xref: /illumos-gate/usr/src/cmd/mdb/common/modules/genunix/thread.c (revision d8e8ff111cafc1040a5ca27f557872cf79c36c88)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 
27 #include <mdb/mdb_modapi.h>
28 #include <sys/types.h>
29 #include <sys/thread.h>
30 #include <sys/lwp.h>
31 #include <sys/proc.h>
32 #include <sys/cpuvar.h>
33 #include <sys/cpupart.h>
34 #include <sys/disp.h>
35 #include <sys/taskq_impl.h>
36 #include <sys/stack.h>
37 
38 #ifndef	STACK_BIAS
39 #define	STACK_BIAS	0
40 #endif
41 
42 typedef struct thread_walk {
43 	kthread_t *tw_thread;
44 	uintptr_t tw_last;
45 	uint_t tw_inproc;
46 	uint_t tw_step;
47 } thread_walk_t;
48 
49 int
50 thread_walk_init(mdb_walk_state_t *wsp)
51 {
52 	thread_walk_t *twp = mdb_alloc(sizeof (thread_walk_t), UM_SLEEP);
53 
54 	if (wsp->walk_addr == NULL) {
55 		if (mdb_readvar(&wsp->walk_addr, "allthreads") == -1) {
56 			mdb_warn("failed to read 'allthreads'");
57 			mdb_free(twp, sizeof (thread_walk_t));
58 			return (WALK_ERR);
59 		}
60 
61 		twp->tw_inproc = FALSE;
62 
63 	} else {
64 		proc_t pr;
65 
66 		if (mdb_vread(&pr, sizeof (proc_t), wsp->walk_addr) == -1) {
67 			mdb_warn("failed to read proc at %p", wsp->walk_addr);
68 			mdb_free(twp, sizeof (thread_walk_t));
69 			return (WALK_ERR);
70 		}
71 
72 		wsp->walk_addr = (uintptr_t)pr.p_tlist;
73 		twp->tw_inproc = TRUE;
74 	}
75 
76 	twp->tw_thread = mdb_alloc(sizeof (kthread_t), UM_SLEEP);
77 	twp->tw_last = wsp->walk_addr;
78 	twp->tw_step = FALSE;
79 
80 	wsp->walk_data = twp;
81 	return (WALK_NEXT);
82 }
83 
84 int
85 thread_walk_step(mdb_walk_state_t *wsp)
86 {
87 	thread_walk_t *twp = (thread_walk_t *)wsp->walk_data;
88 	int status;
89 
90 	if (wsp->walk_addr == NULL)
91 		return (WALK_DONE); /* Proc has 0 threads or allthreads = 0 */
92 
93 	if (twp->tw_step && wsp->walk_addr == twp->tw_last)
94 		return (WALK_DONE); /* We've wrapped around */
95 
96 	if (mdb_vread(twp->tw_thread, sizeof (kthread_t),
97 	    wsp->walk_addr) == -1) {
98 		mdb_warn("failed to read thread at %p", wsp->walk_addr);
99 		return (WALK_DONE);
100 	}
101 
102 	status = wsp->walk_callback(wsp->walk_addr, twp->tw_thread,
103 	    wsp->walk_cbdata);
104 
105 	if (twp->tw_inproc)
106 		wsp->walk_addr = (uintptr_t)twp->tw_thread->t_forw;
107 	else
108 		wsp->walk_addr = (uintptr_t)twp->tw_thread->t_next;
109 
110 	twp->tw_step = TRUE;
111 	return (status);
112 }
113 
114 void
115 thread_walk_fini(mdb_walk_state_t *wsp)
116 {
117 	thread_walk_t *twp = (thread_walk_t *)wsp->walk_data;
118 
119 	mdb_free(twp->tw_thread, sizeof (kthread_t));
120 	mdb_free(twp, sizeof (thread_walk_t));
121 }
122 
123 int
124 deathrow_walk_init(mdb_walk_state_t *wsp)
125 {
126 	if (mdb_layered_walk("thread_deathrow", wsp) == -1) {
127 		mdb_warn("couldn't walk 'thread_deathrow'");
128 		return (WALK_ERR);
129 	}
130 
131 	if (mdb_layered_walk("lwp_deathrow", wsp) == -1) {
132 		mdb_warn("couldn't walk 'lwp_deathrow'");
133 		return (WALK_ERR);
134 	}
135 
136 	return (WALK_NEXT);
137 }
138 
139 int
140 deathrow_walk_step(mdb_walk_state_t *wsp)
141 {
142 	kthread_t t;
143 	uintptr_t addr = wsp->walk_addr;
144 
145 	if (addr == NULL)
146 		return (WALK_DONE);
147 
148 	if (mdb_vread(&t, sizeof (t), addr) == -1) {
