1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Kstat.xs is a Perl XS (eXStension module) that makes the Solaris 31 * kstat(3KSTAT) facility available to Perl scripts. Kstat is a general-purpose 32 * mechanism for providing kernel statistics to users. The Solaris API is 33 * function-based (see the manpage for details), but for ease of use in Perl 34 * scripts this module presents the information as a nested hash data structure. 35 * It would be too inefficient to read every kstat in the system, so this module 36 * uses the Perl TIEHASH mechanism to implement a read-on-demand semantic, which 37 * only reads and updates kstats as and when they are actually accessed. 38 */ 39 40 /* 41 * Ignored raw kstats. 42 * 43 * Some raw kstats are ignored by this module, these are listed below. The 44 * most common reason is that the kstats are stored as arrays and the ks_ndata 45 * and/or ks_data_size fields are invalid. In this case it is impossible to 46 * know how many records are in the array, so they can't be read. 47 * 48 * unix:*:sfmmu_percpu_stat 49 * This is stored as an array with one entry per cpu. Each element is of type 50 * struct sfmmu_percpu_stat. The ks_ndata and ks_data_size fields are bogus. 51 * 52 * ufs directio:*:UFS DirectIO Stats 53 * The structure definition used for these kstats (ufs_directio_kstats) is in a 54 * C file (uts/common/fs/ufs/ufs_directio.c) rather than a header file, so it 55 * isn't accessible. 56 * 57 * qlc:*:statistics 58 * This is a third-party driver for which we don't have source. 59 * 60 * mm:*:phys_installed 61 * This is stored as an array of uint64_t, with each pair of values being the 62 * (address, size) of a memory segment. The ks_ndata and ks_data_size fields 63 * are both zero. 64 * 65 * sockfs:*:sock_unix_list 66 * This is stored as an array with one entry per active socket. Each element 67 * is of type struct k_sockinfo. The ks_ndata and ks_data_size fields are both 68 * zero. 69 * 70 * Note that the ks_ndata and ks_data_size of many non-array raw kstats are 71 * also incorrect. The relevant assertions are therefore commented out in the 72 * appropriate raw kstat read routines. 73 */ 74 75 /* Kstat related includes */ 76 #include <libgen.h> 77 #include <kstat.h> 78 #include <sys/var.h> 79 #include <sys/utsname.h> 80 #include <sys/sysinfo.h> 81 #include <sys/flock.h> 82 #include <sys/dnlc.h> 83 #include <sys/vmmeter.h> 84 #include <nfs/nfs.h> 85 #include <nfs/nfs_clnt.h> 86 87 /* Ultra-specific kstat includes */ 88 #ifdef __sparc 89 #include <vm/hat_sfmmu.h> /* from /usr/platform/sun4u/include */ 90 #include <sys/simmstat.h> /* from /usr/platform/sun4u/include */ 91 #include <sys/sysctrl.h> /* from /usr/platform/sun4u/include */ 92 #include <sys/fhc.h> /* from /usr/include */ 93 #endif 94 95 /* 96 * Solaris #defines SP, which conflicts with the perl definition of SP 97 * We don't need the Solaris one, so get rid of it to avoid warnings 98 */ 99 #undef SP 100 101 /* Perl XS includes */ 102 #include "EXTERN.h" 103 #include "perl.h" 104 #include "XSUB.h" 105 106 /* Debug macros */ 107 #define DEBUG_ID "Sun::Solaris::Kstat" 108 #ifdef KSTAT_DEBUG 109 #define PERL_ASSERT(EXP) \ 110 ((void)((EXP) || (croak("%s: assertion failed at %s:%d: %s", \ 111 DEBUG_ID, __FILE__, __LINE__, #EXP), 0), 0)) 112 #define PERL_ASSERTMSG(EXP, MSG) \ 113 ((void)((EXP) || (croak(DEBUG_ID ": " MSG), 0), 0)) 114 #else 115 #define PERL_ASSERT(EXP) ((void)0) 116 #define PERL_ASSERTMSG(EXP, MSG) ((void)0) 117 #endif 118 119 /* Macros for saving the contents of KSTAT_RAW structures */ 120 #if defined(HAS_QUAD) && defined(USE_64_BIT_INT) 121 #define NEW_IV(V) \ 122 (newSViv((IVTYPE) V)) 123 #define NEW_UV(V) \ 124 (newSVuv((UVTYPE) V)) 125 #else 126 #define NEW_IV(V) \ 127 (V >= IV_MIN && V <= IV_MAX ? newSViv((IVTYPE) V) : newSVnv((NVTYPE) V)) 128 #if defined(UVTYPE) 129 #define NEW_UV(V) \ 130 (V <= UV_MAX ? newSVuv((UVTYPE) V) : newSVnv((NVTYPE) V)) 131 # else 132 #define NEW_UV(V) \ 133 (V <= IV_MAX ? newSViv((IVTYPE) V) : newSVnv((NVTYPE) V)) 134 #endif 135 #endif 136 #define NEW_HRTIME(V) \ 137 newSVnv((NVTYPE) (V / 1000000000.0)) 138 139 #define SAVE_FNP(H, F, K) \ 140 hv_store(H, K, sizeof (K) - 1, newSViv((IVTYPE) &F), 0) 141 #define SAVE_STRING(H, S, K, SS) \ 142 hv_store(H, #K, sizeof (#K) - 1, \ 143 newSVpvn(S->K, SS ? strlen(S->K) : sizeof(S->K)), 0) 144 #define SAVE_INT32(H, S, K) \ 145 hv_store(H, #K, sizeof (#K) - 1, NEW_IV(S->K), 0) 146 #define SAVE_UINT32(H, S, K) \ 147 hv_store(H, #K, sizeof (#K) - 1, NEW_UV(S->K), 0) 148 #define SAVE_INT64(H, S, K) \ 149 hv_store(H, #K, sizeof (#K) - 1, NEW_IV(S->K), 0) 150 #define SAVE_UINT64(H, S, K) \ 151 hv_store(H, #K, sizeof (#K) - 1, NEW_UV(S->K), 0) 152 #define SAVE_HRTIME(H, S, K) \ 153 hv_store(H, #K, sizeof (#K) - 1, NEW_HRTIME(S->K), 0) 154 155 /* Private structure used for saving kstat info in the tied hashes */ 156 typedef struct { 157 char read; /* Kstat block has been read before */ 158 char valid; /* Kstat still exists in kstat chain */ 159 char strip_str; /* Strip KSTAT_DATA_CHAR fields */ 160 kstat_ctl_t *kstat_ctl; /* Handle returned by kstat_open */ 161 kstat_t *kstat; /* Handle used by kstat_read */ 162 } KstatInfo_t; 163 164 /* typedef for apply_to_ties callback functions */ 165 typedef int (*ATTCb_t)(HV *, void *); 166 167 /* typedef for raw kstat reader functions */ 168 typedef void (*kstat_raw_reader_t)(HV *, kstat_t *, int); 169 170 /* Hash of "module:name" to KSTAT_RAW read functions */ 171 static HV *raw_kstat_lookup; 172 173 /* 174 * Kstats come in two flavours, named and raw. Raw kstats are just C structs, 175 * so we need a function per raw kstat to convert the C struct into the 176 * corresponding perl hash. All such conversion functions are in the following 177 * section. 