xref: /illumos-gate/usr/src/cmd/mdb/common/modules/genunix/memory.c (revision 13b136d3061155363c62c9f6568d25b8b27da8f6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2019 Joyent, Inc.
24  */
25 
26 #include <mdb/mdb_param.h>
27 #include <mdb/mdb_modapi.h>
28 #include <mdb/mdb_ks.h>
29 #include <sys/types.h>
30 #include <sys/memlist.h>
31 #include <sys/swap.h>
32 #include <sys/systm.h>
33 #include <sys/thread.h>
34 #include <vm/anon.h>
35 #include <vm/as.h>
36 #include <vm/page.h>
37 #include <sys/thread.h>
38 #include <sys/swap.h>
39 #include <sys/memlist.h>
40 #include <sys/vnode.h>
41 #include <vm/seg_map.h>
42 #include <vm/seg_vn.h>
43 #include <vm/seg_hole.h>
44 #if defined(__i386) || defined(__amd64)
45 #include <sys/balloon_impl.h>
46 #endif
47 
48 #include "avl.h"
49 #include "memory.h"
50 
51 /*
52  * Page walker.
53  * By default, this will walk all pages in the system.  If given an
54  * address, it will walk all pages belonging to the vnode at that
55  * address.
56  */
57 
58 /*
59  * page_walk_data
60  *
61  * pw_hashleft is set to -1 when walking a vnode's pages, and holds the
62  * number of hash locations remaining in the page hash table when
63  * walking all pages.
64  *
65  * The astute reader will notice that pw_hashloc is only used when
66  * reading all pages (to hold a pointer to our location in the page
67  * hash table), and that pw_first is only used when reading the pages
68  * belonging to a particular vnode (to hold a pointer to the first
69  * page).  While these could be combined to be a single pointer, they
70  * are left separate for clarity.
71  */
72 typedef struct page_walk_data {
73 	long		pw_hashleft;
74 	void		**pw_hashloc;
75 	uintptr_t	pw_first;
76 } page_walk_data_t;
77 
78 int
79 page_walk_init(mdb_walk_state_t *wsp)
80 {
81 	page_walk_data_t	*pwd;
82 	void	**ptr;
83 	size_t	hashsz;
84 	vnode_t	vn;
85 
86 	if (wsp->walk_addr == 0) {
87 
88 		/*
89 		 * Walk all pages
90 		 */
91 
92 		if ((mdb_readvar(&ptr, "page_hash") == -1) ||
93 		    (mdb_readvar(&hashsz, "page_hashsz") == -1) ||
94 		    (ptr == NULL) || (hashsz == 0)) {
95 			mdb_warn("page_hash, page_hashsz not found or invalid");
96 			return (WALK_ERR);
97 		}
98 
99 		/*
100 		 * Since we are walking all pages, initialize hashleft
101 		 * to be the remaining number of entries in the page
102 		 * hash.  hashloc is set the start of the page hash
103 		 * table.  Setting the walk address to 0 indicates that
104 		 * we aren't currently following a hash chain, and that
105 		 * we need to scan the page hash table for a page.
106 		 */
107 		pwd = mdb_alloc(sizeof (page_walk_data_t), UM_SLEEP);
108 		pwd->pw_hashleft = hashsz;
109 		pwd->pw_hashloc = ptr;
110 		wsp->walk_addr = 0;
111 	} else {
112 
113 		/*
114 		 * Walk just this vnode
115 		 */
116 
117 		if (mdb_vread(&vn, sizeof (vnode_t), wsp->walk_addr) == -1) {
118 			mdb_warn("unable to read vnode_t at %#lx",
119 			    wsp->walk_addr);
120 			return (WALK_ERR);
121 		}
122 
123 		/*
124 		 * We set hashleft to -1 to indicate that we are
125 		 * walking a vnode, and initialize first to 0 (it is
126 		 * used to terminate the walk, so it must not be set
127 		 * until after we have walked the first page).  The
128 		 * walk address is set to the first page.
129 		 */
130 		pwd = mdb_alloc(sizeof (page_walk_data_t), UM_SLEEP);
131 		pwd->pw_hashleft = -1;
132 		pwd->pw_first = 0;
133 
134 		wsp->walk_addr = (uintptr_t)vn.v_pages;
135 	}
136 
137 	wsp->walk_data = pwd;
138 
139 	return (WALK_NEXT);
140 }
141 
142 int
143 page_walk_step(mdb_walk_state_t *wsp)
144 {
145 	page_walk_data_t	*pwd = wsp->walk_data;
146 	page_t		page;
147 	uintptr_t	pp;
148 
149 	pp = wsp->walk_addr;
150 
151 	if (pwd->pw_hashleft < 0) {
152 
153 		/* We're walking a vnode's pages */
154 
155 		/*
156 		 * If we don't have any pages to walk, we have come
157 		 * back around to the first one (we finished), or we
158 		 * can't read the page we're looking at, we are done.
159 		 */
160 		if (pp == 0 || pp == pwd->pw_first)
161 			return (WALK_DONE);
162 		if (mdb_vread(&page, sizeof (page_t), pp) == -1) {
163 			mdb_warn("unable to read page_t at %#lx", pp);
164 			return (WALK_ERR);
165 		}
166 
167 		/*
168 		 * Set the walk address to the next page, and if the
169 		 * first page hasn't been set yet (i.e. we are on the
170 		 * first page), set it.