149 		mdb_warn("couldn't read deathrow thread at %p", addr);
150 		return (WALK_ERR);
151 	}
152 
153 	wsp->walk_addr = (uintptr_t)t.t_forw;
154 
155 	return (wsp->walk_callback(addr, &t, wsp->walk_cbdata));
156 }
157 
158 int
159 thread_deathrow_walk_init(mdb_walk_state_t *wsp)
160 {
161 	if (mdb_readvar(&wsp->walk_addr, "thread_deathrow") == -1) {
162 		mdb_warn("couldn't read symbol 'thread_deathrow'");
163 		return (WALK_ERR);
164 	}
165 
166 	return (WALK_NEXT);
167 }
168 
169 int
170 lwp_deathrow_walk_init(mdb_walk_state_t *wsp)
171 {
172 	if (mdb_readvar(&wsp->walk_addr, "lwp_deathrow") == -1) {
173 		mdb_warn("couldn't read symbol 'lwp_deathrow'");
174 		return (WALK_ERR);
175 	}
176 
177 	return (WALK_NEXT);
178 }
179 
180 
181 typedef struct dispq_walk {
182 	int dw_npri;
183 	uintptr_t dw_dispq;
184 	uintptr_t dw_last;
185 } dispq_walk_t;
186 
187 int
188 cpu_dispq_walk_init(mdb_walk_state_t *wsp)
189 {
190 	uintptr_t addr = wsp->walk_addr;
191 	dispq_walk_t *dw;
192 	cpu_t cpu;
193 	dispq_t dispq;
194 	disp_t disp;
195 
196 	if (addr == NULL) {
197 		mdb_warn("cpu_dispq walk needs a cpu_t address\n");
198 		return (WALK_ERR);
199 	}
200 
201 	if (mdb_vread(&cpu, sizeof (cpu_t), addr) == -1) {
202 		mdb_warn("failed to read cpu_t at %p", addr);
203 		return (WALK_ERR);
204 	}
205 
206 	if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu.cpu_disp) == -1) {
207 		mdb_warn("failed to read disp_t at %p", cpu.cpu_disp);
208 		return (WALK_ERR);
209 	}
210 
211 	if (mdb_vread(&dispq, sizeof (dispq_t),
212 	    (uintptr_t)disp.disp_q) == -1) {
213 		mdb_warn("failed to read dispq_t at %p", disp.disp_q);
214 		return (WALK_ERR);
215 	}
216 
217 	dw = mdb_alloc(sizeof (dispq_walk_t), UM_SLEEP);
218 
219 	dw->dw_npri = disp.disp_npri;
220 	dw->dw_dispq = (uintptr_t)disp.disp_q;
221 	dw->dw_last = (uintptr_t)dispq.dq_last;
222 
223 	wsp->walk_addr = (uintptr_t)dispq.dq_first;
224 	wsp->walk_data = dw;
225 
226 	return (WALK_NEXT);
227 }
228 
229 int
230 cpupart_dispq_walk_init(mdb_walk_state_t *wsp)
231 {
232 	uintptr_t addr = wsp->walk_addr;
233 	dispq_walk_t *dw;
234 	cpupart_t cpupart;
235 	dispq_t dispq;
236 
237 	if (addr == NULL) {
238 		mdb_warn("cpupart_dispq walk needs a cpupart_t address\n");
239 		return (WALK_ERR);
240 	}
241 
242 	if (mdb_vread(&cpupart, sizeof (cpupart_t), addr) == -1) {
243 		mdb_warn("failed to read cpupart_t at %p", addr);
244 		return (WALK_ERR);
245 	}
246 
247 	if (mdb_vread(&dispq, sizeof (dispq_t),
248 	    (uintptr_t)cpupart.cp_kp_queue.disp_q) == -1) {
249 		mdb_warn("failed to read dispq_t at %p",
250 		    cpupart.cp_kp_queue.disp_q);
251 		return (WALK_ERR);
252 	}
253 
254 	dw = mdb_alloc(sizeof (dispq_walk_t), UM_SLEEP);
255 
256 	dw->dw_npri = cpupart.cp_kp_queue.disp_npri;
257 	dw->dw_dispq = (uintptr_t)cpupart.cp_kp_queue.disp_q;
258 	dw->dw_last = (uintptr_t)dispq.dq_last;
259 
260 	wsp->walk_addr = (uintptr_t)dispq.dq_first;
261 	wsp->walk_data = dw;
262 
263 	return (WALK_NEXT);
264 }
265 
266 int
267 dispq_walk_step(mdb_walk_state_t *wsp)
268 {
269 	uintptr_t addr = wsp->walk_addr;
270 	dispq_walk_t *dw = wsp->walk_data;
271 	dispq_t dispq;
272 	kthread_t t;
273 
274 	while (addr == NULL) {
275 		if (--dw->dw_npri == 0)
276 			return (WALK_DONE);
