecndx, ehdr, osabi, versym, file, flags))
2609 				continue;
2610 			break;
2611 		default:
2612 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC),
2613 			    file, sortcache->c_name,
2614 			    conv_sec_type(osabi, ehdr->e_machine,
2615 			    symshdr->sh_type, 0, &inv_buf));
2616 			continue;
2617 		}
2618 
2619 		/*
2620 		 * Output header
2621 		 */
2622 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2623 		if (ldynsym_cnt > 0) {
2624 			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2),
2625 			    sortcache->c_name, ldynsym_state.secname,
2626 			    dynsym_state.secname);
2627 			/*
2628 			 * The data for .SUNW_ldynsym and dynsym sections
2629 			 * is supposed to be adjacent with SUNW_ldynsym coming
2630 			 * first. Check, and issue a warning if it isn't so.
2631 			 */
2632 			if (((ldynsym_state.sym + ldynsym_state.symn)
2633 			    != dynsym_state.sym) &&
2634 			    ((flags & FLG_CTL_FAKESHDR) == 0))
2635 				(void) fprintf(stderr,
2636 				    MSG_INTL(MSG_ERR_LDYNNOTADJ), file,
2637 				    ldynsym_state.secname,
2638 				    dynsym_state.secname);
2639 		} else {
2640 			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1),
2641 			    sortcache->c_name, dynsym_state.secname);
2642 		}
2643 		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
2644 
2645 		/* If not first one, insert a line of white space */
2646 		if (output_cnt++ > 0)
2647 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2648 
2649 		/*
2650 		 * SUNW_dynsymsort and SUNW_dyntlssort are arrays of
2651 		 * symbol indices. Iterate over the array entries,
2652 		 * dispaying the referenced symbols.
2653 		 */
2654 		ndxn = sortshdr->sh_size / sortshdr->sh_entsize;
2655 		ndx = (Word *)sortcache->c_data->d_buf;
2656 		for (; ndxn-- > 0; ndx++) {
2657 			if (*ndx >= ldynsym_cnt) {
2658 				Word sec_ndx = *ndx - ldynsym_cnt;
2659 
2660 				output_symbol(&dynsym_state, sec_ndx, 0,
2661 				    *ndx, dynsym_state.sym + sec_ndx);
2662 			} else {
2663 				output_symbol(&ldynsym_state, *ndx, 0,
2664 				    *ndx, ldynsym_state.sym + *ndx);
2665 			}
2666 		}
2667 	}
2668 }
2669 
2670 /*
2671  * Search for and process any relocation sections.
2672  */
2673 static void
2674 reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
2675 {
2676 	Word	cnt;
2677 
2678 	for (cnt = 1; cnt < shnum; cnt++) {
2679 		Word		type, symnum;
2680 		Xword		relndx, relnum, relsize;
2681 		void		*rels;
2682 		Sym		*syms;
2683 		Cache		*symsec, *strsec;
2684 		Cache		*_cache = &cache[cnt];
2685 		Shdr		*shdr = _cache->c_shdr;
2686 		char		*relname = _cache->c_name;
2687 		Conv_inv_buf_t	inv_buf;
2688 
2689 		if (((type = shdr->sh_type) != SHT_RELA) &&
2690 		    (type != SHT_REL))
2691 			continue;
2692 		if (!match(MATCH_F_ALL, relname, cnt, type))
2693 			continue;
2694 
2695 		/*
2696 		 * Decide entry size.
2697 		 */
2698 		if (((relsize = shdr->sh_entsize) == 0) ||
2699 		    (relsize > shdr->sh_size)) {
2700 			if (type == SHT_RELA)
2701 				relsize = sizeof (Rela);
2702 			else
2703 				relsize = sizeof (Rel);
2704 		}
2705 
2706 		/*
2707 		 * Determine the number of relocations available.
2708 		 */
2709 		if (shdr->sh_size == 0) {
2710 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2711 			    file, relname);
2712 			continue;
2713 		}
2714 		if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
2715 			continue;
2716 
2717 		rels = _cache->c_data->d_buf;
2718 		relnum = shdr->sh_size / relsize;
2719 
2720 		/*
2721 		 * Get the data buffer for the associated symbol table and
2722 		 * string table.
2723 		 */
2724 		if (stringtbl(cache, 1, cnt, shnum, file,
2725 		    &symnum, &symsec, &strsec) == 0)
2726 			continue;
2727 
2728 		syms = symsec->c_data->d_buf;
2729 
2730 		/*
2731 		 * Loop through the relocation entries.
2732 		 */
2733 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2734 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name);
2735 		Elf_reloc_title(0, ELF_DBG_ELFDUMP, type);
2736 
2737 		for (relndx = 0; relndx < relnum; relndx++,
2738 		    rels = (void *)((char *)rels + relsize)) {
2739 			Half		mach = ehdr->e_machine;
2740 			char		section[BUFSIZ];
2741 			const char	*symname;
2742 			Word		symndx, reltype;
2743 			Rela		*rela;
2744 			Rel		*rel;
2745 
2746 			/*
2747 			 * Unravel the relocation and determine the symbol with
2748 			 * which this relocation is associated.
2749 			 */
2750 			if (type == SHT_RELA) {
2751 				rela = (Rela *)rels;
2752 				symndx = ELF_R_SYM(rela->r_info);
2753 				reltype = ELF_R_TYPE(rela->r_info, mach);
2754 			} else {
2755 				rel = (Rel *)rels;
2756 				symndx = ELF_R_SYM(rel->r_info);
2757 				reltype = ELF_R_TYPE(rel->r_info, mach);
2758 			}
2759 
2760 			symname = relsymname(cache, _cache, strsec, symndx,
2761 			    symnum, relndx, syms, section, BUFSIZ, file);
2762 
2763 			/*
2764 			 * A zero symbol index is only valid for a few
2765 			 * relocations.
2766 			 */
2767 			if (symndx == 0) {
2768 				int	badrel = 0;
2769 
2770 				if ((mach == EM_SPARC) ||
2771 				    (mach == EM_SPARC32PLUS) ||
2772 				    (mach == EM_SPARCV9)) {
2773 					if ((reltype != R_SPARC_NONE) &&
2774 					    (reltype != R_SPARC_REGISTER) &&
2775 					    (reltype != R_SPARC_RELATIVE))
2776 						badrel++;
2777 				} else if (mach == EM_386) {
2778 					if ((reltype != R_386_NONE) &&
2779 					    (reltype != R_386_RELATIVE))
2780 						badrel++;
2781 				} else if (mach == EM_AMD64) {
2782 					if ((reltype != R_AMD64_NONE) &&
2783 					    (reltype != R_AMD64_RELATIVE))
2784 						badrel++;
2785 				}
2786 
2787 				if (badrel) {
2788 					(void) fprintf(stderr,
2789 					    MSG_INTL(MSG_ERR_BADREL1), file,
2790 					    conv_reloc_type(mach, reltype,
2791 					    0, &inv_buf));
2792 				}
2793 			}
2794 
2795 			Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP,
2796 			    MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type,
2797 			    rels, relname, symname, 0);
2798 		}
2799 	}
2800 }
2801 
2802 
2803 /*
2804  * This value controls which test dyn_test() performs.
2805  */
2806 typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t;
2807 
2808 /*
2809  * Used by dynamic() to compare the value of a dynamic element against
2810  * the starting address of the section it references.
2811  *
2812  * entry:
2813  *	test_type - Specify which dyn item is being tested.
2814  *	sh_type - SHT_* type value for required section.
2815  *	sec_cache - Cache entry for section, or NULL if the object lacks
2816  *		a section of this type.
2817  *	dyn - Dyn entry to be tested
2818  *	dynsec_cnt - # of dynamic section being examined. The first
2819  *		dynamic section is 1, the next is 2, and so on...
2820  *	ehdr - ELF header for file
2821  *	file - Name of file
2822  */
2823 static void
2824 dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn,
2825     Word dynsec_cnt, Ehdr *ehdr, uchar_t osabi, const char *file)
2826 {
2827 	Conv_inv_buf_t	buf1, buf2;
2828 
2829 	/*
2830 	 * These tests are based around the implicit assumption that
2831 	 * there is only one dynamic section in an object, and also only
2832 	 * one of the sections it references. We have therefore gathered
2833 	 * all of the necessary information to test this in a single pass
2834 	 * over the section headers, which is very efficient. We are not
2835 	 * aware of any case where more than one dynamic section would
2836 	 * be meaningful in an ELF object, so this is a reasonable solution.
2837 	 *
2838 	 * To test multiple dynamic sections correctly would be more
2839 	 * expensive in code and time. We would have to build a data structure
2840 	 * containing all the dynamic elements. Then, we would use the address
2841 	 * to locate the section it references and ensure the section is of
2842 	 * the right type and that the address in the dynamic element is
2843 	 * to the start of the section. Then, we could check the size and
2844 	 * entsize values against those same sections. This is O(n^2), and
2845 	 * also complicated.
2846 	 *
2847 	 * In the highly unlikely case that there is more than one dynamic
2848 	 * section, we only test the first one, and simply allow the values
2849 	 * of the subsequent one to be displayed unchallenged.
2850 	 */
2851 	if (dynsec_cnt != 1)
2852 		return;
2853 
2854 	/*
2855 	 * A DT_ item that references a section address should always find
2856 	 * the section in the file.
2857 	 */
2858 	if (sec_cache == NULL) {
2859 		const char *name;
2860 
2861 		/*
2862 		 * Supply section names instead of section types for
2863 		 * things that reference progbits so that the error
2864 		 * message will make more sense.
2865 		 */
2866 		switch (dyn->d_tag) {
2867 		case DT_INIT:
2868 			name = MSG_ORIG(MSG_ELF_INIT);
2869 			break;
2870 		case DT_FINI:
2871 			name = MSG_ORIG(MSG_ELF_FINI);
2872 			break;
2873 		default:
2874 			name = conv_sec_type(osabi, ehdr->e_machine,
2875 			    sh_type, 0, &buf1);
2876 			break;
2877 		}
2878 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file,
2879 		    name, conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2880 		    CONV_FMT_ALT_CF, &buf2));
2881 		return;
2882 	}
2883 
2884 
2885 	switch (test_type) {
2886 	case DYN_TEST_ADDR:
2887 		/* The section address should match the DT_ item value */
2888 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr)
2889 			(void) fprintf(stderr,
2890 			    MSG_INTL(MSG_ERR_DYNBADADDR), file,
2891 			    conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2892 			    CONV_FMT_ALT_CF, &buf1), EC_ADDR(dyn->d_un.d_val),
2893 			    sec_cache->c_ndx, sec_cache->c_name,
2894 			    EC_ADDR(sec_cache->c_shdr->sh_addr));
2895 		break;
2896 
2897 	case DYN_TEST_SIZE:
2898 		/* The section size should match the DT_ item value */
2899 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size)
2900 			(void) fprintf(stderr,
2901 			    MSG_INTL(MSG_ERR_DYNBADSIZE), file,
2902 			    conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2903 			    CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val),
2904 			    sec_cache->c_ndx, sec_cache->c_name,
2905 			    EC_XWORD(sec_cache->c_shdr->sh_size));
2906 		break;
2907 
2908 	case DYN_TEST_ENTSIZE:
2909 		/* The sh_entsize value should match the DT_ item value */
2910 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize)
2911 			(void) fprintf(stderr,
2912 			    MSG_INTL(MSG_ERR_DYNBADENTSIZE), file,
2913 			    conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2914 			    CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val),
2915 			    sec_cache->c_ndx, sec_cache->c_name,
2916 			    EC_XWORD(sec_cache->c_shdr->sh_entsize));
2917 		break;
2918 	}
2919 }
2920 
2921 /*
2922  * There are some DT_ entries that have corresponding symbols
2923  * (e.g. DT_INIT and _init). It is expected that these items will
2924  * both have the same value if both are present. This routine
2925  * examines the well known symbol tables for such symbols and
2926  * issues warnings for any that don't match.
2927  *
2928  * entry:
2929  *	dyn - Dyn entry to be tested
2930  *	symname - Name of symbol that corresponds to dyn
2931  *	symtab_cache, dynsym_cache, ldynsym_cache - Symbol tables to check
2932  *	target_cache - Section the symname section is expected to be
2933  *		associated with.
2934  *	cache - Cache of all section headers
2935  *	shnum - # of sections in cache
2936  *	ehdr - ELF header for file
2937  *	osabi - OSABI to apply when interpreting object
2938  *	file - Name of file
2939  */
2940 static void
2941 dyn_symtest(Dyn *dyn, const char *symname, Cache *symtab_cache,
2942     Cache *dynsym_cache, Cache *ldynsym_cache, Cache *target_cache,
2943     Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
2944 {
2945 	Conv_inv_buf_t	buf;
2946 	int		i;
2947 	Sym		*sym;
2948 	Cache		*_cache = NULL;
2949 
2950 	for (i = 0; i < 3; i++) {
2951 		switch (i) {
2952 		case 0:
2953 			_cache = symtab_cache;
2954 			break;
2955 		case 1:
2956 			_cache = dynsym_cache;
2957 			break;
2958 		case 2:
2959 			_cache = ldynsym_cache;
2960 			break;
2961 		}
2962 
2963 		if ((_cache != NULL) &&
2964 		    symlookup(symname, cache, shnum, &sym, target_cache,
2965 		    _cache, file) && (sym->st_value != dyn->d_un.d_val))
2966 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNSYMVAL),
2967 			    file, _cache->c_name, conv_dyn_tag(dyn->d_tag,
2968 			    osabi, ehdr->e_machine, CONV_FMT_ALT_CF, &buf),
2969 			    symname, EC_ADDR(sym->st_value));
2970 	}
2971 }
2972 
2973 /*
2974  * Search for and process a .dynamic section.
