xref: /illumos-gate/usr/src/cmd/perl/contrib/Sun/Solaris/Kstat/Kstat.xs (revision 3d393ee6c37fa10ac512ed6d36109ad616dc7c1a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Kstat.xs is a Perl XS (eXStension module) that makes the Solaris
31  * kstat(3KSTAT) facility available to Perl scripts.  Kstat is a general-purpose
32  * mechanism  for  providing kernel statistics to users.  The Solaris API is
33  * function-based (see the manpage for details), but for ease of use in Perl
34  * scripts this module presents the information as a nested hash data structure.
35  * It would be too inefficient to read every kstat in the system, so this module
36  * uses the Perl TIEHASH mechanism to implement a read-on-demand semantic, which
37  * only reads and updates kstats as and when they are actually accessed.
38  */
39 
40 /*
41  * Ignored raw kstats.
42  *
43  * Some raw kstats are ignored by this module, these are listed below.  The
44  * most common reason is that the kstats are stored as arrays and the ks_ndata
45  * and/or ks_data_size fields are invalid.  In this case it is impossible to
46  * know how many records are in the array, so they can't be read.
47  *
48  * unix:*:sfmmu_percpu_stat
49  * This is stored as an array with one entry per cpu.  Each element is of type
50  * struct sfmmu_percpu_stat.  The ks_ndata and ks_data_size fields are bogus.
51  *
52  * ufs directio:*:UFS DirectIO Stats
53  * The structure definition used for these kstats (ufs_directio_kstats) is in a
54  * C file (uts/common/fs/ufs/ufs_directio.c) rather than a header file, so it
55  * isn't accessible.
56  *
57  * qlc:*:statistics
58  * This is a third-party driver for which we don't have source.
59  *
60  * mm:*:phys_installed
61  * This is stored as an array of uint64_t, with each pair of values being the
62  * (address, size) of a memory segment.  The ks_ndata and ks_data_size fields
63  * are both zero.
64  *
65  * sockfs:*:sock_unix_list
66  * This is stored as an array with one entry per active socket.  Each element
67  * is of type struct k_sockinfo.  The ks_ndata and ks_data_size fields are both
68  * zero.
69  *
70  * Note that the ks_ndata and ks_data_size of many non-array raw kstats are
71  * also incorrect.  The relevant assertions are therefore commented out in the
72  * appropriate raw kstat read routines.
73  */
74 
75 /* Kstat related includes */
76 #include <libgen.h>
77 #include <kstat.h>
78 #include <sys/var.h>
79 #include <sys/utsname.h>
80 #include <sys/sysinfo.h>
81 #include <sys/flock.h>
82 #include <sys/dnlc.h>
83 #include <sys/vmmeter.h>
84 #include <nfs/nfs.h>
85 #include <nfs/nfs_clnt.h>
86 
87 /* Ultra-specific kstat includes */
88 #ifdef __sparc
89 #include <vm/hat_sfmmu.h>	/* from /usr/platform/sun4u/include */
90 #include <sys/simmstat.h>	/* from /usr/platform/sun4u/include */
91 #include <sys/sysctrl.h>	/* from /usr/platform/sun4u/include */
92 #include <sys/fhc.h>		/* from /usr/include */
93 #endif
94 
95 /*
96  * Solaris #defines SP, which conflicts with the perl definition of SP
97  * We don't need the Solaris one, so get rid of it to avoid warnings
98  */
99 #undef SP
100 
101 /* Perl XS includes */
102 #include "EXTERN.h"
103 #include "perl.h"
104 #include "XSUB.h"
105 
106 /* Debug macros */
107 #define	DEBUG_ID "Sun::Solaris::Kstat"
108 #ifdef KSTAT_DEBUG
109 #define	PERL_ASSERT(EXP) \
110     ((void)((EXP) || (croak("%s: assertion failed at %s:%d: %s", \
111     DEBUG_ID, __FILE__, __LINE__, #EXP), 0), 0))
112 #define	PERL_ASSERTMSG(EXP, MSG) \
113     ((void)((EXP) || (croak(DEBUG_ID ": " MSG), 0), 0))
114 #else
115 #define	PERL_ASSERT(EXP)		((void)0)
116 #define	PERL_ASSERTMSG(EXP, MSG)	((void)0)
117 #endif
118 
119 /* Macros for saving the contents of KSTAT_RAW structures */
120 #if defined(HAS_QUAD) && defined(USE_64_BIT_INT)
121 #define NEW_IV(V) \
122     (newSViv((IVTYPE) V))
123 #define NEW_UV(V) \
124     (newSVuv((UVTYPE) V))
125 #else
126 #define NEW_IV(V) \
127     (V >= IV_MIN && V <= IV_MAX ? newSViv((IVTYPE) V) : newSVnv((NVTYPE) V))
128 #if defined(UVTYPE)
129 #define NEW_UV(V) \
130     (V <= UV_MAX ? newSVuv((UVTYPE) V) : newSVnv((NVTYPE) V))
131 # else
132 #define NEW_UV(V) \
133     (V <= IV_MAX ? newSViv((IVTYPE) V) : newSVnv((NVTYPE) V))
134 #endif
135 #endif
136 #define	NEW_HRTIME(V) \
137     newSVnv((NVTYPE) (V / 1000000000.0))
138 
139 #define	SAVE_FNP(H, F, K) \
140     hv_store(H, K, sizeof (K) - 1, newSViv((IVTYPE) &F), 0)
141 #define	SAVE_STRING(H, S, K, SS) \
142     hv_store(H, #K, sizeof (#K) - 1, \
143     newSVpvn(S->K, SS ? strlen(S->K) : sizeof(S->K)), 0)
144 #define	SAVE_INT32(H, S, K) \
145     hv_store(H, #K, sizeof (#K) - 1, NEW_IV(S->K), 0)
146 #define	SAVE_UINT32(H, S, K) \
147     hv_store(H, #K, sizeof (#K) - 1, NEW_UV(S->K), 0)
148 #define	SAVE_INT64(H, S, K) \
149     hv_store(H, #K, sizeof (#K) - 1, NEW_IV(S->K), 0)
150 #define	SAVE_UINT64(H, S, K) \
151     hv_store(H, #K, sizeof (#K) - 1, NEW_UV(S->K), 0)
152 #define	SAVE_HRTIME(H, S, K) \
153     hv_store(H, #K, sizeof (#K) - 1, NEW_HRTIME(S->K), 0)
154 
155 /* Private structure used for saving kstat info in the tied hashes */
156 typedef struct {
157 	char		read;		/* Kstat block has been read before */
158 	char		valid;		/* Kstat still exists in kstat chain */
159 	char		strip_str;	/* Strip KSTAT_DATA_CHAR fields */
160 	kstat_ctl_t	*kstat_ctl;	/* Handle returned by kstat_open */
161 	kstat_t		*kstat;		/* Handle used by kstat_read */
162 } KstatInfo_t;
163 
164 /* typedef for apply_to_ties callback functions */
165 typedef int (*ATTCb_t)(HV *, void *);
166 
167 /* typedef for raw kstat reader functions */
168 typedef void (*kstat_raw_reader_t)(HV *, kstat_t *, int);
169 
170 /* Hash of "module:name" to KSTAT_RAW read functions */
171 static HV *raw_kstat_lookup;
172 
173 /*
174  * Kstats come in two flavours, named and raw.  Raw kstats are just C structs,
175  * so we need a function per raw kstat to convert the C struct into the
176  * corresponding perl hash.  All such conversion functions are in the following
177  * section.
