xref: /illumos-gate/usr/src/cmd/sgs/elfdump/common/elfdump.c (revision db7186d3d79e01fb2998638be5eb7ef3a6a1990d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Dump an elf file.
29  */
30 #include	<sys/elf_386.h>
31 #include	<sys/elf_amd64.h>
32 #include	<sys/elf_SPARC.h>
33 #include	<_libelf.h>
34 #include	<dwarf.h>
35 #include	<stdio.h>
36 #include	<unistd.h>
37 #include	<errno.h>
38 #include	<strings.h>
39 #include	<debug.h>
40 #include	<conv.h>
41 #include	<msg.h>
42 #include	<_elfdump.h>
43 
44 
45 /*
46  * VERSYM_STATE is used to maintain information about the VERSYM section
47  * in the object being analyzed. It is filled in by versions(), and used
48  * by init_symtbl_state() when displaying symbol information.
49  *
50  * There are three forms of symbol versioning known to us:
51  *
52  * 1) The original form, introduced with Solaris 2.5, in which
53  *	the Versym contains indexes to Verdef records, and the
54  *	Versym values for UNDEF symbols resolved by other objects
55  *	are all set to 0.
56  * 2) The GNU form, which is backward compatible with the original
57  *	Solaris form, but which adds several extensions:
58  *	- The Versym also contains indexes to Verneed records, recording
59  *		which object/version contributed the external symbol at
60  *		link time. These indexes start with the next value following
61  *		the final Verdef index. The index is written to the previously
62  *		reserved vna_other field of the ELF Vernaux structure.
63  *	- The top bit of the Versym value is no longer part of the index,
64  *		but is used as a "hidden bit" to prevent binding to the symbol.
65  *	- Multiple implementations of a given symbol, contained in varying
66  *		versions are allowed, using special assembler pseudo ops,
67  *		and encoded in the symbol name using '@' characters.
68  * 3) Modified Solaris form, in which we adopt the first GNU extension
69  *	(Versym indexes to Verneed records), but not the others.
70  *
71  * elfdump can handle any of these cases. The presence of a DT_VERSYM
72  * dynamic element indicates a full GNU object. An object that lacks
73  * a DT_VERSYM entry, but which has non-zero vna_other fields in the Vernaux
74  * structures is a modified Solaris object. An object that has neither of
75  * these uses the original form.
76  *
77  * max_verndx contains the largest version index that can appear
78  * in a Versym entry. This can never be less than 1: In the case where
79  * there is no verdef/verneed sections, the [0] index is reserved
80  * for local symbols, and the [1] index for globals. If the original
81  * Solaris versioning rules are in effect and there is a verdef section,
82  * then max_verndex is the number of defined versions. If one of the
83  * other versioning forms is in effect, then:
84  *	1) If there is no verneed section, it is the same as for
85  *		original Solaris versioning.
86  *	2) If there is a verneed section, the vna_other field of the
87  *		Vernaux structs contain versions, and max_verndx is the
88  *		largest such index.
89  *
90  * If gnu_full is True, the object uses the full GNU form of versioning.
91  * The value of the gnu_full field is based on the presence of
92  * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and
93  * Solaris ld does not.
94  *
95  * The gnu_needed field is True if the Versym contains indexes to
96  * Verneed records, as indicated by non-zero vna_other fields in the Verneed
97  * section. If gnu_full is True, then gnu_needed will always be true.
98  * However, gnu_needed can be true without gnu_full. This is the modified
99  * Solaris form.
100  */
101 typedef struct {
102 	Cache	*cache;		/* Pointer to cache entry for VERSYM */
103 	Versym	*data;		/* Pointer to versym array */
104 	int	gnu_full;	/* True if object uses GNU versioning rules */
105 	int	gnu_needed;	/* True if object uses VERSYM indexes for */
106 				/*	VERNEED (subset of gnu_full) */
107 	int	max_verndx;	/* largest versym index value */
108 } VERSYM_STATE;
109 
110 /*
111  * SYMTBL_STATE is used to maintain information about a single symbol
112  * table section, for use by the routines that display symbol information.
113  */
114 typedef struct {
115 	const char	*file;		/* Name of file */
116 	Ehdr		*ehdr;		/* ELF header for file */
117 	Cache		*cache;		/* Cache of all section headers */
118 	Word		shnum;		/* # of sections in cache */
119 	Cache		*seccache;	/* Cache of symbol table section hdr */
120 	Word		secndx;		/* Index of symbol table section hdr */
121 	const char	*secname;	/* Name of section */
122 	uint_t		flags;		/* Command line option flags */
123 	struct {			/* Extended section index data */
124 		int	checked;	/* TRUE if already checked for shxndx */
125 		Word	*data;		/* NULL, or extended section index */
126 					/*	used for symbol table entries */
127 		uint_t	n;		/* # items in shxndx.data */
128 	} shxndx;
129 	VERSYM_STATE	*versym;	/* NULL, or associated VERSYM section */
130 	Sym 		*sym;		/* Array of symbols */
131 	Word		symn;		/* # of symbols */
132 } SYMTBL_STATE;
133 
134 
135 
136 /*
137  * Focal point for verifying symbol names.
138  */
139 static const char *
140 string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name)
141 {
142 	/*
143 	 * If an error in this routine is due to a property of the string
144 	 * section, as opposed to a bad offset into the section (a property of
145 	 * the referencing section), then we will detect the same error on
146 	 * every call involving those sections. We use these static variables
147 	 * to retain the information needed to only issue each such error once.
148 	 */
149 	static Cache	*last_refsec;	/* Last referencing section seen */
150 	static int	strsec_err;	/* True if error issued */
151 
152 	const char	*strs;
153 	Word		strn;
154 
155 	if (strsec->c_data == NULL)
156 		return (NULL);
157 
158 	strs = (char *)strsec->c_data->d_buf;
159 	strn = strsec->c_data->d_size;
160 
161 	/*
162 	 * We only print a diagnostic regarding a bad string table once per
163 	 * input section being processed. If the refsec has changed, reset
164 	 * our retained error state.
165 	 */
166 	if (last_refsec != refsec) {
167 		last_refsec = refsec;
168 		strsec_err = 0;
169 	}
170 
171 	/* Verify that strsec really is a string table */
172 	if (strsec->c_shdr->sh_type != SHT_STRTAB) {
173 		if (!strsec_err) {
174 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB),
175 			    file, strsec->c_ndx, refsec->c_ndx);
176 			strsec_err = 1;
177 		}
178 		return (MSG_INTL(MSG_STR_UNKNOWN));
179 	}
180 
181 	/*
182 	 * Is the string table offset within range of the available strings?
183 	 */
184 	if (name >= strn) {
185 		/*
186 		 * Do we have a empty string table?
187 		 */
188 		if (strs == NULL) {
189 			if (!strsec_err) {
190 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
191 				    file, strsec->c_name);
192 				strsec_err = 1;
193 			}
194 		} else {
195 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF),
196 			    file, refsec->c_name, EC_WORD(ndx), strsec->c_name,
197 			    EC_WORD(name), EC_WORD(strn - 1));
198 		}
199 
200 		/*
201 		 * Return the empty string so that the calling function can
202 		 * continue it's output diagnostics.
203 		 */
204 		return (MSG_INTL(MSG_STR_UNKNOWN));
205 	}
206 	return (strs + name);
207 }
208 
209 /*
210  * Relocations can reference section symbols and standard symbols.  If the
211  * former, establish the section name.
212  */
213 static const char *
214 relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum,
215     Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file)
216 {
217 	Sym		*sym;
218 	const char	*name;
219 
220 	if (symndx >= symnum) {
221 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX),
222 		    file, EC_WORD(symndx), EC_WORD(relndx));
223 		return (MSG_INTL(MSG_STR_UNKNOWN));
224 	}
225 
226 	sym = (Sym *)(syms + symndx);
227 	name = string(csec, symndx, strsec, file, sym->st_name);
228 
229 	/*
230 	 * If the symbol represents a section offset construct an appropriate
231 	 * string.  Note, although section symbol table entries typically have
232 	 * a NULL name pointer, entries do exist that point into the string
233 	 * table to their own NULL strings.
234 	 */
235 	if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) &&
236 	    ((sym->st_name == 0) || (*name == '\0'))) {
237 		(void) snprintf(secstr, secsz, MSG_INTL(MSG_STR_SECTION),
238 		    cache[sym->st_shndx].c_name);
239 		return ((const char *)secstr);
240 	}
241 
242 	return (name);
243 }
244 
245 /*
246  * Focal point for establishing a string table section.  Data such as the
247  * dynamic information simply points to a string table.  Data such as
248  * relocations, reference a symbol table, which in turn is associated with a
249  * string table.
250  */
251 static int
252 stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file,
253     Word *symnum, Cache **symsec, Cache **strsec)
254 {
255 	Shdr	*shdr = cache[ndx].c_shdr;
256 
257 	if (symtab) {
258 		/*
259 		 * Validate the symbol table section.
260 		 */
261 		if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
262 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
263 			    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
264 			return (0);
265 		}
266 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
267 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
268 			    file, cache[ndx].c_name);
269 			return (0);
270 		}
271 
272 		/*
273 		 * Obtain, and verify the symbol table data.
274 		 */
275 		if ((cache[ndx].c_data == NULL) ||
276 		    (cache[ndx].c_data->d_buf == NULL)) {
277 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
278 			    file, cache[ndx].c_name);
279 			return (0);
280 		}
281 
282 		/*
283 		 * Establish the string table index.
284 		 */
285 		ndx = shdr->sh_link;
286 		shdr = cache[ndx].c_shdr;
287 
288 		/*
289 		 * Return symbol table information.
290 		 */
291 		if (symnum)
292 			*symnum = (shdr->sh_size / shdr->sh_entsize);
293 		if (symsec)
294 			*symsec = &cache[ndx];
295 	}
296 
297 	/*
298 	 * Validate the associated string table section.
299 	 */
300 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
301 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
302 		    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
303 		return (0);
304 	}
305 
306 	if (strsec)
307 		*strsec = &cache[shdr->sh_link];
308 
309 	return (1);
310 }
311 
312 /*
313  * Lookup a symbol and set Sym accordingly.
314  */
315 static int
316 symlookup(const char *name, Cache *cache, Word shnum, Sym **sym,
317     Cache *symtab, const char *file)
318 {
319 	Shdr	*shdr;
320 	Word	symn, cnt;
321 	Sym	*syms;
322 
323 	if (symtab == 0)
324 		return (0);
325 
326 	shdr = symtab->c_shdr;
327 
328 	/*
329 	 * Determine the symbol data and number.
330 	 */
331 	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
332 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
333 		    file, symtab->c_name);
334 		return (0);
335 	}
336 	if (symtab->c_data == NULL)
337 		return (0);
338 
339 	/* LINTED */
340 	symn = (Word)(shdr->sh_size / shdr->sh_entsize);
341 	syms = (Sym *)symtab->c_data->d_buf;
342 
343 	/*
344 	 * Get the associated string table section.
345 	 */
346 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
347 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
348 		    file, symtab->c_name, EC_WORD(shdr->sh_link));
349 		return (0);
350 	}
351 
352 	/*
353 	 * Loop through the symbol table to find a match.
354 	 */
355 	for (cnt = 0; cnt < symn; syms++, cnt++) {
356 		const char	*symname;
357 
358 		symname = string(symtab, cnt, &cache[shdr->sh_link], file,
359 		    syms->st_name);
360 
361 		if (symname && (strcmp(name, symname) == 0)) {
362 			*sym = syms;
363 			return (1);
364 		}
365 	}
366 	return (0);
367 }
368 
369 /*
370  * Print section headers.
371  */
372 static void
373 sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr)
374 {
375 	size_t	seccnt;
376 
377 	for (seccnt = 1; seccnt < shnum; seccnt++) {
378 		Cache		*_cache = &cache[seccnt];
379 		Shdr		*shdr = _cache->c_shdr;
380 		const char	*secname = _cache->c_name;
381 
382 		/*
383 		 * Although numerous section header entries can be zero, it's
384 		 * usually a sign of trouble if the type is zero.
385 		 */
386 		if (shdr->sh_type == 0) {
387 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE),
388 			    file, secname, EC_WORD(shdr->sh_type));
389 		}
390 
391 		if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type))
392 			continue;
393 
394 		/*
395 		 * Identify any sections that are suspicious.  A .got section
396 		 * shouldn't exist in a relocatable object.
397 		 */
398 		if (ehdr->e_type == ET_REL) {
399 			if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT),
400 			    MSG_ELF_GOT_SIZE) == 0) {
401 				(void) fprintf(stderr,
402 				    MSG_INTL(MSG_GOT_UNEXPECTED), file,
403 				    secname);
404 			}
405 		}
406 
407 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
408 		dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname);
409 		Elf_shdr(0, ehdr->e_machine, shdr);
410 	}
411 }
412 
413 /*
414  * Obtain a specified Phdr entry.
415  */
416 static Phdr *
417 getphdr(Word phnum, Word *type_arr, Word type_cnt, const char *file, Elf *elf)
418 {
419 	Word	cnt, tcnt;
420 	Phdr	*phdr;
421 
422 	if ((phdr = elf_getphdr(elf)) == NULL) {
423 		failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
424 		return (NULL);
425 	}
426 
427 	for (cnt = 0; cnt < phnum; phdr++, cnt++) {
428 		for (tcnt = 0; tcnt < type_cnt; tcnt++) {
429 			if (phdr->p_type == type_arr[tcnt])
430 				return (phdr);
431 		}
432 	}
433 	return (NULL);
434 }
435 
436 static void
437 unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, const char *file,
438     Elf *elf)
439 {
440 #if	defined(_ELF64)
441 #define	MSG_UNW_BINSRTAB2	MSG_UNW_BINSRTAB2_64
442 #define	MSG_UNW_BINSRTABENT	MSG_UNW_BINSRTABENT_64
443 #else
444 #define	MSG_UNW_BINSRTAB2	MSG_UNW_BINSRTAB2_32
445 #define	MSG_UNW_BINSRTABENT	MSG_UNW_BINSRTABENT_32
446 #endif
447 
448 	static Word phdr_types[] = { PT_SUNW_UNWIND, PT_SUNW_EH_FRAME };
449 
450 	int			frame_cnt = 0, hdr_cnt = 0, frame_ndx, hdr_ndx;
451 	uint64_t		save_frame_ptr, save_frame_base;
452 	Conv_dwarf_ehe_buf_t	dwarf_ehe_buf;
453 	Word			cnt;
454 	Phdr			*uphdr = NULL;
455 
456 	/*
457 	 * Historical background: .eh_frame and .eh_frame_hdr sections
458 	 * come from the GNU compilers (particularly C++), and are used
459 	 * under all architectures. Their format is based on DWARF. When
460 	 * the amd64 ABI was defined, these sections were adopted wholesale
461 	 * from the existing practice.
462 	 *
463 	 * When amd64 support was added to Solaris, support for these
464 	 * sections was added, using the SHT_AMD64_UNWIND section type
465 	 * to identify them. At first, we ignored them in objects for
466 	 * non-amd64 targets, but later broadened our support to include
467 	 * other architectures in order to better support gcc-generated
468 	 * objects.
469 	 *
470 	 * We match these sections by name, rather than section type,
471 	 * because they can come in as either SHT_AMD64_UNWIND, or as
472 	 * SHT_PROGBITS, and because we need to distinquish between
473 	 * the two types (.eh_frame and .eh_frame_hdr).
474 	 */
475 
476 	if (phnum)
477 		uphdr = getphdr(phnum, phdr_types,
478 		    sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
479 
480 	for (cnt = 1; cnt < shnum; cnt++) {
481 		Cache		*_cache = &cache[cnt];
482 		Shdr		*shdr = _cache->c_shdr;
483 		uchar_t		*data;
484 		size_t		datasize;
485 		uint64_t	ndx, frame_ptr, fde_cnt, tabndx;
486 		uint_t		vers, frame_ptr_enc, fde_cnt_enc, table_enc;
487 
488 		/*
489 		 * Skip sections of the wrong type. On amd64, Solaris tags
490 		 * these as SHT_AMD64_UNWIND, while gcc started out issuing
491 		 * them as SHT_PROGBITS and switched over when the amd64 ABI
492 		 * was finalized. On non-amd64, they're all SHT_PROGBITS.
493 		 */
494 		switch (shdr->sh_type) {
495 		case SHT_PROGBITS:
496 			if (ehdr->e_machine == EM_AMD64)
497 				continue;
498 			break;
499 		case SHT_AMD64_UNWIND:
500 			if (ehdr->e_machine != EM_AMD64)
501 				continue;
502 			break;
503 		default:
504 			continue;
505 		}
506 
507 		/*
508 		 * Only sections with names starting with .eh_frame or
509 		 * .eh_frame_hdr are of interest. We do a prefix comparison,
510 		 * allowing for naming conventions like .eh_frame.foo, hence
511 		 * the use of strncmp() rather than strcmp(). This means that
512 		 * we only really need to test for .eh_frame, as it's a
513 		 * prefix of .eh_frame_hdr.
514 		 */
515 		if (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM),
516 		    MSG_SCN_FRM_SIZE) != 0)
517 			continue;
518 
519 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
520 			continue;
521 
522 		if (_cache->c_data == NULL)
523 			continue;
524 
525 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
526 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name);
527 
528 		data = (uchar_t *)(_cache->c_data->d_buf);
529 		datasize = _cache->c_data->d_size;
530 
531 		/*
532 		 * Is this a .eh_frame_hdr
533 		 */
534 		if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) ||
535 		    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
536 		    MSG_SCN_FRMHDR_SIZE) == 0)) {
537 			/*
538 			 * There can only be a single .eh_frame_hdr.
539 			 * Flag duplicates.
