xref: /illumos-gate/usr/src/cmd/perl/contrib/Sun/Solaris/Kstat/Kstat.xs (revision 6bb6b5762ca4b17cd5fb3c6c123f17489d5635aa)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2014 Racktop Systems.
25  */
26 
27 /*
28  * Kstat.xs is a Perl XS (eXStension module) that makes the Solaris
29  * kstat(3KSTAT) facility available to Perl scripts.  Kstat is a general-purpose
30  * mechanism  for  providing kernel statistics to users.  The Solaris API is
31  * function-based (see the manpage for details), but for ease of use in Perl
32  * scripts this module presents the information as a nested hash data structure.
33  * It would be too inefficient to read every kstat in the system, so this module
34  * uses the Perl TIEHASH mechanism to implement a read-on-demand semantic, which
35  * only reads and updates kstats as and when they are actually accessed.
36  */
37 
38 /*
39  * Ignored raw kstats.
40  *
41  * Some raw kstats are ignored by this module, these are listed below.  The
42  * most common reason is that the kstats are stored as arrays and the ks_ndata
43  * and/or ks_data_size fields are invalid.  In this case it is impossible to
44  * know how many records are in the array, so they can't be read.
45  *
46  * unix:*:sfmmu_percpu_stat
47  * This is stored as an array with one entry per cpu.  Each element is of type
48  * struct sfmmu_percpu_stat.  The ks_ndata and ks_data_size fields are bogus.
49  *
50  * ufs directio:*:UFS DirectIO Stats
51  * The structure definition used for these kstats (ufs_directio_kstats) is in a
52  * C file (uts/common/fs/ufs/ufs_directio.c) rather than a header file, so it
53  * isn't accessible.
54  *
55  * qlc:*:statistics
56  * This is a third-party driver for which we don't have source.
57  *
58  * mm:*:phys_installed
59  * This is stored as an array of uint64_t, with each pair of values being the
60  * (address, size) of a memory segment.  The ks_ndata and ks_data_size fields
61  * are both zero.
62  *
63  * sockfs:*:sock_unix_list
64  * This is stored as an array with one entry per active socket.  Each element
65  * is of type struct k_sockinfo.  The ks_ndata and ks_data_size fields are both
66  * zero.
67  *
68  * Note that the ks_ndata and ks_data_size of many non-array raw kstats are
69  * also incorrect.  The relevant assertions are therefore commented out in the
70  * appropriate raw kstat read routines.
71  */
72 
73 /* Kstat related includes */
74 #include <libgen.h>
75 #include <kstat.h>
76 #include <sys/var.h>
77 #include <sys/utsname.h>
78 #include <sys/sysinfo.h>
79 #include <sys/flock.h>
80 #include <sys/dnlc.h>
81 #include <nfs/nfs.h>
82 #include <nfs/nfs_clnt.h>
83 
84 /* Ultra-specific kstat includes */
85 #ifdef __sparc
86 #include <vm/hat_sfmmu.h>	/* from /usr/platform/sun4u/include */
87 #include <sys/simmstat.h>	/* from /usr/platform/sun4u/include */
88 #include <sys/sysctrl.h>	/* from /usr/platform/sun4u/include */
89 #include <sys/fhc.h>		/* from /usr/include */
90 #endif
91 
92 /*
93  * Solaris #defines SP, which conflicts with the perl definition of SP
94  * We don't need the Solaris one, so get rid of it to avoid warnings
95  */
96 #undef SP
97 
98 /* Perl XS includes */
99 #include "EXTERN.h"
100 #include "perl.h"
101 #include "XSUB.h"
102 
103 /* Debug macros */
104 #define	DEBUG_ID "Sun::Solaris::Kstat"
105 #ifdef KSTAT_DEBUG
106 #define	PERL_ASSERT(EXP) \
107     ((void)((EXP) || (croak("%s: assertion failed at %s:%d: %s", \
108     DEBUG_ID, __FILE__, __LINE__, #EXP), 0), 0))
109 #define	PERL_ASSERTMSG(EXP, MSG) \
110     ((void)((EXP) || (croak(DEBUG_ID ": " MSG), 0), 0))
111 #else
112 #define	PERL_ASSERT(EXP)		((void)0)
113 #define	PERL_ASSERTMSG(EXP, MSG)	((void)0)
114 #endif
115 
116 /* Macros for saving the contents of KSTAT_RAW structures */
117 #if defined(HAS_QUAD) && defined(USE_64_BIT_INT)
118 #define NEW_IV(V) \
119     (newSViv((IVTYPE) V))
120 #define NEW_UV(V) \
121     (newSVuv((UVTYPE) V))
122 #else
123 #define NEW_IV(V) \
124     (V >= IV_MIN && V <= IV_MAX ? newSViv((IVTYPE) V) : newSVnv((NVTYPE) V))
125 #if defined(UVTYPE)
126 #define NEW_UV(V) \
127     (V <= UV_MAX ? newSVuv((UVTYPE) V) : newSVnv((NVTYPE) V))
128 # else
129 #define NEW_UV(V) \
130     (V <= IV_MAX ? newSViv((IVTYPE) V) : newSVnv((NVTYPE) V))
131 #endif
132 #endif
133 #define	NEW_HRTIME(V) \
134     newSVnv((NVTYPE) (V / 1000000000.0))
135 
136 #define	SAVE_FNP(H, F, K) \
137     hv_store(H, K, sizeof (K) - 1, newSViv((IVTYPE)(uintptr_t)&F), 0)
138 #define	SAVE_STRING(H, S, K, SS) \
139     hv_store(H, #K, sizeof (#K) - 1, \
140     newSVpvn(S->K, SS ? strlen(S->K) : sizeof(S->K)), 0)
141 #define	SAVE_INT32(H, S, K) \
142     hv_store(H, #K, sizeof (#K) - 1, NEW_IV(S->K), 0)
143 #define	SAVE_UINT32(H, S, K) \
144     hv_store(H, #K, sizeof (#K) - 1, NEW_UV(S->K), 0)
145 #define	SAVE_INT64(H, S, K) \
146     hv_store(H, #K, sizeof (#K) - 1, NEW_IV(S->K), 0)
147 #define	SAVE_UINT64(H, S, K) \
148     hv_store(H, #K, sizeof (#K) - 1, NEW_UV(S->K), 0)
149 #define	SAVE_HRTIME(H, S, K) \
150     hv_store(H, #K, sizeof (#K) - 1, NEW_HRTIME(S->K), 0)
151 
152 /* Private structure used for saving kstat info in the tied hashes */
153 typedef struct {
154 	char		read;		/* Kstat block has been read before */
155 	char		valid;		/* Kstat still exists in kstat chain */
156 	char		strip_str;	/* Strip KSTAT_DATA_CHAR fields */
157 	kstat_ctl_t	*kstat_ctl;	/* Handle returned by kstat_open */
158 	kstat_t		*kstat;		/* Handle used by kstat_read */
159 } KstatInfo_t;
160 
161 /* typedef for apply_to_ties callback functions */
162 typedef int (*ATTCb_t)(HV *, void *);
163 
164 /* typedef for raw kstat reader functions */
165 typedef void (*kstat_raw_reader_t)(HV *, kstat_t *, int);
166 
167 /* Hash of "module:name" to KSTAT_RAW read functions */
168 static HV *raw_kstat_lookup;
169 
170 /*
171  * Kstats come in two flavours, named and raw.  Raw kstats are just C structs,
172  * so we need a function per raw kstat to convert the C struct into the
173  * corresponding perl hash.  All such conversion functions are in the following
174  * section.