178  */
179 
180 /*
181  * Definitions in /usr/include/sys/cpuvar.h and /usr/include/sys/sysinfo.h
182  */
183 
184 static void
185 save_cpu_stat(HV *self, kstat_t *kp, int strip_str)
186 {
187 	cpu_stat_t    *statp;
188 	cpu_sysinfo_t *sysinfop;
189 	cpu_syswait_t *syswaitp;
190 	cpu_vminfo_t  *vminfop;
191 
192 	/* PERL_ASSERT(kp->ks_ndata == 1); */
193 	PERL_ASSERT(kp->ks_data_size == sizeof (cpu_stat_t));
194 	statp = (cpu_stat_t *)(kp->ks_data);
195 	sysinfop = &statp->cpu_sysinfo;
196 	syswaitp = &statp->cpu_syswait;
197 	vminfop  = &statp->cpu_vminfo;
198 
199 	hv_store(self, "idle", 4, NEW_UV(sysinfop->cpu[CPU_IDLE]), 0);
200 	hv_store(self, "user", 4, NEW_UV(sysinfop->cpu[CPU_USER]), 0);
201 	hv_store(self, "kernel", 6, NEW_UV(sysinfop->cpu[CPU_KERNEL]), 0);
202 	hv_store(self, "wait", 4, NEW_UV(sysinfop->cpu[CPU_WAIT]), 0);
203 	hv_store(self, "wait_io", 7, NEW_UV(sysinfop->wait[W_IO]), 0);
204 	hv_store(self, "wait_swap", 9, NEW_UV(sysinfop->wait[W_SWAP]), 0);
205 	hv_store(self, "wait_pio",  8, NEW_UV(sysinfop->wait[W_PIO]), 0);
206 	SAVE_UINT32(self, sysinfop, bread);
207 	SAVE_UINT32(self, sysinfop, bwrite);
208 	SAVE_UINT32(self, sysinfop, lread);
209 	SAVE_UINT32(self, sysinfop, lwrite);
210 	SAVE_UINT32(self, sysinfop, phread);
211 	SAVE_UINT32(self, sysinfop, phwrite);
212 	SAVE_UINT32(self, sysinfop, pswitch);
213 	SAVE_UINT32(self, sysinfop, trap);
214 	SAVE_UINT32(self, sysinfop, intr);
215 	SAVE_UINT32(self, sysinfop, syscall);
216 	SAVE_UINT32(self, sysinfop, sysread);
217 	SAVE_UINT32(self, sysinfop, syswrite);
218 	SAVE_UINT32(self, sysinfop, sysfork);
219 	SAVE_UINT32(self, sysinfop, sysvfork);
220 	SAVE_UINT32(self, sysinfop, sysexec);
221 	SAVE_UINT32(self, sysinfop, readch);
222 	SAVE_UINT32(self, sysinfop, writech);
223 	SAVE_UINT32(self, sysinfop, rcvint);
224 	SAVE_UINT32(self, sysinfop, xmtint);
225 	SAVE_UINT32(self, sysinfop, mdmint);
226 	SAVE_UINT32(self, sysinfop, rawch);
227 	SAVE_UINT32(self, sysinfop, canch);
228 	SAVE_UINT32(self, sysinfop, outch);
229 	SAVE_UINT32(self, sysinfop, msg);
230 	SAVE_UINT32(self, sysinfop, sema);
231 	SAVE_UINT32(self, sysinfop, namei);
232 	SAVE_UINT32(self, sysinfop, ufsiget);
233 	SAVE_UINT32(self, sysinfop, ufsdirblk);
234 	SAVE_UINT32(self, sysinfop, ufsipage);
235 	SAVE_UINT32(self, sysinfop, ufsinopage);
236 	SAVE_UINT32(self, sysinfop, inodeovf);
237 	SAVE_UINT32(self, sysinfop, fileovf);
238 	SAVE_UINT32(self, sysinfop, procovf);
239 	SAVE_UINT32(self, sysinfop, intrthread);
240 	SAVE_UINT32(self, sysinfop, intrblk);
241 	SAVE_UINT32(self, sysinfop, idlethread);
242 	SAVE_UINT32(self, sysinfop, inv_swtch);
243 	SAVE_UINT32(self, sysinfop, nthreads);
244 	SAVE_UINT32(self, sysinfop, cpumigrate);
245 	SAVE_UINT32(self, sysinfop, xcalls);
246 	SAVE_UINT32(self, sysinfop, mutex_adenters);
247 	SAVE_UINT32(self, sysinfop, rw_rdfails);
248 	SAVE_UINT32(self, sysinfop, rw_wrfails);
249 	SAVE_UINT32(self, sysinfop, modload);
250 	SAVE_UINT32(self, sysinfop, modunload);
251 	SAVE_UINT32(self, sysinfop, bawrite);
252 #ifdef STATISTICS	/* see header file */
253 	SAVE_UINT32(self, sysinfop, rw_enters);
254 	SAVE_UINT32(self, sysinfop, win_uo_cnt);
255 	SAVE_UINT32(self, sysinfop, win_uu_cnt);
256 	SAVE_UINT32(self, sysinfop, win_so_cnt);
257 	SAVE_UINT32(self, sysinfop, win_su_cnt);
258 	SAVE_UINT32(self, sysinfop, win_suo_cnt);
259 #endif
260 
261 	SAVE_INT32(self, syswaitp, iowait);
262 	SAVE_INT32(self, syswaitp, swap);
263 	SAVE_INT32(self, syswaitp, physio);
264 
265 	SAVE_UINT32(self, vminfop, pgrec);
266 	SAVE_UINT32(self, vminfop, pgfrec);
267 	SAVE_UINT32(self, vminfop, pgin);
268 	SAVE_UINT32(self, vminfop, pgpgin);
269 	SAVE_UINT32(self, vminfop, pgout);
270 	SAVE_UINT32(self, vminfop, pgpgout);
271 	SAVE_UINT32(self, vminfop, swapin);
272 	SAVE_UINT32(self, vminfop, pgswapin);
273 	SAVE_UINT32(self, vminfop, swapout);
274 	SAVE_UINT32(self, vminfop, pgswapout);
275 	SAVE_UINT32(self, vminfop, zfod);
276 	SAVE_UINT32(self, vminfop, dfree);
277 	SAVE_UINT32(self, vminfop, scan);
278 	SAVE_UINT32(self, vminfop, rev);
279 	SAVE_UINT32(self, vminfop, hat_fault);
280 	SAVE_UINT32(self, vminfop, as_fault);
281 	SAVE_UINT32(self, vminfop, maj_fault);
282 	SAVE_UINT32(self, vminfop, cow_fault);
283 	SAVE_UINT32(self, vminfop, prot_fault);
284 	SAVE_UINT32(self, vminfop, softlock);
285 	SAVE_UINT32(self, vminfop, kernel_asflt);
286 	SAVE_UINT32(self, vminfop, pgrrun);
287 	SAVE_UINT32(self, vminfop, execpgin);
288 	SAVE_UINT32(self, vminfop, execpgout);
289 	SAVE_UINT32(self, vminfop, execfree);
290 	SAVE_UINT32(self, vminfop, anonpgin);
291 	SAVE_UINT32(self, vminfop, anonpgout);
292 	SAVE_UINT32(self, vminfop, anonfree);
293 	SAVE_UINT32(self, vminfop, fspgin);
294 	SAVE_UINT32(self, vminfop, fspgout);
295 	SAVE_UINT32(self, vminfop, fsfree);
296 }
297 
298 /*
299  * Definitions in /usr/include/sys/var.h
300  */
301 
302 static void
303 save_var(HV *self, kstat_t *kp, int strip_str)
304 {
305 	struct var *varp;
306 
307 	/* PERL_ASSERT(kp->ks_ndata == 1); */
308 	PERL_ASSERT(kp->ks_data_size == sizeof (struct var));
309 	varp = (struct var *)(kp->ks_data);
310 
311 	SAVE_INT32(self, varp, v_buf);
312 	SAVE_INT32(self, varp, v_call);
313 	SAVE_INT32(self, varp, v_proc);
314 	SAVE_INT32(self, varp, v_maxupttl);
315 	SAVE_INT32(self, varp, v_nglobpris);
316 	SAVE_INT32(self, varp, v_maxsyspri);
317 	SAVE_INT32(self, varp, v_clist);
318 	SAVE_INT32(self, varp, v_maxup);
319 	SAVE_INT32(self, varp, v_hbuf);
320 	SAVE_INT32(self, varp, v_hmask);
321 	SAVE_INT32(self, varp, v_pbuf);
322 	SAVE_INT32(self, varp, v_sptmap);
323 	SAVE_INT32(self, varp, v_maxpmem);
324 	SAVE_INT32(self, varp, v_autoup);
325 	SAVE_INT32(self, varp, v_bufhwm);
326 }
327 
328 /*
329  * Definition in /usr/include/sys/vmmeter.h
330  */
331 
332 static void
333 save_flushmeter(HV *self, kstat_t *kp, int strip_str)
334 {
335 	struct flushmeter *flushmeterp;
336 
337 	/* PERL_ASSERT(kp->ks_ndata == 1); */
338 	PERL_ASSERT(kp->ks_data_size == sizeof (struct flushmeter));
339 	flushmeterp = (struct flushmeter *)(kp->ks_data);
340 
341 	SAVE_UINT32(self, flushmeterp, f_ctx);
342 	SAVE_UINT32(self, flushmeterp, f_segment);
343 	SAVE_UINT32(self, flushmeterp, f_page);
344 	SAVE_UINT32(self, flushmeterp, f_partial);
345 	SAVE_UINT32(self, flushmeterp, f_usr);
346 	SAVE_UINT32(self, flushmeterp, f_region);
347 }
348 
349 /*
350  * Definition in /usr/include/sys/dnlc.h
351  */
352 
353 static void
354 save_ncstats(HV *self, kstat_t *kp, int strip_str)
355 {
356 	struct ncstats *ncstatsp;
357 
358 	/* PERL_ASSERT(kp->ks_ndata == 1); */
359 	PERL_ASSERT(kp->ks_data_size == sizeof (struct ncstats));
360 	ncstatsp = (struct ncstats *)(kp->ks_data);
361 
362 	SAVE_INT32(self, ncstatsp, hits);
363 	SAVE_INT32(self, ncstatsp, misses);
364 	SAVE_INT32(self, ncstatsp, enters);
365 	SAVE_INT32(self, ncstatsp, dbl_enters);
366 	SAVE_INT32(self, ncstatsp, long_enter);
367 	SAVE_INT32(self, ncstatsp, long_look);
368 	SAVE_INT32(self, ncstatsp, move_to_front);