540 			 */
541 			if (++hdr_cnt > 1)
542 				(void) fprintf(stderr,
543 				    MSG_INTL(MSG_ERR_MULTEHFRMHDR), file,
544 				    EC_WORD(cnt), _cache->c_name);
545 
546 			dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR));
547 			ndx = 0;
548 
549 			vers = data[ndx++];
550 			frame_ptr_enc = data[ndx++];
551 			fde_cnt_enc = data[ndx++];
552 			table_enc = data[ndx++];
553 
554 			dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers);
555 
556 			frame_ptr = dwarf_ehe_extract(data, &ndx, frame_ptr_enc,
557 			    ehdr->e_ident, shdr->sh_addr, ndx);
558 			if (hdr_cnt == 1) {
559 				hdr_ndx = cnt;
560 				save_frame_ptr = frame_ptr;
561 			}
562 
563 			dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC),
564 			    conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf),
565 			    EC_XWORD(frame_ptr));
566 
567 			fde_cnt = dwarf_ehe_extract(data, &ndx, fde_cnt_enc,
568 			    ehdr->e_ident, shdr->sh_addr, ndx);
569 
570 			dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC),
571 			    conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf),
572 			    EC_XWORD(fde_cnt));
573 			dbg_print(0, MSG_ORIG(MSG_UNW_TABENC),
574 			    conv_dwarf_ehe(table_enc, &dwarf_ehe_buf));
575 			dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1));
576 			dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2));
577 
578 			for (tabndx = 0; tabndx < fde_cnt; tabndx++) {
579 				dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT),
580 				    EC_XWORD(dwarf_ehe_extract(data, &ndx,
581 				    table_enc, ehdr->e_ident, shdr->sh_addr,
582 				    ndx)),
583 				    EC_XWORD(dwarf_ehe_extract(data, &ndx,
584 				    table_enc, ehdr->e_ident, shdr->sh_addr,
585 				    ndx)));
586 			}
587 		} else {		/* Display the .eh_frame section */
588 			frame_cnt++;
589 			if (frame_cnt == 1) {
590 				frame_ndx = cnt;
591 				save_frame_base = shdr->sh_addr;
592 			} else if ((frame_cnt >  1) &&
593 			    (ehdr->e_type != ET_REL)) {
594 				Conv_inv_buf_t	inv_buf;
595 
596 				(void) fprintf(stderr,
597 				    MSG_INTL(MSG_WARN_MULTEHFRM), file,
598 				    EC_WORD(cnt), _cache->c_name,
599 				    conv_ehdr_type(ehdr->e_type, 0, &inv_buf));
600 			}
601 			dump_eh_frame(data, datasize, shdr->sh_addr,
602 			    ehdr->e_machine, ehdr->e_ident);
603 		}
604 
605 		/*
606 		 * If we've seen the .eh_frame_hdr and the first
607 		 * .eh_frame section, compare the header frame_ptr
608 		 * to the address of the actual frame section to ensure
609 		 * the link-editor got this right.
610 		 */
611 		if ((hdr_cnt > 0) && (frame_cnt > 0) &&
612 		    (save_frame_ptr != save_frame_base))
613 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADEHFRMPTR),
614 			    file, EC_WORD(hdr_ndx), cache[hdr_ndx].c_name,
615 			    EC_XWORD(save_frame_ptr), EC_WORD(frame_ndx),
616 			    cache[frame_ndx].c_name, EC_XWORD(save_frame_base));
617 	}
618 
619 #undef MSG_UNW_BINSRTAB2
620 #undef MSG_UNW_BINSRTABENT
621 }
622 
623 /*
624  * Print the hardware/software capabilities.  For executables and shared objects
625  * this should be accompanied with a program header.
626  */
627 static void
628 cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr,
629     Elf *elf)
630 {
631 	Word		cnt;
632 	Shdr		*cshdr = NULL;
633 	Cache		*ccache;
634 	Off		cphdr_off = 0;
635 	Xword		cphdr_sz;
636 
637 	/*
638 	 * Determine if a hardware/software capabilities header exists.
639 	 */
640 	if (phnum) {
641 		Phdr	*phdr;
642 
643 		if ((phdr = elf_getphdr(elf)) == NULL) {
644 			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
645 			return;
646 		}
647 
648 		for (cnt = 0; cnt < phnum; phdr++, cnt++) {
649 			if (phdr->p_type == PT_SUNWCAP) {
650 				cphdr_off = phdr->p_offset;
651 				cphdr_sz = phdr->p_filesz;
652 				break;
653 			}
654 		}
655 	}
656 
657 	/*
658 	 * Determine if a hardware/software capabilities section exists.
659 	 */
660 	for (cnt = 1; cnt < shnum; cnt++) {
661 		Cache	*_cache = &cache[cnt];
662 		Shdr	*shdr = _cache->c_shdr;
663 
664 		if (shdr->sh_type != SHT_SUNW_cap)
665 			continue;
666 
667 		if (cphdr_off && ((cphdr_off < shdr->sh_offset) ||
668 		    (cphdr_off + cphdr_sz) > (shdr->sh_offset + shdr->sh_size)))
669 			continue;
670 
671 		if (_cache->c_data == NULL)
672 			continue;
673 
674 		ccache = _cache;
675 		cshdr = shdr;
676 		break;
677 	}
678 
679 	if ((cshdr == NULL) && (cphdr_off == 0))
680 		return;
681 
682 	/*
683 	 * Print the hardware/software capabilities section.
684 	 */
685 	if (cshdr) {
686 		Word	ndx, capn;
687 		Cap	*cap = (Cap *)ccache->c_data->d_buf;
688 
689 		if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) {
690 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
691 			    file, ccache->c_name);
692 			return;
693 		}
694 
695 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
696 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name);
697 
698 		Elf_cap_title(0);
699 
700 		capn = (Word)(cshdr->sh_size / cshdr->sh_entsize);
701 
702 		for (ndx = 0; ndx < capn; cap++, ndx++) {
703 			if (cap->c_tag == CA_SUNW_NULL)
704 				continue;
705 
706 			Elf_cap_entry(0, cap, ndx, ehdr->e_machine);
707 
708 			/*
709 			 * An SF1_SUNW_ADDR32 software capability in a 32-bit
710 			 * object is suspicious as it has no effect.
711 			 */
712 			if ((cap->c_tag == CA_SUNW_SF_1) &&
713 			    (ehdr->e_ident[EI_CLASS] == ELFCLASS32) &&
714 			    (cap->c_un.c_val & SF1_SUNW_ADDR32)) {
715 				(void) fprintf(stderr,
716 				    MSG_INTL(MSG_WARN_INADDR32SF1),
717 				    file, ccache->c_name);
718 			}
719 		}
720 	} else
721 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file);
722 
723 	/*
724 	 * If this object is an executable or shared object, then the
725 	 * hardware/software capabilities section should have an accompanying
726 	 * program header.
727 	 */
728 	if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
729 		if (cphdr_off == 0)
730 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2),
731 			    file, ccache->c_name);
732 		else if ((cphdr_off != cshdr->sh_offset) ||
733 		    (cphdr_sz != cshdr->sh_size))
734 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3),
735 			    file, ccache->c_name);
736 	}
737 }
738 
739 /*
740  * Print the interpretor.
741  */
742 static void
743 interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf)
744 {
745 	static Word phdr_types[] = { PT_INTERP };
746 
747 
748 	Word	cnt;
749 	Shdr	*ishdr = NULL;
750 	Cache	*icache;
751 	Off	iphdr_off = 0;
752 	Xword	iphdr_fsz;
753 
754 	/*
755 	 * Determine if an interp header exists.
756 	 */
757 	if (phnum) {
758 		Phdr	*phdr;
759 
760 		phdr = getphdr(phnum, phdr_types,
761 		    sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
762 		if (phdr != NULL) {
763 			iphdr_off = phdr->p_offset;
764 			iphdr_fsz = phdr->p_filesz;
765 		}
766 	}
767 
768 	if (iphdr_off == 0)
769 		return;
770 
771 	/*
772 	 * Determine if an interp section exists.
773 	 */
774 	for (cnt = 1; cnt < shnum; cnt++) {
775 		Cache	*_cache = &cache[cnt];
776 		Shdr	*shdr = _cache->c_shdr;
777 
778 		/*
779 		 * Scan sections to find a section which contains the PT_INTERP
780 		 * string.  The target section can't be in a NOBITS section.
781 		 */
782 		if ((shdr->sh_type == SHT_NOBITS) ||
783 		    (iphdr_off < shdr->sh_offset) ||
784 		    (iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size))
785 			continue;
786 
787 		icache = _cache;
788 		ishdr = shdr;
789 		break;
790 	}
791 
792 	/*
793 	 * Print the interpreter string based on the offset defined in the
794 	 * program header, as this is the offset used by the kernel.
795 	 */
796 	if (ishdr && icache->c_data) {
797 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
798 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name);
799 		dbg_print(0, MSG_ORIG(MSG_FMT_INDENT),
800 		    (char *)icache->c_data->d_buf +
801 		    (iphdr_off - ishdr->sh_offset));
802 	} else
803 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file);
804 
805 	/*
806 	 * If there are any inconsistences between the program header and
807 	 * section information, flag them.
808 	 */
809 	if (ishdr && ((iphdr_off != ishdr->sh_offset) ||
810 	    (iphdr_fsz != ishdr->sh_size))) {
811 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file,
812 		    icache->c_name);
813 	}
814 }
815 
816 /*
817  * Print the syminfo section.
818  */
819 static void
820 syminfo(Cache *cache, Word shnum, const char *file)
821 {
822 	Shdr		*infoshdr;
823 	Syminfo		*info;
824 	Sym		*syms;
825 	Dyn		*dyns;
826 	Word		infonum, cnt, ndx, symnum;
827 	Cache		*infocache = NULL, *symsec, *strsec;
828 
829 	for (cnt = 1; cnt < shnum; cnt++) {
830 		if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) {
831 			infocache = &cache[cnt];
832 			break;
833 		}
834 	}
835 	if (infocache == NULL)
836 		return;
837 
838 	infoshdr = infocache->c_shdr;
839 	if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) {
840 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
841 		    file, infocache->c_name);
842 		return;
843 	}
844 	if (infocache->c_data == NULL)
845 		return;
846 
847 	infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize);
848 	info = (Syminfo *)infocache->c_data->d_buf;
849 
850 	/*
851 	 * Get the data buffer of the associated dynamic section.
852 	 */
853 	if ((infoshdr->sh_info == 0) || (infoshdr->sh_info >= shnum)) {
854 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
855 		    file, infocache->c_name, EC_WORD(infoshdr->sh_info));
856 		return;
857 	}
858 	if (cache[infoshdr->sh_info].c_data == NULL)
859 		return;
860 
861 	dyns = cache[infoshdr->sh_info].c_data->d_buf;
862 	if (dyns == NULL) {
863 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
864 		    file, cache[infoshdr->sh_info].c_name);
865 		return;
866 	}
867 
868 	/*
869 	 * Get the data buffer for the associated symbol table and string table.
870 	 */
871 	if (stringtbl(cache, 1, cnt, shnum, file,
872 	    &symnum, &symsec, &strsec) == 0)
873 		return;
874 
875 	syms = symsec->c_data->d_buf;
876 
877 	/*
878 	 * Loop through the syminfo entries.
879 	 */
880 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
881 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name);
882 	Elf_syminfo_title(0);
883 
884 	for (ndx = 1, info++; ndx < infonum; ndx++, info++) {
885 		Sym 		*sym;
886 		const char	*needed = NULL, *name;
887 
888 		if ((info->si_flags == 0) && (info->si_boundto == 0))
889 			continue;
890 
891 		sym = &syms[ndx];
892 		name = string(infocache, ndx, strsec, file, sym->st_name);
893 
894 		if (info->si_boundto < SYMINFO_BT_LOWRESERVE) {
895 			Dyn	*dyn = &dyns[info->si_boundto];
896 
897 			needed = string(infocache, info->si_boundto,
898 			    strsec, file, dyn->d_un.d_val);
899 		}
900 		Elf_syminfo_entry(0, ndx, info, name, needed);
901 	}
902 }
903 
904 /*
905  * Print version definition section entries.
906  */
907 static void
908 version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache,
909     const char *file)
910 {
911 	Word	cnt;
912 	char	index[MAXNDXSIZE];
913 
914 	Elf_ver_def_title(0);
915 
916 	for (cnt = 1; cnt <= vdf_num; cnt++,
917 	    vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) {
918 		Conv_ver_flags_buf_t	ver_flags_buf;
919 		const char		*name, *dep;
920 		Half			vcnt = vdf->vd_cnt - 1;
921 		Half			ndx = vdf->vd_ndx;
922 		Verdaux	*vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux);
923 
924 		/*
925 		 * Obtain the name and first dependency (if any).
926 		 */
927 		name = string(vcache, cnt, scache, file, vdap->vda_name);
928 		vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
929 		if (vcnt)
930 			dep = string(vcache, cnt, scache, file, vdap->vda_name);
931 		else
932 			dep = MSG_ORIG(MSG_STR_EMPTY);
933 
934 		(void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
935 		    EC_XWORD(ndx));
936 		Elf_ver_line_1(0, index, name, dep,
937 		    conv_ver_flags(vdf->vd_flags, 0, &ver_flags_buf));
938 
939 		/*
940 		 * Print any additional dependencies.
941 		 */
942 		if (vcnt) {
943 			vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
944 			for (vcnt--; vcnt; vcnt--,
945 			    vdap = (Verdaux *)((uintptr_t)vdap +
946 			    vdap->vda_next)) {
947 				dep = string(vcache, cnt, scache, file,
948 				    vdap->vda_name);
949 				Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep);
950 			}
951 		}
952 	}
953 }
954 
955 /*
956  * Print version needed section entries.
957  *
958  * entry:
959  *	vnd - Address of verneed data
960  *	vnd_num - # of Verneed entries
961  *	vcache - Cache of verneed section being processed
962  *	scache - Cache of associated string table section
963  *	file - Name of object being processed.
964  *	versym - Information about versym section
965  *
966  * exit:
967  *	The versions have been printed. If GNU style versioning
968  *	is in effect, versym->max_verndx has been updated to
969  *	contain the largest version index seen.
970  *
971  * note:
972  * 	The versym section of an object that follows the original
973  *	Solaris versioning rules only contains indexes into the verdef
974  *	section. Symbols defined in other objects (UNDEF) are given
975  *	a version of 0, indicating that they are not defined by
976  *	this file, and the Verneed entries do not have associated version
977  *	indexes. For these reasons, we do not display a version index
978  *	for original-style Verneed sections.
979  *
980  *	The GNU versioning extensions alter this: Symbols defined in other
981  *	objects receive a version index in the range above those defined
982  *	by the Verdef section, and the vna_other field of the Vernaux
983  *	structs inside the Verneed section contain the version index for
984  *	that item. We therefore  display the index when showing the
985  *	contents of a GNU style Verneed section. You should not
986  *	necessarily expect these indexes to appear in sorted
987  *	order --- it seems that the GNU ld assigns the versions as
988  *	symbols are encountered during linking, and then the results
989  *	are assembled into the Verneed section afterwards.
990  */
991 static void
992 version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache,
993     const char *file, VERSYM_STATE *versym)
994 {
995 	Word		cnt;
996 	char		index[MAXNDXSIZE];
997 	const char	*index_str;
998 
999 	Elf_ver_need_title(0, versym->gnu_needed);
1000 
1001 	for (cnt = 1; cnt <= vnd_num; cnt++,
1002 	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
1003 		Conv_ver_flags_buf_t	ver_flags_buf;
1004 		const char		*name, *dep;
1005 		Half			vcnt = vnd->vn_cnt;
1006 		Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
1007 
1008 		/*
1009 		 * Obtain the name of the needed file and the version name
1010 		 * within it that we're dependent on.  Note that the count
1011 		 * should be at least one, otherwise this is a pretty bogus
1012 		 * entry.
1013 		 */
1014 		name = string(vcache, cnt, scache, file, vnd->vn_file);
1015 		if (vcnt)
1016 			dep = string(vcache, cnt, scache, file, vnap->vna_name);
1017 		else
1018 			dep = MSG_INTL(MSG_STR_NULL);
1019 
1020 		if (vnap->vna_other == 0) {	/* Traditional form */
1021 			index_str = MSG_ORIG(MSG_STR_EMPTY);
1022 		} else {			/* GNU form */
1023 			index_str = index;
1024 			/* Format the version index value */
1025 			(void) snprintf(index, MAXNDXSIZE,
1026 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other));
1027 			if (vnap->vna_other > versym->max_verndx)
1028 				versym->max_verndx = vnap->vna_other;
1029 		}
1030 		Elf_ver_line_1(0, index_str, name, dep,
1031 		    conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf));
1032 
1033 		/*
1034 		 * Print any additional version dependencies.
1035 		 */
1036 		if (vcnt) {
1037 			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
1038 			for (vcnt--; vcnt; vcnt--,
1039 			    vnap = (Vernaux *)((uintptr_t)vnap +
1040 			    vnap->vna_next)) {
1041 				dep = string(vcache, cnt, scache, file,
1042 				    vnap->vna_name);
1043 				if (vnap->vna_other > 0) {
1044 					/* Format the next index value */
1045 					(void) snprintf(index, MAXNDXSIZE,
1046 					    MSG_ORIG(MSG_FMT_INDEX),
1047 					    EC_XWORD(vnap->vna_other));
1048 					Elf_ver_line_1(0, index,
1049 					    MSG_ORIG(MSG_STR_EMPTY), dep,
1050 					    conv_ver_flags(vnap->vna_flags,
1051 					    0, &ver_flags_buf));
1052 					if (vnap->vna_other >
1053 					    versym->max_verndx)
1054 						versym->max_verndx =
1055 						    vnap->vna_other;
1056 				} else {
1057 					Elf_ver_line_3(0,
1058 					    MSG_ORIG(MSG_STR_EMPTY), dep,
1059 					    conv_ver_flags(vnap->vna_flags,
1060 					    0, &ver_flags_buf));
1061 				}
1062 			}
1063 		}
1064 	}
1065 }
1066 
1067 /*
1068  * Examine the Verneed section for information related to GNU
1069  * style Versym indexing:
1070  *	- A non-zero vna_other field indicates that Versym indexes can
1071  *		reference Verneed records.
1072  *	- If the object uses GNU style Versym indexing, the
1073  *	  maximum index value is needed to detect bad Versym entries.
1074  *
1075  * entry:
1076  *	vnd - Address of verneed data
1077  *	vnd_num - # of Verneed entries
1078  *	versym - Information about versym section
1079  *
1080  * exit:
1081  *	If a non-zero vna_other field is seen, versym->gnu_needed is set.
1082  *
1083  *	versym->max_verndx has been updated to contain the largest
1084  *	version index seen.
1085  */
1086 static void
1087 update_gnu_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym)
1088 {
1089 	Word		cnt;
1090 
1091 	for (cnt = 1; cnt <= vnd_num; cnt++,
1092 	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
1093 		Half	vcnt = vnd->vn_cnt;
1094 		Vernaux	*vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
1095 
1096 		/*
1097 		 * A non-zero value of vna_other indicates that this
1098 		 * object references VERNEED items from the VERSYM
1099 		 * array.
1100 		 */
1101 		if (vnap->vna_other != 0) {
1102 			versym->gnu_needed = 1;
1103 			if (vnap->vna_other > versym->max_verndx)
1104 				versym->max_verndx = vnap->vna_other;
1105 		}
1106 
1107 		/*
1108 		 * Check any additional version dependencies.