277 
278 		dw->dw_dispq += sizeof (dispq_t);
279 
280 		if (mdb_vread(&dispq, sizeof (dispq_t), dw->dw_dispq) == -1) {
281 			mdb_warn("failed to read dispq_t at %p", dw->dw_dispq);
282 			return (WALK_ERR);
283 		}
284 
285 		dw->dw_last = (uintptr_t)dispq.dq_last;
286 		addr = (uintptr_t)dispq.dq_first;
287 	}
288 
289 	if (mdb_vread(&t, sizeof (kthread_t), addr) == -1) {
290 		mdb_warn("failed to read kthread_t at %p", addr);
291 		return (WALK_ERR);
292 	}
293 
294 	if (addr == dw->dw_last)
295 		wsp->walk_addr = NULL;
296 	else
297 		wsp->walk_addr = (uintptr_t)t.t_link;
298 
299 	return (wsp->walk_callback(addr, &t, wsp->walk_cbdata));
300 }
301 
302 void
303 dispq_walk_fini(mdb_walk_state_t *wsp)
304 {
305 	mdb_free(wsp->walk_data, sizeof (dispq_walk_t));
306 }
307 
308 
309 #define	TF_INTR		0x01
310 #define	TF_PROC		0x02
311 #define	TF_BLOCK	0x04
312 #define	TF_SIG		0x08
313 #define	TF_DISP		0x10
314 #define	TF_MERGE	0x20
315 
316 /*
317  * Display a kthread_t.
318  * This is a little complicated, as there is a lot of information that
319  * the user could be interested in.  The flags "ipbsd" are used to
320  * indicate which subset of the thread's members are to be displayed
321  * ('i' is the default).  If multiple options are specified, multiple
322  * sets of data will be displayed in a vaguely readable format.  If the
323  * 'm' option is specified, all the selected sets will be merged onto a
324  * single line for the benefit of those using wider-than-normal
325  * terminals.  Having a generic mechanism for doing this would be
326  * really useful, but is a project best left to another day.
327  */
328 
329 int
330 thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
331 {
332 	kthread_t	t;
333 	uint_t		oflags = 0;
334 	uint_t		fflag = FALSE;
335 	int		first;
336 	char		*state;
337 	char		stbuf[20];
338 
339 	/*
340 	 * "Gracefully" handle printing a boatload of stuff to the
341 	 * screen.  If we are not printing our first set of data, and
342 	 * we haven't been instructed to merge sets together, output a
343 	 * newline and indent such that the thread addresses form a
344 	 * column of their own.
345 	 */
346 #define	SPACER()				\
347 	if (first) {				\
348 		first = FALSE;			\
349 	} else if (!(oflags & TF_MERGE)) {	\
350 		mdb_printf("\n%?s", "");	\
351 	}
352 
353 	if (!(flags & DCMD_ADDRSPEC)) {
354 		if (mdb_walk_dcmd("thread", "thread", argc, argv) == -1) {
355 			mdb_warn("can't walk threads");
356 			return (DCMD_ERR);
357 		}
358 		return (DCMD_OK);
359 	}
360 
361 	if (mdb_getopts(argc, argv,
362 	    'f', MDB_OPT_SETBITS, TRUE, &fflag,
363 	    'i', MDB_OPT_SETBITS, TF_INTR, &oflags,
364 	    'p', MDB_OPT_SETBITS, TF_PROC, &oflags,
365 	    'b', MDB_OPT_SETBITS, TF_BLOCK, &oflags,
366 	    's', MDB_OPT_SETBITS, TF_SIG, &oflags,
367 	    'd', MDB_OPT_SETBITS, TF_DISP, &oflags,
368 	    'm', MDB_OPT_SETBITS, TF_MERGE, &oflags, NULL) != argc)
369 		return (DCMD_USAGE);
370 
371 	/*
372 	 * If no sets were specified, choose the 'i' set.
373 	 */
374 	if (!(oflags & ~TF_MERGE))
375 #ifdef	_LP64
376 		oflags = TF_INTR;
377 #else
378 		oflags = TF_INTR | TF_DISP | TF_MERGE;
379 #endif
380 
381 	/*
382 	 * Print the relevant headers; note use of SPACER().