369 	SAVE_INT32(self, ncstatsp, purges);
370 }
371 
372 /*
373  * Definition in  /usr/include/sys/sysinfo.h
374  */
375 
376 static void
377 save_sysinfo(HV *self, kstat_t *kp, int strip_str)
378 {
379 	sysinfo_t *sysinfop;
380 
381 	/* PERL_ASSERT(kp->ks_ndata == 1); */
382 	PERL_ASSERT(kp->ks_data_size == sizeof (sysinfo_t));
383 	sysinfop = (sysinfo_t *)(kp->ks_data);
384 
385 	SAVE_UINT32(self, sysinfop, updates);
386 	SAVE_UINT32(self, sysinfop, runque);
387 	SAVE_UINT32(self, sysinfop, runocc);
388 	SAVE_UINT32(self, sysinfop, swpque);
389 	SAVE_UINT32(self, sysinfop, swpocc);
390 	SAVE_UINT32(self, sysinfop, waiting);
391 }
392 
393 /*
394  * Definition in  /usr/include/sys/sysinfo.h
395  */
396 
397 static void
398 save_vminfo(HV *self, kstat_t *kp, int strip_str)
399 {
400 	vminfo_t *vminfop;
401 
402 	/* PERL_ASSERT(kp->ks_ndata == 1); */
403 	PERL_ASSERT(kp->ks_data_size == sizeof (vminfo_t));
404 	vminfop = (vminfo_t *)(kp->ks_data);
405 
406 	SAVE_UINT64(self, vminfop, freemem);
407 	SAVE_UINT64(self, vminfop, swap_resv);
408 	SAVE_UINT64(self, vminfop, swap_alloc);
409 	SAVE_UINT64(self, vminfop, swap_avail);
410 	SAVE_UINT64(self, vminfop, swap_free);
411 }
412 
413 /*
414  * Definition in /usr/include/nfs/nfs_clnt.h
415  */
416 
417 static void
418 save_nfs(HV *self, kstat_t *kp, int strip_str)
419 {
420 	struct mntinfo_kstat *mntinfop;
421 
422 	/* PERL_ASSERT(kp->ks_ndata == 1); */
423 	PERL_ASSERT(kp->ks_data_size == sizeof (struct mntinfo_kstat));
424 	mntinfop = (struct mntinfo_kstat *)(kp->ks_data);
425 
426 	SAVE_STRING(self, mntinfop, mik_proto, strip_str);
427 	SAVE_UINT32(self, mntinfop, mik_vers);
428 	SAVE_UINT32(self, mntinfop, mik_flags);
429 	SAVE_UINT32(self, mntinfop, mik_secmod);
430 	SAVE_UINT32(self, mntinfop, mik_curread);
431 	SAVE_UINT32(self, mntinfop, mik_curwrite);
432 	SAVE_INT32(self, mntinfop, mik_timeo);
433 	SAVE_INT32(self, mntinfop, mik_retrans);
434 	SAVE_UINT32(self, mntinfop, mik_acregmin);
435 	SAVE_UINT32(self, mntinfop, mik_acregmax);
436 	SAVE_UINT32(self, mntinfop, mik_acdirmin);
437 	SAVE_UINT32(self, mntinfop, mik_acdirmax);
438 	hv_store(self, "lookup_srtt", 11,
439 	    NEW_UV(mntinfop->mik_timers[0].srtt), 0);
440 	hv_store(self, "lookup_deviate", 14,
441 	    NEW_UV(mntinfop->mik_timers[0].deviate), 0);
442 	hv_store(self, "lookup_rtxcur", 13,
443 	    NEW_UV(mntinfop->mik_timers[0].rtxcur), 0);
444 	hv_store(self, "read_srtt", 9,
445 	    NEW_UV(mntinfop->mik_timers[1].srtt), 0);
446 	hv_store(self, "read_deviate", 12,
447 	    NEW_UV(mntinfop->mik_timers[1].deviate), 0);
448 	hv_store(self, "read_rtxcur", 11,
449 	    NEW_UV(mntinfop->mik_timers[1].rtxcur), 0);
450 	hv_store(self, "write_srtt", 10,
451 	    NEW_UV(mntinfop->mik_timers[2].srtt), 0);
452 	hv_store(self, "write_deviate", 13,
453 	    NEW_UV(mntinfop->mik_timers[2].deviate), 0);
454 	hv_store(self, "write_rtxcur", 12,
455 	    NEW_UV(mntinfop->mik_timers[2].rtxcur), 0);
456 	SAVE_UINT32(self, mntinfop, mik_noresponse);
457 	SAVE_UINT32(self, mntinfop, mik_failover);
458 	SAVE_UINT32(self, mntinfop, mik_remap);
459 	SAVE_STRING(self, mntinfop, mik_curserver, strip_str);
460 }
461 
462 /*
463  * The following struct => hash functions are all only present on the sparc
464  * platform, so they are all conditionally compiled depending on __sparc
465  */
466 
467 /*
468  * Definition in /usr/platform/sun4u/include/vm/hat_sfmmu.h
469  */
470 
471 #ifdef __sparc
472 static void
473 save_sfmmu_global_stat(HV *self, kstat_t *kp, int strip_str)
474 {
475 	struct sfmmu_global_stat *sfmmugp;
476 
477 	/* PERL_ASSERT(kp->ks_ndata == 1); */
478 	PERL_ASSERT(kp->ks_data_size == sizeof (struct sfmmu_global_stat));
479 	sfmmugp = (struct sfmmu_global_stat *)(kp->ks_data);
480 
481 	SAVE_INT32(self, sfmmugp, sf_tsb_exceptions);
482 	SAVE_INT32(self, sfmmugp, sf_tsb_raise_exception);
483 	SAVE_INT32(self, sfmmugp, sf_pagefaults);
484 	SAVE_INT32(self, sfmmugp, sf_uhash_searches);
485 	SAVE_INT32(self, sfmmugp, sf_uhash_links);
486 	SAVE_INT32(self, sfmmugp, sf_khash_searches);
487 	SAVE_INT32(self, sfmmugp, sf_khash_links);
488 	SAVE_INT32(self, sfmmugp, sf_swapout);
489 	SAVE_INT32(self, sfmmugp, sf_tsb_alloc);
490 	SAVE_INT32(self, sfmmugp, sf_tsb_allocfail);
491 	SAVE_INT32(self, sfmmugp, sf_tsb_sectsb_create);
492 	SAVE_INT32(self, sfmmugp, sf_scd_1sttsb_alloc);
493 	SAVE_INT32(self, sfmmugp, sf_scd_2ndtsb_alloc);
494 	SAVE_INT32(self, sfmmugp, sf_scd_1sttsb_allocfail);
495 	SAVE_INT32(self, sfmmugp, sf_scd_2ndtsb_allocfail);
496 	SAVE_INT32(self, sfmmugp, sf_tteload8k);
497 	SAVE_INT32(self, sfmmugp, sf_tteload64k);
498 	SAVE_INT32(self, sfmmugp, sf_tteload512k);
499 	SAVE_INT32(self, sfmmugp, sf_tteload4m);
500 	SAVE_INT32(self, sfmmugp, sf_tteload32m);
501 	SAVE_INT32(self, sfmmugp, sf_tteload256m);
502 	SAVE_INT32(self, sfmmugp, sf_tsb_load8k);
503 	SAVE_INT32(self, sfmmugp, sf_tsb_load4m);
504 	SAVE_INT32(self, sfmmugp, sf_hblk_hit);
505 	SAVE_INT32(self, sfmmugp, sf_hblk8_ncreate);
506 	SAVE_INT32(self, sfmmugp, sf_hblk8_nalloc);
507 	SAVE_INT32(self, sfmmugp, sf_hblk1_ncreate);
508 	SAVE_INT32(self, sfmmugp, sf_hblk1_nalloc);
509 	SAVE_INT32(self, sfmmugp, sf_hblk_slab_cnt);
510 	SAVE_INT32(self, sfmmugp, sf_hblk_reserve_cnt);
511 	SAVE_INT32(self, sfmmugp, sf_hblk_recurse_cnt);
512 	SAVE_INT32(self, sfmmugp, sf_hblk_reserve_hit);
513 	SAVE_INT32(self, sfmmugp, sf_get_free_success);
514 	SAVE_INT32(self, sfmmugp, sf_get_free_throttle);
515 	SAVE_INT32(self, sfmmugp, sf_get_free_fail);
516 	SAVE_INT32(self, sfmmugp, sf_put_free_success);
517 	SAVE_INT32(self, sfmmugp, sf_put_free_fail);
518 	SAVE_INT32(self, sfmmugp, sf_pgcolor_conflict);
519 	SAVE_INT32(self, sfmmugp, sf_uncache_conflict);
520 	SAVE_INT32(self, sfmmugp, sf_unload_conflict);
521 	SAVE_INT32(self, sfmmugp, sf_ism_uncache);
522 	SAVE_INT32(self, sfmmugp, sf_ism_recache);
523 	SAVE_INT32(self, sfmmugp, sf_recache);
524 	SAVE_INT32(self, sfmmugp, sf_steal_count);
525 	SAVE_INT32(self, sfmmugp, sf_pagesync);
526 	SAVE_INT32(self, sfmmugp, sf_clrwrt);
527 	SAVE_INT32(self, sfmmugp, sf_pagesync_invalid);
528 	SAVE_INT32(self, sfmmugp, sf_kernel_xcalls);
529 	SAVE_INT32(self, sfmmugp, sf_user_xcalls);
530 	SAVE_INT32(self, sfmmugp, sf_tsb_grow);
531 	SAVE_INT32(self, sfmmugp, sf_tsb_shrink);
532 	SAVE_INT32(self, sfmmugp, sf_tsb_resize_failures);
533 	SAVE_INT32(self, sfmmugp, sf_tsb_reloc);
534 	SAVE_INT32(self, sfmmugp, sf_user_vtop);
535 	SAVE_INT32(self, sfmmugp, sf_ctx_inv);
536 	SAVE_INT32(self, sfmmugp, sf_tlb_reprog_pgsz);
537 	SAVE_INT32(self, sfmmugp, sf_region_remap_demap);
538 	SAVE_INT32(self, sfmmugp, sf_create_scd);
539 	SAVE_INT32(self, sfmmugp, sf_join_scd);
540 	SAVE_INT32(self, sfmmugp, sf_leave_scd);
541 	SAVE_INT32(self, sfmmugp, sf_destroy_scd);
542 }
543 #endif
544 
545 /*
546  * Definition in /usr/platform/sun4u/include/vm/hat_sfmmu.h
547  */
548 
549 #ifdef __sparc
550 static void
551 save_sfmmu_tsbsize_stat(HV *self, kstat_t *kp, int strip_str)
552 {
553 	struct sfmmu_tsbsize_stat *sfmmutp;
554 
