xref: /illumos-gate/usr/src/cmd/mdb/common/modules/pmcs/pmcs.c (revision 28df1ae01e4451dbbaeff3611e2544dda0f99f2b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2012 Milan Jurik. All rights reserved.
24  * Copyright 2019 Joyent, Inc.
25  */
26 
27 #include <limits.h>
28 #include <sys/mdb_modapi.h>
29 #include <mdb/mdb_ctf.h>
30 #include <sys/sysinfo.h>
31 #include <sys/byteorder.h>
32 #include <sys/nvpair.h>
33 #include <sys/damap.h>
34 #include <sys/scsi/scsi.h>
35 #include <sys/scsi/adapters/pmcs/pmcs.h>
36 #ifndef _KMDB
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <fcntl.h>
40 #include <unistd.h>
41 #endif	/* _KMDB */
42 
43 /*
44  * We need use this to pass the settings when display_iport
45  */
46 typedef struct per_iport_setting {
47 	uint_t  pis_damap_info; /* -m: DAM/damap */
48 	uint_t  pis_dtc_info; /* -d: device tree children: dev_info/path_info */
49 } per_iport_setting_t;
50 
51 /*
52  * This structure is used for sorting work structures by the wserno
53  */
54 typedef struct wserno_list {
55 	int serno;
56 	int idx;
57 	struct wserno_list *next;
58 	struct wserno_list *prev;
59 } wserno_list_t;
60 
61 #define	MDB_RD(a, b, c)		mdb_vread(a, b, (uintptr_t)c)
62 #define	NOREAD(a, b)		mdb_warn("could not read " #a " at 0x%p", b)
63 
64 static pmcs_hw_t ss;
65 static pmcs_xscsi_t **targets = NULL;
66 static int target_idx;
67 
68 static uint32_t	sas_phys, sata_phys, exp_phys, num_expanders, empty_phys;
69 
70 static pmcs_phy_t *pmcs_next_sibling(pmcs_phy_t *phyp);
71 static void display_one_work(pmcwork_t *wp, int verbose, int idx);
72 
73 static void
74 print_sas_address(pmcs_phy_t *phy)
75 {
76 	int idx;
77 
78 	for (idx = 0; idx < 8; idx++) {
79 		mdb_printf("%02x", phy->sas_address[idx]);
80 	}
81 }
82 
83 static void
84 pmcs_fwtime_to_systime(struct pmcs_hw ss, uint32_t fw_hi, uint32_t fw_lo,
85     struct timespec *stime)
86 {
87 	uint64_t fwtime;
88 	time_t secs;
89 	long nsecs;
90 	boolean_t backward_time = B_FALSE;
91 
92 	fwtime = ((uint64_t)fw_hi << 32) | fw_lo;
93 
94 	/*
95 	 * If fwtime < ss.fw_timestamp, then we need to adjust the clock
96 	 * time backwards from ss.sys_timestamp.  Otherwise, the adjustment
97 	 * goes forward in time
98 	 */
99 	if (fwtime >= ss.fw_timestamp) {
100 		fwtime -= ss.fw_timestamp;
101 	} else {
102 		fwtime = ss.fw_timestamp - fwtime;
103 		backward_time = B_TRUE;
104 	}
105 
106 	secs = ((time_t)fwtime / NSECS_PER_SEC);
107 	nsecs = ((long)fwtime % NSECS_PER_SEC);
108 
109 	stime->tv_sec = ss.sys_timestamp.tv_sec;
110 	stime->tv_nsec = ss.sys_timestamp.tv_nsec;
111 
112 	if (backward_time) {
113 		if (stime->tv_nsec < nsecs) {
114 			stime->tv_sec--;
115 			stime->tv_nsec = stime->tv_nsec + NSECS_PER_SEC - nsecs;
116 		} else {
117 			stime->tv_nsec -= nsecs;
118 		}
119 		stime->tv_sec -= secs;
120 	} else {
121 		if (stime->tv_nsec + nsecs > NSECS_PER_SEC) {
122 			stime->tv_sec++;
123 		}
124 		stime->tv_nsec = (stime->tv_nsec + nsecs) % NSECS_PER_SEC;
125 		stime->tv_sec += secs;
126 	}
127 }
128 
129 /*ARGSUSED*/
130 static void
131 display_ic(struct pmcs_hw m, int verbose)
132 {
133 	int msec_per_tick;
134 
135 	if (mdb_readvar(&msec_per_tick, "msec_per_tick") == -1) {
136 		mdb_warn("can't read msec_per_tick");
137 		msec_per_tick = 0;
138 	}
139 
140 	mdb_printf("\n");
141 	mdb_printf("Interrupt coalescing timer info\n");
142 	mdb_printf("-------------------------------\n");
143 	if (msec_per_tick == 0) {
144 		mdb_printf("Quantum                       : ?? ms\n");
145 	} else {
146 		mdb_printf("Quantum                       : %d ms\n",
147 		    m.io_intr_coal.quantum * msec_per_tick);
148 	}
149 	mdb_printf("Timer enabled                 : ");
150 	if (m.io_intr_coal.timer_on) {
151 		mdb_printf("Yes\n");
152 		mdb_printf("Coalescing timer value        : %d us\n",
153 		    m.io_intr_coal.intr_coal_timer);
154 	} else {
155 		mdb_printf("No\n");
156 	}
157 	mdb_printf("Total nsecs between interrupts: %ld\n",
158 	    m.io_intr_coal.nsecs_between_intrs);
159 	mdb_printf("Time of last I/O interrupt    : %ld\n",
160 	    m.io_intr_coal.last_io_comp);
161 	mdb_printf("Number of I/O interrupts      : %d\n",
162 	    m.io_intr_coal.num_intrs);
163 	mdb_printf("Number of I/O completions     : %d\n",
164 	    m.io_intr_coal.num_io_completions);
165 	mdb_printf("Max I/O completion interrupts : %d\n",
166 	    m.io_intr_coal.max_io_completions);
167 	mdb_printf("Measured ECHO int latency     : %d ns\n",
168 	    m.io_intr_coal.intr_latency);
169 	mdb_printf("Interrupt threshold           : %d\n",
170 	    m.io_intr_coal.intr_threshold);
171 }
172 
173 /*ARGSUSED*/
174 static int
175 pmcs_iport_phy_walk_cb(uintptr_t addr, const void *wdata, void *priv)
176 {
177 	struct pmcs_phy		phy;
178 
179 	if (mdb_vread(&phy, sizeof (struct pmcs_phy), addr) !=
180 	    sizeof (struct pmcs_phy)) {
181 		return (DCMD_ERR);
182 	}
183 
184 	mdb_printf("%16p %2d\n", addr, phy.phynum);
185 
186 	return (0);
187 }
188 
189 static int
190 display_iport_damap(dev_info_t *pdip)
191 {
192 	int rval = DCMD_ERR;
193 	struct dev_info dip;
194 	scsi_hba_tran_t sht;
195 	mdb_ctf_id_t istm_ctfid; /* impl_scsi_tgtmap_t ctf_id */
196 	ulong_t tmd_offset = 0; /* tgtmap_dam offset to impl_scsi_tgtmap_t */
197 	uintptr_t dam0;
198 	uintptr_t dam1;
199 
200 	if (mdb_vread(&dip, sizeof (struct dev_info), (uintptr_t)pdip) !=
201 	    sizeof (struct dev_info)) {
202 		return (rval);
203 	}
204 
205 	if (dip.devi_driver_data == NULL) {
206 		return (rval);
207 	}
208 
209 	if (mdb_vread(&sht, sizeof (scsi_hba_tran_t),
210 	    (uintptr_t)dip.devi_driver_data) != sizeof (scsi_hba_tran_t)) {
211 		return (rval);
212 	}
213 
214 	if (sht.tran_tgtmap == NULL) {
215 		return (rval);
216 	}
217 
218 	if (mdb_ctf_lookup_by_name("impl_scsi_tgtmap_t", &istm_ctfid) != 0) {
219 		return (rval);
220 	}
221 
222 	if (mdb_ctf_offsetof(istm_ctfid, "tgtmap_dam", &tmd_offset) != 0) {
223 		return (rval);
224 	}
225 
226 	tmd_offset /= NBBY;
227 	mdb_vread(&dam0, sizeof (dam0),
228 	    (uintptr_t)(tmd_offset + (char *)sht.tran_tgtmap));
229 	mdb_vread(&dam1, sizeof (dam1),
230 	    (uintptr_t)(sizeof (dam0) + tmd_offset + (char *)sht.tran_tgtmap));
231 
232 	if (dam0 != 0) {
233 		rval = mdb_call_dcmd("damap", dam0, DCMD_ADDRSPEC, 0, NULL);
234 		mdb_printf("\n");
235 		if (rval != DCMD_OK) {
236 			return (rval);
237 		}
238 	}
239 
240 	if (dam1 != 0) {
241 		rval = mdb_call_dcmd("damap", dam1, DCMD_ADDRSPEC, 0, NULL);
242 		mdb_printf("\n");
243 	}
244 
245 	return (rval);
246 }
247 
248 /* ARGSUSED */
249 static int
250 display_iport_di_cb(uintptr_t addr, const void *wdata, void *priv)
251 {
252 	uint_t *idx = (uint_t *)priv;
253 	struct dev_info dip;
254 	char devi_name[MAXNAMELEN];
255 	char devi_addr[MAXNAMELEN];
256 
257 	if (mdb_vread(&dip, sizeof (struct dev_info), (uintptr_t)addr) !=
258 	    sizeof (struct dev_info)) {
259 		return (DCMD_ERR);
260 	}
261 
262 	if (mdb_readstr(devi_name, sizeof (devi_name),
263 	    (uintptr_t)dip.devi_node_name) == -1) {
264 		devi_name[0] = '?';
265 		devi_name[1] = '\0';
266 	}
267 
268 	if (mdb_readstr(devi_addr, sizeof (devi_addr),
269 	    (uintptr_t)dip.devi_addr) == -1) {
270 		devi_addr[0] = '?';
271 		devi_addr[1] = '\0';
272 	}
273 
274 	mdb_printf("  %3d: @%-21s%10s@\t%p::devinfo -s\n",
275 	    (*idx)++, devi_addr, devi_name, addr);
276 	return (DCMD_OK);
277 }
278 
279 /* ARGSUSED */
280 static int
281 display_iport_pi_cb(uintptr_t addr, const void *wdata, void *priv)
282 {
283 	uint_t *idx = (uint_t *)priv;
284 	struct mdi_pathinfo mpi;
285 	char pi_addr[MAXNAMELEN];
286 
287 	if (mdb_vread(&mpi, sizeof (struct mdi_pathinfo), (uintptr_t)addr) !=
288 	    sizeof (struct mdi_pathinfo)) {
289 		return (DCMD_ERR);
290 	}
291 
292 	if (mdb_readstr(pi_addr, sizeof (pi_addr),
293 	    (uintptr_t)mpi.pi_addr) == -1) {
294 		pi_addr[0] = '?';
295 		pi_addr[1] = '\0';
296 	}
297 
298 	mdb_printf("  %3d: @%-21s %p::print struct mdi_pathinfo\n",
299 	    (*idx)++, pi_addr, addr);
300 	return (DCMD_OK);
301 }
302 
303 static int
304 display_iport_dtc(dev_info_t *pdip)
305 {
306 	int rval = DCMD_ERR;
307 	struct dev_info dip;
308 	struct mdi_phci phci;
309 	uint_t didx = 1;
310 	uint_t pidx = 1;
311 
312 	if (mdb_vread(&dip, sizeof (struct dev_info), (uintptr_t)pdip) !=
313 	    sizeof (struct dev_info)) {
314 		return (rval);
315 	}
316 
317 	mdb_printf("Device tree children - dev_info:\n");
318 	if (dip.devi_child == NULL) {
319 		mdb_printf("\tdevi_child is NULL, no dev_info\n\n");
320 		goto skip_di;
321 	}
322 
323 	/*
324 	 * First, we dump the iport's children dev_info node information.
325 	 * use existing walker: devinfo_siblings
326 	 */
327 	mdb_printf("\t#: @unit-address               name@\tdrill-down\n");
328 	rval = mdb_pwalk("devinfo_siblings", display_iport_di_cb,
329 	    (void *)&didx, (uintptr_t)dip.devi_child);
330 	mdb_printf("\n");
331 
332 skip_di:
333 	/*
334 	 * Then we try to dump the iport's path_info node information.