2975  */
2976 static void
2977 dynamic(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file,
2978     Word phnum, Elf *elf)
2979 {
2980 	struct {
2981 		Cache	*symtab;
2982 		Cache	*dynstr;
2983 		Cache	*dynsym;
2984 		Cache	*hash;
2985 		Cache	*fini;
2986 		Cache	*fini_array;
2987 		Cache	*init;
2988 		Cache	*init_array;
2989 		Cache	*preinit_array;
2990 		Cache	*rel;
2991 		Cache	*rela;
2992 		Cache	*sunw_cap;
2993 		Cache	*sunw_capinfo;
2994 		Cache	*sunw_capchain;
2995 		Cache	*sunw_ldynsym;
2996 		Cache	*sunw_move;
2997 		Cache	*sunw_syminfo;
2998 		Cache	*sunw_symsort;
2999 		Cache	*sunw_tlssort;
3000 		Cache	*sunw_verdef;
3001 		Cache	*sunw_verneed;
3002 		Cache	*sunw_versym;
3003 	} sec;
3004 	Word	dynsec_ndx;
3005 	Word	dynsec_num;
3006 	int	dynsec_cnt;
3007 	Word	cnt;
3008 	int	osabi_solaris = osabi == ELFOSABI_SOLARIS;
3009 	Phdr	*pt_dynamic = NULL;
3010 	size_t	phndx;
3011 	static Word phdr_type[] = { PT_DYNAMIC };
3012 
3013 	/*
3014 	 * Make a pass over all the sections, gathering section information
3015 	 * we'll need below.
3016 	 */
3017 	dynsec_num = 0;
3018 	bzero(&sec, sizeof (sec));
3019 	for (cnt = 1; cnt < shnum; cnt++) {
3020 		Cache	*_cache = &cache[cnt];
3021 
3022 		switch (_cache->c_shdr->sh_type) {
3023 		case SHT_DYNAMIC:
3024 			if (dynsec_num == 0) {
3025 				dynsec_ndx = cnt;
3026 
3027 				/* Does it have a valid string table? */
3028 				(void) stringtbl(cache, 0, cnt, shnum, file,
3029 				    0, 0, &sec.dynstr);
3030 			}
3031 			dynsec_num++;
3032 			break;
3033 
3034 
3035 		case SHT_PROGBITS:
3036 			/*
3037 			 * We want to detect the .init and .fini sections,
3038 			 * if present. These are SHT_PROGBITS, so all we
3039 			 * have to go on is the section name. Normally comparing
3040 			 * names is a bad idea, but there are some special
3041 			 * names (i.e. .init/.fini/.interp) that are very
3042 			 * difficult to use in any other context, and for
3043 			 * these symbols, we do the heuristic match.
3044 			 */
3045 			if (strcmp(_cache->c_name,
3046 			    MSG_ORIG(MSG_ELF_INIT)) == 0) {
3047 				if (sec.init == NULL)
3048 					sec.init = _cache;
3049 			} else if (strcmp(_cache->c_name,
3050 			    MSG_ORIG(MSG_ELF_FINI)) == 0) {
3051 				if (sec.fini == NULL)
3052 					sec.fini = _cache;
3053 			}
3054 			break;
3055 
3056 		case SHT_REL:
3057 			/*
3058 			 * We want the SHT_REL section with the lowest
3059 			 * offset. The linker gathers them together,
3060 			 * and puts the address of the first one
3061 			 * into the DT_REL dynamic element.
3062 			 */
3063 			if ((sec.rel == NULL) ||
3064 			    (_cache->c_shdr->sh_offset <
3065 			    sec.rel->c_shdr->sh_offset))
3066 				sec.rel = _cache;
3067 			break;
3068 
3069 		case SHT_RELA:
3070 			/* RELA is handled just like RELA above */
3071 			if ((sec.rela == NULL) ||
3072 			    (_cache->c_shdr->sh_offset <
3073 			    sec.rela->c_shdr->sh_offset))
3074 				sec.rela = _cache;
3075 			break;
3076 
3077 		/*
3078 		 * The GRAB macro is used for the simple case in which
3079 		 * we simply grab the first section of the desired type.
3080 		 */
3081 #define	GRAB(_sec_type, _sec_field) \
3082 		case _sec_type: \
3083 			if (sec._sec_field == NULL) \
3084 				sec._sec_field = _cache; \
3085 			break
3086 		GRAB(SHT_SYMTAB,	symtab);
3087 		GRAB(SHT_DYNSYM,	dynsym);
3088 		GRAB(SHT_FINI_ARRAY,	fini_array);
3089 		GRAB(SHT_HASH,		hash);
3090 		GRAB(SHT_INIT_ARRAY,	init_array);
3091 		GRAB(SHT_SUNW_move,	sunw_move);
3092 		GRAB(SHT_PREINIT_ARRAY,	preinit_array);
3093 		GRAB(SHT_SUNW_cap,	sunw_cap);
3094 		GRAB(SHT_SUNW_capinfo,	sunw_capinfo);
3095 		GRAB(SHT_SUNW_capchain,	sunw_capchain);
3096 		GRAB(SHT_SUNW_LDYNSYM,	sunw_ldynsym);
3097 		GRAB(SHT_SUNW_syminfo,	sunw_syminfo);
3098 		GRAB(SHT_SUNW_symsort,	sunw_symsort);
3099 		GRAB(SHT_SUNW_tlssort,	sunw_tlssort);
3100 		GRAB(SHT_SUNW_verdef,	sunw_verdef);
3101 		GRAB(SHT_SUNW_verneed,	sunw_verneed);
3102 		GRAB(SHT_SUNW_versym,	sunw_versym);
3103 #undef GRAB
3104 		}
3105 	}
3106 
3107 	if (phnum) {
3108 		pt_dynamic = getphdr(phnum, phdr_type, 1, file, elf, &phndx);
3109 	}
3110 
3111 	/*
3112 	 * If no dynamic section, return immediately. If more than one
3113 	 * dynamic section, then something odd is going on and an error
3114 	 * is in order, but then continue on and display them all.
3115 	 */
3116 	if (dynsec_num == 0) {
3117 		return;
3118 	}
3119 	if (dynsec_num > 1)
3120 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN),
3121 		    file, EC_WORD(dynsec_num));
3122 
3123 
3124 	dynsec_cnt = 0;
3125 	for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num);
3126 	    cnt++) {
3127 		Dyn	*dyn;
3128 		ulong_t	numdyn;
3129 		int	ndx, end_ndx;
3130 		Cache	*_cache = &cache[cnt], *strsec;
3131 		Shdr	*shdr = _cache->c_shdr;
3132 		int	dumped = 0;
3133 
3134 		if (shdr->sh_type != SHT_DYNAMIC)
3135 			continue;
3136 		dynsec_cnt++;
3137 
3138 		/*
3139 		 * Verify the associated string table section.
3140 		 */
3141 		if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0)
3142 			continue;
3143 
3144 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
3145 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3146 			    file, _cache->c_name);
3147 			continue;
3148 		}
3149 		if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
3150 			continue;
3151 
3152 		/* The first time through, check v. PT_DYNAMIC */
3153 		if (dynsec_cnt == 1) {
3154 			Conv_inv_buf_t inv_buf;
3155 
3156 			if ((pt_dynamic == NULL) && (ehdr->e_type != ET_REL)) {
3157 				fprintf(stderr, MSG_INTL(MSG_SHDR_NO_PHDR),
3158 				    file, _cache->c_ndx, _cache->c_name,
3159 				    conv_phdr_type(osabi, ehdr->e_machine,
3160 				    PT_DYNAMIC, CONV_FMT_ALT_CF, &inv_buf));
3161 			}
3162 
3163 			if (pt_dynamic != NULL) {
3164 				check_phdr_v_shdr(pt_dynamic, phndx,
3165 				    osabi, ehdr->e_machine, _cache, file);
3166 			}
3167 		}
3168 
3169 		numdyn = shdr->sh_size / shdr->sh_entsize;
3170 		dyn = (Dyn *)_cache->c_data->d_buf;
3171 
3172 		/*
3173 		 * We expect the REL/RELA entries to reference the reloc
3174 		 * section with the lowest address. However, this is
3175 		 * not true for dumped objects. Detect if this object has
3176 		 * been dumped so that we can skip the reloc address test
3177 		 * in that case.
3178 		 */
3179 		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
3180 			if (dyn->d_tag == DT_FLAGS_1) {
3181 				dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0;
3182 				break;
3183 			}
3184 		}
3185 		dyn = (Dyn *)_cache->c_data->d_buf;
3186 
3187 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3188 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name);
3189 
3190 		Elf_dyn_title(0);
3191 
3192 		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
3193 			union {
3194 				Conv_inv_buf_t		inv;
3195 				Conv_dyn_flag_buf_t	flag;
3196 				Conv_dyn_flag1_buf_t	flag1;
3197 				Conv_dyn_posflag1_buf_t	posflag1;
3198 				Conv_dyn_feature1_buf_t	feature1;
3199 			} c_buf;
3200 			const char	*name = NULL;
3201 
3202 			/*
3203 			 * Print the information numerically, and if possible
3204 			 * as a string. If a string is available, name is
3205 			 * set to reference it.
3206 			 *
3207 			 * Also, take this opportunity to sanity check
3208 			 * the values of DT elements. In the code above,
3209 			 * we gathered information on sections that are
3210 			 * referenced by the dynamic section. Here, we
3211 			 * compare the attributes of those sections to
3212 			 * the DT_ items that reference them and report
3213 			 * on inconsistencies.
3214 			 *
3215 			 * Things not currently tested that could be improved
3216 			 * in later revisions include:
3217 			 *	- We don't check PLT or GOT related items
3218 			 *	- We don't handle computing the lengths of
3219 			 *		relocation arrays. To handle this
3220 			 *		requires examining data that spans
3221 			 *		across sections, in a contiguous span
3222 			 *		within a single segment.
3223 			 *	- DT_VERDEFNUM and DT_VERNEEDNUM can't be
3224 			 *		verified without parsing the sections.
3225 			 *	- We don't handle DT_SUNW_SYMSZ, which would
3226 			 *		be the sum of the lengths of .dynsym and
3227 			 *		.SUNW_ldynsym
3228 			 *	- DT_SUNW_STRPAD can't be verified other than
3229 			 *		to check that it's not larger than
3230 			 *		the string table.
3231 			 *	- Some items come in "all or none" clusters
3232 			 *		that give an address, element size,
3233 			 *		and data length in bytes. We don't
3234 			 *		verify that there are no missing items
3235 			 *		in such groups.
3236 			 */
3237 			switch (dyn->d_tag) {
3238 			case DT_NULL:
3239 				/*
3240 				 * Special case: DT_NULLs can come in groups
3241 				 * that we prefer to reduce to a single line.
3242 				 */
3243 				end_ndx = ndx;
3244 				while ((end_ndx < (numdyn - 1)) &&
3245 				    ((dyn + 1)->d_tag == DT_NULL)) {
3246 					dyn++;
3247 					end_ndx++;
3248 				}
3249 				Elf_dyn_null_entry(0, dyn, ndx, end_ndx);
3250 				ndx = end_ndx;
3251 				continue;
3252 
3253 			/*
3254 			 * String items all reference the dynstr. The string()
3255 			 * function does the necessary sanity checking.
3256 			 */
3257 			case DT_NEEDED:
3258 			case DT_SONAME:
3259 			case DT_FILTER:
3260 			case DT_AUXILIARY:
3261 			case DT_CONFIG:
3262 			case DT_RPATH:
3263 			case DT_RUNPATH:
3264 			case DT_USED:
3265 			case DT_DEPAUDIT:
3266 			case DT_AUDIT:
3267 				name = string(_cache, ndx, strsec,
3268 				    file, dyn->d_un.d_ptr);
3269 				break;
3270 
3271 			case DT_SUNW_AUXILIARY:
3272 			case DT_SUNW_FILTER:
3273 				if (osabi_solaris)
3274 					name = string(_cache, ndx, strsec,
3275 					    file, dyn->d_un.d_ptr);
3276 				break;
3277 
3278 			case DT_FLAGS:
3279 				name = conv_dyn_flag(dyn->d_un.d_val,
3280 				    0, &c_buf.flag);
3281 				break;
3282 			case DT_FLAGS_1:
3283 				name = conv_dyn_flag1(dyn->d_un.d_val, 0,
3284 				    &c_buf.flag1);
3285 				break;
3286 			case DT_POSFLAG_1:
3287 				name = conv_dyn_posflag1(dyn->d_un.d_val, 0,
3288 				    &c_buf.posflag1);
3289 				break;
3290 			case DT_FEATURE_1:
3291 				name = conv_dyn_feature1(dyn->d_un.d_val, 0,
3292 				    &c_buf.feature1);
3293 				break;
3294 			case DT_DEPRECATED_SPARC_REGISTER:
3295 				name = MSG_INTL(MSG_STR_DEPRECATED);
3296 				break;
3297 
3298 			case DT_SUNW_LDMACH:
3299 				if (!osabi_solaris)
3300 					break;
3301 				name = conv_ehdr_mach((Half)dyn->d_un.d_val,
3302 				    0, &c_buf.inv);
3303 				break;
3304 
3305 			/*
3306 			 * Cases below this point are strictly sanity checking,
3307 			 * and do not generate a name string. The TEST_ macros
3308 			 * are used to hide the boiler plate arguments neeeded
3309 			 * by dyn_test().
