xref: /illumos-gate/usr/src/cmd/picl/plugins/sun4v/snmp/snmpplugin.c (revision e511d54dfc1c7eb3aea1a9125b54791fc2f23d42)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * The SNMP picl plugin connects to the agent on the SP and creates
29  * and populates the /physical-platform subtree in picl tree for use
30  * by picl consumers.
31  */
32 
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 #include <syslog.h>
37 #include <stdarg.h>
38 #include <libgen.h>
39 #include <libintl.h>
40 #include <thread.h>
41 #include <synch.h>
42 #include <errno.h>
43 #include <time.h>
44 
45 #include <picldefs.h>
46 #include <picl.h>
47 #include <picltree.h>
48 
49 #include "picloids.h"
50 #include "libpiclsnmp.h"
51 #include "snmpplugin.h"
52 
53 #pragma init(snmpplugin_register)	/* place in .init section */
54 
55 picld_plugin_reg_t snmpplugin_reg = {
56 	PICLD_PLUGIN_VERSION_1,
57 	PICLD_PLUGIN_NON_CRITICAL,
58 	"snmp_plugin",
59 	snmpplugin_init,
60 	snmpplugin_fini
61 };
62 
63 static picl_snmphdl_t	hdl;
64 
65 /*
66  * The stale_tree_rwlp protects the stale_xxx vars. The 'stale_tree' flag
67  * and the 'rebuild_tree' flag below are both initialized to B_TRUE to
68  * let the tree_builder() thread build the initial tree without blocking.
69  */
70 static rwlock_t		stale_tree_rwlp;
71 static boolean_t	stale_tree = B_TRUE;
72 
73 /*
74  * vol_props, volprop_ndx and n_vol_props are protected by the stale_tree
75  * flag.  They are read only when the stale_tree flag is B_FALSE and written
76  * to only when the flag is B_TRUE.
77  *
78  * The change_time (last changed time) is read by only one thread at a
79  * time when stale_tree is B_FALSE (protected by stale_tree_rwlp).  It is
80  * written by only one thread (the tree builder) when stale_tree is B_TRUE.
81  *
82  * Note that strictly speaking, change_time should be uint_t (timeticks32).
83  * But keeping it as int is fine, since we don't do any arithmetic on it
84  * except equality check.
85  */
86 static vol_prophdl_t	*vol_props = NULL;
87 static int		volprop_ndx = 0, n_vol_props = 0;
88 static int		change_time = 0;
89 static time_t		change_time_check;
90 
91 /*
92  * The rebuild_tree_lock and cv are used by the tree builder thread.
93  * rebuild_tree has to be initialized to B_TRUE to let the tree_builder
94  * do the first build without blocking.
95  */
96 static mutex_t		rebuild_tree_lock;
97 static cond_t		rebuild_tree_cv;
98 static boolean_t	rebuild_tree = B_TRUE;
99 static boolean_t	tree_builder_thr_exit = B_FALSE;
100 static thread_t		tree_builder_thr_id;
101 
102 /*
103  * The cache_refresh thread periodically queries the snmp cache refresh work
104  * queue and processes jobs from it to keep cache entries from expiring.  It
105  * attempts to run in cycles of CACHE_REFRESH_CYCLE seconds each, first
106  * processing cache refresh jobs and then sleeping for the remainder of the
107  * cycle once the next refresh job expiration is at least
108  * CACHE_REFRESH_MIN_WINDOW seconds in the future.
109  *
110  * NOTE: By using a thread to keep the SNMP cache refreshed in the background,
111  * we are both adding load to the system and reducing the system's ability to
112  * operate in power-saving mode when there is minimal load.  While these
113  * tradeoffs are acceptable at this time in light of customer concerns about
114  * performance, it may be desirable in the future to move this work into the
115  * firmware.  Also, while the current cycle times performed well on the largest
116  * sun4v config currently available (Batoka), they may need to be revisited for
117  * future systems if the number of sensors increases significantly.
118  */
119 #define	CACHE_REFRESH_CYCLE		60
120 #define	CACHE_REFRESH_MIN_WINDOW	75
121 static mutex_t		cache_refresh_lock;
122 static cond_t		cache_refresh_cv;
123 static boolean_t	cache_refresh_thr_exit = B_FALSE;
124 static thread_t		cache_refresh_thr_id;
125 
126 /*
127  * These two should really not be global
128  */
129 static picl_nodehdl_t	*physplat_nodes = NULL;
130 static int		n_physplat_nodes = 0;
131 
132 static char *group1[] = {
133 	OID_entPhysicalDescr,
134 	OID_entPhysicalContainedIn,
135 	OID_entPhysicalClass,
136 	OID_entPhysicalName,
137 	OID_entPhysicalHardwareRev,
138 	OID_entPhysicalFirmwareRev,
139 	OID_entPhysicalSerialNum,
140 	OID_entPhysicalMfgName,
141 	OID_entPhysicalModelName,
142 	OID_entPhysicalIsFRU,
143 	0
144 };
145 
146 static char *group2[] = {
147 	OID_sunPlatEquipmentHolderAcceptableTypes,
148 	OID_sunPlatCircuitPackReplaceable,
149 	OID_sunPlatCircuitPackHotSwappable,
150 	OID_sunPlatPhysicalClass,
151 	OID_sunPlatSensorClass,
152 	OID_sunPlatSensorType,
153 	OID_sunPlatAlarmType,
154 	OID_sunPlatPowerSupplyClass,
155 	0
156 };
157 
158 static char *group3[] = {
159 	OID_sunPlatNumericSensorEnabledThresholds,
160 	OID_sunPlatNumericSensorBaseUnits,
161 	OID_sunPlatNumericSensorRateUnits,
162 	0
163 };
164 
165 static char *group4[] = {
166 	OID_sunPlatBinarySensorInterpretTrue,
167 	OID_sunPlatBinarySensorInterpretFalse,
168 	0
169 };
170 
171 static char *volgroup1[] = {
172 	OID_sunPlatBinarySensorCurrent,
173 	OID_sunPlatBinarySensorExpected,
174 	0
175 };
176 
177 static char *volgroup2[] = {
178 	OID_sunPlatNumericSensorExponent,
179 	OID_sunPlatNumericSensorCurrent,
180 	OID_sunPlatNumericSensorLowerThresholdFatal,
181 	OID_sunPlatNumericSensorLowerThresholdCritical,
182 	OID_sunPlatNumericSensorLowerThresholdNonCritical,
183 	OID_sunPlatNumericSensorUpperThresholdNonCritical,
184 	OID_sunPlatNumericSensorUpperThresholdCritical,
185 	OID_sunPlatNumericSensorUpperThresholdFatal,
186 	0
187 };
188 
189 static char *volgroup3[] = {
190 	OID_sunPlatEquipmentOperationalState,
191 	0
192 };
193 
194 static char *volgroup4[] = {
195 	OID_sunPlatAlarmState,
196 	0
197 };
198 
199 static char *volgroup5[] = {
200 	OID_sunPlatBatteryStatus,
201 	0
202 };
203 
204 /*
205  * The following two items must match the Sun Platform MIB specification
206  * in their indices and values.
207  */
208 static char *sensor_baseunits[] = {
209 	"", "other", "unknown", "degC", "degF", "degK", "volts", "amps",
210 	"watts", "joules", "coulombs", "va", "nits", "lumens", "lux",
211 	"candelas", "kPa", "psi", "newtons", "cfm", "rpm", "hertz",
212 	"seconds", "minutes", "hours", "days", "weeks", "mils", "inches",
213 	"feet", "cubicInches", "cubicFeet", "meters", "cubicCentimeters",
214 	"cubicMeters", "liters", "fluidOunces", "radians", "steradians",
215 	"revolutions", "cycles", "gravities", "ounces", "pounds", "footPounds",
216 	"ounceInches", "gauss", "gilberts", "henries", "farads", "ohms",
217 	"siemens", "moles", "becquerels", "ppm", "decibels", "dBA", "dbC",
218 	"grays", "sieverts", "colorTemperatureDegK", "bits", "bytes", "words",
219 	"doubleWords", "quadWords", "percentage"
220 };
221 static const int n_baseunits = sizeof (sensor_baseunits) / sizeof (char *);
222 
223 static char *sensor_rateunits[] = {
224 	"",
225 	"none",
226 	"perMicroSecond",
227 	"perMilliSecond",
228 	"perSecond",
229 	"perMinute",
230 	"perHour",
231 	"perDay",
232 	"perWeek",
233 	"perMonth",
234 	"perYear"
235 };
236 static const int n_rateunits = sizeof (sensor_rateunits) / sizeof (char *);
237 
238 /*
239  * Local declarations
240  */
241 static void snmpplugin_register(void);
242 static void register_group(char **g, int is_volatile);
243 static void *tree_builder(void *arg);
244 static int build_physplat(picl_nodehdl_t *subtree_rootp);
245 static void free_resources(picl_nodehdl_t subtree_root);
246 
247 static picl_nodehdl_t make_node(picl_nodehdl_t subtree_root, int row,
248     int *snmp_syserr_p);
249 static void save_nodeh(picl_nodehdl_t nodeh, int row);
250 static picl_nodehdl_t lookup_nodeh(int row);
251 
252 static void save_volprop(picl_prophdl_t prop, char *oidstr, int row,
253     int proptype);
254 static void check_for_stale_data(boolean_t nocache);
255 static int read_volprop(ptree_rarg_t *parg, void *buf);
256 
257 static void threshold(picl_nodehdl_t node, char *oidstr, int row,
258     char *propname, int *snmp_syserr_p);
259 static void add_thresholds(picl_nodehdl_t node, int row, int *snmp_syserr_p);
260 
261 static char *get_slot_type(int row, int *snmp_syserr_p);
262 static int add_volatile_prop(picl_nodehdl_t nodeh, char *name,
263     int type, int access, int size, int (*rdfunc)(ptree_rarg_t *, void *),
264     int (*wrfunc)(ptree_warg_t *, const void *), picl_prophdl_t *propp);
265 static int add_string_prop(picl_nodehdl_t node, char *propname, char *propval);
266 static int add_void_prop(picl_nodehdl_t node, char *propname);
267 static void add_prop(picl_nodehdl_t nodeh, picl_prophdl_t *php, char *label,
268     int row, sp_propid_t pp, int *snmp_syserr_p);
269 
270 static void *cache_refresher(void *arg);
271 static void cache_refresher_fini(void);
272 
273 static void log_msg(int pri, const char *fmt, ...);
274 
275 #ifdef SNMPPLUGIN_DEBUG
276 static mutex_t	snmpplugin_dbuf_lock;
277 static char	*snmpplugin_dbuf = NULL;
278 static char	*snmpplugin_dbuf_curp = NULL;
279 static int	snmpplugin_dbuf_sz = 0;
280 static int	snmpplugin_dbuf_overflow = 0;
281 static char	snmpplugin_lbuf[SNMPPLUGIN_DMAX_LINE];
282 
283 static void	snmpplugin_log_init(void);
284 static void	snmpplugin_log(const char *fmt, ...);
285 static void	snmpplugin_log_append(void);
286 static void	snmpplugin_dbuf_realloc(void);
287 #endif
288 
289 static void
290 snmpplugin_register(void)
291 {
292 	(void) picld_plugin_register(&snmpplugin_reg);
293 }
294 
295 static void
296 register_group(char **g, int is_volatile)
297 {
298 	int	i, len = 0;
299 	int	n_oids;
300 	char	*p, *oidstrs;
301 
302 	for (i = 0; g[i]; i++)
303 		len += strlen(g[i]) + 1;
304 	n_oids = i;
305 
306 	if ((oidstrs = (char *)calloc(1, len)) == NULL)
307 		return;
308 
309 	for (p = oidstrs, i = 0; g[i]; i++) {
310 		(void) strcpy(p, g[i]);
311 		p += strlen(g[i]) + 1;
312 	}
313 
314 	snmp_register_group(hdl, oidstrs, n_oids, is_volatile);
315 	free(oidstrs);
316 }
317 
318 void
319 snmpplugin_init(void)
320 {
321 	int		ret;
322 
323 	(void) mutex_init(&rebuild_tree_lock, USYNC_THREAD, NULL);
324 	(void) cond_init(&rebuild_tree_cv, USYNC_THREAD, NULL);
325 	(void) rwlock_init(&stale_tree_rwlp, USYNC_THREAD, NULL);
326 	tree_builder_thr_exit = B_FALSE;
327 
328 	LOGINIT();
329 
330 	/*
331 	 * Create the tree-builder thread and let it take over
332 	 */
333 	LOGPRINTF("Tree-builder thread being created.\n");
334 	if ((ret = thr_create(NULL, NULL, tree_builder, NULL,
335 	    THR_BOUND, &tree_builder_thr_id)) < 0) {
336 		log_msg(LOG_ERR, SNMPP_CANT_CREATE_TREE_BUILDER, ret);
337 		snmp_fini(hdl);
338 		hdl = NULL;
339 		(void) rwlock_destroy(&stale_tree_rwlp);
340 		(void) cond_destroy(&rebuild_tree_cv);
341 		(void) mutex_destroy(&rebuild_tree_lock);
342 		tree_builder_thr_exit = B_TRUE;
343 
344 		return;
345 	}
346 
347 	/*
348 	 * While the cache refresher thread does improve performance, it is not
349 	 * integral to the proper function of the plugin.  If we fail to create
350 	 * the thread for some reason, we will simply continue without
351 	 * refreshing.