335 	 * use existing walker: mdipi_phci_list
336 	 */
337 	mdb_printf("Device tree children - path_info:\n");
338 	if (mdb_vread(&phci, sizeof (struct mdi_phci),
339 	    (uintptr_t)dip.devi_mdi_xhci) != sizeof (struct mdi_phci)) {
340 		mdb_printf("\tdevi_mdi_xhci is NULL, no path_info\n\n");
341 		return (rval);
342 	}
343 
344 	if (phci.ph_path_head == NULL) {
345 		mdb_printf("\tph_path_head is NULL, no path_info\n\n");
346 		return (rval);
347 	}
348 
349 	mdb_printf("\t#: @unit-address          drill-down\n");
350 	rval = mdb_pwalk("mdipi_phci_list", display_iport_pi_cb,
351 	    (void *)&pidx, (uintptr_t)phci.ph_path_head);
352 	mdb_printf("\n");
353 	return (rval);
354 }
355 
356 static void
357 display_iport_more(dev_info_t *dip, per_iport_setting_t *pis)
358 {
359 	if (pis->pis_damap_info) {
360 		(void) display_iport_damap(dip);
361 	}
362 
363 	if (pis->pis_dtc_info) {
364 		(void) display_iport_dtc(dip);
365 	}
366 }
367 
368 /*ARGSUSED*/
369 static int
370 pmcs_iport_walk_cb(uintptr_t addr, const void *wdata, void *priv)
371 {
372 	struct pmcs_iport	iport;
373 	uintptr_t		list_addr;
374 	char			*ua_state;
375 	char			portid[4];
376 	char			unit_address[34];
377 	per_iport_setting_t	*pis = (per_iport_setting_t *)priv;
378 
379 	if (mdb_vread(&iport, sizeof (struct pmcs_iport), addr) !=
380 	    sizeof (struct pmcs_iport)) {
381 		return (DCMD_ERR);
382 	}
383 
384 	if (mdb_readstr(unit_address, sizeof (unit_address),
385 	    (uintptr_t)(iport.ua)) == -1) {
386 		strncpy(unit_address, "Unset", sizeof (unit_address));
387 	}
388 
389 	if (iport.portid == 0xffff) {
390 		mdb_snprintf(portid, sizeof (portid), "%s", "-");
391 	} else if (iport.portid == PMCS_IPORT_INVALID_PORT_ID) {
392 		mdb_snprintf(portid, sizeof (portid), "%s", "N/A");
393 	} else {
394 		mdb_snprintf(portid, sizeof (portid), "%d", iport.portid);
395 	}
396 
397 	switch (iport.ua_state) {
398 	case UA_INACTIVE:
399 		ua_state = "Inactive";
400 		break;
401 	case UA_PEND_ACTIVATE:
402 		ua_state = "PendActivate";
403 		break;
404 	case UA_ACTIVE:
405 		ua_state = "Active";
406 		break;
407 	case UA_PEND_DEACTIVATE:
408 		ua_state = "PendDeactivate";
409 		break;
410 	default:
411 		ua_state = "Unknown";
412 	}
413 
414 	if (strlen(unit_address) < 3) {
415 		/* Standard iport unit address */
416 		mdb_printf("UA %-16s %16s %8s %8s %16s", "Iport", "UA State",
417 		    "PortID", "NumPhys", "DIP\n");
418 		mdb_printf("%2s %16p %16s %8s %8d %16p\n", unit_address, addr,
419 		    ua_state, portid, iport.nphy, iport.dip);
420 	} else {
421 		/* Temporary iport unit address */
422 		mdb_printf("%-32s %16s %20s %8s %8s %16s", "UA", "Iport",
423 		    "UA State", "PortID", "NumPhys", "DIP\n");
424 		mdb_printf("%32s %16p %20s %8s %8d %16p\n", unit_address, addr,
425 		    ua_state, portid, iport.nphy, iport.dip);
426 	}
427 
428 	if (iport.nphy > 0) {
429 		mdb_inc_indent(4);
430 		mdb_printf("%-18s %8s", "Phy", "PhyNum\n");
431 		mdb_inc_indent(2);
432 		list_addr =
433 		    (uintptr_t)(addr + offsetof(struct pmcs_iport, phys));
434 		if (mdb_pwalk("list", pmcs_iport_phy_walk_cb, NULL,
435 		    list_addr) == -1) {
436 			mdb_warn("pmcs iport walk failed");
437 		}
438 		mdb_dec_indent(6);
439 		mdb_printf("\n");
440 	}
441 
442 	/*
443 	 * See if we need to show more information based on 'd' or 'm' options
444 	 */
445 	display_iport_more(iport.dip, pis);
446 
447 	return (0);
448 }
449 
450 /*ARGSUSED*/
451 static void
452 display_iport(struct pmcs_hw m, uintptr_t addr, int verbose,
453     per_iport_setting_t *pis)
454 {
455 	uintptr_t	list_addr;
456 
457 	if (m.iports_attached) {
458 		mdb_printf("Iport information:\n");
459 		mdb_printf("-----------------\n");
460 	} else {
461 		mdb_printf("No Iports found.\n\n");
462 		return;
463 	}
464 
465 	list_addr = (uintptr_t)(addr + offsetof(struct pmcs_hw, iports));
466 
467 	if (mdb_pwalk("list", pmcs_iport_walk_cb, pis, list_addr) == -1) {
468 		mdb_warn("pmcs iport walk failed");
469 	}
470 
471 	mdb_printf("\n");
472 }
473 
474 /* ARGSUSED */
475 static int
476 pmcs_utarget_walk_cb(uintptr_t addr, const void *wdata, void *priv)
477 {
478 	pmcs_phy_t phy;
479 
480 	if (mdb_vread(&phy, sizeof (pmcs_phy_t), (uintptr_t)addr) == -1) {
481 		mdb_warn("pmcs_utarget_walk_cb: Failed to read PHY at %p",
482 		    (void *)addr);
483 		return (DCMD_ERR);
484 	}
485 
486 	if (phy.configured && (phy.target == NULL)) {
487 		mdb_printf("SAS address: ");
488 		print_sas_address(&phy);
489 		mdb_printf("  DType: ");
490 		switch (phy.dtype) {
491 		case SAS:
492 			mdb_printf("%4s", "SAS");
493 			break;
494 		case SATA:
495 			mdb_printf("%4s", "SATA");
496 			break;
497 		case EXPANDER:
498 			mdb_printf("%4s", "SMP");
499 			break;
500 		default:
501 			mdb_printf("%4s", "N/A");
502 			break;
503 		}
504 		mdb_printf("  Path: %s\n", phy.path);
505 	}
506 
507 	return (0);
508 }
509 
510 static void
511 display_unconfigured_targets(uintptr_t addr)
512 {
513 	mdb_printf("Unconfigured target SAS address:\n\n");
514 
515 	if (mdb_pwalk("pmcs_phys", pmcs_utarget_walk_cb, NULL, addr) == -1) {
516 		mdb_warn("pmcs phys walk failed");
517 	}
518 }
519 
520 static void
521 display_completion_queue(struct pmcs_hw ss)
522 {
523 	pmcs_iocomp_cb_t ccb, *ccbp;
524 	pmcwork_t work;
525 
526 	if (ss.iocomp_cb_head == NULL) {
527 		mdb_printf("Completion queue is empty.\n");
528 		return;
529 	}
530 
531 	ccbp = ss.iocomp_cb_head;
532 	mdb_printf("%8s %10s %20s %8s %8s O D\n",
533 	    "HTag", "State", "Phy Path", "Target", "Timer");
534 
535 	while (ccbp) {
536 		if (mdb_vread(&ccb, sizeof (pmcs_iocomp_cb_t),
537 		    (uintptr_t)ccbp) != sizeof (pmcs_iocomp_cb_t)) {
538 			mdb_warn("Unable to read completion queue entry\n");
539 			return;
540 		}
541 
542 		if (mdb_vread(&work, sizeof (pmcwork_t), (uintptr_t)ccb.pwrk)
543 		    != sizeof (pmcwork_t)) {
544 			mdb_warn("Unable to read work structure\n");
545 			return;
546 		}
547 
548 		/*
549 		 * Only print the work structure if it's still active.  If
550 		 * it's not, it's been completed since we started looking at
551 		 * it.
552 		 */
553 		if (work.state != PMCS_WORK_STATE_NIL) {
554 			display_one_work(&work, 0, 0);
555 		}
556 		ccbp = ccb.next;
557 	}
558 }
559 
560 static void
561 display_event_log(struct pmcs_hw ss)
562 {
563 	pmcs_fw_event_hdr_t fwhdr;
564 	char *header_id, *entry, *fwlogp;
565 	uint32_t total_size = PMCS_FWLOG_SIZE, log_size, index, *swapp, sidx;
566 	pmcs_fw_event_entry_t *fw_entryp;
567 	struct timespec systime;
568 
569 	if (ss.fwlogp == NULL) {
570 		mdb_printf("There is no firmware event log.\n");
571 		return;
572 	}
573 
574 	fwlogp = (char *)ss.fwlogp;
575 
576 	while (total_size != 0) {
577 		if (mdb_vread(&fwhdr, sizeof (pmcs_fw_event_hdr_t),
578 		    (uintptr_t)fwlogp) != sizeof (pmcs_fw_event_hdr_t)) {
579 			mdb_warn("Unable to read firmware event log header\n");
580 			return;
581 		}
582 
583 		/*
584 		 * Firmware event log is little-endian
585 		 */
586 		swapp = (uint32_t *)&fwhdr;
587 		for (sidx = 0; sidx < (sizeof (pmcs_fw_event_hdr_t) /
588 		    sizeof (uint32_t)); sidx++) {
589 			*swapp = LE_32(*swapp);
590 			swapp++;
591 		}
592 
593 		if (fwhdr.fw_el_signature == PMCS_FWLOG_AAP1_SIG) {
594 			header_id = "AAP1";
595 		} else if (fwhdr.fw_el_signature == PMCS_FWLOG_IOP_SIG) {
596 			header_id = "IOP";
597 		} else {
598 			mdb_warn("Invalid firmware event log signature\n");
599 			return;
600 		}
601 
602 		mdb_printf("Event Log:    %s\n", header_id);
603 		mdb_printf("Oldest entry: %d\n", fwhdr.fw_el_oldest_idx);
604 		mdb_printf("Latest entry: %d\n", fwhdr.fw_el_latest_idx);
605 
606 		entry = mdb_alloc(fwhdr.fw_el_entry_size, UM_SLEEP);
607 		fw_entryp = (pmcs_fw_event_entry_t *)((void *)entry);
608 		total_size -= sizeof (pmcs_fw_event_hdr_t);
609 		log_size = fwhdr.fw_el_buf_size;
610 		fwlogp += fwhdr.fw_el_entry_start_offset;
611 		swapp = (uint32_t *)((void *)entry);
612 		index = 0;
613 
614 		mdb_printf("%8s %16s %32s %8s %3s %8s %8s %8s %8s",
615 		    "Index", "Timestamp", "Time", "Seq Num", "Sev", "Word 0",
616 		    "Word 1", "Word 2", "Word 3");
617 		mdb_printf("\n");
618 
619 		while (log_size != 0) {
620 			if (mdb_vread(entry, fwhdr.fw_el_entry_size,
621 			    (uintptr_t)fwlogp) != fwhdr.fw_el_entry_size) {
622 				mdb_warn("Unable to read event log entry\n");
623 				goto bail_out;
624 			}
625 
626 			for (sidx = 0; sidx < (fwhdr.fw_el_entry_size /
627 			    sizeof (uint32_t)); sidx++) {
628 				*(swapp + sidx) = LE_32(*(swapp + sidx));
629 			}
630 
631 			if (fw_entryp->ts_upper || fw_entryp->ts_lower) {
632 				pmcs_fwtime_to_systime(ss, fw_entryp->ts_upper,
633 				    fw_entryp->ts_lower, &systime);
634 				mdb_printf("%8d %08x%08x [%Y.%09ld] %8d %3d "
635 				    "%08x %08x %08x %08x\n", index,
636 				    fw_entryp->ts_upper, fw_entryp->ts_lower,
637 				    systime, fw_entryp->seq_num,
638 				    fw_entryp->severity, fw_entryp->logw0,
639 				    fw_entryp->logw1, fw_entryp->logw2,
640 				    fw_entryp->logw3);
641 			}
642 
643 			fwlogp += fwhdr.fw_el_entry_size;
644 			total_size -= fwhdr.fw_el_entry_size;
645 			log_size -= fwhdr.fw_el_entry_size;
646 			index++;
647 		}
648 
649 		mdb_printf("\n");
650 	}
651 
652 bail_out:
653 	mdb_free(entry, fwhdr.fw_el_entry_size);
654 }
655 
656 /*ARGSUSED*/
657 static void
658 display_hwinfo(struct pmcs_hw m, int verbose)
659 {
660 	struct pmcs_hw	*mp = &m;
661 	char		*fwsupport;
662 
663 	switch (PMCS_FW_TYPE(mp)) {
664 	case PMCS_FW_TYPE_RELEASED:
665 		fwsupport = "Released";
666 		break;
667 	case PMCS_FW_TYPE_DEVELOPMENT:
668 		fwsupport = "Development";
669 		break;
670 	case PMCS_FW_TYPE_ALPHA:
671 		fwsupport = "Alpha";
672 		break;
673 	case PMCS_FW_TYPE_BETA:
674 		fwsupport = "Beta";
675 		break;
676 	default:
677 		fwsupport = "Special";
678 		break;
679 	}
680 
681 	mdb_printf("\nHardware information:\n");
682 	mdb_printf("---------------------\n");
683 
684 	mdb_printf("Chip revision:    %c\n", 'A' + m.chiprev);
685 	mdb_printf("SAS WWID:         %"PRIx64"\n", m.sas_wwns[0]);
686 	mdb_printf("Firmware version: %x.%x.%x (%s)\n",
687 	    PMCS_FW_MAJOR(mp), PMCS_FW_MINOR(mp), PMCS_FW_MICRO(mp),
688 	    fwsupport);
689 	mdb_printf("ILA version:      %08x\n", m.ila_ver);
690 	mdb_printf("Active f/w img:   %c\n", (m.fw_active_img) ? 'A' : 'B');
691 
692 	mdb_printf("Number of PHYs:   %d\n", m.nphy);
693 	mdb_printf("Maximum commands: %d\n", m.max_cmd);
694 	mdb_printf("Maximum devices:  %d\n", m.max_dev);
695 	mdb_printf("I/O queue depth:  %d\n", m.ioq_depth);
696 	mdb_printf("Open retry intvl: %d usecs\n", m.open_retry_interval);
697 	if (m.fwlog == 0) {
698 		mdb_printf("Firmware logging: Disabled\n");
699 	} else {
700 		mdb_printf("Firmware logging: Enabled (%d)\n", m.fwlog);
701 	}
702 	if (m.fwlog_file == 0) {
703 		mdb_printf("Firmware logfile: Not configured\n");
704 	} else {
705 		mdb_printf("Firmware logfile: Configured\n");
706 		mdb_inc_indent(2);
707 		mdb_printf("AAP1 log file:  %s\n", m.fwlogfile_aap1);
708 		mdb_printf("IOP logfile:    %s\n", m.fwlogfile_iop);
709 		mdb_dec_indent(2);
710 	}
711 }
712 
713 static void
714 display_targets(struct pmcs_hw m, int verbose, int totals_only)
715 {
716 	char		*dtype;
717 	pmcs_xscsi_t	xs;
718 	pmcs_phy_t	phy;
719 	uint16_t	max_dev, idx;
720 	uint32_t	sas_targets = 0, smp_targets = 0, sata_targets = 0;
721 
722 	max_dev = m.max_dev;
723 
724 	if (targets == NULL) {
725 		targets = mdb_alloc(sizeof (targets) * max_dev, UM_SLEEP);
726 	}
727 
728 	if (MDB_RD(targets, sizeof (targets) * max_dev, m.targets) == -1) {
729 		NOREAD(targets, m.targets);
730 		return;
731 	}
732 
733 	if (!totals_only) {
734 		mdb_printf("\nTarget information:\n");
735 		mdb_printf("---------------------------------------\n");
736 		mdb_printf("VTGT %-16s %-16s %-5s %4s %6s %s", "SAS Address",
737 		    "PHY Address", "DType", "Actv", "OnChip", "DS");
738 		mdb_printf("\n");
739 	}
740 
741 	for (idx = 0; idx < max_dev; idx++) {
742 		if (targets[idx] == NULL) {
743 			continue;
744 		}
745 
746 		if (MDB_RD(&xs, sizeof (xs), targets[idx]) == -1) {
747 			NOREAD(pmcs_xscsi_t, targets[idx]);
748 			continue;
749 		}
750 
751 		/*
752 		 * It has to be new or assigned to be of interest.