3310 			 */
3311 #define	TEST_ADDR(_sh_type, _sec_field) \
3312 				dyn_test(DYN_TEST_ADDR, _sh_type, \
3313 				    sec._sec_field, dyn, dynsec_cnt, ehdr, \
3314 				    osabi, file)
3315 #define	TEST_SIZE(_sh_type, _sec_field) \
3316 				dyn_test(DYN_TEST_SIZE, _sh_type, \
3317 				    sec._sec_field, dyn, dynsec_cnt, ehdr, \
3318 				    osabi, file)
3319 #define	TEST_ENTSIZE(_sh_type, _sec_field) \
3320 				dyn_test(DYN_TEST_ENTSIZE, _sh_type, \
3321 				    sec._sec_field, dyn, dynsec_cnt, ehdr, \
3322 				    osabi, file)
3323 
3324 			case DT_FINI:
3325 				dyn_symtest(dyn, MSG_ORIG(MSG_SYM_FINI),
3326 				    sec.symtab, sec.dynsym, sec.sunw_ldynsym,
3327 				    sec.fini, cache, shnum, ehdr, osabi, file);
3328 				TEST_ADDR(SHT_PROGBITS, fini);
3329 				break;
3330 
3331 			case DT_FINI_ARRAY:
3332 				TEST_ADDR(SHT_FINI_ARRAY, fini_array);
3333 				break;
3334 
3335 			case DT_FINI_ARRAYSZ:
3336 				TEST_SIZE(SHT_FINI_ARRAY, fini_array);
3337 				break;
3338 
3339 			case DT_HASH:
3340 				TEST_ADDR(SHT_HASH, hash);
3341 				break;
3342 
3343 			case DT_INIT:
3344 				dyn_symtest(dyn, MSG_ORIG(MSG_SYM_INIT),
3345 				    sec.symtab, sec.dynsym, sec.sunw_ldynsym,
3346 				    sec.init, cache, shnum, ehdr, osabi, file);
3347 				TEST_ADDR(SHT_PROGBITS, init);
3348 				break;
3349 
3350 			case DT_INIT_ARRAY:
3351 				TEST_ADDR(SHT_INIT_ARRAY, init_array);
3352 				break;
3353 
3354 			case DT_INIT_ARRAYSZ:
3355 				TEST_SIZE(SHT_INIT_ARRAY, init_array);
3356 				break;
3357 
3358 			case DT_MOVEENT:
3359 				TEST_ENTSIZE(SHT_SUNW_move, sunw_move);
3360 				break;
3361 
3362 			case DT_MOVESZ:
3363 				TEST_SIZE(SHT_SUNW_move, sunw_move);
3364 				break;
3365 
3366 			case DT_MOVETAB:
3367 				TEST_ADDR(SHT_SUNW_move, sunw_move);
3368 				break;
3369 
3370 			case DT_PREINIT_ARRAY:
3371 				TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array);
3372 				break;
3373 
3374 			case DT_PREINIT_ARRAYSZ:
3375 				TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array);
3376 				break;
3377 
3378 			case DT_REL:
3379 				if (!dumped)
3380 					TEST_ADDR(SHT_REL, rel);
3381 				break;
3382 
3383 			case DT_RELENT:
3384 				TEST_ENTSIZE(SHT_REL, rel);
3385 				break;
3386 
3387 			case DT_RELA:
3388 				if (!dumped)
3389 					TEST_ADDR(SHT_RELA, rela);
3390 				break;
3391 
3392 			case DT_RELAENT:
3393 				TEST_ENTSIZE(SHT_RELA, rela);
3394 				break;
3395 
3396 			case DT_STRTAB:
3397 				TEST_ADDR(SHT_STRTAB, dynstr);
3398 				break;
3399 
3400 			case DT_STRSZ:
3401 				TEST_SIZE(SHT_STRTAB, dynstr);
3402 				break;
3403 
3404 			case DT_SUNW_CAP:
3405 				if (osabi_solaris)
3406 					TEST_ADDR(SHT_SUNW_cap, sunw_cap);
3407 				break;
3408 
3409 			case DT_SUNW_CAPINFO:
3410 				if (osabi_solaris)
3411 					TEST_ADDR(SHT_SUNW_capinfo,
3412 					    sunw_capinfo);
3413 				break;
3414 
3415 			case DT_SUNW_CAPCHAIN:
3416 				if (osabi_solaris)
3417 					TEST_ADDR(SHT_SUNW_capchain,
3418 					    sunw_capchain);
3419 				break;
3420 
3421 			case DT_SUNW_SYMTAB:
3422 				TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym);
3423 				break;
3424 
3425 			case DT_SYMENT:
3426 				TEST_ENTSIZE(SHT_DYNSYM, dynsym);
3427 				break;
3428 
3429 			case DT_SYMINENT:
3430 				TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo);
3431 				break;
3432 
3433 			case DT_SYMINFO:
3434 				TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo);
3435 				break;
3436 
3437 			case DT_SYMINSZ:
3438 				TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo);
3439 				break;
3440 
3441 			case DT_SYMTAB:
3442 				TEST_ADDR(SHT_DYNSYM, dynsym);
3443 				break;
3444 
3445 			case DT_SUNW_SORTENT:
3446 				/*
3447 				 * This entry is related to both the symsort and
3448 				 * tlssort sections.
3449 				 */
3450 				if (osabi_solaris) {
3451 					int test_tls =
3452 					    (sec.sunw_tlssort != NULL);
3453 					int test_sym =
3454 					    (sec.sunw_symsort != NULL) ||
3455 					    !test_tls;
3456 					if (test_sym)
3457 						TEST_ENTSIZE(SHT_SUNW_symsort,
3458 						    sunw_symsort);
3459 					if (test_tls)
3460 						TEST_ENTSIZE(SHT_SUNW_tlssort,
3461 						    sunw_tlssort);
3462 				}
3463 				break;
3464 
3465 
3466 			case DT_SUNW_SYMSORT:
3467 				if (osabi_solaris)
3468 					TEST_ADDR(SHT_SUNW_symsort,
3469 					    sunw_symsort);
3470 				break;
3471 
3472 			case DT_SUNW_SYMSORTSZ:
3473 				if (osabi_solaris)
3474 					TEST_SIZE(SHT_SUNW_symsort,
3475 					    sunw_symsort);
3476 				break;
3477 
3478 			case DT_SUNW_TLSSORT:
3479 				if (osabi_solaris)
3480 					TEST_ADDR(SHT_SUNW_tlssort,
3481 					    sunw_tlssort);
3482 				break;
3483 
3484 			case DT_SUNW_TLSSORTSZ:
3485 				if (osabi_solaris)
3486 					TEST_SIZE(SHT_SUNW_tlssort,
3487 					    sunw_tlssort);
3488 				break;
3489 
3490 			case DT_VERDEF:
3491 				TEST_ADDR(SHT_SUNW_verdef, sunw_verdef);
3492 				break;
3493 
3494 			case DT_VERNEED:
3495 				TEST_ADDR(SHT_SUNW_verneed, sunw_verneed);
3496 				break;
3497 
3498 			case DT_VERSYM:
3499 				TEST_ADDR(SHT_SUNW_versym, sunw_versym);
3500 				break;
3501 #undef TEST_ADDR
3502 #undef TEST_SIZE
3503 #undef TEST_ENTSIZE
3504 			}
3505 
3506 			if (name == NULL)
3507 				name = MSG_ORIG(MSG_STR_EMPTY);
3508 			Elf_dyn_entry(0, dyn, ndx, name,
3509 			    osabi, ehdr->e_machine);
3510 		}
3511 	}
3512 }
3513 
3514 /*
3515  * Search for and process a MOVE section.
3516  */
3517 static void
3518 move(Cache *cache, Word shnum, const char *file, uint_t flags)
3519 {
3520 	Word		cnt;
3521 	const char	*fmt = NULL;
3522 
3523 	for (cnt = 1; cnt < shnum; cnt++) {
3524 		Word	movenum, symnum, ndx;
3525 		Sym	*syms;
3526 		Cache	*_cache = &cache[cnt];
3527 		Shdr	*shdr = _cache->c_shdr;
3528 		Cache	*symsec, *strsec;
3529 		Move	*move;
3530 
3531 		if (shdr->sh_type != SHT_SUNW_move)
3532 			continue;
3533 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
3534 			continue;
3535 
3536 		/*
3537 		 * Determine the move data and number.
3538 		 */
3539 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
3540 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3541 			    file, _cache->c_name);
3542 			continue;
3543 		}
3544 		if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
3545 			continue;
3546 
3547 		move = (Move *)_cache->c_data->d_buf;
3548 		movenum = shdr->sh_size / shdr->sh_entsize;
3549 
3550 		/*
3551 		 * Get the data buffer for the associated symbol table and
3552 		 * string table.
3553 		 */
3554 		if (stringtbl(cache, 1, cnt, shnum, file,
3555 		    &symnum, &symsec, &strsec) == 0)
3556 			return;
3557 
3558 		syms = (Sym *)symsec->c_data->d_buf;
3559 
3560 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3561 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name);
3562 		dbg_print(0, MSG_INTL(MSG_MOVE_TITLE));
3563 
3564 		if (fmt == NULL)
3565 			fmt = MSG_INTL(MSG_MOVE_ENTRY);
3566 
3567 		for (ndx = 0; ndx < movenum; move++, ndx++) {
3568 			const char	*symname;
3569 			char		index[MAXNDXSIZE], section[BUFSIZ];
3570 			Word		symndx, shndx;
3571 			Sym		*sym;
3572 
3573 			/*
3574 			 * Check for null entries
3575 			 */
3576 			if ((move->m_info == 0) && (move->m_value == 0) &&
3577 			    (move->m_poffset == 0) && (move->m_repeat == 0) &&
3578 			    (move->m_stride == 0)) {
3579 				dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY),
3580 				    EC_XWORD(move->m_poffset), 0, 0, 0,
3581 				    EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY));
3582 				continue;
3583 			}
3584 			if (((symndx = ELF_M_SYM(move->m_info)) == 0) ||
3585 			    (symndx >= symnum)) {
3586 				(void) fprintf(stderr,
3587 				    MSG_INTL(MSG_ERR_BADMINFO), file,
3588 				    _cache->c_name, EC_XWORD(move->m_info));
3589 
3590 				(void) snprintf(index, MAXNDXSIZE,
3591 				    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
3592 				dbg_print(0, fmt, index,
3593 				    EC_XWORD(move->m_poffset),
3594 				    ELF_M_SIZE(move->m_info), move->m_repeat,
3595 				    move->m_stride, move->m_value,
3596 				    MSG_INTL(MSG_STR_UNKNOWN));
3597 				continue;
3598 			}
3599 
3600 			symname = relsymname(cache, _cache, strsec,
3601 			    symndx, symnum, ndx, syms, section, BUFSIZ, file);
3602 			sym = (Sym *)(syms + symndx);
3603 
3604 			/*
3605 			 * Additional sanity check.
3606 			 */
3607 			shndx = sym->st_shndx;
3608 			if (!((shndx == SHN_COMMON) ||
3609 			    (((shndx >= 1) && (shndx <= shnum)) &&
3610 			    (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) {
3611 				(void) fprintf(stderr,
3612 				    MSG_INTL(MSG_ERR_BADSYM2), file,
3613 				    _cache->c_name, EC_WORD(symndx),
3614 				    demangle(symname, flags));
3615 			}
3616 
3617 			(void) snprintf(index, MAXNDXSIZE,
3618 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
3619 			dbg_print(0, fmt, index, EC_XWORD(move->m_poffset),
3620 			    ELF_M_SIZE(move->m_info), move->m_repeat,
3621 			    move->m_stride, move->m_value,
3622 			    demangle(symname, flags));
3623 		}
3624 	}
3625 }
3626 
3627 /*
3628  * parse_note_t is used to track the state used by parse_note_entry()
3629  * between calls, and also to return the results of each call.
