xref: /illumos-gate/usr/src/cmd/picl/plugins/sun4u/enchilada/envd/piclenvd.c (revision 35a5a3587fd94b666239c157d3722745250ccbd7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains the environmental PICL plug-in module.
31  */
32 
33 /*
34  * This plugin sets up the PICLTREE for Enchilada WS.
35  * It provides functionality to get/set temperatures and
36  * fan speeds.
37  *
38  * The environmental policy defaults to the auto mode
39  * as programmed by OBP at boot time.
40  */
41 
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <sys/sysmacros.h>
45 #include <limits.h>
46 #include <string.h>
47 #include <strings.h>
48 #include <stdarg.h>
49 #include <alloca.h>
50 #include <unistd.h>
51 #include <sys/processor.h>
52 #include <syslog.h>
53 #include <errno.h>
54 #include <fcntl.h>
55 #include <picl.h>
56 #include <picltree.h>
57 #include <picldefs.h>
58 #include <pthread.h>
59 #include <signal.h>
60 #include <libdevinfo.h>
61 #include <sys/pm.h>
62 #include <sys/open.h>
63 #include <sys/time.h>
64 #include <sys/utsname.h>
65 #include <sys/systeminfo.h>
66 #include <note.h>
67 #include <sys/i2c/clients/i2c_client.h>
68 #include <sys/i2c/clients/adm1031.h>
69 #include <sys/i2c/clients/pic16f819_reg.h>
70 #include "envd.h"
71 #include <sys/scsi/scsi.h>
72 #include <sys/scsi/generic/commands.h>
73 
74 
75 /*
76  * PICL plugin entry points
77  */
78 static void piclenvd_register(void);
79 static void piclenvd_init(void);
80 static void piclenvd_fini(void);
81 
82 /*
83  * Env setup routines
84  */
85 extern void env_picl_setup(void);
86 extern void env_picl_destroy(void);
87 extern int env_picl_setup_tuneables(void);
88 
89 /*
90  * Sleep routine used for polling
91  */
92 static int get_dimm_fan_speed(int, fanspeed_t *);
93 static int is_dimm_fan_failed(void);
94 
95 #pragma	init(piclenvd_register)
96 
97 /*
98  * Plugin registration information
99  */
100 static picld_plugin_reg_t my_reg_info = {
101 	PICLD_PLUGIN_VERSION,
102 	PICLD_PLUGIN_CRITICAL,
103 	"SUNW_piclenvd",
104 	piclenvd_init,
105 	piclenvd_fini,
106 };
107 
108 #define	REGISTER_INFORMATION_STRING_LENGTH	16
109 static char dimm_fan_rpm_string[REGISTER_INFORMATION_STRING_LENGTH] = {0};
110 static char dimm_fan_status_string[REGISTER_INFORMATION_STRING_LENGTH] = {0};
111 static char dimm_fan_command_string[REGISTER_INFORMATION_STRING_LENGTH] = {0};
112 static char dimm_fan_debug_string[REGISTER_INFORMATION_STRING_LENGTH] = {0};
113 
114 static int	scsi_log_sense(int fd, uchar_t page_code, uchar_t *pagebuf,
115 			uint16_t pagelen);
116 static int	get_disk_temp(env_disk_t *);
117 /*
118  * ES Segment data structures
119  */
120 static sensor_ctrl_blk_t	sensor_ctrl[MAX_SENSORS];
121 static fan_ctrl_blk_t		fan_ctrl[MAX_FANS];
122 static fruenvseg_t		*envfru = NULL;
123 
124 /*
125  * Env thread variables
126  */
127 static boolean_t  system_shutdown_started = B_FALSE;
128 static boolean_t  ovtemp_thr1_created = B_FALSE;
129 static pthread_t  ovtemp_thr1_id;
130 static pthread_attr_t thr_attr;
131 static boolean_t  ovtemp_thr2_created = B_FALSE;
132 static pthread_t  ovtemp_thr2_id;
133 static boolean_t  dimm_fan_thr_created = B_FALSE;
134 static pthread_t  dimm_fan_thr_id;
135 static boolean_t  disk_temp_thr_created = B_FALSE;
136 static pthread_t  disk_temp_thr_id;
137 
138 /*
139  * PM thread related variables
140  */
141 static pthread_t	pmthr_tid;	/* pmthr thread ID */
142 static int		pm_fd = -1;	/* PM device file descriptor */
143 static boolean_t	pmthr_created = B_FALSE;
144 static int		cur_lpstate;	/* cur low power state */
145 
146 /*
147  * Envd plug-in verbose flag set by SUNW_PICLENVD_DEBUG environment var
148  * Setting the verbose tuneable also enables debugging for better
149  * control
150  */
151 int	env_debug = 0;
152 
153 /*
154  * Fan devices
155  */
156 static env_fan_t envd_sys_out_fan = {
157 	ENV_SYSTEM_OUT_FAN, ENV_SYSTEM_OUT_FAN_DEVFS, NULL,
158 	SYSTEM_OUT_FAN_ID, SYSTEM_OUT_FAN_SPEED_MIN, SYSTEM_OUT_FAN_SPEED_MAX,
159 	-1, -1,
160 };
161 
162 static env_fan_t envd_sys_in_fan = {
163 	ENV_SYSTEM_INTAKE_FAN, ENV_SYSTEM_INTAKE_FAN_DEVFS, NULL,
164 	SYSTEM_INTAKE_FAN_ID, SYSTEM_INTAKE_FAN_SPEED_MIN,
165 	SYSTEM_INTAKE_FAN_SPEED_MAX, -1, -1,
166 };
167 
168 static env_fan_t envd_cpu0_fan = {
169 	ENV_CPU0_FAN, ENV_CPU0_FAN_DEVFS, NULL,
170 	CPU0_FAN_ID, CPU_FAN_SPEED_MIN, CPU_FAN_SPEED_MAX, -1, -1,
171 };
172 
173 static env_fan_t envd_cpu1_fan = {
174 	ENV_CPU1_FAN, ENV_CPU1_FAN_DEVFS, NULL,
175 	CPU1_FAN_ID, CPU_FAN_SPEED_MIN, CPU_FAN_SPEED_MAX, -1, -1,
176 };
177 
178 static env_fan_t envd_dimm_fan = {
179 	ENV_DIMM_FAN, ENV_DIMM_FAN_DEVFS, NULL,
180 	DIMM_FAN_ID, 100, 100, -1, -1,
181 };
182 
183 static env_disk_t envd_disk0 = {
184 	ENV_DISK0, ENV_DISK0_DEVFS, DISK0_PHYSPATH, DISK0_NODE_PATH,
185 	DISK0_ID, -1, -1,
186 };
187 
188 static env_disk_t envd_disk1 = {
189 	ENV_DISK1, ENV_DISK1_DEVFS, DISK1_PHYSPATH, DISK1_NODE_PATH,
190 	DISK1_ID, -1, -1,
191 };
192 
193 /*
194  * The vendor-id and device-id are the properties associated with
195  * the SCSI controller. This is used to identify a particular controller
196  * like LSI1030.
197  */
198 #define	VENDOR_ID	"vendor-id"
199 #define	DEVICE_ID	"device-id"
200 
201 /*
202  * The implementation for SCSI disk drives to supply info. about
203  * temperature is not mandatory. Hence we first determine if the
204  * temperature page is supported. To do this we need to scan the list
205  * of pages supported.
206  */
207 #define	SUPPORTED_LPAGES	0
208 #define	TEMPERATURE_PAGE	0x0D
209 #define	LOGPAGEHDRSIZE	4
210 
211 /*
212  * NULL terminated array of fans
213  */
214 static env_fan_t *envd_fans[] = {
215 	&envd_cpu0_fan,
216 	&envd_cpu1_fan,
217 	&envd_sys_out_fan,
218 	&envd_sys_in_fan,
219 	&envd_dimm_fan,
220 	NULL
221 };
222 
223 static	env_disk_t	*envd_disks[] = {
224 	&envd_disk0,
225 	&envd_disk1,
226 	NULL
227 };
228 
229 /*
230  * ADM1031 speedrange map is indexed by a 2-bit value
231  */
232 static int	adm_speedrange_map[] = {1, 2, 4, 8};
233 
234 /*
235  * ADM1031 devices
236  */
237 static char	*hwm_devs[] = {
238 	CPU_HWM_DEVFS,	/* CPU_HWM_ID */
239 	SYS_HWM_DEVFS	/* SYS_HWM_ID */
240 };
241 
242 /*
243  * Fan names associated with each ADM1031 hwms - used to
244  * print fault messages.
245  */
246 static char	*hwm_fans[MAX_HWMS][2] = {
247 	{ENV_CPU0_FAN, ENV_CPU1_FAN},
248 	{ENV_SYSTEM_INTAKE_FAN, ENV_SYSTEM_OUT_FAN}
249 };
250 
251 /*
252  * Temperature sensors
253  */
254 static env_sensor_t envd_sensors[] = {
255 	{ SENSOR_CPU0_DIE, SENSOR_CPU0_DIE_DEVFS, NULL,
256 	    CPU0_SENSOR_ID, CPU_HWM_ID, (void *)&envd_cpu0_fan, -1},
257 	{ SENSOR_CPU1_DIE, SENSOR_CPU1_DIE_DEVFS, NULL,
258 	    CPU1_SENSOR_ID, CPU_HWM_ID, (void *)&envd_cpu1_fan, -1},
259 	{ SENSOR_INT_AMB_0, SENSOR_INT_AMB_0_DEVFS, NULL,
260 	    INT_AMB0_SENSOR_ID, CPU_HWM_ID, NULL, -1},
261 	{ SENSOR_SYS_OUT, SENSOR_SYS_OUT_DEVFS, NULL,
262 	    SYS_OUT_SENSOR_ID, SYS_HWM_ID, (void *)&envd_sys_out_fan, -1},
263 	{ SENSOR_INT_AMB_1, SENSOR_INT_AMB_1_DEVFS, NULL,
264 	    INT_AMB1_SENSOR_ID, SYS_HWM_ID, NULL, -1},
265 	{ SENSOR_SYS_IN, SENSOR_SYS_IN_DEVFS, NULL,
266 	    SYS_IN_SENSOR_ID, SYS_HWM_ID, (void *)&envd_sys_in_fan, -1},
267 };
268 #define	N_ENVD_SENSORS	(sizeof (envd_sensors)/sizeof (envd_sensors[0]))
269 
270 #define	NOT_AVAILABLE	"NA"
271 
272 /*
273  * ADM1031 macros
274  */
275 #define	TACH_UNKNOWN	255
276 #define	FAN_OUT_OF_RANGE	(TACH_UNKNOWN)
277 #define	ADM_HYSTERISIS	5
278 #define	N_SEQ_TACH	15
279 
280 #define	TMIN_MASK	(0xF8)
281 #define	TMIN_SHIFT	(3)
282 #define	TMIN_UNITS	(4)	/* increments of 4 degrees celsius */
283 #define	TRANGE_MASK	(0x7)
284 
285 #define	TMIN(regval)	(((regval & TMIN_MASK) >> TMIN_SHIFT) * TMIN_UNITS)
286 #define	TRANGE(regval)	(regval & TRANGE_MASK)
287 
288 #define	GET_TMIN_RANGE(tmin, trange) \
289 	((((tmin / TMIN_UNITS) & TMIN_MASK) << TMIN_SHIFT) | \
290 	(trange & TRANGE_MASK))
291 
292 #define	TACH_ENABLE_MASK		(0x0C)
293 #define	ADM_SETFANSPEED_CONV(speed)	(15 * speed / 100)
294 
295 /*
296  * Tuneables
297  */
298 #define	ENABLE	1
299 #define	DISABLE	0
300 
301 int	monitor_disk_temp	= 1;	/* enabled */
302 static	int	disk_high_warn_temperature	= DISK_HIGH_WARN_TEMPERATURE;
303 static	int	disk_low_warn_temperature	= DISK_LOW_WARN_TEMPERATURE;
304 static	int	disk_high_shutdown_temperature	=
305 						DISK_HIGH_SHUTDOWN_TEMPERATURE;
306 static	int	disk_low_shutdown_temperature	= DISK_LOW_SHUTDOWN_TEMPERATURE;
307 static	int	disk_scan_interval		= DISK_SCAN_INTERVAL;
308 
309 static int get_monitor_cpu_mode(ptree_rarg_t *parg, void *buf);
310 static int set_monitor_cpu_mode(ptree_warg_t *parg, const void *buf);
311 static int get_monitor_sys_mode(ptree_rarg_t *parg, void *buf);
312 static int set_monitor_sys_mode(ptree_warg_t *parg, const void *buf);
313 static int get_int_val(ptree_rarg_t *parg, void *buf);
314 static int set_int_val(ptree_warg_t *parg, const void *buf);
315 static int get_string_val(ptree_rarg_t *parg, void *buf);
316 static int set_string_val(ptree_warg_t *parg, const void *buf);
317 static int get_cpu_tach(ptree_rarg_t *parg, void *buf);
318 static int set_cpu_tach(ptree_warg_t *parg, const void *buf);
319 static int get_sys_tach(ptree_rarg_t *parg, void *buf);
320 static int set_sys_tach(ptree_warg_t *parg, const void *buf);
321 
322 static int 	shutdown_override	= 0;
323 static int 	sensor_poll_interval	= SENSORPOLL_INTERVAL;
324 static int	warning_interval	= WARNING_INTERVAL;
325 static int	disk_warning_interval	= DISK_WARNING_INTERVAL;
326 static int	disk_warning_duration	= DISK_WARNING_DURATION;
327 static int 	shutdown_interval	= SHUTDOWN_INTERVAL;
328 static int 	disk_shutdown_interval	= DISK_SHUTDOWN_INTERVAL;
329 static int	ovtemp_monitor		= 1;	/* enabled */
330 static int	pm_monitor		= 1;	/* enabled */
331 static int	mon_fanstat		= 1;	/* enabled */
332 
333 static int 	cpu_mode;
334 static int 	sys_mode;
335 static int 	cpu_tach;
336 static int 	sys_tach;
337 static char	shutdown_cmd[] = SHUTDOWN_CMD;
338 
339 env_tuneable_t tuneables[] = {
340 	{"ovtemp-monitor", PICL_PTYPE_INT, &ovtemp_monitor,
341 	    &get_int_val, &set_int_val, sizeof (int)},
342 
343 	{"pm-monitor", PICL_PTYPE_INT, &pm_monitor,
344 	    &get_int_val, &set_int_val, sizeof (int)},
345 
346 	{"shutdown-override", PICL_PTYPE_INT, &shutdown_override,
347 	    &get_int_val, &set_int_val, sizeof (int)},
348 
349 	{"cpu-hm-automode-enable", PICL_PTYPE_INT, &cpu_mode,
350 	    &get_monitor_cpu_mode, &set_monitor_cpu_mode,
351 	    sizeof (int)},
352 
353 	{"sys-hm-automode-enable", PICL_PTYPE_INT, &sys_mode,
354 	    &get_monitor_sys_mode, &set_monitor_sys_mode,
355 	    sizeof (int)},
356 
357 	{"sensor-poll-interval", PICL_PTYPE_INT,
358 	    &sensor_poll_interval,
359 	    &get_int_val, &set_int_val,
360 	    sizeof (int)},
361 
362 	{"disk-scan-interval", PICL_PTYPE_INT,