753 		 */
754 		if (xs.new == 0 && xs.assigned == 0) {
755 			continue;
756 		}
757 
758 		switch (xs.dtype) {
759 		case NOTHING:
760 			dtype = "None";
761 			break;
762 		case SATA:
763 			dtype = "SATA";
764 			sata_targets++;
765 			break;
766 		case SAS:
767 			dtype = "SAS";
768 			sas_targets++;
769 			break;
770 		case EXPANDER:
771 			dtype = "SMP";
772 			smp_targets++;
773 			break;
774 		}
775 
776 		if (totals_only) {
777 			continue;
778 		}
779 
780 		if (xs.phy) {
781 			if (MDB_RD(&phy, sizeof (phy), xs.phy) == -1) {
782 				NOREAD(pmcs_phy_t, xs.phy);
783 				continue;
784 			}
785 			mdb_printf("%4d ", idx);
786 			print_sas_address(&phy);
787 			mdb_printf(" %16p", xs.phy);
788 		} else {
789 			mdb_printf("%4d %16s", idx, "<no phy avail>");
790 		}
791 		mdb_printf(" %5s", dtype);
792 		mdb_printf(" %4d", xs.actv_pkts);
793 		mdb_printf(" %6d", xs.actv_cnt);
794 		mdb_printf(" %2d", xs.dev_state);
795 
796 		if (verbose) {
797 			if (xs.new) {
798 				mdb_printf(" new");
799 			}
800 			if (xs.assigned) {
801 				mdb_printf(" assigned");
802 			}
803 			if (xs.draining) {
804 				mdb_printf(" draining");
805 			}
806 			if (xs.reset_wait) {
807 				mdb_printf(" reset_wait");
808 			}
809 			if (xs.resetting) {
810 				mdb_printf(" resetting");
811 			}
812 			if (xs.recover_wait) {
813 				mdb_printf(" recover_wait");
814 			}
815 			if (xs.recovering) {
816 				mdb_printf(" recovering");
817 			}
818 			if (xs.event_recovery) {
819 				mdb_printf(" event recovery");
820 			}
821 			if (xs.special_running) {
822 				mdb_printf(" special_active");
823 			}
824 			if (xs.ncq) {
825 				mdb_printf(" ncq_tagmap=0x%x qdepth=%d",
826 				    xs.tagmap, xs.qdepth);
827 			} else if (xs.pio) {
828 				mdb_printf(" pio");
829 			}
830 		}
831 
832 		mdb_printf("\n");
833 	}
834 
835 	if (!totals_only) {
836 		mdb_printf("\n");
837 	}
838 
839 	mdb_printf("%19s %d (%d SAS + %d SATA + %d SMP)\n",
840 	    "Configured targets:", (sas_targets + sata_targets + smp_targets),
841 	    sas_targets, sata_targets, smp_targets);
842 }
843 
844 static char *
845 work_state_to_string(uint32_t state)
846 {
847 	char *state_string;
848 
849 	switch (state) {
850 	case PMCS_WORK_STATE_NIL:
851 		state_string = "Free";
852 		break;
853 	case PMCS_WORK_STATE_READY:
854 		state_string = "Ready";
855 		break;
856 	case PMCS_WORK_STATE_ONCHIP:
857 		state_string = "On Chip";
858 		break;
859 	case PMCS_WORK_STATE_INTR:
860 		state_string = "In Intr";
861 		break;
862 	case PMCS_WORK_STATE_IOCOMPQ:
863 		state_string = "I/O Comp";
864 		break;
865 	case PMCS_WORK_STATE_ABORTED:
866 		state_string = "I/O Aborted";
867 		break;
868 	case PMCS_WORK_STATE_TIMED_OUT:
869 		state_string = "I/O Timed Out";
870 		break;
871 	default:
872 		state_string = "INVALID";
873 		break;
874 	}
875 
876 	return (state_string);
877 }
878 
879 static void
880 display_one_work(pmcwork_t *wp, int verbose, int idx)
881 {
882 	char		*state, *last_state;
883 	char		*path;
884 	pmcs_xscsi_t	xs;
885 	pmcs_phy_t	phy;
886 	int		tgt;
887 
888 	state = work_state_to_string(wp->state);
889 	last_state = work_state_to_string(wp->last_state);
890 
891 	if (wp->ssp_event && wp->ssp_event != 0xffffffff) {
892 		mdb_printf("SSP event 0x%x", wp->ssp_event);
893 	}
894 
895 	tgt = -1;
896 	if (wp->xp) {
897 		if (MDB_RD(&xs, sizeof (xs), wp->xp) == -1) {
898 			NOREAD(pmcs_xscsi_t, wp->xp);
899 		} else {
900 			tgt = xs.target_num;
901 		}
902 	}
903 	if (wp->phy) {
904 		if (MDB_RD(&phy, sizeof (phy), wp->phy) == -1) {
905 			NOREAD(pmcs_phy_t, wp->phy);
906 		}
907 		path = phy.path;
908 	} else {
909 		path = "N/A";
910 	}
911 
912 	if (verbose) {
913 		mdb_printf("%4d ", idx);
914 	}
915 	if (tgt == -1) {
916 		mdb_printf("%08x %10s %20s      N/A %8u %1d %1d ",
917 		    wp->htag, state, path, wp->timer,
918 		    wp->onwire, wp->dead);
919 	} else {
920 		mdb_printf("%08x %10s %20s %8d %8u %1d %1d ",
921 		    wp->htag, state, path, tgt, wp->timer,
922 		    wp->onwire, wp->dead);
923 	}
924 	if (verbose) {
925 		mdb_printf("%08x %10s 0x%016p 0x%016p 0x%016p\n",
926 		    wp->last_htag, last_state, wp->last_phy, wp->last_xp,
927 		    wp->last_arg);
928 	} else {
929 		mdb_printf("\n");
930 	}
931 }
932 
933 static void
934 display_work(struct pmcs_hw m, int verbose, int wserno)
935 {
936 	int		idx;
937 	boolean_t	header_printed = B_FALSE;
938 	pmcwork_t	*wp;
939 	wserno_list_t	*sernop, *sp, *newsp, *sphead = NULL;
940 	uintptr_t	_wp;
941 	int		serno;
942 
943 	wp = mdb_alloc(sizeof (pmcwork_t) * m.max_cmd, UM_SLEEP);
944 	_wp = (uintptr_t)m.work;
945 	sernop = mdb_alloc(sizeof (wserno_list_t) * m.max_cmd, UM_SLEEP);
946 	bzero(sernop, sizeof (wserno_list_t) * m.max_cmd);
947 
948 	mdb_printf("\nActive Work structure information:\n");
949 	mdb_printf("----------------------------------\n");
950 
951 	/*
952 	 * Read in all the work structures
953 	 */
954 	for (idx = 0; idx < m.max_cmd; idx++, _wp += sizeof (pmcwork_t)) {
955 		if (MDB_RD(wp + idx, sizeof (pmcwork_t), _wp) == -1) {
956 			NOREAD(pmcwork_t, _wp);
957 			continue;
958 		}
959 	}
960 
961 	/*
962 	 * Sort by serial number?
963 	 */
964 	if (wserno) {
965 		for (idx = 0; idx < m.max_cmd; idx++) {
966 			if ((wp + idx)->htag == 0) {
967 				serno = PMCS_TAG_SERNO((wp + idx)->last_htag);
968 			} else {
969 				serno = PMCS_TAG_SERNO((wp + idx)->htag);
970 			}
971 
972 			/* Start at the beginning of the list */
973 			sp = sphead;
974 			newsp = sernop + idx;
975 			/* If this is the first entry, just add it */
976 			if (sphead == NULL) {
977 				sphead = sernop;
978 				sphead->serno = serno;
979 				sphead->idx = idx;
980 				sphead->next = NULL;
981 				sphead->prev = NULL;
982 				continue;
983 			}
984 
985 			newsp->serno = serno;
986 			newsp->idx = idx;
987 
988 			/* Find out where in the list this goes */
989 			while (sp) {
990 				/* This item goes before sp */
991 				if (serno < sp->serno) {
992 					newsp->next = sp;
993 					newsp->prev = sp->prev;
994 					if (newsp->prev == NULL) {
995 						sphead = newsp;
996 					} else {
997 						newsp->prev->next = newsp;
998 					}
999 					sp->prev = newsp;
1000 					break;
1001 				}
1002 
1003 				/*
1004 				 * If sp->next is NULL, this entry goes at the
1005 				 * end of the list
1006 				 */
1007 				if (sp->next == NULL) {
1008 					sp->next = newsp;
1009 					newsp->next = NULL;
1010 					newsp->prev = sp;
1011 					break;
1012 				}
1013 
1014 				sp = sp->next;
1015 			}
1016 		}
1017 
1018 		/*
1019 		 * Now print the sorted list
1020 		 */
1021 		mdb_printf(" Idx %8s %10s %20s %8s %8s O D ",
1022 		    "HTag", "State", "Phy Path", "Target", "Timer");
1023 		mdb_printf("%8s %10s %18s %18s %18s\n", "LastHTAG",
1024 		    "LastState", "LastPHY", "LastTgt", "LastArg");
1025 
1026 		sp = sphead;
1027 		while (sp) {
1028 			display_one_work(wp + sp->idx, 1, sp->idx);
1029 			sp = sp->next;
1030 		}
1031 
1032 		goto out;
1033 	}
1034 
1035 	/*
1036 	 * Now print the list, sorted by index
1037 	 */
1038 	for (idx = 0; idx < m.max_cmd; idx++) {
1039 		if (!verbose && ((wp + idx)->htag == PMCS_TAG_TYPE_FREE)) {
1040 			continue;
1041 		}
1042 
1043 		if (header_printed == B_FALSE) {
1044 			if (verbose) {
1045 				mdb_printf("%4s ", "Idx");
1046 			}
1047 			mdb_printf("%8s %10s %20s %8s %8s O D ",
1048 			    "HTag", "State", "Phy Path", "Target", "Timer");
1049 			if (verbose) {
1050 				mdb_printf("%8s %10s %18s %18s %18s\n",
1051 				    "LastHTAG", "LastState", "LastPHY",
1052 				    "LastTgt", "LastArg");
1053 			} else {
1054 				mdb_printf("\n");
1055 			}
1056 			header_printed = B_TRUE;
1057 		}
1058 
1059 		display_one_work(wp + idx, verbose, idx);
1060 	}
1061 
1062 out:
1063 	mdb_free(wp, sizeof (pmcwork_t) * m.max_cmd);
1064 	mdb_free(sernop, sizeof (wserno_list_t) * m.max_cmd);
1065 }
1066 
1067 static void
1068 print_spcmd(pmcs_cmd_t *sp, void *kaddr, int printhdr, int verbose)
1069 {
1070 	int cdb_size, idx;
1071 	struct scsi_pkt pkt;
1072 	uchar_t cdb[256];
1073 
1074 	if (printhdr) {
1075 		if (verbose) {
1076 			mdb_printf("%16s %16s %16s %8s %s CDB\n", "Command",
1077 			    "SCSA pkt", "DMA Chunks", "HTAG", "SATL Tag");
1078 		} else {
1079 			mdb_printf("%16s %16s %16s %8s %s\n", "Command",
1080 			    "SCSA pkt", "DMA Chunks", "HTAG", "SATL Tag");
1081 		}
1082 	}
1083 
1084 	mdb_printf("%16p %16p %16p %08x %08x ",
1085 	    kaddr, sp->cmd_pkt, sp->cmd_clist, sp->cmd_tag, sp->cmd_satltag);
1086 
1087 	/*
1088 	 * If we're printing verbose, dump the CDB as well.
1089 	 */
1090 	if (verbose) {
1091 		if (sp->cmd_pkt) {
1092 			if (mdb_vread(&pkt, sizeof (struct scsi_pkt),
1093 			    (uintptr_t)sp->cmd_pkt) !=
1094 			    sizeof (struct scsi_pkt)) {
1095 				mdb_warn("Unable to read SCSI pkt\n");
1096 				return;
1097 			}
1098 			cdb_size = pkt.pkt_cdblen;
1099 			if (mdb_vread(&cdb[0], cdb_size,
1100 			    (uintptr_t)pkt.pkt_cdbp) != cdb_size) {
1101 				mdb_warn("Unable to read CDB\n");
1102 				return;
1103 			}
1104 
1105 			for (idx = 0; idx < cdb_size; idx++) {
1106 				mdb_printf("%02x ", cdb[idx]);
1107 			}
1108 		} else {
1109 			mdb_printf("N/A");
1110 		}
1111 
1112 		mdb_printf("\n");
1113 	} else {
1114 		mdb_printf("\n");
1115 	}
1116 }
1117 
1118 /*ARGSUSED1*/
1119 static void
1120 display_waitqs(struct pmcs_hw m, int verbose)
1121 {
1122 	pmcs_cmd_t	*sp, s;
1123 	pmcs_xscsi_t	xs;
1124 	int		first, i;
1125 	int		max_dev = m.max_dev;
1126 
1127 	sp = m.dq.stqh_first;
1128 	first = 1;
1129 	while (sp) {
1130 		if (first) {
1131 			mdb_printf("\nDead Command Queue:\n");
1132 			mdb_printf("---------------------------\n");
1133 		}
1134 		if (MDB_RD(&s, sizeof (s), sp) == -1) {
1135 			NOREAD(pmcs_cmd_t, sp);
1136 			break;
1137 		}
1138 		print_spcmd(&s, sp, first, verbose);
1139 		sp = s.cmd_next.stqe_next;
1140 		first = 0;
1141 	}
1142 
1143 	sp = m.cq.stqh_first;
1144 	first = 1;
1145 	while (sp) {
1146 		if (first) {
1147 			mdb_printf("\nCompletion Command Queue:\n");
1148 			mdb_printf("---------------------------\n");
1149 		}
1150 		if (MDB_RD(&s, sizeof (s), sp) == -1) {
1151 			NOREAD(pmcs_cmd_t, sp);
1152 			break;
1153 		}
1154 		print_spcmd(&s, sp, first, verbose);
1155 		sp = s.cmd_next.stqe_next;
1156 		first = 0;
1157 	}
1158 
1159 
1160 	if (targets == NULL) {
1161 		targets = mdb_alloc(sizeof (targets) * max_dev, UM_SLEEP);
1162 	}
1163 
1164 	if (MDB_RD(targets, sizeof (targets) * max_dev, m.targets) == -1) {
1165 		NOREAD(targets, m.targets);
1166 		return;
1167 	}
1168 
1169 	for (i = 0; i < max_dev; i++) {
1170 		if (targets[i] == NULL) {
1171 			continue;
1172 		}
1173 		if (MDB_RD(&xs, sizeof (xs), targets[i]) == -1) {
1174 			NOREAD(pmcs_xscsi_t, targets[i]);
1175 			continue;
1176 		}
1177 		sp = xs.wq.stqh_first;
1178 		first = 1;
1179 		while (sp) {
1180 			if (first) {
1181 				mdb_printf("\nTarget %u Wait Queue:\n",
1182 				    xs.target_num);
1183 				mdb_printf("---------------------------\n");
1184 			}
1185 			if (MDB_RD(&s, sizeof (s), sp) == -1) {
1186 				NOREAD(pmcs_cmd_t, sp);
1187 				break;
1188 			}
1189 			print_spcmd(&s, sp, first, verbose);
1190 			sp = s.cmd_next.stqe_next;
1191 			first = 0;
1192 		}
1193 		sp = xs.aq.stqh_first;
1194 		first = 1;
1195 		while (sp) {
1196 			if (first) {
1197 				mdb_printf("\nTarget %u Active Queue:\n",
1198 				    xs.target_num);
1199 				mdb_printf("---------------------------\n");
1200 			}
1201 			if (MDB_RD(&s, sizeof (s), sp) == -1) {
1202 				NOREAD(pmcs_cmd_t, sp);
1203 				break;
1204 			}
1205 			print_spcmd(&s, sp, first, verbose);
1206 			sp = s.cmd_next.stqe_next;
1207 			first = 0;
1208 		}
1209 		sp = xs.sq.stqh_first;
1210 		first = 1;
1211 		while (sp) {
1212 			if (first) {
1213 				mdb_printf("\nTarget %u Special Queue:\n",
1214 				    xs.target_num);
1215 				mdb_printf("---------------------------\n");
1216 			}
1217 			if (MDB_RD(&s, sizeof (s), sp) == -1) {
1218 				NOREAD(pmcs_cmd_t, sp);
1219 				break;
1220 			}
1221 			print_spcmd(&s, sp, first, verbose);
1222 			sp = s.cmd_next.stqe_next;
1223 			first = 0;
1224 		}
1225 	}
1226 }
1227 
1228 static char *
1229 ibq_type(int qnum)
1230 {
1231 	if (qnum < 0 || qnum >= PMCS_NIQ) {
1232 		return ("UNKNOWN");
1233 	}
1234 
1235 	if (qnum < PMCS_IQ_OTHER) {
1236 		return ("I/O");
1237 	}
1238 
1239 	return ("Other");
1240 }
1241 
1242 static char *
1243 obq_type(int qnum)
1244 {
1245 	switch (qnum) {
1246 	case PMCS_OQ_IODONE:
1247 		return ("I/O");
1248 	case PMCS_OQ_GENERAL:
1249 		return ("General");
1250 	case PMCS_OQ_EVENTS:
1251 		return ("Events");
1252 	default:
1253 		return ("UNKNOWN");
1254 	}
1255 }
1256 
1257 static char *
1258 iomb_cat(uint32_t cat)
1259 {
1260 	switch (cat) {
1261 	case PMCS_IOMB_CAT_NET:
1262 		return ("NET");
1263 	case PMCS_IOMB_CAT_FC:
1264 		return ("FC");