178 */ 179 180 /* 181 * Definitions in /usr/include/sys/cpuvar.h and /usr/include/sys/sysinfo.h 182 */ 183 184 static void 185 save_cpu_stat(HV *self, kstat_t *kp, int strip_str) 186 { 187 cpu_stat_t *statp; 188 cpu_sysinfo_t *sysinfop; 189 cpu_syswait_t *syswaitp; 190 cpu_vminfo_t *vminfop; 191 192 /* PERL_ASSERT(kp->ks_ndata == 1); */ 193 PERL_ASSERT(kp->ks_data_size == sizeof (cpu_stat_t)); 194 statp = (cpu_stat_t *)(kp->ks_data); 195 sysinfop = &statp->cpu_sysinfo; 196 syswaitp = &statp->cpu_syswait; 197 vminfop = &statp->cpu_vminfo; 198 199 hv_store(self, "idle", 4, NEW_UV(sysinfop->cpu[CPU_IDLE]), 0); 200 hv_store(self, "user", 4, NEW_UV(sysinfop->cpu[CPU_USER]), 0); 201 hv_store(self, "kernel", 6, NEW_UV(sysinfop->cpu[CPU_KERNEL]), 0); 202 hv_store(self, "wait", 4, NEW_UV(sysinfop->cpu[CPU_WAIT]), 0); 203 hv_store(self, "wait_io", 7, NEW_UV(sysinfop->wait[W_IO]), 0); 204 hv_store(self, "wait_swap", 9, NEW_UV(sysinfop->wait[W_SWAP]), 0); 205 hv_store(self, "wait_pio", 8, NEW_UV(sysinfop->wait[W_PIO]), 0); 206 SAVE_UINT32(self, sysinfop, bread); 207 SAVE_UINT32(self, sysinfop, bwrite); 208 SAVE_UINT32(self, sysinfop, lread); 209 SAVE_UINT32(self, sysinfop, lwrite); 210 SAVE_UINT32(self, sysinfop, phread); 211 SAVE_UINT32(self, sysinfop, phwrite); 212 SAVE_UINT32(self, sysinfop, pswitch); 213 SAVE_UINT32(self, sysinfop, trap); 214 SAVE_UINT32(self, sysinfop, intr); 215 SAVE_UINT32(self, sysinfop, syscall); 216 SAVE_UINT32(self, sysinfop, sysread); 217 SAVE_UINT32(self, sysinfop, syswrite); 218 SAVE_UINT32(self, sysinfop, sysfork); 219 SAVE_UINT32(self, sysinfop, sysvfork); 220 SAVE_UINT32(self, sysinfop, sysexec); 221 SAVE_UINT32(self, sysinfop, readch); 222 SAVE_UINT32(self, sysinfop, writech); 223 SAVE_UINT32(self, sysinfop, rcvint); 224 SAVE_UINT32(self, sysinfop, xmtint); 225 SAVE_UINT32(self, sysinfop, mdmint); 226 SAVE_UINT32(self, sysinfop, rawch); 227 SAVE_UINT32(self, sysinfop, canch); 228 SAVE_UINT32(self, sysinfop, outch); 229 SAVE_UINT32(self, sysinfop, msg); 230 SAVE_UINT32(self, sysinfop, sema); 231 SAVE_UINT32(self, sysinfop, namei); 232 SAVE_UINT32(self, sysinfop, ufsiget); 233 SAVE_UINT32(self, sysinfop, ufsdirblk); 234 SAVE_UINT32(self, sysinfop, ufsipage); 235 SAVE_UINT32(self, sysinfop, ufsinopage); 236 SAVE_UINT32(self, sysinfop, inodeovf); 237 SAVE_UINT32(self, sysinfop, fileovf); 238 SAVE_UINT32(self, sysinfop, procovf); 239 SAVE_UINT32(self, sysinfop, intrthread); 240 SAVE_UINT32(self, sysinfop, intrblk); 241 SAVE_UINT32(self, sysinfop, idlethread); 242 SAVE_UINT32(self, sysinfop, inv_swtch); 243 SAVE_UINT32(self, sysinfop, nthreads); 244 SAVE_UINT32(self, sysinfop, cpumigrate); 245 SAVE_UINT32(self, sysinfop, xcalls); 246 SAVE_UINT32(self, sysinfop, mutex_adenters); 247 SAVE_UINT32(self, sysinfop, rw_rdfails); 248 SAVE_UINT32(self, sysinfop, rw_wrfails); 249 SAVE_UINT32(self, sysinfop, modload); 250 SAVE_UINT32(self, sysinfop, modunload); 251 SAVE_UINT32(self, sysinfop, bawrite); 252 #ifdef STATISTICS /* see header file */ 253 SAVE_UINT32(self, sysinfop, rw_enters); 254 SAVE_UINT32(self, sysinfop, win_uo_cnt); 255 SAVE_UINT32(self, sysinfop, win_uu_cnt); 256 SAVE_UINT32(self, sysinfop, win_so_cnt); 257 SAVE_UINT32(self, sysinfop, win_su_cnt); 258 SAVE_UINT32(self, sysinfop, win_suo_cnt); 259 #endif 260 261 SAVE_INT32(self, syswaitp, iowait); 262 SAVE_INT32(self, syswaitp, swap); 263 SAVE_INT32(self, syswaitp, physio); 264 265 SAVE_UINT32(self, vminfop, pgrec); 266 SAVE_UINT32(self, vminfop, pgfrec); 267 SAVE_UINT32(self, vminfop, pgin); 268 SAVE_UINT32(self, vminfop, pgpgin); 269 SAVE_UINT32(self, vminfop, pgout); 270 SAVE_UINT32(self, vminfop, pgpgout); 271 SAVE_UINT32(self, vminfop, swapin); 272 SAVE_UINT32(self, vminfop, pgswapin); 273 SAVE_UINT32(self, vminfop, swapout); 274 SAVE_UINT32(self, vminfop, pgswapout); 275 SAVE_UINT32(self, vminfop, zfod); 276 SAVE_UINT32(self, vminfop, dfree); 277 SAVE_UINT32(self, vminfop, scan); 278 SAVE_UINT32(self, vminfop, rev); 279 SAVE_UINT32(self, vminfop, hat_fault); 280 SAVE_UINT32(self, vminfop, as_fault); 281 SAVE_UINT32(self, vminfop, maj_fault); 282 SAVE_UINT32(self, vminfop, cow_fault); 283 SAVE_UINT32(self, vminfop, prot_fault); 284 SAVE_UINT32(self, vminfop, softlock); 285 SAVE_UINT32(self, vminfop, kernel_asflt); 286 SAVE_UINT32(self, vminfop, pgrrun); 287 SAVE_UINT32(self, vminfop, execpgin); 288 SAVE_UINT32(self, vminfop, execpgout); 289 SAVE_UINT32(self, vminfop, execfree); 290 SAVE_UINT32(self, vminfop, anonpgin); 291 SAVE_UINT32(self, vminfop, anonpgout); 292 SAVE_UINT32(self, vminfop, anonfree); 293 SAVE_UINT32(self, vminfop, fspgin); 294 SAVE_UINT32(self, vminfop, fspgout); 295 SAVE_UINT32(self, vminfop, fsfree); 296 } 297 298 /* 299 * Definitions in /usr/include/sys/var.h 300 */ 301 302 static void 303 save_var(HV *self, kstat_t *kp, int strip_str) 304 { 305 struct var *varp; 306 307 /* PERL_ASSERT(kp->ks_ndata == 1); */ 308 PERL_ASSERT(kp->ks_data_size == sizeof (struct var)); 309 varp = (struct var *)(kp->ks_data); 310 311 SAVE_INT32(self, varp, v_buf); 312 SAVE_INT32(self, varp, v_call); 313 SAVE_INT32(self, varp, v_proc); 314 SAVE_INT32(self, varp, v_maxupttl); 315 SAVE_INT32(self, varp, v_nglobpris); 316 SAVE_INT32(self, varp, v_maxsyspri); 317 SAVE_INT32(self, varp, v_clist); 318 SAVE_INT32(self, varp, v_maxup); 319 SAVE_INT32(self, varp, v_hbuf); 320 SAVE_INT32(self, varp, v_hmask); 321 SAVE_INT32(self, varp, v_pbuf); 322 SAVE_INT32(self, varp, v_sptmap); 323 SAVE_INT32(self, varp, v_maxpmem); 324 SAVE_INT32(self, varp, v_autoup); 325 SAVE_INT32(self, varp, v_bufhwm); 326 } 327 328 /* 329 * Definition in /usr/include/sys/vmmeter.h 330 */ 331 332 static void 333 save_flushmeter(HV *self, kstat_t *kp, int strip_str) 334 { 335 struct flushmeter *flushmeterp; 336 337 /* PERL_ASSERT(kp->ks_ndata == 1); */ 338 PERL_ASSERT(kp->ks_data_size == sizeof (struct flushmeter)); 339 flushmeterp = (struct flushmeter *)(kp->ks_data); 340 341 SAVE_UINT32(self, flushmeterp, f_ctx); 342 SAVE_UINT32(self, flushmeterp, f_segment); 343 SAVE_UINT32(self, flushmeterp, f_page); 344 SAVE_UINT32(self, flushmeterp, f_partial); 345 SAVE_UINT32(self, flushmeterp, f_usr); 346 SAVE_UINT32(self, flushmeterp, f_region); 347 } 348 349 /* 350 * Definition in /usr/include/sys/dnlc.h 351 */ 352 353 static void 354 save_ncstats(HV *self, kstat_t *kp, int strip_str) 355 { 356 struct ncstats *ncstatsp; 357 358 /* PERL_ASSERT(kp->ks_ndata == 1); */ 359 PERL_ASSERT(kp->ks_data_size == sizeof (struct ncstats)); 360 ncstatsp = (struct ncstats *)(kp->ks_data); 361 362 SAVE_INT32(self, ncstatsp, hits); 363 SAVE_INT32(self, ncstatsp, misses); 364 SAVE_INT32(self, ncstatsp, enters); 365 SAVE_INT32(self, ncstatsp, dbl_enters); 366 SAVE_INT32(self, ncstatsp, long_enter); 367 SAVE_INT32(self, ncstatsp, long_look); 368 SAVE_INT32(self, ncstatsp, move_to_front); 369 SAVE_INT32(self, ncstatsp, purges); 370 } 371 372 /* 373 * Definition in /usr/include/sys/sysinfo.h 374 */ 375 376 static void 377 save_sysinfo(HV *self, kstat_t *kp, int strip_str) 378 { 379 sysinfo_t *sysinfop; 380 381 /* PERL_ASSERT(kp->ks_ndata == 1); */ 382 PERL_ASSERT(kp->ks_data_size == sizeof (sysinfo_t)); 383 sysinfop = (sysinfo_t *)(kp->ks_data); 384 385 SAVE_UINT32(self, sysinfop, updates); 386 SAVE_UINT32(self, sysinfop, runque); 387 SAVE_UINT32(self, sysinfop, runocc); 388 SAVE_UINT32(self, sysinfop, swpque); 