383 	 */
384 	if (DCMD_HDRSPEC(flags)) {
385 		first = TRUE;
386 		mdb_printf("%<u>%?s%</u>", "ADDR");
387 		mdb_flush();
388 
389 		if (oflags & TF_PROC) {
390 			SPACER();
391 			mdb_printf("%<u> %?s %?s %?s%</u>",
392 			    "PROC", "LWP", "CRED");
393 		}
394 
395 		if (oflags & TF_INTR) {
396 			SPACER();
397 			mdb_printf("%<u> %8s %4s %4s %4s %5s %5s %3s %?s%</u>",
398 			    "STATE", "FLG", "PFLG",
399 			    "SFLG", "PRI", "EPRI", "PIL", "INTR");
400 		}
401 
402 		if (oflags & TF_BLOCK) {
403 			SPACER();
404 			mdb_printf("%<u> %?s %?s %?s %11s%</u>",
405 			    "WCHAN", "TS", "PITS", "SOBJ OPS");
406 		}
407 
408 		if (oflags & TF_SIG) {
409 			SPACER();
410 			mdb_printf("%<u> %?s %16s %16s%</u>",
411 			    "SIGQUEUE", "SIG PEND", "SIG HELD");
412 		}
413 
414 		if (oflags & TF_DISP) {
415 			SPACER();
416 			mdb_printf("%<u> %?s %5s %2s%</u>",
417 			    "DISPTIME", "BOUND", "PR");
418 		}
419 		mdb_printf("\n");
420 	}
421 
422 	if (mdb_vread(&t, sizeof (kthread_t), addr) == -1) {
423 		mdb_warn("can't read kthread_t at %#lx", addr);
424 		return (DCMD_ERR);
425 	}
426 
427 	if (fflag && (t.t_state == TS_FREE))
428 		return (DCMD_OK);
429 
430 	first = TRUE;
431 	mdb_printf("%0?lx", addr);
432 
433 	/* process information */
434 	if (oflags & TF_PROC) {
435 		SPACER();
436 		mdb_printf(" %?p %?p %?p", t.t_procp, t.t_lwp, t.t_cred);
437 	}
438 
439 	/* priority/interrupt information */
440 	if (oflags & TF_INTR) {
441 		SPACER();
442 		switch (t.t_state) {
443 		case TS_FREE:
444 			state = "free";
445 			break;
446 		case TS_SLEEP:
447 			state = "sleep";
448 			break;
449 		case TS_RUN:
450 			state = "run";
451 			break;
452 		case TS_ONPROC:
453 			state = "onproc";
454 			break;
455 		case TS_ZOMB:
456 			state = "zomb";
457 			break;
458 		case TS_STOPPED:
459 			state = "stopped";
460 			break;
461 		case TS_WAIT:
462 			state = "wait";
463 			break;
464 		default:
465 			(void) mdb_snprintf(stbuf, 11, "inval/%02x", t.t_state);
466 			state = stbuf;
467 		}
468 		if (t.t_intr == NULL) {
469 			mdb_printf(" %-8s %4x %4x %4x %5d %5d %3d %?s",
470 			    state, t.t_flag, t.t_proc_flag, t.t_schedflag,
471 			    t.t_pri, t.t_epri, t.t_pil, "n/a");
472 		} else {
473 			mdb_printf(" %-8s %4x %4x %4x %5d %5d %3d %?p",
474 			    state, t.t_flag, t.t_proc_flag, t.t_schedflag,
475 			    t.t_pri, t.t_epri, t.t_pil, t.t_intr);
476 		}
477 	}
478 
479 	/* blocking information */
480 	if (oflags & TF_BLOCK) {
481 		SPACER();
482 		(void) mdb_snprintf(stbuf, 20, "%a", t.t_sobj_ops);
483 		stbuf[11] = '\0';
484 		mdb_printf(" %?p %?p %?p %11s",
485 		    t.t_wchan, t.t_ts, t.t_prioinv, stbuf);
486 	}
487 
488 	/* signal information */
489 	if (oflags & TF_SIG) {
490 		SPACER();
491 		mdb_printf(" %?p %016llx %016llx",
492 		    t.t_sigqueue, t.t_sig, t.t_hold);
493 	}
494 
495 	/* dispatcher stuff */
496 	if (oflags & TF_DISP) {
497 		SPACER();
498 		mdb_printf(" %?lx %5d %2d",
499 		    t.t_disp_time, t.t_bind_cpu, t.t_preempt);
500 	}
501 
502 	mdb_printf("\n");
503 
504 #undef SPACER
505 
506 	return (DCMD_OK);
507 }
508 
509 void
510 thread_help(void)
511 {
512 	mdb_printf(
513 	    "The flags -ipbsd control which information is displayed.  When\n"
514 	    "combined, the fields are displayed on separate lines unless the\n"
515 	    "-m option is given.\n"
516 	    "\n"
517 	    "\t-b\tprint blocked thread state\n"
518 	    "\t-d\tprint dispatcher state\n"
519 	    "\t-f\tignore freed threads\n"
520 	    "\t-i\tprint basic thread state (default)\n"
521 	    "\t-m\tdisplay results on a single line\n"
522 	    "\t-p\tprint process and lwp state\n"
523 	    "\t-s\tprint signal state\n");
524 }
525 
526 /*
527  * List a combination of kthread_t and proc_t. Add stack traces in verbose mode.