1265 	case PMCS_IOMB_CAT_SAS:
1266 		return ("SAS");
1267 	case PMCS_IOMB_CAT_SCSI:
1268 		return ("SCSI");
1269 	default:
1270 		return ("???");
1271 	}
1272 }
1273 
1274 static char *
1275 iomb_event(uint8_t event)
1276 {
1277 	switch (event) {
1278 	case IOP_EVENT_PHY_STOP_STATUS:
1279 		return ("PHY STOP");
1280 	case IOP_EVENT_SAS_PHY_UP:
1281 		return ("PHY UP");
1282 	case IOP_EVENT_SATA_PHY_UP:
1283 		return ("SATA PHY UP");
1284 	case IOP_EVENT_SATA_SPINUP_HOLD:
1285 		return ("SATA SPINUP HOLD");
1286 	case IOP_EVENT_PHY_DOWN:
1287 		return ("PHY DOWN");
1288 	case IOP_EVENT_BROADCAST_CHANGE:
1289 		return ("BROADCAST CHANGE");
1290 	case IOP_EVENT_BROADCAST_SES:
1291 		return ("BROADCAST SES");
1292 	case IOP_EVENT_PHY_ERR_INBOUND_CRC:
1293 		return ("INBOUND CRC ERROR");
1294 	case IOP_EVENT_HARD_RESET_RECEIVED:
1295 		return ("HARD RESET");
1296 	case IOP_EVENT_EVENT_ID_FRAME_TIMO:
1297 		return ("IDENTIFY FRAME TIMEOUT");
1298 	case IOP_EVENT_BROADCAST_EXP:
1299 		return ("BROADCAST EXPANDER");
1300 	case IOP_EVENT_PHY_START_STATUS:
1301 		return ("PHY START");
1302 	case IOP_EVENT_PHY_ERR_INVALID_DWORD:
1303 		return ("INVALID DWORD");
1304 	case IOP_EVENT_PHY_ERR_DISPARITY_ERROR:
1305 		return ("DISPARITY ERROR");
1306 	case IOP_EVENT_PHY_ERR_CODE_VIOLATION:
1307 		return ("CODE VIOLATION");
1308 	case IOP_EVENT_PHY_ERR_LOSS_OF_DWORD_SYN:
1309 		return ("LOSS OF DWORD SYNC");
1310 	case IOP_EVENT_PHY_ERR_PHY_RESET_FAILD:
1311 		return ("PHY RESET FAILED");
1312 	case IOP_EVENT_PORT_RECOVERY_TIMER_TMO:
1313 		return ("PORT RECOVERY TIMEOUT");
1314 	case IOP_EVENT_PORT_RECOVER:
1315 		return ("PORT RECOVERY");
1316 	case IOP_EVENT_PORT_RESET_TIMER_TMO:
1317 		return ("PORT RESET TIMEOUT");
1318 	case IOP_EVENT_PORT_RESET_COMPLETE:
1319 		return ("PORT RESET COMPLETE");
1320 	case IOP_EVENT_BROADCAST_ASYNC_EVENT:
1321 		return ("BROADCAST ASYNC");
1322 	case IOP_EVENT_IT_NEXUS_LOSS:
1323 		return ("I/T NEXUS LOSS");
1324 	default:
1325 		return ("Unknown Event");
1326 	}
1327 }
1328 
1329 static char *
1330 inbound_iomb_opcode(uint32_t opcode)
1331 {
1332 	switch (opcode) {
1333 	case PMCIN_ECHO:
1334 		return ("ECHO");
1335 	case PMCIN_GET_INFO:
1336 		return ("GET_INFO");
1337 	case PMCIN_GET_VPD:
1338 		return ("GET_VPD");
1339 	case PMCIN_PHY_START:
1340 		return ("PHY_START");
1341 	case PMCIN_PHY_STOP:
1342 		return ("PHY_STOP");
1343 	case PMCIN_SSP_INI_IO_START:
1344 		return ("INI_IO_START");
1345 	case PMCIN_SSP_INI_TM_START:
1346 		return ("INI_TM_START");
1347 	case PMCIN_SSP_INI_EXT_IO_START:
1348 		return ("INI_EXT_IO_START");
1349 	case PMCIN_DEVICE_HANDLE_ACCEPT:
1350 		return ("DEVICE_HANDLE_ACCEPT");
1351 	case PMCIN_SSP_TGT_IO_START:
1352 		return ("TGT_IO_START");
1353 	case PMCIN_SSP_TGT_RESPONSE_START:
1354 		return ("TGT_RESPONSE_START");
1355 	case PMCIN_SSP_INI_EDC_EXT_IO_START:
1356 		return ("INI_EDC_EXT_IO_START");
1357 	case PMCIN_SSP_INI_EDC_EXT_IO_START1:
1358 		return ("INI_EDC_EXT_IO_START1");
1359 	case PMCIN_SSP_TGT_EDC_IO_START:
1360 		return ("TGT_EDC_IO_START");
1361 	case PMCIN_SSP_ABORT:
1362 		return ("SSP_ABORT");
1363 	case PMCIN_DEREGISTER_DEVICE_HANDLE:
1364 		return ("DEREGISTER_DEVICE_HANDLE");
1365 	case PMCIN_GET_DEVICE_HANDLE:
1366 		return ("GET_DEVICE_HANDLE");
1367 	case PMCIN_SMP_REQUEST:
1368 		return ("SMP_REQUEST");
1369 	case PMCIN_SMP_RESPONSE:
1370 		return ("SMP_RESPONSE");
1371 	case PMCIN_SMP_ABORT:
1372 		return ("SMP_ABORT");
1373 	case PMCIN_ASSISTED_DISCOVERY:
1374 		return ("ASSISTED_DISCOVERY");
1375 	case PMCIN_REGISTER_DEVICE:
1376 		return ("REGISTER_DEVICE");
1377 	case PMCIN_SATA_HOST_IO_START:
1378 		return ("SATA_HOST_IO_START");
1379 	case PMCIN_SATA_ABORT:
1380 		return ("SATA_ABORT");
1381 	case PMCIN_LOCAL_PHY_CONTROL:
1382 		return ("LOCAL_PHY_CONTROL");
1383 	case PMCIN_GET_DEVICE_INFO:
1384 		return ("GET_DEVICE_INFO");
1385 	case PMCIN_TWI:
1386 		return ("TWI");
1387 	case PMCIN_FW_FLASH_UPDATE:
1388 		return ("FW_FLASH_UPDATE");
1389 	case PMCIN_SET_VPD:
1390 		return ("SET_VPD");
1391 	case PMCIN_GPIO:
1392 		return ("GPIO");
1393 	case PMCIN_SAS_DIAG_MODE_START_END:
1394 		return ("SAS_DIAG_MODE_START_END");
1395 	case PMCIN_SAS_DIAG_EXECUTE:
1396 		return ("SAS_DIAG_EXECUTE");
1397 	case PMCIN_SAS_HW_EVENT_ACK:
1398 		return ("SAS_HW_EVENT_ACK");
1399 	case PMCIN_GET_TIME_STAMP:
1400 		return ("GET_TIME_STAMP");
1401 	case PMCIN_PORT_CONTROL:
1402 		return ("PORT_CONTROL");
1403 	case PMCIN_GET_NVMD_DATA:
1404 		return ("GET_NVMD_DATA");
1405 	case PMCIN_SET_NVMD_DATA:
1406 		return ("SET_NVMD_DATA");
1407 	case PMCIN_SET_DEVICE_STATE:
1408 		return ("SET_DEVICE_STATE");
1409 	case PMCIN_GET_DEVICE_STATE:
1410 		return ("GET_DEVICE_STATE");
1411 	default:
1412 		return ("UNKNOWN");
1413 	}
1414 }
1415 
1416 static char *
1417 outbound_iomb_opcode(uint32_t opcode)
1418 {
1419 	switch (opcode) {
1420 	case PMCOUT_ECHO:
1421 		return ("ECHO");
1422 	case PMCOUT_GET_INFO:
1423 		return ("GET_INFO");
1424 	case PMCOUT_GET_VPD:
1425 		return ("GET_VPD");
1426 	case PMCOUT_SAS_HW_EVENT:
1427 		return ("SAS_HW_EVENT");
1428 	case PMCOUT_SSP_COMPLETION:
1429 		return ("SSP_COMPLETION");
1430 	case PMCOUT_SMP_COMPLETION:
1431 		return ("SMP_COMPLETION");
1432 	case PMCOUT_LOCAL_PHY_CONTROL:
1433 		return ("LOCAL_PHY_CONTROL");
1434 	case PMCOUT_SAS_ASSISTED_DISCOVERY_EVENT:
1435 		return ("SAS_ASSISTED_DISCOVERY_SENT");
1436 	case PMCOUT_SATA_ASSISTED_DISCOVERY_EVENT:
1437 		return ("SATA_ASSISTED_DISCOVERY_SENT");
1438 	case PMCOUT_DEVICE_REGISTRATION:
1439 		return ("DEVICE_REGISTRATION");
1440 	case PMCOUT_DEREGISTER_DEVICE_HANDLE:
1441 		return ("DEREGISTER_DEVICE_HANDLE");
1442 	case PMCOUT_GET_DEVICE_HANDLE:
1443 		return ("GET_DEVICE_HANDLE");
1444 	case PMCOUT_SATA_COMPLETION:
1445 		return ("SATA_COMPLETION");
1446 	case PMCOUT_SATA_EVENT:
1447 		return ("SATA_EVENT");
1448 	case PMCOUT_SSP_EVENT:
1449 		return ("SSP_EVENT");
1450 	case PMCOUT_DEVICE_HANDLE_ARRIVED:
1451 		return ("DEVICE_HANDLE_ARRIVED");
1452 	case PMCOUT_SSP_REQUEST_RECEIVED:
1453 		return ("SSP_REQUEST_RECEIVED");
1454 	case PMCOUT_DEVICE_INFO:
1455 		return ("DEVICE_INFO");
1456 	case PMCOUT_FW_FLASH_UPDATE:
1457 		return ("FW_FLASH_UPDATE");
1458 	case PMCOUT_SET_VPD:
1459 		return ("SET_VPD");
1460 	case PMCOUT_GPIO:
1461 		return ("GPIO");
1462 	case PMCOUT_GPIO_EVENT:
1463 		return ("GPIO_EVENT");
1464 	case PMCOUT_GENERAL_EVENT:
1465 		return ("GENERAL_EVENT");
1466 	case PMCOUT_TWI:
1467 		return ("TWI");
1468 	case PMCOUT_SSP_ABORT:
1469 		return ("SSP_ABORT");
1470 	case PMCOUT_SATA_ABORT:
1471 		return ("SATA_ABORT");
1472 	case PMCOUT_SAS_DIAG_MODE_START_END:
1473 		return ("SAS_DIAG_MODE_START_END");
1474 	case PMCOUT_SAS_DIAG_EXECUTE:
1475 		return ("SAS_DIAG_EXECUTE");
1476 	case PMCOUT_GET_TIME_STAMP:
1477 		return ("GET_TIME_STAMP");
1478 	case PMCOUT_SAS_HW_EVENT_ACK_ACK:
1479 		return ("SAS_HW_EVENT_ACK_ACK");
1480 	case PMCOUT_PORT_CONTROL:
1481 		return ("PORT_CONTROL");
1482 	case PMCOUT_SKIP_ENTRIES:
1483 		return ("SKIP_ENTRIES");
1484 	case PMCOUT_SMP_ABORT:
1485 		return ("SMP_ABORT");
1486 	case PMCOUT_GET_NVMD_DATA:
1487 		return ("GET_NVMD_DATA");
1488 	case PMCOUT_SET_NVMD_DATA:
1489 		return ("SET_NVMD_DATA");
1490 	case PMCOUT_DEVICE_HANDLE_REMOVED:
1491 		return ("DEVICE_HANDLE_REMOVED");
1492 	case PMCOUT_SET_DEVICE_STATE:
1493 		return ("SET_DEVICE_STATE");
1494 	case PMCOUT_GET_DEVICE_STATE:
1495 		return ("GET_DEVICE_STATE");
1496 	case PMCOUT_SET_DEVICE_INFO:
1497 		return ("SET_DEVICE_INFO");
1498 	default:
1499 		return ("UNKNOWN");
1500 	}
1501 }
1502 
1503 static uint32_t
1504 get_devid_from_ob_iomb(struct pmcs_hw ss, uint32_t *qentryp, uint16_t opcode)
1505 {
1506 	uint32_t devid = PMCS_INVALID_DEVICE_ID;
1507 
1508 	switch (opcode) {
1509 	/*
1510 	 * These are obtained via the HTAG which is in word 1
1511 	 */
1512 	case PMCOUT_SSP_COMPLETION:
1513 	case PMCOUT_SMP_COMPLETION:
1514 	case PMCOUT_DEREGISTER_DEVICE_HANDLE:
1515 	case PMCOUT_GET_DEVICE_HANDLE:
1516 	case PMCOUT_SATA_COMPLETION:
1517 	case PMCOUT_SSP_ABORT:
1518 	case PMCOUT_SATA_ABORT:
1519 	case PMCOUT_SMP_ABORT:
1520 	case PMCOUT_SAS_HW_EVENT_ACK_ACK: {
1521 		uint32_t	htag;
1522 		pmcwork_t	*wp;
1523 		pmcs_phy_t	*phy;
1524 		uintptr_t	_wp, _phy;
1525 		uint16_t	index;
1526 
1527 		htag = LE_32(*(qentryp + 1));
1528 		index = htag & PMCS_TAG_INDEX_MASK;
1529 
1530 		wp = mdb_alloc(sizeof (pmcwork_t), UM_SLEEP);
1531 		_wp = (uintptr_t)ss.work + (sizeof (pmcwork_t) * index);
1532 
1533 		if (MDB_RD(wp, sizeof (pmcwork_t), _wp) == -1) {
1534 			NOREAD(pmcwork_t, _wp);
1535 			mdb_free(wp, sizeof (pmcwork_t));
1536 			break;
1537 		}
1538 
1539 		phy = mdb_alloc(sizeof (pmcs_phy_t), UM_SLEEP);
1540 		if (wp->phy == NULL) {
1541 			_phy = (uintptr_t)wp->last_phy;
1542 		} else {
1543 			_phy = (uintptr_t)wp->phy;
1544 		}
1545 
1546 		/*
1547 		 * If we have a PHY, read it in and get it's handle
1548 		 */
1549 		if (_phy != 0) {
1550 			if (MDB_RD(phy, sizeof (*phy), _phy) == -1) {
1551 				NOREAD(pmcs_phy_t, phy);
1552 			} else {
1553 				devid = phy->device_id;
1554 			}
1555 		}
1556 
1557 		mdb_free(phy, sizeof (pmcs_phy_t));
1558 		mdb_free(wp, sizeof (pmcwork_t));
1559 		break;
1560 	}
1561 
1562 	/*
1563 	 * The device ID is in the outbound IOMB at word 1
1564 	 */
1565 	case PMCOUT_SSP_REQUEST_RECEIVED:
1566 		devid = LE_32(*(qentryp + 1)) & PMCS_DEVICE_ID_MASK;
1567 		break;
1568 
1569 	/*
1570 	 * The device ID is in the outbound IOMB at word 2
1571 	 */
1572 	case PMCOUT_DEVICE_HANDLE_ARRIVED:
1573 	case PMCOUT_DEVICE_HANDLE_REMOVED:
1574 		devid = LE_32(*(qentryp + 2)) & PMCS_DEVICE_ID_MASK;
1575 		break;
1576 
1577 	/*
1578 	 * In this (very rare - never seen it) state, the device ID
1579 	 * comes from the HTAG in the inbound IOMB, which would be word
1580 	 * 3 in the outbound IOMB
1581 	 */
1582 	case PMCOUT_GENERAL_EVENT:
1583 	/*
1584 	 * The device ID is in the outbound IOMB at word 3
1585 	 */
1586 	case PMCOUT_DEVICE_REGISTRATION:
1587 	case PMCOUT_DEVICE_INFO:
1588 	case PMCOUT_SET_DEVICE_STATE:
1589 	case PMCOUT_GET_DEVICE_STATE:
1590 	case PMCOUT_SET_DEVICE_INFO:
1591 		devid = LE_32(*(qentryp + 3)) & PMCS_DEVICE_ID_MASK;
1592 		break;
1593 
1594 	/*
1595 	 * Device ID is in the outbound IOMB at word 4
1596 	 */
1597 	case PMCOUT_SATA_EVENT:
1598 	case PMCOUT_SSP_EVENT:
1599 		devid = LE_32(*(qentryp + 4)) & PMCS_DEVICE_ID_MASK;
1600 		break;
1601 	}
1602 
1603 	return (devid);
1604 }
1605 
1606 static boolean_t
1607 iomb_is_dev_hdl_specific(uint32_t word0, boolean_t inbound)
1608 {
1609 	uint16_t opcode = word0 & PMCS_IOMB_OPCODE_MASK;
1610 
1611 	if (inbound) {
1612 		switch (opcode) {
1613 		case PMCIN_SSP_INI_IO_START:
1614 		case PMCIN_SSP_INI_TM_START:
1615 		case PMCIN_SSP_INI_EXT_IO_START:
1616 		case PMCIN_SSP_TGT_IO_START:
1617 		case PMCIN_SSP_TGT_RESPONSE_START:
1618 		case PMCIN_SSP_ABORT:
1619 		case PMCIN_DEREGISTER_DEVICE_HANDLE:
1620 		case PMCIN_SMP_REQUEST:
1621 		case PMCIN_SMP_RESPONSE:
1622 		case PMCIN_SMP_ABORT:
1623 		case PMCIN_ASSISTED_DISCOVERY:
1624 		case PMCIN_SATA_HOST_IO_START:
1625 		case PMCIN_SATA_ABORT:
1626 		case PMCIN_GET_DEVICE_INFO:
1627 		case PMCIN_SET_DEVICE_STATE:
1628 		case PMCIN_GET_DEVICE_STATE:
1629 			return (B_TRUE);
1630 		}
1631 
1632 		return (B_FALSE);
1633 	}
1634 
1635 	switch (opcode) {
1636 	case PMCOUT_SSP_COMPLETION:
1637 	case PMCOUT_SMP_COMPLETION:
1638 	case PMCOUT_DEVICE_REGISTRATION:
1639 	case PMCOUT_DEREGISTER_DEVICE_HANDLE:
1640 	case PMCOUT_GET_DEVICE_HANDLE:
1641 	case PMCOUT_SATA_COMPLETION:
1642 	case PMCOUT_SATA_EVENT:
1643 	case PMCOUT_SSP_EVENT:
1644 	case PMCOUT_DEVICE_HANDLE_ARRIVED:
1645 	case PMCOUT_SSP_REQUEST_RECEIVED:
1646 	case PMCOUT_DEVICE_INFO:
1647 	case PMCOUT_FW_FLASH_UPDATE:
1648 	case PMCOUT_GENERAL_EVENT:
1649 	case PMCOUT_SSP_ABORT:
1650 	case PMCOUT_SATA_ABORT:
1651 	case PMCOUT_SAS_HW_EVENT_ACK_ACK:
1652 	case PMCOUT_SMP_ABORT:
1653 	case PMCOUT_DEVICE_HANDLE_REMOVED:
1654 	case PMCOUT_SET_DEVICE_STATE:
1655 	case PMCOUT_GET_DEVICE_STATE:
1656 	case PMCOUT_SET_DEVICE_INFO:
1657 		return (B_TRUE);
1658 	}
1659 
1660 	return (B_FALSE);
1661 }
1662 
1663 static void
1664 dump_one_qentry_outbound(struct pmcs_hw ss, uint32_t *qentryp, int idx,
1665     uint64_t devid_filter)
1666 {
1667 	int qeidx;
1668 	uint32_t word0 = LE_32(*qentryp);
1669 	uint32_t word1 = LE_32(*(qentryp + 1));
1670 	uint8_t iop_event;
1671 	uint32_t devid;
1672 
1673 	/*
1674 	 * Check to see if we're filtering on a device ID
1675 	 */
1676 	if (devid_filter != PMCS_INVALID_DEVICE_ID) {
1677 		if (!iomb_is_dev_hdl_specific(word0, B_FALSE)) {
1678 			return;
1679 		}
1680 
1681 		/*
1682 		 * Go find the device id.  It might be in the outbound
1683 		 * IOMB or we may have to go find the work structure and
1684 		 * get it from there.