555 	/* PERL_ASSERT(kp->ks_ndata == 1); */
556 	PERL_ASSERT(kp->ks_data_size == sizeof (struct sfmmu_tsbsize_stat));
557 	sfmmutp = (struct sfmmu_tsbsize_stat *)(kp->ks_data);
558 
559 	SAVE_INT32(self, sfmmutp, sf_tsbsz_8k);
560 	SAVE_INT32(self, sfmmutp, sf_tsbsz_16k);
561 	SAVE_INT32(self, sfmmutp, sf_tsbsz_32k);
562 	SAVE_INT32(self, sfmmutp, sf_tsbsz_64k);
563 	SAVE_INT32(self, sfmmutp, sf_tsbsz_128k);
564 	SAVE_INT32(self, sfmmutp, sf_tsbsz_256k);
565 	SAVE_INT32(self, sfmmutp, sf_tsbsz_512k);
566 	SAVE_INT32(self, sfmmutp, sf_tsbsz_1m);
567 	SAVE_INT32(self, sfmmutp, sf_tsbsz_2m);
568 	SAVE_INT32(self, sfmmutp, sf_tsbsz_4m);
569 }
570 #endif
571 
572 /*
573  * Definition in /usr/platform/sun4u/include/sys/simmstat.h
574  */
575 
576 #ifdef __sparc
577 static void
578 save_simmstat(HV *self, kstat_t *kp, int strip_str)
579 {
580 	uchar_t	*simmstatp;
581 	SV	*list;
582 	int	i;
583 
584 	/* PERL_ASSERT(kp->ks_ndata == 1); */
585 	PERL_ASSERT(kp->ks_data_size == sizeof (uchar_t) * SIMM_COUNT);
586 
587 	list = newSVpv("", 0);
588 	for (i = 0, simmstatp = (uchar_t *)(kp->ks_data);
589 	i < SIMM_COUNT - 1; i++, simmstatp++) {
590 		sv_catpvf(list, "%d,", *simmstatp);
591 	}
592 	sv_catpvf(list, "%d", *simmstatp);
593 	hv_store(self, "status", 6, list, 0);
594 }
595 #endif
596 
597 /*
598  * Used by save_temperature to make CSV lists from arrays of
599  * short temperature values
600  */
601 
602 #ifdef __sparc
603 static SV *
604 short_array_to_SV(short *shortp, int len)
605 {
606 	SV  *list;
607 
608 	list = newSVpv("", 0);
609 	for (; len > 1; len--, shortp++) {
610 		sv_catpvf(list, "%d,", *shortp);
611 	}
612 	sv_catpvf(list, "%d", *shortp);
613 	return (list);
614 }
615 
616 /*
617  * Definition in /usr/platform/sun4u/include/sys/fhc.h
618  */
619 
620 static void
621 save_temperature(HV *self, kstat_t *kp, int strip_str)
622 {
623 	struct temp_stats *tempsp;
624 
625 	/* PERL_ASSERT(kp->ks_ndata == 1); */
626 	PERL_ASSERT(kp->ks_data_size == sizeof (struct temp_stats));
627 	tempsp = (struct temp_stats *)(kp->ks_data);
628 
629 	SAVE_UINT32(self, tempsp, index);
630 	hv_store(self, "l1", 2, short_array_to_SV(tempsp->l1, L1_SZ), 0);
631 	hv_store(self, "l2", 2, short_array_to_SV(tempsp->l2, L2_SZ), 0);
632 	hv_store(self, "l3", 2, short_array_to_SV(tempsp->l3, L3_SZ), 0);
633 	hv_store(self, "l4", 2, short_array_to_SV(tempsp->l4, L4_SZ), 0);
634 	hv_store(self, "l5", 2, short_array_to_SV(tempsp->l5, L5_SZ), 0);
635 	SAVE_INT32(self, tempsp, max);
636 	SAVE_INT32(self, tempsp, min);
637 	SAVE_INT32(self, tempsp, state);
638 	SAVE_INT32(self, tempsp, temp_cnt);
639 	SAVE_INT32(self, tempsp, shutdown_cnt);
640 	SAVE_INT32(self, tempsp, version);
641 	SAVE_INT32(self, tempsp, trend);
642 	SAVE_INT32(self, tempsp, override);
643 }
644 #endif
645 
646 /*
647  * Not actually defined anywhere - just a short.  Yuck.
648  */
649 
650 #ifdef __sparc
651 static void
652 save_temp_over(HV *self, kstat_t *kp, int strip_str)
653 {
654 	short *shortp;
655 
656 	/* PERL_ASSERT(kp->ks_ndata == 1); */
657 	PERL_ASSERT(kp->ks_data_size == sizeof (short));
658 
659 	shortp = (short *)(kp->ks_data);
660 	hv_store(self, "override", 8, newSViv(*shortp), 0);
661 }
662 #endif
663 
664 /*
665  * Defined in /usr/platform/sun4u/include/sys/sysctrl.h
666  * (Well, sort of.  Actually there's no structure, just a list of #defines
667  * enumerating *some* of the array indexes.)
668  */
669 
670 #ifdef __sparc
671 static void
672 save_ps_shadow(HV *self, kstat_t *kp, int strip_str)
673 {
674 	uchar_t *ucharp;
675 
676 	/* PERL_ASSERT(kp->ks_ndata == 1); */
677 	PERL_ASSERT(kp->ks_data_size == SYS_PS_COUNT);
678 
679 	ucharp = (uchar_t *)(kp->ks_data);
680 	hv_store(self, "core_0", 6, newSViv(*ucharp++), 0);
681 	hv_store(self, "core_1", 6, newSViv(*ucharp++), 0);
682 	hv_store(self, "core_2", 6, newSViv(*ucharp++), 0);
683 	hv_store(self, "core_3", 6, newSViv(*ucharp++), 0);
684 	hv_store(self, "core_4", 6, newSViv(*ucharp++), 0);
685 	hv_store(self, "core_5", 6, newSViv(*ucharp++), 0);
686 	hv_store(self, "core_6", 6, newSViv(*ucharp++), 0);
687 	hv_store(self, "core_7", 6, newSViv(*ucharp++), 0);
688 	hv_store(self, "pps_0", 5, newSViv(*ucharp++), 0);
689 	hv_store(self, "clk_33", 6, newSViv(*ucharp++), 0);
690 	hv_store(self, "clk_50", 6, newSViv(*ucharp++), 0);
691 	hv_store(self, "v5_p", 4, newSViv(*ucharp++), 0);
692 	hv_store(self, "v12_p", 5, newSViv(*ucharp++), 0);
693 	hv_store(self, "v5_aux", 6, newSViv(*ucharp++), 0);
694 	hv_store(self, "v5_p_pch", 8, newSViv(*ucharp++), 0);
695 	hv_store(self, "v12_p_pch", 9, newSViv(*ucharp++), 0);
696 	hv_store(self, "v3_pch", 6, newSViv(*ucharp++), 0);
697 	hv_store(self, "v5_pch", 6, newSViv(*ucharp++), 0);
698 	hv_store(self, "p_fan", 5, newSViv(*ucharp++), 0);
699 }
700 #endif
701 
702 /*
703  * Definition in /usr/platform/sun4u/include/sys/fhc.h
704  */
705 
706 #ifdef __sparc
707 static void
708 save_fault_list(HV *self, kstat_t *kp, int strip_str)
709 {
710 	struct ft_list	*faultp;
711 	int		i;
712 	char		name[KSTAT_STRLEN + 7];	/* room for 999999 faults */
713 
714 	/* PERL_ASSERT(kp->ks_ndata == 1); */
715 	/* PERL_ASSERT(kp->ks_data_size == sizeof (struct ft_list)); */
716 
717 	for (i = 1, faultp = (struct ft_list *)(kp->ks_data);
718 	    i <= 999999 && i <= kp->ks_data_size / sizeof (struct ft_list);
719 	    i++, faultp++) {
720 		(void) snprintf(name, sizeof (name), "unit_%d", i);
721 		hv_store(self, name, strlen(name), newSViv(faultp->unit), 0);
722 		(void) snprintf(name, sizeof (name), "type_%d", i);
723 		hv_store(self, name, strlen(name), newSViv(faultp->type), 0);
724 		(void) snprintf(name, sizeof (name), "fclass_%d", i);
725 		hv_store(self, name, strlen(name), newSViv(faultp->fclass), 0);
726 		(void) snprintf(name, sizeof (name), "create_time_%d", i);
727 		hv_store(self, name, strlen(name),
728 		    NEW_UV(faultp->create_time), 0);
729 		(void) snprintf(name, sizeof (name), "msg_%d", i);
730 		hv_store(self, name, strlen(name), newSVpv(faultp->msg, 0), 0);
731 	}
732 }
733 #endif
734 
735 /*
736  * We need to be able to find the function corresponding to a particular raw
737  * kstat.  To do this we ignore the instance and glue the module and name
738  * together to form a composite key.  We can then use the data in the kstat
739  * structure to find the appropriate function.  We use a perl hash to manage the
740  * lookup, where the key is "module:name" and the value is a pointer to the
741  * appropriate C function.
742  *
743  * Note that some kstats include the instance number as part of the module
744  * and/or name.  This could be construed as a bug.  However, to work around this
745  * we omit any digits from the module and name as we build the table in
746  * build_raw_kstat_loopup(), and we remove any digits from the module and name
747  * when we look up the functions in lookup_raw_kstat_fn()
748  */
749 
750 /*
751  * This function is called when the XS is first dlopen()ed, and builds the
752  * lookup table as described above.