171 		 */
172 		wsp->walk_addr = (uintptr_t)page.p_vpnext;
173 		if (pwd->pw_first == 0)
174 			pwd->pw_first = pp;
175 
176 	} else if (pwd->pw_hashleft > 0) {
177 
178 		/* We're walking all pages */
179 
180 		/*
181 		 * If pp (the walk address) is NULL, we scan through
182 		 * the page hash table until we find a page.
183 		 */
184 		if (pp == 0) {
185 
186 			/*
187 			 * Iterate through the page hash table until we
188 			 * find a page or reach the end.
189 			 */
190 			do {
191 				if (mdb_vread(&pp, sizeof (uintptr_t),
192 				    (uintptr_t)pwd->pw_hashloc) == -1) {
193 					mdb_warn("unable to read from %#p",
194 					    pwd->pw_hashloc);
195 					return (WALK_ERR);
196 				}
197 				pwd->pw_hashleft--;
198 				pwd->pw_hashloc++;
199 			} while (pwd->pw_hashleft && (pp == 0));
200 
201 			/*
202 			 * We've reached the end; exit.
203 			 */
204 			if (pp == 0)
205 				return (WALK_DONE);
206 		}
207 
208 		if (mdb_vread(&page, sizeof (page_t), pp) == -1) {
209 			mdb_warn("unable to read page_t at %#lx", pp);
210 			return (WALK_ERR);
211 		}
212 
213 		/*
214 		 * Set the walk address to the next page.
215 		 */
216 		wsp->walk_addr = (uintptr_t)page.p_hash;
217 
218 	} else {
219 		/* We've finished walking all pages. */
220 		return (WALK_DONE);
221 	}
222 
223 	return (wsp->walk_callback(pp, &page, wsp->walk_cbdata));
224 }
225 
226 void
227 page_walk_fini(mdb_walk_state_t *wsp)
228 {
229 	mdb_free(wsp->walk_data, sizeof (page_walk_data_t));
230 }
231 
232 /*
233  * allpages walks all pages in the system in order they appear in
234  * the memseg structure
235  */
236 
237 #define	PAGE_BUFFER	128
238 
239 int
240 allpages_walk_init(mdb_walk_state_t *wsp)
241 {
242 	if (wsp->walk_addr != 0) {
243 		mdb_warn("allpages only supports global walks.\n");
244 		return (WALK_ERR);
245 	}
246 
247 	if (mdb_layered_walk("memseg", wsp) == -1) {
248 		mdb_warn("couldn't walk 'memseg'");
249 		return (WALK_ERR);
250 	}
251 
252 	wsp->walk_data = mdb_alloc(sizeof (page_t) * PAGE_BUFFER, UM_SLEEP);
253 	return (WALK_NEXT);
254 }
255 
256 int
257 allpages_walk_step(mdb_walk_state_t *wsp)
258 {
259 	const struct memseg *msp = wsp->walk_layer;
260 	page_t *buf = wsp->walk_data;
261 	size_t pg_read, i;
262 	size_t pg_num = msp->pages_end - msp->pages_base;
263 	const page_t *pg_addr = msp->pages;
264 
265 	while (pg_num > 0) {
266 		pg_read = MIN(pg_num, PAGE_BUFFER);
267 
268 		if (mdb_vread(buf, pg_read * sizeof (page_t),
269 		    (uintptr_t)pg_addr) == -1) {
270 			mdb_warn("can't read page_t's at %#lx", pg_addr);
271 			return (WALK_ERR);
272 		}
273 		for (i = 0; i < pg_read; i++) {
274 			int ret = wsp->walk_callback((uintptr_t)&pg_addr[i],
275 			    &buf[i], wsp->walk_cbdata);
276 
277 			if (ret != WALK_NEXT)
278 				return (ret);
279 		}
280 		pg_num -= pg_read;
281 		pg_addr += pg_read;
282 	}
283 
284 	return (WALK_NEXT);
285 }
286 
287 void
288 allpages_walk_fini(mdb_walk_state_t *wsp)
289 {
290 	mdb_free(wsp->walk_data, sizeof (page_t) * PAGE_BUFFER);
291 }
292 
293 /*
294  * Hash table + LRU queue.
295  * This table is used to cache recently read vnodes for the memstat
296  * command, to reduce the number of mdb_vread calls.  This greatly
297  * speeds the memstat command on on live, large CPU count systems.
298  */
299 
300 #define	VN_SMALL	401
301 #define	VN_LARGE	10007
302 #define	VN_HTABLE_KEY(p, hp)	((p) % ((hp)->vn_htable_buckets))
303 
304 struct vn_htable_list {
305 	uint_t vn_flag;				/* v_flag from vnode	*/
306 	uintptr_t vn_ptr;			/* pointer to vnode	*/
307 	struct vn_htable_list *vn_q_next;	/* queue next pointer	*/
308 	struct vn_htable_list *vn_q_prev;	/* queue prev pointer	*/
309 	struct vn_htable_list *vn_h_next;	/* hash table pointer	*/
310 };
311 
312 /*
313  * vn_q_first        -> points to to head of queue: the vnode that was most
314  *                      recently used
315  * vn_q_last         -> points to the oldest used vnode, and is freed once a new
316  *                      vnode is read.