1685 		 */
1686 		devid = get_devid_from_ob_iomb(ss, qentryp,
1687 		    word0 & PMCS_IOMB_OPCODE_MASK);
1688 		if ((devid == PMCS_INVALID_DEVICE_ID) ||
1689 		    (devid_filter != devid)) {
1690 			return;
1691 		}
1692 	}
1693 
1694 	mdb_printf("Entry #%02d\n", idx);
1695 	mdb_inc_indent(2);
1696 
1697 	mdb_printf("Header: 0x%08x (", word0);
1698 	if (word0 & PMCS_IOMB_VALID) {
1699 		mdb_printf("VALID, ");
1700 	}
1701 	if (word0 & PMCS_IOMB_HIPRI) {
1702 		mdb_printf("HIPRI, ");
1703 	}
1704 	mdb_printf("OBID=%d, ",
1705 	    (word0 & PMCS_IOMB_OBID_MASK) >> PMCS_IOMB_OBID_SHIFT);
1706 	mdb_printf("CAT=%s, ",
1707 	    iomb_cat((word0 & PMCS_IOMB_CAT_MASK) >> PMCS_IOMB_CAT_SHIFT));
1708 	mdb_printf("OPCODE=%s",
1709 	    outbound_iomb_opcode(word0 & PMCS_IOMB_OPCODE_MASK));
1710 	if ((word0 & PMCS_IOMB_OPCODE_MASK) == PMCOUT_SAS_HW_EVENT) {
1711 		iop_event = IOP_EVENT_EVENT(word1);
1712 		mdb_printf(" <%s>", iomb_event(iop_event));
1713 	}
1714 	mdb_printf(")\n");
1715 
1716 	mdb_printf("Remaining Payload:\n");
1717 
1718 	mdb_inc_indent(2);
1719 	for (qeidx = 1; qeidx < (PMCS_QENTRY_SIZE / 4); qeidx++) {
1720 		mdb_printf("%08x ", LE_32(*(qentryp + qeidx)));
1721 	}
1722 	mdb_printf("\n");
1723 	mdb_dec_indent(4);
1724 }
1725 
1726 static void
1727 display_outbound_queues(struct pmcs_hw ss, uint64_t devid_filter,
1728     uint_t verbose)
1729 {
1730 	int		idx, qidx;
1731 	uintptr_t	obqp;
1732 	uint32_t	*cip;
1733 	uint32_t	*qentryp = mdb_alloc(PMCS_QENTRY_SIZE, UM_SLEEP);
1734 	uint32_t	last_consumed, oqpi;
1735 
1736 	mdb_printf("\n");
1737 	mdb_printf("Outbound Queues\n");
1738 	mdb_printf("---------------\n");
1739 
1740 	mdb_inc_indent(2);
1741 
1742 	for (qidx = 0; qidx < PMCS_NOQ; qidx++) {
1743 		obqp = (uintptr_t)ss.oqp[qidx];
1744 
1745 		if (obqp == 0) {
1746 			mdb_printf("No outbound queue ptr for queue #%d\n",
1747 			    qidx);
1748 			continue;
1749 		}
1750 
1751 		mdb_printf("Outbound Queue #%d (Queue Type = %s)\n", qidx,
1752 		    obq_type(qidx));
1753 		/*
1754 		 * Chip is the producer, so read the actual producer index
1755 		 * and not the driver's version
1756 		 */
1757 		cip = (uint32_t *)((void *)ss.cip);
1758 		if (MDB_RD(&oqpi, 4, cip + OQPI_BASE_OFFSET +
1759 		    (qidx * 4)) == -1) {
1760 			mdb_warn("Couldn't read oqpi\n");
1761 			break;
1762 		}
1763 
1764 		mdb_printf("Producer index: %d  Consumer index: %d\n\n",
1765 		    LE_32(oqpi), ss.oqci[qidx]);
1766 		mdb_inc_indent(2);
1767 
1768 		if (ss.oqci[qidx] == 0) {
1769 			last_consumed = ss.ioq_depth - 1;
1770 		} else {
1771 			last_consumed = ss.oqci[qidx] - 1;
1772 		}
1773 
1774 
1775 		if (!verbose) {
1776 			mdb_printf("Last processed entry:\n");
1777 			if (MDB_RD(qentryp, PMCS_QENTRY_SIZE,
1778 			    (obqp + (PMCS_QENTRY_SIZE * last_consumed)))
1779 			    == -1) {
1780 				mdb_warn("Couldn't read queue entry at 0x%p\n",
1781 				    (obqp + (PMCS_QENTRY_SIZE *
1782 				    last_consumed)));
1783 				break;
1784 			}
1785 			dump_one_qentry_outbound(ss, qentryp, last_consumed,
1786 			    devid_filter);
1787 			mdb_printf("\n");
1788 			mdb_dec_indent(2);
1789 			continue;
1790 		}
1791 
1792 		for (idx = 0; idx < ss.ioq_depth; idx++) {
1793 			if (MDB_RD(qentryp, PMCS_QENTRY_SIZE,
1794 			    (obqp + (PMCS_QENTRY_SIZE * idx))) == -1) {
1795 				mdb_warn("Couldn't read queue entry at 0x%p\n",
1796 				    (obqp + (PMCS_QENTRY_SIZE * idx)));
1797 				break;
1798 			}
1799 			dump_one_qentry_outbound(ss, qentryp, idx,
1800 			    devid_filter);
1801 		}
1802 
1803 		mdb_printf("\n");
1804 		mdb_dec_indent(2);
1805 	}
1806 
1807 	mdb_dec_indent(2);
1808 	mdb_free(qentryp, PMCS_QENTRY_SIZE);
1809 }
1810 
1811 static void
1812 dump_one_qentry_inbound(uint32_t *qentryp, int idx, uint64_t devid_filter)
1813 {
1814 	int qeidx;
1815 	uint32_t word0 = LE_32(*qentryp);
1816 	uint32_t devid = LE_32(*(qentryp + 2));
1817 
1818 	/*
1819 	 * Check to see if we're filtering on a device ID
1820 	 */
1821 	if (devid_filter != PMCS_INVALID_DEVICE_ID) {
1822 		if (iomb_is_dev_hdl_specific(word0, B_TRUE)) {
1823 			if (devid_filter != devid) {
1824 				return;
1825 			}
1826 		} else {
1827 			return;
1828 		}
1829 	}
1830 
1831 	mdb_printf("Entry #%02d\n", idx);
1832 	mdb_inc_indent(2);
1833 
1834 	mdb_printf("Header: 0x%08x (", word0);
1835 	if (word0 & PMCS_IOMB_VALID) {
1836 		mdb_printf("VALID, ");
1837 	}
1838 	if (word0 & PMCS_IOMB_HIPRI) {
1839 		mdb_printf("HIPRI, ");
1840 	}
1841 	mdb_printf("OBID=%d, ",
1842 	    (word0 & PMCS_IOMB_OBID_MASK) >> PMCS_IOMB_OBID_SHIFT);
1843 	mdb_printf("CAT=%s, ",
1844 	    iomb_cat((word0 & PMCS_IOMB_CAT_MASK) >> PMCS_IOMB_CAT_SHIFT));
1845 	mdb_printf("OPCODE=%s",
1846 	    inbound_iomb_opcode(word0 & PMCS_IOMB_OPCODE_MASK));
1847 	mdb_printf(")\n");
1848 
1849 	mdb_printf("HTAG: 0x%08x\n", LE_32(*(qentryp + 1)));
1850 	mdb_printf("Remaining Payload:\n");
1851 
1852 	mdb_inc_indent(2);
1853 	for (qeidx = 2; qeidx < (PMCS_QENTRY_SIZE / 4); qeidx++) {
1854 		mdb_printf("%08x ", LE_32(*(qentryp + qeidx)));
1855 	}
1856 	mdb_printf("\n");
1857 	mdb_dec_indent(4);
1858 }
1859 
1860 static void
1861 display_inbound_queues(struct pmcs_hw ss, uint64_t devid_filter, uint_t verbose)
1862 {
1863 	int		idx, qidx, iqci, last_consumed;
1864 	uintptr_t	ibqp;
1865 	uint32_t	*qentryp = mdb_alloc(PMCS_QENTRY_SIZE, UM_SLEEP);
1866 	uint32_t	*cip;
1867 
1868 	mdb_printf("\n");
1869 	mdb_printf("Inbound Queues\n");
1870 	mdb_printf("--------------\n");
1871 
1872 	mdb_inc_indent(2);
1873 
1874 	for (qidx = 0; qidx < PMCS_NIQ; qidx++) {
1875 		ibqp = (uintptr_t)ss.iqp[qidx];
1876 
1877 		if (ibqp == 0) {
1878 			mdb_printf("No inbound queue ptr for queue #%d\n",
1879 			    qidx);
1880 			continue;
1881 		}
1882 
1883 		mdb_printf("Inbound Queue #%d (Queue Type = %s)\n", qidx,
1884 		    ibq_type(qidx));
1885 
1886 		cip = (uint32_t *)((void *)ss.cip);
1887 		if (MDB_RD(&iqci, 4, cip + (qidx * 4)) == -1) {
1888 			mdb_warn("Couldn't read iqci\n");
1889 			break;
1890 		}
1891 		iqci = LE_32(iqci);
1892 
1893 		mdb_printf("Producer index: %d  Consumer index: %d\n\n",
1894 		    ss.shadow_iqpi[qidx], iqci);
1895 		mdb_inc_indent(2);
1896 
1897 		if (iqci == 0) {
1898 			last_consumed = ss.ioq_depth - 1;
1899 		} else {
1900 			last_consumed = iqci - 1;
1901 		}
1902 
1903 		if (!verbose) {
1904 			mdb_printf("Last processed entry:\n");
1905 			if (MDB_RD(qentryp, PMCS_QENTRY_SIZE,
1906 			    (ibqp + (PMCS_QENTRY_SIZE * last_consumed)))
1907 			    == -1) {
1908 				mdb_warn("Couldn't read queue entry at 0x%p\n",
1909 				    (ibqp + (PMCS_QENTRY_SIZE *
1910 				    last_consumed)));
1911 				break;
1912 			}
1913 			dump_one_qentry_inbound(qentryp, last_consumed,
1914 			    devid_filter);
1915 			mdb_printf("\n");
1916 			mdb_dec_indent(2);
1917 			continue;
1918 		}
1919 
1920 		for (idx = 0; idx < ss.ioq_depth; idx++) {
1921 			if (MDB_RD(qentryp, PMCS_QENTRY_SIZE,
1922 			    (ibqp + (PMCS_QENTRY_SIZE * idx))) == -1) {
1923 				mdb_warn("Couldn't read queue entry at 0x%p\n",
1924 				    (ibqp + (PMCS_QENTRY_SIZE * idx)));
1925 				break;
1926 			}
1927 			dump_one_qentry_inbound(qentryp, idx, devid_filter);
1928 		}
1929 
1930 		mdb_printf("\n");
1931 		mdb_dec_indent(2);
1932 	}
1933 
1934 	mdb_dec_indent(2);
1935 	mdb_free(qentryp, PMCS_QENTRY_SIZE);
1936 }
1937 
1938 /*
1939  * phy is our copy of the PHY structure.  phyp is the pointer to the actual
1940  * kernel PHY data structure
1941  */
1942 static void
1943 display_phy(struct pmcs_phy phy, struct pmcs_phy *phyp, int verbose,
1944     int totals_only)
1945 {
1946 	char		*dtype, *speed;
1947 	char		*yes = "Yes";
1948 	char		*no = "No";
1949 	char		*cfgd = no;
1950 	char		*apend = no;
1951 	char		*asent = no;
1952 	char		*dead = no;
1953 	char		*changed = no;
1954 	char		route_attr, route_method;
1955 
1956 	switch (phy.dtype) {
1957 	case NOTHING:
1958 		dtype = "None";
1959 		break;
1960 	case SATA:
1961 		dtype = "SATA";
1962 		if (phy.configured) {
1963 			++sata_phys;
1964 		}
1965 		break;
1966 	case SAS:
1967 		dtype = "SAS";
1968 		if (phy.configured) {
1969 			++sas_phys;
1970 		}
1971 		break;
1972 	case EXPANDER:
1973 		dtype = "EXP";
1974 		if (phy.configured) {
1975 			++exp_phys;
1976 		}
1977 		break;
1978 	}
1979 
1980 	if (phy.dtype == NOTHING) {
1981 		empty_phys++;
1982 	} else if ((phy.dtype == EXPANDER) && phy.configured) {
1983 		num_expanders++;
1984 	}
1985 
1986 	if (totals_only) {
1987 		return;
1988 	}
1989 
1990 	switch (phy.link_rate) {
1991 	case SAS_LINK_RATE_1_5GBIT:
1992 		speed = "1.5Gb/s";
1993 		break;
1994 	case SAS_LINK_RATE_3GBIT:
1995 		speed = "3 Gb/s";
1996 		break;
1997 	case SAS_LINK_RATE_6GBIT:
1998 		speed = "6 Gb/s";
1999 		break;
2000 	default:
2001 		speed = "N/A";
2002 		break;
2003 	}
2004 
2005 	if ((phy.dtype != NOTHING) || verbose) {
2006 		print_sas_address(&phy);
2007 
2008 		if (phy.device_id != PMCS_INVALID_DEVICE_ID) {
2009 			mdb_printf(" %3d %4d %6s %4s ",
2010 			    phy.device_id, phy.phynum, speed, dtype);
2011 		} else {
2012 			mdb_printf(" N/A %4d %6s %4s ",
2013 			    phy.phynum, speed, dtype);
2014 		}
2015 
2016 		if (verbose) {
2017 			if (phy.abort_sent) {
2018 				asent = yes;
2019 			}
2020 			if (phy.abort_pending) {
2021 				apend = yes;
2022 			}
2023 			if (phy.configured) {
2024 				cfgd = yes;
2025 			}
2026 			if (phy.dead) {
2027 				dead = yes;
2028 			}
2029 			if (phy.changed) {
2030 				changed = yes;
2031 			}
2032 
2033 			switch (phy.routing_attr) {
2034 			case SMP_ROUTING_DIRECT:
2035 				route_attr = 'D';
2036 				break;
2037 			case SMP_ROUTING_SUBTRACTIVE:
2038 				route_attr = 'S';
2039 				break;
2040 			case SMP_ROUTING_TABLE:
2041 				route_attr = 'T';
2042 				break;
2043 			default:
2044 				route_attr = '?';
2045 				break;
2046 			}
2047 
2048 			switch (phy.routing_method) {
2049 			case SMP_ROUTING_DIRECT:
2050 				route_method = 'D';
2051 				break;
2052 			case SMP_ROUTING_SUBTRACTIVE:
2053 				route_method = 'S';
2054 				break;
2055 			case SMP_ROUTING_TABLE:
2056 				route_method = 'T';
2057 				break;
2058 			default:
2059 				route_attr = '?';
2060 				break;
2061 			}
2062 
2063 			mdb_printf("%-4s %-4s %-4s %-4s %-4s %3d %3c/%1c %3d "
2064 			    "%1d 0x%p ", cfgd, apend, asent, changed, dead,
2065 			    phy.ref_count, route_attr, route_method,
2066 			    phy.enum_attempts, phy.reenumerate, phy.phy_lock);
2067 		}
2068 
2069 		mdb_printf("Path: %s\n", phy.path);
2070 
2071 		/*
2072 		 * In verbose mode, on the next line print the drill down
2073 		 * info to see either the DISCOVER response or the REPORT
2074 		 * GENERAL response depending on the PHY's dtype
2075 		 */
2076 		if (verbose) {
2077 			uintptr_t tphyp = (uintptr_t)phyp;
2078 
2079 			mdb_inc_indent(4);
2080 			switch (phy.dtype) {
2081 			case EXPANDER:
2082 				if (!phy.configured) {
2083 					break;
2084 				}
2085 				mdb_printf("REPORT GENERAL response: %p::"
2086 				    "print smp_report_general_resp_t\n",
2087 				    (tphyp + offsetof(struct pmcs_phy,
2088 				    rg_resp)));
2089 				break;
2090 			case SAS:
2091 			case SATA:
2092 				mdb_printf("DISCOVER response: %p::"
2093 				    "print smp_discover_resp_t\n",
2094 				    (tphyp + offsetof(struct pmcs_phy,
2095 				    disc_resp)));
2096 				break;
2097 			default:
2098 				break;
2099 			}
2100 			mdb_dec_indent(4);
2101 		}
2102 	}
2103 }
2104 
2105 static void
2106 display_phys(struct pmcs_hw ss, int verbose, struct pmcs_phy *parent, int level,
2107     int totals_only)
2108 {
2109 	pmcs_phy_t	phy;
2110 	pmcs_phy_t	*pphy = parent;
2111 
2112 	mdb_inc_indent(3);
2113 
2114 	if (parent == NULL) {
2115 		pphy = (pmcs_phy_t *)ss.root_phys;
2116 	} else {
2117 		pphy = (pmcs_phy_t *)parent;
2118 	}
2119 
2120 	if (level == 0) {
2121 		sas_phys = 0;
2122 		sata_phys = 0;
2123 		exp_phys = 0;
2124 		num_expanders = 0;
2125 		empty_phys = 0;
2126 	}
2127 
2128 	if (!totals_only) {
2129 		if (level == 0) {
2130 			mdb_printf("PHY information\n");
2131 		}
2132 		mdb_printf("--------\n");
2133 		mdb_printf("Level %2d\n", level);
2134 		mdb_printf("--------\n");
2135 		mdb_printf("SAS Address      Hdl Phy#  Speed Type ");
2136 
2137 		if (verbose) {
2138 			mdb_printf("Cfgd AbtP AbtS Chgd Dead Ref RtA/M Enm R "
2139 			    "Lock\n");
2140 		} else {
2141 			mdb_printf("\n");
2142 		}
2143 	}
2144 
2145 	while (pphy) {
2146 		if (MDB_RD(&phy, sizeof (phy), (uintptr_t)pphy) == -1) {
2147 			NOREAD(pmcs_phy_t, phy);
2148 			break;
2149 		}
2150 
2151 		display_phy(phy, pphy, verbose, totals_only);
2152 
2153 		if (phy.children) {
2154 			display_phys(ss, verbose, phy.children, level + 1,
2155 			    totals_only);
2156 			if (!totals_only) {
2157 				mdb_printf("\n");
2158 			}
2159 		}
2160 
2161 		pphy = phy.sibling;
2162 	}
2163 
2164 	mdb_dec_indent(3);
2165 
2166 	if (level == 0) {
2167 		if (verbose) {
2168 			mdb_printf("%19s %d (%d SAS + %d SATA + %d SMP) "
2169 			    "(+%d subsidiary + %d empty)\n", "Occupied PHYs:",
2170 			    (sas_phys + sata_phys + num_expanders),
2171 			    sas_phys, sata_phys, num_expanders,
2172 			    (exp_phys - num_expanders), empty_phys);
2173 		} else {
2174 			mdb_printf("%19s %d (%d SAS + %d SATA + %d SMP)\n",
2175 			    "Occupied PHYs:",
2176 			    (sas_phys + sata_phys + num_expanders),
2177 			    sas_phys, sata_phys, num_expanders);
2178 		}
2179 	}
2180 }
2181 
2182 /*
2183  * filter is used to indicate whether we are filtering log messages based
2184  * on "instance".  The other filtering (based on options) depends on the
2185  * values that are passed in for "sas_addr" and "phy_path".
2186  *
2187  * MAX_INST_STRLEN is the largest string size from which we will attempt
2188  * to convert to an instance number.  The string will be formed up as
2189  * "0t<inst>\0" so that mdb_strtoull can parse it properly.
2190  */
2191 #define	MAX_INST_STRLEN	8
2192 
2193 static int
2194 pmcs_dump_tracelog(boolean_t filter, int instance, uint64_t tail_lines,
2195     const char *phy_path, uint64_t sas_address, uint64_t verbose)
2196 {
2197 	pmcs_tbuf_t *tbuf_addr;
2198 	uint_t tbuf_idx;
2199 	pmcs_tbuf_t tbuf;
2200 	boolean_t wrap, elem_filtered;
2201 	uint_t start_idx, elems_to_print, idx, tbuf_num_elems;
2202 	char *bufp;
2203 	char elem_inst[MAX_INST_STRLEN], ei_idx;
2204 	uint64_t sas_addr;
2205 	uint8_t *sas_addressp;
2206 
2207 	/* Get the address of the first element */
2208 	if (mdb_readvar(&tbuf_addr, "pmcs_tbuf") == -1) {
2209 		mdb_warn("can't read pmcs_tbuf");
2210 		return (DCMD_ERR);
2211 	}
2212 
2213 	/* Get the total number */
2214 	if (mdb_readvar(&tbuf_num_elems, "pmcs_tbuf_num_elems") == -1) {
2215 		mdb_warn("can't read pmcs_tbuf_num_elems");
2216 		return (DCMD_ERR);
2217 	}
2218 
2219 	/* Get the current index */
2220 	if (mdb_readvar(&tbuf_idx, "pmcs_tbuf_idx") == -1) {
2221 		mdb_warn("can't read pmcs_tbuf_idx");
2222 		return (DCMD_ERR);
2223 	}
2224 
2225 	/* Indicator as to whether the buffer has wrapped */
2226 	if (mdb_readvar(&wrap, "pmcs_tbuf_wrap") == -1) {
2227 		mdb_warn("can't read pmcs_tbuf_wrap");
2228 		return (DCMD_ERR);
2229 	}
2230 
2231 	/*
2232 	 * On little-endian systems, the SAS address passed in will be
2233 	 * byte swapped.  Take care of that here.
2234 	 */
2235 #if defined(_LITTLE_ENDIAN)
2236 	sas_addr = ((sas_address << 56) |
2237 	    ((sas_address << 40) & 0xff000000000000ULL) |
2238 	    ((sas_address << 24) & 0xff0000000000ULL) |
2239 	    ((sas_address << 8)  & 0xff00000000ULL) |
2240 	    ((sas_address >> 8)  & 0xff000000ULL) |
2241 	    ((sas_address >> 24) & 0xff0000ULL) |
2242 	    ((sas_address >> 40) & 0xff00ULL) |
2243 	    (sas_address  >> 56));
2244 #else
2245 	sas_addr = sas_address;
2246 #endif
2247 	sas_addressp = (uint8_t *)&sas_addr;
2248 
2249 	/* Ensure the tail number isn't greater than the size of the log */
2250 	if (tail_lines > tbuf_num_elems) {
2251 		tail_lines = tbuf_num_elems;
2252 	}
2253 
2254 	/* Figure out where we start and stop */
2255 	if (wrap) {
2256 		if (tail_lines) {
2257 			/* Do we need to wrap backwards? */
2258 			if (tail_lines > tbuf_idx) {
2259 				start_idx = tbuf_num_elems - (tail_lines -
2260 				    tbuf_idx);
2261 			} else {
2262 				start_idx = tbuf_idx - tail_lines;
2263 			}
2264 			elems_to_print = tail_lines;
2265 		} else {
2266 			start_idx = tbuf_idx;
2267 			elems_to_print = tbuf_num_elems;
2268 		}
2269 	} else {
2270 		if (tail_lines > tbuf_idx) {
2271 			tail_lines = tbuf_idx;
2272 		}
2273 		if (tail_lines) {
2274 			start_idx = tbuf_idx - tail_lines;
2275 			elems_to_print = tail_lines;
2276 		} else {
2277 			start_idx = 0;
2278 			elems_to_print = tbuf_idx;
2279 		}
2280 	}
2281 
2282 	idx = start_idx;
2283 
2284 	/* Dump the buffer contents */
2285 	while (elems_to_print != 0) {
2286 		if (MDB_RD(&tbuf, sizeof (pmcs_tbuf_t), (tbuf_addr + idx))
2287 		    == -1) {
2288 			NOREAD(tbuf, (tbuf_addr + idx));
2289 			return (DCMD_ERR);
2290 		}
2291 
2292 		/*
2293 		 * Check for filtering on HBA instance
2294 		 */
2295 		elem_filtered = B_FALSE;
2296 
2297 		if (filter) {
2298 			bufp = tbuf.buf;
2299 			/* Skip the driver name */
2300 			while (*bufp < '0' || *bufp > '9') {
2301 				bufp++;
2302 			}
2303 
2304 			ei_idx = 0;
2305 			elem_inst[ei_idx++] = '0';
2306 			elem_inst[ei_idx++] = 't';
2307 			while (*bufp != ':' && ei_idx < (MAX_INST_STRLEN - 1)) {
2308 				elem_inst[ei_idx++] = *bufp;
2309 				bufp++;
2310 			}
2311 			elem_inst[ei_idx] = 0;
2312 
2313 			/* Get the instance */
2314 			if ((int)mdb_strtoull(elem_inst) != instance) {
2315 				elem_filtered = B_TRUE;
2316 			}
2317 		}
2318 
2319 		if (!elem_filtered && (phy_path || sas_address)) {
2320 			/*
2321 			 * This message is not being filtered by HBA instance.
2322 			 * Now check to see if we're filtering based on
2323 			 * PHY path or SAS address.
2324 			 * Filtering is an "OR" operation.  So, if any of the
2325 			 * criteria matches, this message will be printed.
2326 			 */
2327 			elem_filtered = B_TRUE;
2328 
2329 			if (phy_path != NULL) {
2330 				if (strncmp(phy_path, tbuf.phy_path,
2331 				    PMCS_TBUF_UA_MAX_SIZE) == 0) {
2332 					elem_filtered = B_FALSE;
2333 				}
2334 			}
2335 			if (sas_address != 0) {
2336 				if (memcmp(sas_addressp, tbuf.phy_sas_address,
2337 				    8) == 0) {
2338 					elem_filtered = B_FALSE;
2339 				}
2340 			}
2341 		}
2342 
2343 		if (!elem_filtered) {
2344 			/*
2345 			 * If the -v flag was given, print the firmware
2346 			 * timestamp along with the clock time
2347 			 */
2348 			mdb_printf("%Y.%09ld ", tbuf.timestamp);
2349 			if (verbose) {
2350 				mdb_printf("(0x%" PRIx64 ") ",
2351 				    tbuf.fw_timestamp);
2352 			}
2353 			mdb_printf("%s\n", tbuf.buf);
2354 		}
2355 
2356 		--elems_to_print;
2357 		if (++idx == tbuf_num_elems) {
2358 			idx = 0;
2359 		}
2360 	}
2361 
2362 	return (DCMD_OK);
2363 }
2364 
2365 /*
2366  * Walkers
2367  */
2368 static int
2369 targets_walk_i(mdb_walk_state_t *wsp)
2370 {
2371 	if (wsp->walk_addr == 0) {
2372 		mdb_warn("Can not perform global walk\n");
2373 		return (WALK_ERR);
2374 	}
2375 
2376 	/*
2377 	 * Address provided belongs to HBA softstate.  Get the targets pointer
2378 	 * to begin the walk.