352 	 */
353 	(void) mutex_init(&cache_refresh_lock, USYNC_THREAD, NULL);
354 	(void) cond_init(&cache_refresh_cv, USYNC_THREAD, NULL);
355 	cache_refresh_thr_exit = B_FALSE;
356 
357 	LOGPRINTF("Cache refresher thread being created.\n");
358 	if (thr_create(NULL, NULL, cache_refresher, NULL, THR_BOUND,
359 	    &cache_refresh_thr_id) < 0) {
360 		(void) cond_destroy(&cache_refresh_cv);
361 		(void) mutex_destroy(&cache_refresh_lock);
362 		cache_refresh_thr_exit = B_TRUE;
363 	}
364 }
365 
366 void
367 snmpplugin_fini(void)
368 {
369 
370 	if (tree_builder_thr_exit == B_TRUE)
371 		return;
372 
373 	/*
374 	 * Make reads of volatile properties return PICL_PROPUNAVAILABLE
375 	 * since we're about to recycle the plug-in.  No need to worry
376 	 * about removing /physical-platform since tree_builder() will
377 	 * take care of recycling it for us.
378 	 */
379 	(void) rw_wrlock(&stale_tree_rwlp);
380 	stale_tree = B_TRUE;
381 	if (vol_props) {
382 		free(vol_props);
383 	}
384 	vol_props = NULL;
385 	volprop_ndx = 0;
386 	n_vol_props = 0;
387 	(void) rw_unlock(&stale_tree_rwlp);
388 
389 	/* clean up the cache_refresher thread and structures */
390 	cache_refresher_fini();
391 
392 	/* wake up the tree_builder thread, tell it to exit */
393 	(void) mutex_lock(&rebuild_tree_lock);
394 	rebuild_tree = B_TRUE;
395 	tree_builder_thr_exit = B_TRUE;
396 	(void) cond_signal(&rebuild_tree_cv);
397 	(void) mutex_unlock(&rebuild_tree_lock);
398 
399 	/* reap the thread */
400 	(void) thr_join(tree_builder_thr_id, NULL, NULL);
401 
402 	/* close the channel */
403 	if (hdl != NULL) {
404 		snmp_fini(hdl);
405 		hdl = NULL;
406 	}
407 
408 	/* finish cleanup... */
409 	(void) rwlock_destroy(&stale_tree_rwlp);
410 	(void) cond_destroy(&rebuild_tree_cv);
411 	(void) mutex_destroy(&rebuild_tree_lock);
412 }
413 
414 /*ARGSUSED*/
415 static void *
416 tree_builder(void *arg)
417 {
418 	int		ret, rv;
419 	picl_nodehdl_t	root_node;
420 	picl_nodehdl_t	physplat_root;
421 	picl_nodehdl_t	old_physplat_root;
422 
423 	/*
424 	 * Initialize SNMP service
425 	 */
426 	LOGPRINTF("Initializing SNMP service.\n");
427 	if ((hdl = snmp_init()) == NULL) {
428 		log_msg(LOG_ERR, SNMPP_CANT_INIT);
429 		return ((void *)-1);
430 	}
431 
432 	/*
433 	 * Register OID groupings for BULKGET optimizations
434 	 */
435 	LOGPRINTF("Registering OID groups.\n");
436 	register_group(group1, 0);
437 	register_group(group2, 0);
438 	register_group(group3, 0);
439 	register_group(group4, 0);
440 	register_group(volgroup1, 1);
441 	register_group(volgroup2, 1);
442 	register_group(volgroup3, 1);
443 	register_group(volgroup4, 1);
444 	register_group(volgroup5, 1);
445 
446 	(void) mutex_lock(&rebuild_tree_lock);
447 
448 	for (;;) {
449 		LOGPRINTF("tree_builder: check whether to rebuild subtree\n");
450 		while (rebuild_tree == B_FALSE)
451 			(void) cond_wait(&rebuild_tree_cv, &rebuild_tree_lock);
452 
453 		LOGPRINTF("tree_builder: woke up\n");
454 
455 		if (tree_builder_thr_exit == B_TRUE) {
456 			(void) mutex_unlock(&rebuild_tree_lock);
457 			LOGPRINTF("tree_builder: time to exit\n");
458 			return (NULL);
459 		}
460 
461 		old_physplat_root = NULL;
462 		physplat_root = NULL;
463 
464 		LOGPRINTF("tree_builder: getting root node\n");
465 		if ((ret = ptree_get_root(&root_node)) != PICL_SUCCESS) {
466 			(void) mutex_unlock(&rebuild_tree_lock);
467 			log_msg(LOG_ERR, SNMPP_NO_ROOT, ret);
468 			return ((void *)-2);
469 		}
470 
471 		LOGPRINTF("tree_builder: getting existing physplat node\n");
472 		rv = ptree_find_node(root_node, PICL_PROP_NAME,
473 		    PICL_PTYPE_CHARSTRING, PICL_NODE_PHYSPLAT,
474 		    sizeof (PICL_NODE_PHYSPLAT), &old_physplat_root);
475 
476 		LOGPRINTF("tree_builder: building physical-platform\n");
477 		if ((ret = build_physplat(&physplat_root)) < 0) {
478 			(void) mutex_unlock(&rebuild_tree_lock);
479 			log_msg(LOG_ERR, SNMPP_CANT_CREATE_PHYSPLAT, ret);
480 			cache_refresher_fini();
481 			snmp_fini(hdl);
482 			hdl = NULL;
483 			return ((void *)-3);
484 		}
485 
486 		if (rv == PICL_SUCCESS && old_physplat_root != NULL) {
487 			LOGPRINTF("tree_builder: destroying existing nodes\n");
488 			ptree_delete_node(old_physplat_root);
489 			ptree_destroy_node(old_physplat_root);
490 		}
491 
492 		LOGPRINTF("tree_builder: attaching new subtree\n");
493 		if ((ret = ptree_add_node(root_node, physplat_root)) < 0) {
494 			(void) mutex_unlock(&rebuild_tree_lock);
495 			free_resources(physplat_root);
496 			log_msg(LOG_ERR, SNMPP_CANT_CREATE_PHYSPLAT, ret);
497 			cache_refresher_fini();
498 			snmp_fini(hdl);
499 			hdl = NULL;
500 			return ((void *)-4);
501 		}
502 
503 		LOGPRINTF("tree_builder: setting stale_tree to FALSE\n");
504 		(void) rw_wrlock(&stale_tree_rwlp);
505 		stale_tree = B_FALSE;
506 		(void) rw_unlock(&stale_tree_rwlp);
507 
508 		LOGPRINTF("tree_builder: setting rebuild_tree to FALSE\n");
509 		rebuild_tree = B_FALSE;
510 	}
511 
512 	/*NOTREACHED*/
513 	return (NULL);
514 }
515 
516 static int
517 build_physplat(picl_nodehdl_t *subtree_rootp)
518 {
519 	int	change_time1;
520 	int	row, nxtrow;
521 	int	clr_linkreset = 0;
522 	int	ret = 0;
523 	int	snmp_syserr = 0;
524 
525 retry:
526 	(void) snmp_reinit(hdl, clr_linkreset);
527 	clr_linkreset = 0;
528 
529 	/*
530 	 * Record LastChangeTime before we start building the tree
531 	 */
532 	ret = snmp_get_int(hdl, OID_entLastChangeTime, 0,
533 	    &change_time1, &snmp_syserr);
534 	if (ret < 0) {
535 		if (snmp_syserr == ECANCELED) {
536 			LOGPRINTF(SNMPP_LINK_RESET);
537 			clr_linkreset = 1;
538 			goto retry;
539 		}
540 		log_msg(LOG_WARNING, SNMPP_CANT_FETCH_OBJECT_VAL,
541 		    snmp_syserr ? snmp_syserr : ret, OID_entLastChangeTime, 0);
542 	}
543 
544 	/*
545 	 * Create the physical-platform node
546 	 */
547 	ret = ptree_create_node(PICL_NODE_PHYSPLAT, PICL_CLASS_PICL,
548 	    subtree_rootp);
549 	if (ret != PICL_SUCCESS)
550 		return (-1);
551 
552 	/*
553 	 * Scan entPhysicalTable and build the "physical-platform" subtree
554 	 */
555 	ret = 0;
556 	for (row = -1; ret == 0; row = nxtrow) {
557 		ret = snmp_get_nextrow(hdl, OID_entPhysicalDescr,
558 		    row, &nxtrow, &snmp_syserr);
559 		if (ret == 0)
560 			(void) make_node(*subtree_rootp, nxtrow, &snmp_syserr);
561 		switch (snmp_syserr) {
562 		case ECANCELED:
563 			/*
564 			 * If we get this error, a link reset must've
565 			 * happened and we need to throw away everything
566 			 * we have now and rebuild the tree again.