528  */
529 int
530 threadlist(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
531 {
532 	int i;
533 	uint_t count =  0;
534 	uint_t verbose = FALSE;
535 	uint_t notaskq = FALSE;
536 	kthread_t t;
537 	taskq_t tq;
538 	proc_t p;
539 	char cmd[80];
540 	mdb_arg_t cmdarg;
541 
542 	if (!(flags & DCMD_ADDRSPEC)) {
543 		if (mdb_walk_dcmd("thread", "threadlist", argc, argv) == -1) {
544 			mdb_warn("can't walk threads");
545 			return (DCMD_ERR);
546 		}
547 		return (DCMD_OK);
548 	}
549 
550 	i = mdb_getopts(argc, argv,
551 	    't', MDB_OPT_SETBITS, TRUE, &notaskq,
552 	    'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL);
553 
554 	if (i != argc) {
555 		if (i != argc - 1 || !verbose)
556 			return (DCMD_USAGE);
557 
558 		if (argv[i].a_type == MDB_TYPE_IMMEDIATE)
559 			count = (uint_t)argv[i].a_un.a_val;
560 		else
561 			count = (uint_t)mdb_strtoull(argv[i].a_un.a_str);
562 	}
563 
564 	if (DCMD_HDRSPEC(flags)) {
565 		if (verbose)
566 			mdb_printf("%<u>%?s %?s %?s %3s %3s %?s%</u>\n",
567 			    "ADDR", "PROC", "LWP", "CLS", "PRI", "WCHAN");
568 		else
569 			mdb_printf("%<u>%?s %?s %?s %s/%s%</u>\n",
570 			    "ADDR", "PROC", "LWP", "CMD", "LWPID");
571 	}
572 
573 	if (mdb_vread(&t, sizeof (kthread_t), addr) == -1) {
574 		mdb_warn("failed to read kthread_t at %p", addr);
575 		return (DCMD_ERR);
576 	}
577 
578 	if (notaskq && t.t_taskq != NULL)
579 		return (DCMD_OK);
580 
581 	if (t.t_state == TS_FREE)
582 		return (DCMD_OK);
583 
584 	if (mdb_vread(&p, sizeof (proc_t), (uintptr_t)t.t_procp) == -1) {
585 		mdb_warn("failed to read proc at %p", t.t_procp);
586 		return (DCMD_ERR);
587 	}
588 
589 	if (mdb_vread(&tq, sizeof (taskq_t), (uintptr_t)t.t_taskq) == -1)
590 		tq.tq_name[0] = '\0';
591 
592 	if (verbose) {
593 		mdb_printf("%0?p %?p %?p %3u %3d %?p\n",
594 		    addr, t.t_procp, t.t_lwp, t.t_cid, t.t_pri, t.t_wchan);
595 
596 		mdb_inc_indent(2);
597 
598 		mdb_printf("PC: %a", t.t_pc);
599 		if (t.t_tid == 0) {
600 			if (tq.tq_name[0] != '\0')
601 				mdb_printf("    TASKQ: %s\n", tq.tq_name);
602 			else
603 				mdb_printf("    THREAD: %a()\n", t.t_startpc);
604 		} else {
605 			mdb_printf("    CMD: %s\n", p.p_user.u_psargs);
606 		}
607 
608 		mdb_snprintf(cmd, sizeof (cmd), "<.$c%d", count);
609 		cmdarg.a_type = MDB_TYPE_STRING;
610 		cmdarg.a_un.a_str = cmd;
611 
612 		(void) mdb_call_dcmd("findstack", addr, flags, 1, &cmdarg);
613 
614 		mdb_dec_indent(2);
615 
616 		mdb_printf("\n");
617 	} else {
618 		mdb_printf("%0?p %?p %?p", addr, t.t_procp, t.t_lwp);
619 		if (t.t_tid == 0) {
620 			if (tq.tq_name[0] != '\0')
621 				mdb_printf(" tq:%s\n", tq.tq_name);
622 			else
623 				mdb_printf(" %a()\n", t.t_startpc);
624 		} else {
625 			mdb_printf(" %s/%u\n", p.p_user.u_comm, t.t_tid);
626 		}
627 	}
628 
629 	return (DCMD_OK);
630 }
631 
632 void
633 threadlist_help(void)
634 {
635 	mdb_printf(
636 	    "   -v         print verbose output including C stack trace\n"
637 	    "   -t         skip threads belonging to a taskq\n"
638 	    "   count      print no more than count arguments (default 0)\n");
639 }
640 
641 static size_t
642 stk_compute_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp)
643 {
644 	size_t percent;
645 	size_t s;
646 