363 	    &disk_scan_interval,
364 	    &get_int_val, &set_int_val,
365 	    sizeof (int)},
366 
367 	{"warning-interval", PICL_PTYPE_INT, &warning_interval,
368 	    &get_int_val, &set_int_val,
369 	    sizeof (int)},
370 
371 	{"shutdown-interval", PICL_PTYPE_INT, &shutdown_interval,
372 	    &get_int_val, &set_int_val,
373 	    sizeof (int)},
374 
375 	{"disk_warning-interval", PICL_PTYPE_INT, &disk_warning_interval,
376 	    &get_int_val, &set_int_val,
377 	    sizeof (int)},
378 
379 	{"disk_warning-duration", PICL_PTYPE_INT, &disk_warning_duration,
380 	    &get_int_val, &set_int_val,
381 	    sizeof (int)},
382 
383 	{"disk_shutdown-interval", PICL_PTYPE_INT, &disk_shutdown_interval,
384 	    &get_int_val, &set_int_val,
385 	    sizeof (int)},
386 
387 	{"shutdown-command", PICL_PTYPE_CHARSTRING, shutdown_cmd,
388 	    &get_string_val, &set_string_val,
389 	    sizeof (shutdown_cmd)},
390 
391 	{"cpu-tach-enable", PICL_PTYPE_INT, &cpu_tach,
392 	    &get_cpu_tach, &set_cpu_tach,
393 	    sizeof (int)},
394 
395 	{"sys-tach-enable", PICL_PTYPE_INT, &sys_tach,
396 	    &get_sys_tach, &set_sys_tach,
397 	    sizeof (int)},
398 
399 	{"monitor-fanstat", PICL_PTYPE_INT, &mon_fanstat,
400 	    &get_int_val, &set_int_val, sizeof (int)},
401 
402 	{"monitor-disk-temp", PICL_PTYPE_INT, &monitor_disk_temp,
403 	    &get_int_val, &set_int_val, sizeof (int)},
404 
405 	{"disk-high-warn-temperature", PICL_PTYPE_INT,
406 	    &disk_high_warn_temperature, &get_int_val,
407 	    &set_int_val, sizeof (int)},
408 
409 	{"disk-low-warn-temperature", PICL_PTYPE_INT,
410 	    &disk_low_warn_temperature, &get_int_val,
411 	    &set_int_val, sizeof (int)},
412 
413 	{"disk-high-shutdown-temperature", PICL_PTYPE_INT,
414 	    &disk_high_shutdown_temperature, &get_int_val,
415 	    &set_int_val, sizeof (int)},
416 
417 	{"disk-low-shutdown-temperature", PICL_PTYPE_INT,
418 	    &disk_low_shutdown_temperature, &get_int_val,
419 	    &set_int_val, sizeof (int)},
420 
421 	{"verbose", PICL_PTYPE_INT, &env_debug,
422 	    &get_int_val, &set_int_val, sizeof (int)},
423 
424 
425 };
426 
427 /*
428  * We use this to figure out how many tuneables there are
429  * This is variable because the publishing routine needs this info
430  * in piclenvsetup.c
431  */
432 int	ntuneables = (sizeof (tuneables)/sizeof (tuneables[0]));
433 
434 /*
435  * Table Handling Code
436  */
437 static void
438 fini_table(table_t *tblp)
439 {
440 	if (tblp == NULL)
441 		return;
442 	free(tblp->xymap);
443 	free(tblp);
444 }
445 
446 static table_t *
447 init_table(int npoints)
448 {
449 	table_t		*tblp;
450 	point_t		*xy;
451 
452 	if (npoints == 0)
453 		return (NULL);
454 
455 	if ((tblp = malloc(sizeof (*tblp))) == NULL)
456 		return (NULL);
457 
458 	if ((xy = malloc(sizeof (*xy) * npoints)) == NULL) {
459 		free(tblp);
460 		return (NULL);
461 	}
462 
463 	tblp->nentries = npoints;
464 	tblp->xymap = xy;
465 
466 	return (tblp);
467 }
468 
469 /*
470  * function: calculates y for a given x based on a table of points
471  * for monotonically increasing x values.
472  * 'tbl' specifies the table to use, 'val' specifies the 'x', returns 'y'
473  */
474 static int
475 y_of_x(table_t *tbl, int xval)
476 {
477 	int		i;
478 	int		entries;
479 	point_t		*xymap;
480 	float		newval;
481 	float		dy, dx, slope;
482 
483 	entries = tbl->nentries;
484 	xymap = tbl->xymap;
485 	/*
486 	 * If the temperature is outside the correction table
487 	 * then simply return the original value.
488 	 */
489 	if ((xval < xymap[0].x) || (xval > xymap[entries - 1].x))
490 		return (xval);
491 	if (xval == xymap[0].x)
492 		return (xymap[0].y);
493 	if (xval == xymap[entries - 1].x)
494 		return (xymap[entries - 1].y);
495 
496 	for (i = 1; i < entries - 1; i++) {
497 		if (xval == xymap[i].x)
498 			return (xymap[i].y);
499 		if (xval < xymap[i].x)
500 			break;
501 	}
502 
503 	/*
504 	 * Use linear interpolation
505 	 */
506 	dy = (float)(xymap[i].y - xymap[i-1].y);
507 	dx = (float)(xymap[i].x - xymap[i-1].x);
508 	slope = dy/dx;
509 	newval = xymap[i - 1].y + slope * (xval - xymap[i - 1].x);
510 	return ((int)(newval + (newval >= 0 ? 0.5 : -0.5)));
511 }
512 
513 /*
514  * Get environmental segment from the specified FRU SEEPROM
515  */
516 static int
517 get_envseg(int fd, void **envsegp, int *envseglenp)
518 {
519 	int			i, segcnt, envseglen;
520 	section_layout_t	section;
521 	segment_layout_t	segment;
522 	uint8_t			*envseg;
523 
524 	if (lseek(fd, (long)SECTION_HDR_OFFSET, 0) == -1L ||
525 	    read(fd, &section, sizeof (section)) != sizeof (section)) {
526 		return (EINVAL);
527 	}
528 
529 	/*
530 	 * Verify we have the correct section and contents are valid
531 	 * For now, we don't verify the CRC.
532 	 */
533 	if (section.header_tag != SECTION_HDR_TAG ||
534 	    GET_UNALIGN16(&section.header_version[0]) != SECTION_HDR_VER) {
535 		if (env_debug)
536 			envd_log(LOG_INFO,
537 			    "Invalid section header tag:%x  version:%x\n",
538 			    section.header_tag,
539 			    GET_UNALIGN16(&section.header_version));
540 		return (EINVAL);
541 	}
542 
543 	/*
544 	 * Locate our environmental segment
545 	 */
546 	segcnt = section.segment_count;
547 	for (i = 0; i < segcnt; i++) {
548 		if (read(fd, &segment, sizeof (segment)) != sizeof (segment)) {
549 			return (EINVAL);
550 		}
551 		if (env_debug)
552 			envd_log(LOG_INFO,
553 			    "Seg name: %x  desc:%x off:%x  len:%x\n",
554 			    GET_UNALIGN16(&segment.name),
555 			    GET_UNALIGN32(&segment.descriptor[0]),
556 			    GET_UNALIGN16(&segment.offset),
557 			    GET_UNALIGN16(&segment.length));
558 		if (GET_UNALIGN16(&segment.name) == ENVSEG_NAME)
559 			break;
560 	}
561 
562 	if (i >= segcnt) {
563 		return (ENOENT);
564 	}
565 
566 	/*
567 	 * Allocate memory to hold the environmental segment data.
568 	 */
569 	envseglen = GET_UNALIGN16(&segment.length);
570 	if ((envseg = malloc(envseglen)) == NULL) {
571 		return (ENOMEM);
572 	}
573 
574 	if (lseek(fd, (long)GET_UNALIGN16(&segment.offset), 0) == -1L ||
575 	    read(fd, envseg, envseglen) != envseglen) {
576 		(void) free(envseg);
577 		return (EIO);
578 	}
579 	*envsegp = envseg;
580 	*envseglenp = envseglen;
581 	return (0);
582 }
583 
584 /*
585  * Get all environmental segments
586  * Return NULL on error
587  */
588 static fruenvseg_t *
589 get_fru_envsegs(void)
590 {
591 	fruenvseg_t		*fruenvsegs;
592 	envseg_layout_t		*envsegp;
593 	void			*envsegbufp;
594 	int			fd, envseglen, hdrlen;
595 	char			path[PATH_MAX];
596 
597 	fruenvsegs = NULL;
598 	fruenvsegs = malloc(sizeof (*fruenvsegs));
599 	if (fruenvsegs == NULL) {
600 		return (NULL);
601 	}
602 
603 	/*
604 	 * Now get the environmental segment from this FRU
605 	 */
606 	(void) snprintf(path, sizeof (path), "%s%s", I2C_DEVFS, MBFRU_DEV);
607 	fd = open(path, O_RDONLY);
608 	if (fd == -1) {
609 		envd_log(LOG_ERR, ENV_FRU_OPEN_FAIL, errno, path);
610 		free(fruenvsegs);
611 		return (NULL);
612 	}
613 
614 	/*
615 	 * Read environmental segment from this FRU SEEPROM
616 	 */
617 	if (get_envseg(fd, &envsegbufp, &envseglen) != 0) {
618 		envd_log(LOG_ERR, ENV_FRU_BAD_ENVSEG, path);
619 		free(fruenvsegs);
620 		(void) close(fd);
621 		return (NULL);
622 	}
623 
624 	/*
625 	 * Validate envseg version number and header length
626 	 */
627 	envsegp = (envseg_layout_t *)envsegbufp;
628 	hdrlen = sizeof (envseg_layout_t) -
629 	    sizeof (envseg_sensor_t) +
630 	    (envsegp->sensor_count) * sizeof (envseg_sensor_t);
631 
632 	if (envsegp->version != ENVSEG_VERSION ||
633 	    envseglen < hdrlen) {
634 		/*
635 		 * version mismatch or header not big enough
636 		 */
637 		envd_log(LOG_CRIT, ENV_FRU_BAD_ENVSEG, FRU_SEEPROM_NAME);
638 		if (envsegbufp != NULL)
639 			(void) free(envsegbufp);
640 		free(fruenvsegs);
641 		(void) close(fd);
642 		return (NULL);
643 	}
644 
645 	fruenvsegs->envseglen = envseglen;
646 	fruenvsegs->envsegbufp = envsegbufp;
647 	(void) close(fd);
648 	return (fruenvsegs);
649 }
650 
651 static int
652 process_fru_seeprom(unsigned char *buff)
653 {
654 	id_off_t id;
655 	int  i;
656 	int  id_offset = 0;
657 	int  nsensors;
658 	int  nfans;
659 	env_fan_t *fnodep;
660 	env_sensor_t *snodep;
661 
662 #define	NSENSOR_OFFSET	1
663 #define	ID_OFF_SIZE	6
664 #define	NFANS_OFFSET(x)	((x * ID_OFF_SIZE) + 2)
665 
666 	nsensors = (int)buff[NSENSOR_OFFSET];
667 	if (nsensors != MAX_SENSORS) {
668 		envd_log(LOG_CRIT, ENV_FRU_BAD_ENVSEG, FRU_SEEPROM_NAME);
669 		return (-1);
670 	}
671 
672 	nfans = (int)buff[NFANS_OFFSET(nsensors)];
673 	if (nfans != MAX_FANS) {
674 		envd_log(LOG_CRIT, ENV_FRU_BAD_ENVSEG, FRU_SEEPROM_NAME);
675 		return (-1);
676 	}
677 
678 	while (nsensors > 0) {
679 		(void) memcpy((char *)&id,
680 		    (char *)&buff[id_offset + 2],
681 		    ID_OFF_SIZE);
682 
683 		if (env_debug)
684 			envd_log(LOG_ERR, "\n Sensor Id %x offset %x",
685 			    id.id, id.offset);
686 
687 		if (id.id > MAX_SENSOR_ID) {
688 			envd_log(LOG_CRIT, ENV_FRU_BAD_ENVSEG,
689 			    FRU_SEEPROM_NAME);
690 			return (-1);
691 		}
692 
693 		/*
694 		 * Copy into the sensor control block array according to the
695 		 * sensor ID
696 		 */
697 		(void) memcpy((char *)&sensor_ctrl[id.id],
698 		    (char *)&buff[id.offset],
699 		    sizeof (sensor_ctrl_blk_t));
700 		nsensors--;
701 		id_offset += ID_OFF_SIZE;
702 	}
703 
704 	/*
705 	 * Skip past no of Fan entry(single byte)
706 	 */
707 	id_offset++;
708 	while (nfans > 0) {
709 		(void) memcpy((char *)&id, (char *)&buff[id_offset + 2],
710 		    ID_OFF_SIZE);
711 
712 		if (env_debug)
713 			envd_log(LOG_ERR, "\n Fan Id %x offset %x", id.id,
714 			    id.offset);
715 
716 		if (id.id > 3) {
717 			envd_log(LOG_CRIT, ENV_FRU_BAD_ENVSEG,
718 			    FRU_SEEPROM_NAME);
719 			return (-1);
720 		}
721 
722 		(void) memcpy((char *)&fan_ctrl[id.id],
723 		    (char *)&buff[id.offset], sizeof (fan_ctrl_blk_t));
724 
725 		nfans--;
726 		id_offset += ID_OFF_SIZE;
727 	}
728 
729 	/*
730 	 * Match Sensor/ES ID and point correct data
731 	 * based on IDs
732 	 */
733 	for (i = 0; i < N_ENVD_SENSORS; i++) {
734 		snodep = &envd_sensors[i];
735 		snodep->es_ptr = &sensor_ctrl[snodep->id];
736 	}
737 
738 	/*
739 	 * Match Fan/ES ID and point to correct ES Data
740 	 * based on IDs
741 	 */
742 	for (i = 0; (fnodep = envd_fans[i]) != NULL; i++)
743 		fnodep->es_ptr = &fan_ctrl[fnodep->id];
744 
745 	return (0);
746 }
747 
748 static int
749 envd_es_setup(void)
750 {
751 	envfru = get_fru_envsegs();
752 	if (envfru == NULL) {
753 		envd_log(LOG_CRIT, ENV_FRU_BAD_ENVSEG, FRU_SEEPROM_NAME);
754 		return (-1);
755 	}
756 	return (process_fru_seeprom((uchar_t *)envfru->envsegbufp));
757 }
758 
759 static void
760 envd_es_destroy(void)
761 {
762 	if (envfru != NULL)
763 		free(envfru->envsegbufp);
764 }
765 
766 /*
767  * Lookup fan and return a pointer to env_fan_t data structure.