317  * vn_htable         -> hash table
318  * vn_htable_buf     -> contains htable objects
319  * vn_htable_size    -> total number of items in the hash table
320  * vn_htable_buckets -> number of buckets in the hash table
321  */
322 typedef struct vn_htable {
323 	struct vn_htable_list  *vn_q_first;
324 	struct vn_htable_list  *vn_q_last;
325 	struct vn_htable_list **vn_htable;
326 	struct vn_htable_list  *vn_htable_buf;
327 	int vn_htable_size;
328 	int vn_htable_buckets;
329 } vn_htable_t;
330 
331 
332 /* allocate memory, initilize hash table and LRU queue */
333 static void
334 vn_htable_init(vn_htable_t *hp, size_t vn_size)
335 {
336 	int i;
337 	int htable_size = MAX(vn_size, VN_LARGE);
338 
339 	if ((hp->vn_htable_buf = mdb_zalloc(sizeof (struct vn_htable_list)
340 	    * htable_size, UM_NOSLEEP|UM_GC)) == NULL) {
341 		htable_size = VN_SMALL;
342 		hp->vn_htable_buf = mdb_zalloc(sizeof (struct vn_htable_list)
343 		    * htable_size, UM_SLEEP|UM_GC);
344 	}
345 
346 	hp->vn_htable = mdb_zalloc(sizeof (struct vn_htable_list *)
347 	    * htable_size, UM_SLEEP|UM_GC);
348 
349 	hp->vn_q_first  = &hp->vn_htable_buf[0];
350 	hp->vn_q_last   = &hp->vn_htable_buf[htable_size - 1];
351 	hp->vn_q_first->vn_q_next = &hp->vn_htable_buf[1];
352 	hp->vn_q_last->vn_q_prev = &hp->vn_htable_buf[htable_size - 2];
353 
354 	for (i = 1; i < (htable_size-1); i++) {
355 		hp->vn_htable_buf[i].vn_q_next = &hp->vn_htable_buf[i + 1];
356 		hp->vn_htable_buf[i].vn_q_prev = &hp->vn_htable_buf[i - 1];
357 	}
358 
359 	hp->vn_htable_size = htable_size;
360 	hp->vn_htable_buckets = htable_size;
361 }
362 
363 
364 /*
365  * Find the vnode whose address is ptr, and return its v_flag in vp->v_flag.
366  * The function tries to find needed information in the following order:
367  *
368  * 1. check if ptr is the first in queue
369  * 2. check if ptr is in hash table (if so move it to the top of queue)
370  * 3. do mdb_vread, remove last queue item from queue and hash table.
371  *    Insert new information to freed object, and put this object in to the
372  *    top of the queue.
373  */
374 static int
375 vn_get(vn_htable_t *hp, struct vnode *vp, uintptr_t ptr)
376 {
377 	int hkey;
378 	struct vn_htable_list *hent, **htmp, *q_next, *q_prev;
379 	struct vn_htable_list  *q_first = hp->vn_q_first;
380 
381 	/* 1. vnode ptr is the first in queue, just get v_flag and return */
382 	if (q_first->vn_ptr == ptr) {
383 		vp->v_flag = q_first->vn_flag;
384 
385 		return (0);
386 	}
387 
388 	/* 2. search the hash table for this ptr */
389 	hkey = VN_HTABLE_KEY(ptr, hp);
390 	hent = hp->vn_htable[hkey];
391 	while (hent && (hent->vn_ptr != ptr))
392 		hent = hent->vn_h_next;
393 
394 	/* 3. if hent is NULL, we did not find in hash table, do mdb_vread */
395 	if (hent == NULL) {
396 		struct vnode vn;
397 
398 		if (mdb_vread(&vn, sizeof (vnode_t), ptr) == -1) {
399 			mdb_warn("unable to read vnode_t at %#lx", ptr);
400 			return (-1);
401 		}
402 
403 		/* we will insert read data into the last element in queue */
404 		hent = hp->vn_q_last;
405 
406 		/* remove last hp->vn_q_last object from hash table */
407 		if (hent->vn_ptr) {
408 			htmp = &hp->vn_htable[VN_HTABLE_KEY(hent->vn_ptr, hp)];
409 			while (*htmp != hent)
410 				htmp = &(*htmp)->vn_h_next;
411 			*htmp = hent->vn_h_next;
412 		}
413 
414 		/* insert data into new free object */
415 		hent->vn_ptr  = ptr;
416 		hent->vn_flag = vn.v_flag;
417 
418 		/* insert new object into hash table */
419 		hent->vn_h_next = hp->vn_htable[hkey];
420 		hp->vn_htable[hkey] = hent;
421 	}
422 
423 	/* Remove from queue. hent is not first, vn_q_prev is not NULL */
424 	q_next = hent->vn_q_next;
425 	q_prev = hent->vn_q_prev;
426 	if (q_next == NULL)
427 		hp->vn_q_last = q_prev;
428 	else
429 		q_next->vn_q_prev = q_prev;
430 	q_prev->vn_q_next = q_next;
431 
432 	/* Add to the front of queue */
433 	hent->vn_q_prev = NULL;
434 	hent->vn_q_next = q_first;
435 	q_first->vn_q_prev = hent;
436 	hp->vn_q_first = hent;
437 
438 	/* Set v_flag in vnode pointer from hent */
439 	vp->v_flag = hent->vn_flag;
440 
441 	return (0);
442 }
443 