647 	if (t_stk > t_stkbase) {
648 		/* stack grows down */
649 		if (sp > t_stk) {
650 			return (0);
651 		}
652 		if (sp < t_stkbase) {
653 			return (100);
654 		}
655 		percent = t_stk - sp + 1;
656 		s = t_stk - t_stkbase + 1;
657 	} else {
658 		/* stack grows up */
659 		if (sp < t_stk) {
660 			return (0);
661 		}
662 		if (sp > t_stkbase) {
663 			return (100);
664 		}
665 		percent = sp - t_stk + 1;
666 		s = t_stkbase - t_stk + 1;
667 	}
668 	percent = ((100 * percent) / s) + 1;
669 	if (percent > 100) {
670 		percent = 100;
671 	}
672 	return (percent);
673 }
674 
675 /*
676  * Display kthread stack infos.
677  */
678 int
679 stackinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
680 {
681 	kthread_t t;
682 	proc_t p;
683 	uint64_t *ptr;  /* pattern pointer */
684 	caddr_t	start;	/* kernel stack start */
685 	caddr_t end;	/* kernel stack end */
686 	caddr_t ustack;	/* userland copy of kernel stack */
687 	size_t usize;	/* userland copy of kernel stack size */
688 	caddr_t ustart;	/* userland copy of kernel stack, aligned start */
689 	caddr_t uend;	/* userland copy of kernel stack, aligned end */
690 	size_t percent = 0;
691 	uint_t all = FALSE; /* don't show TS_FREE kthread by default */
692 	uint_t history = FALSE;
693 	int i = 0;
694 	unsigned int ukmem_stackinfo;
695 	uintptr_t allthreads;
696 
697 	/* handle options */
698 	if (mdb_getopts(argc, argv,
699 	    'a', MDB_OPT_SETBITS, TRUE, &all,
700 	    'h', MDB_OPT_SETBITS, TRUE, &history, NULL) != argc) {
701 		return (DCMD_USAGE);
702 	}
703 
704 	/* walk all kthread if needed */
705 	if ((history == FALSE) && !(flags & DCMD_ADDRSPEC)) {
706 		if (mdb_walk_dcmd("thread", "stackinfo", argc, argv) == -1) {
707 			mdb_warn("can't walk threads");
708 			return (DCMD_ERR);
709 		}
710 		return (DCMD_OK);
711 	}
712 
713 	/* read 'kmem_stackinfo' */
714 	if (mdb_readsym(&ukmem_stackinfo, sizeof (ukmem_stackinfo),
715 	    "kmem_stackinfo") == -1) {
716 		mdb_warn("failed to read 'kmem_stackinfo'\n");
717 		ukmem_stackinfo = 0;
718 	}
719 
720 	/* read 'allthreads' */
721 	if (mdb_readsym(&allthreads, sizeof (kthread_t *),
722 	    "allthreads") == -1) {
723 		mdb_warn("failed to read 'allthreads'\n");
724 		allthreads = NULL;
725 	}
726 
727 	if (history == TRUE) {
728 		kmem_stkinfo_t *log;
729 		uintptr_t kaddr;
730 
731 		mdb_printf("Dead kthreads stack usage history:\n");
732 		if (ukmem_stackinfo == 0) {
733 			mdb_printf("Tunable kmem_stackinfo is unset, history ");
734 			mdb_printf("feature is off.\nUse ::help stackinfo ");
735 			mdb_printf("for more details.\n");
736 			return (DCMD_OK);
737 		}
738 
739 		mdb_printf("%<u>%?s%</u>", "THREAD");
740 		mdb_printf(" %<u>%?s%</u>", "STACK");
741 		mdb_printf("%<u>%s%</u>", "   SIZE  MAX CMD/LWPID or STARTPC");
742 		mdb_printf("\n");
743 		usize = KMEM_STKINFO_LOG_SIZE * sizeof (kmem_stkinfo_t);
744 		log = (kmem_stkinfo_t *)mdb_alloc(usize, UM_SLEEP);
745 		if (mdb_readsym(&kaddr, sizeof (kaddr),
746 		    "kmem_stkinfo_log") == -1) {
747 			mdb_free((void *)log, usize);
748 			mdb_warn("failed to read 'kmem_stkinfo_log'\n");
749 			return (DCMD_ERR);
750 		}
751 		if (kaddr == NULL) {
752 			mdb_free((void *)log, usize);
753 			return (DCMD_OK);
754 		}
755 		if (mdb_vread(log, usize, kaddr) == -1) {