567 			 */
568 			log_msg(LOG_WARNING, SNMPP_LINK_RESET);
569 			free_resources(*subtree_rootp);
570 			clr_linkreset = 1;
571 			goto retry;
572 			/*NOTREACHED*/
573 			break;
574 		case ENOSPC:	/* end of MIB */
575 			LOGPRINTF("build_physplat: end of MIB\n");
576 			break;
577 		case ENOENT:	/* end of table */
578 			LOGPRINTF("build_physplat: end of table\n");
579 			break;
580 		default:
581 			/*
582 			 * make_node() will print messages so don't
583 			 * repeat that exercise here.
584 			 */
585 			if (ret == -1) {
586 				log_msg(LOG_WARNING,
587 				    SNMPP_CANT_FETCH_OBJECT_VAL,
588 				    snmp_syserr ? snmp_syserr : ret,
589 				    OID_entPhysicalDescr, row);
590 			}
591 		}
592 	}
593 
594 	/*
595 	 * Record LastChangeTime after we're done building the tree
596 	 */
597 	ret = snmp_get_int(hdl, OID_entLastChangeTime, 0,
598 	    &change_time, &snmp_syserr);
599 	if (ret < 0) {
600 		if (snmp_syserr == ECANCELED) {
601 			log_msg(LOG_WARNING, SNMPP_LINK_RESET);
602 			free_resources(*subtree_rootp);
603 			clr_linkreset = 1;
604 			goto retry;
605 		} else
606 			log_msg(LOG_WARNING, SNMPP_CANT_FETCH_OBJECT_VAL,
607 			    snmp_syserr ? snmp_syserr : ret,
608 			    OID_entLastChangeTime, row);
609 	}
610 
611 	/*
612 	 * If they don't match, some hotplugging must've happened,
613 	 * free resources we've created and still holding, then go
614 	 * back and retry
615 	 */
616 	if (change_time != change_time1) {
617 		LOGPRINTF("build_physplat: entLastChangeTime has changed!\n");
618 		free_resources(*subtree_rootp);
619 		change_time1 = change_time;
620 		goto retry;
621 	}
622 
623 	/*
624 	 * The physplat_nodes table is no longer needed, free it
625 	 */
626 	if (physplat_nodes) {
627 		free(physplat_nodes);
628 		physplat_nodes = NULL;
629 		n_physplat_nodes = 0;
630 	}
631 
632 	return (0);
633 }
634 
635 /*
636  * Destroy all resources that were created during the building
637  * of the subtree
638  */
639 static void
640 free_resources(picl_nodehdl_t subtree_root)
641 {
642 	if (physplat_nodes) {
643 		free(physplat_nodes);
644 		physplat_nodes = NULL;
645 		n_physplat_nodes = 0;
646 	}
647 
648 	if (subtree_root) {
649 		(void) ptree_delete_node(subtree_root);
650 		(void) ptree_destroy_node(subtree_root);
651 	}
652 
653 	if (vol_props) {
654 		free(vol_props);
655 		n_vol_props = 0;
656 		volprop_ndx = 0;
657 	}
658 }
659 
660 static picl_nodehdl_t
661 make_node(picl_nodehdl_t subtree_root, int row, int *snmp_syserr_p)
662 {
663 	picl_nodehdl_t	nodeh, parenth;
664 	picl_prophdl_t	proph;
665 	char	*phys_name, *node_name;
666 	int	parent_row;
667 	int	ent_physclass, sunplat_physclass;
668 	int	sensor_class, sensor_type;
669 	int	alarm_type;
670 	int	ps_class;
671 	int	ret;
672 
673 	/*
674 	 * If we've already created this picl node, just return it
675 	 */
676 	if ((nodeh = lookup_nodeh(row)) != NULL)
677 		return (nodeh);
678 
679 	/*
680 	 * If we are creating it only now, make sure we have the parent
681 	 * created first; if there's no parent, then parent it to the
682 	 * subtree's root node
683 	 */
684 	ret = snmp_get_int(hdl, OID_entPhysicalContainedIn, row,
685 	    &parent_row, snmp_syserr_p);
686 	CHECK_LINKRESET(snmp_syserr_p, NULL)
687 	if (ret < 0 || parent_row <= 0)
688 		parenth = subtree_root;
689 	else {
690 		parenth = make_node(subtree_root, parent_row, snmp_syserr_p);
691 		CHECK_LINKRESET(snmp_syserr_p, NULL)
692 		if (parenth == NULL)
693 			parenth = subtree_root;
694 	}
695 
696 	/*
697 	 * Figure out the physical-platform node name from entPhysicalName;
698 	 * all rows in the MIB that have a valid entPhysicalIndex should
699 	 * have a physical name.
700 	 */
701 	ret = snmp_get_str(hdl, OID_entPhysicalName, row,
702 	    &phys_name, snmp_syserr_p);
703 	CHECK_LINKRESET(snmp_syserr_p, NULL)
704 	if (ret < 0 || phys_name == NULL) {
705 		log_msg(LOG_WARNING, SNMPP_NO_ENTPHYSNAME, row);
706 		return (NULL);
707 	}
708 
709 	node_name = basename(phys_name);
710 
711 	ret = snmp_get_int(hdl, OID_entPhysicalClass, row,
712 	    &ent_physclass, snmp_syserr_p);
713 	CHECK_LINKRESET(snmp_syserr_p, NULL)
714 	if (ret < 0) {
715 		log_msg(LOG_WARNING, SNMPP_CANT_FETCH_OBJECT_VAL,
716 		    *snmp_syserr_p ? *snmp_syserr_p : ret,
717 		    OID_entPhysicalClass, row);
718 		free(phys_name);
719 		return (NULL);
720 	}
721 
722 	switch (ent_physclass) {
723 	case SPC_OTHER:
724 		ret = snmp_get_int(hdl, OID_sunPlatPhysicalClass, row,
725 		    &sunplat_physclass, snmp_syserr_p);
726 		CHECK_LINKRESET(snmp_syserr_p, NULL)
727 		if (ret < 0) {
728 			log_msg(LOG_WARNING, SNMPP_CANT_FETCH_OBJECT_VAL,
729 			    *snmp_syserr_p ? *snmp_syserr_p : ret,
730 			    OID_sunPlatPhysicalClass, row);
731 			free(phys_name);
732 			return (NULL);
733 		}
734 
735 		if (sunplat_physclass == SSPC_ALARM) {
736 			ret = snmp_get_int(hdl, OID_sunPlatAlarmType,
737 			    row, &alarm_type, snmp_syserr_p);
738 			CHECK_LINKRESET(snmp_syserr_p, NULL)
739 			if (ret < 0) {
740 				log_msg(LOG_WARNING,
741 				    SNMPP_CANT_FETCH_OBJECT_VAL,
742 				    *snmp_syserr_p ? *snmp_syserr_p : ret,
743 				    OID_sunPlatAlarmType, row);
744 				free(phys_name);
745 				return (NULL);
746 			}
747 
748 			if (alarm_type == SSAT_VISIBLE) {
749 				ADD_NODE(PICL_CLASS_LED)
750 			} else {
751 				ADD_NODE(PICL_CLASS_ALARM)
752 			}
753 
754 			add_prop(nodeh, &proph, node_name, row, PP_STATE,
755 			    snmp_syserr_p);
756 			CHECK_LINKRESET(snmp_syserr_p, NULL)
757 		} else {
758 			ADD_NODE(PICL_CLASS_OTHER)
759 		}
760 
761 		add_prop(nodeh, &proph, node_name, row, PP_OPSTATUS,
762 		    snmp_syserr_p);
763 		CHECK_LINKRESET(snmp_syserr_p, NULL)
764 		break;
765 
766 	case SPC_UNKNOWN:
767 		ADD_NODE(PICL_CLASS_UNKNOWN)
768 		break;
769 
770 	case SPC_CHASSIS:
771 		ADD_NODE(PICL_CLASS_CHASSIS)
772 		add_prop(nodeh, &proph, node_name, row, PP_OPSTATUS,
773 		    snmp_syserr_p);
774 		CHECK_LINKRESET(snmp_syserr_p, NULL)
775 		break;
776 
777 	case SPC_BACKPLANE:
778 		ADD_NODE(PICL_CLASS_BACKPLANE)
779 		add_prop(nodeh, &proph, node_name, row, PP_OPSTATUS,
780 		    snmp_syserr_p);
781 		CHECK_LINKRESET(snmp_syserr_p, NULL)
782 		break;
783 
784 	case SPC_CONTAINER:
785 		ADD_NODE(PICL_CLASS_CONTAINER)
786 
787 		add_prop(nodeh, &proph, node_name, row, PP_OPSTATUS,
788 		    snmp_syserr_p);
789 		CHECK_LINKRESET(snmp_syserr_p, NULL)
790 
791 		add_prop(nodeh, &proph, node_name, row, PP_SLOT_TYPE,
792 		    snmp_syserr_p);
793 		CHECK_LINKRESET(snmp_syserr_p, NULL)
794 		break;
795 
796 	case SPC_POWERSUPPLY:
797 		ret = snmp_get_int(hdl, OID_sunPlatPowerSupplyClass,
798 		    row, &ps_class, snmp_syserr_p);
799 		CHECK_LINKRESET(snmp_syserr_p, NULL)
800 		if (ret < 0) {
801 			log_msg(LOG_WARNING, SNMPP_CANT_FETCH_OBJECT_VAL,
802 			    *snmp_syserr_p ? *snmp_syserr_p : ret,
803 			    OID_sunPlatPowerSupplyClass, row);
804 			free(phys_name);
805 			return (NULL);
806 		}
807 
808 		if (ps_class == SSPSC_BATTERY) {
809 			ADD_NODE(PICL_CLASS_BATTERY)
810 			add_prop(nodeh, &proph, node_name, row,
811 			    PP_BATT_STATUS, snmp_syserr_p);
812 			CHECK_LINKRESET(snmp_syserr_p, NULL)
813 		} else {
814 			ADD_NODE(PICL_CLASS_POWERSUPPLY)
815 		}
816 		add_prop(nodeh, &proph, node_name, row, PP_OPSTATUS,
817 		    snmp_syserr_p);
818 		CHECK_LINKRESET(snmp_syserr_p, NULL)
819 		break;
820 
821 	case SPC_FAN:
822 		ADD_NODE(PICL_CLASS_FAN)
823 		add_prop(nodeh, &proph, node_name, row, PP_OPSTATUS,
824 		    snmp_syserr_p);
825 		CHECK_LINKRESET(snmp_syserr_p, NULL)
826 		break;
827 
828 	case SPC_SENSOR:
829 		ret = snmp_get_int(hdl, OID_sunPlatSensorClass,
830 		    row, &sensor_class, snmp_syserr_p);
831 		CHECK_LINKRESET(snmp_syserr_p, NULL)
832 		if (ret < 0) {
833 			log_msg(LOG_WARNING, SNMPP_CANT_FETCH_OBJECT_VAL,
834 			    *snmp_syserr_p ? *snmp_syserr_p : ret,
835 			    OID_sunPlatSensorClass, row);
836 			free(phys_name);
837 			return (NULL);
838 		}
839 
840 		ret = snmp_get_int(hdl, OID_sunPlatSensorType,
841 		    row, &sensor_type, snmp_syserr_p);
842 		CHECK_LINKRESET(snmp_syserr_p, NULL)
843 		if (ret < 0) {
844 			log_msg(LOG_WARNING, SNMPP_CANT_FETCH_OBJECT_VAL,