175  */
176 
177 /*
178  * Definitions in /usr/include/sys/cpuvar.h and /usr/include/sys/sysinfo.h
179  */
180 
181 static void
182 save_cpu_stat(HV *self, kstat_t *kp, int strip_str)
183 {
184 	cpu_stat_t    *statp;
185 	cpu_sysinfo_t *sysinfop;
186 	cpu_syswait_t *syswaitp;
187 	cpu_vminfo_t  *vminfop;
188 
189 	/* PERL_ASSERT(kp->ks_ndata == 1); */
190 	PERL_ASSERT(kp->ks_data_size == sizeof (cpu_stat_t));
191 	statp = (cpu_stat_t *)(kp->ks_data);
192 	sysinfop = &statp->cpu_sysinfo;
193 	syswaitp = &statp->cpu_syswait;
194 	vminfop  = &statp->cpu_vminfo;
195 
196 	hv_store(self, "idle", 4, NEW_UV(sysinfop->cpu[CPU_IDLE]), 0);
197 	hv_store(self, "user", 4, NEW_UV(sysinfop->cpu[CPU_USER]), 0);
198 	hv_store(self, "kernel", 6, NEW_UV(sysinfop->cpu[CPU_KERNEL]), 0);
199 	hv_store(self, "wait", 4, NEW_UV(sysinfop->cpu[CPU_WAIT]), 0);
200 	hv_store(self, "wait_io", 7, NEW_UV(sysinfop->wait[W_IO]), 0);
201 	hv_store(self, "wait_swap", 9, NEW_UV(sysinfop->wait[W_SWAP]), 0);
202 	hv_store(self, "wait_pio",  8, NEW_UV(sysinfop->wait[W_PIO]), 0);
203 	SAVE_UINT32(self, sysinfop, bread);
204 	SAVE_UINT32(self, sysinfop, bwrite);
205 	SAVE_UINT32(self, sysinfop, lread);
206 	SAVE_UINT32(self, sysinfop, lwrite);
207 	SAVE_UINT32(self, sysinfop, phread);
208 	SAVE_UINT32(self, sysinfop, phwrite);
209 	SAVE_UINT32(self, sysinfop, pswitch);
210 	SAVE_UINT32(self, sysinfop, trap);
211 	SAVE_UINT32(self, sysinfop, intr);
212 	SAVE_UINT32(self, sysinfop, syscall);
213 	SAVE_UINT32(self, sysinfop, sysread);
214 	SAVE_UINT32(self, sysinfop, syswrite);
215 	SAVE_UINT32(self, sysinfop, sysfork);
216 	SAVE_UINT32(self, sysinfop, sysvfork);
217 	SAVE_UINT32(self, sysinfop, sysexec);
218 	SAVE_UINT32(self, sysinfop, readch);
219 	SAVE_UINT32(self, sysinfop, writech);
220 	SAVE_UINT32(self, sysinfop, rcvint);
221 	SAVE_UINT32(self, sysinfop, xmtint);
222 	SAVE_UINT32(self, sysinfop, mdmint);
223 	SAVE_UINT32(self, sysinfop, rawch);
224 	SAVE_UINT32(self, sysinfop, canch);
225 	SAVE_UINT32(self, sysinfop, outch);
226 	SAVE_UINT32(self, sysinfop, msg);
227 	SAVE_UINT32(self, sysinfop, sema);
228 	SAVE_UINT32(self, sysinfop, namei);
229 	SAVE_UINT32(self, sysinfop, ufsiget);
230 	SAVE_UINT32(self, sysinfop, ufsdirblk);
231 	SAVE_UINT32(self, sysinfop, ufsipage);
232 	SAVE_UINT32(self, sysinfop, ufsinopage);
233 	SAVE_UINT32(self, sysinfop, inodeovf);
234 	SAVE_UINT32(self, sysinfop, fileovf);
235 	SAVE_UINT32(self, sysinfop, procovf);
236 	SAVE_UINT32(self, sysinfop, intrthread);
237 	SAVE_UINT32(self, sysinfop, intrblk);
238 	SAVE_UINT32(self, sysinfop, idlethread);
239 	SAVE_UINT32(self, sysinfop, inv_swtch);
240 	SAVE_UINT32(self, sysinfop, nthreads);
241 	SAVE_UINT32(self, sysinfop, cpumigrate);
242 	SAVE_UINT32(self, sysinfop, xcalls);
243 	SAVE_UINT32(self, sysinfop, mutex_adenters);
244 	SAVE_UINT32(self, sysinfop, rw_rdfails);
245 	SAVE_UINT32(self, sysinfop, rw_wrfails);
246 	SAVE_UINT32(self, sysinfop, modload);
247 	SAVE_UINT32(self, sysinfop, modunload);
248 	SAVE_UINT32(self, sysinfop, bawrite);
249 #ifdef STATISTICS	/* see header file */
250 	SAVE_UINT32(self, sysinfop, rw_enters);
251 	SAVE_UINT32(self, sysinfop, win_uo_cnt);
252 	SAVE_UINT32(self, sysinfop, win_uu_cnt);
253 	SAVE_UINT32(self, sysinfop, win_so_cnt);
254 	SAVE_UINT32(self, sysinfop, win_su_cnt);
255 	SAVE_UINT32(self, sysinfop, win_suo_cnt);
256 #endif
257 
258 	SAVE_INT32(self, syswaitp, iowait);
259 	SAVE_INT32(self, syswaitp, swap);
260 	SAVE_INT32(self, syswaitp, physio);
261 
262 	SAVE_UINT32(self, vminfop, pgrec);
263 	SAVE_UINT32(self, vminfop, pgfrec);
264 	SAVE_UINT32(self, vminfop, pgin);
265 	SAVE_UINT32(self, vminfop, pgpgin);
266 	SAVE_UINT32(self, vminfop, pgout);
267 	SAVE_UINT32(self, vminfop, pgpgout);
268 	SAVE_UINT32(self, vminfop, swapin);
269 	SAVE_UINT32(self, vminfop, pgswapin);
270 	SAVE_UINT32(self, vminfop, swapout);
271 	SAVE_UINT32(self, vminfop, pgswapout);
272 	SAVE_UINT32(self, vminfop, zfod);
273 	SAVE_UINT32(self, vminfop, dfree);
274 	SAVE_UINT32(self, vminfop, scan);
275 	SAVE_UINT32(self, vminfop, rev);
276 	SAVE_UINT32(self, vminfop, hat_fault);
277 	SAVE_UINT32(self, vminfop, as_fault);
278 	SAVE_UINT32(self, vminfop, maj_fault);
279 	SAVE_UINT32(self, vminfop, cow_fault);
280 	SAVE_UINT32(self, vminfop, prot_fault);
281 	SAVE_UINT32(self, vminfop, softlock);
282 	SAVE_UINT32(self, vminfop, kernel_asflt);
283 	SAVE_UINT32(self, vminfop, pgrrun);
284 	SAVE_UINT32(self, vminfop, execpgin);
285 	SAVE_UINT32(self, vminfop, execpgout);
286 	SAVE_UINT32(self, vminfop, execfree);
287 	SAVE_UINT32(self, vminfop, anonpgin);
288 	SAVE_UINT32(self, vminfop, anonpgout);
289 	SAVE_UINT32(self, vminfop, anonfree);
290 	SAVE_UINT32(self, vminfop, fspgin);
291 	SAVE_UINT32(self, vminfop, fspgout);
292 	SAVE_UINT32(self, vminfop, fsfree);
293 }
294 
295 /*
296  * Definitions in /usr/include/sys/var.h
297  */
298 
299 static void
300 save_var(HV *self, kstat_t *kp, int strip_str)
301 {
302 	struct var *varp;
303 
304 	/* PERL_ASSERT(kp->ks_ndata == 1); */
305 	PERL_ASSERT(kp->ks_data_size == sizeof (struct var));
306 	varp = (struct var *)(kp->ks_data);
307 
308 	SAVE_INT32(self, varp, v_buf);
309 	SAVE_INT32(self, varp, v_call);
310 	SAVE_INT32(self, varp, v_proc);
311 	SAVE_INT32(self, varp, v_maxupttl);
312 	SAVE_INT32(self, varp, v_nglobpris);
313 	SAVE_INT32(self, varp, v_maxsyspri);
314 	SAVE_INT32(self, varp, v_clist);
315 	SAVE_INT32(self, varp, v_maxup);
316 	SAVE_INT32(self, varp, v_hbuf);
317 	SAVE_INT32(self, varp, v_hmask);
318 	SAVE_INT32(self, varp, v_pbuf);
319 	SAVE_INT32(self, varp, v_sptmap);
320 	SAVE_INT32(self, varp, v_maxpmem);
321 	SAVE_INT32(self, varp, v_autoup);
322 	SAVE_INT32(self, varp, v_bufhwm);
323 }
324 
325 /*
326  * Definition in /usr/include/sys/dnlc.h
327  */
328 
329 static void
330 save_ncstats(HV *self, kstat_t *kp, int strip_str)
331 {
332 	struct ncstats *ncstatsp;
333 
334 	/* PERL_ASSERT(kp->ks_ndata == 1); */
335 	PERL_ASSERT(kp->ks_data_size == sizeof (struct ncstats));
336 	ncstatsp = (struct ncstats *)(kp->ks_data);
337 
338 	SAVE_INT32(self, ncstatsp, hits);
339 	SAVE_INT32(self, ncstatsp, misses);
340 	SAVE_INT32(self, ncstatsp, enters);
341 	SAVE_INT32(self, ncstatsp, dbl_enters);
342 	SAVE_INT32(self, ncstatsp, long_enter);
343 	SAVE_INT32(self, ncstatsp, long_look);
344 	SAVE_INT32(self, ncstatsp, move_to_front);
345 	SAVE_INT32(self, ncstatsp, purges);
346 }
347 
348 /*
349  * Definition in  /usr/include/sys/sysinfo.h
350  */
351 
352 static void
353 save_sysinfo(HV *self, kstat_t *kp, int strip_str)
354 {
355 	sysinfo_t *sysinfop;
356 
357 	/* PERL_ASSERT(kp->ks_ndata == 1); */
358 	PERL_ASSERT(kp->ks_data_size == sizeof (sysinfo_t));
359 	sysinfop = (sysinfo_t *)(kp->ks_data);
360 
361 	SAVE_UINT32(self, sysinfop, updates);
362 	SAVE_UINT32(self, sysinfop, runque);