756 			mdb_free((void *)log, usize);
757 			mdb_warn("failed to read %p\n", kaddr);
758 			return (DCMD_ERR);
759 		}
760 		for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) {
761 			if (log[i].kthread == NULL) {
762 				continue;
763 			}
764 			mdb_printf("%0?p %0?p %6x %3d%%",
765 			    log[i].kthread,
766 			    log[i].start,
767 			    (uint_t)log[i].stksz,
768 			    (int)log[i].percent);
769 			if (log[i].t_tid != 0) {
770 				mdb_printf(" %s/%u\n",
771 				    log[i].cmd, log[i].t_tid);
772 			} else {
773 				mdb_printf(" %p (%a)\n", log[i].t_startpc,
774 				    log[i].t_startpc);
775 			}
776 		}
777 		mdb_free((void *)log, usize);
778 		return (DCMD_OK);
779 	}
780 
781 	/* display header */
782 	if (DCMD_HDRSPEC(flags)) {
783 		if (ukmem_stackinfo == 0) {
784 			mdb_printf("Tunable kmem_stackinfo is unset, ");
785 			mdb_printf("MAX value is not available.\n");
786 			mdb_printf("Use ::help stackinfo for more details.\n");
787 		}
788 		mdb_printf("%<u>%?s%</u>", "THREAD");
789 		mdb_printf(" %<u>%?s%</u>", "STACK");
790 		mdb_printf("%<u>%s%</u>", "   SIZE  CUR  MAX CMD/LWPID");
791 		mdb_printf("\n");
792 	}
793 
794 	/* read kthread */
795 	if (mdb_vread(&t, sizeof (kthread_t), addr) == -1) {
796 		mdb_warn("can't read kthread_t at %#lx\n", addr);
797 		return (DCMD_ERR);
798 	}
799 
800 	if (t.t_state == TS_FREE && all == FALSE) {
801 		return (DCMD_OK);
802 	}
803 
804 	/* read proc */
805 	if (mdb_vread(&p, sizeof (proc_t), (uintptr_t)t.t_procp) == -1) {
806 		mdb_warn("failed to read proc at %p\n", t.t_procp);
807 		return (DCMD_ERR);
808 	}
809 
810 	/*
811 	 * Stack grows up or down, see thread_create(),
812 	 * compute stack memory aera start and end (start < end).
813 	 */
814 	if (t.t_stk > t.t_stkbase) {
815 		/* stack grows down */
816 		start = t.t_stkbase;
817 		end = t.t_stk;
818 	} else {
819 		/* stack grows up */
820 		start = t.t_stk;
821 		end = t.t_stkbase;
822 	}
823 
824 	/* display stack info */
825 	mdb_printf("%0?p %0?p", addr, start);
826 
827 	/* (end - start), kernel stack size as found in kthread_t */
828 	if ((end <= start) || ((end - start) > (1024 * 1024))) {
829 		/* negative or stack size > 1 meg, assume bogus */
830 		mdb_warn(" t_stk/t_stkbase problem\n");
831 		return (DCMD_ERR);
832 	}
833 
834 	/* display stack size */
835 	mdb_printf(" %6x", end - start);
836 
837 	/* display current stack usage */
838 	percent = stk_compute_percent(t.t_stk, t.t_stkbase,
839 	    (caddr_t)t.t_sp + STACK_BIAS);
840 
841 	mdb_printf(" %3d%%", percent);
842 	percent = 0;
843 
844 	if (ukmem_stackinfo == 0) {
845 		mdb_printf("  n/a");
846 		if (t.t_tid == 0) {
847 			mdb_printf(" %a()", t.t_startpc);
848 		} else {
849 			mdb_printf(" %s/%u", p.p_user.u_comm, t.t_tid);
850 		}
851 		mdb_printf("\n");
852 		return (DCMD_OK);
853 	}
854 
855 	if ((((uintptr_t)start) & 0x7) != 0) {
856 		start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8);
857 	}
858 	end = (caddr_t)(((uintptr_t)end) & (~0x7));
859 	/* size to scan in userland copy of kernel stack */
860 	usize = end - start; /* is a multiple of 8 bytes */
861 
862 	/*
863 	 * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes
864 	 * alignement for ustart and uend, in boundaries.