845 			    *snmp_syserr_p ? *snmp_syserr_p : ret,
846 			    OID_sunPlatSensorType, row);
847 			free(phys_name);
848 			return (NULL);
849 		}
850 
851 		if (sensor_class == SSSC_NUMERIC) {
852 			if (sensor_type == SSST_TEMPERATURE) {
853 				ADD_NODE(PICL_CLASS_TEMPERATURE_SENSOR)
854 				add_prop(nodeh, &proph, node_name, row,
855 				    PP_TEMPERATURE, snmp_syserr_p);
856 			} else if (sensor_type == SSST_VOLTAGE) {
857 				ADD_NODE(PICL_CLASS_VOLTAGE_SENSOR)
858 				add_prop(nodeh, &proph, node_name, row,
859 				    PP_VOLTAGE, snmp_syserr_p);
860 			} else if (sensor_type == SSST_CURRENT) {
861 				ADD_NODE(PICL_CLASS_CURRENT_SENSOR)
862 				add_prop(nodeh, &proph, node_name, row,
863 				    PP_CURRENT, snmp_syserr_p);
864 			} else if (sensor_type == SSST_TACHOMETER) {
865 				ADD_NODE(PICL_CLASS_RPM_SENSOR)
866 				add_prop(nodeh, &proph, node_name, row,
867 				    PP_SPEED, snmp_syserr_p);
868 			} else {
869 				ADD_NODE(PICL_CLASS_SENSOR)
870 				add_prop(nodeh, &proph, node_name, row,
871 				    PP_SENSOR_VALUE, snmp_syserr_p);
872 			}
873 			CHECK_LINKRESET(snmp_syserr_p, NULL)
874 
875 			add_prop(nodeh, &proph, node_name, row,
876 			    PP_OPSTATUS, snmp_syserr_p);
877 			CHECK_LINKRESET(snmp_syserr_p, NULL)
878 
879 			add_prop(nodeh, &proph, node_name, row,
880 			    PP_BASE_UNITS, snmp_syserr_p);
881 			CHECK_LINKRESET(snmp_syserr_p, NULL)
882 
883 			add_prop(nodeh, &proph, node_name, row,
884 			    PP_EXPONENT, snmp_syserr_p);
885 			CHECK_LINKRESET(snmp_syserr_p, NULL)
886 
887 			add_prop(nodeh, &proph, node_name, row,
888 			    PP_RATE_UNITS, snmp_syserr_p);
889 			CHECK_LINKRESET(snmp_syserr_p, NULL)
890 
891 			add_thresholds(nodeh, row, snmp_syserr_p);
892 			CHECK_LINKRESET(snmp_syserr_p, NULL)
893 
894 		} else if (sensor_class == SSSC_BINARY) {
895 			if (sensor_type == SSST_TEMPERATURE) {
896 				ADD_NODE(PICL_CLASS_TEMPERATURE_INDICATOR)
897 			} else if (sensor_type == SSST_VOLTAGE) {
898 				ADD_NODE(PICL_CLASS_VOLTAGE_INDICATOR)
899 			} else if (sensor_type == SSST_CURRENT) {
900 				ADD_NODE(PICL_CLASS_CURRENT_INDICATOR)
901 			} else if (sensor_type == SSST_TACHOMETER) {
902 				ADD_NODE(PICL_CLASS_RPM_INDICATOR)
903 			} else if (sensor_type == SSST_PRESENCE) {
904 				ADD_NODE(PICL_CLASS_PRESENCE_INDICATOR)
905 			} else {
906 				ADD_NODE(PICL_CLASS_INDICATOR)
907 			}
908 
909 			add_prop(nodeh, &proph, node_name, row, PP_OPSTATUS,
910 			    snmp_syserr_p);
911 			CHECK_LINKRESET(snmp_syserr_p, NULL)
912 
913 			add_prop(nodeh, &proph, node_name, row, PP_CONDITION,
914 			    snmp_syserr_p);
915 			CHECK_LINKRESET(snmp_syserr_p, NULL)
916 
917 			add_prop(nodeh, &proph, node_name, row, PP_EXPECTED,
918 			    snmp_syserr_p);
919 			CHECK_LINKRESET(snmp_syserr_p, NULL)
920 		} else {
921 			log_msg(LOG_ERR,
922 			    SNMPP_UNSUPP_SENSOR_CLASS, sensor_class, row);
923 			return (NULL);
924 		}
925 		break;
926 
927 	case SPC_MODULE:
928 		ADD_NODE(PICL_CLASS_MODULE)
929 
930 		add_prop(nodeh, &proph, node_name, row, PP_OPSTATUS,
931 		    snmp_syserr_p);
932 		CHECK_LINKRESET(snmp_syserr_p, NULL)
933 
934 		add_prop(nodeh, &proph, node_name, row, PP_REPLACEABLE,
935 		    snmp_syserr_p);
936 		CHECK_LINKRESET(snmp_syserr_p, NULL)
937 
938 		add_prop(nodeh, &proph, node_name, row, PP_HOTSWAPPABLE,
939 		    snmp_syserr_p);
940 		CHECK_LINKRESET(snmp_syserr_p, NULL)
941 		break;
942 
943 	case SPC_PORT:
944 		ADD_NODE(PICL_CLASS_PORT)
945 		break;
946 
947 	case SPC_STACK:
948 		ADD_NODE(PICL_CLASS_STACK)
949 		break;
950 
951 	default:
952 		log_msg(LOG_WARNING,
953 		    SNMPP_UNKNOWN_ENTPHYSCLASS, ent_physclass, row);
954 		free(phys_name);
955 		return (NULL);
956 	}
957 
958 	add_prop(nodeh, &proph, node_name, row, PP_DESCRIPTION, snmp_syserr_p);
959 	CHECK_LINKRESET(snmp_syserr_p, NULL)
960 
961 	add_prop(nodeh, &proph, node_name, row, PP_LABEL, snmp_syserr_p);
962 	CHECK_LINKRESET(snmp_syserr_p, NULL)
963 
964 	add_prop(nodeh, &proph, node_name, row, PP_HW_REVISION, snmp_syserr_p);
965 	CHECK_LINKRESET(snmp_syserr_p, NULL)
966 
967 	add_prop(nodeh, &proph, node_name, row, PP_FW_REVISION, snmp_syserr_p);
968 	CHECK_LINKRESET(snmp_syserr_p, NULL)
969 
970 	add_prop(nodeh, &proph, node_name, row, PP_SERIAL_NUM, snmp_syserr_p);
971 	CHECK_LINKRESET(snmp_syserr_p, NULL)
972 
973 	add_prop(nodeh, &proph, node_name, row, PP_MFG_NAME, snmp_syserr_p);
974 	CHECK_LINKRESET(snmp_syserr_p, NULL)
975 
976 	add_prop(nodeh, &proph, node_name, row, PP_MODEL_NAME, snmp_syserr_p);
977 	CHECK_LINKRESET(snmp_syserr_p, NULL)
978 
979 	add_prop(nodeh, &proph, node_name, row, PP_IS_FRU, snmp_syserr_p);
980 	CHECK_LINKRESET(snmp_syserr_p, NULL)
981 
982 	free(phys_name);
983 	save_nodeh(nodeh, row);
984 
985 	return (nodeh);
986 }
987 
988 /*
989  * Saves the node handle and the row id into physplat_nodes[]. If we're
990  * doing this in response to a hotplug event, we should've freed the
991  * old physplat_nodes before entering here to save the first node of the
992  * new physplat subtree.
993  */
994 static void
995 save_nodeh(picl_nodehdl_t nodeh, int row)
996 {
997 	size_t		sz, count;
998 	picl_nodehdl_t	*p;
999 
1000 	if (row >= n_physplat_nodes) {
1001 		count = (((size_t)row >> NODE_BLOCK_SHIFT) + 1) *
1002 		    N_ELEMS_IN_NODE_BLOCK;
1003 		sz = count * sizeof (picl_nodehdl_t);
1004 
1005 		p = (picl_nodehdl_t *)calloc(count, sizeof (picl_nodehdl_t));
1006 		if (p == NULL) {
1007 			log_msg(LOG_ERR, SNMPP_NO_MEM, sz);
1008 			return;
1009 		}
1010 
1011 		if (physplat_nodes) {
1012 			(void) memcpy((void *) p, (void *) physplat_nodes,
1013 			    n_physplat_nodes * sizeof (picl_nodehdl_t));
1014 			free((void *) physplat_nodes);
1015 		}
1016 
1017 		physplat_nodes = p;
1018 		n_physplat_nodes = count;
1019 	}
1020 
1021 	physplat_nodes[row] = nodeh;
1022 }
1023 
1024 static picl_nodehdl_t
1025 lookup_nodeh(int row)
1026 {
1027 	if (row >= n_physplat_nodes)
1028 		return (NULL);
1029 
1030 	return (physplat_nodes[row]);
1031 }
1032 
1033 /*
1034  * We enter this routine only when we are building the physical-platform
1035  * subtree, whether for the first time or in response to a hotplug event.
1036  * If we're here for rebuilding the tree, we have already set stale_tree
1037  * to be B_TRUE, so no one else would be accessing vol_props, n_vol_props
1038  * or volprop_ndx. If we're here to build the tree for the first time,
1039  * picld hasn't yet created doors and is running single-threaded, so no
1040  * one else would be accessing them anyway.
1041  */
1042 static void
1043 save_volprop(picl_prophdl_t prop, char *oidstr, int row, int proptype)
1044 {
1045 	vol_prophdl_t	*p;
1046 	int		count;
1047 
1048 	if (volprop_ndx == n_vol_props) {
1049 		count = n_vol_props + N_ELEMS_IN_VOLPROP_BLOCK;
1050 		p = (vol_prophdl_t *)calloc(count, sizeof (vol_prophdl_t));
1051 		if (p == NULL) {
1052 			log_msg(LOG_ERR, SNMPP_NO_MEM,
1053 			    count * sizeof (vol_prophdl_t));
1054 			return;
1055 		}
1056 
1057 		if (vol_props) {
1058 			(void) memcpy((void *) p, (void *) vol_props,
1059 			    n_vol_props * sizeof (vol_prophdl_t));
1060 			free((void *) vol_props);
1061 		}
1062 
1063 		vol_props = p;
1064 		n_vol_props += N_ELEMS_IN_VOLPROP_BLOCK;
1065 	}
1066 
1067 	vol_props[volprop_ndx].prop = prop;
1068 	vol_props[volprop_ndx].oidstr = oidstr;
1069 	vol_props[volprop_ndx].row = row;
1070 	vol_props[volprop_ndx].proptype = proptype;
1071 
1072 	volprop_ndx++;
1073 }
1074 
1075 static void
1076 check_for_stale_data(boolean_t nocache)
1077 {
1078 	int	cur_change_time;
1079 	int	ret;
1080 	int	snmp_syserr;
1081 
1082 	(void) rw_wrlock(&stale_tree_rwlp);
1083 
1084 	/*
1085 	 * Check if some other thread beat us to it
1086 	 */
1087 	if (stale_tree == B_TRUE) {
1088 		(void) rw_unlock(&stale_tree_rwlp);
1089 		return;
1090 	}
1091 
1092 	/*
1093 	 * Cache OID_entLastChangeTime for up to 10 seconds before
1094 	 * fetching it from ILOM again.  This prevents us from fetching
1095 	 * this value from ILOM when the we're filling or refreshing a
1096 	 * whole bunch of items in the cache around the same time.