768  */
769 env_fan_t *
770 fan_lookup(char *name)
771 {
772 	int		i;
773 	env_fan_t	*fanp;
774 
775 	for (i = 0; (fanp = envd_fans[i]) != NULL; i++) {
776 		if (strcmp(fanp->name, name) == 0)
777 			return (fanp);
778 	}
779 	return (NULL);
780 }
781 
782 /*
783  * Lookup sensor and return a pointer to env_sensor_t data structure.
784  */
785 env_sensor_t *
786 sensor_lookup(char *name)
787 {
788 	env_sensor_t	*sensorp;
789 	int		i;
790 
791 	for (i = 0; i < N_ENVD_SENSORS; ++i) {
792 		sensorp = &envd_sensors[i];
793 		if (strcmp(sensorp->name, name) == 0)
794 			return (sensorp);
795 	}
796 	return (NULL);
797 }
798 
799 /*
800  * Lookup disk and return a pointer to env_disk_t data structure.
801  */
802 env_disk_t *
803 disk_lookup(char *name)
804 {
805 	int		i;
806 	env_disk_t	*diskp;
807 
808 	for (i = 0; (diskp = envd_disks[i]) != NULL; i++) {
809 		if (strncmp(diskp->name, name, strlen(name)) == 0)
810 			return (diskp);
811 	}
812 	return (NULL);
813 }
814 
815 /*
816  * Get current temperature
817  * Returns -1 on error, 0 if successful
818  */
819 int
820 get_temperature(env_sensor_t *sensorp, tempr_t *temp)
821 {
822 	int	fd = sensorp->fd;
823 	int	retval = 0;
824 
825 	if (fd == -1)
826 		retval = -1;
827 	else if (ioctl(fd, I2C_GET_TEMPERATURE, temp) == -1) {
828 
829 		retval = -1;
830 
831 		if (sensorp->error == 0) {
832 			sensorp->error = 1;
833 			envd_log(LOG_WARNING, ENV_SENSOR_ACCESS_FAIL,
834 			    sensorp->name, errno, strerror(errno));
835 		}
836 	} else if (sensorp->error != 0) {
837 		sensorp->error = 0;
838 		envd_log(LOG_WARNING, ENV_SENSOR_ACCESS_OK, sensorp->name);
839 	}
840 	if (sensorp->crtbl != NULL) {
841 		*temp = (tempr_t)y_of_x(sensorp->crtbl, *temp);
842 	}
843 
844 	return (retval);
845 }
846 
847 /*
848  * Get current disk temperature
849  * Returns -1 on error, 0 if successful
850  */
851 int
852 disk_temperature(env_disk_t *diskp, tempr_t *temp)
853 {
854 	int	retval = 0;
855 
856 	if (diskp == NULL)
857 		retval = -1;
858 	else  {
859 		*temp = diskp->current_temp;
860 	}
861 	return (retval);
862 }
863 
864 /*
865  * Get uncorrected current temperature
866  * Returns -1 on error, 0 if successful
867  */
868 static int
869 get_raw_temperature(env_sensor_t *sensorp, tempr_t *temp)
870 {
871 	int	fd = sensorp->fd;
872 	int	retval = 0;
873 
874 	if (fd == -1)
875 		retval = -1;
876 	else if (ioctl(fd, I2C_GET_TEMPERATURE, temp) == -1) {
877 		retval = -1;
878 	}
879 
880 	return (retval);
881 }
882 
883 /*
884  * Return Fan RPM given N & tach
885  * count and N are retrived from the
886  * ADM1031 chip.
887  */
888 static int
889 tach_to_rpm(int n, uint8_t tach)
890 {
891 	if (n * tach == 0)
892 		return (0);
893 	return ((ADCSAMPLE * 60) / (n * tach));
894 }
895 
896 static int
897 get_raw_fan_speed(env_fan_t *fanp, uint8_t *fanspeedp)
898 {
899 	int	fan_fd;
900 	int	retval = 0;
901 
902 	fan_fd = fanp->fd;
903 
904 	if (fan_fd == -1)
905 		retval = -1;
906 	else if (ioctl(fan_fd, I2C_GET_FAN_SPEED, fanspeedp) == -1) {
907 		retval = -1;
908 	}
909 
910 
911 	return (retval);
912 }
913 
914 /*
915  * Get current fan speed
916  * This function returns a RPM value for fanspeed
917  * in fanspeedp.
918  * Returns -1 on error, 0 if successful
919  */
920 int
921 get_fan_speed(env_fan_t *fanp, fanspeed_t *fanspeedp)
922 {
923 	int	fan_fd;
924 	uint8_t tach;
925 
926 	fan_fd = fanp->fd;
927 
928 	if (fan_fd == -1)
929 		return (-1);
930 	if (fanp->id == DIMM_FAN_ID) {
931 		return (get_dimm_fan_speed(fan_fd, fanspeedp));
932 	}
933 	if (ioctl(fan_fd, I2C_GET_FAN_SPEED, &tach) == -1) {
934 		return (-1);
935 	}
936 
937 	/*
938 	 * Fanspeeds are reported as 0
939 	 * if the tach is out of range or fan status is off
940 	 * and if monitoring fan status is enabled.
941 	 */
942 	if (mon_fanstat && (!fanp->fanstat || tach == FAN_OUT_OF_RANGE)) {
943 		*fanspeedp = 0;
944 	} else {
945 		*fanspeedp =
946 		    tach_to_rpm(fanp->speedrange, tach);
947 	}
948 
949 	return (0);
950 }
951 
952 /*
953  * Set fan speed
954  * This function accepts a percentage of fan speed
955  * from 0-100 and programs the HW monitor fans to the corresponding
956  * fanspeed value.
957  * Returns -1 on error, -2 on invalid args passed, 0 if successful
958  */
959 int
960 set_fan_speed(env_fan_t *fanp, fanspeed_t fanspeed)
961 {
962 	int	fan_fd;
963 	int	retval = 0;
964 	uint8_t	speed;
965 
966 	fan_fd = fanp->fd;
967 	if (fan_fd == -1)
968 		return (-1);
969 
970 	if (fanspeed < 0 || fanspeed > 100)
971 		return (-2);
972 
973 	speed = (uint8_t)ADM_SETFANSPEED_CONV(fanspeed);
974 
975 	if (ioctl(fan_fd, I2C_SET_FAN_SPEED, &speed) == -1) {
976 		retval = -1;
977 	}
978 	return (retval);
979 }
980 
981 /*
982  * close all fan devices
983  */
984 static void
985 envd_close_fans(void)
986 {
987 	int		i;
988 	env_fan_t	*fanp;
989 
990 	for (i = 0; (fanp = envd_fans[i]) != NULL; i++) {
991 		if (fanp->fd != -1) {
992 			(void) close(fanp->fd);
993 			fanp->fd = -1;
994 		}
995 	}
996 }
997 
998 /*
999  * Close sensor devices and freeup resources
1000  */
1001 static void
1002 envd_close_sensors(void)
1003 {
1004 	env_sensor_t	*sensorp;
1005 	int		i;
1006 
1007 	for (i = 0; i < N_ENVD_SENSORS; ++i) {
1008 		sensorp = &envd_sensors[i];
1009 		if (sensorp->fd != -1) {
1010 			(void) close(sensorp->fd);
1011 			sensorp->fd = -1;
1012 		}
1013 		if (sensorp->crtbl != NULL)
1014 			fini_table(sensorp->crtbl);
1015 	}
1016 }
1017 
1018 /*
1019  * Open fan devices and initialize per fan data structure.
1020  * Returns #fans found.
1021  */
1022 static int
1023 envd_setup_fans(void)
1024 {
1025 	int		i, fd;
1026 	env_fan_t	*fanp;
1027 	char		path[PATH_MAX];
1028 	int		fancnt = 0;
1029 	uint8_t		n = 0;
1030 	picl_nodehdl_t tnodeh;
1031 	i2c_reg_t	i2c_reg;
1032 
1033 	for (i = 0; (fanp = envd_fans[i]) != NULL; i++) {
1034 		/* make sure cpu0/1 present for validating cpu fans */
1035 		if (fanp->id == CPU0_FAN_ID) {
1036 			if (ptree_get_node_by_path(CPU0_PATH, &tnodeh) !=
1037 				PICL_SUCCESS) {
1038 					fanp->present = B_FALSE;
1039 					continue;
1040 			}
1041 		}
1042 		if (fanp->id == CPU1_FAN_ID) {
1043 			if (ptree_get_node_by_path(CPU1_PATH, &tnodeh) !=
1044 				PICL_SUCCESS) {
1045 					fanp->present = B_FALSE;
1046 					continue;
1047 			}
1048 		}
1049 		if (fanp->id == DIMM_FAN_ID) {
1050 			if (ptree_get_node_by_path(DIMM_FAN_CONTROLLER_PATH,
1051 				&tnodeh) != PICL_SUCCESS) {
1052 					if (env_debug)
1053 						envd_log(LOG_ERR,
1054 				"dimm Fan not found in the system.\n");
1055 					fanp->present = B_FALSE;
1056 					continue;
1057 			}
1058 		}
1059 		(void) strcpy(path, "/devices");
1060 		(void) strlcat(path, fanp->devfs_path, sizeof (path));
1061 		fd = open(path, O_RDWR);
1062 		if (fd == -1) {
1063 			envd_log(LOG_CRIT,
1064 			    ENV_FAN_OPEN_FAIL, fanp->name,
1065 			    fanp->devfs_path, errno, strerror(errno));
1066 			fanp->present = B_FALSE;
1067 			continue;
1068 		}
1069 		fanp->fd = fd;
1070 		if (fanp->id == DIMM_FAN_ID) {
1071 			/*
1072 			 * set the SW aware bit in command register.
1073 			 * Clear the Fan fault latch bit.
1074 			 */
1075 			i2c_reg.reg_num = PIC16F819_COMMAND_REGISTER;
1076 			i2c_reg.reg_value = (PIC16F819_SW_AWARE_MODE |
1077 				PIC16F819_FAN_FAULT_CLEAR);
1078 			if (ioctl(fd, I2C_SET_REG, &i2c_reg) == -1) {
1079 				if (env_debug)
1080 					envd_log(LOG_ERR,
1081 		"Error in writing to COMMAND reg. of DIMM FAN controller\n");
1082 			}
1083 		} else {
1084 			/* Get speed range value */
1085 			if (ioctl(fd, ADM1031_GET_FAN_FEATURE, &n) != -1) {
1086 				fanp->speedrange =
1087 				    adm_speedrange_map[(n >> 6) & 0x03];
1088 			} else {
1089 				fanp->speedrange = FAN_RANGE_DEFAULT;
1090 			}
1091 		}
1092 		fanp->present = B_TRUE;
1093 		fanp->fanstat = 0;
1094 		fanp->cspeed = TACH_UNKNOWN;
1095 		fanp->lspeed = TACH_UNKNOWN;
1096 		fanp->conccnt = 0;
1097 		fancnt++;
1098 	}
1099 	return (fancnt);
1100 }
1101 
1102 static int
1103 envd_setup_disks(void)
1104 {
1105 	int	ret, i, page_index, page_len;
1106 	picl_nodehdl_t tnodeh;
1107 	env_disk_t	*diskp;
1108 	uint_t	vendor_id;
1109 	uint_t	device_id;
1110 	uchar_t	log_page[256];
1111 
1112 	/*
1113 	 * Check if the SCSi controller on the system is 1010 or 1030
1114 	 */
1115 
1116 	if (ptree_get_node_by_path(SCSI_CONTROLLER_NODE_PATH,
1117 				&tnodeh) != PICL_SUCCESS) {
1118 		if (env_debug)
1119 			envd_log(LOG_ERR,
1120 			"On-Board SCSI controller not found in the system.\n");
1121 		monitor_disk_temp = 0;
1122 		return (-1);
1123 	}
1124 
1125 	if ((ret = ptree_get_propval_by_name(tnodeh, VENDOR_ID,
1126 				&vendor_id,
1127 				sizeof (vendor_id))) != 0) {
1128 		if (env_debug)
1129 			envd_log(LOG_ERR,
1130 "Error in getting vendor-id for SCSI controller. ret = %d errno = 0x%d\n",
1131 				ret, errno);
1132 		monitor_disk_temp = 0;
1133 		return (-1);
1134 	}
1135 	if ((ret = ptree_get_propval_by_name(tnodeh, DEVICE_ID,
1136 				&device_id,
1137 				sizeof (device_id))) != 0) {
1138 		if (env_debug)
1139 			envd_log(LOG_ERR,
1140 "Error in getting device-id for SCSI controller. ret = %d errno = 0x%d\n",
1141 				ret, errno);
1142 		monitor_disk_temp = 0;
1143 		return (-1);
1144 	}
1145 	if (env_debug)
1146 		envd_log(LOG_ERR, "vendor-id=0x%x device-id=0x%x\n",
1147 			vendor_id, device_id);
1148 	if ((vendor_id != LSI1030_VENDOR_ID) ||
1149 		(device_id != LSI1030_DEVICE_ID)) {
1150 		monitor_disk_temp = 0;
1151 		return (-1);
1152 	}
1153 	/*
1154 	 * We have found LSI1030 SCSi controller onboard.