389 SAVE_UINT32(self, sysinfop, swpocc); 390 SAVE_UINT32(self, sysinfop, waiting); 391 } 392 393 /* 394 * Definition in /usr/include/sys/sysinfo.h 395 */ 396 397 static void 398 save_vminfo(HV *self, kstat_t *kp, int strip_str) 399 { 400 vminfo_t *vminfop; 401 402 /* PERL_ASSERT(kp->ks_ndata == 1); */ 403 PERL_ASSERT(kp->ks_data_size == sizeof (vminfo_t)); 404 vminfop = (vminfo_t *)(kp->ks_data); 405 406 SAVE_UINT64(self, vminfop, freemem); 407 SAVE_UINT64(self, vminfop, swap_resv); 408 SAVE_UINT64(self, vminfop, swap_alloc); 409 SAVE_UINT64(self, vminfop, swap_avail); 410 SAVE_UINT64(self, vminfop, swap_free); 411 } 412 413 /* 414 * Definition in /usr/include/nfs/nfs_clnt.h 415 */ 416 417 static void 418 save_nfs(HV *self, kstat_t *kp, int strip_str) 419 { 420 struct mntinfo_kstat *mntinfop; 421 422 /* PERL_ASSERT(kp->ks_ndata == 1); */ 423 PERL_ASSERT(kp->ks_data_size == sizeof (struct mntinfo_kstat)); 424 mntinfop = (struct mntinfo_kstat *)(kp->ks_data); 425 426 SAVE_STRING(self, mntinfop, mik_proto, strip_str); 427 SAVE_UINT32(self, mntinfop, mik_vers); 428 SAVE_UINT32(self, mntinfop, mik_flags); 429 SAVE_UINT32(self, mntinfop, mik_secmod); 430 SAVE_UINT32(self, mntinfop, mik_curread); 431 SAVE_UINT32(self, mntinfop, mik_curwrite); 432 SAVE_INT32(self, mntinfop, mik_timeo); 433 SAVE_INT32(self, mntinfop, mik_retrans); 434 SAVE_UINT32(self, mntinfop, mik_acregmin); 435 SAVE_UINT32(self, mntinfop, mik_acregmax); 436 SAVE_UINT32(self, mntinfop, mik_acdirmin); 437 SAVE_UINT32(self, mntinfop, mik_acdirmax); 438 hv_store(self, "lookup_srtt", 11, 439 NEW_UV(mntinfop->mik_timers[0].srtt), 0); 440 hv_store(self, "lookup_deviate", 14, 441 NEW_UV(mntinfop->mik_timers[0].deviate), 0); 442 hv_store(self, "lookup_rtxcur", 13, 443 NEW_UV(mntinfop->mik_timers[0].rtxcur), 0); 444 hv_store(self, "read_srtt", 9, 445 NEW_UV(mntinfop->mik_timers[1].srtt), 0); 446 hv_store(self, "read_deviate", 12, 447 NEW_UV(mntinfop->mik_timers[1].deviate), 0); 448 hv_store(self, "read_rtxcur", 11, 449 NEW_UV(mntinfop->mik_timers[1].rtxcur), 0); 450 hv_store(self, "write_srtt", 10, 451 NEW_UV(mntinfop->mik_timers[2].srtt), 0); 452 hv_store(self, "write_deviate", 13, 453 NEW_UV(mntinfop->mik_timers[2].deviate), 0); 454 hv_store(self, "write_rtxcur", 12, 455 NEW_UV(mntinfop->mik_timers[2].rtxcur), 0); 456 SAVE_UINT32(self, mntinfop, mik_noresponse); 457 SAVE_UINT32(self, mntinfop, mik_failover); 458 SAVE_UINT32(self, mntinfop, mik_remap); 459 SAVE_STRING(self, mntinfop, mik_curserver, strip_str); 460 } 461 462 /* 463 * The following struct => hash functions are all only present on the sparc 464 * platform, so they are all conditionally compiled depending on __sparc 465 */ 466 467 /* 468 * Definition in /usr/platform/sun4u/include/vm/hat_sfmmu.h 469 */ 470 471 #ifdef __sparc 472 static void 473 save_sfmmu_global_stat(HV *self, kstat_t *kp, int strip_str) 474 { 475 struct sfmmu_global_stat *sfmmugp; 476 477 /* PERL_ASSERT(kp->ks_ndata == 1); */ 478 PERL_ASSERT(kp->ks_data_size == sizeof (struct sfmmu_global_stat)); 479 sfmmugp = (struct sfmmu_global_stat *)(kp->ks_data); 480 481 SAVE_INT32(self, sfmmugp, sf_tsb_exceptions); 482 SAVE_INT32(self, sfmmugp, sf_tsb_raise_exception); 483 SAVE_INT32(self, sfmmugp, sf_pagefaults); 484 SAVE_INT32(self, sfmmugp, sf_uhash_searches); 485 SAVE_INT32(self, sfmmugp, sf_uhash_links); 486 SAVE_INT32(self, sfmmugp, sf_khash_searches); 487 SAVE_INT32(self, sfmmugp, sf_khash_links); 488 SAVE_INT32(self, sfmmugp, sf_swapout); 489 SAVE_INT32(self, sfmmugp, sf_ctxfree); 490 SAVE_INT32(self, sfmmugp, sf_ctxdirty); 491 SAVE_INT32(self, sfmmugp, sf_ctxsteal); 492 SAVE_INT32(self, sfmmugp, sf_tsb_alloc); 493 SAVE_INT32(self, sfmmugp, sf_tsb_allocfail); 494 SAVE_INT32(self, sfmmugp, sf_tsb_sectsb_create); 495 SAVE_INT32(self, sfmmugp, sf_tteload8k); 496 SAVE_INT32(self, sfmmugp, sf_tteload64k); 497 SAVE_INT32(self, sfmmugp, sf_tteload512k); 498 SAVE_INT32(self, sfmmugp, sf_tteload4m); 499 SAVE_INT32(self, sfmmugp, sf_tteload32m); 500 SAVE_INT32(self, sfmmugp, sf_tteload256m); 501 SAVE_INT32(self, sfmmugp, sf_tsb_load8k); 502 SAVE_INT32(self, sfmmugp, sf_tsb_load4m); 503 SAVE_INT32(self, sfmmugp, sf_hblk_hit); 504 SAVE_INT32(self, sfmmugp, sf_hblk8_ncreate); 505 SAVE_INT32(self, sfmmugp, sf_hblk8_nalloc); 506 SAVE_INT32(self, sfmmugp, sf_hblk1_ncreate); 507 SAVE_INT32(self, sfmmugp, sf_hblk1_nalloc); 508 SAVE_INT32(self, sfmmugp, sf_hblk_slab_cnt); 509 SAVE_INT32(self, sfmmugp, sf_hblk_reserve_cnt); 510 SAVE_INT32(self, sfmmugp, sf_hblk_recurse_cnt); 511 SAVE_INT32(self, sfmmugp, sf_hblk_reserve_hit); 512 SAVE_INT32(self, sfmmugp, sf_get_free_success); 513 SAVE_INT32(self, sfmmugp, sf_get_free_throttle); 514 SAVE_INT32(self, sfmmugp, sf_get_free_fail); 515 SAVE_INT32(self, sfmmugp, sf_put_free_success); 516 SAVE_INT32(self, sfmmugp, sf_put_free_fail); 517 SAVE_INT32(self, sfmmugp, sf_pgcolor_conflict); 518 SAVE_INT32(self, sfmmugp, sf_uncache_conflict); 519 SAVE_INT32(self, sfmmugp, sf_unload_conflict); 520 SAVE_INT32(self, sfmmugp, sf_ism_uncache); 521 SAVE_INT32(self, sfmmugp, sf_ism_recache); 522 SAVE_INT32(self, sfmmugp, sf_recache); 523 SAVE_INT32(self, sfmmugp, sf_steal_count); 524 SAVE_INT32(self, sfmmugp, sf_pagesync); 525 SAVE_INT32(self, sfmmugp, sf_clrwrt); 526 SAVE_INT32(self, sfmmugp, sf_pagesync_invalid); 527 SAVE_INT32(self, sfmmugp, sf_kernel_xcalls); 528 SAVE_INT32(self, sfmmugp, sf_user_xcalls); 529 SAVE_INT32(self, sfmmugp, sf_tsb_grow); 530 SAVE_INT32(self, sfmmugp, sf_tsb_shrink); 531 SAVE_INT32(self, sfmmugp, sf_tsb_resize_failures); 532 SAVE_INT32(self, sfmmugp, sf_tsb_reloc); 533 SAVE_INT32(self, sfmmugp, sf_user_vtop); 534 SAVE_INT32(self, sfmmugp, sf_ctx_swap); 535 SAVE_INT32(self, sfmmugp, sf_tlbflush_all); 536 SAVE_INT32(self, sfmmugp, sf_tlbflush_ctx); 537 SAVE_INT32(self, sfmmugp, sf_tlbflush_deferred); 538 SAVE_INT32(self, sfmmugp, sf_tlb_reprog_pgsz); 539 } 540 #endif 541 542 /* 543 * Definition in /usr/platform/sun4u/include/vm/hat_sfmmu.h 544 */ 545 546 #ifdef __sparc 547 static void 548 save_sfmmu_tsbsize_stat(HV *self, kstat_t *kp, int strip_str) 549 { 550 struct sfmmu_tsbsize_stat *sfmmutp; 551 552 /* PERL_ASSERT(kp->ks_ndata == 1); */ 553 PERL_ASSERT(kp->ks_data_size == sizeof (struct sfmmu_tsbsize_stat)); 554 sfmmutp = (struct sfmmu_tsbsize_stat *)(kp->ks_data); 555 556 SAVE_INT32(self, sfmmutp, sf_tsbsz_8k); 557 SAVE_INT32(self, sfmmutp, sf_tsbsz_16k); 558 SAVE_INT32(self, sfmmutp, sf_tsbsz_32k); 559 SAVE_INT32(self, sfmmutp, sf_tsbsz_64k); 560 SAVE_INT32(self, sfmmutp, sf_tsbsz_128k); 561 SAVE_INT32(self, sfmmutp, sf_tsbsz_256k); 