363 	SAVE_UINT32(self, sysinfop, runocc);
364 	SAVE_UINT32(self, sysinfop, swpque);
365 	SAVE_UINT32(self, sysinfop, swpocc);
366 	SAVE_UINT32(self, sysinfop, waiting);
367 }
368 
369 /*
370  * Definition in  /usr/include/sys/sysinfo.h
371  */
372 
373 static void
374 save_vminfo(HV *self, kstat_t *kp, int strip_str)
375 {
376 	vminfo_t *vminfop;
377 
378 	/* PERL_ASSERT(kp->ks_ndata == 1); */
379 	PERL_ASSERT(kp->ks_data_size == sizeof (vminfo_t));
380 	vminfop = (vminfo_t *)(kp->ks_data);
381 
382 	SAVE_UINT64(self, vminfop, freemem);
383 	SAVE_UINT64(self, vminfop, swap_resv);
384 	SAVE_UINT64(self, vminfop, swap_alloc);
385 	SAVE_UINT64(self, vminfop, swap_avail);
386 	SAVE_UINT64(self, vminfop, swap_free);
387 	SAVE_UINT64(self, vminfop, updates);
388 }
389 
390 /*
391  * Definition in /usr/include/nfs/nfs_clnt.h
392  */
393 
394 static void
395 save_nfs(HV *self, kstat_t *kp, int strip_str)
396 {
397 	struct mntinfo_kstat *mntinfop;
398 
399 	/* PERL_ASSERT(kp->ks_ndata == 1); */
400 	PERL_ASSERT(kp->ks_data_size == sizeof (struct mntinfo_kstat));
401 	mntinfop = (struct mntinfo_kstat *)(kp->ks_data);
402 
403 	SAVE_STRING(self, mntinfop, mik_proto, strip_str);
404 	SAVE_UINT32(self, mntinfop, mik_vers);
405 	SAVE_UINT32(self, mntinfop, mik_flags);
406 	SAVE_UINT32(self, mntinfop, mik_secmod);
407 	SAVE_UINT32(self, mntinfop, mik_curread);
408 	SAVE_UINT32(self, mntinfop, mik_curwrite);
409 	SAVE_INT32(self, mntinfop, mik_timeo);
410 	SAVE_INT32(self, mntinfop, mik_retrans);
411 	SAVE_UINT32(self, mntinfop, mik_acregmin);
412 	SAVE_UINT32(self, mntinfop, mik_acregmax);
413 	SAVE_UINT32(self, mntinfop, mik_acdirmin);
414 	SAVE_UINT32(self, mntinfop, mik_acdirmax);
415 	hv_store(self, "lookup_srtt", 11,
416 	    NEW_UV(mntinfop->mik_timers[0].srtt), 0);
417 	hv_store(self, "lookup_deviate", 14,
418 	    NEW_UV(mntinfop->mik_timers[0].deviate), 0);
419 	hv_store(self, "lookup_rtxcur", 13,
420 	    NEW_UV(mntinfop->mik_timers[0].rtxcur), 0);
421 	hv_store(self, "read_srtt", 9,
422 	    NEW_UV(mntinfop->mik_timers[1].srtt), 0);
423 	hv_store(self, "read_deviate", 12,
424 	    NEW_UV(mntinfop->mik_timers[1].deviate), 0);
425 	hv_store(self, "read_rtxcur", 11,
426 	    NEW_UV(mntinfop->mik_timers[1].rtxcur), 0);
427 	hv_store(self, "write_srtt", 10,
428 	    NEW_UV(mntinfop->mik_timers[2].srtt), 0);
429 	hv_store(self, "write_deviate", 13,
430 	    NEW_UV(mntinfop->mik_timers[2].deviate), 0);
431 	hv_store(self, "write_rtxcur", 12,
432 	    NEW_UV(mntinfop->mik_timers[2].rtxcur), 0);
433 	SAVE_UINT32(self, mntinfop, mik_noresponse);
434 	SAVE_UINT32(self, mntinfop, mik_failover);
435 	SAVE_UINT32(self, mntinfop, mik_remap);
436 	SAVE_STRING(self, mntinfop, mik_curserver, strip_str);
437 }
438 
439 /*
440  * The following struct => hash functions are all only present on the sparc
441  * platform, so they are all conditionally compiled depending on __sparc
442  */
443 
444 /*
445  * Definition in /usr/platform/sun4u/include/vm/hat_sfmmu.h
446  */
447 
448 #ifdef __sparc
449 static void
450 save_sfmmu_global_stat(HV *self, kstat_t *kp, int strip_str)
451 {
452 	struct sfmmu_global_stat *sfmmugp;
453 
454 	/* PERL_ASSERT(kp->ks_ndata == 1); */
455 	PERL_ASSERT(kp->ks_data_size == sizeof (struct sfmmu_global_stat));
456 	sfmmugp = (struct sfmmu_global_stat *)(kp->ks_data);
457 
458 	SAVE_INT32(self, sfmmugp, sf_tsb_exceptions);
459 	SAVE_INT32(self, sfmmugp, sf_tsb_raise_exception);
460 	SAVE_INT32(self, sfmmugp, sf_pagefaults);
461 	SAVE_INT32(self, sfmmugp, sf_uhash_searches);
462 	SAVE_INT32(self, sfmmugp, sf_uhash_links);
463 	SAVE_INT32(self, sfmmugp, sf_khash_searches);
464 	SAVE_INT32(self, sfmmugp, sf_khash_links);
465 	SAVE_INT32(self, sfmmugp, sf_swapout);
466 	SAVE_INT32(self, sfmmugp, sf_tsb_alloc);
467 	SAVE_INT32(self, sfmmugp, sf_tsb_allocfail);
468 	SAVE_INT32(self, sfmmugp, sf_tsb_sectsb_create);
469 	SAVE_INT32(self, sfmmugp, sf_scd_1sttsb_alloc);
470 	SAVE_INT32(self, sfmmugp, sf_scd_2ndtsb_alloc);
471 	SAVE_INT32(self, sfmmugp, sf_scd_1sttsb_allocfail);
472 	SAVE_INT32(self, sfmmugp, sf_scd_2ndtsb_allocfail);
473 	SAVE_INT32(self, sfmmugp, sf_tteload8k);
474 	SAVE_INT32(self, sfmmugp, sf_tteload64k);
475 	SAVE_INT32(self, sfmmugp, sf_tteload512k);
476 	SAVE_INT32(self, sfmmugp, sf_tteload4m);
477 	SAVE_INT32(self, sfmmugp, sf_tteload32m);
478 	SAVE_INT32(self, sfmmugp, sf_tteload256m);
479 	SAVE_INT32(self, sfmmugp, sf_tsb_load8k);
480 	SAVE_INT32(self, sfmmugp, sf_tsb_load4m);
481 	SAVE_INT32(self, sfmmugp, sf_hblk_hit);
482 	SAVE_INT32(self, sfmmugp, sf_hblk8_ncreate);
483 	SAVE_INT32(self, sfmmugp, sf_hblk8_nalloc);
484 	SAVE_INT32(self, sfmmugp, sf_hblk1_ncreate);
485 	SAVE_INT32(self, sfmmugp, sf_hblk1_nalloc);
486 	SAVE_INT32(self, sfmmugp, sf_hblk_slab_cnt);
487 	SAVE_INT32(self, sfmmugp, sf_hblk_reserve_cnt);
488 	SAVE_INT32(self, sfmmugp, sf_hblk_recurse_cnt);
489 	SAVE_INT32(self, sfmmugp, sf_hblk_reserve_hit);
490 	SAVE_INT32(self, sfmmugp, sf_get_free_success);
491 	SAVE_INT32(self, sfmmugp, sf_get_free_throttle);
492 	SAVE_INT32(self, sfmmugp, sf_get_free_fail);
493 	SAVE_INT32(self, sfmmugp, sf_put_free_success);
494 	SAVE_INT32(self, sfmmugp, sf_put_free_fail);
495 	SAVE_INT32(self, sfmmugp, sf_pgcolor_conflict);
496 	SAVE_INT32(self, sfmmugp, sf_uncache_conflict);
497 	SAVE_INT32(self, sfmmugp, sf_unload_conflict);
498 	SAVE_INT32(self, sfmmugp, sf_ism_uncache);
499 	SAVE_INT32(self, sfmmugp, sf_ism_recache);
500 	SAVE_INT32(self, sfmmugp, sf_recache);
501 	SAVE_INT32(self, sfmmugp, sf_steal_count);
502 	SAVE_INT32(self, sfmmugp, sf_pagesync);
503 	SAVE_INT32(self, sfmmugp, sf_clrwrt);
504 	SAVE_INT32(self, sfmmugp, sf_pagesync_invalid);
505 	SAVE_INT32(self, sfmmugp, sf_kernel_xcalls);
506 	SAVE_INT32(self, sfmmugp, sf_user_xcalls);
507 	SAVE_INT32(self, sfmmugp, sf_tsb_grow);
508 	SAVE_INT32(self, sfmmugp, sf_tsb_shrink);
509 	SAVE_INT32(self, sfmmugp, sf_tsb_resize_failures);
510 	SAVE_INT32(self, sfmmugp, sf_tsb_reloc);
511 	SAVE_INT32(self, sfmmugp, sf_user_vtop);
512 	SAVE_INT32(self, sfmmugp, sf_ctx_inv);
513 	SAVE_INT32(self, sfmmugp, sf_tlb_reprog_pgsz);
514 	SAVE_INT32(self, sfmmugp, sf_region_remap_demap);
515 	SAVE_INT32(self, sfmmugp, sf_create_scd);
516 	SAVE_INT32(self, sfmmugp, sf_join_scd);
517 	SAVE_INT32(self, sfmmugp, sf_leave_scd);
518 	SAVE_INT32(self, sfmmugp, sf_destroy_scd);
519 }
520 #endif
521 
522 /*
523  * Definition in /usr/platform/sun4u/include/vm/hat_sfmmu.h
524  */
525 
526 #ifdef __sparc
527 static void
528 save_sfmmu_tsbsize_stat(HV *self, kstat_t *kp, int strip_str)
529 {
530 	struct sfmmu_tsbsize_stat *sfmmutp;
531 
532 	/* PERL_ASSERT(kp->ks_ndata == 1); */
533 	PERL_ASSERT(kp->ks_data_size == sizeof (struct sfmmu_tsbsize_stat));
534 	sfmmutp = (struct sfmmu_tsbsize_stat *)(kp->ks_data);
535 
536 	SAVE_INT32(self, sfmmutp, sf_tsbsz_8k);