865 	 */
866 	ustart = ustack = (caddr_t)mdb_alloc(usize + 8, UM_SLEEP);
867 	if ((((uintptr_t)ustart) & 0x7) != 0) {
868 		ustart = (caddr_t)((((uintptr_t)ustart) & (~0x7)) + 8);
869 	}
870 	uend = ustart + usize;
871 
872 	/* read the kernel stack */
873 	if (mdb_vread(ustart, usize, (uintptr_t)start) != usize) {
874 		mdb_free((void *)ustack, usize + 8);
875 		mdb_printf("\n");
876 		mdb_warn("couldn't read entire stack\n");
877 		return (DCMD_ERR);
878 	}
879 
880 	/* scan the stack */
881 	if (t.t_stk > t.t_stkbase) {
882 		/* stack grows down */
883 #if defined(__i386) || defined(__amd64)
884 		/*
885 		 * 6 longs are pushed on stack, see thread_load(). Skip
886 		 * them, so if kthread has never run, percent is zero.
887 		 * 8 bytes alignement is preserved for a 32 bit kernel,
888 		 * 6 x 4 = 24, 24 is a multiple of 8.
889 		 */
890 		uend -= (6 * sizeof (long));
891 #endif
892 		ptr = (uint64_t *)((void *)ustart);
893 		while (ptr < (uint64_t *)((void *)uend)) {
894 			if (*ptr != KMEM_STKINFO_PATTERN) {
895 				percent = stk_compute_percent(uend,
896 				    ustart, (caddr_t)ptr);
897 				break;
898 			}
899 			ptr++;
900 		}
901 	} else {
902 		/* stack grows up */
903 		ptr = (uint64_t *)((void *)uend);
904 		ptr--;
905 		while (ptr >= (uint64_t *)((void *)ustart)) {
906 			if (*ptr != KMEM_STKINFO_PATTERN) {
907 				percent = stk_compute_percent(ustart,
908 				    uend, (caddr_t)ptr);
909 				break;
910 			}
911 			ptr--;
912 		}
913 	}
914 
915 	/* thread 't0' stack is not created by thread_create() */
916 	if (addr == allthreads) {
917 		percent = 0;
918 	}
919 	if (percent != 0) {
920 		mdb_printf(" %3d%%", percent);
921 	} else {
922 		mdb_printf("  n/a");
923 	}
924 	if (t.t_tid == 0) {
925 		mdb_printf(" %a()", t.t_startpc);
926 	} else {
927 		mdb_printf(" %s/%u", p.p_user.u_comm, t.t_tid);
928 	}
929 	mdb_printf("\n");
930 	mdb_free((void *)ustack, usize + 8);
931 	return (DCMD_OK);
932 }
933 
934 void
935 stackinfo_help(void)
936 {
937 	mdb_printf(
938 	    "Shows kernel stacks real utilization, if /etc/system "
939 	    "kmem_stackinfo tunable\n");
940 	mdb_printf(
941 	    "(an unsigned integer) is non zero at kthread creation time. ");
942 	mdb_printf("For example:\n");
943 	mdb_printf(
944 	    "          THREAD            STACK   SIZE  CUR  MAX CMD/LWPID\n");
945 	mdb_printf(
946 	    "ffffff014f5f2c20 ffffff0004153000   4f00   4%%  43%% init/1\n");
947 	mdb_printf(
948 	    "The stack size utilization for this kthread is at 4%%"
949 	    " of its maximum size,\n");
950 	mdb_printf(
951 	    "but has already used up to 43%%, stack size is 4f00 bytes.\n");
952 	mdb_printf(
953 	    "MAX value can be shown as n/a (not available):\n");
954 	mdb_printf(
955 	    "  - for the very first kthread (sched/1)\n");
956 	mdb_printf(
957 	    "  - kmem_stackinfo was zero at kthread creation time\n");
958 	mdb_printf(
959 	    "  - kthread has not yet run\n");
960 	mdb_printf("\n");
961 	mdb_printf("Options:\n");
962 	mdb_printf(
963 	    "-a shows also TS_FREE kthreads (interrupt kthreads)\n");
964 	mdb_printf(
965 	    "-h shows history, dead kthreads that used their "
966 	    "kernel stack the most\n");
967 	mdb_printf(
968 	    "\nSee Solaris Modular Debugger Guide for detailed usage.\n");
969 	mdb_flush();
970 }
971