1155 	 */
1156 
1157 	for (i = 0; (diskp = envd_disks[i]) != NULL; i++) {
1158 
1159 		if (ptree_get_node_by_path(diskp->nodepath,
1160 				&tnodeh) != PICL_SUCCESS) {
1161 			diskp->present = B_FALSE;
1162 			if (env_debug)
1163 				envd_log(LOG_ERR,
1164 					"DISK %d not found in the system.\n",
1165 					diskp->id);
1166 			continue;
1167 		}
1168 		diskp->fd = open(diskp->devfs_path, O_RDONLY);
1169 		if (diskp->fd == -1) {
1170 			diskp->present = B_FALSE;
1171 			envd_log(LOG_ERR,
1172 				"Error in opening %s errno = 0x%x\n",
1173 				diskp->devfs_path, errno);
1174 			continue;
1175 		}
1176 		diskp->present = B_TRUE;
1177 		diskp->tpage_supported = B_FALSE;
1178 		/*
1179 		 * Find out if the Temperature page is supported by the disk.
1180 		 */
1181 		ret = scsi_log_sense(diskp->fd, SUPPORTED_LPAGES,
1182 				log_page, sizeof (log_page));
1183 		if (ret != 0) {
1184 			continue;
1185 		}
1186 		page_len = ((log_page[2] << 8) & 0xFF00) | log_page[3];
1187 
1188 		for (page_index = LOGPAGEHDRSIZE;
1189 			page_index < page_len + LOGPAGEHDRSIZE; page_index++) {
1190 			switch (log_page[page_index]) {
1191 				case TEMPERATURE_PAGE:
1192 					diskp->tpage_supported = B_TRUE;
1193 				if (env_debug)
1194 					envd_log(LOG_ERR,
1195 						"tpage supported for %s\n",
1196 						diskp->nodepath);
1197 				default:
1198 					break;
1199 			}
1200 		}
1201 		diskp->warning_tstamp = 0;
1202 		diskp->shutdown_tstamp = 0;
1203 		diskp->high_warning = disk_high_warn_temperature;
1204 		diskp->low_warning = disk_low_warn_temperature;
1205 		diskp->high_shutdown = disk_high_shutdown_temperature;
1206 		diskp->low_shutdown = disk_low_shutdown_temperature;
1207 		ret = get_disk_temp(diskp);
1208 	}
1209 	return (0);
1210 }
1211 
1212 /*
1213  * Open temperature sensor devices and initialize per sensor data structure.
1214  * Returns #sensors found.
1215  */
1216 static int
1217 envd_setup_sensors(void)
1218 {
1219 	env_sensor_t	*sensorp;
1220 	sensor_ctrl_blk_t *es_ptr;
1221 	table_t		*tblp;
1222 	char		path[PATH_MAX];
1223 	int		sensorcnt = 0;
1224 	int		i, j, nentries;
1225 	int16_t		tmin = 0;
1226 	picl_nodehdl_t tnodeh;
1227 
1228 	for (i = 0; i < N_ENVD_SENSORS; ++i) {
1229 		sensorp = &envd_sensors[i];
1230 		/* Initialize sensor's initial state */
1231 		sensorp->shutdown_initiated = B_FALSE;
1232 		sensorp->warning_tstamp = 0;
1233 		sensorp->shutdown_tstamp = 0;
1234 		sensorp->error = 0;
1235 		sensorp->crtbl = NULL;
1236 		/* make sure cpu0/1 sensors are present */
1237 		if (sensorp->id == CPU0_SENSOR_ID) {
1238 			if (ptree_get_node_by_path(CPU0_PATH, &tnodeh) !=
1239 				PICL_SUCCESS) {
1240 				sensorp->present = B_FALSE;
1241 				continue;
1242 			}
1243 		}
1244 		if (sensorp->id == CPU1_SENSOR_ID) {
1245 			if (ptree_get_node_by_path(CPU1_PATH, &tnodeh) !=
1246 				PICL_SUCCESS) {
1247 				sensorp->present = B_FALSE;
1248 				continue;
1249 			}
1250 		}
1251 		(void) strcpy(path, "/devices");
1252 		(void) strlcat(path, sensorp->devfs_path,
1253 		    sizeof (path));
1254 		sensorp->fd = open(path, O_RDWR);
1255 		if (sensorp->fd == -1) {
1256 			envd_log(LOG_ERR, ENV_SENSOR_OPEN_FAIL,
1257 			    sensorp->name, sensorp->devfs_path,
1258 			    errno, strerror(errno));
1259 			sensorp->present = B_FALSE;
1260 			continue;
1261 		}
1262 		sensorp->present = B_TRUE;
1263 		sensorcnt++;
1264 
1265 		/*
1266 		 * Get Tmin
1267 		 */
1268 
1269 		if (ioctl(sensorp->fd, ADM1031_GET_TEMP_MIN_RANGE,
1270 			&tmin) != -1) {
1271 			sensorp->tmin = TMIN(tmin);
1272 		} else {
1273 			sensorp->tmin = -1;
1274 		}
1275 		if (env_debug)
1276 			envd_log(LOG_ERR, "Sensor %s tmin %d",
1277 			    sensorp->name, sensorp->tmin);
1278 
1279 		/*
1280 		 * Create a correction table
1281 		 * if correction pairs are present in es
1282 		 * segment.
1283 		 */
1284 		es_ptr = sensorp->es_ptr;
1285 
1286 		if (es_ptr == NULL) {
1287 			continue;
1288 		}
1289 		nentries = es_ptr->correctionEntries;
1290 
1291 		if (nentries <= 2) {
1292 			if (env_debug)
1293 				envd_log(LOG_CRIT, "sensor correction <2");
1294 			continue;
1295 		}
1296 
1297 		sensorp->crtbl = init_table(nentries);
1298 		if (sensorp->crtbl == NULL)
1299 			continue;
1300 		tblp = sensorp->crtbl;
1301 		tblp->xymap[0].x =
1302 		    (char)es_ptr->correctionPair[0].measured;
1303 		tblp->xymap[0].y =
1304 		    (char)es_ptr->correctionPair[0].corrected;
1305 
1306 		for (j = 1; j < nentries; ++j) {
1307 			tblp->xymap[j].x =
1308 			    (char)es_ptr->correctionPair[j].measured;
1309 			tblp->xymap[j].y =
1310 			    (char)es_ptr->correctionPair[j].corrected;
1311 
1312 			if (tblp->xymap[j].x <= tblp->xymap[j - 1].x) {
1313 				fini_table(tblp);
1314 				sensorp->crtbl = NULL;
1315 				envd_log(LOG_CRIT, ENV_FRU_BAD_ENVSEG,
1316 				    FRU_SEEPROM_NAME);
1317 				break;
1318 			}
1319 		}
1320 
1321 		if (env_debug) {
1322 			envd_log(LOG_CRIT, "Sensor correction  %s",
1323 			    sensorp->name);
1324 			for (j = 0; j < nentries; j++)
1325 				envd_log(LOG_CRIT, " %d	%d",
1326 				    tblp->xymap[j].x, tblp->xymap[j].y);
1327 		}
1328 	}
1329 	return (sensorcnt);
1330 }
1331 
1332 /*
1333  * Modify ADM Tmin/ranges depending what power level
1334  * we are from.
1335  */
1336 static void
1337 updateadm_ranges(char *name, uchar_t cur_lpstate)
1338 {
1339 	env_sensor_t *sensorp;
1340 	fan_ctrl_blk_t *fanctl;
1341 	uchar_t tmin;
1342 	uchar_t trange;
1343 	uint16_t tdata;
1344 	int sysfd;
1345 	uchar_t sys_id = SYS_HWM_ID;
1346 	uint8_t mode;
1347 	static uint16_t tsave[2] = {0, 0};
1348 	/* Index of saved Tmin/Trange for two sensors */
1349 	uint16_t tindex = 0;
1350 
1351 	sensorp = sensor_lookup(name);
1352 	if (sensorp == NULL)
1353 		return;
1354 
1355 	/*
1356 	 * If there is only one Control pairs then return
1357 	 */
1358 	fanctl = ((env_fan_t *)sensorp->fanp)->es_ptr;
1359 
1360 	if (fanctl != NULL && fanctl->no_ctl_pairs <= 1)
1361 		return;
1362 
1363 	/*
1364 	 * if fan control specifies that ranges are same then
1365 	 * we skip re-programming adm chip.
1366 	 */
1367 
1368 	tmin = fanctl->fan_ctl_pairs[0].tMin;
1369 	trange = fanctl->fan_ctl_pairs[0].tRange;
1370 	if ((tmin == fanctl->fan_ctl_pairs[1].tMin) &&
1371 	    (trange == fanctl->fan_ctl_pairs[1].tRange))
1372 			return;
1373 
1374 	sysfd = open(hwm_devs[sys_id], O_RDWR);
1375 	if (sysfd == -1) {
1376 		if (env_debug)
1377 			envd_log(LOG_ERR, ENV_ADM_OPEN_FAIL, hwm_devs[sys_id],
1378 			    errno, strerror(errno));
1379 		return;
1380 	}
1381 	tindex = ((strcmp(name, SENSOR_SYS_IN) == 0) ? 0 : 1);
1382 
1383 	/* Read ADM default value only for the first time */
1384 	if (tsave[tindex] == 0) {
1385 		if (ioctl(sensorp->fd, ADM1031_GET_TEMP_MIN_RANGE,
1386 			&tsave[tindex]) == -1) {
1387 			if (env_debug)
1388 				envd_log(LOG_ERR,
1389 				    "read tminrange ioctl failed");
1390 			(void) close(sysfd);
1391 			return;
1392 		}
1393 	}
1394 	/*
1395 	 * Need to reinit ADM to manual mode for Tmin range to be
1396 	 * effective.
1397 	 */
1398 	mode = ADM1031_MANUAL_MODE;
1399 	if (ioctl(sysfd, ADM1031_SET_MONITOR_MODE, &mode) == -1) {
1400 		if (env_debug)
1401 			envd_log(LOG_ERR, ENV_ADM_MANUAL_MODE);
1402 		(void) close(sysfd);
1403 		return;
1404 	}
1405 
1406 	if (cur_lpstate == 1) {
1407 		/*
1408 		 * ADM 1031 Tmin/Trange register need to be reprogrammed.
1409 		 */
1410 		tdata = ((fanctl->fan_ctl_pairs[cur_lpstate].tMin / TMIN_UNITS)
1411 				<< TMIN_SHIFT);
1412 		/* Need to pack tRange in ADM bits 2:0 */
1413 		switch (fanctl->fan_ctl_pairs[cur_lpstate].tRange) {
1414 			case 5:
1415 				break;
1416 
1417 			case 10:
1418 				tdata |= 1;
1419 				break;
1420 
1421 			case 20:
1422 				tdata |= 2;
1423 				break;
1424 
1425 			case 40:
1426 				tdata |= 3;
1427 				break;
1428 
1429 			case 80:
1430 				tdata |= 4;
1431 				break;
1432 		}
1433 	} else
1434 		tdata = tsave[tindex];
1435 
1436 	if (ioctl(sensorp->fd, ADM1031_SET_TEMP_MIN_RANGE,
1437 	    &tdata) != -1)
1438 		sensorp->tmin = TMIN(tdata);
1439 
1440 	mode = ADM1031_AUTO_MODE;
1441 	if (ioctl(sysfd, ADM1031_SET_MONITOR_MODE, &mode) == -1) {
1442 		if (env_debug)
1443 			envd_log(LOG_ERR, ENV_ADM_AUTO_MODE);
1444 	}
1445 	(void) close(sysfd);
1446 }
1447 
1448 /* ARGSUSED */
1449 static void *
1450 pmthr(void *args)
1451 {
1452 	pm_state_change_t	pmstate;
1453 	char			physpath[PATH_MAX];
1454 	int				pre_lpstate;
1455 
1456 	pmstate.physpath = physpath;
1457 	pmstate.size = sizeof (physpath);
1458 	cur_lpstate = 0;
1459 	pre_lpstate = 1;
1460 
1461 	pm_fd = open(PM_DEVICE, O_RDWR);
1462 	if (pm_fd == -1) {
1463 		envd_log(LOG_ERR, PM_THREAD_EXITING, errno, strerror(errno));
1464 		return (NULL);
1465 	}
1466 	for (;;) {
1467 		/*
1468 		 * Get PM state change events to check if the system
1469 		 * is in lowest power state and adjust ADM hardware
1470 		 * monitor's fan speed settings.
1471 		 *
1472 		 * To minimize polling, we use the blocking interface
1473 		 * to get the power state change event here.