537 	SAVE_INT32(self, sfmmutp, sf_tsbsz_16k);
538 	SAVE_INT32(self, sfmmutp, sf_tsbsz_32k);
539 	SAVE_INT32(self, sfmmutp, sf_tsbsz_64k);
540 	SAVE_INT32(self, sfmmutp, sf_tsbsz_128k);
541 	SAVE_INT32(self, sfmmutp, sf_tsbsz_256k);
542 	SAVE_INT32(self, sfmmutp, sf_tsbsz_512k);
543 	SAVE_INT32(self, sfmmutp, sf_tsbsz_1m);
544 	SAVE_INT32(self, sfmmutp, sf_tsbsz_2m);
545 	SAVE_INT32(self, sfmmutp, sf_tsbsz_4m);
546 }
547 #endif
548 
549 /*
550  * Definition in /usr/platform/sun4u/include/sys/simmstat.h
551  */
552 
553 #ifdef __sparc
554 static void
555 save_simmstat(HV *self, kstat_t *kp, int strip_str)
556 {
557 	uchar_t	*simmstatp;
558 	SV	*list;
559 	int	i;
560 
561 	/* PERL_ASSERT(kp->ks_ndata == 1); */
562 	PERL_ASSERT(kp->ks_data_size == sizeof (uchar_t) * SIMM_COUNT);
563 
564 	list = newSVpv("", 0);
565 	for (i = 0, simmstatp = (uchar_t *)(kp->ks_data);
566 	i < SIMM_COUNT - 1; i++, simmstatp++) {
567 		sv_catpvf(list, "%d,", *simmstatp);
568 	}
569 	sv_catpvf(list, "%d", *simmstatp);
570 	hv_store(self, "status", 6, list, 0);
571 }
572 #endif
573 
574 /*
575  * Used by save_temperature to make CSV lists from arrays of
576  * short temperature values
577  */
578 
579 #ifdef __sparc
580 static SV *
581 short_array_to_SV(short *shortp, int len)
582 {
583 	SV  *list;
584 
585 	list = newSVpv("", 0);
586 	for (; len > 1; len--, shortp++) {
587 		sv_catpvf(list, "%d,", *shortp);
588 	}
589 	sv_catpvf(list, "%d", *shortp);
590 	return (list);
591 }
592 
593 /*
594  * Definition in /usr/platform/sun4u/include/sys/fhc.h
595  */
596 
597 static void
598 save_temperature(HV *self, kstat_t *kp, int strip_str)
599 {
600 	struct temp_stats *tempsp;
601 
602 	/* PERL_ASSERT(kp->ks_ndata == 1); */
603 	PERL_ASSERT(kp->ks_data_size == sizeof (struct temp_stats));
604 	tempsp = (struct temp_stats *)(kp->ks_data);
605 
606 	SAVE_UINT32(self, tempsp, index);
607 	hv_store(self, "l1", 2, short_array_to_SV(tempsp->l1, L1_SZ), 0);
608 	hv_store(self, "l2", 2, short_array_to_SV(tempsp->l2, L2_SZ), 0);
609 	hv_store(self, "l3", 2, short_array_to_SV(tempsp->l3, L3_SZ), 0);
610 	hv_store(self, "l4", 2, short_array_to_SV(tempsp->l4, L4_SZ), 0);
611 	hv_store(self, "l5", 2, short_array_to_SV(tempsp->l5, L5_SZ), 0);
612 	SAVE_INT32(self, tempsp, max);
613 	SAVE_INT32(self, tempsp, min);
614 	SAVE_INT32(self, tempsp, state);
615 	SAVE_INT32(self, tempsp, temp_cnt);
616 	SAVE_INT32(self, tempsp, shutdown_cnt);
617 	SAVE_INT32(self, tempsp, version);
618 	SAVE_INT32(self, tempsp, trend);
619 	SAVE_INT32(self, tempsp, override);
620 }
621 #endif
622 
623 /*
624  * Not actually defined anywhere - just a short.  Yuck.
625  */
626 
627 #ifdef __sparc
628 static void
629 save_temp_over(HV *self, kstat_t *kp, int strip_str)
630 {
631 	short *shortp;
632 
633 	/* PERL_ASSERT(kp->ks_ndata == 1); */
634 	PERL_ASSERT(kp->ks_data_size == sizeof (short));
635 
636 	shortp = (short *)(kp->ks_data);
637 	hv_store(self, "override", 8, newSViv(*shortp), 0);
638 }
639 #endif
640 
641 /*
642  * Defined in /usr/platform/sun4u/include/sys/sysctrl.h
643  * (Well, sort of.  Actually there's no structure, just a list of #defines
644  * enumerating *some* of the array indexes.)
645  */
646 
647 #ifdef __sparc
648 static void
649 save_ps_shadow(HV *self, kstat_t *kp, int strip_str)
650 {
651 	uchar_t *ucharp;
652 
653 	/* PERL_ASSERT(kp->ks_ndata == 1); */
654 	PERL_ASSERT(kp->ks_data_size == SYS_PS_COUNT);
655 
656 	ucharp = (uchar_t *)(kp->ks_data);
657 	hv_store(self, "core_0", 6, newSViv(*ucharp++), 0);
658 	hv_store(self, "core_1", 6, newSViv(*ucharp++), 0);
659 	hv_store(self, "core_2", 6, newSViv(*ucharp++), 0);
660 	hv_store(self, "core_3", 6, newSViv(*ucharp++), 0);
661 	hv_store(self, "core_4", 6, newSViv(*ucharp++), 0);
662 	hv_store(self, "core_5", 6, newSViv(*ucharp++), 0);
663 	hv_store(self, "core_6", 6, newSViv(*ucharp++), 0);
664 	hv_store(self, "core_7", 6, newSViv(*ucharp++), 0);
665 	hv_store(self, "pps_0", 5, newSViv(*ucharp++), 0);
666 	hv_store(self, "clk_33", 6, newSViv(*ucharp++), 0);
667 	hv_store(self, "clk_50", 6, newSViv(*ucharp++), 0);
668 	hv_store(self, "v5_p", 4, newSViv(*ucharp++), 0);
669 	hv_store(self, "v12_p", 5, newSViv(*ucharp++), 0);
670 	hv_store(self, "v5_aux", 6, newSViv(*ucharp++), 0);
671 	hv_store(self, "v5_p_pch", 8, newSViv(*ucharp++), 0);
672 	hv_store(self, "v12_p_pch", 9, newSViv(*ucharp++), 0);
673 	hv_store(self, "v3_pch", 6, newSViv(*ucharp++), 0);
674 	hv_store(self, "v5_pch", 6, newSViv(*ucharp++), 0);
675 	hv_store(self, "p_fan", 5, newSViv(*ucharp++), 0);
676 }
677 #endif
678 
679 /*
680  * Definition in /usr/platform/sun4u/include/sys/fhc.h
681  */
682 
683 #ifdef __sparc
684 static void
685 save_fault_list(HV *self, kstat_t *kp, int strip_str)
686 {
687 	struct ft_list	*faultp;
688 	int		i;
689 	char		name[KSTAT_STRLEN + 7];	/* room for 999999 faults */
690 
691 	/* PERL_ASSERT(kp->ks_ndata == 1); */
692 	/* PERL_ASSERT(kp->ks_data_size == sizeof (struct ft_list)); */
693 
694 	for (i = 1, faultp = (struct ft_list *)(kp->ks_data);
695 	    i <= 999999 && i <= kp->ks_data_size / sizeof (struct ft_list);
696 	    i++, faultp++) {
697 		(void) snprintf(name, sizeof (name), "unit_%d", i);
698 		hv_store(self, name, strlen(name), newSViv(faultp->unit), 0);
699 		(void) snprintf(name, sizeof (name), "type_%d", i);
700 		hv_store(self, name, strlen(name), newSViv(faultp->type), 0);
701 		(void) snprintf(name, sizeof (name), "fclass_%d", i);
702 		hv_store(self, name, strlen(name), newSViv(faultp->fclass), 0);
703 		(void) snprintf(name, sizeof (name), "create_time_%d", i);
704 		hv_store(self, name, strlen(name),
705 		    NEW_UV(faultp->create_time), 0);
706 		(void) snprintf(name, sizeof (name), "msg_%d", i);
707 		hv_store(self, name, strlen(name), newSVpv(faultp->msg, 0), 0);
708 	}
709 }
710 #endif
711 
712 /*
713  * We need to be able to find the function corresponding to a particular raw
714  * kstat.  To do this we ignore the instance and glue the module and name
715  * together to form a composite key.  We can then use the data in the kstat
716  * structure to find the appropriate function.  We use a perl hash to manage the
717  * lookup, where the key is "module:name" and the value is a pointer to the
718  * appropriate C function.
719  *
720  * Note that some kstats include the instance number as part of the module
721  * and/or name.  This could be construed as a bug.  However, to work around this
722  * we omit any digits from the module and name as we build the table in
723  * build_raw_kstat_loopup(), and we remove any digits from the module and name
724  * when we look up the functions in lookup_raw_kstat_fn()
725  */
726 
727 /*
728  * This function is called when the XS is first dlopen()ed, and builds the
729  * lookup table as described above.