562 SAVE_INT32(self, sfmmutp, sf_tsbsz_512k); 563 SAVE_INT32(self, sfmmutp, sf_tsbsz_1m); 564 SAVE_INT32(self, sfmmutp, sf_tsbsz_2m); 565 SAVE_INT32(self, sfmmutp, sf_tsbsz_4m); 566 } 567 #endif 568 569 /* 570 * Definition in /usr/platform/sun4u/include/sys/simmstat.h 571 */ 572 573 #ifdef __sparc 574 static void 575 save_simmstat(HV *self, kstat_t *kp, int strip_str) 576 { 577 uchar_t *simmstatp; 578 SV *list; 579 int i; 580 581 /* PERL_ASSERT(kp->ks_ndata == 1); */ 582 PERL_ASSERT(kp->ks_data_size == sizeof (uchar_t) * SIMM_COUNT); 583 584 list = newSVpv("", 0); 585 for (i = 0, simmstatp = (uchar_t *)(kp->ks_data); 586 i < SIMM_COUNT - 1; i++, simmstatp++) { 587 sv_catpvf(list, "%d,", *simmstatp); 588 } 589 sv_catpvf(list, "%d", *simmstatp); 590 hv_store(self, "status", 6, list, 0); 591 } 592 #endif 593 594 /* 595 * Used by save_temperature to make CSV lists from arrays of 596 * short temperature values 597 */ 598 599 #ifdef __sparc 600 static SV * 601 short_array_to_SV(short *shortp, int len) 602 { 603 SV *list; 604 605 list = newSVpv("", 0); 606 for (; len > 1; len--, shortp++) { 607 sv_catpvf(list, "%d,", *shortp); 608 } 609 sv_catpvf(list, "%d", *shortp); 610 return (list); 611 } 612 613 /* 614 * Definition in /usr/platform/sun4u/include/sys/fhc.h 615 */ 616 617 static void 618 save_temperature(HV *self, kstat_t *kp, int strip_str) 619 { 620 struct temp_stats *tempsp; 621 622 /* PERL_ASSERT(kp->ks_ndata == 1); */ 623 PERL_ASSERT(kp->ks_data_size == sizeof (struct temp_stats)); 624 tempsp = (struct temp_stats *)(kp->ks_data); 625 626 SAVE_UINT32(self, tempsp, index); 627 hv_store(self, "l1", 2, short_array_to_SV(tempsp->l1, L1_SZ), 0); 628 hv_store(self, "l2", 2, short_array_to_SV(tempsp->l2, L2_SZ), 0); 629 hv_store(self, "l3", 2, short_array_to_SV(tempsp->l3, L3_SZ), 0); 630 hv_store(self, "l4", 2, short_array_to_SV(tempsp->l4, L4_SZ), 0); 631 hv_store(self, "l5", 2, short_array_to_SV(tempsp->l5, L5_SZ), 0); 632 SAVE_INT32(self, tempsp, max); 633 SAVE_INT32(self, tempsp, min); 634 SAVE_INT32(self, tempsp, state); 635 SAVE_INT32(self, tempsp, temp_cnt); 636 SAVE_INT32(self, tempsp, shutdown_cnt); 637 SAVE_INT32(self, tempsp, version); 638 SAVE_INT32(self, tempsp, trend); 639 SAVE_INT32(self, tempsp, override); 640 } 641 #endif 642 643 /* 644 * Not actually defined anywhere - just a short. Yuck. 645 */ 646 647 #ifdef __sparc 648 static void 649 save_temp_over(HV *self, kstat_t *kp, int strip_str) 650 { 651 short *shortp; 652 653 /* PERL_ASSERT(kp->ks_ndata == 1); */ 654 PERL_ASSERT(kp->ks_data_size == sizeof (short)); 655 656 shortp = (short *)(kp->ks_data); 657 hv_store(self, "override", 8, newSViv(*shortp), 0); 658 } 659 #endif 660 661 /* 662 * Defined in /usr/platform/sun4u/include/sys/sysctrl.h 663 * (Well, sort of. Actually there's no structure, just a list of #defines 664 * enumerating *some* of the array indexes.) 665 */ 666 667 #ifdef __sparc 668 static void 669 save_ps_shadow(HV *self, kstat_t *kp, int strip_str) 670 { 671 uchar_t *ucharp; 672 673 /* PERL_ASSERT(kp->ks_ndata == 1); */ 674 PERL_ASSERT(kp->ks_data_size == SYS_PS_COUNT); 675 676 ucharp = (uchar_t *)(kp->ks_data); 677 hv_store(self, "core_0", 6, newSViv(*ucharp++), 0); 678 hv_store(self, "core_1", 6, newSViv(*ucharp++), 0); 679 hv_store(self, "core_2", 6, newSViv(*ucharp++), 0); 680 hv_store(self, "core_3", 6, newSViv(*ucharp++), 0); 681 hv_store(self, "core_4", 6, newSViv(*ucharp++), 0); 682 hv_store(self, "core_5", 6, newSViv(*ucharp++), 0); 683 hv_store(self, "core_6", 6, newSViv(*ucharp++), 0); 684 hv_store(self, "core_7", 6, newSViv(*ucharp++), 0); 685 hv_store(self, "pps_0", 5, newSViv(*ucharp++), 0); 686 hv_store(self, "clk_33", 6, newSViv(*ucharp++), 0); 687 hv_store(self, "clk_50", 6, newSViv(*ucharp++), 0); 688 hv_store(self, "v5_p", 4, newSViv(*ucharp++), 0); 689 hv_store(self, "v12_p", 5, newSViv(*ucharp++), 0); 690 hv_store(self, "v5_aux", 6, newSViv(*ucharp++), 0); 691 hv_store(self, "v5_p_pch", 8, newSViv(*ucharp++), 0); 692 hv_store(self, "v12_p_pch", 9, newSViv(*ucharp++), 0); 693 hv_store(self, "v3_pch", 6, newSViv(*ucharp++), 0); 694 hv_store(self, "v5_pch", 6, newSViv(*ucharp++), 0); 695 hv_store(self, "p_fan", 5, newSViv(*ucharp++), 0); 696 } 697 #endif 698 699 /* 700 * Definition in /usr/platform/sun4u/include/sys/fhc.h 701 */ 702 703 #ifdef __sparc 704 static void 705 save_fault_list(HV *self, kstat_t *kp, int strip_str) 706 { 707 struct ft_list *faultp; 708 int i; 709 char name[KSTAT_STRLEN + 7]; /* room for 999999 faults */ 710 711 /* PERL_ASSERT(kp->ks_ndata == 1); */ 712 /* PERL_ASSERT(kp->ks_data_size == sizeof (struct ft_list)); */ 713 714 for (i = 1, faultp = (struct ft_list *)(kp->ks_data); 715 i <= 999999 && i <= kp->ks_data_size / sizeof (struct ft_list); 716 i++, faultp++) { 717 (void) snprintf(name, sizeof (name), "unit_%d", i); 718 hv_store(self, name, strlen(name), newSViv(faultp->unit), 0); 719 (void) snprintf(name, sizeof (name), "type_%d", i); 720 hv_store(self, name, strlen(name), newSViv(faultp->type), 0); 721 (void) snprintf(name, sizeof (name), "fclass_%d", i); 722 hv_store(self, name, strlen(name), newSViv(faultp->fclass), 0); 723 (void) snprintf(name, sizeof (name), "create_time_%d", i); 724 hv_store(self, name, strlen(name), 725 NEW_UV(faultp->create_time), 0); 726 (void) snprintf(name, sizeof (name), "msg_%d", i); 727 hv_store(self, name, strlen(name), newSVpv(faultp->msg, 0), 0); 728 } 729 } 730 #endif 731 732 /* 733 * We need to be able to find the function corresponding to a particular raw 734 * kstat. To do this we ignore the instance and glue the module and name 735 * together to form a composite key. We can then use the data in the kstat 736 * structure to find the appropriate function. We use a perl hash to manage the 737 * lookup, where the key is "module:name" and the value is a pointer to the 738 * appropriate C function. 739 * 740 * Note that some kstats include the instance number as part of the module 741 * and/or name. This could be construed as a bug. However, to work around this 742 * we omit any digits from the module and name as we build the table in 743 * build_raw_kstat_loopup(), and we remove any digits from the module and name 744 * when we look up the functions in lookup_raw_kstat_fn() 745 */ 746 747 /* 748 * This function is called when the XS is first dlopen()ed, and builds the 749 * lookup table as described above. 