1109 		 */
1110 		if (vcnt) {
1111 			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
1112 			for (vcnt--; vcnt; vcnt--,
1113 			    vnap = (Vernaux *)((uintptr_t)vnap +
1114 			    vnap->vna_next)) {
1115 				if (vnap->vna_other == 0)
1116 					continue;
1117 
1118 				versym->gnu_needed = 1;
1119 				if (vnap->vna_other > versym->max_verndx)
1120 					versym->max_verndx = vnap->vna_other;
1121 			}
1122 		}
1123 	}
1124 }
1125 
1126 /*
1127  * Display version section information if the flags require it.
1128  * Return version information needed by other output.
1129  *
1130  * entry:
1131  *	cache - Cache of all section headers
1132  *	shnum - # of sections in cache
1133  *	file - Name of file
1134  *	flags - Command line option flags
1135  *	versym - VERSYM_STATE block to be filled in.
1136  */
1137 static void
1138 versions(Cache *cache, Word shnum, const char *file, uint_t flags,
1139     VERSYM_STATE *versym)
1140 {
1141 	GElf_Word	cnt;
1142 	Cache		*verdef_cache = NULL, *verneed_cache = NULL;
1143 
1144 
1145 	/* Gather information about the version sections */
1146 	bzero(versym, sizeof (*versym));
1147 	versym->max_verndx = 1;
1148 	for (cnt = 1; cnt < shnum; cnt++) {
1149 		Cache		*_cache = &cache[cnt];
1150 		Shdr		*shdr = _cache->c_shdr;
1151 		Dyn		*dyn;
1152 		ulong_t		numdyn;
1153 
1154 		switch (shdr->sh_type) {
1155 		case SHT_DYNAMIC:
1156 			/*
1157 			 * The GNU ld puts a DT_VERSYM entry in the dynamic
1158 			 * section so that the runtime linker can use it to
1159 			 * implement their versioning rules. They allow multiple
1160 			 * incompatible functions with the same name to exist
1161 			 * in different versions. The Solaris ld does not
1162 			 * support this mechanism, and as such, does not
1163 			 * produce DT_VERSYM. We use this fact to determine
1164 			 * which ld produced this object, and how to interpret
1165 			 * the version values.
1166 			 */
1167 			if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0) ||
1168 			    (_cache->c_data == NULL))
1169 				continue;
1170 			numdyn = shdr->sh_size / shdr->sh_entsize;
1171 			dyn = (Dyn *)_cache->c_data->d_buf;
1172 			for (; numdyn-- > 0; dyn++)
1173 				if (dyn->d_tag == DT_VERSYM) {
1174 					versym->gnu_full =
1175 					    versym->gnu_needed = 1;
1176 					break;
1177 				}
1178 			break;
1179 
1180 		case SHT_SUNW_versym:
1181 			/* Record data address for later symbol processing */
1182 			if (_cache->c_data != NULL) {
1183 				versym->cache = _cache;
1184 				versym->data = _cache->c_data->d_buf;
1185 				continue;
1186 			}
1187 			break;
1188 
1189 		case SHT_SUNW_verdef:
1190 		case SHT_SUNW_verneed:
1191 			/*
1192 			 * Ensure the data is non-NULL and the number
1193 			 * of items is non-zero. Otherwise, we don't
1194 			 * understand the section, and will not use it.
1195 			 */
1196 			if ((_cache->c_data == NULL) ||
1197 			    (_cache->c_data->d_buf == NULL)) {
1198 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1199 				    file, _cache->c_name);
1200 				continue;
1201 			}
1202 			if (shdr->sh_info == 0) {
1203 				(void) fprintf(stderr,
1204 				    MSG_INTL(MSG_ERR_BADSHINFO),
1205 				    file, _cache->c_name,
1206 				    EC_WORD(shdr->sh_info));
1207 				continue;
1208 			}
1209 
1210 			/* Make sure the string table index is in range */
1211 			if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1212 				(void) fprintf(stderr,
1213 				    MSG_INTL(MSG_ERR_BADSHLINK), file,
1214 				    _cache->c_name, EC_WORD(shdr->sh_link));
1215 				continue;
1216 			}
1217 
1218 			/*
1219 			 * The section is usable. Save the cache entry.
1220 			 */
1221 			if (shdr->sh_type == SHT_SUNW_verdef) {
1222 				verdef_cache = _cache;
1223 				/*
1224 				 * Under Solaris rules, if there is a verdef
1225 				 * section, the max versym index is number
1226 				 * of version definitions it supplies.
1227 				 */
1228 				versym->max_verndx = shdr->sh_info;
1229 			} else {
1230 				verneed_cache = _cache;
1231 			}
1232 			break;
1233 		}
1234 	}
1235 
1236 	/*
1237 	 * If there is a Verneed section, examine it for information
1238 	 * related to GNU style versioning.
1239 	 */
1240 	if (verneed_cache != NULL)
1241 		update_gnu_verndx((Verneed *)verneed_cache->c_data->d_buf,
1242 		    verneed_cache->c_shdr->sh_info, versym);
1243 
1244 	/*
1245 	 * Now that all the information is available, display the
1246 	 * Verdef and Verneed section contents, if requested.
1247 	 */
1248 	if ((flags & FLG_SHOW_VERSIONS) == 0)
1249 		return;
1250 	if (verdef_cache != NULL) {
1251 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1252 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF),
1253 		    verdef_cache->c_name);
1254 		version_def((Verdef *)verdef_cache->c_data->d_buf,
1255 		    verdef_cache->c_shdr->sh_info, verdef_cache,
1256 		    &cache[verdef_cache->c_shdr->sh_link], file);
1257 	}
1258 	if (verneed_cache != NULL) {
1259 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1260 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED),
1261 		    verneed_cache->c_name);
1262 		/*
1263 		 * If GNU versioning applies to this object, version_need()
1264 		 * will update versym->max_verndx, and it is not
1265 		 * necessary to call update_gnu_verndx().
1266 		 */
1267 		version_need((Verneed *)verneed_cache->c_data->d_buf,
1268 		    verneed_cache->c_shdr->sh_info, verneed_cache,
1269 		    &cache[verneed_cache->c_shdr->sh_link], file, versym);
1270 	}
1271 }
1272 
1273 /*
1274  * Initialize a symbol table state structure
1275  *
1276  * entry:
1277  *	state - State structure to be initialized
1278  *	cache - Cache of all section headers
1279  *	shnum - # of sections in cache
1280  *	secndx - Index of symbol table section
1281  *	ehdr - ELF header for file
1282  *	versym - Information about versym section
1283  *	file - Name of file
1284  *	flags - Command line option flags
1285  */
1286 static int
1287 init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx,
1288     Ehdr *ehdr, VERSYM_STATE *versym, const char *file, uint_t flags)
1289 {
1290 	Shdr *shdr;
1291 
1292 	state->file = file;
1293 	state->ehdr = ehdr;
1294 	state->cache = cache;
1295 	state->shnum = shnum;
1296 	state->seccache = &cache[secndx];
1297 	state->secndx = secndx;
1298 	state->secname = state->seccache->c_name;
1299 	state->flags = flags;
1300 	state->shxndx.checked = 0;
1301 	state->shxndx.data = NULL;
1302 	state->shxndx.n = 0;
1303 
1304 	shdr = state->seccache->c_shdr;
1305 
1306 	/*
1307 	 * Check the symbol data and per-item size.
1308 	 */
1309 	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
1310 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1311 		    file, state->secname);
1312 		return (0);
1313 	}
1314 	if (state->seccache->c_data == NULL)
1315 		return (0);
1316 
1317 	/* LINTED */
1318 	state->symn = (Word)(shdr->sh_size / shdr->sh_entsize);
1319 	state->sym = (Sym *)state->seccache->c_data->d_buf;
1320 
1321 	/*
1322 	 * Check associated string table section.
1323 	 */
1324 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1325 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1326 		    file, state->secname, EC_WORD(shdr->sh_link));
1327 		return (0);
1328 	}
1329 
1330 	/*
1331 	 * Determine if there is a associated Versym section
1332 	 * with this Symbol Table.
1333 	 */
1334 	if (versym->cache &&
1335 	    (versym->cache->c_shdr->sh_link == state->secndx))
1336 		state->versym = versym;
1337 	else
1338 		state->versym = NULL;
1339 
1340 
1341 	return (1);
1342 }
1343 
1344 /*
1345  * Determine the extended section index used for symbol tables entries.
1346  */
1347 static void
1348 symbols_getxindex(SYMTBL_STATE *state)
1349 {
1350 	uint_t	symn;
1351 	Word	symcnt;
1352 
1353 	state->shxndx.checked = 1;   /* Note that we've been called */
1354 	for (symcnt = 1; symcnt < state->shnum; symcnt++) {
1355 		Cache	*_cache = &state->cache[symcnt];
1356 		Shdr	*shdr = _cache->c_shdr;
1357 
1358 		if ((shdr->sh_type != SHT_SYMTAB_SHNDX) ||
1359 		    (shdr->sh_link != state->secndx))
1360 			continue;
1361 
1362 		if ((shdr->sh_entsize) &&
1363 		    /* LINTED */
1364 		    ((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0))
1365 			continue;
1366 
1367 		if (_cache->c_data == NULL)
1368 			continue;
1369 
1370 		state->shxndx.data = _cache->c_data->d_buf;
1371 		state->shxndx.n = symn;
1372 		return;
1373 	}
1374 }
1375 
1376 /*
1377  * Produce a line of output for the given symbol
1378  *
1379  * entry:
1380  *	state - Symbol table state
1381  *	symndx - Index of symbol within the table
1382  *	info - Value of st_info (indicates local/global range)
1383  *	symndx_disp - Index to display. This may not be the same
1384  *		as symndx if the display is relative to the logical
1385  *		combination of the SUNW_ldynsym/dynsym tables.
1386  *	sym - Symbol to display
1387  */
1388 static void
1389 output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx,
1390     Sym *sym)
1391 {
1392 	/*
1393 	 * Symbol types for which we check that the specified
1394 	 * address/size land inside the target section.
1395 	 */
1396 	static const int addr_symtype[] = {
1397 		0,			/* STT_NOTYPE */
1398 		1,			/* STT_OBJECT */
1399 		1,			/* STT_FUNC */
1400 		0,			/* STT_SECTION */
1401 		0,			/* STT_FILE */
1402 		1,			/* STT_COMMON */
1403 		0,			/* STT_TLS */
1404 		0,			/* STT_IFUNC */
1405 		0,			/* 8 */
1406 		0,			/* 9 */
1407 		0,			/* 10 */
1408 		0,			/* 11 */
1409 		0,			/* 12 */
1410 		0,			/* STT_SPARC_REGISTER */
1411 		0,			/* 14 */
1412 		0,			/* 15 */
1413 	};
1414 #if STT_NUM != (STT_IFUNC + 1)
1415 #error "STT_NUM has grown. Update addr_symtype[]"
1416 #endif
1417 
1418 	char		index[MAXNDXSIZE];
1419 	const char	*symname, *sec;
1420 	Versym		verndx;
1421 	int		gnuver;
1422 	uchar_t		type;
1423 	Shdr		*tshdr;
1424 	Word		shndx;
1425 	Conv_inv_buf_t	inv_buf;
1426 
1427 	/* Ensure symbol index is in range */
1428 	if (symndx >= state->symn) {
1429 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORTNDX),
1430 		    state->file, state->secname, EC_WORD(symndx));
1431 		return;
1432 	}
1433 
1434 	/*
1435 	 * If we are using extended symbol indexes, find the
1436 	 * corresponding SHN_SYMTAB_SHNDX table.
1437 	 */
1438 	if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0))
1439 		symbols_getxindex(state);
1440 
1441 	/* LINTED */
1442 	symname = string(state->seccache, symndx,
1443 	    &state->cache[state->seccache->c_shdr->sh_link], state->file,
1444 	    sym->st_name);
1445 
1446 	tshdr = NULL;
1447 	sec = NULL;
1448 
1449 	if (state->ehdr->e_type == ET_CORE) {
1450 		sec = (char *)MSG_INTL(MSG_STR_UNKNOWN);
1451 	} else if (state->flags & FLG_CTL_FAKESHDR) {
1452 		/*
1453 		 * If we are using fake section headers derived from
1454 		 * the program headers, then the section indexes
1455 		 * in the symbols do not correspond to these headers.
1456 		 * The section names are not available, so all we can
1457 		 * do is to display them in numeric form.
1458 		 */
1459 		sec = conv_sym_shndx(sym->st_shndx, &inv_buf);
1460 	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1461 	    (sym->st_shndx < state->shnum)) {
1462 		shndx = sym->st_shndx;
1463 		tshdr = state->cache[shndx].c_shdr;
1464 		sec = state->cache[shndx].c_name;
1465 	} else if (sym->st_shndx == SHN_XINDEX) {
1466 		if (state->shxndx.data) {
1467 			Word	_shxndx;
1468 
1469 			if (symndx > state->shxndx.n) {
1470 				(void) fprintf(stderr,
1471 				    MSG_INTL(MSG_ERR_BADSYMXINDEX1),
1472 				    state->file, state->secname,
1473 				    EC_WORD(symndx));
1474 			} else if ((_shxndx =
1475 			    state->shxndx.data[symndx]) > state->shnum) {
1476 				(void) fprintf(stderr,
1477 				    MSG_INTL(MSG_ERR_BADSYMXINDEX2),
1478 				    state->file, state->secname,
1479 				    EC_WORD(symndx), EC_WORD(_shxndx));
1480 			} else {
1481 				shndx = _shxndx;
1482 				tshdr = state->cache[shndx].c_shdr;
1483 				sec = state->cache[shndx].c_name;
1484 			}
1485 		} else {
1486 			(void) fprintf(stderr,
1487 			    MSG_INTL(MSG_ERR_BADSYMXINDEX3),
1488 			    state->file, state->secname, EC_WORD(symndx));
1489 		}
1490 	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1491 	    (sym->st_shndx >= state->shnum)) {
1492 		(void) fprintf(stderr,
1493 		    MSG_INTL(MSG_ERR_BADSYM5), state->file,
1494 		    state->secname, EC_WORD(symndx),
1495 		    demangle(symname, state->flags), sym->st_shndx);
1496 	}
1497 
1498 	/*
1499 	 * If versioning is available display the
1500 	 * version index. If not, then use 0.
1501 	 */
1502 	if (state->versym) {
1503 		Versym test_verndx;
1504 
1505 		verndx = test_verndx = state->versym->data[symndx];
1506 		gnuver = state->versym->gnu_full;
1507 
1508 		/*
1509 		 * Check to see if this is a defined symbol with a
1510 		 * version index that is outside the valid range for
1511 		 * the file. The interpretation of this depends on
1512 		 * the style of versioning used by the object.
1513 		 *
1514 		 * Versions >= VER_NDX_LORESERVE have special meanings,
1515 		 * and are exempt from this checking.
1516 		 *
1517 		 * GNU style version indexes use the top bit of the
1518 		 * 16-bit index value (0x8000) as the "hidden bit".
1519 		 * We must mask off this bit in order to compare
1520 		 * the version against the maximum value.
1521 		 */
1522 		if (gnuver)
1523 			test_verndx &= ~0x8000;
1524 
1525 		if ((test_verndx > state->versym->max_verndx) &&
1526 		    (verndx < VER_NDX_LORESERVE))
1527 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER),
1528 			    state->file, state->secname, EC_WORD(symndx),
1529 			    EC_HALF(test_verndx), state->versym->max_verndx);
1530 	} else {
1531 		verndx = 0;
1532 		gnuver = 0;
1533 	}
1534 
1535 	/*
1536 	 * Error checking for TLS.
1537 	 */
1538 	type = ELF_ST_TYPE(sym->st_info);
1539 	if (type == STT_TLS) {
1540 		if (tshdr &&
1541 		    (sym->st_shndx != SHN_UNDEF) &&
1542 		    ((tshdr->sh_flags & SHF_TLS) == 0)) {
1543 			(void) fprintf(stderr,
1544 			    MSG_INTL(MSG_ERR_BADSYM3), state->file,
1545 			    state->secname, EC_WORD(symndx),
1546 			    demangle(symname, state->flags));
1547 		}
1548 	} else if ((type != STT_SECTION) && sym->st_size &&
1549 	    tshdr && (tshdr->sh_flags & SHF_TLS)) {
1550 		(void) fprintf(stderr,
1551 		    MSG_INTL(MSG_ERR_BADSYM4), state->file,
1552 		    state->secname, EC_WORD(symndx),
1553 		    demangle(symname, state->flags));
1554 	}
1555 
1556 	/*
1557 	 * If a symbol with non-zero size has a type that
1558 	 * specifies an address, then make sure the location
1559 	 * it references is actually contained within the
1560 	 * section.  UNDEF symbols don't count in this case,
1561 	 * so we ignore them.
1562 	 *
1563 	 * The meaning of the st_value field in a symbol
1564 	 * depends on the type of object. For a relocatable
1565 	 * object, it is the offset within the section.
1566 	 * For sharable objects, it is the offset relative to
1567 	 * the base of the object, and for other types, it is
1568 	 * the virtual address. To get an offset within the
1569 	 * section for non-ET_REL files, we subtract the
1570 	 * base address of the section.
1571 	 */
1572 	if (addr_symtype[type] && (sym->st_size > 0) &&
1573 	    (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) ||
1574 	    (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) {
1575 		Word v = sym->st_value;
1576 			if (state->ehdr->e_type != ET_REL)
1577 				v -= tshdr->sh_addr;
1578 		if (((v + sym->st_size) > tshdr->sh_size)) {
1579 			(void) fprintf(stderr,
1580 			    MSG_INTL(MSG_ERR_BADSYM6), state->file,
1581 			    state->secname, EC_WORD(symndx),
1582 			    demangle(symname, state->flags),
1583 			    EC_WORD(shndx), EC_XWORD(tshdr->sh_size),
1584 			    EC_XWORD(sym->st_value), EC_XWORD(sym->st_size));
1585 		}
1586 	}
1587 
1588 	/*
1589 	 * A typical symbol table uses the sh_info field to indicate one greater
1590 	 * than the symbol table index of the last local symbol, STB_LOCAL.
1591 	 * Therefore, symbol indexes less than sh_info should have local
1592 	 * binding.  Symbol indexes greater than, or equal to sh_info, should
1593 	 * have global binding.  Note, we exclude UNDEF/NOTY symbols with zero
1594 	 * value and size, as these symbols may be the result of an mcs(1)
1595 	 * section deletion.