1474 		 */
1475 		if (ioctl(pm_fd, PM_GET_STATE_CHANGE_WAIT, &pmstate) != 0) {
1476 			if (errno != EINTR)
1477 				break;
1478 			continue;
1479 		}
1480 		do {
1481 			if (env_debug)  {
1482 				envd_log(LOG_INFO,
1483 					"pmstate event:0x%x flags:%x"
1484 					"comp:%d oldval:%d newval:%d path:%s\n",
1485 						pmstate.event, pmstate.flags,
1486 						pmstate.component,
1487 						pmstate.old_level,
1488 						pmstate.new_level,
1489 						pmstate.physpath);
1490 			}
1491 			cur_lpstate =
1492 			    (pmstate.flags & PSC_ALL_LOWEST) ? 1 : 0;
1493 		} while (ioctl(pm_fd, PM_GET_STATE_CHANGE, &pmstate) == 0);
1494 		/*
1495 		 * Change ADM ranges as per E* Requirements. Update
1496 		 * happens only for valid state changes.
1497 		 */
1498 		if (pre_lpstate != cur_lpstate) {
1499 			pre_lpstate = cur_lpstate;
1500 			updateadm_ranges(SENSOR_SYS_OUT, cur_lpstate);
1501 			updateadm_ranges(SENSOR_SYS_IN, cur_lpstate);
1502 		}
1503 	}
1504 	/* Not reached */
1505 	return (NULL);
1506 }
1507 
1508 /*
1509  * This function is used to reasonably predict the
1510  * state of the fan (ON/OFF) using tmin and current temperature.
1511  *
1512  * We know the fan is on  if temp >= tmin and fan is off if
1513  * temp < (Tmin - Hysterisis).
1514  *
1515  * When the temperature is in between we don't know if the fan is on/off
1516  * because the temperature could be decreasing and not have crossed
1517  * Tmin - hysterisis and vice a versa.
1518  *
1519  *			FAN ON
1520  * Tmin
1521  * 	-------------------------------------------
1522  *
1523  * 			FAN ON/OFF
1524  *
1525  * 	--------------------------------------------
1526  * Tmin - Hysterisis
1527  *			FAN OFF
1528  *
1529  * To solve the problem of finding out if the fan is on/off in our gray region
1530  * we keep track of the last read tach and the current read tach. From
1531  * experimentation and from discussions with analog devices it is unlikely that
1532  * if the fans are on we will get a constant tach reading  more than 5 times in
1533  * a row. This is not but the most fool proof approach but the  best we can do.
1534  *
1535  * This routine implements the above logic for a sensor with an
1536  * associated fan. The caller garauntees sensorp and fanp are not null.
1537  */
1538 
1539 static void
1540 check_fanstat(env_sensor_t *sensorp)
1541 {
1542 	env_fan_t *fanp = sensorp->fanp;
1543 	tempr_t	temp;
1544 	uint8_t fanspeed;
1545 
1546 	if (get_raw_temperature(sensorp, &temp) == -1)
1547 		return;
1548 
1549 	if (temp < (sensorp->tmin - ADM_HYSTERISIS)) {
1550 
1551 		fanp->fanstat = 0;		/* Fan off */
1552 		fanp->lspeed = TACH_UNKNOWN;	/* Reset Last read tach */
1553 		fanp->conccnt = 0;
1554 
1555 	} else if (temp >= sensorp->tmin) {
1556 
1557 		fanp->fanstat = 1;		/* Fan on */
1558 		fanp->lspeed = TACH_UNKNOWN;
1559 		fanp->conccnt = 0;
1560 
1561 	} else {
1562 		if (get_raw_fan_speed(fanp, &fanspeed) == -1)
1563 			return;
1564 
1565 		fanp->cspeed = fanspeed;
1566 		/*
1567 		 * First time in the gray area
1568 		 * set last read speed to current speed
1569 		 */
1570 		if (fanp->lspeed == TACH_UNKNOWN) {
1571 			fanp->lspeed = fanspeed;
1572 		} else {
1573 			if (fanp->lspeed != fanp->cspeed) {
1574 				fanp->conccnt = 0;
1575 				fanp->fanstat = 1;
1576 			} else {
1577 				fanp->conccnt++;
1578 
1579 				if (fanp->conccnt >= N_SEQ_TACH)
1580 					fanp->fanstat = 0;
1581 			}
1582 			fanp->lspeed = fanp->cspeed;
1583 		}
1584 	}
1585 }
1586 /*
1587  * There is an issue with the ADM1031 chip that causes the chip
1588  * to not update the tach register in case the fan stops. The
1589  * fans stop when the temperature measured (temp) drops below
1590  * Tmin - Hysterisis  and turn on when the temp >= Tmin.
1591  *
1592  * Since the tach registers don't update and remain stuck at the
1593  * last read tach value our get_fan_speed function always returns
1594  * a non-zero RPM reading.
1595  *
1596  * To fix this we need to figure out when the fans will be on/off
1597  * depending on the current temperature. Currently we poll for
1598  * interrupts, we can use that loop to determine what the current
1599  * temperature is and if the fans should be on/off.
1600  *
1601  * We get current temperature and check the fans.
1602  */
1603 static void
1604 monitor_fanstat(void)
1605 {
1606 	env_sensor_t *sensorp;
1607 	env_fan_t *fanp;
1608 	int i;
1609 
1610 	for (i = 0; i < N_ENVD_SENSORS; i++) {
1611 		sensorp = &envd_sensors[i];
1612 
1613 		if (!sensorp)
1614 			continue;
1615 
1616 		fanp = sensorp->fanp;
1617 
1618 		if (!(fanp && fanp->present))
1619 			continue;
1620 
1621 		if (sensorp->tmin != -1) {
1622 			check_fanstat(sensorp);
1623 		} else {
1624 			fanp->fanstat = 1;
1625 		}
1626 
1627 	}
1628 }
1629 
1630 static int
1631 handle_overtemp_interrupt(int hwm_id)
1632 {
1633 	env_sensor_t *sensorp;
1634 	tempr_t  temp;
1635 	uchar_t smap[MAX_SENSORS];
1636 	time_t  ct;
1637 	uchar_t i;
1638 	char msgbuf[BUFSIZ];
1639 	char syscmd[BUFSIZ];
1640 	boolean_t return_flag;
1641 	int	ret;
1642 	timespec_t	to;
1643 	pthread_mutex_t	env_monitor_mutex = PTHREAD_MUTEX_INITIALIZER;
1644 	pthread_cond_t	env_monitor_cv = PTHREAD_COND_INITIALIZER;
1645 
1646 	/* Clear Map of Sensor Entries */
1647 	(void) memset(smap, SENSOR_OK, sizeof (smap));
1648 
1649 	for (;;) {
1650 		for (i = 0; i < N_ENVD_SENSORS; i++) {
1651 			sensorp = &envd_sensors[i];
1652 
1653 			/*
1654 			 * Check whether the sensor belongs to the
1655 			 * interrupting ADM hardware monitor
1656 			 */
1657 			if (sensorp->hwm_id != hwm_id)
1658 				continue;
1659 
1660 			if (sensorp->present == B_FALSE)
1661 				continue;
1662 			/*
1663 			 * if shutdown is initiated then we simply loop
1664 			 * through the sensors until shutdown
1665 			 */
1666 			if (sensorp->shutdown_initiated == B_TRUE)
1667 				continue;
1668 
1669 			/* get current temp for this sensor */
1670 			if (get_temperature(sensorp, &temp) == -1)
1671 				continue;
1672 
1673 			sensorp->cur_temp = temp;
1674 
1675 			if (env_debug)
1676 				envd_log(LOG_ERR,
1677 					"sensor name %s, cur temp %d, "
1678 					"HW %d LW %d SD %d LS %d\n",
1679 					    sensorp->name, temp,
1680 					    sensorp->es_ptr->high_warning,
1681 					    (int)sensorp->es_ptr->low_warning,
1682 					    sensorp->es_ptr->high_shutdown,
1683 					    (int)sensorp->es_ptr->low_shutdown);
1684 
1685 			if (TEMP_IN_WARNING_RANGE(sensorp->cur_temp, sensorp)) {
1686 				/*
1687 				 * Log on warning atmost one second
1688 				 */
1689 				ct = (time_t)(gethrtime() / NANOSEC);
1690 				if ((ct - sensorp->warning_tstamp) >=
1691 				    warning_interval) {
1692 					envd_log(LOG_CRIT,
1693 					    ENV_WARNING_MSG, sensorp->name,
1694 					    temp,
1695 					    sensorp->es_ptr->low_warning,
1696 					    sensorp->es_ptr->high_warning);
1697 					sensorp->warning_tstamp = ct;
1698 				}
1699 				smap[i] = SENSOR_WARN;
1700 			} else {
1701 				/*
1702 				 * We will fall in this caterory only if
1703 				 * Temperature drops/increases from warning
1704 				 * threshold. If so we set sensor map to
1705 				 * OK so that we can exit the loop if
1706 				 * shutdown not initiated.
1707 				 */
1708 				smap[i] = SENSOR_OK;
1709 			}
1710 
1711 			if (TEMP_IN_SHUTDOWN_RANGE(temp, sensorp) &&
1712 			    !shutdown_override) {
1713 				ct = (time_t)(gethrtime() / NANOSEC);
1714 				if (sensorp->shutdown_tstamp == 0)
1715 					sensorp->shutdown_tstamp = ct;
1716 				if ((ct - sensorp->shutdown_tstamp) >=
1717 				    shutdown_interval) {
1718 					sensorp->shutdown_initiated = B_TRUE;
1719 					(void) snprintf(msgbuf, sizeof (msgbuf),
1720 					    ENV_SHUTDOWN_MSG, sensorp->name,
1721 					    temp,
1722 					    sensorp->es_ptr->low_shutdown,
1723 					    sensorp->es_ptr->high_shutdown);
1724 					envd_log(LOG_ALERT, msgbuf);
1725 				}
1726 				if (system_shutdown_started == B_FALSE) {
1727 					(void) snprintf(syscmd, sizeof (syscmd),
1728 					    "%s \"%s\"", SHUTDOWN_CMD, msgbuf);
1729 					envd_log(LOG_ALERT, syscmd);
1730 					system_shutdown_started = B_TRUE;
1731 					(void) system(syscmd);
1732 				}
1733 			} else if (sensorp->shutdown_tstamp != 0)
1734 				sensorp->shutdown_tstamp = 0;
1735 		}
1736 
1737 		/*
1738 		 * Sweep thorugh Sensor Map and if warnings OR shutdown
1739 		 * are not logged then return to caller.
1740 		 */
1741 		return_flag = B_TRUE;
1742 		for (i = 0; i < N_ENVD_SENSORS; i++)
1743 			if (smap[i] == SENSOR_WARN)
1744 				return_flag = B_FALSE;
1745 
1746 		if ((return_flag == B_TRUE) &&
1747 		    (system_shutdown_started == B_FALSE)) {
1748 			return (1);
1749 		}
1750 
1751 wait_till_timeout:
1752 		/*
1753 		 * We use pthread_cond_reltimedwait_np to sleep for
1754 		 * fixed interval of time.
1755 		 * earlier implementation used alarm() call which
1756 		 * fails in Multi threaded environment. If multiple
1757 		 * threads call alarm() only one of the threads is
1758 		 * sent the SIGALRM signal.
1759 		 */
1760 		(void) pthread_mutex_lock(&env_monitor_mutex);
1761 		ret = pthread_cond_reltimedwait_np(&env_monitor_cv,
1762 			&env_monitor_mutex, &to);
1763 		to.tv_sec = SENSORPOLL_INTERVAL;
1764 		to.tv_nsec = 0;
1765 		if (ret != ETIMEDOUT) {
1766 			(void) pthread_mutex_unlock(&env_monitor_mutex);
1767 			goto wait_till_timeout;
1768 		}
1769 		(void) pthread_mutex_unlock(&env_monitor_mutex);
1770 	}
1771 }
1772 
1773 /*
1774  * This is env thread which monitors the current temperature when
1775  * warning threshold is exceeded. The job is to make sure it does
1776  * not execced/decrease shutdown threshold. If it does it will start
1777  * forced shutdown to avoid reaching hardware poweroff via THERM interrupt.
1778  * For Enchilada there will be two threads, one for each ADM chip.
1779  */
1780 static void *
1781 ovtemp_thr(void *args)
1782 {
1783 	int	fd;
1784 	uint8_t stat[2];
1785 	int	hwm_id = (int)args;
1786 	int    err;
1787 	env_fan_t *fanp;
1788 	timespec_t	to;
1789 	int	ret;
1790 	pthread_mutex_t	env_monitor_mutex = PTHREAD_MUTEX_INITIALIZER;
1791 	pthread_cond_t	env_monitor_cv = PTHREAD_COND_INITIALIZER;
1792 
1793 	fd = open(hwm_devs[hwm_id], O_RDWR);
1794 	if (fd == -1) {
1795 		envd_log(LOG_ERR, ENV_ADM_OPEN_FAIL, hwm_devs[hwm_id],
1796 		    errno, strerror(errno));
1797 		return (NULL);
1798 	}
1799 	if (env_debug)
1800 		envd_log(LOG_ERR, "ovtemp thread for %s running...\n",
1801 			hwm_devs[hwm_id]);
1802 
1803 	for (;;) {
1804 		/*
1805 		 * Sleep for specified seconds before issuing IOCTL
1806 		 * again.
1807 		 */
1808 
1809 		/*
1810 		 * We use pthread_cond_reltimedwait_np to sleep for
1811 		 * fixed interval of time.
1812 		 * earlier implementation used alarm() call which
1813 		 * fails in Multi threaded environment. If multiple
1814 		 * threads call alarm() only one of the threads is
1815 		 * sent the SIGALRM signal.