444 /* Summary statistics of pages */
445 typedef struct memstat {
446 	struct vnode    *ms_kvp;	/* Cached address of kernel vnode */
447 	struct vnode    *ms_unused_vp;	/* Unused pages vnode pointer	  */
448 	struct vnode    *ms_zvp;	/* Cached address of zio vnode    */
449 	uint64_t	ms_kmem;	/* Pages of kernel memory	  */
450 	uint64_t	ms_zfs_data;	/* Pages of zfs data		  */
451 	uint64_t	ms_anon;	/* Pages of anonymous memory	  */
452 	uint64_t	ms_vnode;	/* Pages of named (vnode) memory  */
453 	uint64_t	ms_exec;	/* Pages of exec/library memory	  */
454 	uint64_t	ms_cachelist;	/* Pages on the cachelist (free)  */
455 	uint64_t	ms_bootpages;	/* Pages on the bootpages list    */
456 	uint64_t	ms_total;	/* Pages on page hash		  */
457 	vn_htable_t	*ms_vn_htable;	/* Pointer to hash table	  */
458 	struct vnode	ms_vn;		/* vnode buffer			  */
459 } memstat_t;
460 
461 #define	MS_PP_ISKAS(pp, stats)				\
462 	((pp)->p_vnode == (stats)->ms_kvp)
463 
464 #define	MS_PP_ISZFS_DATA(pp, stats)			\
465 	(((stats)->ms_zvp != NULL) && ((pp)->p_vnode == (stats)->ms_zvp))
466 
467 /*
468  * Summarize pages by type and update stat information
469  */
470 
471 /* ARGSUSED */
472 static int
473 memstat_callback(page_t *page, page_t *pp, memstat_t *stats)
474 {
475 	struct vnode *vp = &stats->ms_vn;
476 
477 	if (PP_ISBOOTPAGES(pp))
478 		stats->ms_bootpages++;
479 	else if (pp->p_vnode == NULL || pp->p_vnode == stats->ms_unused_vp)
480 		return (WALK_NEXT);
481 	else if (MS_PP_ISKAS(pp, stats))
482 		stats->ms_kmem++;
483 	else if (MS_PP_ISZFS_DATA(pp, stats))
484 		stats->ms_zfs_data++;
485 	else if (PP_ISFREE(pp))
486 		stats->ms_cachelist++;
487 	else if (vn_get(stats->ms_vn_htable, vp, (uintptr_t)pp->p_vnode))
488 		return (WALK_ERR);
489 	else if (IS_SWAPFSVP(vp))
490 		stats->ms_anon++;
491 	else if ((vp->v_flag & VVMEXEC) != 0)
492 		stats->ms_exec++;
493 	else
494 		stats->ms_vnode++;
495 
496 	stats->ms_total++;
497 
498 	return (WALK_NEXT);
499 }
500 
501 /* ARGSUSED */
502 int
503 memstat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
504 {
505 	pgcnt_t total_pages, physmem;
506 	ulong_t freemem;
507 	memstat_t stats;
508 	GElf_Sym sym;
509 	vn_htable_t ht;
510 	struct vnode *kvps;
511 	uintptr_t vn_size = 0;
512 #if defined(__i386) || defined(__amd64)
513 	bln_stats_t bln_stats;
514 	ssize_t bln_size;
515 #endif
516 
517 	bzero(&stats, sizeof (memstat_t));
518 
519 	/*
520 	 * -s size, is an internal option. It specifies the size of vn_htable.
521 	 * Hash table size is set in the following order:
522 	 * If user has specified the size that is larger than VN_LARGE: try it,
523 	 * but if malloc failed default to VN_SMALL. Otherwise try VN_LARGE, if
524 	 * failed to allocate default to VN_SMALL.
525 	 * For a better efficiency of hash table it is highly recommended to
526 	 * set size to a prime number.
527 	 */
528 	if ((flags & DCMD_ADDRSPEC) || mdb_getopts(argc, argv,
529 	    's', MDB_OPT_UINTPTR, &vn_size, NULL) != argc)
530 		return (DCMD_USAGE);
531 
532 	/* Initialize vnode hash list and queue */
533 	vn_htable_init(&ht, vn_size);
534 	stats.ms_vn_htable = &ht;
535 
536 	/* Total physical memory */
537 	if (mdb_readvar(&total_pages, "total_pages") == -1) {
538 		mdb_warn("unable to read total_pages");
539 		return (DCMD_ERR);
540 	}
541 
542 	/* Artificially limited memory */
543 	if (mdb_readvar(&physmem, "physmem") == -1) {
544 		mdb_warn("unable to read physmem");
545 		return (DCMD_ERR);
546 	}
547 
548 	/* read kernel vnode array pointer */
549 	if (mdb_lookup_by_obj(MDB_OBJ_EXEC, "kvps",
550 	    (GElf_Sym *)&sym) == -1) {
551 		mdb_warn("unable to read kvps");
552 		return (DCMD_ERR);
553 	}
554 	kvps = (struct vnode *)(uintptr_t)sym.st_value;
555 	stats.ms_kvp =  &kvps[KV_KVP];
556 
557 	/*
558 	 * Read the zio vnode pointer.
559 	 */
560 	stats.ms_zvp = &kvps[KV_ZVP];
561 
562 	/*
563 	 * If physmem != total_pages, then the administrator has limited the
564 	 * number of pages available in the system.  Excluded pages are
565 	 * associated with the unused pages vnode.  Read this vnode so the
566 	 * pages can be excluded in the page accounting.