3630  */
3631 typedef struct {
3632 	/* pns_ fields track progress through the data */
3633 	const char	*pns_file;	/* File name */
3634 	Cache		*pns_cache;	/* Note section cache entry */
3635 	size_t		pns_size;	/* # unprocessed data bytes */
3636 	Word		*pns_data;	/* # to next unused data byte */
3637 
3638 	/* pn_ fields return the results for a single call */
3639 	Word		pn_namesz;	/* Value of note namesz field */
3640 	Word		pn_descsz;	/* Value of note descsz field */
3641 	Word		pn_type;	/* Value of note type field */
3642 	const char	*pn_name;	/* if (namesz > 0) ptr to name bytes */
3643 	const char	*pn_desc;	/* if (descsx > 0) ptr to data bytes */
3644 } parse_note_t;
3645 
3646 /*
3647  * Extract the various sub-parts of a note entry, and advance the
3648  * data pointer past it.
3649  *
3650  * entry:
3651  *	The state pns_ fields contain current values for the Note section
3652  *
3653  * exit:
3654  *	On success, True (1) is returned, the state pns_ fields have been
3655  *	advanced to point at the start of the next entry, and the information
3656  *	for the recovered note entry is found in the state pn_ fields.
3657  *
3658  *	On failure, False (0) is returned. The values contained in state
3659  *	are undefined.
3660  */
3661 static int
3662 parse_note_entry(parse_note_t *state)
3663 {
3664 	size_t	pad, noteoff;
3665 
3666 	noteoff = (Word)state->pns_cache->c_data->d_size - state->pns_size;
3667 	/*
3668 	 * Make sure we can at least reference the 3 initial entries
3669 	 * (4-byte words) of the note information block.
3670 	 */
3671 	if (state->pns_size >= (sizeof (Word) * 3)) {
3672 		state->pns_size -= (sizeof (Word) * 3);
3673 	} else {
3674 		(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ),
3675 		    state->pns_file, state->pns_cache->c_name,
3676 		    EC_WORD(noteoff));
3677 		return (0);
3678 	}
3679 
3680 	/*
3681 	 * Make sure any specified name string can be referenced.
3682 	 */
3683 	if ((state->pn_namesz = *state->pns_data++) != 0) {
3684 		if (state->pns_size >= state->pn_namesz) {
3685 			state->pns_size -= state->pn_namesz;
3686 		} else {
3687 			(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADNMSZ),
3688 			    state->pns_file, state->pns_cache->c_name,
3689 			    EC_WORD(noteoff), EC_WORD(state->pn_namesz));
3690 			return (0);
3691 		}
3692 	}
3693 
3694 	/*
3695 	 * Make sure any specified descriptor can be referenced.
3696 	 */
3697 	if ((state->pn_descsz = *state->pns_data++) != 0) {
3698 		/*
3699 		 * If namesz isn't a 4-byte multiple, account for any
3700 		 * padding that must exist before the descriptor.
3701 		 */
3702 		if ((pad = (state->pn_namesz & (sizeof (Word) - 1))) != 0) {
3703 			pad = sizeof (Word) - pad;
3704 			state->pns_size -= pad;
3705 		}
3706 		if (state->pns_size >= state->pn_descsz) {
3707 			state->pns_size -= state->pn_descsz;
3708 		} else {
3709 			(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDESZ),
3710 			    state->pns_file, state->pns_cache->c_name,
3711 			    EC_WORD(noteoff), EC_WORD(state->pn_namesz));
3712 			return (0);
3713 		}
3714 	}
3715 
3716 	state->pn_type = *state->pns_data++;
3717 
3718 	/* Name */
3719 	if (state->pn_namesz) {
3720 		state->pn_name = (char *)state->pns_data;
3721 		pad = (state->pn_namesz +
3722 		    (sizeof (Word) - 1)) & ~(sizeof (Word) - 1);
3723 		/* LINTED */
3724 		state->pns_data = (Word *)(state->pn_name + pad);
3725 	}
3726 
3727 	/*
3728 	 * If multiple information blocks exist within a .note section
3729 	 * account for any padding that must exist before the next
3730 	 * information block.
3731 	 */
3732 	if ((pad = (state->pn_descsz & (sizeof (Word) - 1))) != 0) {
3733 		pad = sizeof (Word) - pad;
3734 		if (state->pns_size > pad)
3735 			state->pns_size -= pad;
3736 	}
3737 
3738 	/* Data */
3739 	if (state->pn_descsz) {
3740 		state->pn_desc = (const char *)state->pns_data;
3741 		/* LINTED */
3742 		state->pns_data = (Word *)(state->pn_desc +
3743 		    state->pn_descsz + pad);
3744 	}
3745 
3746 	return (1);
3747 }
3748 
3749 /*
3750  * Callback function for use with conv_str_to_c_literal() below.
3751  */
3752 /*ARGSUSED2*/
3753 static void
3754 c_literal_cb(const void *ptr, size_t size, void *uvalue)
3755 {
3756 	(void) fwrite(ptr, size, 1, stdout);
3757 }
3758 
3759 /*
3760  * Traverse a note section analyzing each note information block.
3761  * The data buffers size is used to validate references before they are made,
3762  * and is decremented as each element is processed.
3763  */
3764 void
3765 note_entry(Cache *cache, Word *data, size_t size, Ehdr *ehdr, const char *file)
3766 {
3767 	int		cnt = 0;
3768 	int		is_corenote;
3769 	int		do_swap;
3770 	Conv_inv_buf_t	inv_buf;
3771 	parse_note_t	pnstate;
3772 
3773 	pnstate.pns_file = file;
3774 	pnstate.pns_cache = cache;
3775 	pnstate.pns_size = size;
3776 	pnstate.pns_data = data;
3777 	do_swap = _elf_sys_encoding() != ehdr->e_ident[EI_DATA];
3778 
3779 	/*
3780 	 * Print out a single `note' information block.
3781 	 */
3782 	while (pnstate.pns_size > 0) {
3783 
3784 		if (parse_note_entry(&pnstate) == 0)
3785 			return;
3786 
3787 		/*
3788 		 * Is this a Solaris core note? Such notes all have
3789 		 * the name "CORE".
3790 		 */
3791 		is_corenote = (ehdr->e_type == ET_CORE) &&
3792 		    (pnstate.pn_namesz == (MSG_STR_CORE_SIZE + 1)) &&
3793 		    (strncmp(MSG_ORIG(MSG_STR_CORE), pnstate.pn_name,
3794 		    MSG_STR_CORE_SIZE + 1) == 0);
3795 
3796 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3797 		dbg_print(0, MSG_INTL(MSG_FMT_NOTEENTNDX), EC_WORD(cnt));
3798 		cnt++;
3799 		dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ),
3800 		    EC_WORD(pnstate.pn_namesz));
3801 		dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ),
3802 		    EC_WORD(pnstate.pn_descsz));
3803 
3804 		if (is_corenote)
3805 			dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE_STR),
3806 			    conv_cnote_type(pnstate.pn_type, 0, &inv_buf));
3807 		else
3808 			dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE),
3809 			    EC_WORD(pnstate.pn_type));
3810 		if (pnstate.pn_namesz) {
3811 			dbg_print(0, MSG_ORIG(MSG_NOTE_NAME));
3812 			/*
3813 			 * The name string can contain embedded 'null'
3814 			 * bytes and/or unprintable characters. Also,
3815 			 * the final NULL is documented in the ELF ABI
3816 			 * as being included in the namesz. So, display
3817 			 * the name using C literal string notation, and
3818 			 * include the terminating NULL in the output.
3819 			 * We don't show surrounding double quotes, as
3820 			 * that implies the termination that we are showing
3821 			 * explicitly.
3822 			 */
3823 			(void) fwrite(MSG_ORIG(MSG_STR_8SP),
3824 			    MSG_STR_8SP_SIZE, 1, stdout);
3825 			conv_str_to_c_literal(pnstate.pn_name,
3826 			    pnstate.pn_namesz, c_literal_cb, NULL);
3827 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3828 		}
3829 
3830 		if (pnstate.pn_descsz) {
3831 			int		hexdump = 1;
3832 
3833 			/*
3834 			 * If this is a core note, let the corenote()
3835 			 * function handle it.
3836 			 */
3837 			if (is_corenote) {
3838 				/* We only issue the bad arch error once */
3839 				static int	badnote_done = 0;
3840 				corenote_ret_t	corenote_ret;
3841 
3842 				corenote_ret = corenote(ehdr->e_machine,
3843 				    do_swap, pnstate.pn_type, pnstate.pn_desc,
3844 				    pnstate.pn_descsz);
3845 				switch (corenote_ret) {
3846 				case CORENOTE_R_OK_DUMP:
3847 					hexdump = 1;
3848 					break;
3849 				case CORENOTE_R_OK:
3850 					hexdump = 0;
3851 					break;
3852 				case CORENOTE_R_BADDATA:
3853 					(void) fprintf(stderr,
3854 					    MSG_INTL(MSG_NOTE_BADCOREDATA),
3855 					    file);
3856 					break;
3857 				case CORENOTE_R_BADARCH:
3858 					if (badnote_done)
3859 						break;
3860 					(void) fprintf(stderr,
3861 					    MSG_INTL(MSG_NOTE_BADCOREARCH),
3862 					    file,
3863 					    conv_ehdr_mach(ehdr->e_machine,
3864 					    0, &inv_buf));
3865 					break;
3866 				case CORENOTE_R_BADTYPE:
3867 					(void) fprintf(stderr,
3868 					    MSG_INTL(MSG_NOTE_BADCORETYPE),
3869 					    file,
3870 					    EC_WORD(pnstate.pn_type));
3871 					break;
3872 
3873 				}
3874 			}
3875 
3876 			/*
3877 			 * The default thing when we don't understand
3878 			 * the note data is to display it as hex bytes.
3879 			 */
3880 			if (hexdump) {
3881 				dbg_print(0, MSG_ORIG(MSG_NOTE_DESC));
3882 				dump_hex_bytes(pnstate.pn_desc,
3883 				    pnstate.pn_descsz, 8, 4, 4);
3884 			}
3885 		}
3886 	}
3887 }
3888 
3889 /*
3890  * Search for and process .note sections.
3891  *
3892  * Returns the number of note sections seen.
3893  */
3894 static Word
3895 note(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
3896 {
3897 	Word	cnt, note_cnt = 0;
3898 
3899 	/*
3900 	 * Otherwise look for any .note sections.
3901 	 */
3902 	for (cnt = 1; cnt < shnum; cnt++) {
3903 		Cache	*_cache = &cache[cnt];
3904 		Shdr	*shdr = _cache->c_shdr;
3905 
3906 		if (shdr->sh_type != SHT_NOTE)
3907 			continue;
3908 		note_cnt++;
3909 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
3910 			continue;
3911 
3912 		/*
3913 		 * As these sections are often hand rolled, make sure they're
3914 		 * properly aligned before proceeding, and issue an error
3915 		 * as necessary.
3916 		 *
3917 		 * Note that we will continue on to display the note even
3918 		 * if it has bad alignment. We can do this safely, because
3919 		 * libelf knows the alignment required for SHT_NOTE, and
3920 		 * takes steps to deliver a properly aligned buffer to us
3921 		 * even if the actual file is misaligned.
3922 		 */
3923 		if (shdr->sh_offset & (sizeof (Word) - 1))
3924 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN),
3925 			    file, _cache->c_name);
3926 
3927 		if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
3928 			continue;
3929 
3930 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3931 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name);
3932 		note_entry(_cache, (Word *)_cache->c_data->d_buf,
3933 		/* LINTED */
3934 		    (Word)_cache->c_data->d_size, ehdr, file);
3935 	}
3936 
3937 	return (note_cnt);
3938 }
3939 
3940 /*
3941  * The Linux Standard Base defines a special note named .note.ABI-tag
3942  * that is used to maintain Linux ABI information. Presence of this section
3943  * is a strong indication that the object should be considered to be
3944  * ELFOSABI_LINUX.
3945  *
3946  * This function returns True (1) if such a note is seen, and False (0)
3947  * otherwise.
3948  */
3949 static int
3950 has_linux_abi_note(Cache *cache, Word shnum, const char *file)
3951 {
3952 	Word	cnt;
3953 
3954 	for (cnt = 1; cnt < shnum; cnt++) {
3955 		parse_note_t	pnstate;
3956 		Cache		*_cache = &cache[cnt];
3957 		Shdr		*shdr = _cache->c_shdr;
3958 
3959 		/*
3960 		 * Section must be SHT_NOTE, must have the name
3961 		 * .note.ABI-tag, and must have data.
3962 		 */
3963 		if ((shdr->sh_type != SHT_NOTE) ||
3964 		    (strcmp(MSG_ORIG(MSG_STR_NOTEABITAG),
3965 		    _cache->c_name) != 0) ||
3966 		    (_cache->c_data == NULL) ||
3967 		    (_cache->c_data->d_buf == NULL))
3968 			continue;
3969 
3970 		pnstate.pns_file = file;
3971 		pnstate.pns_cache = _cache;
3972 		pnstate.pns_size = _cache->c_data->d_size;
3973 		pnstate.pns_data = (Word *)_cache->c_data->d_buf;
3974 
3975 		while (pnstate.pns_size > 0) {
3976 			Word *w;
3977 
3978 			if (parse_note_entry(&pnstate) == 0)
3979 				break;
3980 
3981 			/*
3982 			 * The type must be 1, and the name must be "GNU".