1596 	 */
1597 	if (info) {
1598 		uchar_t	bind = ELF_ST_BIND(sym->st_info);
1599 
1600 		if ((symndx < info) && (bind != STB_LOCAL)) {
1601 			(void) fprintf(stderr,
1602 			    MSG_INTL(MSG_ERR_BADSYM7), state->file,
1603 			    state->secname, EC_WORD(symndx),
1604 			    demangle(symname, state->flags), EC_XWORD(info));
1605 
1606 		} else if ((symndx >= info) && (bind == STB_LOCAL) &&
1607 		    ((sym->st_shndx != SHN_UNDEF) ||
1608 		    (ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) ||
1609 		    (sym->st_size != 0) || (sym->st_value != 0))) {
1610 			(void) fprintf(stderr,
1611 			    MSG_INTL(MSG_ERR_BADSYM8), state->file,
1612 			    state->secname, EC_WORD(symndx),
1613 			    demangle(symname, state->flags), EC_XWORD(info));
1614 		}
1615 	}
1616 
1617 	(void) snprintf(index, MAXNDXSIZE,
1618 	    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx));
1619 	Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index,
1620 	    state->ehdr->e_machine, sym, verndx, gnuver, sec, symname);
1621 }
1622 
1623 /*
1624  * Search for and process any symbol tables.
1625  */
1626 void
1627 symbols(Cache *cache, Word shnum, Ehdr *ehdr, VERSYM_STATE *versym,
1628     const char *file, uint_t flags)
1629 {
1630 	SYMTBL_STATE state;
1631 	Cache *_cache;
1632 	Word secndx;
1633 
1634 	for (secndx = 1; secndx < shnum; secndx++) {
1635 		Word		symcnt;
1636 		Shdr		*shdr;
1637 
1638 		_cache = &cache[secndx];
1639 		shdr = _cache->c_shdr;
1640 
1641 		if ((shdr->sh_type != SHT_SYMTAB) &&
1642 		    (shdr->sh_type != SHT_DYNSYM) &&
1643 		    (shdr->sh_type != SHT_SUNW_LDYNSYM))
1644 			continue;
1645 		if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type))
1646 			continue;
1647 
1648 		if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr,
1649 		    versym, file, flags))
1650 			continue;
1651 		/*
1652 		 * Loop through the symbol tables entries.
1653 		 */
1654 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1655 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname);
1656 		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1657 
1658 		for (symcnt = 0; symcnt < state.symn; symcnt++)
1659 			output_symbol(&state, symcnt, shdr->sh_info, symcnt,
1660 			    state.sym + symcnt);
1661 	}
1662 }
1663 
1664 /*
1665  * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections.
1666  * These sections are always associated with the .SUNW_ldynsym./.dynsym pair.
1667  */
1668 static void
1669 sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, VERSYM_STATE *versym,
1670     const char *file, uint_t flags)
1671 {
1672 	SYMTBL_STATE	ldynsym_state,	dynsym_state;
1673 	Cache		*sortcache,	*symcache;
1674 	Shdr		*sortshdr,	*symshdr;
1675 	Word		sortsecndx,	symsecndx;
1676 	Word		ldynsym_cnt;
1677 	Word		*ndx;
1678 	Word		ndxn;
1679 	int		output_cnt = 0;
1680 	Conv_inv_buf_t	inv_buf;
1681 
1682 	for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) {
1683 
1684 		sortcache = &cache[sortsecndx];
1685 		sortshdr = sortcache->c_shdr;
1686 
1687 		if ((sortshdr->sh_type != SHT_SUNW_symsort) &&
1688 		    (sortshdr->sh_type != SHT_SUNW_tlssort))
1689 			continue;
1690 		if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx,
1691 		    sortshdr->sh_type))
1692 			continue;
1693 
1694 		/*
1695 		 * If the section references a SUNW_ldynsym, then we
1696 		 * expect to see the associated .dynsym immediately
1697 		 * following. If it references a .dynsym, there is no
1698 		 * SUNW_ldynsym. If it is any other type, then we don't
1699 		 * know what to do with it.
1700 		 */
1701 		if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) {
1702 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1703 			    file, sortcache->c_name,
1704 			    EC_WORD(sortshdr->sh_link));
1705 			continue;
1706 		}
1707 		symcache = &cache[sortshdr->sh_link];
1708 		symshdr = symcache->c_shdr;
1709 		symsecndx = sortshdr->sh_link;
1710 		ldynsym_cnt = 0;
1711 		switch (symshdr->sh_type) {
1712 		case SHT_SUNW_LDYNSYM:
1713 			if (!init_symtbl_state(&ldynsym_state, cache, shnum,
1714 			    symsecndx, ehdr, versym, file, flags))
1715 				continue;
1716 			ldynsym_cnt = ldynsym_state.symn;
1717 			/*
1718 			 * We know that the dynsym follows immediately
1719 			 * after the SUNW_ldynsym, and so, should be at
1720 			 * (sortshdr->sh_link + 1). However, elfdump is a
1721 			 * diagnostic tool, so we do the full paranoid
1722 			 * search instead.
1723 			 */
1724 			for (symsecndx = 1; symsecndx < shnum; symsecndx++) {
1725 				symcache = &cache[symsecndx];
1726 				symshdr = symcache->c_shdr;
1727 				if (symshdr->sh_type == SHT_DYNSYM)
1728 					break;
1729 			}
1730 			if (symsecndx >= shnum) {	/* Dynsym not found! */
1731 				(void) fprintf(stderr,
1732 				    MSG_INTL(MSG_ERR_NODYNSYM),
1733 				    file, sortcache->c_name);
1734 				continue;
1735 			}
1736 			/* Fallthrough to process associated dynsym */
1737 			/* FALLTHROUGH */
1738 		case SHT_DYNSYM:
1739 			if (!init_symtbl_state(&dynsym_state, cache, shnum,
1740 			    symsecndx, ehdr, versym, file, flags))
1741 				continue;
1742 			break;
1743 		default:
1744 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC),
1745 			    file, sortcache->c_name, conv_sec_type(
1746 			    ehdr->e_machine, symshdr->sh_type, 0, &inv_buf));
1747 			continue;
1748 		}
1749 
1750 		/*
1751 		 * Output header
1752 		 */
1753 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1754 		if (ldynsym_cnt > 0) {
1755 			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2),
1756 			    sortcache->c_name, ldynsym_state.secname,
1757 			    dynsym_state.secname);
1758 			/*
1759 			 * The data for .SUNW_ldynsym and dynsym sections
1760 			 * is supposed to be adjacent with SUNW_ldynsym coming
1761 			 * first. Check, and issue a warning if it isn't so.
1762 			 */
1763 			if (((ldynsym_state.sym + ldynsym_state.symn)
1764 			    != dynsym_state.sym) &&
1765 			    ((flags & FLG_CTL_FAKESHDR) == 0))
1766 				(void) fprintf(stderr,
1767 				    MSG_INTL(MSG_ERR_LDYNNOTADJ), file,
1768 				    ldynsym_state.secname,
1769 				    dynsym_state.secname);
1770 		} else {
1771 			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1),
1772 			    sortcache->c_name, dynsym_state.secname);
1773 		}
1774 		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1775 
1776 		/* If not first one, insert a line of whitespace */
1777 		if (output_cnt++ > 0)
1778 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1779 
1780 		/*
1781 		 * SUNW_dynsymsort and SUNW_dyntlssort are arrays of
1782 		 * symbol indices. Iterate over the array entries,
1783 		 * dispaying the referenced symbols.
1784 		 */
1785 		ndxn = sortshdr->sh_size / sortshdr->sh_entsize;
1786 		ndx = (Word *)sortcache->c_data->d_buf;
1787 		for (; ndxn-- > 0; ndx++) {
1788 			if (*ndx >= ldynsym_cnt) {
1789 				Word sec_ndx = *ndx - ldynsym_cnt;
1790 
1791 				output_symbol(&dynsym_state, sec_ndx, 0,
1792 				    *ndx, dynsym_state.sym + sec_ndx);
1793 			} else {
1794 				output_symbol(&ldynsym_state, *ndx, 0,
1795 				    *ndx, ldynsym_state.sym + *ndx);
1796 			}
1797 		}
1798 	}
1799 }
1800 
1801 /*
1802  * Search for and process any relocation sections.
1803  */
1804 static void
1805 reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
1806 {
1807 	Word	cnt;
1808 
1809 	for (cnt = 1; cnt < shnum; cnt++) {
1810 		Word		type, symnum;
1811 		Xword		relndx, relnum, relsize;
1812 		void		*rels;
1813 		Sym		*syms;
1814 		Cache		*symsec, *strsec;
1815 		Cache		*_cache = &cache[cnt];
1816 		Shdr		*shdr = _cache->c_shdr;
1817 		char		*relname = _cache->c_name;
1818 		Conv_inv_buf_t	inv_buf;
1819 
1820 		if (((type = shdr->sh_type) != SHT_RELA) &&
1821 		    (type != SHT_REL))
1822 			continue;
1823 		if (!match(MATCH_F_ALL, relname, cnt, type))
1824 			continue;
1825 
1826 		/*
1827 		 * Decide entry size.
1828 		 */
1829 		if (((relsize = shdr->sh_entsize) == 0) ||
1830 		    (relsize > shdr->sh_size)) {
1831 			if (type == SHT_RELA)
1832 				relsize = sizeof (Rela);
1833 			else
1834 				relsize = sizeof (Rel);
1835 		}
1836 
1837 		/*
1838 		 * Determine the number of relocations available.
1839 		 */
1840 		if (shdr->sh_size == 0) {
1841 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1842 			    file, relname);
1843 			continue;
1844 		}
1845 		if (_cache->c_data == NULL)
1846 			continue;
1847 
1848 		rels = _cache->c_data->d_buf;
1849 		relnum = shdr->sh_size / relsize;
1850 
1851 		/*
1852 		 * Get the data buffer for the associated symbol table and
1853 		 * string table.
1854 		 */
1855 		if (stringtbl(cache, 1, cnt, shnum, file,
1856 		    &symnum, &symsec, &strsec) == 0)
1857 			continue;
1858 
1859 		syms = symsec->c_data->d_buf;
1860 
1861 		/*
1862 		 * Loop through the relocation entries.
1863 		 */
1864 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1865 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name);
1866 		Elf_reloc_title(0, ELF_DBG_ELFDUMP, type);
1867 
1868 		for (relndx = 0; relndx < relnum; relndx++,
1869 		    rels = (void *)((char *)rels + relsize)) {
1870 			Half		mach = ehdr->e_machine;
1871 			char		section[BUFSIZ];
1872 			const char	*symname;
1873 			Word		symndx, reltype;
1874 			Rela		*rela;
1875 			Rel		*rel;
1876 
1877 			/*
1878 			 * Unravel the relocation and determine the symbol with
1879 			 * which this relocation is associated.
1880 			 */
1881 			if (type == SHT_RELA) {
1882 				rela = (Rela *)rels;
1883 				symndx = ELF_R_SYM(rela->r_info);
1884 				reltype = ELF_R_TYPE(rela->r_info, mach);
1885 			} else {
1886 				rel = (Rel *)rels;
1887 				symndx = ELF_R_SYM(rel->r_info);
1888 				reltype = ELF_R_TYPE(rel->r_info, mach);
1889 			}
1890 
1891 			symname = relsymname(cache, _cache, strsec, symndx,
1892 			    symnum, relndx, syms, section, BUFSIZ, file);
1893 
1894 			/*
1895 			 * A zero symbol index is only valid for a few
1896 			 * relocations.
1897 			 */
1898 			if (symndx == 0) {
1899 				int	badrel = 0;
1900 
1901 				if ((mach == EM_SPARC) ||
1902 				    (mach == EM_SPARC32PLUS) ||
1903 				    (mach == EM_SPARCV9)) {
1904 					if ((reltype != R_SPARC_NONE) &&
1905 					    (reltype != R_SPARC_REGISTER) &&
1906 					    (reltype != R_SPARC_RELATIVE))
1907 						badrel++;
1908 				} else if (mach == EM_386) {
1909 					if ((reltype != R_386_NONE) &&
1910 					    (reltype != R_386_RELATIVE))
1911 						badrel++;
1912 				} else if (mach == EM_AMD64) {
1913 					if ((reltype != R_AMD64_NONE) &&
1914 					    (reltype != R_AMD64_RELATIVE))
1915 						badrel++;
1916 				}
1917 
1918 				if (badrel) {
1919 					(void) fprintf(stderr,
1920 					    MSG_INTL(MSG_ERR_BADREL1), file,
1921 					    conv_reloc_type(mach, reltype,
1922 					    0, &inv_buf));
1923 				}
1924 			}
1925 
1926 			Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP,
1927 			    MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type,
1928 			    rels, relname, symname, 0);
1929 		}
1930 	}
1931 }
1932 
1933 
1934 /*
1935  * This value controls which test dyn_test() performs.
1936  */
1937 typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t;
1938 
1939 /*
1940  * Used by dynamic() to compare the value of a dynamic element against
1941  * the starting address of the section it references.
1942  *
1943  * entry:
1944  *	test_type - Specify which dyn item is being tested.
1945  *	sh_type - SHT_* type value for required section.
1946  *	sec_cache - Cache entry for section, or NULL if the object lacks
1947  *		a section of this type.
1948  *	dyn - Dyn entry to be tested
1949  *	dynsec_cnt - # of dynamic section being examined. The first
1950  *		dynamic section is 1, the next is 2, and so on...
1951  *	ehdr - ELF header for file
1952  *	file - Name of file
1953  */
1954 static void
1955 dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn,
1956     Word dynsec_cnt, Ehdr *ehdr, const char *file)
1957 {
1958 	Conv_inv_buf_t	buf1, buf2;
1959 
1960 	/*
1961 	 * These tests are based around the implicit assumption that
1962 	 * there is only one dynamic section in an object, and also only
1963 	 * one of the sections it references. We have therefore gathered
1964 	 * all of the necessary information to test this in a single pass
1965 	 * over the section headers, which is very efficient. We are not
1966 	 * aware of any case where more than one dynamic section would
1967 	 * be meaningful in an ELF object, so this is a reasonable solution.
1968 	 *
1969 	 * To test multiple dynamic sections correctly would be more
1970 	 * expensive in code and time. We would have to build a data structure
1971 	 * containing all the dynamic elements. Then, we would use the address
1972 	 * to locate the section it references and ensure the section is of
1973 	 * the right type and that the address in the dynamic element is
1974 	 * to the start of the section. Then, we could check the size and
1975 	 * entsize values against those same sections. This is O(n^2), and
1976 	 * also complicated.
1977 	 *
1978 	 * In the highly unlikely case that there is more than one dynamic
1979 	 * section, we only test the first one, and simply allow the values
1980 	 * of the subsequent one to be displayed unchallenged.
1981 	 */
1982 	if (dynsec_cnt != 1)
1983 		return;
1984 
1985 	/*
1986 	 * A DT_ item that references a section address should always find
1987 	 * the section in the file.
1988 	 */
1989 	if (sec_cache == NULL) {
1990 		const char *name;
1991 
1992 		/*
1993 		 * Supply section names instead of section types for
1994 		 * things that reference progbits so that the error
1995 		 * message will make more sense.
1996 		 */
1997 		switch (dyn->d_tag) {
1998 		case DT_INIT:
1999 			name = MSG_ORIG(MSG_ELF_INIT);
2000 			break;
2001 		case DT_FINI:
2002 			name = MSG_ORIG(MSG_ELF_FINI);
2003 			break;
2004 		default:
2005 			name = conv_sec_type(ehdr->e_machine, sh_type,
2006 			    0, &buf1);
2007 			break;
2008 		}
2009 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file,
2010 		    name, conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf2));
2011 		return;
2012 	}
2013 
2014 
2015 	switch (test_type) {
2016 	case DYN_TEST_ADDR:
2017 		/* The section address should match the DT_ item value */
2018 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr)
2019 			(void) fprintf(stderr,
2020 			    MSG_INTL(MSG_ERR_DYNBADADDR), file,
2021 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf1),
2022 			    EC_ADDR(dyn->d_un.d_val), sec_cache->c_ndx,
2023 			    sec_cache->c_name,
2024 			    EC_ADDR(sec_cache->c_shdr->sh_addr));
2025 		break;
2026 
2027 	case DYN_TEST_SIZE:
2028 		/* The section size should match the DT_ item value */
2029 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size)
2030 			(void) fprintf(stderr,
2031 			    MSG_INTL(MSG_ERR_DYNBADSIZE), file,
2032 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf1),
2033 			    EC_XWORD(dyn->d_un.d_val),
2034 			    sec_cache->c_ndx, sec_cache->c_name,
2035 			    EC_XWORD(sec_cache->c_shdr->sh_size));
2036 		break;
2037 
2038 	case DYN_TEST_ENTSIZE:
2039 		/* The sh_entsize value should match the DT_ item value */
2040 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize)
2041 			(void) fprintf(stderr,
2042 			    MSG_INTL(MSG_ERR_DYNBADENTSIZE), file,
2043 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf1),
2044 			    EC_XWORD(dyn->d_un.d_val),
2045 			    sec_cache->c_ndx, sec_cache->c_name,
2046 			    EC_XWORD(sec_cache->c_shdr->sh_entsize));
2047 		break;
2048 	}
2049 }
2050 
2051 
2052 /*
2053  * There are some DT_ entries that have corresponding symbols
2054  * (e.g. DT_INIT and _init). It is expected that these items will
2055  * both have the same value if both are present. This routine
2056  * examines the well known symbol tables for such symbols and
2057  * issues warnings for any that don't match.
2058  *
2059  * entry:
2060  *	dyn - Dyn entry to be tested
2061  *	symname - Name of symbol that corresponds to dyn
2062  *	symtab_cache, dynsym_cache, ldynsym_cache - Symbol tables to check
2063  *	cache - Cache of all section headers
2064  *	shnum - # of sections in cache
2065  *	ehdr - ELF header for file
2066  *	file - Name of file
2067  */
2068 static void
2069 dyn_symtest(Dyn *dyn, const char *symname, Cache *symtab_cache,
2070     Cache *dynsym_cache, Cache *ldynsym_cache, Cache *cache,
2071     Word shnum, Ehdr *ehdr, const char *file)
2072 {
2073 	Conv_inv_buf_t	buf;
2074 	int		i;
2075 	Sym		*sym;
2076 	Cache		*_cache;
2077 
2078 	for (i = 0; i < 3; i++) {
2079 		switch (i) {
2080 		case 0:
2081 			_cache = symtab_cache;
2082 			break;
2083 		case 1:
2084 			_cache = dynsym_cache;
2085 			break;
2086 		case 2:
2087 			_cache = ldynsym_cache;
2088 			break;
2089 		}
2090 
2091 		if ((_cache != NULL) &&
2092 		    symlookup(symname, cache, shnum, &sym, _cache, file) &&
2093 		    (sym->st_value != dyn->d_un.d_val))
2094 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNSYMVAL),
2095 			    file, _cache->c_name,
2096 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf),
2097 			    symname, EC_ADDR(sym->st_value));
2098 	}
2099 }
2100 
2101 
2102 /*
2103  * Search for and process a .dynamic section.