753  */
754 
755 static void
756 build_raw_kstat_lookup()
757 	{
758 	/* Create new hash */
759 	raw_kstat_lookup = newHV();
760 
761 	SAVE_FNP(raw_kstat_lookup, save_cpu_stat, "cpu_stat:cpu_stat");
762 	SAVE_FNP(raw_kstat_lookup, save_var, "unix:var");
763 	SAVE_FNP(raw_kstat_lookup, save_flushmeter, "unix:flushmeter");
764 	SAVE_FNP(raw_kstat_lookup, save_ncstats, "unix:ncstats");
765 	SAVE_FNP(raw_kstat_lookup, save_sysinfo, "unix:sysinfo");
766 	SAVE_FNP(raw_kstat_lookup, save_vminfo, "unix:vminfo");
767 	SAVE_FNP(raw_kstat_lookup, save_nfs, "nfs:mntinfo");
768 #ifdef __sparc
769 	SAVE_FNP(raw_kstat_lookup, save_sfmmu_global_stat,
770 	    "unix:sfmmu_global_stat");
771 	SAVE_FNP(raw_kstat_lookup, save_sfmmu_tsbsize_stat,
772 	    "unix:sfmmu_tsbsize_stat");
773 	SAVE_FNP(raw_kstat_lookup, save_simmstat, "unix:simm-status");
774 	SAVE_FNP(raw_kstat_lookup, save_temperature, "unix:temperature");
775 	SAVE_FNP(raw_kstat_lookup, save_temp_over, "unix:temperature override");
776 	SAVE_FNP(raw_kstat_lookup, save_ps_shadow, "unix:ps_shadow");
777 	SAVE_FNP(raw_kstat_lookup, save_fault_list, "unix:fault_list");
778 #endif
779 }
780 
781 /*
782  * This finds and returns the raw kstat reader function corresponding to the
783  * supplied module and name.  If no matching function exists, 0 is returned.
784  */
785 
786 static kstat_raw_reader_t lookup_raw_kstat_fn(char *module, char *name)
787 	{
788 	char			key[KSTAT_STRLEN * 2];
789 	register char		*f, *t;
790 	SV			**entry;
791 	kstat_raw_reader_t	fnp;
792 
793 	/* Copy across module & name, removing any digits - see comment above */
794 	for (f = module, t = key; *f != '\0'; f++, t++) {
795 		while (*f != '\0' && isdigit(*f)) { f++; }
796 		*t = *f;
797 	}
798 	*t++ = ':';
799 	for (f = name; *f != '\0'; f++, t++) {
800 		while (*f != '\0' && isdigit(*f)) {
801 			f++;
802 		}
803 	*t = *f;
804 	}
805 	*t = '\0';
806 
807 	/* look up & return the function, or teturn 0 if not found */
808 	if ((entry = hv_fetch(raw_kstat_lookup, key, strlen(key), FALSE)) == 0)
809 	{
810 		fnp = 0;
811 	} else {
812 		fnp = (kstat_raw_reader_t)(uintptr_t)SvIV(*entry);
813 	}
814 	return (fnp);
815 }
816 
817 /*
818  * This module converts the flat list returned by kstat_read() into a perl hash
819  * tree keyed on module, instance, name and statistic.  The following functions
820  * provide code to create the nested hashes, and to iterate over them.
821  */
822 
823 /*
824  * Given module, instance and name keys return a pointer to the hash tied to
825  * the bottommost hash.  If the hash already exists, we just return a pointer
826  * to it, otherwise we create the hash and any others also required above it in
827  * the hierarchy.  The returned tiehash is blessed into the
828  * Sun::Solaris::Kstat::_Stat class, so that the appropriate TIEHASH methods are
829  * called when the bottommost hash is accessed.  If the is_new parameter is
830  * non-null it will be set to TRUE if a new tie has been created, and FALSE if
831  * the tie already existed.
832  */
833 
834 static HV *
835 get_tie(SV *self, char *module, int instance, char *name, int *is_new)
836 {
837 	char str_inst[11];	/* big enough for up to 10^10 instances */
838 	char *key[3];		/* 3 part key: module, instance, name */
839 	int  k;
840 	int  new;
841 	HV   *hash;
842 	HV   *tie;
843 
844 	/* Create the keys */
845 	(void) snprintf(str_inst, sizeof (str_inst), "%d", instance);
846 	key[0] = module;
847 	key[1] = str_inst;
848 	key[2] = name;
849 
850 	/* Iteratively descend the tree, creating new hashes as required */
851 	hash = (HV *)SvRV(self);
852 	for (k = 0; k < 3; k++) {
853 		SV **entry;
854 
855 		SvREADONLY_off(hash);
856 		entry = hv_fetch(hash, key[k], strlen(key[k]), TRUE);
857 
858 		/* If the entry doesn't exist, create it */
859 		if (! SvOK(*entry)) {
860 			HV *newhash;
861 			SV *rv;
862 
863 			newhash = newHV();
864 			rv = newRV_noinc((SV *)newhash);
865 			sv_setsv(*entry, rv);
866 			SvREFCNT_dec(rv);
867 			if (k < 2) {
868 				SvREADONLY_on(newhash);
869 			}
870 			SvREADONLY_on(*entry);
871 			SvREADONLY_on(hash);
872 			hash = newhash;
873 			new = 1;
874 
875 		/* Otherwise it already existed */
876 		} else {
877 			SvREADONLY_on(hash);
878 			hash = (HV *)SvRV(*entry);
879 			new = 0;
880 		}
881 	}
882 
883 	/* Create and bless a hash for the tie, if necessary */
884 	if (new) {
885 		SV *tieref;
886 		HV *stash;
887 
888 		tie = newHV();
889 		tieref = newRV_noinc((SV *)tie);
890 		stash = gv_stashpv("Sun::Solaris::Kstat::_Stat", TRUE);
891 		sv_bless(tieref, stash);
892 
893 		/* Add TIEHASH magic */
894 		hv_magic(hash, (GV *)tieref, 'P');
895 		SvREADONLY_on(hash);
896 
897 	/* Otherwise, just find the existing tied hash */
898 	} else {
899 		MAGIC *mg;
900 
901 		mg = mg_find((SV *)hash, 'P');
902 		PERL_ASSERTMSG(mg != 0, "get_tie: lost P magic");
903 		tie = (HV *)SvRV(mg->mg_obj);
904 	}
905 	if (is_new) {
906 		*is_new = new;
907 	}
908 	return (tie);
909 }
910 
911 /*
912  * This is an iterator function used to traverse the hash hierarchy and apply
913  * the passed function to the tied hashes at the bottom of the hierarchy.  If
914  * any of the callback functions return 0, 0 is returned, otherwise 1
915  */
916 
917 static int
918 apply_to_ties(SV *self, ATTCb_t cb, void *arg)
919 {
920 	HV	*hash1;
921 	HE	*entry1;
922 	long	s;
923 	int	ret;
924 
925 	hash1 = (HV *)SvRV(self);
926 	hv_iterinit(hash1);
927 	ret = 1;
928 
929 	/* Iterate over each module */
930 	while (entry1 = hv_iternext(hash1)) {
931 		HV *hash2;
932 		HE *entry2;
933 
934 		hash2 = (HV *)SvRV(hv_iterval(hash1, entry1));
935 		hv_iterinit(hash2);
936 
937 		/* Iterate over each module:instance */
938 		while (entry2 = hv_iternext(hash2)) {
939 			HV *hash3;
940 			HE *entry3;
941 
942 			hash3 = (HV *)SvRV(hv_iterval(hash2, entry2));
943 			hv_iterinit(hash3);
944 
945 			/* Iterate over each module:instance:name */
946 			while (entry3 = hv_iternext(hash3)) {
947 				HV    *hash4;
948 				MAGIC *mg;
949 				HV    *tie;
950 
951 				/* Get the tie */
952 				hash4 = (HV *)SvRV(hv_iterval(hash3, entry3));
953 				mg = mg_find((SV *)hash4, 'P');
954 				PERL_ASSERTMSG(mg != 0,
955 				    "apply_to_ties: lost P magic");
956 
957 				/* Apply the callback */
958 				if (! cb((HV *)SvRV(mg->mg_obj), arg)) {
959 					ret = 0;
960 				}
961 			}
962 		}
963 	}
964 	return (ret);
965 }
966 
967 /*
968  * Mark this HV as valid - used by update() when pruning deleted kstat nodes
969  */
970 
971 static int
972 set_valid(HV *self, void *arg)
973 {
974 	MAGIC *mg;
975 
976 	mg = mg_find((SV *)self, '~');
977 	PERL_ASSERTMSG(mg != 0, "set_valid: lost ~ magic");
978 	((KstatInfo_t *)SvPVX(mg->mg_obj))->valid = (int)arg;
979 	return (1);
980 }
981 
982 /*
983  * Prune invalid kstat nodes. This is called when kstat_chain_update() detects
984  * that the kstat chain has been updated.  This removes any hash tree entries
985  * that no longer have a corresponding kstat.  If del is non-null it will be
986  * set to the keys of the deleted kstat nodes, if any.  If any entries are
987  * deleted 1 will be retured, otherwise 0
988  */
989 
990 static int
991 prune_invalid(SV *self, AV *del)
992 {
993 	HV	*hash1;
994 	HE	*entry1;
995 	STRLEN	klen;
996 	char	*module, *instance, *name, *key;
997 	int	ret;
998 
999 	hash1 = (HV *)SvRV(self);
1000 	hv_iterinit(hash1);
1001 	ret = 0;
1002 
1003 	/* Iterate over each module */
1004 	while (entry1 = hv_iternext(hash1)) {
1005 		HV *hash2;
1006 		HE *entry2;
1007 
1008 		module = HePV(entry1, PL_na);
1009 		hash2 = (HV *)SvRV(hv_iterval(hash1, entry1));