1097 	 */
1098 	if (nocache == B_FALSE && time(NULL) - change_time_check <= 10) {
1099 		(void) rw_unlock(&stale_tree_rwlp);
1100 		return;
1101 	}
1102 
1103 	/*
1104 	 * Check if mib data has changed (hotplug? link-reset?)
1105 	 */
1106 	do {
1107 		snmp_syserr = 0;
1108 		ret = snmp_get_int(hdl, OID_entLastChangeTime, 0,
1109 		    &cur_change_time, &snmp_syserr);
1110 		(void) time(&change_time_check);
1111 		if ((ret == 0) && (cur_change_time == change_time)) {
1112 			(void) rw_unlock(&stale_tree_rwlp);
1113 			return;
1114 		}
1115 	} while (ret != 0 && snmp_syserr == EINTR);
1116 
1117 	/*
1118 	 * If we can't read entLastChangeTime we assume we need to rebuild
1119 	 * the tree. This will also cover the case when we need to rebuild
1120 	 * the tree because a link reset had happened.
1121 	 */
1122 	LOGPRINTF2("check_for_stale_data: LastChange times have changed, "
1123 	    "(%#x != %#x)\n", change_time, cur_change_time);
1124 
1125 	/*
1126 	 * If the mib data has changed, we need to rebuild the physical-platform
1127 	 * subtree. To do this, we set a flag to mark the tree stale,
1128 	 * so that any future reads to get value of volatile properties will
1129 	 * return PICL_PROPVALUNAVAILABLE, until the stale_tree flag
1130 	 * is reset by the tree builder thread.
1131 	 */
1132 	stale_tree = B_TRUE;
1133 	if (vol_props) {
1134 		free(vol_props);
1135 	}
1136 	vol_props = NULL;
1137 	volprop_ndx = 0;
1138 	n_vol_props = 0;
1139 
1140 	(void) rw_unlock(&stale_tree_rwlp);
1141 
1142 	(void) mutex_lock(&rebuild_tree_lock);
1143 	rebuild_tree = B_TRUE;
1144 	(void) cond_signal(&rebuild_tree_cv);
1145 	LOGPRINTF("check_for_stale_data: signalled tree builder\n");
1146 	(void) mutex_unlock(&rebuild_tree_lock);
1147 }
1148 
1149 /*
1150  * This is the critical routine.  This callback is invoked by picl whenever
1151  * it needs to fetch the value of a volatile property. The first thing we
1152  * must do, however, is to see if there has been a hotplug or a link-reset
1153  * event since the last time we built the tree and whether we need to
1154  * rebuild the tree. If so, we do whatever is necessary to make that happen,
1155  * but return PICL_PROPVALUNAVAILABLE for now, without making any further
1156  * snmp requests or accessing any globals.
1157  */
1158 static int
1159 read_volprop(ptree_rarg_t *parg, void *buf)
1160 {
1161 	char	*pstr;
1162 	int	propval;
1163 	int	i, ndx;
1164 	int	ret;
1165 	int	snmp_syserr = 0;
1166 
1167 	/*
1168 	 * First check for any event that would make us throw away
1169 	 * the existing /physical-platform subtree and rebuild
1170 	 * another one. If we are rebuilding the subtree, we just
1171 	 * return the stale value until the tree is fully built.
1172 	 */
1173 	check_for_stale_data(B_FALSE);
1174 
1175 	(void) rw_rdlock(&stale_tree_rwlp);
1176 
1177 	if (stale_tree == B_TRUE) {
1178 		(void) rw_unlock(&stale_tree_rwlp);
1179 		return (PICL_PROPVALUNAVAILABLE);
1180 	}
1181 
1182 	for (i = 0; i < volprop_ndx; i++) {
1183 		if (vol_props[i].prop == parg->proph) {
1184 			ndx = i;
1185 			break;
1186 		}
1187 	}
1188 	if (i == volprop_ndx) {
1189 		(void) rw_unlock(&stale_tree_rwlp);
1190 		log_msg(LOG_ERR, SNMPP_CANT_FIND_VOLPROP, parg->proph);
1191 		return (PICL_FAILURE);
1192 	}
1193 
1194 	/*
1195 	 * If we can't read the value, return failure. Even if this was
1196 	 * due to a link reset, between the check for stale data and now,
1197 	 * the next volatile callback by picl will initiate a tree-rebuild.
1198 	 */
1199 	ret = snmp_get_int(hdl, vol_props[ndx].oidstr, vol_props[ndx].row,
1200 	    &propval, &snmp_syserr);
1201 	if (ret < 0) {
1202 		(void) rw_unlock(&stale_tree_rwlp);
1203 		check_for_stale_data(B_TRUE);
1204 		if (stale_tree == B_TRUE) {
1205 			return (PICL_PROPVALUNAVAILABLE);
1206 		}
1207 		log_msg(LOG_ERR, SNMPP_CANT_FETCH_OBJECT_VAL,
1208 		    snmp_syserr ? snmp_syserr : ret,
1209 		    vol_props[ndx].oidstr, vol_props[ndx].row);
1210 		return (PICL_FAILURE);
1211 	}
1212 
1213 	switch (vol_props[ndx].proptype) {
1214 	case VPT_PLATOPSTATE:
1215 		if (propval == SSOS_DISABLED) {
1216 			(void) strlcpy(buf, STR_SSOS_DISABLED, MAX_OPSTATE_LEN);
1217 		} else if (propval == SSOS_ENABLED) {
1218 			(void) strlcpy(buf, STR_SSOS_ENABLED, MAX_OPSTATE_LEN);
1219 		} else {
1220 			(void) rw_unlock(&stale_tree_rwlp);
1221 			log_msg(LOG_ERR, SNMPP_INV_PLAT_EQUIP_OPSTATE,
1222 			    propval, vol_props[ndx].row);
1223 			return (PICL_FAILURE);
1224 		}
1225 		break;
1226 
1227 	case VPT_NUMSENSOR:
1228 		(void) memcpy(buf, &propval, sizeof (propval));
1229 		break;
1230 
1231 	case VPT_BINSENSOR:
1232 		if (propval == ST_TRUE) {
1233 			ret = snmp_get_str(hdl,
1234 			    OID_sunPlatBinarySensorInterpretTrue,
1235 			    vol_props[ndx].row, &pstr, &snmp_syserr);
1236 			if (snmp_syserr == ECANCELED) {
1237 				(void) rw_unlock(&stale_tree_rwlp);
1238 				if (pstr)
1239 					free(pstr);
1240 				return (PICL_FAILURE);
1241 			}
1242 			if (ret < 0 || pstr == NULL) {
1243 				log_msg(LOG_ERR, SNMPP_CANT_FETCH_OBJECT_VAL,
1244 				    snmp_syserr ? snmp_syserr : ret,
1245 				    OID_sunPlatBinarySensorInterpretTrue,
1246 				    vol_props[ndx].row);
1247 				(void) strlcpy(buf, STR_ST_TRUE,
1248 				    MAX_TRUTHVAL_LEN);
1249 			} else {
1250 				(void) strlcpy(buf, pstr, MAX_TRUTHVAL_LEN);
1251 			}
1252 			if (pstr)
1253 				free(pstr);
1254 		} else if (propval == ST_FALSE) {
1255 			ret = snmp_get_str(hdl,
1256 			    OID_sunPlatBinarySensorInterpretFalse,
1257 			    vol_props[ndx].row, &pstr, &snmp_syserr);
1258 			if (snmp_syserr == ECANCELED) {
1259 				(void) rw_unlock(&stale_tree_rwlp);
1260 				if (pstr)
1261 					free(pstr);
1262 				return (PICL_FAILURE);
1263 			}
1264 			if (ret < 0 || pstr == NULL) {
1265 				log_msg(LOG_ERR, SNMPP_CANT_FETCH_OBJECT_VAL,
1266 				    snmp_syserr ? snmp_syserr : ret,
1267 				    OID_sunPlatBinarySensorInterpretFalse,
1268 				    vol_props[ndx].row);
1269 				(void) strlcpy(buf, STR_ST_FALSE,
1270 				    MAX_TRUTHVAL_LEN);
1271 			} else {
1272 				(void) strlcpy(buf, pstr, MAX_TRUTHVAL_LEN);
1273 			}
1274 			if (pstr)
1275 				free(pstr);
1276 		} else {
1277 			(void) rw_unlock(&stale_tree_rwlp);
1278 			log_msg(LOG_ERR, SNMPP_INV_PLAT_BINSNSR_CURRENT,
1279 			    propval, vol_props[ndx].row);
1280 			return (PICL_FAILURE);
1281 		}
1282 		break;
1283 
1284 	case VPT_ALARMSTATE:
1285 		if (propval == SSAS_OFF) {
1286 			(void) strlcpy(buf, STR_SSAS_OFF, MAX_ALARMSTATE_LEN);
1287 		} else if (propval == SSAS_STEADY) {
1288 			(void) strlcpy(buf, STR_SSAS_STEADY,
1289 			    MAX_ALARMSTATE_LEN);
1290 		} else if (propval == SSAS_ALTERNATING) {
1291 			(void) strlcpy(buf, STR_SSAS_ALTERNATING,
1292 			    MAX_ALARMSTATE_LEN);
1293 		} else {
1294 			(void) strlcpy(buf, STR_SSAS_UNKNOWN,
1295 			    MAX_ALARMSTATE_LEN);
1296 		}
1297 		break;
1298 
1299 	case VPT_BATTERYSTATUS:
1300 		switch (propval) {
1301 		case SSBS_OTHER:
1302 			(void) strlcpy(buf, STR_SSBS_OTHER,
1303 			    MAX_BATTERYSTATUS_LEN);
1304 			break;
1305 		case SSBS_FULLYCHARGED:
1306 			(void) strlcpy(buf, STR_SSBS_FULLYCHARGED,
1307 			    MAX_BATTERYSTATUS_LEN);
1308 			break;
1309 		case SSBS_LOW:
1310 			(void) strlcpy(buf, STR_SSBS_LOW,
1311 			    MAX_BATTERYSTATUS_LEN);
1312 			break;
1313 		case SSBS_CRITICAL:
1314 			(void) strlcpy(buf, STR_SSBS_CRITICAL,
1315 			    MAX_BATTERYSTATUS_LEN);
1316 			break;
1317 		case SSBS_CHARGING:
1318 			(void) strlcpy(buf, STR_SSBS_CHARGING,
1319 			    MAX_BATTERYSTATUS_LEN);
1320 			break;
1321 		case SSBS_CHARGING_AND_LOW:
1322 			(void) strlcpy(buf, STR_SSBS_CHARGING_AND_LOW,
1323 			    MAX_BATTERYSTATUS_LEN);
1324 			break;
1325 		case SSBS_CHARGING_AND_HIGH:
1326 			(void) strlcpy(buf, STR_SSBS_CHARGING_AND_HIGH,
1327 			    MAX_BATTERYSTATUS_LEN);
1328 			break;
1329 		case SSBS_CHARGING_AND_CRITICAL:
1330 			(void) strlcpy(buf, STR_SSBS_CHARGING_AND_CRITICAL,
1331 			    MAX_BATTERYSTATUS_LEN);
1332 			break;
1333 		case SSBS_UNDEFINED:
1334 			(void) strlcpy(buf, STR_SSBS_UNDEFINED,
1335 			    MAX_BATTERYSTATUS_LEN);
1336 			break;
1337 		case SSBS_PARTIALLY_CHARGED:
1338 			(void) strlcpy(buf, STR_SSBS_PARTIALLY_CHARGED,
1339 			    MAX_BATTERYSTATUS_LEN);
1340 			break;
1341 		case SSBS_UNKNOWN:
1342 		default:
1343 			(void) strlcpy(buf, STR_SSBS_UNKNOWN,
1344 			    MAX_BATTERYSTATUS_LEN);
1345 			break;
1346 		}
1347 		break;
1348 	}
1349 
1350 	(void) rw_unlock(&stale_tree_rwlp);
1351 
1352 	return (PICL_SUCCESS);
1353 }
1354 
1355 static void
1356 threshold(picl_nodehdl_t node, char *oidstr, int row, char *propname,
1357     int *snmp_syserr_p)
1358 {
1359 	picl_prophdl_t	prop;
1360 	int		err;
1361 	int		val;
1362 
1363 	if ((err = snmp_get_int(hdl, oidstr, row, &val, snmp_syserr_p)) != -1) {
1364 		err = add_volatile_prop(node, propname, PICL_PTYPE_INT,
1365 		    PICL_READ, sizeof (int), read_volprop, NULL, &prop);
1366 		if (err == PICL_SUCCESS)
1367 			save_volprop(prop, oidstr, row, VPT_NUMSENSOR);
1368 	} else
1369 		log_msg(LOG_ERR, SNMPP_CANT_FETCH_OBJECT_VAL,
1370 		    *snmp_syserr_p ? *snmp_syserr_p : err, oidstr, row);
1371 }
1372 
1373 static void
1374 add_thresholds(picl_nodehdl_t node, int row, int *snmp_syserr_p)
1375 {
1376 	uchar_t	*bitstr = NULL;
1377 	uchar_t	enabled;
1378 	uint_t	nbytes;
1379 	int	ret;
1380 
1381 	ret = snmp_get_str(hdl,
1382 	    OID_sunPlatNumericSensorEnabledThresholds,
1383 	    row, (char **)&bitstr, snmp_syserr_p);
1384 	if (ret == -1) {
1385 		log_msg(LOG_ERR, SNMPP_CANT_FETCH_OBJECT_VAL,
1386 		    *snmp_syserr_p ? *snmp_syserr_p : ret,
1387 		    OID_sunPlatNumericSensorEnabledThresholds, row);
1388 	} else {
1389 		nbytes = strlen((const char *)bitstr);
1390 	}
1391 
1392 	CHECK_LINKRESET_VOID(snmp_syserr_p);
1393 
1394 	/*
1395 	 * No bit string of threshold masks was returned, so we can't
1396 	 * assume that any thresholds exist.