2104  */
2105 static void
2106 dynamic(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
2107 {
2108 	struct {
2109 		Cache	*symtab;
2110 		Cache	*dynstr;
2111 		Cache	*dynsym;
2112 		Cache	*hash;
2113 		Cache	*fini;
2114 		Cache	*fini_array;
2115 		Cache	*init;
2116 		Cache	*init_array;
2117 		Cache	*preinit_array;
2118 		Cache	*rel;
2119 		Cache	*rela;
2120 		Cache	*sunw_cap;
2121 		Cache	*sunw_ldynsym;
2122 		Cache	*sunw_move;
2123 		Cache	*sunw_syminfo;
2124 		Cache	*sunw_symsort;
2125 		Cache	*sunw_tlssort;
2126 		Cache	*sunw_verdef;
2127 		Cache	*sunw_verneed;
2128 		Cache	*sunw_versym;
2129 	} sec;
2130 	Word	dynsec_ndx;
2131 	Word	dynsec_num;
2132 	int	dynsec_cnt;
2133 	Word	cnt;
2134 
2135 	/*
2136 	 * Make a pass over all the sections, gathering section information
2137 	 * we'll need below.
2138 	 */
2139 	dynsec_num = 0;
2140 	bzero(&sec, sizeof (sec));
2141 	for (cnt = 1; cnt < shnum; cnt++) {
2142 		Cache	*_cache = &cache[cnt];
2143 
2144 		switch (_cache->c_shdr->sh_type) {
2145 		case SHT_DYNAMIC:
2146 			if (dynsec_num == 0) {
2147 				dynsec_ndx = cnt;
2148 
2149 				/* Does it have a valid string table? */
2150 				(void) stringtbl(cache, 0, cnt, shnum, file,
2151 				    0, 0, &sec.dynstr);
2152 			}
2153 			dynsec_num++;
2154 			break;
2155 
2156 
2157 		case SHT_PROGBITS:
2158 			/*
2159 			 * We want to detect the .init and .fini sections,
2160 			 * if present. These are SHT_PROGBITS, so all we
2161 			 * have to go on is the section name. Normally comparing
2162 			 * names is a bad idea, but there are some special
2163 			 * names (i.e. .init/.fini/.interp) that are very
2164 			 * difficult to use in any other context, and for
2165 			 * these symbols, we do the heuristic match.
2166 			 */
2167 			if (strcmp(_cache->c_name,
2168 			    MSG_ORIG(MSG_ELF_INIT)) == 0) {
2169 				if (sec.init == NULL)
2170 					sec.init = _cache;
2171 			} else if (strcmp(_cache->c_name,
2172 			    MSG_ORIG(MSG_ELF_FINI)) == 0) {
2173 				if (sec.fini == NULL)
2174 					sec.fini = _cache;
2175 			}
2176 			break;
2177 
2178 		case SHT_REL:
2179 			/*
2180 			 * We want the SHT_REL section with the lowest
2181 			 * offset. The linker gathers them together,
2182 			 * and puts the address of the first one
2183 			 * into the DT_REL dynamic element.
2184 			 */
2185 			if ((sec.rel == NULL) ||
2186 			    (_cache->c_shdr->sh_offset <
2187 			    sec.rel->c_shdr->sh_offset))
2188 				sec.rel = _cache;
2189 			break;
2190 
2191 		case SHT_RELA:
2192 			/* RELA is handled just like RELA above */
2193 			if ((sec.rela == NULL) ||
2194 			    (_cache->c_shdr->sh_offset <
2195 			    sec.rela->c_shdr->sh_offset))
2196 				sec.rela = _cache;
2197 			break;
2198 
2199 		/*
2200 		 * The GRAB macro is used for the simple case in which
2201 		 * we simply grab the first section of the desired type.
2202 		 */
2203 #define	GRAB(_sec_type, _sec_field) \
2204 		case _sec_type: \
2205 			if (sec._sec_field == NULL) \
2206 				sec._sec_field = _cache; \
2207 				break
2208 		GRAB(SHT_SYMTAB,	symtab);
2209 		GRAB(SHT_DYNSYM,	dynsym);
2210 		GRAB(SHT_FINI_ARRAY,	fini_array);
2211 		GRAB(SHT_HASH,		hash);
2212 		GRAB(SHT_INIT_ARRAY,	init_array);
2213 		GRAB(SHT_SUNW_move,	sunw_move);
2214 		GRAB(SHT_PREINIT_ARRAY,	preinit_array);
2215 		GRAB(SHT_SUNW_cap,	sunw_cap);
2216 		GRAB(SHT_SUNW_LDYNSYM,	sunw_ldynsym);
2217 		GRAB(SHT_SUNW_syminfo,	sunw_syminfo);
2218 		GRAB(SHT_SUNW_symsort,	sunw_symsort);
2219 		GRAB(SHT_SUNW_tlssort,	sunw_tlssort);
2220 		GRAB(SHT_SUNW_verdef,	sunw_verdef);
2221 		GRAB(SHT_SUNW_verneed,	sunw_verneed);
2222 		GRAB(SHT_SUNW_versym,	sunw_versym);
2223 #undef GRAB
2224 		}
2225 	}
2226 
2227 	/*
2228 	 * If no dynamic section, return immediately. If more than one
2229 	 * dynamic section, then something odd is going on and an error
2230 	 * is in order, but then continue on and display them all.
2231 	 */
2232 	if (dynsec_num == 0)
2233 		return;
2234 	if (dynsec_num > 1)
2235 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN),
2236 		    file, EC_WORD(dynsec_num));
2237 
2238 
2239 	dynsec_cnt = 0;
2240 	for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num);
2241 	    cnt++) {
2242 		Dyn	*dyn;
2243 		ulong_t	numdyn;
2244 		int	ndx, end_ndx;
2245 		Cache	*_cache = &cache[cnt], *strsec;
2246 		Shdr	*shdr = _cache->c_shdr;
2247 		int	dumped = 0;
2248 
2249 		if (shdr->sh_type != SHT_DYNAMIC)
2250 			continue;
2251 		dynsec_cnt++;
2252 
2253 		/*
2254 		 * Verify the associated string table section.
2255 		 */
2256 		if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0)
2257 			continue;
2258 
2259 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
2260 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2261 			    file, _cache->c_name);
2262 			continue;
2263 		}
2264 		if (_cache->c_data == NULL)
2265 			continue;
2266 
2267 		numdyn = shdr->sh_size / shdr->sh_entsize;
2268 		dyn = (Dyn *)_cache->c_data->d_buf;
2269 
2270 		/*
2271 		 * We expect the REL/RELA entries to reference the reloc
2272 		 * section with the lowest address. However, this is
2273 		 * not true for dumped objects. Detect if this object has
2274 		 * been dumped so that we can skip the reloc address test
2275 		 * in that case.
2276 		 */
2277 		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
2278 			if (dyn->d_tag == DT_FLAGS_1) {
2279 				dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0;
2280 				break;
2281 			}
2282 		}
2283 		dyn = (Dyn *)_cache->c_data->d_buf;
2284 
2285 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2286 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name);
2287 
2288 		Elf_dyn_title(0);
2289 
2290 		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
2291 			union {
2292 				Conv_inv_buf_t		inv;
2293 				Conv_dyn_flag_buf_t	flag;
2294 				Conv_dyn_flag1_buf_t	flag1;
2295 				Conv_dyn_posflag1_buf_t	posflag1;
2296 				Conv_dyn_feature1_buf_t	feature1;
2297 			} c_buf;
2298 			const char	*name = NULL;
2299 
2300 			/*
2301 			 * Print the information numerically, and if possible
2302 			 * as a string. If a string is available, name is
2303 			 * set to reference it.
2304 			 *
2305 			 * Also, take this opportunity to sanity check
2306 			 * the values of DT elements. In the code above,
2307 			 * we gathered information on sections that are
2308 			 * referenced by the dynamic section. Here, we
2309 			 * compare the attributes of those sections to
2310 			 * the DT_ items that reference them and report
2311 			 * on inconsistencies.
2312 			 *
2313 			 * Things not currently tested that could be improved
2314 			 * in later revisions include:
2315 			 *	- We don't check PLT or GOT related items
2316 			 *	- We don't handle computing the lengths of
2317 			 *		relocation arrays. To handle this
2318 			 *		requires examining data that spans
2319 			 *		across sections, in a contiguous span
2320 			 *		within a single segment.
2321 			 *	- DT_VERDEFNUM and DT_VERNEEDNUM can't be
2322 			 *		verified without parsing the sections.
2323 			 *	- We don't handle DT_SUNW_SYMSZ, which would
2324 			 *		be the sum of the lengths of .dynsym and
2325 			 *		.SUNW_ldynsym
2326 			 *	- DT_SUNW_STRPAD can't be verified other than
2327 			 *		to check that it's not larger than
2328 			 *		the string table.
2329 			 *	- Some items come in "all or none" clusters
2330 			 *		that give an address, element size,
2331 			 *		and data length in bytes. We don't
2332 			 *		verify that there are no missing items
2333 			 *		in such groups.
2334 			 */
2335 			switch (dyn->d_tag) {
2336 			case DT_NULL:
2337 				/*
2338 				 * Special case: DT_NULLs can come in groups
2339 				 * that we prefer to reduce to a single line.
2340 				 */
2341 				end_ndx = ndx;
2342 				while ((end_ndx < (numdyn - 1)) &&
2343 				    ((dyn + 1)->d_tag == DT_NULL)) {
2344 					dyn++;
2345 					end_ndx++;
2346 				}
2347 				Elf_dyn_null_entry(0, dyn, ndx, end_ndx);
2348 				ndx = end_ndx;
2349 				continue;
2350 
2351 			/*
2352 			 * String items all reference the dynstr. The string()
2353 			 * function does the necessary sanity checking.
2354 			 */
2355 			case DT_NEEDED:
2356 			case DT_SONAME:
2357 			case DT_FILTER:
2358 			case DT_AUXILIARY:
2359 			case DT_CONFIG:
2360 			case DT_RPATH:
2361 			case DT_RUNPATH:
2362 			case DT_USED:
2363 			case DT_DEPAUDIT:
2364 			case DT_AUDIT:
2365 			case DT_SUNW_AUXILIARY:
2366 			case DT_SUNW_FILTER:
2367 				name = string(_cache, ndx, strsec,
2368 				    file, dyn->d_un.d_ptr);
2369 				break;
2370 
2371 			case DT_FLAGS:
2372 				name = conv_dyn_flag(dyn->d_un.d_val,
2373 				    0, &c_buf.flag);
2374 				break;
2375 			case DT_FLAGS_1:
2376 				name = conv_dyn_flag1(dyn->d_un.d_val, 0,
2377 				    &c_buf.flag1);
2378 				break;
2379 			case DT_POSFLAG_1:
2380 				name = conv_dyn_posflag1(dyn->d_un.d_val, 0,
2381 				    &c_buf.posflag1);
2382 				break;
2383 			case DT_FEATURE_1:
2384 				name = conv_dyn_feature1(dyn->d_un.d_val, 0,
2385 				    &c_buf.feature1);
2386 				break;
2387 			case DT_DEPRECATED_SPARC_REGISTER:
2388 				name = MSG_INTL(MSG_STR_DEPRECATED);
2389 				break;
2390 
2391 			case DT_SUNW_LDMACH:
2392 				name = conv_ehdr_mach((Half)dyn->d_un.d_val, 0,
2393 				    &c_buf.inv);
2394 				break;
2395 
2396 			/*
2397 			 * Cases below this point are strictly sanity checking,
2398 			 * and do not generate a name string. The TEST_ macros
2399 			 * are used to hide the boilerplate arguments neeeded
2400 			 * by dyn_test().
2401 			 */
2402 #define	TEST_ADDR(_sh_type, _sec_field) \
2403 				dyn_test(DYN_TEST_ADDR, _sh_type, \
2404 				    sec._sec_field, dyn, dynsec_cnt, ehdr, file)
2405 #define	TEST_SIZE(_sh_type, _sec_field) \
2406 				dyn_test(DYN_TEST_SIZE, _sh_type, \
2407 				    sec._sec_field, dyn, dynsec_cnt, ehdr, file)
2408 #define	TEST_ENTSIZE(_sh_type, _sec_field) \
2409 				dyn_test(DYN_TEST_ENTSIZE, _sh_type, \
2410 				    sec._sec_field, dyn, dynsec_cnt, ehdr, file)
2411 
2412 			case DT_FINI:
2413 				dyn_symtest(dyn, MSG_ORIG(MSG_SYM_FINI),
2414 				    sec.symtab, sec.dynsym, sec.sunw_ldynsym,
2415 				    cache, shnum, ehdr, file);
2416 				TEST_ADDR(SHT_PROGBITS, fini);
2417 				break;
2418 
2419 			case DT_FINI_ARRAY:
2420 				TEST_ADDR(SHT_FINI_ARRAY, fini_array);
2421 				break;
2422 
2423 			case DT_FINI_ARRAYSZ:
2424 				TEST_SIZE(SHT_FINI_ARRAY, fini_array);
2425 				break;
2426 
2427 			case DT_HASH:
2428 				TEST_ADDR(SHT_HASH, hash);
2429 				break;
2430 
2431 			case DT_INIT:
2432 				dyn_symtest(dyn, MSG_ORIG(MSG_SYM_INIT),
2433 				    sec.symtab, sec.dynsym, sec.sunw_ldynsym,
2434 				    cache, shnum, ehdr, file);
2435 				TEST_ADDR(SHT_PROGBITS, init);
2436 				break;
2437 
2438 			case DT_INIT_ARRAY:
2439 				TEST_ADDR(SHT_INIT_ARRAY, init_array);
2440 				break;
2441 
2442 			case DT_INIT_ARRAYSZ:
2443 				TEST_SIZE(SHT_INIT_ARRAY, init_array);
2444 				break;
2445 
2446 			case DT_MOVEENT:
2447 				TEST_ENTSIZE(SHT_SUNW_move, sunw_move);
2448 				break;
2449 
2450 			case DT_MOVESZ:
2451 				TEST_SIZE(SHT_SUNW_move, sunw_move);
2452 				break;
2453 
2454 			case DT_MOVETAB:
2455 				TEST_ADDR(SHT_SUNW_move, sunw_move);
2456 				break;
2457 
2458 			case DT_PREINIT_ARRAY:
2459 				TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array);
2460 				break;
2461 
2462 			case DT_PREINIT_ARRAYSZ:
2463 				TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array);
2464 				break;
2465 
2466 			case DT_REL:
2467 				if (!dumped)
2468 					TEST_ADDR(SHT_REL, rel);
2469 				break;
2470 
2471 			case DT_RELENT:
2472 				TEST_ENTSIZE(SHT_REL, rel);
2473 				break;
2474 
2475 			case DT_RELA:
2476 				if (!dumped)
2477 					TEST_ADDR(SHT_RELA, rela);
2478 				break;
2479 
2480 			case DT_RELAENT:
2481 				TEST_ENTSIZE(SHT_RELA, rela);
2482 				break;
2483 
2484 			case DT_STRTAB:
2485 				TEST_ADDR(SHT_STRTAB, dynstr);
2486 				break;
2487 
2488 			case DT_STRSZ:
2489 				TEST_SIZE(SHT_STRTAB, dynstr);
2490 				break;
2491 
2492 			case DT_SUNW_CAP:
2493 				TEST_ADDR(SHT_SUNW_cap, sunw_cap);
2494 				break;
2495 
2496 			case DT_SUNW_SYMTAB:
2497 				TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym);
2498 				break;
2499 
2500 			case DT_SYMENT:
2501 				TEST_ENTSIZE(SHT_DYNSYM, dynsym);
2502 				break;
2503 
2504 			case DT_SYMINENT:
2505 				TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo);
2506 				break;
2507 
2508 			case DT_SYMINFO:
2509 				TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo);
2510 				break;
2511 
2512 			case DT_SYMINSZ:
2513 				TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo);
2514 				break;
2515 
2516 			case DT_SYMTAB:
2517 				TEST_ADDR(SHT_DYNSYM, dynsym);
2518 				break;
2519 
2520 			case DT_SUNW_SORTENT:
2521 				/*
2522 				 * This entry is related to both the symsort and
2523 				 * tlssort sections.
2524 				 */
2525 				{
2526 					int test_tls =
2527 					    (sec.sunw_tlssort != NULL);
2528 					int test_sym =
2529 					    (sec.sunw_symsort != NULL) ||
2530 					    !test_tls;
2531 					if (test_sym)
2532 						TEST_ENTSIZE(SHT_SUNW_symsort,
2533 						    sunw_symsort);
2534 					if (test_tls)
2535 						TEST_ENTSIZE(SHT_SUNW_tlssort,
2536 						    sunw_tlssort);
2537 				}
2538 				break;
2539 
2540 
2541 			case DT_SUNW_SYMSORT:
2542 				TEST_ADDR(SHT_SUNW_symsort, sunw_symsort);
2543 				break;
2544 
2545 			case DT_SUNW_SYMSORTSZ:
2546 				TEST_SIZE(SHT_SUNW_symsort, sunw_symsort);
2547 				break;
2548 
2549 			case DT_SUNW_TLSSORT:
2550 				TEST_ADDR(SHT_SUNW_tlssort, sunw_tlssort);
2551 				break;
2552 
2553 			case DT_SUNW_TLSSORTSZ:
2554 				TEST_SIZE(SHT_SUNW_tlssort, sunw_tlssort);
2555 				break;
2556 
2557 			case DT_VERDEF:
2558 				TEST_ADDR(SHT_SUNW_verdef, sunw_verdef);
2559 				break;
2560 
2561 			case DT_VERNEED:
2562 				TEST_ADDR(SHT_SUNW_verneed, sunw_verneed);
2563 				break;
2564 
2565 			case DT_VERSYM:
2566 				TEST_ADDR(SHT_SUNW_versym, sunw_versym);
2567 				break;
2568 #undef TEST_ADDR
2569 #undef TEST_SIZE
2570 #undef TEST_ENTSIZE
2571 			}
2572 
2573 			if (name == NULL)
2574 				name = MSG_ORIG(MSG_STR_EMPTY);
2575 			Elf_dyn_entry(0, dyn, ndx, name, ehdr->e_machine);
2576 		}
2577 	}
2578 }
2579 
2580 /*
2581  * Search for and process a MOVE section.