1816 		 */
1817 		(void) pthread_mutex_lock(&env_monitor_mutex);
1818 		ret = pthread_cond_reltimedwait_np(&env_monitor_cv,
1819 			&env_monitor_mutex, &to);
1820 		to.tv_sec = INTERRUPTPOLL_INTERVAL;
1821 		to.tv_nsec = 0;
1822 		if (ret != ETIMEDOUT) {
1823 			(void) pthread_mutex_unlock(&env_monitor_mutex);
1824 			continue;
1825 		}
1826 		(void) pthread_mutex_unlock(&env_monitor_mutex);
1827 		/*
1828 		 * Monitor the sensors to update fan status
1829 		 */
1830 		if (mon_fanstat)
1831 			monitor_fanstat();
1832 
1833 		/*
1834 		 * Read ADM1031 two Status Registers to determine source
1835 		 * of Interrupts.
1836 		 */
1837 
1838 		if ((err = ioctl(fd, ADM1031_GET_STATUS_1, &stat[0])) != -1)
1839 			err = ioctl(fd, ADM1031_GET_STATUS_2, &stat[1]);
1840 
1841 		if (err == -1) {
1842 			if (env_debug)
1843 				envd_log(LOG_ERR,
1844 					"OverTemp: Status Error");
1845 			continue;
1846 		}
1847 
1848 		if (env_debug)
1849 			envd_log(LOG_ERR, "INTR %s, Stat1 %x, Stat2 %x",
1850 				hwm_devs[hwm_id], stat[0], stat[1]);
1851 
1852 		if (stat[0] & FANFAULT) {
1853 			fanp = fan_lookup(hwm_fans[hwm_id][HWM_FAN1]);
1854 			if (fanp && fanp->present)
1855 				envd_log(LOG_ERR, ENV_FAN_FAULT,
1856 					hwm_devs[hwm_id],
1857 					hwm_fans[hwm_id][HWM_FAN1]);
1858 		}
1859 		if (stat[1] & FANFAULT) {
1860 			fanp = fan_lookup(hwm_fans[hwm_id][HWM_FAN2]);
1861 			if (fanp && fanp->present)
1862 				envd_log(LOG_ERR, ENV_FAN_FAULT,
1863 					hwm_devs[hwm_id],
1864 					hwm_fans[hwm_id][HWM_FAN2]);
1865 		}
1866 		/*
1867 		 * Check respective Remote/Local High, Low before start
1868 		 * manual monitoring
1869 		 */
1870 		if ((stat[0] & STAT1MASK) || (stat[1] & STAT2MASK))
1871 			(void) handle_overtemp_interrupt(hwm_id);
1872 
1873 	}	/* end of for ever loop */
1874 	/*NOTREACHED*/
1875 	return (NULL);
1876 }
1877 
1878 static void *
1879 dimm_fan_thr(void *args)
1880 {
1881 	char syscmd[BUFSIZ];
1882 	char msgbuf[BUFSIZ];
1883 	i2c_reg_t	i2c_reg;
1884 	timespec_t	to;
1885 	int	ret;
1886 	pthread_mutex_t	env_monitor_mutex = PTHREAD_MUTEX_INITIALIZER;
1887 	pthread_cond_t	env_monitor_cv = PTHREAD_COND_INITIALIZER;
1888 
1889 #ifdef	__lint
1890 	args = args;
1891 #endif
1892 
1893 	for (;;) {
1894 		/*
1895 		 * Sleep for specified seconds before issuing IOCTL
1896 		 * again.
1897 		 */
1898 		(void) pthread_mutex_lock(&env_monitor_mutex);
1899 		ret = pthread_cond_reltimedwait_np(&env_monitor_cv,
1900 			&env_monitor_mutex, &to);
1901 		to.tv_sec = INTERRUPTPOLL_INTERVAL;
1902 		to.tv_nsec = 0;
1903 		if (ret != ETIMEDOUT) {
1904 			(void) pthread_mutex_unlock(&env_monitor_mutex);
1905 			continue;
1906 		}
1907 		(void) pthread_mutex_unlock(&env_monitor_mutex);
1908 		/*
1909 		 * We write to the comand register periodically
1910 		 * to inform the PIC firmware that Solaris is
1911 		 * Monitoring the dimm fan periodically.
1912 		 */
1913 		i2c_reg.reg_num = PIC16F819_COMMAND_REGISTER;
1914 		i2c_reg.reg_value = PIC16F819_SW_AWARE_MODE;
1915 		if (ioctl(envd_dimm_fan.fd,
1916 			I2C_SET_REG, &i2c_reg) == -1) {
1917 			if (env_debug)
1918 				envd_log(LOG_ERR,
1919 		"Error in writing to COMMAND reg. of DIMM FAN controller\n");
1920 		}
1921 		/*
1922 		 * We initiate shutdown if fan status indicates
1923 		 * failure.
1924 		 */
1925 		if (is_dimm_fan_failed() != 0) {
1926 			/*
1927 			 * Mark Dimm fan present as False so that we
1928 			 * do not WARN the user of the Fan failure
1929 			 * repeatedly.
1930 			 */
1931 			envd_dimm_fan.present = B_FALSE;
1932 			(void) snprintf(msgbuf, sizeof (msgbuf),
1933 				ENV_DIMM_FAN_FAILURE_SHUTDOWN_MSG,
1934 				ENV_DIMM_FAN,
1935 				dimm_fan_rpm_string, dimm_fan_status_string,
1936 				dimm_fan_command_string,
1937 				dimm_fan_debug_string);
1938 			envd_log(LOG_ALERT, msgbuf);
1939 
1940 			if (system_shutdown_started == B_FALSE) {
1941 				system_shutdown_started = B_TRUE;
1942 				(void) snprintf(syscmd, sizeof (syscmd),
1943 					"%s \"%s\"",
1944 					SHUTDOWN_CMD,
1945 					msgbuf);
1946 				envd_log(LOG_ALERT, syscmd);
1947 				(void) system(syscmd);
1948 			}
1949 		}
1950 	}
1951 	/*NOTREACHED*/
1952 	return (NULL);
1953 }
1954 static int
1955 scsi_log_sense(int fd, uchar_t page_code, uchar_t *pagebuf, uint16_t pagelen)
1956 {
1957 	struct uscsi_cmd	ucmd_buf;
1958 	uchar_t		cdb_buf[CDB_GROUP1];
1959 	struct	scsi_extended_sense	sense_buf;
1960 	int	ret_val;
1961 
1962 	bzero((void *)&cdb_buf, sizeof (cdb_buf));
1963 	bzero((void *)&ucmd_buf, sizeof (ucmd_buf));
1964 	bzero((void *)&sense_buf, sizeof (sense_buf));
1965 
1966 	cdb_buf[0] = SCMD_LOG_SENSE_G1;
1967 	cdb_buf[2] = (0x01 << 6) | page_code;
1968 	cdb_buf[7] = (uchar_t)((pagelen & 0xFF00) >> 8);
1969 	cdb_buf[8] = (uchar_t)(pagelen  & 0x00FF);
1970 
1971 	ucmd_buf.uscsi_cdb = (char *)cdb_buf;
1972 	ucmd_buf.uscsi_cdblen = sizeof (cdb_buf);
1973 	ucmd_buf.uscsi_bufaddr = (caddr_t)pagebuf;
1974 	ucmd_buf.uscsi_buflen = pagelen;
1975 	ucmd_buf.uscsi_rqbuf = (caddr_t)&sense_buf;
1976 	ucmd_buf.uscsi_rqlen = sizeof (struct scsi_extended_sense);
1977 	ucmd_buf.uscsi_flags = USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
1978 	ucmd_buf.uscsi_timeout = 60;
1979 
1980 	ret_val = ioctl(fd, USCSICMD, ucmd_buf);
1981 	if (ret_val == 0 && ucmd_buf.uscsi_status == 0) {
1982 		if (env_debug)
1983 			envd_log(LOG_ERR,
1984 		"log sense command for page_code 0x%x succeeded\n", page_code);
1985 		return (ret_val);
1986 	}
1987 	if (env_debug)
1988 		envd_log(LOG_ERR,
1989 	"log sense command failed.ret_val = 0x%x status = 0x%x errno = 0x%x\n",
1990 		ret_val, ucmd_buf.uscsi_status, errno);
1991 	return (1);
1992 }
1993 
1994 static int
1995 get_disk_temp(env_disk_t *diskp)
1996 {
1997 	int	ret;
1998 	uchar_t	tpage[256];
1999 
2000 	ret = scsi_log_sense(diskp->fd,
2001 			TEMPERATURE_PAGE,
2002 			tpage, sizeof (tpage));
2003 	if (ret != 0) {
2004 		diskp->current_temp = DISK_INVALID_TEMP;
2005 		diskp->ref_temp = DISK_INVALID_TEMP;
2006 		return (-1);
2007 	}
2008 	/*
2009 	 * For the current temperature verify that the parameter
2010 	 * length is 0x02 and the parameter code is 0x00
2011 	 * Temperature value of 255(0xFF) is considered INVALID.
2012 	 */
2013 	if ((tpage[7] == 0x02) && (tpage[4] == 0x00) &&
2014 		(tpage[5] == 0x00)) {
2015 		if (tpage[9] == 0xFF) {
2016 			diskp->current_temp = DISK_INVALID_TEMP;
2017 			return (-1);
2018 		} else {
2019 			diskp->current_temp = tpage[9];
2020 		}
2021 	}
2022 
2023 	/*
2024 	 * For the reference temperature verify that the parameter
2025 	 * length is 0x02 and the parameter code is 0x01
2026 	 * Temperature value of 255(0xFF) is considered INVALID.
2027 	 */
2028 	if ((tpage[13] == 0x02) && (tpage[10] == 0x00) &&
2029 		(tpage[11] == 0x01)) {
2030 		if (tpage[15] == 0xFF) {
2031 			diskp->ref_temp = DISK_INVALID_TEMP;
2032 		} else {
2033 			diskp->ref_temp = tpage[15];
2034 		}
2035 	}
2036 	return (0);
2037 }
2038 
2039 /* ARGSUSED */
2040 static void *
2041 disk_temp_thr(void *args)
2042 {
2043 	char syscmd[BUFSIZ];
2044 	char msgbuf[BUFSIZ];
2045 	timespec_t	to;
2046 	int	ret, i;
2047 	env_disk_t	*diskp;
2048 	pthread_mutex_t	env_monitor_mutex = PTHREAD_MUTEX_INITIALIZER;
2049 	pthread_cond_t	env_monitor_cv = PTHREAD_COND_INITIALIZER;
2050 	pm_state_change_t	pmstate;
2051 	int	idle_time;
2052 	int	disk_pm_fd;
2053 	time_t	ct;
2054 
2055 	disk_pm_fd = open(PM_DEVICE, O_RDWR);
2056 	if (disk_pm_fd == -1) {
2057 		envd_log(LOG_ERR,
2058 			DISK_TEMP_THREAD_EXITING,
2059 			errno, strerror(errno));
2060 		return (NULL);
2061 	}
2062 	for (;;) {
2063 	/*
2064 	 * Sleep for specified seconds before issuing IOCTL
2065 	 * again.
2066 	 */
2067 	    (void) pthread_mutex_lock(&env_monitor_mutex);
2068 	    ret = pthread_cond_reltimedwait_np(&env_monitor_cv,
2069 	    &env_monitor_mutex, &to);
2070 	    to.tv_sec = disk_scan_interval;
2071 	    to.tv_nsec = 0;
2072 	    if (ret != ETIMEDOUT) {
2073 		(void) pthread_mutex_unlock(&env_monitor_mutex);
2074 		continue;
2075 	    }
2076 	    (void) pthread_mutex_unlock(&env_monitor_mutex);
2077 	    for (i = 0; (diskp = envd_disks[i]) != NULL; i++) {
2078 		if (diskp->present == B_FALSE)
2079 			continue;
2080 		if (diskp->tpage_supported == B_FALSE)
2081 			continue;
2082 		/*
2083 		 * If the disk temperature is above the warning threshold
2084 		 * continue monitoring until the temperature drops below
2085 		 * warning threshold.
2086 		 * if the temperature is in the NORMAL range monitor only
2087 		 * when the disk is BUSY.
2088 		 * We do not want to read the disk temperature if the disk is
2089 		 * is idling. The reason for this is disk will never get into
2090 		 * lowest power mode if we scan the disk temperature
2091 		 * peridoically. To avoid this situation we first determine
2092 		 * the idle_time of the disk. If the disk has been IDLE since
2093 		 * we scanned the temperature last time we will not read the
2094 		 * temperature.
2095 		 */
2096 		if (!DISK_TEMP_IN_WARNING_RANGE(diskp->current_temp, diskp)) {
2097 			pmstate.physpath = diskp->physpath;
2098 			pmstate.size = strlen(diskp->physpath);
2099 			pmstate.component = 0;
2100 			if ((idle_time =
2101 				ioctl(disk_pm_fd,
2102 					PM_GET_TIME_IDLE, &pmstate)) == -1) {
2103 				if (errno != EINTR) {
2104 					if (env_debug)
2105 						envd_log(LOG_ERR,
2106 			"ioctl PM_GET_TIME_IDLE failed for DISK0. errno=0x%x\n",
2107 							errno);
2108 					continue;
2109 				}
2110 				continue;
2111 			}
2112 			if (idle_time >= (disk_scan_interval/2)) {
2113 				if (env_debug) {
2114 					envd_log(LOG_ERR,
2115 					"%s idle time = %d\n",
2116 					diskp->name, idle_time);
2117 				}
2118 			continue;
2119 			}
2120 		}
2121 		ret = get_disk_temp(diskp);
2122 		if (ret != 0)
2123 			continue;
2124 		if (env_debug) {
2125 		    envd_log(LOG_ERR,
2126 			"%s temp = %d ref. temp = %d\n",
2127 			    diskp->name, diskp->current_temp, diskp->ref_temp);
2128 		}
2129 		/*
2130 		 * If this disk already triggered system shutdown, don't
2131 		 * log any more shutdown/warning messages for it.
2132 		 */
2133 		if (diskp->shutdown_initiated)
2134 			continue;
2135 
2136 		/*
2137 		 * Check for the temperature in warning and shutdown range
2138 		 * and take appropriate action.