3983 			 * The descsz must be at least 16 bytes.
3984 			 */
3985 			if ((pnstate.pn_type != 1) ||
3986 			    (pnstate.pn_namesz != (MSG_STR_GNU_SIZE + 1)) ||
3987 			    (strncmp(MSG_ORIG(MSG_STR_GNU), pnstate.pn_name,
3988 			    MSG_STR_CORE_SIZE + 1) != 0) ||
3989 			    (pnstate.pn_descsz < 16))
3990 				continue;
3991 
3992 			/*
3993 			 * desc contains 4 32-bit fields. Field 0 must be 0,
3994 			 * indicating Linux. The second, third, and fourth
3995 			 * fields represent the earliest Linux kernel
3996 			 * version compatible with this object.
3997 			 */
3998 			/*LINTED*/
3999 			w = (Word *) pnstate.pn_desc;
4000 			if (*w == 0)
4001 				return (1);
4002 		}
4003 	}
4004 
4005 	return (0);
4006 }
4007 
4008 /*
4009  * Determine an individual hash entry.  This may be the initial hash entry,
4010  * or an associated chain entry.
4011  */
4012 static void
4013 hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx,
4014     Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts,
4015     uint_t flags, int chain)
4016 {
4017 	Sym		*sym;
4018 	const char	*symname, *str;
4019 	char		_bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE];
4020 	ulong_t		nbkt, nhash;
4021 
4022 	if (symndx > symn) {
4023 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file,
4024 		    EC_WORD(symndx), EC_WORD(hashndx));
4025 		symname = MSG_INTL(MSG_STR_UNKNOWN);
4026 	} else {
4027 		sym = (Sym *)(syms + symndx);
4028 		symname = string(refsec, symndx, strsec, file, sym->st_name);
4029 	}
4030 
4031 	if (chain == 0) {
4032 		(void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
4033 		    hashndx);
4034 		str = (const char *)_bucket;
4035 	} else
4036 		str = MSG_ORIG(MSG_STR_EMPTY);
4037 
4038 	(void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2),
4039 	    EC_WORD(symndx));
4040 	dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx,
4041 	    demangle(symname, flags));
4042 
4043 	/*
4044 	 * Determine if this string is in the correct bucket.
4045 	 */
4046 	nhash = elf_hash(symname);
4047 	nbkt = nhash % bkts;
4048 
4049 	if (nbkt != hashndx) {
4050 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file,
4051 		    hsecname, symname, EC_WORD(hashndx), nbkt);
4052 	}
4053 }
4054 
4055 #define	MAXCOUNT	500
4056 
4057 static void
4058 hash(Cache *cache, Word shnum, const char *file, uint_t flags)
4059 {
4060 	static int	count[MAXCOUNT];
4061 	Word		cnt;
4062 	Word		ndx, bkts, nchain;
4063 	char		number[MAXNDXSIZE];
4064 
4065 	for (cnt = 1; cnt < shnum; cnt++) {
4066 		Word		*hash, *chain;
4067 		Cache		*_cache = &cache[cnt];
4068 		Shdr		*sshdr, *hshdr = _cache->c_shdr;
4069 		char		*ssecname, *hsecname = _cache->c_name;
4070 		Sym		*syms;
4071 		Word		symn;
4072 
4073 		if (hshdr->sh_type != SHT_HASH)
4074 			continue;
4075 
4076 		/*
4077 		 * Check the hash table data and size.
4078 		 */
4079 		if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) {
4080 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4081 			    file, hsecname);
4082 			continue;
4083 		}
4084 		if ((_cache->c_data == NULL) ||
4085 		    (_cache->c_data->d_buf == NULL)) {
4086 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4087 			    file, hsecname);
4088 			continue;
4089 		}
4090 
4091 		hash = (Word *)_cache->c_data->d_buf;
4092 		bkts = *hash++;
4093 		nchain = *hash++;
4094 		chain = hash + bkts;
4095 
4096 		/*
4097 		 * The section holds the sizes in addition to the buckets and
4098 		 * chains.
4099 		 */
4100 		if (_cache->c_data->d_size <
4101 		    (bkts + nchain + 2) * sizeof (uint_t)) {
4102 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4103 			    file, hsecname);
4104 			continue;
4105 		}
4106 
4107 		/*
4108 		 * Get the data buffer for the associated symbol table.
4109 		 */
4110 		if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) {
4111 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
4112 			    file, hsecname, EC_WORD(hshdr->sh_link));
4113 			continue;
4114 		}
4115 
4116 		_cache = &cache[hshdr->sh_link];
4117 		ssecname = _cache->c_name;
4118 
4119 		if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
4120 			continue;
4121 
4122 		if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) {
4123 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4124 			    file, ssecname);
4125 			continue;
4126 		}
4127 
4128 		sshdr = _cache->c_shdr;
4129 
4130 		if ((sshdr->sh_entsize == 0) || (sshdr->sh_size == 0)) {
4131 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4132 			    file, ssecname);
4133 			continue;
4134 		}
4135 
4136 		/* LINTED */
4137 		symn = (Word)(sshdr->sh_size / sshdr->sh_entsize);
4138 
4139 		/*
4140 		 * Check that there is a chain for each symbol.
4141 		 */
4142 		if (symn > nchain) {
4143 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4144 			    file, ssecname);
4145 			continue;
4146 		}
4147 
4148 		/*
4149 		 * Get the associated string table section.
4150 		 */
4151 		if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) {
4152 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
4153 			    file, ssecname, EC_WORD(sshdr->sh_link));
4154 			continue;
4155 		}
4156 
4157 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4158 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname);
4159 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO));
4160 
4161 		/*
4162 		 * Loop through the hash buckets, printing the appropriate
4163 		 * symbols.
4164 		 */
4165 		for (ndx = 0; ndx < bkts; ndx++, hash++) {
4166 			Word	_ndx, _cnt;
4167 
4168 			if (*hash == 0) {
4169 				count[0]++;
4170 				continue;
4171 			}
4172 
4173 			/*
4174 			 * Each hash bucket must contain to a valid chain index.
4175 			 * Because the symbol table is checked to be the same
4176 			 * length as the chain array, this also implicitly
4177 			 * checks those bounds.
4178 			 */
4179 			if (*hash > nchain) {
4180 				(void) fprintf(stderr,
4181 				    MSG_INTL(MSG_ERR_BADCHAINIDX), file,
4182 				    ssecname, EC_WORD(*hash), EC_WORD(ndx),
4183 				    EC_WORD(nchain));
4184 				continue;
4185 			}
4186 
4187 			hash_entry(_cache, &cache[sshdr->sh_link], hsecname,
4188 			    ndx, *hash, symn, syms, file, bkts, flags, 0);
4189 
4190 			/*
4191 			 * Determine if any other symbols are chained to this
4192 			 * bucket.
4193 			 */
4194 			_ndx = chain[*hash];
4195 			_cnt = 1;
4196 			while (_ndx) {
4197 				if (_ndx > nchain) {
4198 					(void) fprintf(stderr,
4199 					    MSG_INTL(MSG_ERR_BADCHAINIDX), file,
4200 					    ssecname, EC_WORD(_ndx),
4201 					    EC_WORD(ndx), EC_WORD(nchain));
4202 					break;
4203 				}
4204 				hash_entry(_cache, &cache[sshdr->sh_link],
4205 				    hsecname, ndx, _ndx, symn, syms, file,
4206 				    bkts, flags, 1);
4207 				_ndx = chain[_ndx];
4208 				_cnt++;
4209 			}
4210 
4211 			if (_cnt >= MAXCOUNT) {
4212 				(void) fprintf(stderr,
4213 				    MSG_INTL(MSG_HASH_OVERFLW), file,
4214 				    _cache->c_name, EC_WORD(ndx),
4215 				    EC_WORD(_cnt));
4216 			} else
4217 				count[_cnt]++;
4218 		}
4219 		break;
4220 	}
4221 
4222 	/*
4223 	 * Print out the count information.
4224 	 */
4225 	bkts = cnt = 0;
4226 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4227 
4228 	for (ndx = 0; ndx < MAXCOUNT; ndx++) {
4229 		Word	_cnt;
4230 
4231 		if ((_cnt = count[ndx]) == 0)
4232 			continue;
4233 
4234 		(void) snprintf(number, MAXNDXSIZE,
4235 		    MSG_ORIG(MSG_FMT_INTEGER), _cnt);
4236 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number,
4237 		    EC_WORD(ndx));
4238 		bkts += _cnt;
4239 		cnt += (Word)(ndx * _cnt);
4240 	}
4241 	if (cnt) {
4242 		(void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
4243 		    bkts);
4244 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number,
4245 		    EC_WORD(cnt));
4246 	}
4247 }
4248 
4249 static void
4250 group(Cache *cache, Word shnum, const char *file, uint_t flags)
4251 {
4252 	Word	scnt;
4253 
4254 	for (scnt = 1; scnt < shnum; scnt++) {
4255 		Cache		*_cache = &cache[scnt];
4256 		Shdr		*shdr = _cache->c_shdr;
4257 		Word		*grpdata, gcnt, grpcnt, symnum, unknown;
4258 		Cache		*symsec, *strsec;
4259 		Sym		*syms, *sym;
4260 		char		flgstrbuf[MSG_GRP_COMDAT_SIZE + 10];
4261 		const char	*grpnam;
4262 
4263 		if (shdr->sh_type != SHT_GROUP)
4264 			continue;
4265 		if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type))
4266 			continue;
4267 		if ((_cache->c_data == NULL) ||
4268 		    ((grpdata = (Word *)_cache->c_data->d_buf) == NULL))
4269 			continue;
4270 		grpcnt = shdr->sh_size / sizeof (Word);
4271 
4272 		/*
4273 		 * Get the data buffer for the associated symbol table and
4274 		 * string table.
4275 		 */
4276 		if (stringtbl(cache, 1, scnt, shnum, file,
4277 		    &symnum, &symsec, &strsec) == 0)
4278 			return;
4279 
4280 		syms = symsec->c_data->d_buf;
4281 
4282 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4283 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name);
4284 		dbg_print(0, MSG_INTL(MSG_GRP_TITLE));
4285 
4286 		/*
4287 		 * The first element of the group defines the group.  The
4288 		 * associated symbol is defined by the sh_link field.
4289 		 */
4290 		if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) {
4291 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
4292 			    file, _cache->c_name, EC_WORD(shdr->sh_info));
4293 			return;
4294 		}
4295 
4296 		(void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT));
4297 		if (grpdata[0] & GRP_COMDAT) {
4298 			(void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT));
4299 		}
4300 		if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) {
4301 			size_t	len = strlen(flgstrbuf);
4302 
4303 			(void) snprintf(&flgstrbuf[len],
4304 			    (MSG_GRP_COMDAT_SIZE + 10 - len),
4305 			    MSG_ORIG(MSG_GRP_UNKNOWN), unknown);
4306 		}
4307 		(void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT));
4308 		sym = (Sym *)(syms + shdr->sh_info);
4309 
4310 		/*
4311 		 * The GNU assembler can use section symbols as the signature
4312 		 * symbol as described by this comment in the gold linker
4313 		 * (found via google):
4314 		 *
4315 		 *	It seems that some versions of gas will create a
4316 		 *	section group associated with a section symbol, and
4317 		 *	then fail to give a name to the section symbol.  In
4318 		 *	such a case, use the name of the section.
4319 		 *
4320 		 * In order to support such objects, we do the same.
4321 		 */
4322 		grpnam = string(_cache, 0, strsec, file, sym->st_name);
4323 		if (((sym->st_name == 0) || (*grpnam == '\0')) &&
4324 		    (ELF_ST_TYPE(sym->st_info) == STT_SECTION))
4325 			grpnam = cache[sym->st_shndx].c_name;
4326 
4327 		dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf,
4328 		    demangle(grpnam, flags));
4329 
4330 		for (gcnt = 1; gcnt < grpcnt; gcnt++) {
4331 			char		index[MAXNDXSIZE];
4332 			const char	*name;
4333 
4334 			(void) snprintf(index, MAXNDXSIZE,
4335 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt));
4336 
4337 			if ((grpdata[gcnt] == 0) || (grpdata[gcnt] >= shnum))
4338 				name = MSG_INTL(MSG_GRP_INVALSCN);
4339 			else
4340 				name = cache[grpdata[gcnt]].c_name;
4341 
4342 			(void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name,
4343 			    EC_XWORD(grpdata[gcnt]));
4344 		}
4345 	}
4346 }
4347 
4348 static void
4349 got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
4350 {
4351 	Cache		*gotcache = NULL, *symtab = NULL;
4352 	Addr		gotbgn, gotend;
4353 	Shdr		*gotshdr;
4354 	Word		cnt, gotents, gotndx;
4355 	size_t		gentsize;
4356 	Got_info	*gottable;
4357 	char		*gotdata;
4358 	Sym		*gotsym;
4359 	Xword		gotsymaddr;
4360 	uint_t		sys_encoding;
4361 
4362 	/*
4363 	 * First, find the got.