567 	 */
568 	if (mdb_lookup_by_obj(MDB_OBJ_EXEC, "unused_pages_vp",
569 	    (GElf_Sym *)&sym) == -1) {
570 		mdb_warn("unable to read unused_pages_vp");
571 		return (DCMD_ERR);
572 	}
573 	stats.ms_unused_vp = (struct vnode *)(uintptr_t)sym.st_value;
574 
575 	/* walk all pages, collect statistics */
576 	if (mdb_walk("allpages", (mdb_walk_cb_t)(uintptr_t)memstat_callback,
577 	    &stats) == -1) {
578 		mdb_warn("can't walk memseg");
579 		return (DCMD_ERR);
580 	}
581 
582 #define	MS_PCT_TOTAL(x)	((ulong_t)((((5 * total_pages) + ((x) * 1000ull))) / \
583 		((physmem) * 10)))
584 
585 	mdb_printf("Page Summary                Pages                MB"
586 	    "  %%Tot\n");
587 	mdb_printf("------------     ----------------  ----------------"
588 	    "  ----\n");
589 	mdb_printf("Kernel           %16llu  %16llu  %3lu%%\n",
590 	    stats.ms_kmem,
591 	    (uint64_t)stats.ms_kmem * PAGESIZE / (1024 * 1024),
592 	    MS_PCT_TOTAL(stats.ms_kmem));
593 
594 	if (stats.ms_bootpages != 0) {
595 		mdb_printf("Boot pages       %16llu  %16llu  %3lu%%\n",
596 		    stats.ms_bootpages,
597 		    (uint64_t)stats.ms_bootpages * PAGESIZE / (1024 * 1024),
598 		    MS_PCT_TOTAL(stats.ms_bootpages));
599 	}
600 
601 	if (stats.ms_zfs_data != 0) {
602 		mdb_printf("ZFS File Data    %16llu  %16llu  %3lu%%\n",
603 		    stats.ms_zfs_data,
604 		    (uint64_t)stats.ms_zfs_data * PAGESIZE / (1024 * 1024),
605 		    MS_PCT_TOTAL(stats.ms_zfs_data));
606 	}
607 
608 	mdb_printf("Anon             %16llu  %16llu  %3lu%%\n",
609 	    stats.ms_anon,
610 	    (uint64_t)stats.ms_anon * PAGESIZE / (1024 * 1024),
611 	    MS_PCT_TOTAL(stats.ms_anon));
612 	mdb_printf("Exec and libs    %16llu  %16llu  %3lu%%\n",
613 	    stats.ms_exec,
614 	    (uint64_t)stats.ms_exec * PAGESIZE / (1024 * 1024),
615 	    MS_PCT_TOTAL(stats.ms_exec));
616 	mdb_printf("Page cache       %16llu  %16llu  %3lu%%\n",
617 	    stats.ms_vnode,
618 	    (uint64_t)stats.ms_vnode * PAGESIZE / (1024 * 1024),
619 	    MS_PCT_TOTAL(stats.ms_vnode));
620 	mdb_printf("Free (cachelist) %16llu  %16llu  %3lu%%\n",
621 	    stats.ms_cachelist,
622 	    (uint64_t)stats.ms_cachelist * PAGESIZE / (1024 * 1024),
623 	    MS_PCT_TOTAL(stats.ms_cachelist));
624 
625 	/*
626 	 * occasionally, we double count pages above.  To avoid printing
627 	 * absurdly large values for freemem, we clamp it at zero.
628 	 */
629 	if (physmem > stats.ms_total)
630 		freemem = physmem - stats.ms_total;
631 	else
632 		freemem = 0;
633 
634 #if defined(__i386) || defined(__amd64)
635 	/* Are we running under Xen?  If so, get balloon memory usage. */
636 	if ((bln_size = mdb_readvar(&bln_stats, "bln_stats")) != -1) {
637 		if (freemem > bln_stats.bln_hv_pages)
638 			freemem -= bln_stats.bln_hv_pages;
639 		else
640 			freemem = 0;
641 	}
642 #endif
643 
644 	mdb_printf("Free (freelist)  %16lu  %16llu  %3lu%%\n", freemem,
645 	    (uint64_t)freemem * PAGESIZE / (1024 * 1024),
646 	    MS_PCT_TOTAL(freemem));
647 
648 #if defined(__i386) || defined(__amd64)
649 	if (bln_size != -1) {
650 		mdb_printf("Balloon          %16lu  %16llu  %3lu%%\n",
651 		    bln_stats.bln_hv_pages,
652 		    (uint64_t)bln_stats.bln_hv_pages * PAGESIZE / (1024 * 1024),
653 		    MS_PCT_TOTAL(bln_stats.bln_hv_pages));
654 	}
655 #endif
656 
657 	mdb_printf("\nTotal            %16lu  %16lu\n",
658 	    physmem,
659 	    (uint64_t)physmem * PAGESIZE / (1024 * 1024));
660 
661 	if (physmem != total_pages) {
662 		mdb_printf("Physical         %16lu  %16lu\n",
663 		    total_pages,
664 		    (uint64_t)total_pages * PAGESIZE / (1024 * 1024));
665 	}
666 
667 #undef MS_PCT_TOTAL
668 
669 	return (DCMD_OK);
670 }
671 
672 void
673 pagelookup_help(void)
674 {
675 	mdb_printf(
676 	    "Finds the page with name { %<b>vp%</b>, %<b>offset%</b> }.\n"
677 	    "\n"
678 	    "Can be invoked three different ways:\n\n"
679 	    "    ::pagelookup -v %<b>vp%</b> -o %<b>offset%</b>\n"
680 	    "    %<b>vp%</b>::pagelookup -o %<b>offset%</b>\n"
681 	    "    %<b>offset%</b>::pagelookup -v %<b>vp%</b>\n"
682 	    "\n"
683 	    "The latter two forms are useful in pipelines.\n");
684 }