2582  */
2583 static void
2584 move(Cache *cache, Word shnum, const char *file, uint_t flags)
2585 {
2586 	Word		cnt;
2587 	const char	*fmt = NULL;
2588 
2589 	for (cnt = 1; cnt < shnum; cnt++) {
2590 		Word	movenum, symnum, ndx;
2591 		Sym	*syms;
2592 		Cache	*_cache = &cache[cnt];
2593 		Shdr	*shdr = _cache->c_shdr;
2594 		Cache	*symsec, *strsec;
2595 		Move	*move;
2596 
2597 		if (shdr->sh_type != SHT_SUNW_move)
2598 			continue;
2599 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
2600 			continue;
2601 
2602 		/*
2603 		 * Determine the move data and number.
2604 		 */
2605 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
2606 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2607 			    file, _cache->c_name);
2608 			continue;
2609 		}
2610 		if (_cache->c_data == NULL)
2611 			continue;
2612 
2613 		move = (Move *)_cache->c_data->d_buf;
2614 		movenum = shdr->sh_size / shdr->sh_entsize;
2615 
2616 		/*
2617 		 * Get the data buffer for the associated symbol table and
2618 		 * string table.
2619 		 */
2620 		if (stringtbl(cache, 1, cnt, shnum, file,
2621 		    &symnum, &symsec, &strsec) == 0)
2622 			return;
2623 
2624 		syms = (Sym *)symsec->c_data->d_buf;
2625 
2626 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2627 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name);
2628 		dbg_print(0, MSG_INTL(MSG_MOVE_TITLE));
2629 
2630 		if (fmt == NULL)
2631 			fmt = MSG_INTL(MSG_MOVE_ENTRY);
2632 
2633 		for (ndx = 0; ndx < movenum; move++, ndx++) {
2634 			const char	*symname;
2635 			char		index[MAXNDXSIZE], section[BUFSIZ];
2636 			Word		symndx, shndx;
2637 			Sym		*sym;
2638 
2639 			/*
2640 			 * Check for null entries
2641 			 */
2642 			if ((move->m_info == 0) && (move->m_value == 0) &&
2643 			    (move->m_poffset == 0) && (move->m_repeat == 0) &&
2644 			    (move->m_stride == 0)) {
2645 				dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY),
2646 				    EC_XWORD(move->m_poffset), 0, 0, 0,
2647 				    EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY));
2648 				continue;
2649 			}
2650 			if (((symndx = ELF_M_SYM(move->m_info)) == 0) ||
2651 			    (symndx >= symnum)) {
2652 				(void) fprintf(stderr,
2653 				    MSG_INTL(MSG_ERR_BADMINFO), file,
2654 				    _cache->c_name, EC_XWORD(move->m_info));
2655 
2656 				(void) snprintf(index, MAXNDXSIZE,
2657 				    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
2658 				dbg_print(0, fmt, index,
2659 				    EC_XWORD(move->m_poffset),
2660 				    ELF_M_SIZE(move->m_info), move->m_repeat,
2661 				    move->m_stride, move->m_value,
2662 				    MSG_INTL(MSG_STR_UNKNOWN));
2663 				continue;
2664 			}
2665 
2666 			symname = relsymname(cache, _cache, strsec,
2667 			    symndx, symnum, ndx, syms, section, BUFSIZ, file);
2668 			sym = (Sym *)(syms + symndx);
2669 
2670 			/*
2671 			 * Additional sanity check.
2672 			 */
2673 			shndx = sym->st_shndx;
2674 			if (!((shndx == SHN_COMMON) ||
2675 			    (((shndx >= 1) && (shndx <= shnum)) &&
2676 			    (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) {
2677 				(void) fprintf(stderr,
2678 				    MSG_INTL(MSG_ERR_BADSYM2), file,
2679 				    _cache->c_name, EC_WORD(symndx),
2680 				    demangle(symname, flags));
2681 			}
2682 
2683 			(void) snprintf(index, MAXNDXSIZE,
2684 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
2685 			dbg_print(0, fmt, index, EC_XWORD(move->m_poffset),
2686 			    ELF_M_SIZE(move->m_info), move->m_repeat,
2687 			    move->m_stride, move->m_value,
2688 			    demangle(symname, flags));
2689 		}
2690 	}
2691 }
2692 
2693 /*
2694  * Callback function for use with conv_str_to_c_literal() below.
2695  */
2696 /*ARGSUSED2*/
2697 static void
2698 c_literal_cb(const void *ptr, size_t size, void *uvalue)
2699 {
2700 	(void) fwrite(ptr, size, 1, stdout);
2701 }
2702 
2703 /*
2704  * Traverse a note section analyzing each note information block.
2705  * The data buffers size is used to validate references before they are made,
2706  * and is decremented as each element is processed.
2707  */
2708 void
2709 note_entry(Cache *cache, Word *data, size_t size, Ehdr *ehdr, const char *file)
2710 {
2711 	size_t		bsize = size;
2712 	int		cnt = 0;
2713 	int		is_corenote;
2714 	int		do_swap;
2715 	Conv_inv_buf_t	inv_buf;
2716 
2717 	do_swap =  _elf_sys_encoding() != ehdr->e_ident[EI_DATA];
2718 
2719 	/*
2720 	 * Print out a single `note' information block.
2721 	 */
2722 	while (size > 0) {
2723 		size_t	namesz, descsz, type, pad, noteoff;
2724 
2725 		noteoff = bsize - size;
2726 		/*
2727 		 * Make sure we can at least reference the 3 initial entries
2728 		 * (4-byte words) of the note information block.
2729 		 */
2730 		if (size >= (sizeof (Word) * 3))
2731 			size -= (sizeof (Word) * 3);
2732 		else {
2733 			(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ),
2734 			    file, cache->c_name, EC_WORD(noteoff));
2735 			return;
2736 		}
2737 
2738 		/*
2739 		 * Make sure any specified name string can be referenced.
2740 		 */
2741 		if ((namesz = *data++) != 0) {
2742 			if (size >= namesz)
2743 				size -= namesz;
2744 			else {
2745 				(void) fprintf(stderr,
2746 				    MSG_INTL(MSG_NOTE_BADNMSZ), file,
2747 				    cache->c_name, EC_WORD(noteoff),
2748 				    EC_WORD(namesz));
2749 				return;
2750 			}
2751 		}
2752 
2753 		/*
2754 		 * Make sure any specified descriptor can be referenced.
2755 		 */
2756 		if ((descsz = *data++) != 0) {
2757 			/*
2758 			 * If namesz isn't a 4-byte multiple, account for any
2759 			 * padding that must exist before the descriptor.
2760 			 */
2761 			if ((pad = (namesz & (sizeof (Word) - 1))) != 0) {
2762 				pad = sizeof (Word) - pad;
2763 				size -= pad;
2764 			}
2765 			if (size >= descsz)
2766 				size -= descsz;
2767 			else {
2768 				(void) fprintf(stderr,
2769 				    MSG_INTL(MSG_NOTE_BADDESZ), file,
2770 				    cache->c_name, EC_WORD(noteoff),
2771 				    EC_WORD(namesz));
2772 				return;
2773 			}
2774 		}
2775 
2776 		type = *data++;
2777 
2778 		/*
2779 		 * Is this a Solaris core note? Such notes all have
2780 		 * the name "CORE".
2781 		 */
2782 		is_corenote = (ehdr->e_type == ET_CORE) &&
2783 		    (namesz == (MSG_STR_CORE_SIZE + 1)) &&
2784 		    (strncmp(MSG_ORIG(MSG_STR_CORE), (char *)data,
2785 		    MSG_STR_CORE_SIZE + 1) == 0);
2786 
2787 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2788 		dbg_print(0, MSG_INTL(MSG_FMT_NOTEENTNDX), EC_WORD(cnt));
2789 		cnt++;
2790 		dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ), EC_WORD(namesz));
2791 		dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ), EC_WORD(descsz));
2792 
2793 		if (is_corenote)
2794 			dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE_STR),
2795 			    conv_cnote_type(type, 0, &inv_buf));
2796 		else
2797 			dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE), EC_WORD(type));
2798 		if (namesz) {
2799 			char	*name = (char *)data;
2800 
2801 
2802 			dbg_print(0, MSG_ORIG(MSG_NOTE_NAME));
2803 			/*
2804 			 * The name string can contain embedded 'null'
2805 			 * bytes and/or unprintable characters. Also,
2806 			 * the final NULL is documented in the ELF ABI
2807 			 * as being included in the namesz. So, display
2808 			 * the name using C literal string notation, and
2809 			 * include the terminating NULL in the output.
2810 			 * We don't show surrounding double quotes, as
2811 			 * that implies the termination that we are showing
2812 			 * explicitly.
2813 			 */
2814 			(void) fwrite(MSG_ORIG(MSG_STR_8SP),
2815 			    MSG_STR_8SP_SIZE, 1, stdout);
2816 			conv_str_to_c_literal(name, namesz, c_literal_cb, NULL);
2817 			name = name + ((namesz + (sizeof (Word) - 1)) &
2818 			    ~(sizeof (Word) - 1));
2819 			/* LINTED */
2820 			data = (Word *)name;
2821 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2822 		}
2823 
2824 		/*
2825 		 * If multiple information blocks exist within a .note section
2826 		 * account for any padding that must exist before the next
2827 		 * information block.
2828 		 */
2829 		if ((pad = (descsz & (sizeof (Word) - 1))) != 0) {
2830 			pad = sizeof (Word) - pad;
2831 			if (size > pad)
2832 				size -= pad;
2833 		}
2834 
2835 		if (descsz) {
2836 			int		hexdump = 1;
2837 			const char	*desc = (const char *)data;
2838 
2839 			/*
2840 			 * If this is a core note, let the corenote()
2841 			 * function handle it.
2842 			 */
2843 			if (is_corenote) {
2844 				/* We only issue the bad arch error once */
2845 				static int	badnote_done = 0;
2846 				corenote_ret_t	corenote_ret;
2847 
2848 				corenote_ret = corenote(ehdr->e_machine,
2849 				    do_swap, type, desc, descsz);
2850 				switch (corenote_ret) {
2851 				case CORENOTE_R_OK:
2852 					hexdump = 0;
2853 					break;
2854 				case CORENOTE_R_BADDATA:
2855 					(void) fprintf(stderr,
2856 					    MSG_INTL(MSG_NOTE_BADCOREDATA),
2857 					    file);
2858 					break;
2859 				case CORENOTE_R_BADARCH:
2860 					if (badnote_done)
2861 						break;
2862 					(void) fprintf(stderr,
2863 					    MSG_INTL(MSG_NOTE_BADCOREARCH),
2864 					    file,
2865 					    conv_ehdr_mach(ehdr->e_machine,
2866 					    0, &inv_buf));
2867 					break;
2868 				}
2869 			}
2870 
2871 			/*
2872 			 * The default thing when we don't understand
2873 			 * the note data is to display it as hex bytes.
2874 			 */
2875 			if (hexdump) {
2876 				dbg_print(0, MSG_ORIG(MSG_NOTE_DESC));
2877 				dump_hex_bytes(desc, descsz, 8, 4, 4);
2878 			}
2879 			desc += descsz + pad;
2880 
2881 			/* LINTED */
2882 			data = (Word *)desc;
2883 		}
2884 	}
2885 }
2886 
2887 /*
2888  * Search for and process .note sections.
2889  *
2890  * Returns the number of note sections seen.
2891  */
2892 static Word
2893 note(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
2894 {
2895 	Word	cnt, note_cnt = 0;
2896 
2897 	/*
2898 	 * Otherwise look for any .note sections.
2899 	 */
2900 	for (cnt = 1; cnt < shnum; cnt++) {
2901 		Cache	*_cache = &cache[cnt];
2902 		Shdr	*shdr = _cache->c_shdr;
2903 
2904 		if (shdr->sh_type != SHT_NOTE)
2905 			continue;
2906 		note_cnt++;
2907 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
2908 			continue;
2909 
2910 		/*
2911 		 * As these sections are often hand rolled, make sure they're
2912 		 * properly aligned before proceeding, and issue an error
2913 		 * as necessary.
2914 		 *
2915 		 * Note that we will continue on to display the note even
2916 		 * if it has bad alignment. We can do this safely, because
2917 		 * libelf knows the alignment required for SHT_NOTE, and
2918 		 * takes steps to deliver a properly aligned buffer to us
2919 		 * even if the actual file is misaligned.
2920 		 */
2921 		if (shdr->sh_offset & (sizeof (Word) - 1))
2922 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN),
2923 			    file, _cache->c_name);
2924 
2925 		if (_cache->c_data == NULL)
2926 			continue;
2927 
2928 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2929 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name);
2930 		note_entry(_cache, (Word *)_cache->c_data->d_buf,
2931 		/* LINTED */
2932 		    (Word)_cache->c_data->d_size, ehdr, file);
2933 	}
2934 
2935 	return (note_cnt);
2936 }
2937 
2938 /*
2939  * Determine an individual hash entry.  This may be the initial hash entry,
2940  * or an associated chain entry.
2941  */
2942 static void
2943 hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx,
2944     Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts,
2945     uint_t flags, int chain)
2946 {
2947 	Sym		*sym;
2948 	const char	*symname, *str;
2949 	char		_bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE];
2950 	ulong_t		nbkt, nhash;
2951 
2952 	if (symndx > symn) {
2953 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file,
2954 		    EC_WORD(symndx), EC_WORD(hashndx));
2955 		symname = MSG_INTL(MSG_STR_UNKNOWN);
2956 	} else {
2957 		sym = (Sym *)(syms + symndx);
2958 		symname = string(refsec, symndx, strsec, file, sym->st_name);
2959 	}
2960 
2961 	if (chain == 0) {
2962 		(void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
2963 		    hashndx);
2964 		str = (const char *)_bucket;
2965 	} else
2966 		str = MSG_ORIG(MSG_STR_EMPTY);
2967 
2968 	(void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2),
2969 	    EC_WORD(symndx));
2970 	dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx,
2971 	    demangle(symname, flags));
2972 
2973 	/*
2974 	 * Determine if this string is in the correct bucket.
2975 	 */
2976 	nhash = elf_hash(symname);
2977 	nbkt = nhash % bkts;
2978 
2979 	if (nbkt != hashndx) {
2980 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file,
2981 		    hsecname, symname, EC_WORD(hashndx), nbkt);
2982 	}
2983 }
2984 
2985 #define	MAXCOUNT	500
2986 
2987 static void
2988 hash(Cache *cache, Word shnum, const char *file, uint_t flags)
2989 {
2990 	static int	count[MAXCOUNT];
2991 	Word		cnt;
2992 	ulong_t		ndx, bkts;
2993 	char		number[MAXNDXSIZE];
2994 
2995 	for (cnt = 1; cnt < shnum; cnt++) {
2996 		uint_t		*hash, *chain;
2997 		Cache		*_cache = &cache[cnt];
2998 		Shdr		*sshdr, *hshdr = _cache->c_shdr;
2999 		char		*ssecname, *hsecname = _cache->c_name;
3000 		Sym		*syms;
3001 		Word		symn;
3002 
3003 		if (hshdr->sh_type != SHT_HASH)
3004 			continue;
3005 
3006 		/*
3007 		 * Determine the hash table data and size.
3008 		 */
3009 		if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) {
3010 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3011 			    file, hsecname);
3012 			continue;
3013 		}
3014 		if (_cache->c_data == NULL)
3015 			continue;
3016 
3017 		hash = (uint_t *)_cache->c_data->d_buf;
3018 		bkts = *hash;
3019 		chain = hash + 2 + bkts;
3020 		hash += 2;
3021 
3022 		/*
3023 		 * Get the data buffer for the associated symbol table.
3024 		 */
3025 		if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) {
3026 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3027 			    file, hsecname, EC_WORD(hshdr->sh_link));
3028 			continue;
3029 		}
3030 
3031 		_cache = &cache[hshdr->sh_link];
3032 		ssecname = _cache->c_name;
3033 
3034 		if (_cache->c_data == NULL)
3035 			continue;
3036 
3037 		if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) {
3038 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3039 			    file, ssecname);
3040 			continue;
3041 		}
3042 
3043 		sshdr = _cache->c_shdr;
3044 		/* LINTED */
3045 		symn = (Word)(sshdr->sh_size / sshdr->sh_entsize);
3046 
3047 		/*
3048 		 * Get the associated string table section.
3049 		 */
3050 		if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) {
3051 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3052 			    file, ssecname, EC_WORD(sshdr->sh_link));
3053 			continue;
3054 		}
3055 
3056 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3057 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname);
3058 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO));
3059 
3060 		/*
3061 		 * Loop through the hash buckets, printing the appropriate
3062 		 * symbols.
3063 		 */
3064 		for (ndx = 0; ndx < bkts; ndx++, hash++) {
3065 			Word	_ndx, _cnt;
3066 
3067 			if (*hash == 0) {
3068 				count[0]++;
3069 				continue;
3070 			}
3071 
3072 			hash_entry(_cache, &cache[sshdr->sh_link], hsecname,
3073 			    ndx, *hash, symn, syms, file, bkts, flags, 0);
3074 
3075 			/*
3076 			 * Determine if any other symbols are chained to this
3077 			 * bucket.
3078 			 */
3079 			_ndx = chain[*hash];
3080 			_cnt = 1;
3081 			while (_ndx) {
3082 				hash_entry(_cache, &cache[sshdr->sh_link],
3083 				    hsecname, ndx, _ndx, symn, syms, file,
3084 				    bkts, flags, 1);
3085 				_ndx = chain[_ndx];
3086 				_cnt++;
3087 			}
3088 
3089 			if (_cnt >= MAXCOUNT) {
3090 				(void) fprintf(stderr,
3091 				    MSG_INTL(MSG_HASH_OVERFLW), file,
3092 				    _cache->c_name, EC_WORD(ndx),
3093 				    EC_WORD(_cnt));
3094 			} else
3095 				count[_cnt]++;
3096 		}
3097 		break;
3098 	}
3099 
3100 	/*
3101 	 * Print out the count information.