1397 	 *
1398 	 * This mask prevents us from attempting to fetch thresholds
1399 	 * which don't apply to the sensor or that aren't there anyway,
1400 	 * That speeds up the plug-in significantly since otherwise it
1401 	 * takes several seconds to time out.
1402 	 */
1403 	if (ret < 0 || bitstr == NULL || nbytes == 0 || 2 < nbytes) {
1404 		if (bitstr)
1405 			free(bitstr);
1406 		return;
1407 	} else if (nbytes == 1) {
1408 		/*
1409 		 * The ALOM snmp agent doesn't adhere to the BER rules for
1410 		 * encoding bit strings. While the BER states that bitstrings
1411 		 * must begin from the second octet after length, and the
1412 		 * first octet after length must indicate the number of unused
1413 		 * bits in the last octet, the snmp agent simply sends the
1414 		 * bitstring data as if it were octet string -- that is, the
1415 		 * "unused bits" octet is missing.
1416 		 */
1417 		enabled = bitstr[0];
1418 	} else if (nbytes == 2)
1419 		enabled = bitstr[1];
1420 
1421 	if (bitstr) {
1422 		free(bitstr);
1423 	}
1424 
1425 	if (enabled & LOWER_FATAL) {
1426 		threshold(node,
1427 		    OID_sunPlatNumericSensorLowerThresholdFatal, row,
1428 		    PICL_PROP_LOW_POWER_OFF, snmp_syserr_p);
1429 		CHECK_LINKRESET_VOID(snmp_syserr_p)
1430 	}
1431 	if (enabled & LOWER_CRITICAL) {
1432 		threshold(node,
1433 		    OID_sunPlatNumericSensorLowerThresholdCritical, row,
1434 		    PICL_PROP_LOW_SHUTDOWN, snmp_syserr_p);
1435 		CHECK_LINKRESET_VOID(snmp_syserr_p)
1436 	}
1437 	if (enabled & LOWER_NON_CRITICAL) {
1438 		threshold(node,
1439 		    OID_sunPlatNumericSensorLowerThresholdNonCritical, row,
1440 		    PICL_PROP_LOW_WARNING, snmp_syserr_p);
1441 		CHECK_LINKRESET_VOID(snmp_syserr_p)
1442 	}
1443 	if (enabled & UPPER_NON_CRITICAL) {
1444 		threshold(node,
1445 		    OID_sunPlatNumericSensorUpperThresholdNonCritical, row,
1446 		    PICL_PROP_HIGH_WARNING, snmp_syserr_p);
1447 		CHECK_LINKRESET_VOID(snmp_syserr_p)
1448 	}
1449 	if (enabled & UPPER_CRITICAL) {
1450 		threshold(node,
1451 		    OID_sunPlatNumericSensorUpperThresholdCritical, row,
1452 		    PICL_PROP_HIGH_SHUTDOWN, snmp_syserr_p);
1453 		CHECK_LINKRESET_VOID(snmp_syserr_p)
1454 	}
1455 	if (enabled & UPPER_FATAL) {
1456 		threshold(node,
1457 		    OID_sunPlatNumericSensorUpperThresholdFatal, row,
1458 		    PICL_PROP_HIGH_POWER_OFF, snmp_syserr_p);
1459 		CHECK_LINKRESET_VOID(snmp_syserr_p)
1460 	}
1461 }
1462 
1463 static char *
1464 get_slot_type(int row, int *snmp_syserr_p)
1465 {
1466 	char	*p;
1467 	char	*slott = NULL;
1468 	int	ret;
1469 
1470 	ret = snmp_get_str(hdl, OID_sunPlatEquipmentHolderAcceptableTypes,
1471 	    row, &p, snmp_syserr_p);
1472 	CHECK_LINKRESET(snmp_syserr_p, NULL)
1473 
1474 	if ((ret == 0) && p && *p) {
1475 		slott = p;
1476 		if ((p = strchr(slott, '\n')) != NULL)
1477 			*p = 0;
1478 	} else {
1479 		log_msg(LOG_WARNING, SNMPP_NO_SLOT_TYPE, row);
1480 		if (p) {
1481 			free(p);
1482 		}
1483 	}
1484 
1485 	return (slott);
1486 }
1487 
1488 /*
1489  * Create and add the specified volatile property
1490  */
1491 static int
1492 add_volatile_prop(picl_nodehdl_t node, char *name, int type, int access,
1493     int size, int (*rdfunc)(ptree_rarg_t *, void *),
1494     int (*wrfunc)(ptree_warg_t *, const void *), picl_prophdl_t *propp)
1495 {
1496 	ptree_propinfo_t	propinfo;
1497 	picl_prophdl_t		prop;
1498 	int			err;
1499 
1500 	err = ptree_init_propinfo(&propinfo, PTREE_PROPINFO_VERSION,
1501 	    type, (access|PICL_VOLATILE), size, name, rdfunc, wrfunc);
1502 	if (err != PICL_SUCCESS) {
1503 		log_msg(LOG_ERR, SNMPP_CANT_INIT_PROPINFO, err);
1504 		return (err);
1505 	}
1506 
1507 	err = ptree_create_and_add_prop(node, &propinfo, NULL, &prop);
1508 	if (err != PICL_SUCCESS) {
1509 		log_msg(LOG_ERR, SNMPP_CANT_ADD_PROP, err, node);
1510 		return (err);
1511 	}
1512 
1513 	if (propp)
1514 		*propp = prop;
1515 
1516 	return (PICL_SUCCESS);
1517 }
1518 
1519 /*
1520  * Add the specified string property to the node
1521  */
1522 static int
1523 add_string_prop(picl_nodehdl_t node, char *propname, char *propval)
1524 {
1525 	ptree_propinfo_t	propinfo;
1526 	int			err;
1527 
1528 	if (*propval == '\0')
1529 		return (PICL_SUCCESS);
1530 
1531 	err = ptree_init_propinfo(&propinfo, PTREE_PROPINFO_VERSION,
1532 	    PICL_PTYPE_CHARSTRING, PICL_READ, strlen(propval) + 1,
1533 	    propname, NULL, NULL);
1534 	if (err != PICL_SUCCESS) {
1535 		log_msg(LOG_ERR, SNMPP_CANT_INIT_STR_PROPINFO, err);
1536 		return (err);
1537 	}
1538 
1539 	err = ptree_create_and_add_prop(node, &propinfo, propval, NULL);
1540 	if (err != PICL_SUCCESS) {
1541 		log_msg(LOG_ERR, SNMPP_CANT_ADD_STR_PROP, err, node);
1542 		return (err);
1543 	}
1544 
1545 	return (PICL_SUCCESS);
1546 }
1547 
1548 /*
1549  * Add the specified void property to the node
1550  */
1551 static int
1552 add_void_prop(picl_nodehdl_t node, char *propname)
1553 {
1554 	ptree_propinfo_t	propinfo;
1555 	int			err;
1556 
1557 	err = ptree_init_propinfo(&propinfo, PTREE_PROPINFO_VERSION,
1558 	    PICL_PTYPE_VOID, PICL_READ, 0, propname, NULL, NULL);
1559 	if (err != PICL_SUCCESS) {
1560 		log_msg(LOG_ERR, SNMPP_CANT_INIT_VOID_PROPINFO, err);
1561 		return (err);
1562 	}
1563 
1564 	err = ptree_create_and_add_prop(node, &propinfo, NULL, NULL);
1565 	if (err != PICL_SUCCESS) {
1566 		log_msg(LOG_ERR, SNMPP_CANT_ADD_VOID_PROP, err, node);
1567 		return (err);
1568 	}
1569 
1570 	return (PICL_SUCCESS);
1571 }
1572 
1573 static void
1574 add_prop(picl_nodehdl_t nodeh, picl_prophdl_t *php, char *label,
1575     int row, sp_propid_t pp, int *snmp_syserr_p)
1576 {
1577 	char	*serial_num;
1578 	char	*slot_type;
1579 	char	*fw_revision, *hw_revision;
1580 	char	*mfg_name, *model_name;
1581 	char	*phys_descr;
1582 	int	val;
1583 	int	ret;
1584 
1585 	switch (pp) {
1586 	case PP_SERIAL_NUM:
1587 		ret = snmp_get_str(hdl, OID_entPhysicalSerialNum,
1588 		    row, &serial_num, snmp_syserr_p);
1589 		CHECK_LINKRESET_VOID(snmp_syserr_p)
1590 		if ((ret == 0) && serial_num) {
1591 			(void) add_string_prop(nodeh,
1592 			    PICL_PROP_SERIAL_NUMBER, serial_num);
1593 			free((void *) serial_num);
1594 		}
1595 		if (ret == -1)
1596 			log_msg(LOG_ERR, SNMPP_CANT_FETCH_OBJECT_VAL,
1597 			    *snmp_syserr_p ? *snmp_syserr_p : ret,
1598 			    OID_entPhysicalSerialNum, row);
1599 		break;
1600 
1601 	case PP_SLOT_TYPE:
1602 		if ((slot_type = get_slot_type(row, snmp_syserr_p)) == NULL) {
1603 			CHECK_LINKRESET_VOID(snmp_syserr_p)
1604 			(void) add_string_prop(nodeh,
1605 			    PICL_PROP_SLOT_TYPE, DEFAULT_SLOT_TYPE);
1606 		} else {
1607 			(void) add_string_prop(nodeh,
1608 			    PICL_PROP_SLOT_TYPE, slot_type);
1609 			free((void *) slot_type);
1610 		}
1611 		break;
1612 
1613 	case PP_STATE:
1614 		ret = add_volatile_prop(nodeh, PICL_PROP_STATE,
1615 		    PICL_PTYPE_CHARSTRING, PICL_READ, MAX_ALARMSTATE_LEN,
1616 		    read_volprop, NULL, php);
1617 		if (ret == PICL_SUCCESS) {
1618 			save_volprop(*php, OID_sunPlatAlarmState, row,