2139 		 */
2140 		if (DISK_TEMP_IN_WARNING_RANGE(diskp->current_temp, diskp)) {
2141 			/*
2142 			 * Check if the temperature has been in warning
2143 			 * range during last disk_warning_duration interval.
2144 			 * If so, the temperature is truly in warning
2145 			 * range and we need to log a warning message,
2146 			 * but no more than once every disk_warning_interval
2147 			 * seconds.
2148 			 */
2149 			time_t	wtstamp = diskp->warning_tstamp;
2150 
2151 			ct = (time_t)(gethrtime() / NANOSEC);
2152 			if (diskp->warning_start == 0)
2153 				diskp->warning_start = ct;
2154 			if (((ct - diskp->warning_start) >=
2155 			    disk_warning_duration) && (wtstamp == 0 ||
2156 			    (ct - wtstamp) >= disk_warning_interval)) {
2157 				envd_log(LOG_CRIT, ENV_WARNING_MSG,
2158 				    diskp->name, diskp->current_temp,
2159 				    diskp->low_warning,
2160 				    diskp->high_warning);
2161 				diskp->warning_tstamp = ct;
2162 			}
2163 		} else if (diskp->warning_start != 0)
2164 			diskp->warning_start = 0;
2165 
2166 		if (!shutdown_override &&
2167 		    DISK_TEMP_IN_SHUTDOWN_RANGE(diskp->current_temp, diskp)) {
2168 			ct = (time_t)(gethrtime() / NANOSEC);
2169 			if (diskp->shutdown_tstamp == 0)
2170 				diskp->shutdown_tstamp = ct;
2171 
2172 			/*
2173 			 * Shutdown the system if the temperature remains
2174 			 * in the shutdown range for over disk_shutdown_interval
2175 			 * seconds.
2176 			 */
2177 			if ((ct - diskp->shutdown_tstamp) >=
2178 			    disk_shutdown_interval) {
2179 				/* log error */
2180 				diskp->shutdown_initiated = B_TRUE;
2181 				(void) snprintf(msgbuf, sizeof (msgbuf),
2182 				    ENV_SHUTDOWN_MSG, diskp->name,
2183 				    diskp->current_temp, diskp->low_shutdown,
2184 				    diskp->high_shutdown);
2185 				envd_log(LOG_ALERT, msgbuf);
2186 
2187 				/* shutdown the system (only once) */
2188 				if (system_shutdown_started == B_FALSE) {
2189 					(void) snprintf(syscmd, sizeof (syscmd),
2190 					    "%s \"%s\"", shutdown_cmd, msgbuf);
2191 					envd_log(LOG_ALERT, syscmd);
2192 					system_shutdown_started = B_TRUE;
2193 					(void) system(syscmd);
2194 				}
2195 			}
2196 		} else if (diskp->shutdown_tstamp != 0)
2197 			diskp->shutdown_tstamp = 0;
2198 
2199 	    }
2200 	}	/* end of forever loop */
2201 }
2202 
2203 /*
2204  * Setup envrionmental monitor state and start threads to monitor
2205  * temperature and power management state.
2206  * Returns -1 on error, 0 if successful.
2207  */
2208 static int
2209 envd_setup(void)
2210 {
2211 	int 	ret;
2212 
2213 	if (getenv("SUNW_piclenvd_debug") != NULL)
2214 			env_debug = 1;
2215 
2216 	if (pthread_attr_init(&thr_attr) != 0 ||
2217 	    pthread_attr_setscope(&thr_attr, PTHREAD_SCOPE_SYSTEM) != 0) {
2218 		return (-1);
2219 	}
2220 
2221 	ret = envd_es_setup();
2222 	if (ret < 0) {
2223 		ovtemp_monitor = 0;
2224 		pm_monitor = 0;
2225 	}
2226 
2227 	/*
2228 	 * Setup temperature sensors and fail if we can't open
2229 	 * at least one sensor.
2230 	 */
2231 	if (envd_setup_sensors() <= 0) {
2232 		return (NULL);
2233 	}
2234 
2235 	/*
2236 	 * Setup fan device (don't fail even if we can't access
2237 	 * the fan as we can still monitor temeperature.
2238 	 */
2239 	(void) envd_setup_fans();
2240 
2241 	(void) envd_setup_disks();
2242 
2243 	/* If ES Segment setup failed,don't create  thread */
2244 
2245 	if (ovtemp_monitor && ovtemp_thr1_created == B_FALSE) {
2246 		if (pthread_create(&ovtemp_thr1_id, &thr_attr, ovtemp_thr,
2247 		    (void *)CPU_HWM_ID) != 0)
2248 			envd_log(LOG_ERR, ENVTHR_THREAD_CREATE_FAILED);
2249 		else
2250 			ovtemp_thr1_created = B_TRUE;
2251 	}
2252 
2253 	if (ovtemp_monitor && ovtemp_thr2_created == B_FALSE) {
2254 		if (pthread_create(&ovtemp_thr2_id, &thr_attr, ovtemp_thr,
2255 		    (void *)SYS_HWM_ID) != 0)
2256 			envd_log(LOG_ERR, ENVTHR_THREAD_CREATE_FAILED);
2257 		else
2258 			ovtemp_thr2_created = B_TRUE;
2259 	}
2260 
2261 	if (envd_dimm_fan.present) {
2262 	    if (dimm_fan_thr_created == B_FALSE) {
2263 		if (pthread_create(&dimm_fan_thr_id, &thr_attr, dimm_fan_thr,
2264 		    NULL) != 0)
2265 			envd_log(LOG_ERR, ENVTHR_THREAD_CREATE_FAILED);
2266 		else
2267 			dimm_fan_thr_created = B_TRUE;
2268 	    }
2269 	}
2270 
2271 	/*
2272 	 * Create a thread to monitor PM state
2273 	 */
2274 	if (pm_monitor && pmthr_created == B_FALSE) {
2275 		if (pthread_create(&pmthr_tid, &thr_attr, pmthr,
2276 		    NULL) != 0)
2277 			envd_log(LOG_CRIT, PM_THREAD_CREATE_FAILED);
2278 		else
2279 			pmthr_created = B_TRUE;
2280 	}
2281 	if (monitor_disk_temp) {
2282 	    if (disk_temp_thr_created == B_FALSE) {
2283 		if (pthread_create(&disk_temp_thr_id, &thr_attr, disk_temp_thr,
2284 		    NULL) != 0)
2285 			envd_log(LOG_ERR, ENVTHR_THREAD_CREATE_FAILED);
2286 		else
2287 			disk_temp_thr_created = B_TRUE;
2288 	    }
2289 	}
2290 	return (0);
2291 }
2292 
2293 static void
2294 piclenvd_register(void)
2295 {
2296 	picld_plugin_register(&my_reg_info);
2297 }
2298 
2299 static void
2300 piclenvd_init(void)
2301 {
2302 
2303 	(void) env_picl_setup_tuneables();
2304 
2305 	/*
2306 	 * Setup the environmental data structures
2307 	 */
2308 	if (envd_setup() != 0) {
2309 		envd_log(LOG_CRIT, ENVD_PLUGIN_INIT_FAILED);
2310 		return;
2311 	}
2312 
2313 	/*
2314 	 * Now setup/populate PICL tree
2315 	 */
2316 	env_picl_setup();
2317 }
2318 
2319 static void
2320 piclenvd_fini(void)
2321 {
2322 
2323 	/*
2324 	 * Invoke env_picl_destroy() to remove any PICL nodes/properties
2325 	 * (including volatile properties) we created. Once this call
2326 	 * returns, there can't be any more calls from the PICL framework
2327 	 * to get current temperature or fan speed.
2328 	 */
2329 	env_picl_destroy();
2330 	envd_close_sensors();
2331 	envd_close_fans();
2332 	envd_es_destroy();
2333 }
2334 
2335 /*VARARGS2*/
2336 void
2337 envd_log(int pri, const char *fmt, ...)
2338 {
2339 	va_list	ap;
2340 
2341 	va_start(ap, fmt);
2342 	vsyslog(pri, fmt, ap);
2343 	va_end(ap);
2344 }
2345 
2346 /*
2347  * Tunables support functions
2348  */
2349 static env_tuneable_t *
2350 tuneable_lookup(picl_prophdl_t proph)
2351 {
2352 	int i;
2353 	env_tuneable_t	*tuneablep = NULL;
2354 
2355 	for (i = 0; i < ntuneables; i++) {
2356 		tuneablep = &tuneables[i];
2357 		if (tuneablep->proph == proph)
2358 			return (tuneablep);
2359 	}
2360 
2361 	return (NULL);
2362 }
2363 
2364 static int
2365 get_cpu_tach(ptree_rarg_t *parg, void *buf)
2366 {
2367 	picl_prophdl_t	proph;
2368 	env_tuneable_t	*tuneablep;
2369 	int		fd;
2370 	int8_t		cfg;
2371 
2372 	proph = parg->proph;
2373 
2374 	tuneablep = tuneable_lookup(proph);
2375 
2376 	if (tuneablep == NULL)
2377 		return (PICL_FAILURE);
2378 
2379 	fd = open(CPU_HWM_DEVFS, O_RDWR);
2380 
2381 	if (fd == -1) {
2382 		return (PICL_FAILURE);
2383 	}
2384 
2385 	if (ioctl(fd, ADM1031_GET_CONFIG_2, &cfg) == -1) {
2386 		return (PICL_FAILURE);
2387 	}
2388 
2389 	if ((cfg & TACH_ENABLE_MASK) == TACH_ENABLE_MASK) {
2390 		*((int *)tuneablep->value) = ENABLE;
2391 	} else {
2392 		*((int *)tuneablep->value) = DISABLE;
2393 	}
2394 
2395 	(void) memcpy(buf, tuneablep->value,
2396 	    tuneablep->nbytes);
2397 
2398 	(void) close(fd);
2399 	return (PICL_SUCCESS);
2400 }
2401 
2402 static int
2403 set_cpu_tach(ptree_warg_t *parg, const void *buf)
2404 {
2405 	picl_prophdl_t	proph;
2406 	env_tuneable_t	*tuneablep;
2407 	int		 fd, val;
2408 	int8_t		 cfg;
2409 
2410 	if (parg->cred.dc_euid != 0)
2411 		return (PICL_PERMDENIED);
2412 
2413 	proph = parg->proph;
2414 
2415 	tuneablep = tuneable_lookup(proph);
2416 
2417 	if (tuneablep == NULL)
2418 		return (PICL_FAILURE);
2419 
2420 
2421 	fd = open(CPU_HWM_DEVFS, O_RDWR);
2422 
2423 	if (fd == -1) {
2424 		return (PICL_FAILURE);
2425 	}
2426 
2427 	if (ioctl(fd, ADM1031_GET_CONFIG_2, &cfg) == -1) {
2428 		return (PICL_FAILURE);
2429 	}
2430 
2431 	(void) memcpy(&val, (caddr_t)buf, sizeof (val));
2432 
2433 	if (val == ENABLE) {
2434 		cfg |= TACH_ENABLE_MASK;
2435 	} else if (val == DISABLE) {
2436 		cfg &= ~TACH_ENABLE_MASK;
2437 	}
2438 
2439 
2440 	if (ioctl(fd, ADM1031_SET_CONFIG_2, &cfg) == -1) {
2441 		return (PICL_FAILURE);
2442 	}
2443 
2444 	(void) close(fd);
2445 	return (PICL_SUCCESS);
2446 }
2447 
2448 static int
2449 get_sys_tach(ptree_rarg_t *parg, void *buf)
2450 {
2451 	picl_prophdl_t	proph;
2452 	env_tuneable_t	*tuneablep;
2453 	int		fd;
2454 	int8_t		cfg;
2455 
2456 	proph = parg->proph;
2457 
2458 	tuneablep = tuneable_lookup(proph);
2459 
2460 	if (tuneablep == NULL)
2461 		return (PICL_FAILURE);
2462 
2463 	fd = open(SYS_HWM_DEVFS, O_RDWR);
2464 
2465 	if (fd == -1) {
2466 		return (PICL_FAILURE);
2467 	}
2468 
2469 	if (ioctl(fd, ADM1031_GET_CONFIG_2, &cfg) == -1) {
2470 		return (PICL_FAILURE);
2471 	}
2472 
2473 	if ((cfg & TACH_ENABLE_MASK) == TACH_ENABLE_MASK) {
2474 		*((int *)tuneablep->value) = ENABLE;
2475 	} else {
2476 		*((int *)tuneablep->value) = DISABLE;
2477 	}
2478 
2479 	(void) memcpy(buf, tuneablep->value,
2480 	    tuneablep->nbytes);
2481 
2482 	(void) close(fd);
2483 	return (PICL_SUCCESS);
2484 }
2485 
2486 static int
2487 set_sys_tach(ptree_warg_t *parg, const void *buf)
2488 {
2489 	picl_prophdl_t	proph;
2490 	env_tuneable_t	*tuneablep;
2491 	int		fd, val;
2492 	int8_t		cfg;
2493 
2494 	if (parg->cred.dc_euid != 0)
2495 		return (PICL_PERMDENIED);
2496 
2497 	proph = parg->proph;
2498 
2499 	tuneablep = tuneable_lookup(proph);
2500 
2501 	if (tuneablep == NULL)
2502 		return (PICL_FAILURE);
2503 
2504 
2505 	fd = open(SYS_HWM_DEVFS, O_RDWR);
2506 
2507 	if (fd == -1) {
2508 		return (PICL_FAILURE);
2509 	}
2510 
2511 	if (ioctl(fd, ADM1031_GET_CONFIG_2, &cfg) == -1) {