1010 		hv_iterinit(hash2);
1011 
1012 		/* Iterate over each module:instance */
1013 		while (entry2 = hv_iternext(hash2)) {
1014 			HV *hash3;
1015 			HE *entry3;
1016 
1017 			instance = HePV(entry2, PL_na);
1018 			hash3 = (HV *)SvRV(hv_iterval(hash2, entry2));
1019 			hv_iterinit(hash3);
1020 
1021 			/* Iterate over each module:instance:name */
1022 			while (entry3 = hv_iternext(hash3)) {
1023 				HV    *hash4;
1024 				MAGIC *mg;
1025 				HV    *tie;
1026 
1027 				name = HePV(entry3, PL_na);
1028 				hash4 = (HV *)SvRV(hv_iterval(hash3, entry3));
1029 				mg = mg_find((SV *)hash4, 'P');
1030 				PERL_ASSERTMSG(mg != 0,
1031 				    "prune_invalid: lost P magic");
1032 				tie = (HV *)SvRV(mg->mg_obj);
1033 				mg = mg_find((SV *)tie, '~');
1034 				PERL_ASSERTMSG(mg != 0,
1035 				    "prune_invalid: lost ~ magic");
1036 
1037 				/* If this is marked as invalid, prune it */
1038 				if (((KstatInfo_t *)SvPVX(
1039 				    (SV *)mg->mg_obj))->valid == FALSE) {
1040 					SvREADONLY_off(hash3);
1041 					key = HePV(entry3, klen);
1042 					hv_delete(hash3, key, klen, G_DISCARD);
1043 					SvREADONLY_on(hash3);
1044 					if (del) {
1045 						av_push(del,
1046 						    newSVpvf("%s:%s:%s",
1047 						    module, instance, name));
1048 					}
1049 					ret = 1;
1050 				}
1051 			}
1052 
1053 			/* If the module:instance:name hash is empty prune it */
1054 			if (HvKEYS(hash3) == 0) {
1055 				SvREADONLY_off(hash2);
1056 				key = HePV(entry2, klen);
1057 				hv_delete(hash2, key, klen, G_DISCARD);
1058 				SvREADONLY_on(hash2);
1059 			}
1060 		}
1061 		/* If the module:instance hash is empty prune it */
1062 		if (HvKEYS(hash2) == 0) {
1063 			SvREADONLY_off(hash1);
1064 			key = HePV(entry1, klen);
1065 			hv_delete(hash1, key, klen, G_DISCARD);
1066 			SvREADONLY_on(hash1);
1067 		}
1068 	}
1069 	return (ret);
1070 }
1071 
1072 /*
1073  * Named kstats are returned as a list of key/values.  This function converts
1074  * such a list into the equivalent perl datatypes, and stores them in the passed
1075  * hash.
1076  */
1077 
1078 static void
1079 save_named(HV *self, kstat_t *kp, int strip_str)
1080 {
1081 	kstat_named_t	*knp;
1082 	int		n;
1083 	SV*		value;
1084 
1085 	for (n = kp->ks_ndata, knp = KSTAT_NAMED_PTR(kp); n > 0; n--, knp++) {
1086 		switch (knp->data_type) {
1087 		case KSTAT_DATA_CHAR:
1088 			value = newSVpv(knp->value.c, strip_str ?
1089 			    strlen(knp->value.c) : sizeof (knp->value.c));
1090 			break;
1091 		case KSTAT_DATA_INT32:
1092 			value = newSViv(knp->value.i32);
1093 			break;
1094 		case KSTAT_DATA_UINT32:
1095 			value = NEW_UV(knp->value.ui32);
1096 			break;
1097 		case KSTAT_DATA_INT64:
1098 			value = NEW_UV(knp->value.i64);
1099 			break;
1100 		case KSTAT_DATA_UINT64:
1101 			value = NEW_UV(knp->value.ui64);
1102 			break;
1103 		case KSTAT_DATA_STRING:
1104 			if (KSTAT_NAMED_STR_PTR(knp) == NULL)
1105 				value = newSVpv("null", sizeof ("null") - 1);
1106 			else
1107 				value = newSVpv(KSTAT_NAMED_STR_PTR(knp),
1108 						KSTAT_NAMED_STR_BUFLEN(knp) -1);
1109 			break;
1110 		default:
1111 			PERL_ASSERTMSG(0, "kstat_read: invalid data type");
1112 			break;
1113 		}
1114 		hv_store(self, knp->name, strlen(knp->name), value, 0);
1115 	}
1116 }
1117 
1118 /*
1119  * Save kstat interrupt statistics
1120  */
1121 
1122 static void
1123 save_intr(HV *self, kstat_t *kp, int strip_str)
1124 {
1125 	kstat_intr_t	*kintrp;
1126 	int		i;
1127 	static char	*intr_names[] =
1128 	    { "hard", "soft", "watchdog", "spurious", "multiple_service" };
1129 
1130 	PERL_ASSERT(kp->ks_ndata == 1);
1131 	PERL_ASSERT(kp->ks_data_size == sizeof (kstat_intr_t));
1132 	kintrp = KSTAT_INTR_PTR(kp);
1133 
1134 	for (i = 0; i < KSTAT_NUM_INTRS; i++) {
1135 		hv_store(self, intr_names[i], strlen(intr_names[i]),
1136 		    NEW_UV(kintrp->intrs[i]), 0);
1137 	}
1138 }
1139 
1140 /*
1141  * Save IO statistics
1142  */
1143 
1144 static void
1145 save_io(HV *self, kstat_t *kp, int strip_str)
1146 {
1147 	kstat_io_t *kiop;
1148 
1149 	PERL_ASSERT(kp->ks_ndata == 1);
1150 	PERL_ASSERT(kp->ks_data_size == sizeof (kstat_io_t));
1151 	kiop = KSTAT_IO_PTR(kp);
1152 	SAVE_UINT64(self, kiop, nread);
1153 	SAVE_UINT64(self, kiop, nwritten);
1154 	SAVE_UINT32(self, kiop, reads);
1155 	SAVE_UINT32(self, kiop, writes);
1156 	SAVE_HRTIME(self, kiop, wtime);
1157 	SAVE_HRTIME(self, kiop, wlentime);
1158 	SAVE_HRTIME(self, kiop, wlastupdate);
1159 	SAVE_HRTIME(self, kiop, rtime);
1160 	SAVE_HRTIME(self, kiop, rlentime);
1161 	SAVE_HRTIME(self, kiop, rlastupdate);
1162 	SAVE_UINT32(self, kiop, wcnt);
1163 	SAVE_UINT32(self, kiop, rcnt);
1164 }
1165 
1166 /*
1167  * Save timer statistics
1168  */
1169 
1170 static void
1171 save_timer(HV *self, kstat_t *kp, int strip_str)
1172 {
1173 	kstat_timer_t *ktimerp;
1174 
1175 	PERL_ASSERT(kp->ks_ndata == 1);
1176 	PERL_ASSERT(kp->ks_data_size == sizeof (kstat_timer_t));
1177 	ktimerp = KSTAT_TIMER_PTR(kp);
1178 	SAVE_STRING(self, ktimerp, name, strip_str);
1179 	SAVE_UINT64(self, ktimerp, num_events);
1180 	SAVE_HRTIME(self, ktimerp, elapsed_time);
1181 	SAVE_HRTIME(self, ktimerp, min_time);
1182 	SAVE_HRTIME(self, ktimerp, max_time);
1183 	SAVE_HRTIME(self, ktimerp, start_time);
1184 	SAVE_HRTIME(self, ktimerp, stop_time);
1185 }
1186 
1187 /*
1188  * Read kstats and copy into the supplied perl hash structure.  If refresh is
1189  * true, this function is being called as part of the update() method.  In this
1190  * case it is only necessary to read the kstats if they have previously been
1191  * accessed (kip->read == TRUE).  If refresh is false, this function is being
1192  * called prior to returning a value to the caller. In this case, it is only
1193  * necessary to read the kstats if they have not previously been read.  If the
1194  * kstat_read() fails, 0 is returned, otherwise 1
1195  */
1196 
1197 static int
1198 read_kstats(HV *self, int refresh)
1199 {
1200 	MAGIC			*mg;
1201 	KstatInfo_t		*kip;
1202 	kstat_raw_reader_t	fnp;
1203 
1204 	/* Find the MAGIC KstatInfo_t data structure */
1205 	mg = mg_find((SV *)self, '~');
1206 	PERL_ASSERTMSG(mg != 0, "read_kstats: lost ~ magic");
1207 	kip = (KstatInfo_t *)SvPVX(mg->mg_obj);
1208 
1209 	/* Return early if we don't need to actually read the kstats */
1210 	if ((refresh && ! kip->read) || (! refresh && kip->read)) {
1211 		return (1);
1212 	}
1213 
1214 	/* Read the kstats and return 0 if this fails */
1215 	if (kstat_read(kip->kstat_ctl, kip->kstat, NULL) < 0) {
1216 		return (0);
1217 	}
1218 
1219 	/* Save the read data */
1220 	hv_store(self, "snaptime", 8, NEW_HRTIME(kip->kstat->ks_snaptime), 0);
1221 	switch (kip->kstat->ks_type) {
1222 		case KSTAT_TYPE_RAW:
1223 			if ((fnp = lookup_raw_kstat_fn(kip->kstat->ks_module,
1224 			    kip->kstat->ks_name)) != 0) {
1225 				fnp(self, kip->kstat, kip->strip_str);
1226 			}
1227 			break;
1228 		case KSTAT_TYPE_NAMED:
1229 			save_named(self, kip->kstat, kip->strip_str);
1230 			break;
1231 		case KSTAT_TYPE_INTR:
1232 			save_intr(self, kip->kstat, kip->strip_str);
1233 			break;
1234 		case KSTAT_TYPE_IO:
1235 			save_io(self, kip->kstat, kip->strip_str);
1236 			break;
1237 		case KSTAT_TYPE_TIMER:
1238 			save_timer(self, kip->kstat, kip->strip_str);
1239 			break;
1240 		default:
1241 			PERL_ASSERTMSG(0, "read_kstats: illegal kstat type");
1242 			break;
1243 	}
1244 	kip->read = TRUE;
1245 	return (1);
1246 }
1247 
1248 /*
1249  * The XS code exported to perl is below here.  Note that the XS preprocessor
1250  * has its own commenting syntax, so all comments from this point on are in
1251  * that form.