1619 			    VPT_ALARMSTATE);
1620 		}
1621 		break;
1622 
1623 	case PP_OPSTATUS:
1624 		ret = add_volatile_prop(nodeh, PICL_PROP_OPERATIONAL_STATUS,
1625 		    PICL_PTYPE_CHARSTRING, PICL_READ, MAX_OPSTATE_LEN,
1626 		    read_volprop, NULL, php);
1627 		if (ret == PICL_SUCCESS) {
1628 			save_volprop(*php,
1629 			    OID_sunPlatEquipmentOperationalState, row,
1630 			    VPT_PLATOPSTATE);
1631 		}
1632 		break;
1633 
1634 	case PP_BATT_STATUS:
1635 		ret = add_volatile_prop(nodeh, PICL_PROP_BATTERY_STATUS,
1636 		    PICL_PTYPE_CHARSTRING, PICL_READ, MAX_BATTERYSTATUS_LEN,
1637 		    read_volprop, NULL, php);
1638 		if (ret == PICL_SUCCESS) {
1639 			save_volprop(*php, OID_sunPlatBatteryStatus, row,
1640 			    VPT_BATTERYSTATUS);
1641 		}
1642 		break;
1643 
1644 	case PP_TEMPERATURE:
1645 		ret = add_volatile_prop(nodeh, PICL_PROP_TEMPERATURE,
1646 		    PICL_PTYPE_INT, PICL_READ, sizeof (int), read_volprop,
1647 		    NULL, php);
1648 		if (ret == PICL_SUCCESS) {
1649 			save_volprop(*php, OID_sunPlatNumericSensorCurrent,
1650 			    row, VPT_NUMSENSOR);
1651 		}
1652 		break;
1653 
1654 	case PP_VOLTAGE:
1655 		ret = add_volatile_prop(nodeh, PICL_PROP_VOLTAGE,
1656 		    PICL_PTYPE_INT, PICL_READ, sizeof (int), read_volprop,
1657 		    NULL, php);
1658 		if (ret == PICL_SUCCESS) {
1659 			save_volprop(*php, OID_sunPlatNumericSensorCurrent,
1660 			    row, VPT_NUMSENSOR);
1661 		}
1662 		break;
1663 
1664 	case PP_CURRENT:
1665 		ret = add_volatile_prop(nodeh, PICL_PROP_CURRENT,
1666 		    PICL_PTYPE_INT, PICL_READ, sizeof (int), read_volprop,
1667 		    NULL, php);
1668 		if (ret == PICL_SUCCESS) {
1669 			save_volprop(*php, OID_sunPlatNumericSensorCurrent,
1670 			    row, VPT_NUMSENSOR);
1671 		}
1672 		break;
1673 
1674 	case PP_SPEED:
1675 		ret = add_volatile_prop(nodeh, PICL_PROP_SPEED, PICL_PTYPE_INT,
1676 		    PICL_READ, sizeof (int), read_volprop, NULL, php);
1677 		if (ret == PICL_SUCCESS) {
1678 			save_volprop(*php, OID_sunPlatNumericSensorCurrent,
1679 			    row, VPT_NUMSENSOR);
1680 		}
1681 		break;
1682 
1683 	case PP_SENSOR_VALUE:
1684 		ret = add_volatile_prop(nodeh, PICL_PROP_SENSOR_VALUE,
1685 		    PICL_PTYPE_INT, PICL_READ, sizeof (int), read_volprop,
1686 		    NULL, php);
1687 		if (ret == PICL_SUCCESS) {
1688 			save_volprop(*php, OID_sunPlatNumericSensorCurrent,
1689 			    row, VPT_NUMSENSOR);
1690 		}
1691 		break;
1692 
1693 	case PP_CONDITION:
1694 		ret = add_volatile_prop(nodeh, PICL_PROP_CONDITION,
1695 		    PICL_PTYPE_CHARSTRING, PICL_READ, MAX_TRUTHVAL_LEN,
1696 		    read_volprop, NULL, php);
1697 		if (ret == PICL_SUCCESS) {
1698 			save_volprop(*php, OID_sunPlatBinarySensorCurrent,
1699 			    row, VPT_BINSENSOR);
1700 		}
1701 		break;
1702 
1703 	case PP_EXPECTED:
1704 		ret = add_volatile_prop(nodeh, PICL_PROP_EXPECTED,
1705 		    PICL_PTYPE_CHARSTRING, PICL_READ, MAX_TRUTHVAL_LEN,
1706 		    read_volprop, NULL, php);
1707 		if (ret == PICL_SUCCESS) {
1708 			save_volprop(*php, OID_sunPlatBinarySensorExpected,
1709 			    row, VPT_BINSENSOR);
1710 		}
1711 		break;
1712 
1713 	case PP_EXPONENT:
1714 		ret = add_volatile_prop(nodeh, PICL_PROP_EXPONENT,
1715 		    PICL_PTYPE_INT, PICL_READ, sizeof (int), read_volprop,
1716 		    NULL, php);
1717 		if (ret == PICL_SUCCESS) {
1718 			save_volprop(*php, OID_sunPlatNumericSensorExponent,
1719 			    row, VPT_NUMSENSOR);
1720 		}
1721 		break;
1722 
1723 	case PP_REPLACEABLE:
1724 		ret = snmp_get_int(hdl, OID_sunPlatCircuitPackReplaceable,
1725 		    row, &val, snmp_syserr_p);
1726 		CHECK_LINKRESET_VOID(snmp_syserr_p)
1727 		if ((ret == 0) && (val == ST_TRUE))
1728 			(void) add_void_prop(nodeh, PICL_PROP_IS_REPLACEABLE);
1729 		if (ret == -1)
1730 			log_msg(LOG_ERR, SNMPP_CANT_FETCH_OBJECT_VAL,
1731 			    *snmp_syserr_p ? *snmp_syserr_p : ret,
1732 			    OID_sunPlatCircuitPackReplaceable, row);
1733 		break;
1734 
1735 	case PP_HOTSWAPPABLE:
1736 		ret = snmp_get_int(hdl, OID_sunPlatCircuitPackHotSwappable,
1737 		    row, &val, snmp_syserr_p);
1738 		CHECK_LINKRESET_VOID(snmp_syserr_p)
1739 		if ((ret == 0) && (val == ST_TRUE))
1740 			(void) add_void_prop(nodeh, PICL_PROP_IS_HOT_SWAPPABLE);
1741 		if (ret == -1)
1742 			log_msg(LOG_ERR, SNMPP_CANT_FETCH_OBJECT_VAL,
1743 			    *snmp_syserr_p ? *snmp_syserr_p : ret,
1744 			    OID_sunPlatCircuitPackHotSwappable, row);
1745 		break;
1746 
1747 	case PP_IS_FRU:
1748 		ret = snmp_get_int(hdl, OID_entPhysicalIsFRU, row,
1749 		    &val, snmp_syserr_p);
1750 		CHECK_LINKRESET_VOID(snmp_syserr_p)
1751 		if ((ret == 0) && (val == ST_TRUE))
1752 			(void) add_void_prop(nodeh, PICL_PROP_IS_FRU);
1753 		if (ret == -1)
1754 			log_msg(LOG_ERR, SNMPP_CANT_FETCH_OBJECT_VAL,
1755 			    *snmp_syserr_p ? *snmp_syserr_p : ret,
1756 			    OID_entPhysicalIsFRU, row);
1757 		break;
1758 
1759 	case PP_HW_REVISION:
1760 		ret = snmp_get_str(hdl, OID_entPhysicalHardwareRev,
1761 		    row, &hw_revision, snmp_syserr_p);
1762 		CHECK_LINKRESET_VOID(snmp_syserr_p)
1763 		if ((ret == 0) && hw_revision) {
1764 			(void) add_string_prop(nodeh,
1765 			    PICL_PROP_HW_REVISION, hw_revision);
1766 			free((void *) hw_revision);
1767 		}
1768 		if (ret == -1)
1769 			log_msg(LOG_ERR, SNMPP_CANT_FETCH_OBJECT_VAL,
1770 			    *snmp_syserr_p ? *snmp_syserr_p : ret,
1771 			    OID_entPhysicalHardwareRev, row);
1772 		break;
1773 
1774 	case PP_FW_REVISION:
1775 		ret = snmp_get_str(hdl, OID_entPhysicalFirmwareRev,
1776 		    row, &fw_revision, snmp_syserr_p);
1777 		CHECK_LINKRESET_VOID(snmp_syserr_p)
1778 		if ((ret == 0) && fw_revision) {
1779 			(void) add_string_prop(nodeh,
1780 			    PICL_PROP_FW_REVISION, fw_revision);
1781 			free((void *) fw_revision);
1782 		}
1783 		if (ret == -1)
1784 			log_msg(LOG_ERR, SNMPP_CANT_FETCH_OBJECT_VAL,
1785 			    *snmp_syserr_p ? *snmp_syserr_p : ret,
1786 			    OID_entPhysicalFirmwareRev, row);
1787 		break;
1788 
1789 	case PP_MFG_NAME:
1790 		ret = snmp_get_str(hdl, OID_entPhysicalMfgName,
1791 		    row, &mfg_name, snmp_syserr_p);
1792 		CHECK_LINKRESET_VOID(snmp_syserr_p)
1793 		if ((ret == 0) && mfg_name) {
1794 			(void) add_string_prop(nodeh,
1795 			    PICL_PROP_MFG_NAME, mfg_name);
1796 			free((void *) mfg_name);
1797 		}
1798 		if (ret == -1)
1799 			log_msg(LOG_ERR, SNMPP_CANT_FETCH_OBJECT_VAL,
1800 			    *snmp_syserr_p ? *snmp_syserr_p : ret,
1801 			    OID_entPhysicalMfgName, row);
1802 		break;
1803 
1804 	case PP_MODEL_NAME:
1805 		ret = snmp_get_str(hdl, OID_entPhysicalModelName,
1806 		    row, &model_name, snmp_syserr_p);
1807 		CHECK_LINKRESET_VOID(snmp_syserr_p)
1808 		if ((ret == 0) && model_name) {
1809 			(void) add_string_prop(nodeh,
1810 			    PICL_PROP_MODEL_NAME, model_name);
1811 			free((void *) model_name);
1812 		}
1813 		if (ret == -1)
1814 			log_msg(LOG_ERR, SNMPP_CANT_FETCH_OBJECT_VAL,
1815 			    *snmp_syserr_p ? *snmp_syserr_p : ret,
1816 			    OID_entPhysicalModelName, row);
1817 		break;
1818 
1819 	case PP_DESCRIPTION:
1820 		ret = snmp_get_str(hdl, OID_entPhysicalDescr,
1821 		    row, &phys_descr, snmp_syserr_p);
1822 		CHECK_LINKRESET_VOID(snmp_syserr_p)
1823 		if ((ret == 0) && phys_descr) {
1824 			(void) add_string_prop(nodeh,
1825 			    PICL_PROP_PHYS_DESCRIPTION, phys_descr);
1826 			free((void *) phys_descr);
1827 		}
1828 		if (ret == -1)
1829 			log_msg(LOG_ERR, SNMPP_CANT_FETCH_OBJECT_VAL,
1830 			    *snmp_syserr_p ? *snmp_syserr_p : ret,
1831 			    OID_entPhysicalDescr, row);
1832 		break;
1833 
1834 	case PP_LABEL:
1835 		if (label && *label)
1836 			(void) add_string_prop(nodeh, PICL_PROP_LABEL, label);
1837 		break;
1838 
1839 	case PP_BASE_UNITS:
1840 		ret = snmp_get_int(hdl, OID_sunPlatNumericSensorBaseUnits,
1841 		    row, &val, snmp_syserr_p);
1842 		CHECK_LINKRESET_VOID(snmp_syserr_p)
1843 		if ((ret == 0) && (val > 0) && (val < n_baseunits)) {
1844 			(void) add_string_prop(nodeh,
1845 			    PICL_PROP_BASE_UNITS, sensor_baseunits[val]);
1846 		}
1847 		if (ret == -1)
1848 			log_msg(LOG_ERR, SNMPP_CANT_FETCH_OBJECT_VAL,
1849 			    *snmp_syserr_p ? *snmp_syserr_p : ret,
1850 			    OID_sunPlatNumericSensorBaseUnits, row);
1851 		break;
1852 
1853 	case PP_RATE_UNITS:
1854 		ret = snmp_get_int(hdl, OID_sunPlatNumericSensorRateUnits,
1855 		    row, &val, snmp_syserr_p);
1856 		CHECK_LINKRESET_VOID(snmp_syserr_p)
1857 		if ((ret == 0) && (val > 0) && (val < n_rateunits)) {
1858 			(void) add_string_prop(nodeh,
1859 			    PICL_PROP_RATE_UNITS, sensor_rateunits[val]);
1860 		}
1861 		if (ret == -1)
1862 			log_msg(LOG_ERR, SNMPP_CANT_FETCH_OBJECT_VAL,
1863 			    *snmp_syserr_p ? *snmp_syserr_p : ret,
1864 			    OID_sunPlatNumericSensorRateUnits, row);
1865 		break;
1866 	}
1867 }
1868 
1869 /*
1870  * Initialize the SNMP library's cache refresh subsystem, then periodically
1871  * process refresh job to prevent cache entries from expiring.
1872  */
1873 /*ARGSUSED*/
1874 static void *
1875 cache_refresher(void *arg)
1876 {
1877 	int		jobs;
1878 	int		next_expiration;
1879 	timestruc_t	to;
1880 	hrtime_t	cycle_start, cycle_elapsed;
1881 
1882 	/*
1883 	 * Initialize refresh subsystem
1884 	 */
1885 	LOGPRINTF("Initializing SNMP refresh subsystem.\n");
1886 	if (snmp_refresh_init() < 0) {
1887 		return ((void *)-1);
1888 	}
1889 
1890 	(void) mutex_lock(&cache_refresh_lock);
1891 
1892 
1893 	for (;;) {
1894 		cycle_start = gethrtime();
1895 
1896 		/*
1897 		 * Process jobs from the snmp cache refresh work queue until one
1898 		 * of the following conditions is true:
1899 		 * 1) we are told to exit, or
1900 		 * 2) we have processed at least as many jobs as recommended by
1901 		 * the library, and the next job expiration is at least
1902 		 * CACHE_REFRESH_MIN_WINDOW * seconds away.
1903 		 */
1904 		jobs = snmp_refresh_get_cycle_hint(CACHE_REFRESH_CYCLE);
1905 		while ((cache_refresh_thr_exit == B_FALSE) && (jobs > 0)) {
1906 			(void) snmp_refresh_process_job();
1907 			jobs--;
1908 		}
1909 
1910 		next_expiration = snmp_refresh_get_next_expiration();
1911 		while ((cache_refresh_thr_exit == B_FALSE) &&
1912 		    ((next_expiration >= 0) &&
1913 		    (next_expiration < CACHE_REFRESH_MIN_WINDOW))) {
1914 			(void) snmp_refresh_process_job();
1915 			next_expiration = snmp_refresh_get_next_expiration();
1916 		}
1917 
1918 		/*
1919 		 * As long as we haven't been told to exit, sleep for
1920 		 * CACHE_REFRESH_CYCLE seconds minus the amount of time that has
1921 		 * elapsed since this cycle started.  If the elapsed time is
1922 		 * equal to or greater than 60 seconds, skip sleeping entirely.
1923 		 */
1924 		cycle_elapsed = (gethrtime() - cycle_start) / NANOSEC;
1925 		if ((cache_refresh_thr_exit == B_FALSE) &&
1926 		    (cycle_elapsed < CACHE_REFRESH_CYCLE)) {
1927 			to.tv_sec = CACHE_REFRESH_CYCLE - cycle_elapsed;
1928 			to.tv_nsec = 0;
1929 			(void) cond_reltimedwait(&cache_refresh_cv,
1930 			    &cache_refresh_lock, &to);
1931 		}
1932 
1933 		/*
1934 		 * If we have been told to exit, clean up and bail out.
1935 		 */
1936 		if (cache_refresh_thr_exit == B_TRUE) {
1937 			snmp_refresh_fini();
1938 			(void) mutex_unlock(&cache_refresh_lock);
1939 			LOGPRINTF("cache_refresher: time to exit\n");
1940 			return (NULL);
1941 		}
1942 
1943 	}
1944 
1945 	/*NOTREACHED*/
1946 	return (NULL);
1947 }
1948 
1949 /*
1950  * Check to see if the cache_refresher thread is running.  If it is, signal it
1951  * to terminate and clean up associated data structures.
1952  */
1953 void
1954 cache_refresher_fini(void)
1955 {
1956 	/* if the thread isn't running, there is nothing to do */
1957 	if (cache_refresh_thr_exit == B_TRUE)
1958 		return;
1959 
1960 	/* wake up the cache_refresher thread, tell it to exit */
1961 	(void) mutex_lock(&cache_refresh_lock);
1962 	cache_refresh_thr_exit = B_TRUE;
1963 	(void) cond_signal(&cache_refresh_cv);
1964 	(void) mutex_unlock(&cache_refresh_lock);
1965 
1966 	/* reap the thread */
1967 	(void) thr_join(cache_refresh_thr_id, NULL, NULL);
1968 
1969 	/* finish cleanup... */
1970 	(void) cond_destroy(&cache_refresh_cv);
1971 	(void) mutex_destroy(&cache_refresh_lock);
1972 }
1973 
1974 /*VARARGS2*/
1975 static void
1976 log_msg(int pri, const char *fmt, ...)
1977 {
1978 	va_list ap;
1979 
1980 	va_start(ap, fmt);
1981 	vsyslog(pri, fmt, ap);
1982 	va_end(ap);
1983 }
1984 
1985 #ifdef SNMPPLUGIN_DEBUG
1986 
1987 static void
1988 snmpplugin_log_init(void)
1989 {
1990 	(void) mutex_init(&snmpplugin_dbuf_lock, USYNC_THREAD, NULL);
1991 }
1992 
1993 static void
1994 snmpplugin_log(const char *fmt, ...)
1995 {
1996 	va_list	ap;
1997 
1998 	(void) mutex_lock(&snmpplugin_dbuf_lock);
1999 
2000 	va_start(ap, fmt);
2001 	(void) vsnprintf(snmpplugin_lbuf, SNMPPLUGIN_DMAX_LINE, fmt, ap);
2002 	snmpplugin_log_append();
2003 	va_end(ap);
2004 
2005 	(void) mutex_unlock(&snmpplugin_dbuf_lock);
2006 }
2007 
2008 static void
2009 snmpplugin_log_append(void)
2010 {
2011 	int	len;
2012 
2013 	len = strlen(snmpplugin_lbuf);
2014 
2015 	if ((snmpplugin_dbuf_curp + len) >=
2016 	    (snmpplugin_dbuf + snmpplugin_dbuf_sz)) {
2017 		snmpplugin_dbuf_realloc();
2018 		if (snmpplugin_dbuf == NULL) {
2019 			return;
2020 		}
2021 	}
2022 
2023 	(void) strcpy(snmpplugin_dbuf_curp, snmpplugin_lbuf);
2024 	snmpplugin_dbuf_curp += len;
2025 }
2026 
2027 static void
2028 snmpplugin_dbuf_realloc(void)
2029 {
2030 	char	*p;
2031 	size_t	offset = 0;
2032 	size_t	count;
2033 
2034 	count = snmpplugin_dbuf_sz + SNMPPLUGIN_DBLOCK_SZ;
2035 	if ((p = (char *)calloc(count, 1)) == NULL) {
2036 		snmpplugin_dbuf_overflow++;
2037 		snmpplugin_dbuf_curp = snmpplugin_dbuf;
2038 		return;
2039 	}
2040 
2041 	if (snmpplugin_dbuf) {
2042 		offset = snmpplugin_dbuf_curp - snmpplugin_dbuf;
2043 		(void) memcpy(p, snmpplugin_dbuf, snmpplugin_dbuf_sz);
2044 		free(snmpplugin_dbuf);
2045 	}
2046 
2047 	snmpplugin_dbuf = p;
2048 	snmpplugin_dbuf_sz += SNMPPLUGIN_DBLOCK_SZ;
2049 
2050 	snmpplugin_dbuf_curp = snmpplugin_dbuf + offset;
2051 }
2052 #endif
2053