4364 	 */
4365 	for (cnt = 1; cnt < shnum; cnt++) {
4366 		if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
4367 		    MSG_ELF_GOT_SIZE) == 0) {
4368 			gotcache = &cache[cnt];
4369 			break;
4370 		}
4371 	}
4372 	if (gotcache == NULL)
4373 		return;
4374 
4375 	/*
4376 	 * A got section within a relocatable object is suspicious.
4377 	 */
4378 	if (ehdr->e_type == ET_REL) {
4379 		(void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file,
4380 		    gotcache->c_name);
4381 	}
4382 
4383 	gotshdr = gotcache->c_shdr;
4384 	if (gotshdr->sh_size == 0) {
4385 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4386 		    file, gotcache->c_name);
4387 		return;
4388 	}
4389 
4390 	gotbgn = gotshdr->sh_addr;
4391 	gotend = gotbgn + gotshdr->sh_size;
4392 
4393 	/*
4394 	 * Some architectures don't properly set the sh_entsize for the GOT
4395 	 * table.  If it's not set, default to a size of a pointer.
4396 	 */
4397 	if ((gentsize = gotshdr->sh_entsize) == 0)
4398 		gentsize = sizeof (Xword);
4399 
4400 	if ((gotcache->c_data == NULL) || (gotcache->c_data->d_buf == NULL))
4401 		return;
4402 
4403 	/* LINTED */
4404 	gotents = (Word)(gotshdr->sh_size / gentsize);
4405 	gotdata = gotcache->c_data->d_buf;
4406 
4407 	if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) {
4408 		int err = errno;
4409 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file,
4410 		    strerror(err));
4411 		return;
4412 	}
4413 
4414 	/*
4415 	 * Now we scan through all the sections looking for any relocations
4416 	 * that may be against the GOT.  Since these may not be isolated to a
4417 	 * .rel[a].got section we check them all.
4418 	 * While scanning sections save the symbol table entry (a symtab
4419 	 * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_.
4420 	 */
4421 	for (cnt = 1; cnt < shnum; cnt++) {
4422 		Word		type, symnum;
4423 		Xword		relndx, relnum, relsize;
4424 		void		*rels;
4425 		Sym		*syms;
4426 		Cache		*symsec, *strsec;
4427 		Cache		*_cache = &cache[cnt];
4428 		Shdr		*shdr;
4429 
4430 		shdr = _cache->c_shdr;
4431 		type = shdr->sh_type;
4432 
4433 		if ((symtab == 0) && (type == SHT_DYNSYM)) {
4434 			symtab = _cache;
4435 			continue;
4436 		}
4437 		if (type == SHT_SYMTAB) {
4438 			symtab = _cache;
4439 			continue;
4440 		}
4441 		if ((type != SHT_RELA) && (type != SHT_REL))
4442 			continue;
4443 
4444 		/*
4445 		 * Decide entry size.
4446 		 */
4447 		if (((relsize = shdr->sh_entsize) == 0) ||
4448 		    (relsize > shdr->sh_size)) {
4449 			if (type == SHT_RELA)
4450 				relsize = sizeof (Rela);
4451 			else
4452 				relsize = sizeof (Rel);
4453 		}
4454 
4455 		/*
4456 		 * Determine the number of relocations available.
4457 		 */
4458 		if (shdr->sh_size == 0) {
4459 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4460 			    file, _cache->c_name);
4461 			continue;
4462 		}
4463 		if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
4464 			continue;
4465 
4466 		rels = _cache->c_data->d_buf;
4467 		relnum = shdr->sh_size / relsize;
4468 
4469 		/*
4470 		 * Get the data buffer for the associated symbol table and
4471 		 * string table.
4472 		 */
4473 		if (stringtbl(cache, 1, cnt, shnum, file,
4474 		    &symnum, &symsec, &strsec) == 0)
4475 			continue;
4476 
4477 		syms = symsec->c_data->d_buf;
4478 
4479 		/*
4480 		 * Loop through the relocation entries.
4481 		 */
4482 		for (relndx = 0; relndx < relnum; relndx++,
4483 		    rels = (void *)((char *)rels + relsize)) {
4484 			char		section[BUFSIZ];
4485 			Addr		offset;
4486 			Got_info	*gip;
4487 			Word		symndx, reltype;
4488 			Rela		*rela;
4489 			Rel		*rel;
4490 
4491 			/*
4492 			 * Unravel the relocation.
4493 			 */
4494 			if (type == SHT_RELA) {
4495 				rela = (Rela *)rels;
4496 				symndx = ELF_R_SYM(rela->r_info);
4497 				reltype = ELF_R_TYPE(rela->r_info,
4498 				    ehdr->e_machine);
4499 				offset = rela->r_offset;
4500 			} else {
4501 				rel = (Rel *)rels;
4502 				symndx = ELF_R_SYM(rel->r_info);
4503 				reltype = ELF_R_TYPE(rel->r_info,
4504 				    ehdr->e_machine);
4505 				offset = rel->r_offset;
4506 			}
4507 
4508 			/*
4509 			 * Only pay attention to relocations against the GOT.
4510 			 */
4511 			if ((offset < gotbgn) || (offset >= gotend))
4512 				continue;
4513 
4514 			if ((gotshdr->sh_entsize == 0) ||
4515 			    (gotshdr->sh_size == 0)) {
4516 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4517 				    file, gotcache->c_name);
4518 				continue;
4519 			}
4520 
4521 			/* LINTED */
4522 			gotndx = (Word)((offset - gotbgn) /
4523 			    gotshdr->sh_entsize);
4524 			gip = &gottable[gotndx];
4525 
4526 			if (gip->g_reltype != 0) {
4527 				(void) fprintf(stderr,
4528 				    MSG_INTL(MSG_GOT_MULTIPLE), file,
4529 				    EC_WORD(gotndx), EC_ADDR(offset));
4530 				continue;
4531 			}
4532 
4533 			if (symndx)
4534 				gip->g_symname = relsymname(cache, _cache,
4535 				    strsec, symndx, symnum, relndx, syms,
4536 				    section, BUFSIZ, file);
4537 			gip->g_reltype = reltype;
4538 			gip->g_rel = rels;
4539 		}
4540 	}
4541 
4542 	if (symlookup(MSG_ORIG(MSG_SYM_GOT), cache, shnum, &gotsym, NULL,
4543 	    symtab, file))
4544 		gotsymaddr = gotsym->st_value;
4545 	else
4546 		gotsymaddr = gotbgn;
4547 
4548 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4549 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name);
4550 	Elf_got_title(0);
4551 
4552 	sys_encoding = _elf_sys_encoding();
4553 	for (gotndx = 0; gotndx < gotents; gotndx++) {
4554 		Got_info	*gip;
4555 		Sword		gindex;
4556 		Addr		gaddr;
4557 		Xword		gotentry;
4558 
4559 		gip = &gottable[gotndx];
4560 
4561 		gaddr = gotbgn + (gotndx * gentsize);
4562 		gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize;
4563 
4564 		if (gentsize == sizeof (Word))
4565 			/* LINTED */
4566 			gotentry = (Xword)(*((Word *)(gotdata) + gotndx));
4567 		else
4568 			/* LINTED */
4569 			gotentry = *((Xword *)(gotdata) + gotndx);
4570 
4571 		Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine,
4572 		    ehdr->e_ident[EI_DATA], sys_encoding,
4573 		    gip->g_reltype, gip->g_rel, gip->g_symname);
4574 	}
4575 	free(gottable);
4576 }
4577 
4578 void
4579 checksum(Elf *elf)
4580 {
4581 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4582 	dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf));
4583 }
4584 
4585 /*
4586  * This variable is used by regular() to communicate the address of
4587  * the section header cache to sort_shdr_ndx_arr(). Unfortunately,
4588  * the qsort() interface does not include a userdata argument by which
4589  * such arbitrary data can be passed, so we are stuck using global data.
4590  */
4591 static Cache *sort_shdr_ndx_arr_cache;
4592 
4593 
4594 /*
4595  * Used with qsort() to sort the section indices so that they can be
4596  * used to access the section headers in order of increasing data offset.
4597  *
4598  * entry:
4599  *	sort_shdr_ndx_arr_cache - Contains address of
4600  *		section header cache.
4601  *	v1, v2 - Point at elements of sort_shdr_bits array to be compared.
4602  *
4603  * exit:
4604  *	Returns -1 (less than), 0 (equal) or 1 (greater than).
4605  */
4606 static int
4607 sort_shdr_ndx_arr(const void *v1, const void *v2)
4608 {
4609 	Cache	*cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1);
4610 	Cache	*cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2);
4611 
4612 	if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset)
4613 		return (-1);
4614 
4615 	if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset)
4616 		return (1);
4617 
4618 	return (0);
4619 }
4620 
4621 
4622 static int
4623 shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx,
4624     size_t shnum, Cache **cache_ret, Word flags)
4625 {
4626 	Elf_Scn		*scn;
4627 	Elf_Data	*data;
4628 	size_t		ndx;
4629 	Shdr		*nameshdr = NULL;
4630 	char		*names = NULL;
4631 	Cache		*cache, *_cache;
4632 	size_t		*shdr_ndx_arr, shdr_ndx_arr_cnt;
4633 
4634 
4635 	/*
4636 	 * Obtain the .shstrtab data buffer to provide the required section
4637 	 * name strings.
4638 	 */
4639 	if (shstrndx == SHN_UNDEF) {
4640 		/*
4641 		 * It is rare, but legal, for an object to lack a
4642 		 * header string table section.
4643 		 */
4644 		names = NULL;
4645 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file);
4646 	} else if ((scn = elf_getscn(elf, shstrndx)) == NULL) {
4647 		failure(file, MSG_ORIG(MSG_ELF_GETSCN));
4648 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR),
4649 		    EC_XWORD(shstrndx));
4650 
4651 	} else if ((data = elf_getdata(scn, NULL)) == NULL) {
4652 		failure(file, MSG_ORIG(MSG_ELF_GETDATA));
4653 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA),
4654 		    EC_XWORD(shstrndx));
4655 
4656 	} else if ((nameshdr = elf_getshdr(scn)) == NULL) {
4657 		failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4658 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
4659 		    EC_WORD(elf_ndxscn(scn)));
4660 
4661 	} else if ((names = data->d_buf) == NULL)
4662 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file);
4663 
4664 	/*
4665 	 * Allocate a cache to maintain a descriptor for each section.
4666 	 */
4667 	if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) {
4668 		int err = errno;
4669 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4670 		    file, strerror(err));
4671 		return (0);
4672 	}
4673 
4674 	*cache = cache_init;
4675 	_cache = cache;
4676 	_cache++;
4677 
4678 	/*
4679 	 * Allocate an array that will hold the section index for
4680 	 * each section that has data in the ELF file:
4681 	 *
4682 	 *	- Is not a NOBITS section
4683 	 *	- Data has non-zero length
4684 	 *
4685 	 * Note that shnum is an upper bound on the size required. It
4686 	 * is likely that we won't use a few of these array elements.
4687 	 * Allocating a modest amount of extra memory in this case means
4688 	 * that we can avoid an extra loop to count the number of needed
4689 	 * items, and can fill this array immediately in the first loop
4690 	 * below.
4691 	 */
4692 	if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) {
4693 		int err = errno;
4694 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4695 		    file, strerror(err));
4696 		return (0);
4697 	}
4698 	shdr_ndx_arr_cnt = 0;
4699 
4700 	/*
4701 	 * Traverse the sections of the file.  This gathering of data is
4702 	 * carried out in two passes.  First, the section headers are captured
4703 	 * and the section header names are evaluated.  A verification pass is
4704 	 * then carried out over the section information.  Files have been
4705 	 * known to exhibit overlapping (and hence erroneous) section header
4706 	 * information.
4707 	 *
4708 	 * Finally, the data for each section is obtained.  This processing is
4709 	 * carried out after section verification because should any section
4710 	 * header overlap occur, and a file needs translating (ie. xlate'ing
4711 	 * information from a non-native architecture file), then the process
4712 	 * of translation can corrupt the section header information.  Of
4713 	 * course, if there is any section overlap, the data related to the
4714 	 * sections is going to be compromised.  However, it is the translation
4715 	 * of this data that has caused problems with elfdump()'s ability to
4716 	 * extract the data.
4717 	 */
4718 	for (ndx = 1, scn = NULL; (scn = elf_nextscn(elf, scn)) != NULL;
4719 	    ndx++, _cache++) {
4720 		char	scnndxnm[100];
4721 
4722 		_cache->c_ndx = ndx;
4723 		_cache->c_scn = scn;
4724 
4725 		if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) {
4726 			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4727 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
4728 			    EC_WORD(elf_ndxscn(scn)));
4729 		}
4730 
4731 		/*
4732 		 * If this section has data in the file, include it in
4733 		 * the array of sections to check for address overlap.
4734 		 */
4735 		if (_cache->c_shdr != NULL &&
4736 		    (_cache->c_shdr->sh_size != 0) &&
4737 		    (_cache->c_shdr->sh_type != SHT_NOBITS))
4738 			shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx;
4739 
4740 		/*
4741 		 * If a shstrtab exists, assign the section name.