750 */ 751 752 static void 753 build_raw_kstat_lookup() 754 { 755 /* Create new hash */ 756 raw_kstat_lookup = newHV(); 757 758 SAVE_FNP(raw_kstat_lookup, save_cpu_stat, "cpu_stat:cpu_stat"); 759 SAVE_FNP(raw_kstat_lookup, save_var, "unix:var"); 760 SAVE_FNP(raw_kstat_lookup, save_flushmeter, "unix:flushmeter"); 761 SAVE_FNP(raw_kstat_lookup, save_ncstats, "unix:ncstats"); 762 SAVE_FNP(raw_kstat_lookup, save_sysinfo, "unix:sysinfo"); 763 SAVE_FNP(raw_kstat_lookup, save_vminfo, "unix:vminfo"); 764 SAVE_FNP(raw_kstat_lookup, save_nfs, "nfs:mntinfo"); 765 #ifdef __sparc 766 SAVE_FNP(raw_kstat_lookup, save_sfmmu_global_stat, 767 "unix:sfmmu_global_stat"); 768 SAVE_FNP(raw_kstat_lookup, save_sfmmu_tsbsize_stat, 769 "unix:sfmmu_tsbsize_stat"); 770 SAVE_FNP(raw_kstat_lookup, save_simmstat, "unix:simm-status"); 771 SAVE_FNP(raw_kstat_lookup, save_temperature, "unix:temperature"); 772 SAVE_FNP(raw_kstat_lookup, save_temp_over, "unix:temperature override"); 773 SAVE_FNP(raw_kstat_lookup, save_ps_shadow, "unix:ps_shadow"); 774 SAVE_FNP(raw_kstat_lookup, save_fault_list, "unix:fault_list"); 775 #endif 776 } 777 778 /* 779 * This finds and returns the raw kstat reader function corresponding to the 780 * supplied module and name. If no matching function exists, 0 is returned. 781 */ 782 783 static kstat_raw_reader_t lookup_raw_kstat_fn(char *module, char *name) 784 { 785 char key[KSTAT_STRLEN * 2]; 786 register char *f, *t; 787 SV **entry; 788 kstat_raw_reader_t fnp; 789 790 /* Copy across module & name, removing any digits - see comment above */ 791 for (f = module, t = key; *f != '\0'; f++, t++) { 792 while (*f != '\0' && isdigit(*f)) { f++; } 793 *t = *f; 794 } 795 *t++ = ':'; 796 for (f = name; *f != '\0'; f++, t++) { 797 while (*f != '\0' && isdigit(*f)) { 798 f++; 799 } 800 *t = *f; 801 } 802 *t = '\0'; 803 804 /* look up & return the function, or teturn 0 if not found */ 805 if ((entry = hv_fetch(raw_kstat_lookup, key, strlen(key), FALSE)) == 0) 806 { 807 fnp = 0; 808 } else { 809 fnp = (kstat_raw_reader_t)(uintptr_t)SvIV(*entry); 810 } 811 return (fnp); 812 } 813 814 /* 815 * This module converts the flat list returned by kstat_read() into a perl hash 816 * tree keyed on module, instance, name and statistic. The following functions 817 * provide code to create the nested hashes, and to iterate over them. 818 */ 819 820 /* 821 * Given module, instance and name keys return a pointer to the hash tied to 822 * the bottommost hash. If the hash already exists, we just return a pointer 823 * to it, otherwise we create the hash and any others also required above it in 824 * the hierarchy. The returned tiehash is blessed into the 825 * Sun::Solaris::Kstat::_Stat class, so that the appropriate TIEHASH methods are 826 * called when the bottommost hash is accessed. If the is_new parameter is 827 * non-null it will be set to TRUE if a new tie has been created, and FALSE if 828 * the tie already existed. 829 */ 830 831 static HV * 832 get_tie(SV *self, char *module, int instance, char *name, int *is_new) 833 { 834 char str_inst[11]; /* big enough for up to 10^10 instances */ 835 char *key[3]; /* 3 part key: module, instance, name */ 836 int k; 837 int new; 838 HV *hash; 839 HV *tie; 840 841 /* Create the keys */ 842 (void) snprintf(str_inst, sizeof (str_inst), "%d", instance); 843 key[0] = module; 844 key[1] = str_inst; 845 key[2] = name; 846 847 /* Iteratively descend the tree, creating new hashes as required */ 848 hash = (HV *)SvRV(self); 849 for (k = 0; k < 3; k++) { 850 SV **entry; 851 852 SvREADONLY_off(hash); 853 entry = hv_fetch(hash, key[k], strlen(key[k]), TRUE); 854 855 /* If the entry doesn't exist, create it */ 856 if (! SvOK(*entry)) { 857 HV *newhash; 858 SV *rv; 859 860 newhash = newHV(); 861 rv = newRV_noinc((SV *)newhash); 862 sv_setsv(*entry, rv); 863 SvREFCNT_dec(rv); 864 if (k < 2) { 865 SvREADONLY_on(newhash); 866 } 867 SvREADONLY_on(*entry); 868 SvREADONLY_on(hash); 869 hash = newhash; 870 new = 1; 871 872 /* Otherwise it already existed */ 873 } else { 874 SvREADONLY_on(hash); 875 hash = (HV *)SvRV(*entry); 876 new = 0; 877 } 878 } 879 880 /* Create and bless a hash for the tie, if necessary */ 881 if (new) { 882 SV *tieref; 883 HV *stash; 884 885 tie = newHV(); 886 tieref = newRV_noinc((SV *)tie); 887 stash = gv_stashpv("Sun::Solaris::Kstat::_Stat", TRUE); 888 sv_bless(tieref, stash); 889 890 /* Add TIEHASH magic */ 891 hv_magic(hash, (GV *)tieref, 'P'); 892 SvREADONLY_on(hash); 893 894 /* Otherwise, just find the existing tied hash */ 895 } else { 896 MAGIC *mg; 897 898 mg = mg_find((SV *)hash, 'P'); 899 PERL_ASSERTMSG(mg != 0, "get_tie: lost P magic"); 900 tie = (HV *)SvRV(mg->mg_obj); 901 } 902 if (is_new) { 903 *is_new = new; 904 } 905 return (tie); 906 } 907 908 /* 909 * This is an iterator function used to traverse the hash hierarchy and apply 910 * the passed function to the tied hashes at the bottom of the hierarchy. If 911 * any of the callback functions return 0, 0 is returned, otherwise 1 912 */ 913 914 static int 915 apply_to_ties(SV *self, ATTCb_t cb, void *arg) 916 { 917 HV *hash1; 918 HE *entry1; 919 long s; 920 int ret; 921 922 hash1 = (HV *)SvRV(self); 923 hv_iterinit(hash1); 924 ret = 1; 925 926 /* Iterate over each module */ 927 while (entry1 = hv_iternext(hash1)) { 928 HV *hash2; 929 HE *entry2; 930 931 hash2 = (HV *)SvRV(hv_iterval(hash1, entry1)); 932 hv_iterinit(hash2); 933 934 /* Iterate over each module:instance */ 935 while (entry2 = hv_iternext(hash2)) { 936 HV *hash3; 937 HE *entry3; 938 939 hash3 = (HV *)SvRV(hv_iterval(hash2, entry2)); 940 hv_iterinit(hash3); 941 942 /* Iterate over each module:instance:name */ 943 while (entry3 = hv_iternext(hash3)) { 944 HV *hash4; 945 MAGIC *mg; 946 HV *tie; 947 948 /* Get the tie */ 949 hash4 = (HV *)SvRV(hv_iterval(hash3, entry3)); 950 mg = mg_find((SV *)hash4, 'P'); 951 PERL_ASSERTMSG(mg != 0, 952 "apply_to_ties: lost P magic"); 953 954 /* Apply the callback */ 955 if (! cb((HV *)SvRV(mg->mg_obj), arg)) { 956 ret = 0; 957 } 958 } 959 } 960 } 961 return (ret); 962 } 963 964 /* 965 * Mark this HV as valid - used by update() when pruning deleted kstat nodes 966 */ 967 968 static int 969 set_valid(HV *self, void *arg) 970 { 971 MAGIC *mg; 972 973 mg = mg_find((SV *)self, '~'); 974 PERL_ASSERTMSG(mg != 0, "set_valid: lost ~ magic"); 975 ((KstatInfo_t *)SvPVX(mg->mg_obj))->valid = (int)arg; 976 return (1); 977 } 978 979 /* 980 * Prune invalid kstat nodes. This is called when kstat_chain_update() detects 981 * that the kstat chain has been updated. This removes any hash tree entries 982 * that no longer have a corresponding kstat. If del is non-null it will be 983 * set to the keys of the deleted kstat nodes, if any. If any entries are 984 * deleted 