2512 		return (PICL_FAILURE);
2513 	}
2514 
2515 	(void) memcpy(&val, buf, sizeof (val));
2516 
2517 	if (val == ENABLE) {
2518 		cfg |= TACH_ENABLE_MASK;
2519 	} else if (val == DISABLE) {
2520 		cfg &= ~TACH_ENABLE_MASK;
2521 	}
2522 
2523 
2524 	if (ioctl(fd, ADM1031_SET_CONFIG_2, &cfg) == -1) {
2525 		return (PICL_FAILURE);
2526 	}
2527 
2528 	(void) close(fd);
2529 	return (PICL_SUCCESS);
2530 }
2531 
2532 static int
2533 get_monitor_cpu_mode(ptree_rarg_t *parg, void *buf)
2534 {
2535 	picl_prophdl_t	proph;
2536 	env_tuneable_t	*tuneablep;
2537 	int		fd;
2538 	int8_t		mmode;
2539 
2540 	proph = parg->proph;
2541 
2542 	tuneablep = tuneable_lookup(proph);
2543 
2544 	if (tuneablep == NULL)
2545 		return (PICL_FAILURE);
2546 
2547 	fd = open(CPU_HWM_DEVFS, O_RDWR);
2548 
2549 	if (fd == -1) {
2550 		return (PICL_FAILURE);
2551 	}
2552 
2553 	if (ioctl(fd, ADM1031_GET_MONITOR_MODE, &mmode) == -1) {
2554 		return (PICL_FAILURE);
2555 	}
2556 
2557 	if (mmode == ADM1031_AUTO_MODE) {
2558 		*((int *)tuneablep->value) = ENABLE;
2559 	} else {
2560 		*((int *)tuneablep->value) = DISABLE;
2561 	}
2562 
2563 	(void) memcpy(buf, tuneablep->value,
2564 	    tuneablep->nbytes);
2565 
2566 	(void) close(fd);
2567 	return (PICL_SUCCESS);
2568 }
2569 
2570 static int
2571 set_monitor_cpu_mode(ptree_warg_t *parg, const void *buf)
2572 {
2573 	picl_prophdl_t	proph;
2574 	env_tuneable_t	*tuneablep;
2575 	int		fd, val;
2576 	int8_t		mmode;
2577 
2578 	if (parg->cred.dc_euid != 0)
2579 		return (PICL_PERMDENIED);
2580 
2581 	proph = parg->proph;
2582 
2583 	tuneablep = tuneable_lookup(proph);
2584 
2585 	if (tuneablep == NULL)
2586 		return (PICL_FAILURE);
2587 
2588 	fd = open(CPU_HWM_DEVFS, O_RDWR);
2589 
2590 	if (fd == -1) {
2591 		return (PICL_FAILURE);
2592 	}
2593 
2594 	(void) memcpy(&val, buf, sizeof (val));
2595 
2596 	if (val == ENABLE) {
2597 		mmode = ADM1031_AUTO_MODE;
2598 	} else if (val == DISABLE) {
2599 		mmode = ADM1031_MANUAL_MODE;
2600 	}
2601 
2602 	if (ioctl(fd, ADM1031_SET_MONITOR_MODE, &mmode) == -1) {
2603 		return (PICL_FAILURE);
2604 	}
2605 
2606 	(void) close(fd);
2607 	return (PICL_SUCCESS);
2608 }
2609 
2610 static int
2611 get_monitor_sys_mode(ptree_rarg_t *parg, void *buf)
2612 {
2613 	picl_prophdl_t	proph;
2614 	env_tuneable_t	*tuneablep;
2615 	int		fd;
2616 	int8_t		mmode;
2617 
2618 	proph = parg->proph;
2619 
2620 	tuneablep = tuneable_lookup(proph);
2621 
2622 	if (tuneablep == NULL)
2623 		return (PICL_FAILURE);
2624 
2625 	fd = open(SYS_HWM_DEVFS, O_RDWR);
2626 
2627 	if (fd == -1) {
2628 		return (PICL_FAILURE);
2629 	}
2630 
2631 	if (ioctl(fd, ADM1031_GET_MONITOR_MODE, &mmode) == -1) {
2632 		return (PICL_FAILURE);
2633 	}
2634 
2635 	if (mmode == ADM1031_AUTO_MODE) {
2636 		*((int *)tuneablep->value) = ENABLE;
2637 	} else {
2638 		*((int *)tuneablep->value) = DISABLE;
2639 	}
2640 
2641 	(void) memcpy(buf, tuneablep->value,
2642 	    tuneablep->nbytes);
2643 
2644 	(void) close(fd);
2645 	return (PICL_SUCCESS);
2646 }
2647 
2648 static int
2649 set_monitor_sys_mode(ptree_warg_t *parg, const void *buf)
2650 {
2651 	picl_prophdl_t	proph;
2652 	env_tuneable_t	*tuneablep;
2653 	int		fd, val;
2654 	int8_t		mmode;
2655 
2656 	if (parg->cred.dc_euid != 0)
2657 		return (PICL_PERMDENIED);
2658 
2659 	proph = parg->proph;
2660 
2661 	tuneablep = tuneable_lookup(proph);
2662 
2663 	if (tuneablep == NULL)
2664 		return (PICL_FAILURE);
2665 
2666 	fd = open(SYS_HWM_DEVFS, O_RDWR);
2667 
2668 	if (fd == -1) {
2669 		return (PICL_FAILURE);
2670 	}
2671 
2672 	(void) memcpy(&val, buf, sizeof (val));
2673 
2674 	if (val == ENABLE) {
2675 		mmode = ADM1031_AUTO_MODE;
2676 	} else if (val == DISABLE) {
2677 		mmode = ADM1031_MANUAL_MODE;
2678 	}
2679 
2680 	if (ioctl(fd, ADM1031_SET_MONITOR_MODE, &mmode) == -1) {
2681 		return (PICL_FAILURE);
2682 	}
2683 
2684 	(void) close(fd);
2685 	return (PICL_SUCCESS);
2686 }
2687 
2688 static int
2689 get_string_val(ptree_rarg_t *parg, void *buf)
2690 {
2691 	picl_prophdl_t	proph;
2692 	env_tuneable_t	*tuneablep;
2693 
2694 	proph = parg->proph;
2695 
2696 	tuneablep = tuneable_lookup(proph);
2697 
2698 	if (tuneablep == NULL)
2699 		return (PICL_FAILURE);
2700 
2701 	(void) memcpy(buf, (caddr_t)tuneablep->value,
2702 	    tuneablep->nbytes);
2703 
2704 	return (PICL_SUCCESS);
2705 }
2706 
2707 static int
2708 set_string_val(ptree_warg_t *parg, const void *buf)
2709 {
2710 	picl_prophdl_t	proph;
2711 	env_tuneable_t	*tuneablep;
2712 
2713 	if (parg->cred.dc_euid != 0)
2714 		return (PICL_PERMDENIED);
2715 
2716 	proph = parg->proph;
2717 
2718 	tuneablep = tuneable_lookup(proph);
2719 
2720 	if (tuneablep == NULL)
2721 		return (PICL_FAILURE);
2722 
2723 	(void) memcpy((caddr_t)tuneables->value, (caddr_t)buf,
2724 	    tuneables->nbytes);
2725 
2726 
2727 	return (PICL_SUCCESS);
2728 }
2729 
2730 static int
2731 get_int_val(ptree_rarg_t *parg, void *buf)
2732 {
2733 	picl_prophdl_t	proph;
2734 	env_tuneable_t	*tuneablep;
2735 
2736 	proph = parg->proph;
2737 
2738 	tuneablep = tuneable_lookup(proph);
2739 
2740 	if (tuneablep == NULL)
2741 		return (PICL_FAILURE);
2742 
2743 	(void) memcpy((int *)buf, (int *)tuneablep->value,
2744 	    tuneablep->nbytes);
2745 
2746 	return (PICL_SUCCESS);
2747 }
2748 
2749 static int
2750 set_int_val(ptree_warg_t *parg, const void *buf)
2751 {
2752 	picl_prophdl_t	proph;
2753 	env_tuneable_t	*tuneablep;
2754 
2755 	if (parg->cred.dc_euid != 0)
2756 		return (PICL_PERMDENIED);
2757 
2758 	proph = parg->proph;
2759 
2760 	tuneablep = tuneable_lookup(proph);
2761 
2762 	if (tuneablep == NULL)
2763 		return (PICL_FAILURE);
2764 
2765 	(void) memcpy((int *)tuneablep->value, (int *)buf,
2766 	    tuneablep->nbytes);
2767 
2768 	return (PICL_SUCCESS);
2769 }
2770 
2771 int
2772 get_dimm_fan_speed(int fan_fd, fanspeed_t *fanspeedp)
2773 {
2774 	int16_t	dimm_fan_period;
2775 	i2c_reg_t	i2c_reg;
2776 
2777 	/*
2778 	 * The dimm fan period is 16 bit value and we need to read
2779 	 * registers 2 and 3 to get the LSB and MSB values.
2780 	 */
2781 	i2c_reg.reg_num = PIC16F819_FAN_PERIOD_MSB_REGISTER;
2782 	if (ioctl(fan_fd, I2C_GET_REG, &i2c_reg) == -1) {
2783 		if (env_debug)
2784 			envd_log(LOG_ERR,
2785 			"Error in reading FAN_PERIOD MSB REGISTER\n");
2786 		return (-1);
2787 	}
2788 	dimm_fan_period = (i2c_reg.reg_value << 8);
2789 	i2c_reg.reg_num = PIC16F819_FAN_PERIOD_LSB_REGISTER;
2790 	if (ioctl(fan_fd, I2C_GET_REG, &i2c_reg) == -1) {
2791 		if (env_debug)
2792 			envd_log(LOG_ERR,
2793 			"Error in reading FAN_PERIOD LSB REGISTER\n");
2794 		return (-1);
2795 	}
2796 	dimm_fan_period |= i2c_reg.reg_value;
2797 	if (env_debug)
2798 		envd_log(LOG_ERR,
2799 		" dimm fan tach period is 0x%x\n", dimm_fan_period);
2800 	if (dimm_fan_period == 0) {
2801 		if (env_debug)
2802 			envd_log(LOG_ERR,
2803 			"dimm fan tach period read as zero. Illegal value.\n");
2804 		return (-1);
2805 	}
2806 	*fanspeedp = PIC16F819_FAN_TACH_TO_RPM(dimm_fan_period);
2807 	return (0);
2808 }
2809 
2810 int
2811 is_dimm_fan_failed(void)
2812 {
2813 	i2c_reg_t	i2c_reg;
2814 	fanspeed_t	fan_speed;
2815 	int		retry_count;
2816 
2817 	if (envd_dimm_fan.fd == -1)
2818 		return (-1);
2819 	/*
2820 	 * read register 1 to look at Fan fault bit.
2821 	 */
2822 	i2c_reg.reg_num = PIC16F819_STATUS_REGISTER;
2823 	retry_count = MAX_RETRIES_FOR_PIC16F819_REG_READ;
2824 	while (retry_count > 0) {
2825 		if (ioctl(envd_dimm_fan.fd, I2C_GET_REG, &i2c_reg) == -1) {
2826 			retry_count--;
2827 			continue;
2828 		} else break;
2829 	}
2830 	if (retry_count != MAX_RETRIES_FOR_PIC16F819_REG_READ) {
2831 		if (env_debug)
2832 			envd_log(LOG_ERR,
2833 			"%d retries attempted in reading STATUS register.\n",
2834 			    (MAX_RETRIES_FOR_PIC16F819_REG_READ - retry_count));
2835 	}
2836 	if (retry_count == 0) {
2837 		(void) strncpy(dimm_fan_status_string, NOT_AVAILABLE,
2838 			sizeof (dimm_fan_status_string));
2839 		(void) strncpy(dimm_fan_command_string, NOT_AVAILABLE,
2840 			sizeof (dimm_fan_command_string));
2841 		(void) strncpy(dimm_fan_debug_string, NOT_AVAILABLE,
2842 			sizeof (dimm_fan_debug_string));
2843 		(void) strncpy(dimm_fan_rpm_string, NOT_AVAILABLE,
2844 			sizeof (dimm_fan_rpm_string));
2845 		return (-1);
2846 	}
2847 	if (env_debug)
2848 		envd_log(LOG_ERR,
2849 		"DIMM FAN STATUS reg = 0x%x\n", i2c_reg.reg_value);
2850 	if (i2c_reg.reg_value & PIC16F819_FAN_FAILED) {
2851 		(void) snprintf(dimm_fan_status_string,
2852 			sizeof (dimm_fan_status_string), "0x%x",
2853 			i2c_reg.reg_value);
2854 		i2c_reg.reg_num = PIC16F819_DEBUG_REGISTER;
2855 		if (ioctl(envd_dimm_fan.fd, I2C_GET_REG, &i2c_reg) == -1) {
2856 			(void) strncpy(dimm_fan_debug_string, NOT_AVAILABLE,
2857 				sizeof (dimm_fan_debug_string));
2858 		} else {
2859 			(void) snprintf(dimm_fan_debug_string,
2860 				sizeof (dimm_fan_debug_string),
2861 				"0x%x", i2c_reg.reg_value);
2862 		}
2863 		i2c_reg.reg_num = PIC16F819_COMMAND_REGISTER;
2864 		if (ioctl(envd_dimm_fan.fd, I2C_GET_REG, &i2c_reg) == -1) {
2865 			(void) strncpy(dimm_fan_command_string, NOT_AVAILABLE,
2866 				sizeof (dimm_fan_command_string));
2867 		} else {
2868 			(void) snprintf(dimm_fan_command_string,
2869 				sizeof (dimm_fan_command_string),
2870 				"0x%x", i2c_reg.reg_value);
2871 		}
2872 		if (get_dimm_fan_speed(envd_dimm_fan.fd, &fan_speed) == -1) {
2873 			(void) strncpy(dimm_fan_rpm_string, NOT_AVAILABLE,
2874 				sizeof (dimm_fan_rpm_string));
2875 		} else {
2876 			(void) snprintf(dimm_fan_rpm_string,
2877 				sizeof (dimm_fan_rpm_string),
2878 				"%d", fan_speed);
2879 		}
2880 		return (1);
2881 	} else return (0);
2882 }
2883