2379 	 */
2380 	if (mdb_vread(&ss, sizeof (pmcs_hw_t), wsp->walk_addr) !=
2381 	    sizeof (pmcs_hw_t)) {
2382 		mdb_warn("Unable to read HBA softstate\n");
2383 		return (WALK_ERR);
2384 	}
2385 
2386 	if (targets == NULL) {
2387 		targets = mdb_alloc(sizeof (targets) * ss.max_dev, UM_SLEEP);
2388 	}
2389 
2390 	if (MDB_RD(targets, sizeof (targets) * ss.max_dev, ss.targets) == -1) {
2391 		NOREAD(targets, ss.targets);
2392 		return (WALK_ERR);
2393 	}
2394 
2395 	target_idx = 0;
2396 	wsp->walk_addr = (uintptr_t)(targets[0]);
2397 	wsp->walk_data = mdb_alloc(sizeof (pmcs_xscsi_t), UM_SLEEP);
2398 
2399 	return (WALK_NEXT);
2400 }
2401 
2402 static int
2403 targets_walk_s(mdb_walk_state_t *wsp)
2404 {
2405 	int status;
2406 
2407 	if (target_idx == ss.max_dev) {
2408 		return (WALK_DONE);
2409 	}
2410 
2411 	if (mdb_vread(wsp->walk_data, sizeof (pmcs_xscsi_t),
2412 	    wsp->walk_addr) == -1) {
2413 		mdb_warn("Failed to read target at %p", (void *)wsp->walk_addr);
2414 		return (WALK_DONE);
2415 	}
2416 
2417 	status = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
2418 	    wsp->walk_cbdata);
2419 
2420 	do {
2421 		wsp->walk_addr = (uintptr_t)(targets[++target_idx]);
2422 	} while ((wsp->walk_addr == 0) && (target_idx < ss.max_dev));
2423 
2424 	if (target_idx == ss.max_dev) {
2425 		return (WALK_DONE);
2426 	}
2427 
2428 	return (status);
2429 }
2430 
2431 static void
2432 targets_walk_f(mdb_walk_state_t *wsp)
2433 {
2434 	mdb_free(wsp->walk_data, sizeof (pmcs_xscsi_t));
2435 }
2436 
2437 
2438 static pmcs_phy_t *
2439 pmcs_next_sibling(pmcs_phy_t *phyp)
2440 {
2441 	pmcs_phy_t parent;
2442 
2443 	/*
2444 	 * First, if this is a root PHY, there are no more siblings
2445 	 */
2446 	if (phyp->level == 0) {
2447 		return (NULL);
2448 	}
2449 
2450 	/*
2451 	 * Otherwise, next sibling is the parent's sibling
2452 	 */
2453 	while (phyp->level > 0) {
2454 		if (mdb_vread(&parent, sizeof (pmcs_phy_t),
2455 		    (uintptr_t)phyp->parent) == -1) {
2456 			mdb_warn("pmcs_next_sibling: Failed to read PHY at %p",
2457 			    (void *)phyp->parent);
2458 			return (NULL);
2459 		}
2460 
2461 		if (parent.sibling != NULL) {
2462 			break;
2463 		}
2464 
2465 		/*
2466 		 * If this PHY's sibling is NULL and it's a root phy,
2467 		 * we're done.
2468 		 */
2469 		if (parent.level == 0) {
2470 			return (NULL);
2471 		}
2472 
2473 		phyp = phyp->parent;
2474 	}
2475 
2476 	return (parent.sibling);
2477 }
2478 
2479 static int
2480 phy_walk_i(mdb_walk_state_t *wsp)
2481 {
2482 	if (wsp->walk_addr == 0) {
2483 		mdb_warn("Can not perform global walk\n");
2484 		return (WALK_ERR);
2485 	}
2486 
2487 	/*
2488 	 * Address provided belongs to HBA softstate.  Get the targets pointer
2489 	 * to begin the walk.
2490 	 */
2491 	if (mdb_vread(&ss, sizeof (pmcs_hw_t), wsp->walk_addr) !=
2492 	    sizeof (pmcs_hw_t)) {
2493 		mdb_warn("Unable to read HBA softstate\n");
2494 		return (WALK_ERR);
2495 	}
2496 
2497 	wsp->walk_addr = (uintptr_t)(ss.root_phys);
2498 	wsp->walk_data = mdb_alloc(sizeof (pmcs_phy_t), UM_SLEEP);
2499 
2500 	return (WALK_NEXT);
2501 }
2502 
2503 static int
2504 phy_walk_s(mdb_walk_state_t *wsp)
2505 {
2506 	pmcs_phy_t *phyp, *nphyp;
2507 	int status;
2508 
2509 	if (mdb_vread(wsp->walk_data, sizeof (pmcs_phy_t),
2510 	    wsp->walk_addr) == -1) {
2511 		mdb_warn("phy_walk_s: Failed to read PHY at %p",
2512 		    (void *)wsp->walk_addr);
2513 		return (WALK_DONE);
2514 	}
2515 
2516 	status = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
2517 	    wsp->walk_cbdata);
2518 
2519 	phyp = (pmcs_phy_t *)wsp->walk_data;
2520 	if (phyp->children) {
2521 		wsp->walk_addr = (uintptr_t)(phyp->children);
2522 	} else {
2523 		wsp->walk_addr = (uintptr_t)(phyp->sibling);
2524 	}
2525 
2526 	if (wsp->walk_addr == 0) {
2527 		/*
2528 		 * We reached the end of this sibling list.  Trudge back up
2529 		 * to the parent and find the next sibling after the expander
2530 		 * we just finished traversing, if there is one.
2531 		 */
2532 		nphyp = pmcs_next_sibling(phyp);
2533 
2534 		if (nphyp == NULL) {
2535 			return (WALK_DONE);
2536 		}
2537 
2538 		wsp->walk_addr = (uintptr_t)nphyp;
2539 	}
2540 
2541 	return (status);
2542 }
2543 
2544 static void
2545 phy_walk_f(mdb_walk_state_t *wsp)
2546 {
2547 	mdb_free(wsp->walk_data, sizeof (pmcs_phy_t));
2548 }
2549 
2550 static void
2551 display_matching_work(struct pmcs_hw ss, uintmax_t index, uintmax_t snum,
2552     uintmax_t tag_type)
2553 {
2554 	int		idx;
2555 	pmcwork_t	work, *wp = &work;
2556 	uintptr_t	_wp;
2557 	boolean_t	printed_header = B_FALSE;
2558 	uint32_t	mask, mask_val, match_val;
2559 	char		*match_type;
2560 
2561 	if (index != UINT_MAX) {
2562 		match_type = "index";
2563 		mask = PMCS_TAG_INDEX_MASK;
2564 		mask_val = index << PMCS_TAG_INDEX_SHIFT;
2565 		match_val = index;
2566 	} else if (snum != UINT_MAX) {
2567 		match_type = "serial number";
2568 		mask = PMCS_TAG_SERNO_MASK;
2569 		mask_val = snum << PMCS_TAG_SERNO_SHIFT;
2570 		match_val = snum;
2571 	} else {
2572 		switch (tag_type) {
2573 		case PMCS_TAG_TYPE_NONE:
2574 			match_type = "tag type NONE";
2575 			break;
2576 		case PMCS_TAG_TYPE_CBACK:
2577 			match_type = "tag type CBACK";
2578 			break;
2579 		case PMCS_TAG_TYPE_WAIT:
2580 			match_type = "tag type WAIT";
2581 			break;
2582 		}
2583 		mask = PMCS_TAG_TYPE_MASK;
2584 		mask_val = tag_type << PMCS_TAG_TYPE_SHIFT;
2585 		match_val = tag_type;
2586 	}
2587 
2588 	_wp = (uintptr_t)ss.work;
2589 
2590 	for (idx = 0; idx < ss.max_cmd; idx++, _wp += sizeof (pmcwork_t)) {
2591 		if (MDB_RD(&work, sizeof (pmcwork_t), _wp) == -1) {
2592 			NOREAD(pmcwork_t, _wp);
2593 			continue;
2594 		}
2595 
2596 		if ((work.htag & mask) != mask_val) {
2597 			continue;
2598 		}
2599 
2600 		if (printed_header == B_FALSE) {
2601 			if (tag_type) {
2602 				mdb_printf("\nWork structures matching %s\n\n",
2603 				    match_type, match_val);
2604 			} else {
2605 				mdb_printf("\nWork structures matching %s of "
2606 				    "0x%x\n\n", match_type, match_val);
2607 			}
2608 			mdb_printf("%8s %10s %20s %8s %8s O D\n",
2609 			    "HTag", "State", "Phy Path", "Target", "Timer");
2610 			printed_header = B_TRUE;
2611 		}
2612 
2613 		display_one_work(wp, 0, 0);
2614 	}
2615 
2616 	if (!printed_header) {
2617 		mdb_printf("No work structure matches found\n");
2618 	}
2619 }
2620 
2621 static int
2622 pmcs_tag(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2623 {
2624 	struct	pmcs_hw		ss;
2625 	uintmax_t		tag_type = UINT_MAX;
2626 	uintmax_t		snum = UINT_MAX;
2627 	uintmax_t		index = UINT_MAX;
2628 	int			args = 0;
2629 	void			*pmcs_state;
2630 	char			*state_str;
2631 	struct dev_info		dip;
2632 
2633 	if (!(flags & DCMD_ADDRSPEC)) {
2634 		pmcs_state = NULL;
2635 		if (mdb_readvar(&pmcs_state, "pmcs_softc_state") == -1) {
2636 			mdb_warn("can't read pmcs_softc_state");
2637 			return (DCMD_ERR);
2638 		}
2639 		if (mdb_pwalk_dcmd("genunix`softstate", "pmcs`pmcs_tag", argc,
2640 		    argv, (uintptr_t)pmcs_state) == -1) {
2641 			mdb_warn("mdb_pwalk_dcmd failed");
2642 			return (DCMD_ERR);
2643 		}
2644 		return (DCMD_OK);
2645 	}
2646 
2647 	if (mdb_getopts(argc, argv,
2648 	    'i', MDB_OPT_UINT64, &index,
2649 	    's', MDB_OPT_UINT64, &snum,
2650 	    't', MDB_OPT_UINT64, &tag_type,
2651 	    NULL) != argc)
2652 		return (DCMD_USAGE);
2653 
2654 	/*
2655 	 * Count the number of supplied options and make sure they are
2656 	 * within appropriate ranges.  If they're set to UINT_MAX, that means
2657 	 * they were not supplied, in which case reset them to 0.
2658 	 */
2659 	if (index != UINT_MAX) {
2660 		args++;
2661 		if (index > PMCS_TAG_INDEX_MASK) {
2662 			mdb_warn("Index is out of range\n");
2663 			return (DCMD_USAGE);
2664 		}
2665 	}
2666 
2667 	if (tag_type != UINT_MAX) {
2668 		args++;
2669 		switch (tag_type) {
2670 		case PMCS_TAG_TYPE_NONE:
2671 		case PMCS_TAG_TYPE_CBACK:
2672 		case PMCS_TAG_TYPE_WAIT:
2673 			break;
2674 		default:
2675 			mdb_warn("Invalid tag type\n");
2676 			return (DCMD_USAGE);
2677 		}
2678 	}
2679 
2680 	if (snum != UINT_MAX) {
2681 		args++;
2682 		if (snum > (PMCS_TAG_SERNO_MASK >> PMCS_TAG_SERNO_SHIFT)) {
2683 			mdb_warn("Serial number is out of range\n");
2684 			return (DCMD_USAGE);
2685 		}
2686 	}
2687 
2688 	/*
2689 	 * Make sure 1 and only 1 option is specified
2690 	 */
2691 	if ((args == 0) || (args > 1)) {
2692 		mdb_warn("Exactly one of -i, -s and -t must be specified\n");
2693 		return (DCMD_USAGE);
2694 	}
2695 
2696 	if (MDB_RD(&ss, sizeof (ss), addr) == -1) {
2697 		NOREAD(pmcs_hw_t, addr);
2698 		return (DCMD_ERR);
2699 	}
2700 
2701 	if (MDB_RD(&dip, sizeof (struct dev_info), ss.dip) == -1) {
2702 		NOREAD(pmcs_hw_t, addr);
2703 		return (DCMD_ERR);
2704 	}
2705 
2706 	/* processing completed */
2707 
2708 	if (((flags & DCMD_ADDRSPEC) && !(flags & DCMD_LOOP)) ||
2709 	    (flags & DCMD_LOOPFIRST)) {
2710 		if ((flags & DCMD_LOOP) && !(flags & DCMD_LOOPFIRST))
2711 			mdb_printf("\n");
2712 		mdb_printf("%16s %9s %4s B C  WorkFlags wserno DbgMsk %16s\n",
2713 		    "Address", "State", "Inst", "DIP");
2714 		mdb_printf("================================="
2715 		    "============================================\n");
2716 	}
2717 
2718 	switch (ss.state) {
2719 	case STATE_NIL:
2720 		state_str = "Invalid";
2721 		break;
2722 	case STATE_PROBING:
2723 		state_str = "Probing";
2724 		break;
2725 	case STATE_RUNNING:
2726 		state_str = "Running";
2727 		break;
2728 	case STATE_UNPROBING:
2729 		state_str = "Unprobing";
2730 		break;
2731 	case STATE_DEAD:
2732 		state_str = "Dead";
2733 		break;
2734 	case STATE_IN_RESET:
2735 		state_str = "In Reset";
2736 		break;
2737 	}
2738 
2739 	mdb_printf("%16p %9s %4d %1d %1d 0x%08x 0x%04x 0x%04x %16p\n", addr,
2740 	    state_str, dip.devi_instance, ss.blocked, ss.configuring,
2741 	    ss.work_flags, ss.wserno, ss.debug_mask, ss.dip);
2742 	mdb_printf("\n");
2743 
2744 	mdb_inc_indent(4);
2745 	display_matching_work(ss, index, snum, tag_type);
2746 	mdb_dec_indent(4);
2747 	mdb_printf("\n");
2748 
2749 	return (DCMD_OK);
2750 }
2751 
2752 #ifndef _KMDB
2753 static int
2754 pmcs_dump_fwlog(struct pmcs_hw *ss, int instance, const char *ofile)
2755 {
2756 	uint8_t *fwlogp;
2757 	int	ofilefd = -1;
2758 	char	ofilename[MAXPATHLEN];
2759 	int	rval = DCMD_OK;
2760 
2761 	if (ss->fwlogp == NULL) {
2762 		mdb_warn("Firmware event log disabled for instance %d",
2763 		    instance);
2764 		return (DCMD_OK);
2765 	}
2766 
2767 	if (snprintf(ofilename, MAXPATHLEN, "%s%d", ofile, instance) >
2768 	    MAXPATHLEN) {
2769 		mdb_warn("Output filename is too long for instance %d",
2770 		    instance);
2771 		return (DCMD_ERR);
2772 	}
2773 
2774 	fwlogp = mdb_alloc(PMCS_FWLOG_SIZE, UM_SLEEP);
2775 
2776 	if (MDB_RD(fwlogp, PMCS_FWLOG_SIZE, ss->fwlogp) == -1) {
2777 		NOREAD(fwlogp, ss->fwlogp);
2778 		rval = DCMD_ERR;
2779 		goto cleanup;
2780 	}
2781 
2782 	ofilefd = open(ofilename, O_WRONLY | O_CREAT,
2783 	    S_IRUSR | S_IRGRP | S_IROTH);
2784 	if (ofilefd < 0) {
2785 		mdb_warn("Unable to open '%s' to dump instance %d event log",
2786 		    ofilename, instance);
2787 		rval = DCMD_ERR;
2788 		goto cleanup;
2789 	}
2790 
2791 	if (write(ofilefd, fwlogp, PMCS_FWLOG_SIZE) != PMCS_FWLOG_SIZE) {
2792 		mdb_warn("Failed to write %d bytes to output file: instance %d",
2793 		    PMCS_FWLOG_SIZE, instance);
2794 		rval = DCMD_ERR;
2795 		goto cleanup;
2796 	}
2797 
2798 	mdb_printf("Event log for instance %d written to %s\n", instance,
2799 	    ofilename);
2800 
2801 cleanup:
2802 	if (ofilefd >= 0) {
2803 		close(ofilefd);
2804 	}
2805 	mdb_free(fwlogp, PMCS_FWLOG_SIZE);
2806 	return (rval);
2807 }
2808 
2809 static int