1252  */
1253 
1254 /* The following XS methods are the ABI of the Sun::Solaris::Kstat package */
1255 
1256 MODULE = Sun::Solaris::Kstat PACKAGE = Sun::Solaris::Kstat
1257 PROTOTYPES: ENABLE
1258 
1259  # Create the raw kstat to store function lookup table on load
1260 BOOT:
1261 	build_raw_kstat_lookup();
1262 
1263  #
1264  # The Sun::Solaris::Kstat constructor.  This builds the nested
1265  # name::instance::module hash structure, but doesn't actually read the
1266  # underlying kstats.  This is done on demand by the TIEHASH methods in
1267  # Sun::Solaris::Kstat::_Stat
1268  #
1269 
1270 SV*
1271 new(class, ...)
1272 	char *class;
1273 PREINIT:
1274 	HV		*stash;
1275 	kstat_ctl_t	*kc;
1276 	SV		*kcsv;
1277 	kstat_t		*kp;
1278 	KstatInfo_t	kstatinfo;
1279 	int		sp, strip_str;
1280 CODE:
1281 	/* Check we have an even number of arguments, excluding the class */
1282 	sp = 1;
1283 	if (((items - sp) % 2) != 0) {
1284 		croak(DEBUG_ID ": new: invalid number of arguments");
1285 	}
1286 
1287 	/* Process any (name => value) arguments */
1288 	strip_str = 0;
1289 	while (sp < items) {
1290 		SV *name, *value;
1291 
1292 		name = ST(sp);
1293 		sp++;
1294 		value = ST(sp);
1295 		sp++;
1296 		if (strcmp(SvPVX(name), "strip_strings") == 0) {
1297 			strip_str = SvTRUE(value);
1298 		} else {
1299 			croak(DEBUG_ID ": new: invalid parameter name '%s'",
1300 			    SvPVX(name));
1301 		}
1302 	}
1303 
1304 	/* Open the kstats handle */
1305 	if ((kc = kstat_open()) == 0) {
1306 		XSRETURN_UNDEF;
1307 	}
1308 
1309 	/* Create a blessed hash ref */
1310 	RETVAL = (SV *)newRV_noinc((SV *)newHV());
1311 	stash = gv_stashpv(class, TRUE);
1312 	sv_bless(RETVAL, stash);
1313 
1314 	/* Create a place to save the KstatInfo_t structure */
1315 	kcsv = newSVpv((char *)&kc, sizeof (kc));
1316 	sv_magic(SvRV(RETVAL), kcsv, '~', 0, 0);
1317 	SvREFCNT_dec(kcsv);
1318 
1319 	/* Initialise the KstatsInfo_t structure */
1320 	kstatinfo.read = FALSE;
1321 	kstatinfo.valid = TRUE;
1322 	kstatinfo.strip_str = strip_str;
1323 	kstatinfo.kstat_ctl = kc;
1324 
1325 	/* Scan the kstat chain, building hash entries for the kstats */
1326 	for (kp = kc->kc_chain; kp != 0; kp = kp->ks_next) {
1327 		HV *tie;
1328 		SV *kstatsv;
1329 
1330 		/* Don't bother storing the kstat headers */
1331 		if (strncmp(kp->ks_name, "kstat_", 6) == 0) {
1332 			continue;
1333 		}
1334 
1335 		/* Don't bother storing raw stats we don't understand */
1336 		if (kp->ks_type == KSTAT_TYPE_RAW &&
1337 		    lookup_raw_kstat_fn(kp->ks_module, kp->ks_name) == 0) {
1338 #ifdef REPORT_UNKNOWN
1339 			(void) fprintf(stderr,
1340 			    "Unknown kstat type %s:%d:%s - %d of size %d\n",
1341 			    kp->ks_module, kp->ks_instance, kp->ks_name,
1342 			    kp->ks_ndata, kp->ks_data_size);
1343 #endif
1344 			continue;
1345 		}
1346 
1347 		/* Create a 3-layer hash hierarchy - module.instance.name */
1348 		tie = get_tie(RETVAL, kp->ks_module, kp->ks_instance,
1349 		    kp->ks_name, 0);
1350 
1351 		/* Save the data necessary to read the kstat info on demand */
1352 		hv_store(tie, "class", 5, newSVpv(kp->ks_class, 0), 0);
1353 		hv_store(tie, "crtime", 6, NEW_HRTIME(kp->ks_crtime), 0);
1354 		kstatinfo.kstat = kp;
1355 		kstatsv = newSVpv((char *)&kstatinfo, sizeof (kstatinfo));
1356 		sv_magic((SV *)tie, kstatsv, '~', 0, 0);
1357 		SvREFCNT_dec(kstatsv);
1358 	}
1359 	SvREADONLY_on(SvRV(RETVAL));
1360 	/* SvREADONLY_on(RETVAL); */
1361 OUTPUT:
1362 	RETVAL
1363 
1364  #
1365  # Update the perl hash structure so that it is in line with the kernel kstats
1366  # data.  Only kstats athat have previously been accessed are read,
1367  #
1368 
1369  # Scalar context: true/false
1370  # Array context: (\@added, \@deleted)
1371 void
1372 update(self)
1373 	SV* self;
1374 PREINIT:
1375 	MAGIC		*mg;
1376 	kstat_ctl_t	*kc;
1377 	kstat_t		*kp;
1378 	int		ret;
1379 	AV		*add, *del;
1380 PPCODE:
1381 	/* Find the hidden KstatInfo_t structure */
1382 	mg = mg_find(SvRV(self), '~');
1383 	PERL_ASSERTMSG(mg != 0, "update: lost ~ magic");
1384 	kc = *(kstat_ctl_t **)SvPVX(mg->mg_obj);
1385 
1386 	/* Update the kstat chain, and return immediately on error. */
1387 	if ((ret = kstat_chain_update(kc)) == -1) {
1388 		if (GIMME_V == G_ARRAY) {
1389 			EXTEND(SP, 2);
1390 			PUSHs(sv_newmortal());
1391 			PUSHs(sv_newmortal());
1392 		} else {
1393 			EXTEND(SP, 1);
1394 			PUSHs(sv_2mortal(newSViv(ret)));
1395 		}
1396 	}
1397 
1398 	/* Create the arrays to be returned if in an array context */
1399 	if (GIMME_V == G_ARRAY) {
1400 		add = newAV();
1401 		del = newAV();
1402 	} else {
1403 		add = 0;
1404 		del = 0;
1405 	}
1406 
1407 	/*
1408 	 * If the kstat chain hasn't changed we can just reread any stats
1409 	 * that have already been read
1410 	 */
1411 	if (ret == 0) {
1412 		if (! apply_to_ties(self, (ATTCb_t)read_kstats, (void *)TRUE)) {
1413 			if (GIMME_V == G_ARRAY) {
1414 				EXTEND(SP, 2);
1415 				PUSHs(sv_2mortal(newRV_noinc((SV *)add)));
1416 				PUSHs(sv_2mortal(newRV_noinc((SV *)del)));
1417 			} else {
1418 				EXTEND(SP, 1);
1419 				PUSHs(sv_2mortal(newSViv(-1)));
1420 			}
1421 		}
1422 
1423 	/*
1424 	 * Otherwise we have to update the Perl structure so that it is in
1425 	 * agreement with the new kstat chain.  We do this in such a way as to
1426 	 * retain all the existing structures, just adding or deleting the
1427 	 * bare minimum.