3102 	 */
3103 	bkts = cnt = 0;
3104 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3105 
3106 	for (ndx = 0; ndx < MAXCOUNT; ndx++) {
3107 		Word	_cnt;
3108 
3109 		if ((_cnt = count[ndx]) == 0)
3110 			continue;
3111 
3112 		(void) snprintf(number, MAXNDXSIZE,
3113 		    MSG_ORIG(MSG_FMT_INTEGER), _cnt);
3114 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number,
3115 		    EC_WORD(ndx));
3116 		bkts += _cnt;
3117 		cnt += (Word)(ndx * _cnt);
3118 	}
3119 	if (cnt) {
3120 		(void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
3121 		    bkts);
3122 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number,
3123 		    EC_WORD(cnt));
3124 	}
3125 }
3126 
3127 static void
3128 group(Cache *cache, Word shnum, const char *file, uint_t flags)
3129 {
3130 	Word	scnt;
3131 
3132 	for (scnt = 1; scnt < shnum; scnt++) {
3133 		Cache	*_cache = &cache[scnt];
3134 		Shdr	*shdr = _cache->c_shdr;
3135 		Word	*grpdata, gcnt, grpcnt, symnum, unknown;
3136 		Cache	*symsec, *strsec;
3137 		Sym	*syms, *sym;
3138 		char	flgstrbuf[MSG_GRP_COMDAT_SIZE + 10];
3139 
3140 		if (shdr->sh_type != SHT_GROUP)
3141 			continue;
3142 		if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type))
3143 			continue;
3144 		if ((_cache->c_data == NULL) ||
3145 		    ((grpdata = (Word *)_cache->c_data->d_buf) == NULL))
3146 			continue;
3147 		grpcnt = shdr->sh_size / sizeof (Word);
3148 
3149 		/*
3150 		 * Get the data buffer for the associated symbol table and
3151 		 * string table.
3152 		 */
3153 		if (stringtbl(cache, 1, scnt, shnum, file,
3154 		    &symnum, &symsec, &strsec) == 0)
3155 			return;
3156 
3157 		syms = symsec->c_data->d_buf;
3158 
3159 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3160 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name);
3161 		dbg_print(0, MSG_INTL(MSG_GRP_TITLE));
3162 
3163 		/*
3164 		 * The first element of the group defines the group.  The
3165 		 * associated symbol is defined by the sh_link field.
3166 		 */
3167 		if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) {
3168 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
3169 			    file, _cache->c_name, EC_WORD(shdr->sh_info));
3170 			return;
3171 		}
3172 
3173 		(void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT));
3174 		if (grpdata[0] & GRP_COMDAT) {
3175 			(void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT));
3176 		}
3177 		if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) {
3178 			size_t	len = strlen(flgstrbuf);
3179 
3180 			(void) snprintf(&flgstrbuf[len],
3181 			    (MSG_GRP_COMDAT_SIZE + 10 - len),
3182 			    MSG_ORIG(MSG_GRP_UNKNOWN), unknown);
3183 		}
3184 		(void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT));
3185 		sym = (Sym *)(syms + shdr->sh_info);
3186 
3187 		dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf,
3188 		    demangle(string(_cache, 0, strsec, file, sym->st_name),
3189 		    flags));
3190 
3191 		for (gcnt = 1; gcnt < grpcnt; gcnt++) {
3192 			char		index[MAXNDXSIZE];
3193 			const char	*name;
3194 
3195 			(void) snprintf(index, MAXNDXSIZE,
3196 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt));
3197 
3198 			if (grpdata[gcnt] >= shnum)
3199 				name = MSG_INTL(MSG_GRP_INVALSCN);
3200 			else
3201 				name = cache[grpdata[gcnt]].c_name;
3202 
3203 			(void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name,
3204 			    EC_XWORD(grpdata[gcnt]));
3205 		}
3206 	}
3207 }
3208 
3209 static void
3210 got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
3211 {
3212 	Cache		*gotcache = NULL, *symtab = NULL;
3213 	Addr		gotbgn, gotend;
3214 	Shdr		*gotshdr;
3215 	Word		cnt, gotents, gotndx;
3216 	size_t		gentsize;
3217 	Got_info	*gottable;
3218 	char		*gotdata;
3219 	Sym		*gotsym;
3220 	Xword		gotsymaddr;
3221 	uint_t		sys_encoding;
3222 
3223 	/*
3224 	 * First, find the got.
3225 	 */
3226 	for (cnt = 1; cnt < shnum; cnt++) {
3227 		if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
3228 		    MSG_ELF_GOT_SIZE) == 0) {
3229 			gotcache = &cache[cnt];
3230 			break;
3231 		}
3232 	}
3233 	if (gotcache == NULL)
3234 		return;
3235 
3236 	/*
3237 	 * A got section within a relocatable object is suspicious.
3238 	 */
3239 	if (ehdr->e_type == ET_REL) {
3240 		(void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file,
3241 		    gotcache->c_name);
3242 	}
3243 
3244 	gotshdr = gotcache->c_shdr;
3245 	if (gotshdr->sh_size == 0) {
3246 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3247 		    file, gotcache->c_name);
3248 		return;
3249 	}
3250 
3251 	gotbgn = gotshdr->sh_addr;
3252 	gotend = gotbgn + gotshdr->sh_size;
3253 
3254 	/*
3255 	 * Some architectures don't properly set the sh_entsize for the GOT
3256 	 * table.  If it's not set, default to a size of a pointer.
3257 	 */
3258 	if ((gentsize = gotshdr->sh_entsize) == 0)
3259 		gentsize = sizeof (Xword);
3260 
3261 	if (gotcache->c_data == NULL)
3262 		return;
3263 
3264 	/* LINTED */
3265 	gotents = (Word)(gotshdr->sh_size / gentsize);
3266 	gotdata = gotcache->c_data->d_buf;
3267 
3268 	if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) {
3269 		int err = errno;
3270 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file,
3271 		    strerror(err));
3272 		return;
3273 	}
3274 
3275 	/*
3276 	 * Now we scan through all the sections looking for any relocations
3277 	 * that may be against the GOT.  Since these may not be isolated to a
3278 	 * .rel[a].got section we check them all.
3279 	 * While scanning sections save the symbol table entry (a symtab
3280 	 * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_.
3281 	 */
3282 	for (cnt = 1; cnt < shnum; cnt++) {
3283 		Word		type, symnum;
3284 		Xword		relndx, relnum, relsize;
3285 		void		*rels;
3286 		Sym		*syms;
3287 		Cache		*symsec, *strsec;
3288 		Cache		*_cache = &cache[cnt];
3289 		Shdr		*shdr;
3290 
3291 		shdr = _cache->c_shdr;
3292 		type = shdr->sh_type;
3293 
3294 		if ((symtab == 0) && (type == SHT_DYNSYM)) {
3295 			symtab = _cache;
3296 			continue;
3297 		}
3298 		if (type == SHT_SYMTAB) {
3299 			symtab = _cache;
3300 			continue;
3301 		}
3302 		if ((type != SHT_RELA) && (type != SHT_REL))
3303 			continue;
3304 
3305 		/*
3306 		 * Decide entry size.
3307 		 */
3308 		if (((relsize = shdr->sh_entsize) == 0) ||
3309 		    (relsize > shdr->sh_size)) {
3310 			if (type == SHT_RELA)
3311 				relsize = sizeof (Rela);
3312 			else
3313 				relsize = sizeof (Rel);
3314 		}
3315 
3316 		/*
3317 		 * Determine the number of relocations available.
3318 		 */
3319 		if (shdr->sh_size == 0) {
3320 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3321 			    file, _cache->c_name);
3322 			continue;
3323 		}
3324 		if (_cache->c_data == NULL)
3325 			continue;
3326 
3327 		rels = _cache->c_data->d_buf;
3328 		relnum = shdr->sh_size / relsize;
3329 
3330 		/*
3331 		 * Get the data buffer for the associated symbol table and
3332 		 * string table.
3333 		 */
3334 		if (stringtbl(cache, 1, cnt, shnum, file,
3335 		    &symnum, &symsec, &strsec) == 0)
3336 			continue;
3337 
3338 		syms = symsec->c_data->d_buf;
3339 
3340 		/*
3341 		 * Loop through the relocation entries.
3342 		 */
3343 		for (relndx = 0; relndx < relnum; relndx++,
3344 		    rels = (void *)((char *)rels + relsize)) {
3345 			char		section[BUFSIZ];
3346 			Addr		offset;
3347 			Got_info	*gip;
3348 			Word		symndx, reltype;
3349 			Rela		*rela;
3350 			Rel		*rel;
3351 
3352 			/*
3353 			 * Unravel the relocation.
3354 			 */
3355 			if (type == SHT_RELA) {
3356 				rela = (Rela *)rels;
3357 				symndx = ELF_R_SYM(rela->r_info);
3358 				reltype = ELF_R_TYPE(rela->r_info,
3359 				    ehdr->e_machine);
3360 				offset = rela->r_offset;
3361 			} else {
3362 				rel = (Rel *)rels;
3363 				symndx = ELF_R_SYM(rel->r_info);
3364 				reltype = ELF_R_TYPE(rel->r_info,
3365 				    ehdr->e_machine);
3366 				offset = rel->r_offset;
3367 			}
3368 
3369 			/*
3370 			 * Only pay attention to relocations against the GOT.
3371 			 */
3372 			if ((offset < gotbgn) || (offset >= gotend))
3373 				continue;
3374 
3375 			/* LINTED */
3376 			gotndx = (Word)((offset - gotbgn) /
3377 			    gotshdr->sh_entsize);
3378 			gip = &gottable[gotndx];
3379 
3380 			if (gip->g_reltype != 0) {
3381 				(void) fprintf(stderr,
3382 				    MSG_INTL(MSG_GOT_MULTIPLE), file,
3383 				    EC_WORD(gotndx), EC_ADDR(offset));
3384 				continue;
3385 			}
3386 
3387 			if (symndx)
3388 				gip->g_symname = relsymname(cache, _cache,
3389 				    strsec, symndx, symnum, relndx, syms,
3390 				    section, BUFSIZ, file);
3391 			gip->g_reltype = reltype;
3392 			gip->g_rel = rels;
3393 		}
3394 	}
3395 
3396 	if (symlookup(MSG_ORIG(MSG_SYM_GOT), cache, shnum, &gotsym, symtab,
3397 	    file))
3398 		gotsymaddr = gotsym->st_value;
3399 	else
3400 		gotsymaddr = gotbgn;
3401 
3402 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3403 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name);
3404 	Elf_got_title(0);
3405 
3406 	sys_encoding = _elf_sys_encoding();
3407 	for (gotndx = 0; gotndx < gotents; gotndx++) {
3408 		Got_info	*gip;
3409 		Sword		gindex;
3410 		Addr		gaddr;
3411 		Xword		gotentry;
3412 
3413 		gip = &gottable[gotndx];
3414 
3415 		gaddr = gotbgn + (gotndx * gentsize);
3416 		gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize;
3417 
3418 		if (gentsize == sizeof (Word))
3419 			/* LINTED */
3420 			gotentry = (Xword)(*((Word *)(gotdata) + gotndx));
3421 		else
3422 			/* LINTED */
3423 			gotentry = *((Xword *)(gotdata) + gotndx);
3424 
3425 		Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine,
3426 		    ehdr->e_ident[EI_DATA], sys_encoding,
3427 		    gip->g_reltype, gip->g_rel, gip->g_symname);
3428 	}
3429 	free(gottable);
3430 }
3431 
3432 void
3433 checksum(Elf *elf)
3434 {
3435 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3436 	dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf));
3437 }
3438 
3439 /*
3440  * This variable is used by regular() to communicate the address of
3441  * the section header cache to sort_shdr_ndx_arr(). Unfortunately,
3442  * the qsort() interface does not include a userdata argument by which
3443  * such arbitrary data can be passed, so we are stuck using global data.
3444  */
3445 static Cache *sort_shdr_ndx_arr_cache;
3446 
3447 
3448 /*
3449  * Used with qsort() to sort the section indices so that they can be
3450  * used to access the section headers in order of increasing data offset.
3451  *
3452  * entry:
3453  *	sort_shdr_ndx_arr_cache - Contains address of
3454  *		section header cache.
3455  *	v1, v2 - Point at elements of sort_shdr_bits array to be compared.
3456  *
3457  * exit:
3458  *	Returns -1 (less than), 0 (equal) or 1 (greater than).
3459  */
3460 static int
3461 sort_shdr_ndx_arr(const void *v1, const void *v2)
3462 {
3463 	Cache	*cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1);
3464 	Cache	*cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2);
3465 
3466 	if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset)
3467 		return (-1);
3468 
3469 	if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset)
3470 		return (1);
3471 
3472 	return (0);
3473 }
3474 
3475 
3476 static int
3477 shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx,
3478     size_t shnum, Cache **cache_ret, Word flags)
3479 {
3480 	Elf_Scn		*scn;
3481 	Elf_Data	*data;
3482 	size_t		ndx;
3483 	Shdr		*nameshdr;
3484 	char		*names = NULL;
3485 	Cache		*cache, *_cache;
3486 	size_t		*shdr_ndx_arr, shdr_ndx_arr_cnt;
3487 
3488 
3489 	/*
3490 	 * Obtain the .shstrtab data buffer to provide the required section
3491 	 * name strings.
3492 	 */
3493 	if (shstrndx == SHN_UNDEF) {
3494 		/*
3495 		 * It is rare, but legal, for an object to lack a
3496 		 * header string table section.
3497 		 */
3498 		names = NULL;
3499 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file);
3500 	} else if ((scn = elf_getscn(elf, shstrndx)) == NULL) {
3501 		failure(file, MSG_ORIG(MSG_ELF_GETSCN));
3502 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR),
3503 		    EC_XWORD(shstrndx));
3504 
3505 	} else if ((data = elf_getdata(scn, NULL)) == NULL) {
3506 		failure(file, MSG_ORIG(MSG_ELF_GETDATA));
3507 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA),
3508 		    EC_XWORD(shstrndx));
3509 
3510 	} else if ((nameshdr = elf_getshdr(scn)) == NULL) {
3511 		failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3512 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
3513 		    EC_WORD(elf_ndxscn(scn)));
3514 
3515 	} else if ((names = data->d_buf) == NULL)
3516 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file);
3517 
3518 	/*
3519 	 * Allocate a cache to maintain a descriptor for each section.
3520 	 */
3521 	if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) {
3522 		int err = errno;
3523 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
3524 		    file, strerror(err));
3525 		return (0);
3526 	}
3527 
3528 	*cache = cache_init;
3529 	_cache = cache;
3530 	_cache++;
3531 
3532 	/*
3533 	 * Allocate an array that will hold the section index for
3534 	 * each section that has data in the ELF file:
3535 	 *
3536 	 *	- Is not a NOBITS section
3537 	 *	- Data has non-zero length
3538 	 *
3539 	 * Note that shnum is an upper bound on the size required. It
3540 	 * is likely that we won't use a few of these array elements.
3541 	 * Allocating a modest amount of extra memory in this case means
3542 	 * that we can avoid an extra loop to count the number of needed
3543 	 * items, and can fill this array immediately in the first loop
3544 	 * below.
3545 	 */
3546 	if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) {
3547 		int err = errno;
3548 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
3549 		    file, strerror(err));
3550 		return (0);
3551 	}
3552 	shdr_ndx_arr_cnt = 0;
3553 
3554 	/*
3555 	 * Traverse the sections of the file.  This gathering of data is
3556 	 * carried out in two passes.  First, the section headers are captured
3557 	 * and the section header names are evaluated.  A verification pass is
3558 	 * then carried out over the section information.  Files have been
3559 	 * known to exhibit overlapping (and hence erroneous) section header
3560 	 * information.
3561 	 *
3562 	 * Finally, the data for each section is obtained.  This processing is
3563 	 * carried out after section verification because should any section
3564 	 * header overlap occur, and a file needs translating (ie. xlate'ing
3565 	 * information from a non-native architecture file), then the process
3566 	 * of translation can corrupt the section header information.  Of
3567 	 * course, if there is any section overlap, the data related to the
3568 	 * sections is going to be compromised.  However, it is the translation
3569 	 * of this data that has caused problems with elfdump()'s ability to
3570 	 * extract the data.
3571 	 */
3572 	for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn);
3573 	    ndx++, _cache++) {
3574 		char	scnndxnm[100];
3575 
3576 		_cache->c_ndx = ndx;
3577 		_cache->c_scn = scn;
3578 
3579 		if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) {
3580 			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3581 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
3582 			    EC_WORD(elf_ndxscn(scn)));
3583 		}
3584 
3585 		/*
3586 		 * If this section has data in the file, include it in
3587 		 * the array of sections to check for address overlap.
3588 		 */
3589 		if ((_cache->c_shdr->sh_size != 0) &&
3590 		    (_cache->c_shdr->sh_type != SHT_NOBITS))
3591 			shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx;
3592 
3593 		/*
3594 		 * If a shstrtab exists, assign the section name.
3595 		 */
3596 		if (names && _cache->c_shdr) {
3597 			if (_cache->c_shdr->sh_name &&
3598 			    /* LINTED */
3599 			    (nameshdr->sh_size > _cache->c_shdr->sh_name)) {
3600 				const char	*symname;
3601 				char		*secname;
3602 
3603 				secname = names + _cache->c_shdr->sh_name;
3604 
3605 				/*
3606 				 * A SUN naming convention employs a "%" within
3607 				 * a section name to indicate a section/symbol
3608 				 * name.  This originated from the compilers
3609 				 * -xF option, that places functions into their
3610 				 * own sections.  This convention (which has no
3611 				 * formal standard) has also been followed for
3612 				 * COMDAT sections.  To demangle the symbol
3613 				 * name, the name must be separated from the
3614 				 * section name.
3615 				 */
3616 				if (((flags & FLG_CTL_DEMANGLE) == 0) ||
3617 				    ((symname = strchr(secname, '%')) == NULL))
3618 					_cache->c_name = secname;
3619 				else {
3620 					size_t	secsz = ++symname - secname;
3621 					size_t	strsz;
3622 
3623 					symname = demangle(symname, flags);
3624 					strsz = secsz + strlen(symname) + 1;
3625 
3626 					if ((_cache->c_name =
3627 					    malloc(strsz)) == NULL) {
3628 						int err = errno;
3629 						(void) fprintf(stderr,
3630 						    MSG_INTL(MSG_ERR_MALLOC),
3631 						    file, strerror(err));
3632 						return (0);
3633 					}
3634 					(void) snprintf(_cache->c_name, strsz,
3635 					    MSG_ORIG(MSG_FMT_SECSYM),
3636 					    EC_WORD(secsz), secname, symname);
3637 				}
3638 
3639 				continue;
3640 			}
3641 
3642 			/*
3643 			 * Generate an error if the section name index is zero
3644 			 * or exceeds the shstrtab data.  Fall through to
3645 			 * fabricate a section name.
3646 			 */
3647 			if ((_cache->c_shdr->sh_name == 0) ||
3648 			    /* LINTED */
3649 			    (nameshdr->sh_size <= _cache->c_shdr->sh_name)) {
3650 				(void) fprintf(stderr,
3651 				    MSG_INTL(MSG_ERR_BADSHNAME), file,
3652 				    EC_WORD(ndx),
3653 				    EC_XWORD(_cache->c_shdr->sh_name));
3654 			}
3655 		}
3656 
3657 		/*
3658 		 * If there exists no shstrtab data, or a section header has no
3659 		 * name (an invalid index of 0), then compose a name for the
3660 		 * section.