730  */
731 
732 static void
733 build_raw_kstat_lookup()
734 	{
735 	/* Create new hash */
736 	raw_kstat_lookup = newHV();
737 
738 	SAVE_FNP(raw_kstat_lookup, save_cpu_stat, "cpu_stat:cpu_stat");
739 	SAVE_FNP(raw_kstat_lookup, save_var, "unix:var");
740 	SAVE_FNP(raw_kstat_lookup, save_ncstats, "unix:ncstats");
741 	SAVE_FNP(raw_kstat_lookup, save_sysinfo, "unix:sysinfo");
742 	SAVE_FNP(raw_kstat_lookup, save_vminfo, "unix:vminfo");
743 	SAVE_FNP(raw_kstat_lookup, save_nfs, "nfs:mntinfo");
744 #ifdef __sparc
745 	SAVE_FNP(raw_kstat_lookup, save_sfmmu_global_stat,
746 	    "unix:sfmmu_global_stat");
747 	SAVE_FNP(raw_kstat_lookup, save_sfmmu_tsbsize_stat,
748 	    "unix:sfmmu_tsbsize_stat");
749 	SAVE_FNP(raw_kstat_lookup, save_simmstat, "unix:simm-status");
750 	SAVE_FNP(raw_kstat_lookup, save_temperature, "unix:temperature");
751 	SAVE_FNP(raw_kstat_lookup, save_temp_over, "unix:temperature override");
752 	SAVE_FNP(raw_kstat_lookup, save_ps_shadow, "unix:ps_shadow");
753 	SAVE_FNP(raw_kstat_lookup, save_fault_list, "unix:fault_list");
754 #endif
755 }
756 
757 /*
758  * This finds and returns the raw kstat reader function corresponding to the
759  * supplied module and name.  If no matching function exists, 0 is returned.
760  */
761 
762 static kstat_raw_reader_t lookup_raw_kstat_fn(char *module, char *name)
763 	{
764 	char			key[KSTAT_STRLEN * 2];
765 	register char		*f, *t;
766 	SV			**entry;
767 	kstat_raw_reader_t	fnp;
768 
769 	/* Copy across module & name, removing any digits - see comment above */
770 	for (f = module, t = key; *f != '\0'; f++, t++) {
771 		while (*f != '\0' && isdigit(*f)) { f++; }
772 		*t = *f;
773 	}
774 	*t++ = ':';
775 	for (f = name; *f != '\0'; f++, t++) {
776 		while (*f != '\0' && isdigit(*f)) {
777 			f++;
778 		}
779 	*t = *f;
780 	}
781 	*t = '\0';
782 
783 	/* look up & return the function, or teturn 0 if not found */
784 	if ((entry = hv_fetch(raw_kstat_lookup, key, strlen(key), FALSE)) == 0)
785 	{
786 		fnp = 0;
787 	} else {
788 		fnp = (kstat_raw_reader_t)(uintptr_t)SvIV(*entry);
789 	}
790 	return (fnp);
791 }
792 
793 /*
794  * This module converts the flat list returned by kstat_read() into a perl hash
795  * tree keyed on module, instance, name and statistic.  The following functions
796  * provide code to create the nested hashes, and to iterate over them.
797  */
798 
799 /*
800  * Given module, instance and name keys return a pointer to the hash tied to
801  * the bottommost hash.  If the hash already exists, we just return a pointer
802  * to it, otherwise we create the hash and any others also required above it in
803  * the hierarchy.  The returned tiehash is blessed into the
804  * Sun::Solaris::Kstat::_Stat class, so that the appropriate TIEHASH methods are
805  * called when the bottommost hash is accessed.  If the is_new parameter is
806  * non-null it will be set to TRUE if a new tie has been created, and FALSE if
807  * the tie already existed.
808  */
809 
810 static HV *
811 get_tie(SV *self, char *module, int instance, char *name, int *is_new)
812 {
813 	char str_inst[11];	/* big enough for up to 10^10 instances */
814 	char *key[3];		/* 3 part key: module, instance, name */
815 	int  k;
816 	int  new;
817 	HV   *hash;
818 	HV   *tie;
819 
820 	/* Create the keys */
821 	(void) snprintf(str_inst, sizeof (str_inst), "%d", instance);
822 	key[0] = module;
823 	key[1] = str_inst;
824 	key[2] = name;
825 
826 	/* Iteratively descend the tree, creating new hashes as required */
827 	hash = (HV *)SvRV(self);
828 	for (k = 0; k < 3; k++) {
829 		SV **entry;
830 
831 		SvREADONLY_off(hash);
832 		entry = hv_fetch(hash, key[k], strlen(key[k]), TRUE);
833 
834 		/* If the entry doesn't exist, create it */
835 		if (! SvOK(*entry)) {
836 			HV *newhash;
837 			SV *rv;
838 
839 			newhash = newHV();
840 			rv = newRV_noinc((SV *)newhash);
841 			sv_setsv(*entry, rv);
842 			SvREFCNT_dec(rv);
843 			if (k < 2) {
844 				SvREADONLY_on(newhash);
845 			}
846 			SvREADONLY_on(*entry);
847 			SvREADONLY_on(hash);
848 			hash = newhash;
849 			new = 1;
850 
851 		/* Otherwise it already existed */
852 		} else {
853 			SvREADONLY_on(hash);
854 			hash = (HV *)SvRV(*entry);
855 			new = 0;
856 		}
857 	}
858 
859 	/* Create and bless a hash for the tie, if necessary */
860 	if (new) {
861 		SV *tieref;
862 		HV *stash;
863 
864 		tie = newHV();
865 		tieref = newRV_noinc((SV *)tie);
866 		stash = gv_stashpv("Sun::Solaris::Kstat::_Stat", TRUE);
867 		sv_bless(tieref, stash);
868 
869 		/* Add TIEHASH magic */
870 		hv_magic(hash, (GV *)tieref, 'P');
871 		SvREADONLY_on(hash);
872 
873 	/* Otherwise, just find the existing tied hash */
874 	} else {
875 		MAGIC *mg;
876 
877 		mg = mg_find((SV *)hash, 'P');
878 		PERL_ASSERTMSG(mg != 0, "get_tie: lost P magic");
879 		tie = (HV *)SvRV(mg->mg_obj);
880 	}
881 	if (is_new) {
882 		*is_new = new;
883 	}
884 	return (tie);
885 }
886 
887 /*
888  * This is an iterator function used to traverse the hash hierarchy and apply
889  * the passed function to the tied hashes at the bottom of the hierarchy.  If
890  * any of the callback functions return 0, 0 is returned, otherwise 1
891  */
892 
893 static int
894 apply_to_ties(SV *self, ATTCb_t cb, void *arg)
895 {
896 	HV	*hash1;
897 	HE	*entry1;
898 	int	ret;
899 
900 	hash1 = (HV *)SvRV(self);
901 	hv_iterinit(hash1);
902 	ret = 1;
903 
904 	/* Iterate over each module */
905 	while ((entry1 = hv_iternext(hash1))) {
906 		HV *hash2;
907 		HE *entry2;
908 
909 		hash2 = (HV *)SvRV(hv_iterval(hash1, entry1));
910 		hv_iterinit(hash2);
911 
912 		/* Iterate over each module:instance */
913 		while ((entry2 = hv_iternext(hash2))) {
914 			HV *hash3;
915 			HE *entry3;
916 
917 			hash3 = (HV *)SvRV(hv_iterval(hash2, entry2));
918 			hv_iterinit(hash3);
919 
920 			/* Iterate over each module:instance:name */
921 			while ((entry3 = hv_iternext(hash3))) {
922 				HV    *hash4;
923 				MAGIC *mg;
924 
925 				/* Get the tie */
926 				hash4 = (HV *)SvRV(hv_iterval(hash3, entry3));
927 				mg = mg_find((SV *)hash4, 'P');
928 				PERL_ASSERTMSG(mg != 0,
929 				    "apply_to_ties: lost P magic");
930 
931 				/* Apply the callback */
932 				if (! cb((HV *)SvRV(mg->mg_obj), arg)) {
933 					ret = 0;
934 				}
935 			}
936 		}
937 	}
938 	return (ret);
939 }
940 
941 /*
942  * Mark this HV as valid - used by update() when pruning deleted kstat nodes
943  */
944 
945 static int
946 set_valid(HV *self, void *arg)
947 {
948 	MAGIC *mg;
949 
950 	mg = mg_find((SV *)self, '~');
951 	PERL_ASSERTMSG(mg != 0, "set_valid: lost ~ magic");
952 	((KstatInfo_t *)SvPVX(mg->mg_obj))->valid = (int)(intptr_t)arg;
953 	return (1);
954 }
955 
956 /*
957  * Prune invalid kstat nodes. This is called when kstat_chain_update() detects
958  * that the kstat chain has been updated.  This removes any hash tree entries
959  * that no longer have a corresponding kstat.  If del is non-null it will be
960  * set to the keys of the deleted kstat nodes, if any.  If any entries are
961  * deleted 1 will be retured, otherwise 0
962  */
963 
964 static int
965 prune_invalid(SV *self, AV *del)
966 {
967 	HV	*hash1;
968 	HE	*entry1;
969 	STRLEN	klen;
970 	char	*module, *instance, *name, *key;
971 	int	ret;
972 
973 	hash1 = (HV *)SvRV(self);
974 	hv_iterinit(hash1);
975 	ret = 0;
976 
977 	/* Iterate over each module */
978 	while ((entry1 = hv_iternext(hash1))) {
979 		HV *hash2;
980 		HE *entry2;
981 
982 		module = HePV(entry1, PL_na);
983 		hash2 = (HV *)SvRV(hv_iterval(hash1, entry1));
984 		hv_iterinit(hash2);
985 
986 		/* Iterate over each module:instance */
987 		while ((entry2 = hv_iternext(hash2))) {
988 			HV *hash3;
989 			HE *entry3;
990 
991 			instance = HePV(entry2, PL_na);
992 			hash3 = (HV *)SvRV(hv_iterval(hash2, entry2));
993 			hv_iterinit(hash3);
994 
995 			/* Iterate over each module:instance:name */
996 			while ((entry3 = hv_iternext(hash3))) {
997 				HV    *hash4;
998 				MAGIC *mg;
999 				HV    *tie;
1000 
1001 				name = HePV(entry3, PL_na);
1002 				hash4 = (HV *)SvRV(hv_iterval(hash3, entry3));
1003 				mg = mg_find((SV *)hash4, 'P');
1004 				PERL_ASSERTMSG(mg != 0,
1005 				    "prune_invalid: lost P magic");
1006 				tie = (HV *)SvRV(mg->mg_obj);
1007 				mg = mg_find((SV *)tie, '~');
1008 				PERL_ASSERTMSG(mg != 0,
1009 				    "prune_invalid: lost ~ magic");
1010 
1011 				/* If this is marked as invalid, prune it */
1012 				if (((KstatInfo_t *)SvPVX(
1013 				    (SV *)mg->mg_obj))->valid == FALSE) {
1014 					SvREADONLY_off(hash3);
1015 					key = HePV(entry3, klen);
1016 					hv_delete(hash3, key, klen, G_DISCARD);
1017 					SvREADONLY_on(hash3);
1018 					if (del) {
1019 						av_push(del,
1020 						    newSVpvf("%s:%s:%s",
1021 						    module, instance, name));
1022 					}
1023 					ret = 1;
1024 				}
1025 			}
1026 
1027 			/* If the module:instance:name hash is empty prune it */
1028 			if (HvKEYS(hash3) == 0) {
1029 				SvREADONLY_off(hash2);
1030 				key = HePV(entry2, klen);
1031 				hv_delete(hash2, key, klen, G_DISCARD);
1032 				SvREADONLY_on(hash2);
1033 			}
1034 		}
1035 		/* If the module:instance hash is empty prune it */
1036 		if (HvKEYS(hash2) == 0) {
1037 			SvREADONLY_off(hash1);
1038 			key = HePV(entry1, klen);
1039 			hv_delete(hash1, key, klen, G_DISCARD);
1040 			SvREADONLY_on(hash1);
1041 		}
1042 	}
1043 	return (ret);
1044 }
1045 
1046 /*
1047  * Named kstats are returned as a list of key/values.  This function converts
1048  * such a list into the equivalent perl datatypes, and stores them in the passed
1049  * hash.