1428 	 */
1429 	} else {
1430 		KstatInfo_t	kstatinfo;
1431 
1432 		/*
1433 		 * Step 1: set the 'invalid' flag on each entry
1434 		 */
1435 		apply_to_ties(self, &set_valid, (void *)FALSE);
1436 
1437 		/*
1438 		 * Step 2: Set the 'valid' flag on all entries still in the
1439 		 * kernel kstat chain
1440 		 */
1441 		kstatinfo.read		= FALSE;
1442 		kstatinfo.valid		= TRUE;
1443 		kstatinfo.kstat_ctl	= kc;
1444 		for (kp = kc->kc_chain; kp != 0; kp = kp->ks_next) {
1445 			int	new;
1446 			HV	*tie;
1447 
1448 			/* Don't bother storing the kstat headers or types */
1449 			if (strncmp(kp->ks_name, "kstat_", 6) == 0) {
1450 				continue;
1451 			}
1452 
1453 			/* Don't bother storing raw stats we don't understand */
1454 			if (kp->ks_type == KSTAT_TYPE_RAW &&
1455 			    lookup_raw_kstat_fn(kp->ks_module, kp->ks_name)
1456 			    == 0) {
1457 #ifdef REPORT_UNKNOWN
1458 				(void) printf("Unknown kstat type %s:%d:%s "
1459 				    "- %d of size %d\n", kp->ks_module,
1460 				    kp->ks_instance, kp->ks_name,
1461 				    kp->ks_ndata, kp->ks_data_size);
1462 #endif
1463 				continue;
1464 			}
1465 
1466 			/* Find the tied hash associated with the kstat entry */
1467 			tie = get_tie(self, kp->ks_module, kp->ks_instance,
1468 			    kp->ks_name, &new);
1469 
1470 			/* If newly created store the associated kstat info */
1471 			if (new) {
1472 				SV *kstatsv;
1473 
1474 				/*
1475 				 * Save the data necessary to read the kstat
1476 				 * info on demand
1477 				 */
1478 				hv_store(tie, "class", 5,
1479 				    newSVpv(kp->ks_class, 0), 0);
1480 				hv_store(tie, "crtime", 6,
1481 				    NEW_HRTIME(kp->ks_crtime), 0);
1482 				kstatinfo.kstat = kp;
1483 				kstatsv = newSVpv((char *)&kstatinfo,
1484 				    sizeof (kstatinfo));
1485 				sv_magic((SV *)tie, kstatsv, '~', 0, 0);
1486 				SvREFCNT_dec(kstatsv);
1487 
1488 				/* Save the key on the add list, if required */
1489 				if (GIMME_V == G_ARRAY) {
1490 					av_push(add, newSVpvf("%s:%d:%s",
1491 					    kp->ks_module, kp->ks_instance,
1492 					    kp->ks_name));
1493 				}
1494 
1495 			/* If the stats already exist, just update them */
1496 			} else {
1497 				MAGIC *mg;
1498 				KstatInfo_t *kip;
1499 
1500 				/* Find the hidden KstatInfo_t */
1501 				mg = mg_find((SV *)tie, '~');
1502 				PERL_ASSERTMSG(mg != 0, "update: lost ~ magic");
1503 				kip = (KstatInfo_t *)SvPVX(mg->mg_obj);
1504 
1505 				/* Mark the tie as valid */
1506 				kip->valid = TRUE;
1507 
1508 				/* Re-save the kstat_t pointer.  If the kstat
1509 				 * has been deleted and re-added since the last
1510 				 * update, the address of the kstat structure
1511 				 * will have changed, even though the kstat will
1512 				 * still live at the same place in the perl
1513 				 * hash tree structure.
1514 				 */
1515 				kip->kstat = kp;
1516 
1517 				/* Reread the stats, if read previously */
1518 				read_kstats(tie, TRUE);
1519 			}
1520 		}
1521 
1522 		/*
1523 		 *Step 3: Delete any entries still marked as 'invalid'
1524 		 */
1525 		ret = prune_invalid(self, del);
1526 
1527 	}
1528 	if (GIMME_V == G_ARRAY) {
1529 		EXTEND(SP, 2);
1530 		PUSHs(sv_2mortal(newRV_noinc((SV *)add)));
1531 		PUSHs(sv_2mortal(newRV_noinc((SV *)del)));
1532 	} else {
1533 		EXTEND(SP, 1);
1534 		PUSHs(sv_2mortal(newSViv(ret)));
1535 	}
1536 
1537 
1538  #
1539  # Destructor.  Closes the kstat connection
1540  #
1541 
1542 void
1543 DESTROY(self)
1544 	SV *self;
1545 PREINIT:
1546 	MAGIC		*mg;
1547 	kstat_ctl_t	*kc;
1548 CODE:
1549 	mg = mg_find(SvRV(self), '~');
1550 	PERL_ASSERTMSG(mg != 0, "DESTROY: lost ~ magic");
1551 	kc = *(kstat_ctl_t **)SvPVX(mg->mg_obj);
1552 	if (kstat_close(kc) != 0) {
1553 		croak(DEBUG_ID ": kstat_close: failed");
1554 	}
1555 
1556  #
1557  # The following XS methods implement the TIEHASH mechanism used to update the
1558  # kstats hash structure.  These are blessed into a package that isn't
1559  # visible to callers of the Sun::Solaris::Kstat module
1560  #
1561 
1562 MODULE = Sun::Solaris::Kstat PACKAGE = Sun::Solaris::Kstat::_Stat
1563 PROTOTYPES: ENABLE
1564 
1565  #
1566  # If a value has already been read, return it.  Otherwise read the appropriate
1567  # kstat and then return the value
1568  #
1569 
1570 SV*
1571 FETCH(self, key)
1572 	SV* self;
1573 	SV* key;
1574 PREINIT:
1575 	char	*k;
1576 	STRLEN	klen;
1577 	SV	**value;
1578 CODE:
1579 	self = SvRV(self);
1580 	k = SvPV(key, klen);
1581 	if (strNE(k, "class") && strNE(k, "crtime")) {
1582 		read_kstats((HV *)self, FALSE);
1583 	}
1584 	value = hv_fetch((HV *)self, k, klen, FALSE);
1585 	if (value) {
1586 		RETVAL = *value; SvREFCNT_inc(RETVAL);
1587 	} else {
1588 		RETVAL = &PL_sv_undef;
1589 	}
1590 OUTPUT:
1591 	RETVAL
1592 
1593  #
1594  # Save the passed value into the kstat hash.  Read the appropriate kstat first,
1595  # if necessary.  Note that this DOES NOT update the underlying kernel kstat
1596  # structure.
1597  #
1598 
1599 SV*
1600 STORE(self, key, value)
1601 	SV* self;
1602 	SV* key;
1603 	SV* value;
1604 PREINIT:
1605 	char	*k;
1606 	STRLEN	klen;
1607 CODE:
1608 	self = SvRV(self);
1609 	k = SvPV(key, klen);
1610 	if (strNE(k, "class") && strNE(k, "crtime")) {
1611 		read_kstats((HV *)self, FALSE);
1612 	}
1613 	SvREFCNT_inc(value);
1614 	RETVAL = *(hv_store((HV *)self, k, klen, value, 0));
1615 	SvREFCNT_inc(RETVAL);
1616 OUTPUT:
1617 	RETVAL
1618 
1619  #
1620  # Check for the existence of the passed key.  Read the kstat first if necessary
1621  #
1622 
1623 bool
1624 EXISTS(self, key)
1625 	SV* self;
1626 	SV* key;
1627 PREINIT:
1628 	char *k;
1629 CODE:
1630 	self = SvRV(self);
1631 	k = SvPV(key, PL_na);
1632 	if (strNE(k, "class") && strNE(k, "crtime")) {
1633 		read_kstats((HV *)self, FALSE);
1634 	}
1635 	RETVAL = hv_exists_ent((HV *)self, key, 0);
1636 OUTPUT:
1637 	RETVAL
1638 
1639 
1640  #
1641  # Hash iterator initialisation.  Read the kstats if necessary.
1642  #
1643 
1644 SV*
1645 FIRSTKEY(self)
1646 	SV* self;
1647 PREINIT:
1648 	HE *he;
1649 PPCODE:
1650 	self = SvRV(self);
1651 	read_kstats((HV *)self, FALSE);
1652 	hv_iterinit((HV *)self);
1653 	if (he = hv_iternext((HV *)self)) {
1654 		EXTEND(SP, 1);
1655 		PUSHs(hv_iterkeysv(he));
1656 	}
1657 
1658  #
1659  # Return hash iterator next value.  Read the kstats if necessary.
1660  #
1661 
1662 SV*
1663 NEXTKEY(self, lastkey)
1664 	SV* self;
1665 	SV* lastkey;
1666 PREINIT:
1667 	HE *he;
1668 PPCODE:
1669 	self = SvRV(self);
1670 	if (he = hv_iternext((HV *)self)) {
1671 		EXTEND(SP, 1);
1672 		PUSHs(hv_iterkeysv(he));
1673 	}
1674 
1675 
1676  #
1677  # Delete the specified hash entry.
1678  #
1679 
1680 SV*
1681 DELETE(self, key)
1682 	SV *self;
1683 	SV *key;
1684 CODE:
1685 	self = SvRV(self);
1686 	RETVAL = hv_delete_ent((HV *)self, key, 0, 0);
1687 	if (RETVAL) {
1688 		SvREFCNT_inc(RETVAL);
1689 	} else {
1690 		RETVAL = &PL_sv_undef;
1691 	}
1692 OUTPUT:
1693 	RETVAL
1694 
1695  #
1696  # Clear the entire hash.  This will stop any update() calls rereading this
1697  # kstat until it is accessed again.
1698  #
1699 
1700 void
1701 CLEAR(self)
1702 	SV* self;
1703 PREINIT:
1704 	MAGIC   *mg;
1705 	KstatInfo_t *kip;
1706 CODE:
1707 	self = SvRV(self);
1708 	hv_clear((HV *)self);
1709 	mg = mg_find(self, '~');
1710 	PERL_ASSERTMSG(mg != 0, "CLEAR: lost ~ magic");
1711 	kip = (KstatInfo_t *)SvPVX(mg->mg_obj);
1712 	kip->read  = FALSE;
1713 	kip->valid = TRUE;
1714 	hv_store((HV *)self, "class", 5, newSVpv(kip->kstat->ks_class, 0), 0);
1715 	hv_store((HV *)self, "crtime", 6, NEW_HRTIME(kip->kstat->ks_crtime), 0);
1716