1 will be retured, otherwise 0 985 */ 986 987 static int 988 prune_invalid(SV *self, AV *del) 989 { 990 HV *hash1; 991 HE *entry1; 992 STRLEN klen; 993 char *module, *instance, *name, *key; 994 int ret; 995 996 hash1 = (HV *)SvRV(self); 997 hv_iterinit(hash1); 998 ret = 0; 999 1000 /* Iterate over each module */ 1001 while (entry1 = hv_iternext(hash1)) { 1002 HV *hash2; 1003 HE *entry2; 1004 1005 module = HePV(entry1, PL_na); 1006 hash2 = (HV *)SvRV(hv_iterval(hash1, entry1)); 1007 hv_iterinit(hash2); 1008 1009 /* Iterate over each module:instance */ 1010 while (entry2 = hv_iternext(hash2)) { 1011 HV *hash3; 1012 HE *entry3; 1013 1014 instance = HePV(entry2, PL_na); 1015 hash3 = (HV *)SvRV(hv_iterval(hash2, entry2)); 1016 hv_iterinit(hash3); 1017 1018 /* Iterate over each module:instance:name */ 1019 while (entry3 = hv_iternext(hash3)) { 1020 HV *hash4; 1021 MAGIC *mg; 1022 HV *tie; 1023 1024 name = HePV(entry3, PL_na); 1025 hash4 = (HV *)SvRV(hv_iterval(hash3, entry3)); 1026 mg = mg_find((SV *)hash4, 'P'); 1027 PERL_ASSERTMSG(mg != 0, 1028 "prune_invalid: lost P magic"); 1029 tie = (HV *)SvRV(mg->mg_obj); 1030 mg = mg_find((SV *)tie, '~'); 1031 PERL_ASSERTMSG(mg != 0, 1032 "prune_invalid: lost ~ magic"); 1033 1034 /* If this is marked as invalid, prune it */ 1035 if (((KstatInfo_t *)SvPVX( 1036 (SV *)mg->mg_obj))->valid == FALSE) { 1037 SvREADONLY_off(hash3); 1038 key = HePV(entry3, klen); 1039 hv_delete(hash3, key, klen, G_DISCARD); 1040 SvREADONLY_on(hash3); 1041 if (del) { 1042 av_push(del, 1043 newSVpvf("%s:%s:%s", 1044 module, instance, name)); 1045 } 1046 ret = 1; 1047 } 1048 } 1049 1050 /* If the module:instance:name hash is empty prune it */ 1051 if (HvKEYS(hash3) == 0) { 1052 SvREADONLY_off(hash2); 1053 key = HePV(entry2, klen); 1054 hv_delete(hash2, key, klen, G_DISCARD); 1055 SvREADONLY_on(hash2); 1056 } 1057 } 1058 /* If the module:instance hash is empty prune it */ 1059 if (HvKEYS(hash2) == 0) { 1060 SvREADONLY_off(hash1); 1061 key = HePV(entry1, klen); 1062 hv_delete(hash1, key, klen, G_DISCARD); 1063 SvREADONLY_on(hash1); 1064 } 1065 } 1066 return (ret); 1067 } 1068 1069 /* 1070 * Named kstats are returned as a list of key/values. This function converts 1071 * such a list into the equivalent perl datatypes, and stores them in the passed 1072 * hash. 1073 */ 1074 1075 static void 1076 save_named(HV *self, kstat_t *kp, int strip_str) 1077 { 1078 kstat_named_t *knp; 1079 int n; 1080 SV* value; 1081 1082 for (n = kp->ks_ndata, knp = KSTAT_NAMED_PTR(kp); n > 0; n--, knp++) { 1083 switch (knp->data_type) { 1084 case KSTAT_DATA_CHAR: 1085 value = newSVpv(knp->value.c, strip_str ? 1086 strlen(knp->value.c) : sizeof (knp->value.c)); 1087 break; 1088 case KSTAT_DATA_INT32: 1089 value = newSViv(knp->value.i32); 1090 break; 1091 case KSTAT_DATA_UINT32: 1092 value = NEW_UV(knp->value.ui32); 1093 break; 1094 case KSTAT_DATA_INT64: 1095 value = NEW_UV(knp->value.i64); 1096 break; 1097 case KSTAT_DATA_UINT64: 1098 value = NEW_UV(knp->value.ui64); 1099 break; 1100 case KSTAT_DATA_STRING: 1101 if (KSTAT_NAMED_STR_PTR(knp) == NULL) 1102 value = newSVpv("null", sizeof ("null") - 1); 1103 else 1104 value = newSVpv(KSTAT_NAMED_STR_PTR(knp), 1105 KSTAT_NAMED_STR_BUFLEN(knp) -1); 1106 break; 1107 default: 1108 PERL_ASSERTMSG(0, "kstat_read: invalid data type"); 1109 break; 1110 } 1111 hv_store(self, knp->name, strlen(knp->name), value, 0); 1112 } 1113 } 1114 1115 /* 1116 * Save kstat interrupt statistics 1117 */ 1118 1119 static void 1120 save_intr(HV *self, kstat_t *kp, int strip_str) 1121 { 1122 kstat_intr_t *kintrp; 1123 int i; 1124 static char *intr_names[] = 1125 { "hard", "soft", "watchdog", "spurious", "multiple_service" }; 1126 1127 PERL_ASSERT(kp->ks_ndata == 1); 1128 PERL_ASSERT(kp->ks_data_size == sizeof (kstat_intr_t)); 1129 kintrp = KSTAT_INTR_PTR(kp); 1130 1131 for (i = 0; i < KSTAT_NUM_INTRS; i++) { 1132 hv_store(self, intr_names[i], strlen(intr_names[i]), 1133 NEW_UV(kintrp->intrs[i]), 0); 1134 } 1135 } 1136 1137 /* 1138 * Save IO statistics 1139 */ 1140 1141 static void 1142 save_io(HV *self, kstat_t *kp, int strip_str) 1143 { 1144 kstat_io_t *kiop; 1145 1146 PERL_ASSERT(kp->ks_ndata == 1); 1147 PERL_ASSERT(kp->ks_data_size == sizeof (kstat_io_t)); 1148 kiop = KSTAT_IO_PTR(kp); 1149 SAVE_UINT64(self, kiop, nread); 1150 SAVE_UINT64(self, kiop, nwritten); 1151 SAVE_UINT32(self, kiop, reads); 1152 SAVE_UINT32(self, kiop, writes); 1153 SAVE_HRTIME(self, kiop, wtime); 1154 SAVE_HRTIME(self, kiop, wlentime); 1155 SAVE_HRTIME(self, kiop, wlastupdate); 1156 SAVE_HRTIME(self, kiop, rtime); 1157 SAVE_HRTIME(self, kiop, rlentime); 1158 SAVE_HRTIME(self, kiop, rlastupdate); 1159 SAVE_UINT32(self, kiop, wcnt); 1160 SAVE_UINT32(self, kiop, rcnt); 1161 } 1162 1163 /* 1164 * Save timer statistics 1165 */ 1166 1167 static void 1168 save_timer(HV *self, kstat_t *kp, int strip_str) 1169 { 1170 kstat_timer_t *ktimerp; 1171 1172 PERL_ASSERT(kp->ks_ndata == 1); 1173 PERL_ASSERT(kp->ks_data_size == sizeof (kstat_timer_t)); 1174 ktimerp = KSTAT_TIMER_PTR(kp); 1175 SAVE_STRING(self, ktimerp, name, strip_str); 1176 SAVE_UINT64(self, ktimerp, num_events); 1177 SAVE_HRTIME(self, ktimerp, elapsed_time); 1178 SAVE_HRTIME(self, ktimerp, min_time); 1179 SAVE_HRTIME(self, ktimerp, max_time); 1180 SAVE_HRTIME(self, ktimerp, start_time); 1181 SAVE_HRTIME(self, ktimerp, stop_time); 1182 } 1183 1184 /* 1185 * Read kstats and copy into the supplied perl hash structure. If refresh is 1186 * true, this function is being called as part of the update() method. In this 1187 * case it is only necessary to read the kstats if they have previously been 1188 * accessed (kip->read == TRUE). If refresh is false, this function is being 1189 * called prior to returning a value to the caller. In this case, it is only 1190 * necessary to read the kstats if they have not previously been read. If the 1191 * kstat_read() fails, 0 is returned, otherwise 1 1192 */ 1193 1194 static int 1195 read_kstats(HV *self, int refresh) 1196 { 1197 MAGIC *mg; 1198 KstatInfo_t *kip; 1199 kstat_raw_reader_t fnp; 1200 1201 /* Find the MAGIC KstatInfo_t data structure */ 1202 mg = mg_find((SV *)self, '~'); 1203 PERL_ASSERTMSG(mg != 0, "read_kstats: lost ~ magic"); 1204 kip = (KstatInfo_t *)SvPVX(mg->mg_obj); 1205 1206 /* Return early if we don't need to actually read the kstats */ 1207 if ((refresh && ! kip->read) || (! refresh && kip->read)) { 1208 return (1); 1209 } 1210 1211 /* Read the kstats and return 0 if this fails */ 1212 if (kstat_read(kip->kstat_ctl, kip->kstat, NULL) < 0) { 1213 return (0); 1214 } 1215 1216 /* Save the read data */ 1217 hv_store(self, "snaptime", 8, NEW_HRTIME(kip->kstat->ks_snaptime), 0); 1218 switch (kip->kstat->ks_type) { 1219 case KSTAT_TYPE_RAW: 1220 if ((fnp = lookup_raw_kstat_fn(kip->kstat->ks_module, 1221 kip->kstat->ks_name)) != 0) { 1222 fnp(self, kip->kstat, kip->strip_str); 1223 } 1224 break; 1225 case KSTAT_TYPE_NAMED: 1226 save_named(self, kip->kstat, kip->strip_str); 1227 break; 1228 case KSTAT_TYPE_INTR: 1229 save_intr(self, kip->kstat, kip->strip_str); 1230 break; 1231 case KSTAT_TYPE_IO: 1232 save_io(self, kip->kstat, kip->strip_str); 1233 break; 1234 case KSTAT_TYPE_TIMER: 1235 save_timer(self, kip->kstat, kip->strip_str); 1236 break; 1237 default: 1238 PERL_ASSERTMSG(0, "read_kstats: illegal kstat type"); 1239 break; 1240 } 1241 kip->read = TRUE; 1242 return (1); 1243 } 1244 1245 /* 1246 * The XS code exported to perl is below here. Note that the XS preprocessor 1247 * has its own commenting syntax, so all comments from this point on are in 1248 * that form. 1249 */ 1250 1251 /* The following XS methods are the ABI of the Sun::Solaris::Kstat package */ 1252 1253 MODULE = Sun::Solaris::Kstat PACKAGE = Sun::Solaris::Kstat 1254 PROTOTYPES: ENABLE 1255 1256 # Create the raw kstat to store function lookup table on load 1257 BOOT: 1258 build_raw_kstat_lookup(); 1259 1260 # 1261 # The Sun::Solaris::Kstat constructor. This builds the nested 1262 # name::instance::module hash structure, but doesn't actually read the 1263 # underlying kstats. This is done on demand by the TIEHASH methods in 1264 # Sun::Solaris::Kstat::_Stat 1265 # 1266 1267 SV* 1268 new(class, ...) 1269 char *class; 1270 PREINIT: 1271 HV *stash; 1272 kstat_ctl_t *kc; 1273 SV *kcsv; 1274 kstat_t *kp; 1275 KstatInfo_t kstatinfo; 1276 int sp, strip_str; 1277 CODE: 1278 /* Check we have an even number of arguments, excluding the class */ 1279 sp = 1; 1280 if (((items - sp) % 2) != 0) { 1281 croak(DEBUG_ID ": new: invalid number of arguments"); 1282 } 1283 1284 /* Process any (name => value) arguments */ 1285 strip_str = 0; 1286 while (sp < items) { 1287 SV *name, *value; 1288 1289 name = ST(sp); 1290 sp++; 1291 value = ST(sp); 1292 sp++; 1293 if (strcmp(SvPVX(name), "strip_strings") == 0) { 1294 strip_str = SvTRUE(value); 1295 } else { 1296 croak(DEBUG_ID ": new: invalid parameter name '%s'", 1297 SvPVX(name)); 1298 } 1299 } 1300 1301 /* Open the kstats handle */ 1302 if ((kc = kstat_open()) == 0) { 1303 XSRETURN_UNDEF; 1304 } 1305 1306 /* Create a blessed hash ref */ 1307 RETVAL = (SV *)newRV_noinc((SV *)newHV()); 1308 stash = gv_stashpv(class, TRUE); 1309 sv_bless(RETVAL, stash); 1310 1311 /* Create a place to save the KstatInfo_t structure */ 1312 kcsv = newSVpv((char *)&kc, sizeof (kc)); 1313 sv_magic(SvRV(RETVAL), kcsv, '~', 0, 0); 1314 SvREFCNT_dec(kcsv); 1315 1316 /* Initialise the KstatsInfo_t structure */ 1317 kstatinfo.read = FALSE; 1318 kstatinfo.valid = TRUE; 1319 kstatinfo.strip_str = strip_str; 1320 kstatinfo.kstat_ctl = kc; 1321 1322 /* Scan the kstat chain, building hash entries for the kstats */ 1323 for (kp = kc->kc_chain; kp != 0; kp = kp->ks_next) { 1324 HV *tie; 1325 SV *kstatsv; 1326 1327 /* Don't bother storing the kstat headers */ 1328 if (strncmp(kp->ks_name, "kstat_", 6) == 0) { 1329 continue; 1330 } 1331 1332 /* Don't bother storing raw stats we don't understand */ 1333 if (kp->ks_type == KSTAT_TYPE_RAW && 1334 lookup_raw_kstat_fn(kp->ks_module, kp->ks_name) == 0) { 1335 #ifdef REPORT_UNKNOWN 1336 (void) fprintf(stderr, 1337 "Unknown kstat type %s:%d:%s - %d of size %d\n", 1338 kp->ks_module, kp->ks_instance, kp->ks_name, 1339 kp->ks_ndata, kp->ks_data_size); 1340 #endif 1341 continue; 1342 } 1343 1344 /* Create a 3-layer hash hierarchy - module.instance.name */ 1345 tie = get_tie(RETVAL, kp->ks_module, kp->ks_instance, 1346 kp->ks_name, 0); 1347 1348 /* Save the data necessary to read the kstat info on demand */ 1349 hv_store(tie, "class", 5, newSVpv(kp->ks_class, 0), 0); 1350 hv_store(tie, "crtime", 6, NEW_HRTIME(kp->ks_crtime), 0); 1351 kstatinfo.kstat = kp; 1352 kstatsv = newSVpv((char *)&kstatinfo, sizeof (kstatinfo)); 1353 sv_magic((SV *)tie, kstatsv, '~', 0, 0); 1354 SvREFCNT_dec(kstatsv); 1355 } 1356 SvREADONLY_on(SvRV(RETVAL)); 1357 /* SvREADONLY_on(RETVAL); */ 1358 OUTPUT: 1359 RETVAL 1360 1361 # 1362 # Update the perl hash structure so that it is in line with the kernel kstats 1363 # data. Only kstats athat have previously been accessed are read, 1364 # 1365 1366 # Scalar context: true/false 1367 # Array context: (\@added, \@deleted) 1368 void 1369 update(self) 1370 SV* self; 1371 PREINIT: 1372 MAGIC *mg; 1373 kstat_ctl_t *kc; 1374 kstat_t *kp; 1375 int ret; 1376 AV *add, *del; 1377 PPCODE: 1378 /* Find the hidden KstatInfo_t structure */ 1379 mg = mg_find(SvRV(self), '~'); 1380 PERL_ASSERTMSG(mg != 0, "update: lost ~ magic"); 1381 kc = *(kstat_ctl_t **)SvPVX(mg->mg_obj); 1382 1383 /* Update the kstat chain, and return immediately on error. */ 1384 if ((ret = kstat_chain_update(kc)) == -1) { 1385 if (GIMME_V == G_ARRAY) { 1386 EXTEND(SP, 2); 1387 PUSHs(sv_newmortal()); 1388 PUSHs(sv_newmortal()); 1389 } else { 1390 EXTEND(SP, 1); 1391 PUSHs(sv_2mortal(newSViv(ret))); 1392 } 1393 } 1394 1395 /* Create the arrays to be returned if in an array context */ 1396 if (GIMME_V == G_ARRAY) { 1397 add = newAV(); 1398 del = newAV(); 1399 } else { 1400 add = 0; 1401 del = 0; 1402 } 1403 1404 /* 1405 * If the kstat chain hasn't changed we can just reread any stats 1406 * that have already been read 1407 */ 1408 if (ret == 0) { 1409 if (! apply_to_ties(self, (ATTCb_t)read_kstats, (void *)TRUE)) { 1410 if (GIMME_V == G_ARRAY) { 1411 EXTEND(SP, 2); 1412 PUSHs(sv_2mortal(newRV_noinc((SV *)add))); 1413 PUSHs(sv_2mortal(newRV_noinc((SV *)del))); 1414 } else { 1415 EXTEND(SP, 1); 1416 PUSHs(sv_2mortal(newSViv(-1))); 1417 } 1418 } 1419 1420 /* 1421 * Otherwise we have to update the Perl structure so that it is in 1422 * agreement with the new kstat chain. We do this in such a way as to 1423 * retain all the existing structures, just adding or deleting the 1424 * bare minimum. 