1050  */
1051 
1052 static void
1053 save_named(HV *self, kstat_t *kp, int strip_str)
1054 {
1055 	kstat_named_t	*knp;
1056 	int		n;
1057 	SV*		value;
1058 
1059 	for (n = kp->ks_ndata, knp = KSTAT_NAMED_PTR(kp); n > 0; n--, knp++) {
1060 		switch (knp->data_type) {
1061 		case KSTAT_DATA_CHAR:
1062 			value = newSVpv(knp->value.c, strip_str ?
1063 			    strlen(knp->value.c) : sizeof (knp->value.c));
1064 			break;
1065 		case KSTAT_DATA_INT32:
1066 			value = newSViv(knp->value.i32);
1067 			break;
1068 		case KSTAT_DATA_UINT32:
1069 			value = NEW_UV(knp->value.ui32);
1070 			break;
1071 		case KSTAT_DATA_INT64:
1072 			value = NEW_UV(knp->value.i64);
1073 			break;
1074 		case KSTAT_DATA_UINT64:
1075 			value = NEW_UV(knp->value.ui64);
1076 			break;
1077 		case KSTAT_DATA_STRING:
1078 			if (KSTAT_NAMED_STR_PTR(knp) == NULL)
1079 				value = newSVpv("null", sizeof ("null") - 1);
1080 			else
1081 				value = newSVpv(KSTAT_NAMED_STR_PTR(knp),
1082 						KSTAT_NAMED_STR_BUFLEN(knp) -1);
1083 			break;
1084 		default:
1085 			PERL_ASSERTMSG(0, "kstat_read: invalid data type");
1086 			continue;
1087 		}
1088 		hv_store(self, knp->name, strlen(knp->name), value, 0);
1089 	}
1090 }
1091 
1092 /*
1093  * Save kstat interrupt statistics
1094  */
1095 
1096 static void
1097 save_intr(HV *self, kstat_t *kp, int strip_str)
1098 {
1099 	kstat_intr_t	*kintrp;
1100 	int		i;
1101 	static char	*intr_names[] =
1102 	    { "hard", "soft", "watchdog", "spurious", "multiple_service" };
1103 
1104 	PERL_ASSERT(kp->ks_ndata == 1);
1105 	PERL_ASSERT(kp->ks_data_size == sizeof (kstat_intr_t));
1106 	kintrp = KSTAT_INTR_PTR(kp);
1107 
1108 	for (i = 0; i < KSTAT_NUM_INTRS; i++) {
1109 		hv_store(self, intr_names[i], strlen(intr_names[i]),
1110 		    NEW_UV(kintrp->intrs[i]), 0);
1111 	}
1112 }
1113 
1114 /*
1115  * Save IO statistics
1116  */
1117 
1118 static void
1119 save_io(HV *self, kstat_t *kp, int strip_str)
1120 {
1121 	kstat_io_t *kiop;
1122 
1123 	PERL_ASSERT(kp->ks_ndata == 1);
1124 	PERL_ASSERT(kp->ks_data_size == sizeof (kstat_io_t));
1125 	kiop = KSTAT_IO_PTR(kp);
1126 	SAVE_UINT64(self, kiop, nread);
1127 	SAVE_UINT64(self, kiop, nwritten);
1128 	SAVE_UINT32(self, kiop, reads);
1129 	SAVE_UINT32(self, kiop, writes);
1130 	SAVE_HRTIME(self, kiop, wtime);
1131 	SAVE_HRTIME(self, kiop, wlentime);
1132 	SAVE_HRTIME(self, kiop, wlastupdate);
1133 	SAVE_HRTIME(self, kiop, rtime);
1134 	SAVE_HRTIME(self, kiop, rlentime);
1135 	SAVE_HRTIME(self, kiop, rlastupdate);
1136 	SAVE_UINT32(self, kiop, wcnt);
1137 	SAVE_UINT32(self, kiop, rcnt);
1138 }
1139 
1140 /*
1141  * Save timer statistics
1142  */
1143 
1144 static void
1145 save_timer(HV *self, kstat_t *kp, int strip_str)
1146 {
1147 	kstat_timer_t *ktimerp;
1148 
1149 	PERL_ASSERT(kp->ks_ndata == 1);
1150 	PERL_ASSERT(kp->ks_data_size == sizeof (kstat_timer_t));
1151 	ktimerp = KSTAT_TIMER_PTR(kp);
1152 	SAVE_STRING(self, ktimerp, name, strip_str);
1153 	SAVE_UINT64(self, ktimerp, num_events);
1154 	SAVE_HRTIME(self, ktimerp, elapsed_time);
1155 	SAVE_HRTIME(self, ktimerp, min_time);
1156 	SAVE_HRTIME(self, ktimerp, max_time);
1157 	SAVE_HRTIME(self, ktimerp, start_time);
1158 	SAVE_HRTIME(self, ktimerp, stop_time);
1159 }
1160 
1161 /*
1162  * Read kstats and copy into the supplied perl hash structure.  If refresh is
1163  * true, this function is being called as part of the update() method.  In this
1164  * case it is only necessary to read the kstats if they have previously been
1165  * accessed (kip->read == TRUE).  If refresh is false, this function is being
1166  * called prior to returning a value to the caller. In this case, it is only
1167  * necessary to read the kstats if they have not previously been read.  If the
1168  * kstat_read() fails, 0 is returned, otherwise 1
1169  */
1170 
1171 static int
1172 read_kstats(HV *self, int refresh)
1173 {
1174 	MAGIC			*mg;
1175 	KstatInfo_t		*kip;
1176 	kstat_raw_reader_t	fnp;
1177 
1178 	/* Find the MAGIC KstatInfo_t data structure */
1179 	mg = mg_find((SV *)self, '~');
1180 	PERL_ASSERTMSG(mg != 0, "read_kstats: lost ~ magic");
1181 	kip = (KstatInfo_t *)SvPVX(mg->mg_obj);
1182 
1183 	/* Return early if we don't need to actually read the kstats */
1184 	if ((refresh && ! kip->read) || (! refresh && kip->read)) {
1185 		return (1);
1186 	}
1187 
1188 	/* Read the kstats and return 0 if this fails */
1189 	if (kstat_read(kip->kstat_ctl, kip->kstat, NULL) < 0) {
1190 		return (0);
1191 	}
1192 
1193 	/* Save the read data */
1194 	hv_store(self, "snaptime", 8, NEW_HRTIME(kip->kstat->ks_snaptime), 0);
1195 	switch (kip->kstat->ks_type) {
1196 		case KSTAT_TYPE_RAW:
1197 			if ((fnp = lookup_raw_kstat_fn(kip->kstat->ks_module,
1198 			    kip->kstat->ks_name)) != 0) {
1199 				fnp(self, kip->kstat, kip->strip_str);
1200 			}
1201 			break;
1202 		case KSTAT_TYPE_NAMED:
1203 			save_named(self, kip->kstat, kip->strip_str);
1204 			break;
1205 		case KSTAT_TYPE_INTR:
1206 			save_intr(self, kip->kstat, kip->strip_str);
1207 			break;
1208 		case KSTAT_TYPE_IO:
1209 			save_io(self, kip->kstat, kip->strip_str);
1210 			break;
1211 		case KSTAT_TYPE_TIMER:
1212 			save_timer(self, kip->kstat, kip->strip_str);
1213 			break;
1214 		default:
1215 			PERL_ASSERTMSG(0, "read_kstats: illegal kstat type");
1216 			break;
1217 	}
1218 	kip->read = TRUE;
1219 	return (1);
1220 }
1221 
1222 /*
1223  * The XS code exported to perl is below here.  Note that the XS preprocessor
1224  * has its own commenting syntax, so all comments from this point on are in
1225  * that form.