4742 		 */
4743 		if (names && _cache->c_shdr) {
4744 			if (_cache->c_shdr->sh_name != 0 &&
4745 			    (nameshdr != NULL &&
4746 			    nameshdr->sh_size > _cache->c_shdr->sh_name)) {
4747 				const char	*symname;
4748 				char		*secname;
4749 
4750 				secname = names + _cache->c_shdr->sh_name;
4751 
4752 				/*
4753 				 * A SUN naming convention employs a "%" within
4754 				 * a section name to indicate a section/symbol
4755 				 * name.  This originated from the compilers
4756 				 * -xF option, that places functions into their
4757 				 * own sections.  This convention (which has no
4758 				 * formal standard) has also been followed for
4759 				 * COMDAT sections.  To demangle the symbol
4760 				 * name, the name must be separated from the
4761 				 * section name.
4762 				 */
4763 				if (((flags & FLG_CTL_DEMANGLE) == 0) ||
4764 				    ((symname = strchr(secname, '%')) == NULL))
4765 					_cache->c_name = secname;
4766 				else {
4767 					size_t	secsz = ++symname - secname;
4768 					size_t	strsz;
4769 
4770 					symname = demangle(symname, flags);
4771 					strsz = secsz + strlen(symname) + 1;
4772 
4773 					if ((_cache->c_name =
4774 					    malloc(strsz)) == NULL) {
4775 						int err = errno;
4776 						(void) fprintf(stderr,
4777 						    MSG_INTL(MSG_ERR_MALLOC),
4778 						    file, strerror(err));
4779 						free(shdr_ndx_arr);
4780 						return (0);
4781 					}
4782 					(void) snprintf(_cache->c_name, strsz,
4783 					    MSG_ORIG(MSG_FMT_SECSYM),
4784 					    EC_WORD(secsz), secname, symname);
4785 				}
4786 
4787 				continue;
4788 			}
4789 
4790 			/*
4791 			 * Generate an error if the section name index is zero
4792 			 * or exceeds the shstrtab data.  Fall through to
4793 			 * fabricate a section name.
4794 			 */
4795 			if ((_cache->c_shdr->sh_name == 0) ||
4796 			    /* LINTED */
4797 			    (nameshdr->sh_size <= _cache->c_shdr->sh_name)) {
4798 				(void) fprintf(stderr,
4799 				    MSG_INTL(MSG_ERR_BADSHNAME), file,
4800 				    EC_WORD(ndx),
4801 				    EC_XWORD(_cache->c_shdr->sh_name));
4802 			}
4803 		}
4804 
4805 		/*
4806 		 * If there exists no shstrtab data, or a section header has no
4807 		 * name (an invalid index of 0), then compose a name for the
4808 		 * section.
4809 		 */
4810 		(void) snprintf(scnndxnm, sizeof (scnndxnm),
4811 		    MSG_INTL(MSG_FMT_SCNNDX), ndx);
4812 
4813 		if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) {
4814 			int err = errno;
4815 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4816 			    file, strerror(err));
4817 			free(shdr_ndx_arr);
4818 			return (0);
4819 		}
4820 		(void) strcpy(_cache->c_name, scnndxnm);
4821 	}
4822 
4823 	/*
4824 	 * Having collected all the sections, validate their address range.
4825 	 * Cases have existed where the section information has been invalid.
4826 	 * This can lead to all sorts of other, hard to diagnose errors, as
4827 	 * each section is processed individually (ie. with elf_getdata()).
4828 	 * Here, we carry out some address comparisons to catch a family of
4829 	 * overlapping memory issues we have observed (likely, there are others
4830 	 * that we have yet to discover).
4831 	 *
4832 	 * Note, should any memory overlap occur, obtaining any additional
4833 	 * data from the file is questionable.  However, it might still be
4834 	 * possible to inspect the ELF header, Programs headers, or individual
4835 	 * sections, so rather than bailing on an error condition, continue
4836 	 * processing to see if any data can be salvaged.
4837 	 */
4838 	if (shdr_ndx_arr_cnt > 1) {
4839 		sort_shdr_ndx_arr_cache = cache;
4840 		qsort(shdr_ndx_arr, shdr_ndx_arr_cnt,
4841 		    sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr);
4842 	}
4843 	for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) {
4844 		Cache	*_cache = cache + shdr_ndx_arr[ndx];
4845 		Shdr	*shdr = _cache->c_shdr;
4846 		Off	bgn1, bgn = shdr->sh_offset;
4847 		Off	end1, end = shdr->sh_offset + shdr->sh_size;
4848 		size_t	ndx1;
4849 
4850 		/*
4851 		 * Check the section against all following ones, reporting
4852 		 * any overlaps. Since we've sorted the sections by offset,
4853 		 * we can stop after the first comparison that fails. There
4854 		 * are no overlaps in a properly formed ELF file, in which
4855 		 * case this algorithm runs in O(n) time. This will degenerate
4856 		 * to O(n^2) for a completely broken file. Such a file is
4857 		 * (1) highly unlikely, and (2) unusable, so it is reasonable
4858 		 * for the analysis to take longer.
4859 		 */
4860 		for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) {
4861 			Cache	*_cache1 = cache + shdr_ndx_arr[ndx1];
4862 			Shdr	*shdr1 = _cache1->c_shdr;
4863 
4864 			bgn1 = shdr1->sh_offset;
4865 			end1 = shdr1->sh_offset + shdr1->sh_size;
4866 
4867 			if (((bgn1 <= bgn) && (end1 > bgn)) ||
4868 			    ((bgn1 < end) && (end1 >= end))) {
4869 				(void) fprintf(stderr,
4870 				    MSG_INTL(MSG_ERR_SECMEMOVER), file,
4871 				    EC_WORD(elf_ndxscn(_cache->c_scn)),
4872 				    _cache->c_name, EC_OFF(bgn), EC_OFF(end),
4873 				    EC_WORD(elf_ndxscn(_cache1->c_scn)),
4874 				    _cache1->c_name, EC_OFF(bgn1),
4875 				    EC_OFF(end1));
4876 			} else {	/* No overlap, so can stop */
4877 				break;
4878 			}
4879 		}
4880 
4881 		/*
4882 		 * In addition to checking for sections overlapping
4883 		 * each other (done above), we should also make sure
4884 		 * the section doesn't overlap the section header array.
4885 		 */
4886 		bgn1 = ehdr->e_shoff;
4887 		end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum);
4888 
4889 		if (((bgn1 <= bgn) && (end1 > bgn)) ||
4890 		    ((bgn1 < end) && (end1 >= end))) {
4891 			(void) fprintf(stderr,
4892 			    MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1),
4893 			    EC_OFF(end1),
4894 			    EC_WORD(elf_ndxscn(_cache->c_scn)),
4895 			    _cache->c_name, EC_OFF(bgn), EC_OFF(end));
4896 		}
4897 	}
4898 
4899 	/*
4900 	 * Obtain the data for each section.
4901 	 */
4902 	for (ndx = 1; ndx < shnum; ndx++) {
4903 		Cache	*_cache = &cache[ndx];
4904 		Elf_Scn	*scn = _cache->c_scn;
4905 
4906 		if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) {
4907 			failure(file, MSG_ORIG(MSG_ELF_GETDATA));
4908 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA),
4909 			    EC_WORD(elf_ndxscn(scn)));
4910 		}
4911 
4912 		/*
4913 		 * If a string table, verify that it has NULL first and
4914 		 * final bytes.
4915 		 */
4916 		if ((_cache->c_shdr->sh_type == SHT_STRTAB) &&
4917 		    (_cache->c_data != NULL) &&
4918 		    (_cache->c_data->d_buf != NULL) &&
4919 		    (_cache->c_data->d_size > 0)) {
4920 			const char *s = _cache->c_data->d_buf;
4921 
4922 			if ((*s != '\0') ||
4923 			    (*(s + _cache->c_data->d_size - 1) != '\0'))
4924 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALSTR),
4925 				    file, _cache->c_name);
4926 		}
4927 	}
4928 
4929 	free(shdr_ndx_arr);
4930 	return (1);
4931 }
4932 
4933 
4934 
4935 /*
4936  * Generate a cache of section headers and related information
4937  * for use by the rest of elfdump. If requested (or the file
4938  * contains no section headers), we generate a fake set of
4939  * headers from the information accessible from the program headers.
4940  * Otherwise, we use the real section headers contained in the file.
4941  */
4942 static int
4943 create_cache(const char *file, int fd, Elf *elf, Ehdr *ehdr, Cache **cache,
4944     size_t shstrndx, size_t *shnum, uint_t *flags)
4945 {
4946 	/*
4947 	 * If there are no section headers, then resort to synthesizing
4948 	 * section headers from the program headers. This is normally
4949 	 * only done by explicit request, but in this case there's no
4950 	 * reason not to go ahead, since the alternative is simply to quit.
4951 	 */
4952 	if ((*shnum <= 1) && ((*flags & FLG_CTL_FAKESHDR) == 0)) {
4953 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file);
4954 		*flags |= FLG_CTL_FAKESHDR;
4955 	}
4956 
4957 	if (*flags & FLG_CTL_FAKESHDR) {
4958 		if (fake_shdr_cache(file, fd, elf, ehdr, cache, shnum) == 0)
4959 			return (0);
4960 	} else {
4961 		if (shdr_cache(file, elf, ehdr, shstrndx, *shnum,
4962 		    cache, *flags) == 0)
4963 			return (0);
4964 	}
4965 
4966 	return (1);
4967 }
4968 
4969 int
4970 regular(const char *file, int fd, Elf *elf, uint_t flags,
4971     const char *wname, int wfd, uchar_t osabi)
4972 {
4973 	enum { CACHE_NEEDED, CACHE_OK, CACHE_FAIL} cache_state = CACHE_NEEDED;
4974 	Elf_Scn		*scn;
4975 	Ehdr		*ehdr;
4976 	size_t		ndx, shstrndx, shnum, phnum;
4977 	Shdr		*shdr;
4978 	Cache		*cache;
4979 	VERSYM_STATE	versym = { 0 };
4980 	int		ret = 0;
4981 	int		addr_align;
4982 
4983 	if ((ehdr = elf_getehdr(elf)) == NULL) {
4984 		failure(file, MSG_ORIG(MSG_ELF_GETEHDR));
4985 		return (ret);
4986 	}
4987 
4988 	if (elf_getshdrnum(elf, &shnum) == -1) {
4989 		failure(file, MSG_ORIG(MSG_ELF_GETSHDRNUM));
4990 		return (ret);
4991 	}
4992 
4993 	if (elf_getshdrstrndx(elf, &shstrndx) == -1) {
4994 		failure(file, MSG_ORIG(MSG_ELF_GETSHDRSTRNDX));
4995 		return (ret);
4996 	}
4997 
4998 	if (elf_getphdrnum(elf, &phnum) == -1) {
4999 		failure(file, MSG_ORIG(MSG_ELF_GETPHDRNUM));
5000 		return (ret);
5001 	}
5002 	/*
5003 	 * If the user requested section headers derived from the
5004 	 * program headers (-P option) and this file doesn't have
5005 	 * any program headers (i.e. ET_REL), then we can't do it.
5006 	 */
5007 	if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) {
5008 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file);
5009 		return (ret);
5010 	}
5011 
5012 
5013 	if ((scn = elf_getscn(elf, 0)) != NULL) {
5014 		if ((shdr = elf_getshdr(scn)) == NULL) {
5015 			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
5016 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0);
5017 			return (ret);
5018 		}
5019 	} else
5020 		shdr = NULL;
5021 
5022 	/*
5023 	 * Print the elf header.
5024 	 */
5025 	if (flags & FLG_SHOW_EHDR)
5026 		Elf_ehdr(0, ehdr, shdr);
5027 
5028 	/*
5029 	 * If the section headers or program headers have inadequate
5030 	 * alignment for the class of object, print a warning. libelf
5031 	 * can handle such files, but programs that use them can crash
5032 	 * when they dereference unaligned items.
5033 	 *
5034 	 * Note that the AMD64 ABI, although it is a 64-bit architecture,
5035 	 * allows access to data types smaller than 128-bits to be on
5036 	 * word alignment.
5037 	 */
5038 	if (ehdr->e_machine == EM_AMD64)
5039 		addr_align = sizeof (Word);
5040 	else
5041 		addr_align = sizeof (Addr);
5042 
5043 	if (ehdr->e_phoff & (addr_align - 1))
5044 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file);
5045 	if (ehdr->e_shoff & (addr_align - 1))
5046 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file);
5047 
5048 
5049 	/*
5050 	 * Determine the Operating System ABI (osabi) we will use to
5051 	 * interpret the object.
5052 	 */
5053 	if (flags & FLG_CTL_OSABI) {
5054 		/*
5055 		 * If the user explicitly specifies '-O none', we need
5056 		 * to display a completely generic view of the file.
5057 		 * However, libconv is written to assume that ELFOSABI_NONE
5058 		 * is equivalent to ELFOSABI_SOLARIS. To get the desired
5059 		 * effect, we use an osabi that libconv has no knowledge of.