1425 */ 1426 } else { 1427 KstatInfo_t kstatinfo; 1428 1429 /* 1430 * Step 1: set the 'invalid' flag on each entry 1431 */ 1432 apply_to_ties(self, &set_valid, (void *)FALSE); 1433 1434 /* 1435 * Step 2: Set the 'valid' flag on all entries still in the 1436 * kernel kstat chain 1437 */ 1438 kstatinfo.read = FALSE; 1439 kstatinfo.valid = TRUE; 1440 kstatinfo.kstat_ctl = kc; 1441 for (kp = kc->kc_chain; kp != 0; kp = kp->ks_next) { 1442 int new; 1443 HV *tie; 1444 1445 /* Don't bother storing the kstat headers or types */ 1446 if (strncmp(kp->ks_name, "kstat_", 6) == 0) { 1447 continue; 1448 } 1449 1450 /* Don't bother storing raw stats we don't understand */ 1451 if (kp->ks_type == KSTAT_TYPE_RAW && 1452 lookup_raw_kstat_fn(kp->ks_module, kp->ks_name) 1453 == 0) { 1454 #ifdef REPORT_UNKNOWN 1455 (void) printf("Unknown kstat type %s:%d:%s " 1456 "- %d of size %d\n", kp->ks_module, 1457 kp->ks_instance, kp->ks_name, 1458 kp->ks_ndata, kp->ks_data_size); 1459 #endif 1460 continue; 1461 } 1462 1463 /* Find the tied hash associated with the kstat entry */ 1464 tie = get_tie(self, kp->ks_module, kp->ks_instance, 1465 kp->ks_name, &new); 1466 1467 /* If newly created store the associated kstat info */ 1468 if (new) { 1469 SV *kstatsv; 1470 1471 /* 1472 * Save the data necessary to read the kstat 1473 * info on demand 1474 */ 1475 hv_store(tie, "class", 5, 1476 newSVpv(kp->ks_class, 0), 0); 1477 hv_store(tie, "crtime", 6, 1478 NEW_HRTIME(kp->ks_crtime), 0); 1479 kstatinfo.kstat = kp; 1480 kstatsv = newSVpv((char *)&kstatinfo, 1481 sizeof (kstatinfo)); 1482 sv_magic((SV *)tie, kstatsv, '~', 0, 0); 1483 SvREFCNT_dec(kstatsv); 1484 1485 /* Save the key on the add list, if required */ 1486 if (GIMME_V == G_ARRAY) { 1487 av_push(add, newSVpvf("%s:%d:%s", 1488 kp->ks_module, kp->ks_instance, 1489 kp->ks_name)); 1490 } 1491 1492 /* If the stats already exist, just update them */ 1493 } else { 1494 MAGIC *mg; 1495 KstatInfo_t *kip; 1496 1497 /* Find the hidden KstatInfo_t */ 1498 mg = mg_find((SV *)tie, '~'); 1499 PERL_ASSERTMSG(mg != 0, "update: lost ~ magic"); 1500 kip = (KstatInfo_t *)SvPVX(mg->mg_obj); 1501 1502 /* Mark the tie as valid */ 1503 kip->valid = TRUE; 1504 1505 /* Re-save the kstat_t pointer. If the kstat 1506 * has been deleted and re-added since the last 1507 * update, the address of the kstat structure 1508 * will have changed, even though the kstat will 1509 * still live at the same place in the perl 1510 * hash tree structure. 1511 */ 1512 kip->kstat = kp; 1513 1514 /* Reread the stats, if read previously */ 1515 read_kstats(tie, TRUE); 1516 } 1517 } 1518 1519 /* 1520 *Step 3: Delete any entries still marked as 'invalid' 1521 */ 1522 ret = prune_invalid(self, del); 1523 1524 } 1525 if (GIMME_V == G_ARRAY) { 1526 EXTEND(SP, 2); 1527 PUSHs(sv_2mortal(newRV_noinc((SV *)add))); 1528 PUSHs(sv_2mortal(newRV_noinc((SV *)del))); 1529 } else { 1530 EXTEND(SP, 1); 1531 PUSHs(sv_2mortal(newSViv(ret))); 1532 } 1533 1534 1535 # 1536 # Destructor. Closes the kstat connection 1537 # 1538 1539 void 1540 DESTROY(self) 1541 SV *self; 1542 PREINIT: 1543 MAGIC *mg; 1544 kstat_ctl_t *kc; 1545 CODE: 1546 mg = mg_find(SvRV(self), '~'); 1547 PERL_ASSERTMSG(mg != 0, "DESTROY: lost ~ magic"); 1548 kc = *(kstat_ctl_t **)SvPVX(mg->mg_obj); 1549 if (kstat_close(kc) != 0) { 1550 croak(DEBUG_ID ": kstat_close: failed"); 1551 } 1552 1553 # 1554 # The following XS methods implement the TIEHASH mechanism used to update the 1555 # kstats hash structure. These are blessed into a package that isn't 1556 # visible to callers of the Sun::Solaris::Kstat module 1557 # 1558 1559 MODULE = Sun::Solaris::Kstat PACKAGE = Sun::Solaris::Kstat::_Stat 1560 PROTOTYPES: ENABLE 1561 1562 # 1563 # If a value has already been read, return it. Otherwise read the appropriate 1564 # kstat and then return the value 1565 # 1566 1567 SV* 1568 FETCH(self, key) 1569 SV* self; 1570 SV* key; 1571 PREINIT: 1572 char *k; 1573 STRLEN klen; 1574 SV **value; 1575 CODE: 1576 self = SvRV(self); 1577 k = SvPV(key, klen); 1578 if (strNE(k, "class") && strNE(k, "crtime")) { 1579 read_kstats((HV *)self, FALSE); 1580 } 1581 value = hv_fetch((HV *)self, k, klen, FALSE); 1582 if (value) { 1583 RETVAL = *value; SvREFCNT_inc(RETVAL); 1584 } else { 1585 RETVAL = &PL_sv_undef; 1586 } 1587 OUTPUT: 1588 RETVAL 1589 1590 # 1591 # Save the passed value into the kstat hash. Read the appropriate kstat first, 1592 # if necessary. Note that this DOES NOT update the underlying kernel kstat 1593 # structure. 1594 # 1595 1596 SV* 1597 STORE(self, key, value) 1598 SV* self; 1599 SV* key; 1600 SV* value; 1601 PREINIT: 1602 char *k; 1603 STRLEN klen; 1604 CODE: 1605 self = SvRV(self); 1606 k = SvPV(key, klen); 1607 if (strNE(k, "class") && strNE(k, "crtime")) { 1608 read_kstats((HV *)self, FALSE); 1609 } 1610 SvREFCNT_inc(value); 1611 RETVAL = *(hv_store((HV *)self, k, klen, value, 0)); 1612 SvREFCNT_inc(RETVAL); 1613 OUTPUT: 1614 RETVAL 1615 1616 # 1617 # Check for the existence of the passed key. Read the kstat first if necessary 1618 # 1619 1620 bool 1621 EXISTS(self, key) 1622 SV* self; 1623 SV* key; 1624 PREINIT: 1625 char *k; 1626 CODE: 1627 self = SvRV(self); 1628 k = SvPV(key, PL_na); 1629 if (strNE(k, "class") && strNE(k, "crtime")) { 1630 read_kstats((HV *)self, FALSE); 1631 } 1632 RETVAL = hv_exists_ent((HV *)self, key, 0); 1633 OUTPUT: 1634 RETVAL 1635 1636 1637 # 1638 # Hash iterator initialisation. Read the kstats if necessary. 1639 # 1640 1641 SV* 1642 FIRSTKEY(self) 1643 SV* self; 1644 PREINIT: 1645 HE *he; 1646 PPCODE: 1647 self = SvRV(self); 1648 read_kstats((HV *)self, FALSE); 1649 hv_iterinit((HV *)self); 1650 if (he = hv_iternext((HV *)self)) { 1651 EXTEND(SP, 1); 1652 PUSHs(hv_iterkeysv(he)); 1653 } 1654 1655 # 1656 # Return hash iterator next value. Read the kstats if necessary. 1657 # 1658 1659 SV* 1660 NEXTKEY(self, lastkey) 1661 SV* self; 1662 SV* lastkey; 1663 PREINIT: 1664 HE *he; 1665 PPCODE: 1666 self = SvRV(self); 1667 if (he = hv_iternext((HV *)self)) { 1668 EXTEND(SP, 1); 1669 PUSHs(hv_iterkeysv(he)); 1670 } 1671 1672 1673 # 1674 # Delete the specified hash entry. 1675 # 1676 1677 SV* 1678 DELETE(self, key) 1679 SV *self; 1680 SV *key; 1681 CODE: 1682 self = SvRV(self); 1683 RETVAL = hv_delete_ent((HV *)self, key, 0, 0); 1684 if (RETVAL) { 1685 SvREFCNT_inc(RETVAL); 1686 } else { 1687 RETVAL = &PL_sv_undef; 1688 } 1689 OUTPUT: 1690 RETVAL 1691 1692 # 1693 # Clear the entire hash. This will stop any update() calls rereading this 1694 # kstat until it is accessed again. 1695 # 1696 1697 void 1698 CLEAR(self) 1699 SV* self; 1700 PREINIT: 1701 MAGIC *mg; 1702 KstatInfo_t *kip; 1703 CODE: 1704 self = SvRV(self); 1705 hv_clear((HV *)self); 1706 mg = mg_find(self, '~'); 1707 PERL_ASSERTMSG(mg != 0, "CLEAR: lost ~ magic"); 1708 kip = (KstatInfo_t *)SvPVX(mg->mg_obj); 1709 kip->read = FALSE; 1710 kip->valid = TRUE; 1711 hv_store((HV *)self, "class", 5, newSVpv(kip->kstat->ks_class, 0), 0); 1712 hv_store((HV *)self, "crtime", 6, NEW_HRTIME(kip->kstat->ks_crtime), 0); 1713