1226  */
1227 
1228 /* The following XS methods are the ABI of the Sun::Solaris::Kstat package */
1229 
1230 MODULE = Sun::Solaris::Kstat PACKAGE = Sun::Solaris::Kstat
1231 PROTOTYPES: ENABLE
1232 
1233  # Create the raw kstat to store function lookup table on load
1234 BOOT:
1235 	build_raw_kstat_lookup();
1236 
1237  #
1238  # The Sun::Solaris::Kstat constructor.  This builds the nested
1239  # name::instance::module hash structure, but doesn't actually read the
1240  # underlying kstats.  This is done on demand by the TIEHASH methods in
1241  # Sun::Solaris::Kstat::_Stat
1242  #
1243 
1244 SV*
1245 new(class, ...)
1246 	char *class;
1247 PREINIT:
1248 	HV		*stash;
1249 	kstat_ctl_t	*kc;
1250 	SV		*kcsv;
1251 	kstat_t		*kp;
1252 	KstatInfo_t	kstatinfo;
1253 	int		sp, strip_str;
1254 CODE:
1255 	/* Check we have an even number of arguments, excluding the class */
1256 	sp = 1;
1257 	if (((items - sp) % 2) != 0) {
1258 		croak(DEBUG_ID ": new: invalid number of arguments");
1259 	}
1260 
1261 	/* Process any (name => value) arguments */
1262 	strip_str = 0;
1263 	while (sp < items) {
1264 		SV *name, *value;
1265 
1266 		name = ST(sp);
1267 		sp++;
1268 		value = ST(sp);
1269 		sp++;
1270 		if (strcmp(SvPVX(name), "strip_strings") == 0) {
1271 			strip_str = SvTRUE(value);
1272 		} else {
1273 			croak(DEBUG_ID ": new: invalid parameter name '%s'",
1274 			    SvPVX(name));
1275 		}
1276 	}
1277 
1278 	/* Open the kstats handle */
1279 	if ((kc = kstat_open()) == 0) {
1280 		XSRETURN_UNDEF;
1281 	}
1282 
1283 	/* Create a blessed hash ref */
1284 	RETVAL = (SV *)newRV_noinc((SV *)newHV());
1285 	stash = gv_stashpv(class, TRUE);
1286 	sv_bless(RETVAL, stash);
1287 
1288 	/* Create a place to save the KstatInfo_t structure */
1289 	kcsv = newSVpv((char *)&kc, sizeof (kc));
1290 	sv_magic(SvRV(RETVAL), kcsv, '~', 0, 0);
1291 	SvREFCNT_dec(kcsv);
1292 
1293 	/* Initialise the KstatsInfo_t structure */
1294 	kstatinfo.read = FALSE;
1295 	kstatinfo.valid = TRUE;
1296 	kstatinfo.strip_str = strip_str;
1297 	kstatinfo.kstat_ctl = kc;
1298 
1299 	/* Scan the kstat chain, building hash entries for the kstats */
1300 	for (kp = kc->kc_chain; kp != 0; kp = kp->ks_next) {
1301 		HV *tie;
1302 		SV *kstatsv;
1303 
1304 		/* Don't bother storing the kstat headers */
1305 		if (strncmp(kp->ks_name, "kstat_", 6) == 0) {
1306 			continue;
1307 		}
1308 
1309 		/* Don't bother storing raw stats we don't understand */
1310 		if (kp->ks_type == KSTAT_TYPE_RAW &&
1311 		    lookup_raw_kstat_fn(kp->ks_module, kp->ks_name) == 0) {
1312 #ifdef REPORT_UNKNOWN
1313 			(void) fprintf(stderr,
1314 			    "Unknown kstat type %s:%d:%s - %d of size %d\n",
1315 			    kp->ks_module, kp->ks_instance, kp->ks_name,
1316 			    kp->ks_ndata, kp->ks_data_size);
1317 #endif
1318 			continue;
1319 		}
1320 
1321 		/* Create a 3-layer hash hierarchy - module.instance.name */
1322 		tie = get_tie(RETVAL, kp->ks_module, kp->ks_instance,
1323 		    kp->ks_name, 0);
1324 
1325 		/* Save the data necessary to read the kstat info on demand */
1326 		hv_store(tie, "class", 5, newSVpv(kp->ks_class, 0), 0);
1327 		hv_store(tie, "crtime", 6, NEW_HRTIME(kp->ks_crtime), 0);
1328 		kstatinfo.kstat = kp;
1329 		kstatsv = newSVpv((char *)&kstatinfo, sizeof (kstatinfo));
1330 		sv_magic((SV *)tie, kstatsv, '~', 0, 0);
1331 		SvREFCNT_dec(kstatsv);
1332 	}
1333 	SvREADONLY_on(SvRV(RETVAL));
1334 	/* SvREADONLY_on(RETVAL); */
1335 OUTPUT:
1336 	RETVAL
1337 
1338  #
1339  # Update the perl hash structure so that it is in line with the kernel kstats
1340  # data.  Only kstats athat have previously been accessed are read,
1341  #
1342 
1343  # Scalar context: true/false
1344  # Array context: (\@added, \@deleted)
1345 void
1346 update(self)
1347 	SV* self;
1348 PREINIT:
1349 	MAGIC		*mg;
1350 	kstat_ctl_t	*kc;
1351 	kstat_t		*kp;
1352 	int		ret;
1353 	AV		*add, *del;
1354 PPCODE:
1355 	/* Find the hidden KstatInfo_t structure */
1356 	mg = mg_find(SvRV(self), '~');
1357 	PERL_ASSERTMSG(mg != 0, "update: lost ~ magic");
1358 	kc = *(kstat_ctl_t **)SvPVX(mg->mg_obj);
1359 
1360 	/* Update the kstat chain, and return immediately on error. */
1361 	if ((ret = kstat_chain_update(kc)) == -1) {
1362 		if (GIMME_V == G_ARRAY) {
1363 			EXTEND(SP, 2);
1364 			PUSHs(sv_newmortal());
1365 			PUSHs(sv_newmortal());
1366 		} else {
1367 			EXTEND(SP, 1);
1368 			PUSHs(sv_2mortal(newSViv(ret)));
1369 		}
1370 	}
1371 
1372 	/* Create the arrays to be returned if in an array context */
1373 	if (GIMME_V == G_ARRAY) {
1374 		add = newAV();
1375 		del = newAV();
1376 	} else {
1377 		add = 0;
1378 		del = 0;
1379 	}
1380 
1381 	/*
1382 	 * If the kstat chain hasn't changed we can just reread any stats
1383 	 * that have already been read
1384 	 */
1385 	if (ret == 0) {
1386 		if (! apply_to_ties(self, (ATTCb_t)read_kstats, (void *)TRUE)) {
1387 			if (GIMME_V == G_ARRAY) {
1388 				EXTEND(SP, 2);
1389 				PUSHs(sv_2mortal(newRV_noinc((SV *)add)));
1390 				PUSHs(sv_2mortal(newRV_noinc((SV *)del)));
1391 			} else {
1392 				EXTEND(SP, 1);
1393 				PUSHs(sv_2mortal(newSViv(-1)));
1394 			}
1395 		}
1396 
1397 	/*
1398 	 * Otherwise we have to update the Perl structure so that it is in
1399 	 * agreement with the new kstat chain.  We do this in such a way as to
1400 	 * retain all the existing structures, just adding or deleting the
1401 	 * bare minimum.