685 
686 int
687 pagelookup(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
688 {
689 	uintptr_t vp = -(uintptr_t)1;
690 	uint64_t offset = -(uint64_t)1;
691 
692 	uintptr_t pageaddr;
693 	int hasaddr = (flags & DCMD_ADDRSPEC);
694 	int usedaddr = 0;
695 
696 	if (mdb_getopts(argc, argv,
697 	    'v', MDB_OPT_UINTPTR, &vp,
698 	    'o', MDB_OPT_UINT64, &offset,
699 	    NULL) != argc) {
700 		return (DCMD_USAGE);
701 	}
702 
703 	if (vp == -(uintptr_t)1) {
704 		if (offset == -(uint64_t)1) {
705 			mdb_warn(
706 			    "pagelookup: at least one of -v vp or -o offset "
707 			    "required.\n");
708 			return (DCMD_USAGE);
709 		}
710 		vp = addr;
711 		usedaddr = 1;
712 	} else if (offset == -(uint64_t)1) {
713 		offset = mdb_get_dot();
714 		usedaddr = 1;
715 	}
716 	if (usedaddr && !hasaddr) {
717 		mdb_warn("pagelookup: address required\n");
718 		return (DCMD_USAGE);
719 	}
720 	if (!usedaddr && hasaddr) {
721 		mdb_warn(
722 		    "pagelookup: address specified when both -v and -o were "
723 		    "passed");
724 		return (DCMD_USAGE);
725 	}
726 
727 	pageaddr = mdb_page_lookup(vp, offset);
728 	if (pageaddr == 0) {
729 		mdb_warn("pagelookup: no page for {vp = %p, offset = %llp)\n",
730 		    vp, offset);
731 		return (DCMD_OK);
732 	}
733 	mdb_printf("%#lr\n", pageaddr);		/* this is PIPE_OUT friendly */
734 	return (DCMD_OK);
735 }
736 
737 /*ARGSUSED*/
738 int
739 page_num2pp(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
740 {
741 	uintptr_t pp;
742 
743 	if (argc != 0 || !(flags & DCMD_ADDRSPEC)) {
744 		return (DCMD_USAGE);
745 	}
746 
747 	pp = mdb_pfn2page((pfn_t)addr);
748 	if (pp == 0) {
749 		return (DCMD_ERR);
750 	}
751 
752 	if (flags & DCMD_PIPE_OUT) {
753 		mdb_printf("%#lr\n", pp);
754 	} else {
755 		mdb_printf("%lx has page_t at %#lx\n", (pfn_t)addr, pp);
756 	}
757 
758 	return (DCMD_OK);
759 }
760 
761 int
762 page(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
763 {
764 	page_t	p;
765 
766 	if (!(flags & DCMD_ADDRSPEC)) {
767 		if (mdb_walk_dcmd("page", "page", argc, argv) == -1) {
768 			mdb_warn("can't walk pages");
769 			return (DCMD_ERR);
770 		}
771 		return (DCMD_OK);
772 	}
773 
774 	if (DCMD_HDRSPEC(flags)) {
775 		mdb_printf("%<u>%?s %?s %16s %8s %3s %3s %2s %2s %2s%</u>\n",
776 		    "PAGE", "VNODE", "OFFSET", "SELOCK",
777 		    "LCT", "COW", "IO", "FS", "ST");
778 	}
779 
780 	if (mdb_vread(&p, sizeof (page_t), addr) == -1) {
781 		mdb_warn("can't read page_t at %#lx", addr);
782 		return (DCMD_ERR);
783 	}
784 
785 	mdb_printf("%0?lx %?p %16llx %8x %3d %3d %2x %2x %2x\n",
786 	    addr, p.p_vnode, p.p_offset, p.p_selock, p.p_lckcnt, p.p_cowcnt,
787 	    p.p_iolock_state, p.p_fsdata, p.p_state);
788 
789 	return (DCMD_OK);
790 }
791 
792 int
793 swap_walk_init(mdb_walk_state_t *wsp)
794 {
795 	void	*ptr;
796 
797 	if ((mdb_readvar(&ptr, "swapinfo") == -1) || ptr == NULL) {
798 		mdb_warn("swapinfo not found or invalid");
799 		return (WALK_ERR);
800 	}
801 
802 	wsp->walk_addr = (uintptr_t)ptr;
803 
804 	return (WALK_NEXT);
805 }
806 
807 int
808 swap_walk_step(mdb_walk_state_t *wsp)
809 {
810 	uintptr_t	sip;
811 	struct swapinfo	si;
812 
813 	sip = wsp->walk_addr;
814 
815 	if (sip == 0)
816 		return (WALK_DONE);
817 
818 	if (mdb_vread(&si, sizeof (struct swapinfo), sip) == -1) {
819 		mdb_warn("unable to read swapinfo at %#lx", sip);
820 		return (WALK_ERR);
821 	}
822 
823 	wsp->walk_addr = (uintptr_t)si.si_next;
824 
825 	return (wsp->walk_callback(sip, &si, wsp->walk_cbdata));
826 }
827 
828 int
829 swapinfof(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
830 {
831 	struct swapinfo	si;
832 	char		*name;
833 
834 	if (!(flags & DCMD_ADDRSPEC)) {
835 		if (mdb_walk_dcmd("swapinfo", "swapinfo", argc, argv) == -1) {
836 			mdb_warn("can't walk swapinfo");
837 			return (DCMD_ERR);
838 		}
839 		return (DCMD_OK);
840 	}
841 
842 	if (DCMD_HDRSPEC(flags)) {
843 		mdb_printf("%<u>%?s %?s %9s %9s %s%</u>\n",
844 		    "ADDR", "VNODE", "PAGES", "FREE", "NAME");
845 	}
846 
847 	if (mdb_vread(&si, sizeof (struct swapinfo), addr) == -1) {
848 		mdb_warn("can't read swapinfo at %#lx", addr);