2810 pmcs_fwlog(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2811 {
2812 	void		*pmcs_state;
2813 	const char	*ofile = NULL;
2814 	struct pmcs_hw	ss;
2815 	struct dev_info	dip;
2816 
2817 	if (mdb_getopts(argc, argv, 'o', MDB_OPT_STR, &ofile, NULL) != argc) {
2818 		return (DCMD_USAGE);
2819 	}
2820 
2821 	if (ofile == NULL) {
2822 		mdb_printf("No output file specified\n");
2823 		return (DCMD_USAGE);
2824 	}
2825 
2826 	if (!(flags & DCMD_ADDRSPEC)) {
2827 		pmcs_state = NULL;
2828 		if (mdb_readvar(&pmcs_state, "pmcs_softc_state") == -1) {
2829 			mdb_warn("can't read pmcs_softc_state");
2830 			return (DCMD_ERR);
2831 		}
2832 		if (mdb_pwalk_dcmd("genunix`softstate", "pmcs`pmcs_fwlog", argc,
2833 		    argv, (uintptr_t)pmcs_state) == -1) {
2834 			mdb_warn("mdb_pwalk_dcmd failed for pmcs_log");
2835 			return (DCMD_ERR);
2836 		}
2837 		return (DCMD_OK);
2838 	}
2839 
2840 	if (MDB_RD(&ss, sizeof (ss), addr) == -1) {
2841 		NOREAD(pmcs_hw_t, addr);
2842 		return (DCMD_ERR);
2843 	}
2844 
2845 	if (MDB_RD(&dip, sizeof (struct dev_info), ss.dip) == -1) {
2846 		NOREAD(pmcs_hw_t, addr);
2847 		return (DCMD_ERR);
2848 	}
2849 
2850 	return (pmcs_dump_fwlog(&ss, dip.devi_instance, ofile));
2851 }
2852 #endif	/* _KMDB */
2853 
2854 static int
2855 pmcs_log(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2856 {
2857 	void		*pmcs_state;
2858 	struct pmcs_hw	ss;
2859 	struct dev_info	dip;
2860 	const char	*match_phy_path = NULL;
2861 	uint64_t	match_sas_address = 0, tail_lines = 0;
2862 	uint_t		verbose = 0;
2863 
2864 	if (!(flags & DCMD_ADDRSPEC)) {
2865 		pmcs_state = NULL;
2866 		if (mdb_readvar(&pmcs_state, "pmcs_softc_state") == -1) {
2867 			mdb_warn("can't read pmcs_softc_state");
2868 			return (DCMD_ERR);
2869 		}
2870 		if (mdb_pwalk_dcmd("genunix`softstate", "pmcs`pmcs_log", argc,
2871 		    argv, (uintptr_t)pmcs_state) == -1) {
2872 			mdb_warn("mdb_pwalk_dcmd failed for pmcs_log");
2873 			return (DCMD_ERR);
2874 		}
2875 		return (DCMD_OK);
2876 	}
2877 
2878 	if (mdb_getopts(argc, argv,
2879 	    'l', MDB_OPT_UINT64, &tail_lines,
2880 	    'p', MDB_OPT_STR, &match_phy_path,
2881 	    's', MDB_OPT_UINT64, &match_sas_address,
2882 	    'v', MDB_OPT_SETBITS, TRUE, &verbose,
2883 	    NULL) != argc) {
2884 		return (DCMD_USAGE);
2885 	}
2886 
2887 	if (MDB_RD(&ss, sizeof (ss), addr) == -1) {
2888 		NOREAD(pmcs_hw_t, addr);
2889 		return (DCMD_ERR);
2890 	}
2891 
2892 	if (MDB_RD(&dip, sizeof (struct dev_info), ss.dip) == -1) {
2893 		NOREAD(pmcs_hw_t, addr);
2894 		return (DCMD_ERR);
2895 	}
2896 
2897 	if (!(flags & DCMD_LOOP)) {
2898 		return (pmcs_dump_tracelog(B_TRUE, dip.devi_instance,
2899 		    tail_lines, match_phy_path, match_sas_address, verbose));
2900 	} else if (flags & DCMD_LOOPFIRST) {
2901 		return (pmcs_dump_tracelog(B_FALSE, 0, tail_lines,
2902 		    match_phy_path, match_sas_address, verbose));
2903 	} else {
2904 		return (DCMD_OK);
2905 	}
2906 }
2907 
2908 static int
2909 pmcs_dcmd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2910 {
2911 	struct pmcs_hw		ss;
2912 	uint_t			verbose = FALSE;
2913 	uint_t			phy_info = FALSE;
2914 	uint_t			hw_info = FALSE;
2915 	uint_t			target_info = FALSE;
2916 	uint_t			work_info = FALSE;
2917 	uint_t			ic_info = FALSE;
2918 	uint_t			iport_info = FALSE;
2919 	uint_t			waitqs_info = FALSE;
2920 	uint_t			ibq = FALSE;
2921 	uint_t			obq = FALSE;
2922 	uint_t			tgt_phy_count = FALSE;
2923 	uint_t			compq = FALSE;
2924 	uint_t			unconfigured = FALSE;
2925 	uint_t			damap_info = FALSE;
2926 	uint_t			dtc_info = FALSE;
2927 	uint_t			wserno = FALSE;
2928 	uint_t			fwlog = FALSE;
2929 	boolean_t		devid_filter = FALSE;
2930 	uintptr_t		pdevid;
2931 	uint32_t		devid;
2932 	int			rv = DCMD_OK;
2933 	void			*pmcs_state;
2934 	char			*state_str;
2935 	struct dev_info		dip;
2936 	per_iport_setting_t	pis;
2937 
2938 	if (!(flags & DCMD_ADDRSPEC)) {
2939 		pmcs_state = NULL;
2940 		if (mdb_readvar(&pmcs_state, "pmcs_softc_state") == -1) {
2941 			mdb_warn("can't read pmcs_softc_state");
2942 			return (DCMD_ERR);
2943 		}
2944 		if (mdb_pwalk_dcmd("genunix`softstate", "pmcs`pmcs", argc, argv,
2945 		    (uintptr_t)pmcs_state) == -1) {
2946 			mdb_warn("mdb_pwalk_dcmd failed");
2947 			return (DCMD_ERR);
2948 		}
2949 		return (DCMD_OK);
2950 	}
2951 
2952 	if (mdb_getopts(argc, argv,
2953 	    'c', MDB_OPT_SETBITS, TRUE, &compq,
2954 	    'd', MDB_OPT_SETBITS, TRUE, &dtc_info,
2955 	    'D', MDB_OPT_UINTPTR_SET, &devid_filter, &pdevid,
2956 	    'e', MDB_OPT_SETBITS, TRUE, &fwlog,
2957 	    'h', MDB_OPT_SETBITS, TRUE, &hw_info,
2958 	    'i', MDB_OPT_SETBITS, TRUE, &ic_info,
2959 	    'I', MDB_OPT_SETBITS, TRUE, &iport_info,
2960 	    'm', MDB_OPT_SETBITS, TRUE, &damap_info,
2961 	    'p', MDB_OPT_SETBITS, TRUE, &phy_info,
2962 	    'q', MDB_OPT_SETBITS, TRUE, &ibq,
2963 	    'Q', MDB_OPT_SETBITS, TRUE, &obq,
2964 	    's', MDB_OPT_SETBITS, TRUE, &wserno,
2965 	    't', MDB_OPT_SETBITS, TRUE, &target_info,
2966 	    'T', MDB_OPT_SETBITS, TRUE, &tgt_phy_count,
2967 	    'u', MDB_OPT_SETBITS, TRUE, &unconfigured,
2968 	    'v', MDB_OPT_SETBITS, TRUE, &verbose,
2969 	    'w', MDB_OPT_SETBITS, TRUE, &work_info,
2970 	    'W', MDB_OPT_SETBITS, TRUE, &waitqs_info,
2971 	    NULL) != argc)
2972 		return (DCMD_USAGE);
2973 
2974 	/*
2975 	 * The 'd' and 'm' options implicitly enable the 'I' option
2976 	 */
2977 	pis.pis_damap_info = damap_info;
2978 	pis.pis_dtc_info = dtc_info;
2979 	if (damap_info || dtc_info) {
2980 		iport_info = TRUE;
2981 	}
2982 
2983 	/*
2984 	 * The -D option is meaningless without -q and/or -Q, and implies
2985 	 * verbosity.
2986 	 */
2987 	if (devid_filter) {
2988 		devid = (uint64_t)pdevid & 0xffffffff;
2989 		if (!ibq && !obq) {
2990 			mdb_printf("-D requires either -q or -Q\n");
2991 			return (DCMD_USAGE);
2992 		}
2993 		if (devid > PMCS_DEVICE_ID_MASK) {
2994 			mdb_printf("Device ID invalid\n");
2995 			return (DCMD_USAGE);
2996 		}
2997 		verbose = TRUE;
2998 	}
2999 
3000 	if (MDB_RD(&ss, sizeof (ss), addr) == -1) {
3001 		NOREAD(pmcs_hw_t, addr);
3002 		return (DCMD_ERR);
3003 	}
3004 
3005 	if (MDB_RD(&dip, sizeof (struct dev_info), ss.dip) == -1) {
3006 		NOREAD(pmcs_hw_t, addr);
3007 		return (DCMD_ERR);
3008 	}
3009 
3010 	/* processing completed */
3011 
3012 	if (((flags & DCMD_ADDRSPEC) && !(flags & DCMD_LOOP)) ||
3013 	    (flags & DCMD_LOOPFIRST) || phy_info || target_info || hw_info ||
3014 	    work_info || waitqs_info || ibq || obq || tgt_phy_count || compq ||
3015 	    unconfigured || fwlog) {
3016 		if ((flags & DCMD_LOOP) && !(flags & DCMD_LOOPFIRST))
3017 			mdb_printf("\n");
3018 		mdb_printf("%16s %9s %4s B C  WorkFlags wserno DbgMsk %16s\n",
3019 		    "Address", "State", "Inst", "DIP");
3020 		mdb_printf("================================="
3021 		    "============================================\n");
3022 	}
3023 
3024 	switch (ss.state) {
3025 	case STATE_NIL:
3026 		state_str = "Invalid";
3027 		break;
3028 	case STATE_PROBING:
3029 		state_str = "Probing";
3030 		break;
3031 	case STATE_RUNNING:
3032 		state_str = "Running";
3033 		break;
3034 	case STATE_UNPROBING:
3035 		state_str = "Unprobing";
3036 		break;
3037 	case STATE_DEAD:
3038 		state_str = "Dead";
3039 		break;
3040 	case STATE_IN_RESET:
3041 		state_str = "In Reset";
3042 		break;
3043 	}
3044 
3045 	mdb_printf("%16p %9s %4d %1d %1d 0x%08x 0x%04x 0x%04x %16p\n", addr,
3046 	    state_str, dip.devi_instance, ss.blocked, ss.configuring,
3047 	    ss.work_flags, ss.wserno, ss.debug_mask, ss.dip);
3048 	mdb_printf("\n");
3049 
3050 	mdb_inc_indent(4);
3051 
3052 	if (waitqs_info)
3053 		display_waitqs(ss, verbose);
3054 
3055 	if (hw_info)
3056 		display_hwinfo(ss, verbose);
3057 
3058 	if (phy_info || tgt_phy_count)
3059 		display_phys(ss, verbose, NULL, 0, tgt_phy_count);
3060 
3061 	if (target_info || tgt_phy_count)
3062 		display_targets(ss, verbose, tgt_phy_count);
3063 
3064 	if (work_info || wserno)
3065 		display_work(ss, verbose, wserno);
3066 
3067 	if (ic_info)
3068 		display_ic(ss, verbose);
3069 
3070 	if (ibq)
3071 		display_inbound_queues(ss, devid, verbose);
3072 
3073 	if (obq)
3074 		display_outbound_queues(ss, devid, verbose);
3075 
3076 	if (iport_info)
3077 		display_iport(ss, addr, verbose, &pis);
3078 
3079 	if (compq)
3080 		display_completion_queue(ss);
3081 
3082 	if (unconfigured)
3083 		display_unconfigured_targets(addr);
3084 
3085 	if (fwlog)
3086 		display_event_log(ss);
3087 
3088 	mdb_dec_indent(4);
3089 
3090 	return (rv);
3091 }
3092 
3093 void
3094 pmcs_help()
3095 {
3096 	mdb_printf("Prints summary information about each pmcs instance.\n"
3097 	    "    -c: Dump the completion queue\n"
3098 	    "    -d: Print per-iport information about device tree children\n"
3099 	    "    -D <device ID>: With -q/-Q, filter by device handle\n"
3100 	    "    -e: Display the in-memory firmware event log\n"
3101 	    "    -h: Print more detailed hardware information\n"
3102 	    "    -i: Print interrupt coalescing information\n"
3103 	    "    -I: Print information about each iport\n"
3104 	    "    -m: Print per-iport information about DAM/damap state\n"
3105 	    "    -p: Print information about each attached PHY\n"
3106 	    "    -q: Dump inbound queues\n"
3107 	    "    -Q: Dump outbound queues\n"
3108 	    "    -s: Dump all work structures sorted by serial number\n"
3109 	    "    -t: Print information about each configured target\n"
3110 	    "    -T: Print target and PHY count summary\n"
3111 	    "    -u: Show SAS address of all unconfigured targets\n"
3112 	    "    -w: Dump work structures\n"
3113 	    "    -W: List pmcs cmds waiting on various queues\n"
3114 	    "    -v: Add verbosity to the above options\n");
3115 }
3116 
3117 void
3118 pmcs_log_help()
3119 {
3120 	mdb_printf("Dump the pmcs log buffer, possibly with filtering.\n"
3121 	    "    -l TAIL_LINES:          Dump the last TAIL_LINES messages\n"
3122 	    "    -p PHY_PATH:            Dump messages matching PHY_PATH\n"
3123 	    "    -s SAS_ADDRESS:         Dump messages matching SAS_ADDRESS\n\n"
3124 	    "Where: PHY_PATH can be found with ::pmcs -p (e.g. pp04.18.18.01)\n"
3125 	    "       SAS_ADDRESS can be found with ::pmcs -t "
3126 	    "(e.g. 5000c5000358c221)\n");
3127 }
3128 void
3129 pmcs_tag_help()
3130 {
3131 	mdb_printf("Print all work structures by matching the tag.\n"
3132 	    "    -i index:        Match tag index (0x000 - 0xfff)\n"
3133 	    "    -s serialnumber: Match serial number (0x0000 - 0xffff)\n"
3134 	    "    -t tagtype:      Match tag type [NONE(1), CBACK(2), "
3135 	    "WAIT(3)]\n");
3136 }
3137 
3138 static const mdb_dcmd_t dcmds[] = {
3139 	{ "pmcs", "?[-cdehiImpQqtTuwWv] [-D <device ID>]",
3140 	    "print pmcs information", pmcs_dcmd, pmcs_help
3141 	},
3142 	{ "pmcs_log",
3143 	    "?[-v] [-p PHY_PATH | -s SAS_ADDRESS | -l TAIL_LINES]",
3144 	    "dump pmcs log file", pmcs_log, pmcs_log_help
3145 	},
3146 	{ "pmcs_tag", "?[-t tagtype|-s serialnum|-i index]",
3147 	    "Find work structures by tag type, serial number or index",
3148 	    pmcs_tag, pmcs_tag_help
3149 	},
3150 #ifndef _KMDB
3151 	{ "pmcs_fwlog",
3152 	    "?-o output_file",
3153 	    "dump pmcs firmware event log to output_file", pmcs_fwlog, NULL
3154 	},
3155 #endif	/* _KMDB */
3156 	{ NULL }
3157 };
3158 
3159 static const mdb_walker_t walkers[] = {
3160 	{ "pmcs_targets", "walk target structures",
3161 		targets_walk_i, targets_walk_s, targets_walk_f },
3162 	{ "pmcs_phys", "walk PHY structures",
3163 		phy_walk_i, phy_walk_s, phy_walk_f },
3164 	{ NULL }
3165 };
3166 
3167 static const mdb_modinfo_t modinfo = {
3168 	MDB_API_VERSION, dcmds, walkers
3169 };
3170 
3171 const mdb_modinfo_t *
3172 _mdb_init(void)
3173 {
3174 	return (&modinfo);
3175 }
3176