3661 		 */
3662 		(void) snprintf(scnndxnm, sizeof (scnndxnm),
3663 		    MSG_INTL(MSG_FMT_SCNNDX), ndx);
3664 
3665 		if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) {
3666 			int err = errno;
3667 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
3668 			    file, strerror(err));
3669 			return (0);
3670 		}
3671 		(void) strcpy(_cache->c_name, scnndxnm);
3672 	}
3673 
3674 	/*
3675 	 * Having collected all the sections, validate their address range.
3676 	 * Cases have existed where the section information has been invalid.
3677 	 * This can lead to all sorts of other, hard to diagnose errors, as
3678 	 * each section is processed individually (ie. with elf_getdata()).
3679 	 * Here, we carry out some address comparisons to catch a family of
3680 	 * overlapping memory issues we have observed (likely, there are others
3681 	 * that we have yet to discover).
3682 	 *
3683 	 * Note, should any memory overlap occur, obtaining any additional
3684 	 * data from the file is questionable.  However, it might still be
3685 	 * possible to inspect the ELF header, Programs headers, or individual
3686 	 * sections, so rather than bailing on an error condition, continue
3687 	 * processing to see if any data can be salvaged.
3688 	 */
3689 	if (shdr_ndx_arr_cnt > 1) {
3690 		sort_shdr_ndx_arr_cache = cache;
3691 		qsort(shdr_ndx_arr, shdr_ndx_arr_cnt,
3692 		    sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr);
3693 	}
3694 	for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) {
3695 		Cache	*_cache = cache + shdr_ndx_arr[ndx];
3696 		Shdr	*shdr = _cache->c_shdr;
3697 		Off	bgn1, bgn = shdr->sh_offset;
3698 		Off	end1, end = shdr->sh_offset + shdr->sh_size;
3699 		size_t	ndx1;
3700 
3701 		/*
3702 		 * Check the section against all following ones, reporting
3703 		 * any overlaps. Since we've sorted the sections by offset,
3704 		 * we can stop after the first comparison that fails. There
3705 		 * are no overlaps in a properly formed ELF file, in which
3706 		 * case this algorithm runs in O(n) time. This will degenerate
3707 		 * to O(n^2) for a completely broken file. Such a file is
3708 		 * (1) highly unlikely, and (2) unusable, so it is reasonable
3709 		 * for the analysis to take longer.
3710 		 */
3711 		for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) {
3712 			Cache	*_cache1 = cache + shdr_ndx_arr[ndx1];
3713 			Shdr	*shdr1 = _cache1->c_shdr;
3714 
3715 			bgn1 = shdr1->sh_offset;
3716 			end1 = shdr1->sh_offset + shdr1->sh_size;
3717 
3718 			if (((bgn1 <= bgn) && (end1 > bgn)) ||
3719 			    ((bgn1 < end) && (end1 >= end))) {
3720 				(void) fprintf(stderr,
3721 				    MSG_INTL(MSG_ERR_SECMEMOVER), file,
3722 				    EC_WORD(elf_ndxscn(_cache->c_scn)),
3723 				    _cache->c_name, EC_OFF(bgn), EC_OFF(end),
3724 				    EC_WORD(elf_ndxscn(_cache1->c_scn)),
3725 				    _cache1->c_name, EC_OFF(bgn1),
3726 				    EC_OFF(end1));
3727 			} else {	/* No overlap, so can stop */
3728 				break;
3729 			}
3730 		}
3731 
3732 		/*
3733 		 * In addition to checking for sections overlapping
3734 		 * each other (done above), we should also make sure
3735 		 * the section doesn't overlap the section header array.
3736 		 */
3737 		bgn1 = ehdr->e_shoff;
3738 		end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum);
3739 
3740 		if (((bgn1 <= bgn) && (end1 > bgn)) ||
3741 		    ((bgn1 < end) && (end1 >= end))) {
3742 			(void) fprintf(stderr,
3743 			    MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1),
3744 			    EC_OFF(end1),
3745 			    EC_WORD(elf_ndxscn(_cache->c_scn)),
3746 			    _cache->c_name, EC_OFF(bgn), EC_OFF(end));
3747 		}
3748 	}
3749 
3750 	/*
3751 	 * Obtain the data for each section.
3752 	 */
3753 	for (ndx = 1; ndx < shnum; ndx++) {
3754 		Cache	*_cache = &cache[ndx];
3755 		Elf_Scn	*scn = _cache->c_scn;
3756 
3757 		if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) {
3758 			failure(file, MSG_ORIG(MSG_ELF_GETDATA));
3759 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA),
3760 			    EC_WORD(elf_ndxscn(scn)));
3761 		}
3762 
3763 		/*
3764 		 * If a string table, verify that it has NULL first and
3765 		 * final bytes.
3766 		 */
3767 		if ((_cache->c_shdr->sh_type == SHT_STRTAB) &&
3768 		    (_cache->c_data->d_buf != NULL) &&
3769 		    (_cache->c_data->d_size > 0)) {
3770 			const char *s = _cache->c_data->d_buf;
3771 
3772 			if ((*s != '\0') ||
3773 			    (*(s + _cache->c_data->d_size - 1) != '\0'))
3774 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALSTR),
3775 				    file, _cache->c_name);
3776 		}
3777 	}
3778 
3779 	return (1);
3780 }
3781 
3782 
3783 
3784 int
3785 regular(const char *file, int fd, Elf *elf, uint_t flags,
3786     const char *wname, int wfd)
3787 {
3788 	Elf_Scn		*scn;
3789 	Ehdr		*ehdr;
3790 	size_t		ndx, shstrndx, shnum, phnum;
3791 	Shdr		*shdr;
3792 	Cache		*cache;
3793 	VERSYM_STATE	versym;
3794 	int		ret = 0;
3795 	int		addr_align;
3796 
3797 	if ((ehdr = elf_getehdr(elf)) == NULL) {
3798 		failure(file, MSG_ORIG(MSG_ELF_GETEHDR));
3799 		return (ret);
3800 	}
3801 
3802 	if (elf_getshnum(elf, &shnum) == 0) {
3803 		failure(file, MSG_ORIG(MSG_ELF_GETSHNUM));
3804 		return (ret);
3805 	}
3806 
3807 	if (elf_getshstrndx(elf, &shstrndx) == 0) {
3808 		failure(file, MSG_ORIG(MSG_ELF_GETSHSTRNDX));
3809 		return (ret);
3810 	}
3811 
3812 	if (elf_getphnum(elf, &phnum) == 0) {
3813 		failure(file, MSG_ORIG(MSG_ELF_GETPHNUM));
3814 		return (ret);
3815 	}
3816 	/*
3817 	 * If the user requested section headers derived from the
3818 	 * program headers (-P option) and this file doesn't have
3819 	 * any program headers (i.e. ET_REL), then we can't do it.
3820 	 */
3821 	if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) {
3822 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file);
3823 		return (ret);
3824 	}
3825 
3826 
3827 	if ((scn = elf_getscn(elf, 0)) != NULL) {
3828 		if ((shdr = elf_getshdr(scn)) == NULL) {
3829 			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3830 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0);
3831 			return (ret);
3832 		}
3833 	} else
3834 		shdr = NULL;
3835 
3836 	/*
3837 	 * Print the elf header.
3838 	 */
3839 	if (flags & FLG_SHOW_EHDR)
3840 		Elf_ehdr(0, ehdr, shdr);
3841 
3842 	/*
3843 	 * If the section headers or program headers have inadequate
3844 	 * alignment for the class of object, print a warning. libelf
3845 	 * can handle such files, but programs that use them can crash
3846 	 * when they dereference unaligned items.
3847 	 *
3848 	 * Note that the AMD64 ABI, although it is a 64-bit architecture,
3849 	 * allows access to data types smaller than 128-bits to be on
3850 	 * word alignment.
3851 	 */
3852 	if (ehdr->e_machine == EM_AMD64)
3853 		addr_align = sizeof (Word);
3854 	else
3855 		addr_align = sizeof (Addr);
3856 
3857 	if (ehdr->e_phoff & (addr_align - 1))
3858 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file);
3859 	if (ehdr->e_shoff & (addr_align - 1))
3860 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file);
3861 
3862 	/*
3863 	 * Print the program headers.
3864 	 */
3865 	if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) {
3866 		Phdr	*phdr;
3867 
3868 		if ((phdr = elf_getphdr(elf)) == NULL) {
3869 			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
3870 			return (ret);
3871 		}
3872 
3873 		for (ndx = 0; ndx < phnum; phdr++, ndx++) {
3874 			if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE,
3875 			    NULL, ndx, phdr->p_type))
3876 				continue;
3877 
3878 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3879 			dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx));
3880 			Elf_phdr(0, ehdr->e_machine, phdr);
3881 		}
3882 	}
3883 
3884 	/*
3885 	 * If we have flag bits set that explicitly require a show or calc
3886 	 * operation, but none of them require the section headers, then
3887 	 * we are done and can return now.
3888 	 */
3889 	if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) &&
3890 	    ((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0))
3891 		return (ret);
3892 
3893 	/*
3894 	 * If there are no section headers, then resort to synthesizing
3895 	 * section headers from the program headers. This is normally
3896 	 * only done by explicit request, but in this case there's no
3897 	 * reason not to go ahead, since the alternative is simply to quit.
3898 	 */
3899 	if ((shnum <= 1) && ((flags & FLG_CTL_FAKESHDR) == 0)) {
3900 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file);
3901 		flags |= FLG_CTL_FAKESHDR;
3902 	}
3903 
3904 	/*
3905 	 * Generate a cache of section headers and related information
3906 	 * for use by the rest of elfdump. If requested (or the file
3907 	 * contains no section headers), we generate a fake set of
3908 	 * headers from the information accessible from the program headers.
3909 	 * Otherwise, we use the real section headers contained in the file.
3910 	 */
3911 
3912 	if (flags & FLG_CTL_FAKESHDR) {
3913 		if (fake_shdr_cache(file, fd, elf, ehdr, &cache, &shnum) == 0)
3914 			return (ret);
3915 	} else {
3916 		if (shdr_cache(file, elf, ehdr, shstrndx, shnum,
3917 		    &cache, flags) == 0)
3918 			return (ret);
3919 	}
3920 
3921 	/*
3922 	 * Everything from this point on requires section headers.
3923 	 * If we have no section headers, there is no reason to continue.
3924 	 */
3925 	if (shnum <= 1)
3926 		goto done;
3927 
3928 	/*
3929 	 * If -w was specified, find and write out the section(s) data.
3930 	 */
3931 	if (wfd) {
3932 		for (ndx = 1; ndx < shnum; ndx++) {
3933 			Cache	*_cache = &cache[ndx];
3934 
3935 			if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
3936 			    ndx, _cache->c_shdr->sh_type) &&
3937 			    _cache->c_data && _cache->c_data->d_buf) {
3938 				if (write(wfd, _cache->c_data->d_buf,
3939 				    _cache->c_data->d_size) !=
3940 				    _cache->c_data->d_size) {
3941 					int err = errno;
3942 					(void) fprintf(stderr,
3943 					    MSG_INTL(MSG_ERR_WRITE), wname,
3944 					    strerror(err));
3945 					/*
3946 					 * Return an exit status of 1, because
3947 					 * the failure is not related to the
3948 					 * ELF file, but by system resources.
3949 					 */
3950 					ret = 1;
3951 					goto done;
3952 				}
3953 			}
3954 		}
3955 	}
3956 
3957 	/*
3958 	 * If we have no flag bits set that explicitly require a show or calc
3959 	 * operation, but match options (-I, -N, -T) were used, then run
3960 	 * through the section headers and see if we can't deduce show flags
3961 	 * from the match options given.
3962 	 *
3963 	 * We don't do this if -w was specified, because (-I, -N, -T) used
3964 	 * with -w in lieu of some other option is supposed to be quiet.
3965 	 */
3966 	if ((wfd == 0) && (flags & FLG_CTL_MATCH) &&
3967 	    ((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) {
3968 		for (ndx = 1; ndx < shnum; ndx++) {
3969 			Cache	*_cache = &cache[ndx];
3970 
3971 			if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
3972 			    ndx, _cache->c_shdr->sh_type))
3973 				continue;
3974 
3975 			switch (_cache->c_shdr->sh_type) {
3976 			case SHT_PROGBITS:
3977 				/*
3978 				 * Heuristic time: It is usually bad form
3979 				 * to assume the meaning/format of a PROGBITS
3980 				 * section based on its name. However, there
3981 				 * are exceptions: The ELF ABI specifies
3982 				 * .interp and .got sections by name. Existing
3983 				 * practice has similarly pinned down the
3984 				 * meaning of unwind sections (.eh_frame and
3985 				 * .eh_frame_hdr).
3986 				 *
3987 				 * Check for these special names.
3988 				 */
3989 				if (strcmp(_cache->c_name,
3990 				    MSG_ORIG(MSG_ELF_INTERP)) == 0)
3991 					flags |= FLG_SHOW_INTERP;
3992 				else if (strcmp(_cache->c_name,
3993 				    MSG_ORIG(MSG_ELF_GOT)) == 0)
3994 					flags |= FLG_SHOW_GOT;
3995 				else if (strncmp(_cache->c_name,
3996 				    MSG_ORIG(MSG_SCN_FRM),
3997 				    MSG_SCN_FRM_SIZE) == 0)
3998 					flags |= FLG_SHOW_UNWIND;
3999 				break;
4000 
4001 			case SHT_SYMTAB:
4002 			case SHT_DYNSYM:
4003 			case SHT_SUNW_LDYNSYM:
4004 			case SHT_SUNW_versym:
4005 			case SHT_SYMTAB_SHNDX:
4006 				flags |= FLG_SHOW_SYMBOLS;
4007 				break;
4008 
4009 			case SHT_RELA:
4010 			case SHT_REL:
4011 				flags |= FLG_SHOW_RELOC;
4012 				break;
4013 
4014 			case SHT_HASH:
4015 				flags |= FLG_SHOW_HASH;
4016 				break;
4017 
4018 			case SHT_DYNAMIC:
4019 				flags |= FLG_SHOW_DYNAMIC;
4020 				break;
4021 
4022 			case SHT_NOTE:
4023 				flags |= FLG_SHOW_NOTE;
4024 				break;
4025 
4026 			case SHT_GROUP:
4027 				flags |= FLG_SHOW_GROUP;
4028 				break;
4029 
4030 			case SHT_SUNW_symsort:
4031 			case SHT_SUNW_tlssort:
4032 				flags |= FLG_SHOW_SORT;
4033 				break;
4034 
4035 			case SHT_SUNW_cap:
4036 				flags |= FLG_SHOW_CAP;
4037 				break;
4038 
4039 			case SHT_SUNW_move:
4040 				flags |= FLG_SHOW_MOVE;
4041 				break;
4042 
4043 			case SHT_SUNW_syminfo:
4044 				flags |= FLG_SHOW_SYMINFO;
4045 				break;
4046 
4047 			case SHT_SUNW_verdef:
4048 			case SHT_SUNW_verneed:
4049 				flags |= FLG_SHOW_VERSIONS;
4050 				break;
4051 
4052 			case SHT_AMD64_UNWIND:
4053 				flags |= FLG_SHOW_UNWIND;
4054 				break;
4055 			}
4056 		}
4057 	}
4058 
4059 
4060 	if (flags & FLG_SHOW_SHDR)
4061 		sections(file, cache, shnum, ehdr);
4062 
4063 	if (flags & FLG_SHOW_INTERP)
4064 		interp(file, cache, shnum, phnum, elf);
4065 
4066 	versions(cache, shnum, file, flags, &versym);
4067 
4068 	if (flags & FLG_SHOW_SYMBOLS)
4069 		symbols(cache, shnum, ehdr, &versym, file, flags);
4070 
4071 	if (flags & FLG_SHOW_SORT)
4072 		sunw_sort(cache, shnum, ehdr, &versym, file, flags);
4073 
4074 	if (flags & FLG_SHOW_HASH)
4075 		hash(cache, shnum, file, flags);
4076 
4077 	if (flags & FLG_SHOW_GOT)
4078 		got(cache, shnum, ehdr, file);
4079 
4080 	if (flags & FLG_SHOW_GROUP)
4081 		group(cache, shnum, file, flags);
4082 
4083 	if (flags & FLG_SHOW_SYMINFO)
4084 		syminfo(cache, shnum, file);
4085 
4086 	if (flags & FLG_SHOW_RELOC)
4087 		reloc(cache, shnum, ehdr, file);
4088 
4089 	if (flags & FLG_SHOW_DYNAMIC)
4090 		dynamic(cache, shnum, ehdr, file);
4091 
4092 	if (flags & FLG_SHOW_NOTE) {
4093 		Word	note_cnt;
4094 		size_t	note_shnum;
4095 		Cache	*note_cache;
4096 
4097 		note_cnt = note(cache, shnum, ehdr, file);
4098 
4099 		/*
4100 		 * Solaris core files have section headers, but these
4101 		 * headers do not include SHT_NOTE sections that reference
4102 		 * the core note sections. This means that note() won't
4103 		 * find the core notes. Fake section headers (-P option)
4104 		 * recover these sections, but it is inconvenient to require
4105 		 * users to specify -P in this situation. If the following
4106 		 * are all true:
4107 		 *
4108 		 *	- No note sections were found
4109 		 *	- This is a core file
4110 		 *	- We are not already using fake section headers
4111 		 *
4112 		 * then we will automatically generate fake section headers
4113 		 * and then process them in a second call to note().
4114 		 */
4115 		if ((note_cnt == 0) && (ehdr->e_type == ET_CORE) &&
4116 		    !(flags & FLG_CTL_FAKESHDR) &&
4117 		    (fake_shdr_cache(file, fd, elf, ehdr,
4118 		    &note_cache, &note_shnum) != 0)) {
4119 			(void) note(note_cache, note_shnum, ehdr, file);
4120 			fake_shdr_cache_free(note_cache, note_shnum);
4121 		}
4122 	}
4123 
4124 	if (flags & FLG_SHOW_MOVE)
4125 		move(cache, shnum, file, flags);
4126 
4127 	if (flags & FLG_CALC_CHECKSUM)
4128 		checksum(elf);
4129 
4130 	if (flags & FLG_SHOW_CAP)
4131 		cap(file, cache, shnum, phnum, ehdr, elf);
4132 
4133 	if (flags & FLG_SHOW_UNWIND)
4134 		unwind(cache, shnum, phnum, ehdr, file, elf);
4135 
4136 
4137 	/* Release the memory used to cache section headers */
4138 done:
4139 	if (flags & FLG_CTL_FAKESHDR)
4140 		fake_shdr_cache_free(cache, shnum);
4141 	else
4142 		free(cache);
4143 
4144 	return (ret);
4145 }
4146