849 		return (DCMD_ERR);
850 	}
851 
852 	name = mdb_alloc(si.si_pnamelen, UM_SLEEP | UM_GC);
853 	if (mdb_vread(name, si.si_pnamelen, (uintptr_t)si.si_pname) == -1)
854 		name = "*error*";
855 
856 	mdb_printf("%0?lx %?p %9d %9d %s\n",
857 	    addr, si.si_vp, si.si_npgs, si.si_nfpgs, name);
858 
859 	return (DCMD_OK);
860 }
861 
862 int
863 memlist_walk_step(mdb_walk_state_t *wsp)
864 {
865 	uintptr_t	mlp;
866 	struct memlist	ml;
867 
868 	mlp = wsp->walk_addr;
869 
870 	if (mlp == 0)
871 		return (WALK_DONE);
872 
873 	if (mdb_vread(&ml, sizeof (struct memlist), mlp) == -1) {
874 		mdb_warn("unable to read memlist at %#lx", mlp);
875 		return (WALK_ERR);
876 	}
877 
878 	wsp->walk_addr = (uintptr_t)ml.ml_next;
879 
880 	return (wsp->walk_callback(mlp, &ml, wsp->walk_cbdata));
881 }
882 
883 int
884 memlist(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
885 {
886 	struct memlist	ml;
887 
888 	if (!(flags & DCMD_ADDRSPEC)) {
889 		uintptr_t ptr;
890 		uint_t list = 0;
891 		int i;
892 		static const char *lists[] = {
893 			"phys_install",
894 			"phys_avail",
895 			"virt_avail"
896 		};
897 
898 		if (mdb_getopts(argc, argv,
899 		    'i', MDB_OPT_SETBITS, (1 << 0), &list,
900 		    'a', MDB_OPT_SETBITS, (1 << 1), &list,
901 		    'v', MDB_OPT_SETBITS, (1 << 2), &list, NULL) != argc)
902 			return (DCMD_USAGE);
903 
904 		if (!list)
905 			list = 1;
906 
907 		for (i = 0; list; i++, list >>= 1) {
908 			if (!(list & 1))
909 				continue;
910 			if ((mdb_readvar(&ptr, lists[i]) == -1) ||
911 			    (ptr == 0)) {
912 				mdb_warn("%s not found or invalid", lists[i]);
913 				return (DCMD_ERR);
914 			}
915 
916 			mdb_printf("%s:\n", lists[i]);
917 			if (mdb_pwalk_dcmd("memlist", "memlist", 0, NULL,
918 			    ptr) == -1) {
919 				mdb_warn("can't walk memlist");
920 				return (DCMD_ERR);
921 			}
922 		}
923 		return (DCMD_OK);
924 	}
925 
926 	if (DCMD_HDRSPEC(flags))
927 		mdb_printf("%<u>%?s %16s %16s%</u>\n", "ADDR", "BASE", "SIZE");
928 
929 	if (mdb_vread(&ml, sizeof (struct memlist), addr) == -1) {
930 		mdb_warn("can't read memlist at %#lx", addr);
931 		return (DCMD_ERR);
932 	}
933 
934 	mdb_printf("%0?lx %16llx %16llx\n", addr, ml.ml_address, ml.ml_size);
935 
936 	return (DCMD_OK);
937 }
938 
939 int
940 seg_walk_init(mdb_walk_state_t *wsp)
941 {
942 	if (wsp->walk_addr == 0) {
943 		mdb_warn("seg walk must begin at struct as *\n");
944 		return (WALK_ERR);
945 	}
946 
947 	/*
948 	 * this is really just a wrapper to AVL tree walk
949 	 */
950 	wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree;
951 	return (avl_walk_init(wsp));
952 }
953 
954 /*ARGSUSED*/
955 int
956 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
957 {
958 	struct seg s;
959 
960 	if (argc != 0)
961 		return (DCMD_USAGE);
962 
963 	if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {
964 		mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n",
965 		    "SEG", "BASE", "SIZE", "DATA", "OPS");
966 	}
967 
968 	if (mdb_vread(&s, sizeof (s), addr) == -1) {
969 		mdb_warn("failed to read seg at %p", addr);
970 		return (DCMD_ERR);
971 	}
972 
973 	mdb_printf("%?p %?p %?lx %?p %a\n",
974 	    addr, s.s_base, s.s_size, s.s_data, s.s_ops);
975 
976 	return (DCMD_OK);
977 }
978 
979 typedef struct pmap_walk_types {
980 	uintptr_t pwt_segvn;
981 	uintptr_t pwt_seghole;
982 } pmap_walk_types_t;
983 
984 /*ARGSUSED*/
985 static int
986 pmap_walk_count_pages(uintptr_t addr, const void *data, void *out)
987 {
988 	pgcnt_t *nres = out;
989 
990 	(*nres)++;
991 
992 	return (WALK_NEXT);
993 }
994 
995 static int
996 pmap_walk_seg(uintptr_t addr, const struct seg *seg,
997     const pmap_walk_types_t *types)
998 {
999 	const uintptr_t ops = (uintptr_t)seg->s_ops;
1000 
1001 	mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
1002 
1003 	if (ops == types->pwt_segvn && seg->s_data != NULL) {
1004 		struct segvn_data svn;
1005 		pgcnt_t nres = 0;
1006 
1007 		svn.vp = NULL;
1008 		(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
1009 
1010 		/*
1011 		 * Use the segvn_pages walker to find all of the in-core pages
1012 		 * for this mapping.