1402 	 */
1403 	} else {
1404 		KstatInfo_t	kstatinfo;
1405 
1406 		/*
1407 		 * Step 1: set the 'invalid' flag on each entry
1408 		 */
1409 		apply_to_ties(self, &set_valid, (void *)FALSE);
1410 
1411 		/*
1412 		 * Step 2: Set the 'valid' flag on all entries still in the
1413 		 * kernel kstat chain
1414 		 */
1415 		kstatinfo.read		= FALSE;
1416 		kstatinfo.valid		= TRUE;
1417 		kstatinfo.kstat_ctl	= kc;
1418 		for (kp = kc->kc_chain; kp != 0; kp = kp->ks_next) {
1419 			int	new;
1420 			HV	*tie;
1421 
1422 			/* Don't bother storing the kstat headers or types */
1423 			if (strncmp(kp->ks_name, "kstat_", 6) == 0) {
1424 				continue;
1425 			}
1426 
1427 			/* Don't bother storing raw stats we don't understand */
1428 			if (kp->ks_type == KSTAT_TYPE_RAW &&
1429 			    lookup_raw_kstat_fn(kp->ks_module, kp->ks_name)
1430 			    == 0) {
1431 #ifdef REPORT_UNKNOWN
1432 				(void) printf("Unknown kstat type %s:%d:%s "
1433 				    "- %d of size %d\n", kp->ks_module,
1434 				    kp->ks_instance, kp->ks_name,
1435 				    kp->ks_ndata, kp->ks_data_size);
1436 #endif
1437 				continue;
1438 			}
1439 
1440 			/* Find the tied hash associated with the kstat entry */
1441 			tie = get_tie(self, kp->ks_module, kp->ks_instance,
1442 			    kp->ks_name, &new);
1443 
1444 			/* If newly created store the associated kstat info */
1445 			if (new) {
1446 				SV *kstatsv;
1447 
1448 				/*
1449 				 * Save the data necessary to read the kstat
1450 				 * info on demand
1451 				 */
1452 				hv_store(tie, "class", 5,
1453 				    newSVpv(kp->ks_class, 0), 0);
1454 				hv_store(tie, "crtime", 6,
1455 				    NEW_HRTIME(kp->ks_crtime), 0);
1456 				kstatinfo.kstat = kp;
1457 				kstatsv = newSVpv((char *)&kstatinfo,
1458 				    sizeof (kstatinfo));
1459 				sv_magic((SV *)tie, kstatsv, '~', 0, 0);
1460 				SvREFCNT_dec(kstatsv);
1461 
1462 				/* Save the key on the add list, if required */
1463 				if (GIMME_V == G_ARRAY) {
1464 					av_push(add, newSVpvf("%s:%d:%s",
1465 					    kp->ks_module, kp->ks_instance,
1466 					    kp->ks_name));
1467 				}
1468 
1469 			/* If the stats already exist, just update them */
1470 			} else {
1471 				MAGIC *mg;
1472 				KstatInfo_t *kip;
1473 
1474 				/* Find the hidden KstatInfo_t */
1475 				mg = mg_find((SV *)tie, '~');
1476 				PERL_ASSERTMSG(mg != 0, "update: lost ~ magic");
1477 				kip = (KstatInfo_t *)SvPVX(mg->mg_obj);
1478 
1479 				/* Mark the tie as valid */
1480 				kip->valid = TRUE;
1481 
1482 				/* Re-save the kstat_t pointer.  If the kstat
1483 				 * has been deleted and re-added since the last
1484 				 * update, the address of the kstat structure
1485 				 * will have changed, even though the kstat will
1486 				 * still live at the same place in the perl
1487 				 * hash tree structure.
1488 				 */
1489 				kip->kstat = kp;
1490 
1491 				/* Reread the stats, if read previously */
1492 				read_kstats(tie, TRUE);
1493 			}
1494 		}
1495 
1496 		/*
1497 		 *Step 3: Delete any entries still marked as 'invalid'
1498 		 */
1499 		ret = prune_invalid(self, del);
1500 
1501 	}
1502 	if (GIMME_V == G_ARRAY) {
1503 		EXTEND(SP, 2);
1504 		PUSHs(sv_2mortal(newRV_noinc((SV *)add)));
1505 		PUSHs(sv_2mortal(newRV_noinc((SV *)del)));
1506 	} else {
1507 		EXTEND(SP, 1);
1508 		PUSHs(sv_2mortal(newSViv(ret)));
1509 	}
1510 
1511 
1512  #
1513  # Destructor.  Closes the kstat connection
1514  #
1515 
1516 void
1517 DESTROY(self)
1518 	SV *self;
1519 PREINIT:
1520 	MAGIC		*mg;
1521 	kstat_ctl_t	*kc;
1522 CODE:
1523 	mg = mg_find(SvRV(self), '~');
1524 	PERL_ASSERTMSG(mg != 0, "DESTROY: lost ~ magic");
1525 	kc = *(kstat_ctl_t **)SvPVX(mg->mg_obj);
1526 	if (kstat_close(kc) != 0) {
1527 		croak(DEBUG_ID ": kstat_close: failed");
1528 	}
1529 
1530  #
1531  # The following XS methods implement the TIEHASH mechanism used to update the
1532  # kstats hash structure.  These are blessed into a package that isn't
1533  # visible to callers of the Sun::Solaris::Kstat module
1534  #
1535 
1536 MODULE = Sun::Solaris::Kstat PACKAGE = Sun::Solaris::Kstat::_Stat
1537 PROTOTYPES: ENABLE
1538 
1539  #
1540  # If a value has already been read, return it.  Otherwise read the appropriate
1541  # kstat and then return the value
1542  #
1543 
1544 SV*
1545 FETCH(self, key)
1546 	SV* self;
1547 	SV* key;
1548 PREINIT:
1549 	char	*k;
1550 	STRLEN	klen;
1551 	SV	**value;
1552 CODE:
1553 	self = SvRV(self);
1554 	k = SvPV(key, klen);
1555 	if (strNE(k, "class") && strNE(k, "crtime")) {
1556 		read_kstats((HV *)self, FALSE);
1557 	}
1558 	value = hv_fetch((HV *)self, k, klen, FALSE);
1559 	if (value) {
1560 		RETVAL = *value; SvREFCNT_inc(RETVAL);
1561 	} else {
1562 		RETVAL = &PL_sv_undef;
1563 	}
1564 OUTPUT:
1565 	RETVAL
1566 
1567  #
1568  # Save the passed value into the kstat hash.  Read the appropriate kstat first,
1569  # if necessary.  Note that this DOES NOT update the underlying kernel kstat
1570  # structure.
1571  #
1572 
1573 SV*
1574 STORE(self, key, value)
1575 	SV* self;
1576 	SV* key;
1577 	SV* value;
1578 PREINIT:
1579 	char	*k;
1580 	STRLEN	klen;
1581 CODE:
1582 	self = SvRV(self);
1583 	k = SvPV(key, klen);
1584 	if (strNE(k, "class") && strNE(k, "crtime")) {
1585 		read_kstats((HV *)self, FALSE);
1586 	}
1587 	SvREFCNT_inc(value);
1588 	RETVAL = *(hv_store((HV *)self, k, klen, value, 0));
1589 	SvREFCNT_inc(RETVAL);
1590 OUTPUT:
1591 	RETVAL
1592 
1593  #
1594  # Check for the existence of the passed key.  Read the kstat first if necessary
1595  #
1596 
1597 bool
1598 EXISTS(self, key)
1599 	SV* self;
1600 	SV* key;
1601 PREINIT:
1602 	char *k;
1603 CODE:
1604 	self = SvRV(self);
1605 	k = SvPV(key, PL_na);
1606 	if (strNE(k, "class") && strNE(k, "crtime")) {
1607 		read_kstats((HV *)self, FALSE);
1608 	}
1609 	RETVAL = hv_exists_ent((HV *)self, key, 0);
1610 OUTPUT:
1611 	RETVAL
1612 
1613 
1614  #
1615  # Hash iterator initialisation.  Read the kstats if necessary.
1616  #
1617 
1618 SV*
1619 FIRSTKEY(self)
1620 	SV* self;
1621 PREINIT:
1622 	HE *he;
1623 PPCODE:
1624 	self = SvRV(self);
1625 	read_kstats((HV *)self, FALSE);
1626 	hv_iterinit((HV *)self);
1627 	if ((he = hv_iternext((HV *)self))) {
1628 		EXTEND(SP, 1);
1629 		PUSHs(hv_iterkeysv(he));
1630 	}
1631 
1632  #
1633  # Return hash iterator next value.  Read the kstats if necessary.
1634  #
1635 
1636 SV*
1637 NEXTKEY(self, lastkey)
1638 	SV* self;
1639 	SV* lastkey;
1640 PREINIT:
1641 	HE *he;
1642 PPCODE:
1643 	self = SvRV(self);
1644 	if ((he = hv_iternext((HV *)self))) {
1645 		EXTEND(SP, 1);
1646 		PUSHs(hv_iterkeysv(he));
1647 	}
1648 
1649 
1650  #
1651  # Delete the specified hash entry.
1652  #
1653 
1654 SV*
1655 DELETE(self, key)
1656 	SV *self;
1657 	SV *key;
1658 CODE:
1659 	self = SvRV(self);
1660 	RETVAL = hv_delete_ent((HV *)self, key, 0, 0);
1661 	if (RETVAL) {
1662 		SvREFCNT_inc(RETVAL);
1663 	} else {
1664 		RETVAL = &PL_sv_undef;
1665 	}
1666 OUTPUT:
1667 	RETVAL
1668 
1669  #
1670  # Clear the entire hash.  This will stop any update() calls rereading this
1671  # kstat until it is accessed again.
1672  #
1673 
1674 void
1675 CLEAR(self)
1676 	SV* self;
1677 PREINIT:
1678 	MAGIC   *mg;
1679 	KstatInfo_t *kip;
1680 CODE:
1681 	self = SvRV(self);
1682 	hv_clear((HV *)self);
1683 	mg = mg_find(self, '~');
1684 	PERL_ASSERTMSG(mg != 0, "CLEAR: lost ~ magic");
1685 	kip = (KstatInfo_t *)SvPVX(mg->mg_obj);
1686 	kip->read  = FALSE;
1687 	kip->valid = TRUE;
1688 	hv_store((HV *)self, "class", 5, newSVpv(kip->kstat->ks_class, 0), 0);
1689 	hv_store((HV *)self, "crtime", 6, NEW_HRTIME(kip->kstat->ks_crtime), 0);
1690