5060 		 */
5061 		if (osabi == ELFOSABI_NONE)
5062 			osabi = ELFOSABI_UNKNOWN4;
5063 	} else {
5064 		/* Determine osabi from file */
5065 		osabi = ehdr->e_ident[EI_OSABI];
5066 		if (osabi == ELFOSABI_NONE) {
5067 			/*
5068 			 * Chicken/Egg scenario:
5069 			 *
5070 			 * Ideally, we wait to create the section header cache
5071 			 * until after the program headers are printed. If we
5072 			 * only output program headers, we can skip building
5073 			 * the cache entirely.
5074 			 *
5075 			 * Proper interpretation of program headers requires
5076 			 * the osabi, which is supposed to be in the ELF header.
5077 			 * However, many systems (Solaris and Linux included)
5078 			 * have a history of setting the osabi to the generic
5079 			 * SysV ABI (ELFOSABI_NONE). We assume ELFOSABI_SOLARIS
5080 			 * in such cases, but would like to check the object
5081 			 * to see if it has a Linux .note.ABI-tag section,
5082 			 * which implies ELFOSABI_LINUX. This requires a
5083 			 * section header cache.
5084 			 *
5085 			 * To break the cycle, we create section headers now
5086 			 * if osabi is ELFOSABI_NONE, and later otherwise.
5087 			 * If it succeeds, we use them, if not, we defer
5088 			 * exiting until after the program headers are out.
5089 			 */
5090 			if (create_cache(file, fd, elf, ehdr, &cache,
5091 			    shstrndx, &shnum, &flags) == 0) {
5092 				cache_state = CACHE_FAIL;
5093 			} else {
5094 				cache_state = CACHE_OK;
5095 				if (has_linux_abi_note(cache, shnum, file)) {
5096 					Conv_inv_buf_t	ibuf1, ibuf2;
5097 
5098 					(void) fprintf(stderr,
5099 					    MSG_INTL(MSG_INFO_LINUXOSABI), file,
5100 					    conv_ehdr_osabi(osabi, 0, &ibuf1),
5101 					    conv_ehdr_osabi(ELFOSABI_LINUX,
5102 					    0, &ibuf2));
5103 					osabi = ELFOSABI_LINUX;
5104 				}
5105 			}
5106 		}
5107 		/*
5108 		 * We treat ELFOSABI_NONE identically to ELFOSABI_SOLARIS.
5109 		 * Mapping NONE to SOLARIS simplifies the required test.
5110 		 */
5111 		if (osabi == ELFOSABI_NONE)
5112 			osabi = ELFOSABI_SOLARIS;
5113 	}
5114 
5115 	/*
5116 	 * Print the program headers.
5117 	 */
5118 	if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) {
5119 		Phdr	*phdr;
5120 
5121 		if ((phdr = elf_getphdr(elf)) == NULL) {
5122 			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
5123 			return (ret);
5124 		}
5125 
5126 		for (ndx = 0; ndx < phnum; phdr++, ndx++) {
5127 			if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE,
5128 			    NULL, ndx, phdr->p_type))
5129 				continue;
5130 
5131 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
5132 			dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx));
5133 
5134 			Elf_phdr(0, osabi, ehdr->e_machine, phdr);
5135 		}
5136 	}
5137 
5138 	/*
5139 	 * If we have flag bits set that explicitly require a show or calc
5140 	 * operation, but none of them require the section headers, then
5141 	 * we are done and can return now.
5142 	 */
5143 	if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) &&
5144 	    ((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0))
5145 		return (ret);
5146 
5147 	/*
5148 	 * Everything from this point on requires section headers.
5149 	 * If we have no section headers, there is no reason to continue.
5150 	 *
5151 	 * If we tried above to create the section header cache and failed,
5152 	 * it is time to exit. Otherwise, create it if needed.
5153 	 */
5154 	switch (cache_state) {
5155 	case CACHE_NEEDED:
5156 		if (create_cache(file, fd, elf, ehdr, &cache, shstrndx,
5157 		    &shnum, &flags) == 0)
5158 			return (ret);
5159 		break;
5160 	case CACHE_OK:
5161 		break;
5162 	case CACHE_FAIL:
5163 		return (ret);
5164 	}
5165 	if (shnum <= 1)
5166 		goto done;
5167 
5168 	/*
5169 	 * If -w was specified, find and write out the section(s) data.
5170 	 */
5171 	if (wfd) {
5172 		for (ndx = 1; ndx < shnum; ndx++) {
5173 			Cache	*_cache = &cache[ndx];
5174 
5175 			if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
5176 			    ndx, _cache->c_shdr->sh_type) &&
5177 			    _cache->c_data && _cache->c_data->d_buf) {
5178 				if (write(wfd, _cache->c_data->d_buf,
5179 				    _cache->c_data->d_size) !=
5180 				    _cache->c_data->d_size) {
5181 					int err = errno;
5182 					(void) fprintf(stderr,
5183 					    MSG_INTL(MSG_ERR_WRITE), wname,
5184 					    strerror(err));
5185 					/*
5186 					 * Return an exit status of 1, because
5187 					 * the failure is not related to the
5188 					 * ELF file, but by system resources.
5189 					 */
5190 					ret = 1;
5191 					goto done;
5192 				}
5193 			}
5194 		}
5195 	}
5196 
5197 	/*
5198 	 * If we have no flag bits set that explicitly require a show or calc
5199 	 * operation, but match options (-I, -N, -T) were used, then run
5200 	 * through the section headers and see if we can't deduce show flags
5201 	 * from the match options given.
5202 	 *
5203 	 * We don't do this if -w was specified, because (-I, -N, -T) used
5204 	 * with -w in lieu of some other option is supposed to be quiet.
5205 	 */
5206 	if ((wfd == 0) && (flags & FLG_CTL_MATCH) &&
5207 	    ((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) {
5208 		for (ndx = 1; ndx < shnum; ndx++) {
5209 			Cache	*_cache = &cache[ndx];
5210 
5211 			if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
5212 			    ndx, _cache->c_shdr->sh_type))
5213 				continue;
5214 
5215 			switch (_cache->c_shdr->sh_type) {
5216 			case SHT_PROGBITS:
5217 				/*
5218 				 * Heuristic time: It is usually bad form
5219 				 * to assume the meaning/format of a PROGBITS
5220 				 * section based on its name. However, there
5221 				 * are ABI mandated exceptions. Check for
5222 				 * these special names.
5223 				 */
5224 
5225 				/* The ELF ABI specifies .interp and .got */
5226 				if (strcmp(_cache->c_name,
5227 				    MSG_ORIG(MSG_ELF_INTERP)) == 0) {
5228 					flags |= FLG_SHOW_INTERP;
5229 					break;
5230 				}
5231 				if (strcmp(_cache->c_name,
5232 				    MSG_ORIG(MSG_ELF_GOT)) == 0) {
5233 					flags |= FLG_SHOW_GOT;
5234 					break;
5235 				}
5236 				/*
5237 				 * The GNU compilers, and amd64 ABI, define
5238 				 * .eh_frame and .eh_frame_hdr. The Sun
5239 				 * C++ ABI defines .exception_ranges.
5240 				 */
5241 				if ((strncmp(_cache->c_name,
5242 				    MSG_ORIG(MSG_SCN_FRM),
5243 				    MSG_SCN_FRM_SIZE) == 0) ||
5244 				    (strncmp(_cache->c_name,
5245 				    MSG_ORIG(MSG_SCN_EXRANGE),
5246 				    MSG_SCN_EXRANGE_SIZE) == 0)) {
5247 					flags |= FLG_SHOW_UNWIND;
5248 					break;
5249 				}
5250 				break;
5251 
5252 			case SHT_SYMTAB:
5253 			case SHT_DYNSYM:
5254 			case SHT_SUNW_LDYNSYM:
5255 			case SHT_SUNW_versym:
5256 			case SHT_SYMTAB_SHNDX:
5257 				flags |= FLG_SHOW_SYMBOLS;
5258 				break;
5259 
5260 			case SHT_RELA:
5261 			case SHT_REL:
5262 				flags |= FLG_SHOW_RELOC;
5263 				break;
5264 
5265 			case SHT_HASH:
5266 				flags |= FLG_SHOW_HASH;
5267 				break;
5268 
5269 			case SHT_DYNAMIC:
5270 				flags |= FLG_SHOW_DYNAMIC;
5271 				break;
5272 
5273 			case SHT_NOTE:
5274 				flags |= FLG_SHOW_NOTE;
5275 				break;
5276 
5277 			case SHT_GROUP:
5278 				flags |= FLG_SHOW_GROUP;
5279 				break;
5280 
5281 			case SHT_SUNW_symsort:
5282 			case SHT_SUNW_tlssort:
5283 				flags |= FLG_SHOW_SORT;
5284 				break;
5285 
5286 			case SHT_SUNW_cap:
5287 				flags |= FLG_SHOW_CAP;
5288 				break;
5289 
5290 			case SHT_SUNW_move:
5291 				flags |= FLG_SHOW_MOVE;
5292 				break;
5293 
5294 			case SHT_SUNW_syminfo:
5295 				flags |= FLG_SHOW_SYMINFO;
5296 				break;
5297 
5298 			case SHT_SUNW_verdef:
5299 			case SHT_SUNW_verneed:
5300 				flags |= FLG_SHOW_VERSIONS;
5301 				break;
5302 
5303 			case SHT_AMD64_UNWIND:
5304 				flags |= FLG_SHOW_UNWIND;
5305 				break;
5306 			}
5307 		}
5308 	}
5309 
5310 
5311 	if (flags & FLG_SHOW_SHDR)
5312 		sections(file, cache, shnum, ehdr, osabi);
5313 
5314 	if (flags & FLG_SHOW_INTERP)
5315 		interp(file, cache, shnum, phnum, elf, ehdr);
5316 
5317 	if ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX))
5318 		versions(cache, shnum, file, flags, &versym);
5319 
5320 	if (flags & FLG_SHOW_SYMBOLS)
5321 		symbols(cache, shnum, ehdr, osabi, &versym, file, flags);
5322 
5323 	if ((flags & FLG_SHOW_SORT) && (osabi == ELFOSABI_SOLARIS))
5324 		sunw_sort(cache, shnum, ehdr, osabi, &versym, file, flags);
5325 
5326 	if (flags & FLG_SHOW_HASH)
5327 		hash(cache, shnum, file, flags);
5328 
5329 	if (flags & FLG_SHOW_GOT)
5330 		got(cache, shnum, ehdr, file);
5331 
5332 	if (flags & FLG_SHOW_GROUP)
5333 		group(cache, shnum, file, flags);
5334 
5335 	if (flags & FLG_SHOW_SYMINFO)
5336 		syminfo(cache, shnum, ehdr, osabi, file);
5337 
5338 	if (flags & FLG_SHOW_RELOC)
5339 		reloc(cache, shnum, ehdr, file);
5340 
5341 	if (flags & FLG_SHOW_DYNAMIC)
5342 		dynamic(cache, shnum, ehdr, osabi, file, phnum, elf);
5343 
5344 	if (flags & FLG_SHOW_NOTE) {
5345 		Word	note_cnt;
5346 		size_t	note_shnum;
5347 		Cache	*note_cache;
5348 
5349 		note_cnt = note(cache, shnum, ehdr, file);
5350 
5351 		/*
5352 		 * Solaris core files have section headers, but these
5353 		 * headers do not include SHT_NOTE sections that reference
5354 		 * the core note sections. This means that note() won't
5355 		 * find the core notes. Fake section headers (-P option)
5356 		 * recover these sections, but it is inconvenient to require
5357 		 * users to specify -P in this situation. If the following
5358 		 * are all true:
5359 		 *
5360 		 *	- No note sections were found
5361 		 *	- This is a core file
5362 		 *	- We are not already using fake section headers
5363 		 *
5364 		 * then we will automatically generate fake section headers
5365 		 * and then process them in a second call to note().
5366 		 */
5367 		if ((note_cnt == 0) && (ehdr->e_type == ET_CORE) &&
5368 		    !(flags & FLG_CTL_FAKESHDR) &&
5369 		    (fake_shdr_cache(file, fd, elf, ehdr,
5370 		    &note_cache, &note_shnum) != 0)) {
5371 			(void) note(note_cache, note_shnum, ehdr, file);
5372 			fake_shdr_cache_free(note_cache, note_shnum);
5373 		}
5374 	}
5375 
5376 	if ((flags & FLG_SHOW_MOVE) && (osabi == ELFOSABI_SOLARIS))
5377 		move(cache, shnum, file, flags);
5378 
5379 	if (flags & FLG_CALC_CHECKSUM)
5380 		checksum(elf);
5381 
5382 	if ((flags & FLG_SHOW_CAP) && (osabi == ELFOSABI_SOLARIS))
5383 		cap(file, cache, shnum, phnum, ehdr, osabi, elf, flags);
5384 
5385 	if ((flags & FLG_SHOW_UNWIND) &&
5386 	    ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX)))
5387 		unwind(cache, shnum, phnum, ehdr, osabi, file, elf, flags);
5388 
5389 
5390 	/* Release the memory used to cache section headers */
5391 done:
5392 	if (flags & FLG_CTL_FAKESHDR)
5393 		fake_shdr_cache_free(cache, shnum);
5394 	else
5395 		free(cache);
5396 
5397 	return (ret);
5398 }
5399