1013 		 */
1014 		if (mdb_pwalk("segvn_pages", pmap_walk_count_pages, &nres,
1015 		    (uintptr_t)seg->s_data) == -1) {
1016 			mdb_warn("failed to walk segvn_pages (s_data=%p)",
1017 			    seg->s_data);
1018 		}
1019 		mdb_printf(" %7ldk", (nres * PAGESIZE) / 1024);
1020 
1021 		if (svn.vp != NULL) {
1022 			char buf[29];
1023 
1024 			mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf));
1025 			mdb_printf(" %s", buf);
1026 		} else {
1027 			mdb_printf(" [ anon ]");
1028 		}
1029 	} else if (ops == types->pwt_seghole && seg->s_data != NULL) {
1030 		seghole_data_t shd;
1031 		char name[16];
1032 
1033 		(void) mdb_vread(&shd, sizeof (shd), (uintptr_t)seg->s_data);
1034 		if (shd.shd_name == NULL || mdb_readstr(name, sizeof (name),
1035 		    (uintptr_t)shd.shd_name) == 0) {
1036 			name[0] = '\0';
1037 		}
1038 
1039 		mdb_printf(" %8s [ hole%s%s ]", "-",
1040 		    name[0] == '0' ? "" : ":", name);
1041 	} else {
1042 		mdb_printf(" %8s [ &%a ]", "?", seg->s_ops);
1043 	}
1044 
1045 	mdb_printf("\n");
1046 	return (WALK_NEXT);
1047 }
1048 
1049 static int
1050 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg,
1051     const pmap_walk_types_t *types)
1052 {
1053 	const uintptr_t ops = (uintptr_t)seg->s_ops;
1054 
1055 	mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
1056 
1057 	if (ops == types->pwt_segvn && seg->s_data != NULL) {
1058 		struct segvn_data svn;
1059 
1060 		svn.vp = NULL;
1061 		(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
1062 
1063 		if (svn.vp != NULL) {
1064 			mdb_printf(" %0?p", svn.vp);
1065 		} else {
1066 			mdb_printf(" [ anon ]");
1067 		}
1068 	} else {
1069 		mdb_printf(" [ &%a ]", seg->s_ops);
1070 	}
1071 
1072 	mdb_printf("\n");
1073 	return (WALK_NEXT);
1074 }
1075 
1076 /*ARGSUSED*/
1077 int
1078 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1079 {
1080 	proc_t proc;
1081 	uint_t quick = FALSE;
1082 	mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg;
1083 	pmap_walk_types_t wtypes = { 0 };
1084 
1085 	GElf_Sym sym;
1086 
1087 	if (!(flags & DCMD_ADDRSPEC))
1088 		return (DCMD_USAGE);
1089 
1090 	if (mdb_getopts(argc, argv,
1091 	    'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc)
1092 		return (DCMD_USAGE);
1093 
1094 	if (mdb_vread(&proc, sizeof (proc), addr) == -1) {
1095 		mdb_warn("failed to read proc at %p", addr);
1096 		return (DCMD_ERR);
1097 	}
1098 
1099 	if (mdb_lookup_by_name("segvn_ops", &sym) == 0)
1100 		wtypes.pwt_segvn = (uintptr_t)sym.st_value;
1101 	if (mdb_lookup_by_name("seghole_ops", &sym) == 0)
1102 		wtypes.pwt_seghole = (uintptr_t)sym.st_value;
1103 
1104 	mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE");
1105 
1106 	if (quick) {
1107 		mdb_printf("VNODE\n");
1108 		cb = (mdb_walk_cb_t)pmap_walk_seg_quick;
1109 	} else {
1110 		mdb_printf("%8s %s\n", "RES", "PATH");
1111 	}
1112 
1113 	if (mdb_pwalk("seg", cb, (void *)&wtypes, (uintptr_t)proc.p_as) == -1) {
1114 		mdb_warn("failed to walk segments of as %p", proc.p_as);
1115 		return (DCMD_ERR);
1116 	}
1117 
1118 	return (DCMD_OK);
1119 }
1120 
1121 typedef struct anon_walk_data {
1122 	uintptr_t *aw_levone;
1123 	uintptr_t *aw_levtwo;
1124 	size_t aw_minslot;
1125 	size_t aw_maxslot;
1126 	pgcnt_t aw_nlevone;
1127 	pgcnt_t aw_levone_ndx;
1128 	size_t aw_levtwo_ndx;
1129 	struct anon_map	*aw_ampp;
1130 	struct anon_map aw_amp;
1131 	struct anon_hdr	aw_ahp;
1132 	int		aw_all;	/* report all anon pointers, even NULLs */
1133 } anon_walk_data_t;
1134 
1135 int
1136 anon_walk_init_common(mdb_walk_state_t *wsp, ulong_t minslot, ulong_t maxslot)
1137 {
1138 	anon_walk_data_t *aw;
1139 
1140 	if (wsp->walk_addr == 0) {
1141 		mdb_warn("anon walk doesn't support global walks\n");
1142 		return (WALK_ERR);
1143 	}
1144 
1145 	aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP);
1146 	aw->aw_ampp = (struct anon_map *)wsp->walk_addr;
1147 
1148 	if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) {
1149 		mdb_warn("failed to read anon map at %p", wsp->walk_addr);
1150 		mdb_free(aw, sizeof (anon_walk_data_t));
1151 		return (WALK_ERR);
1152 	}
1153 
1154 	if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp),
1155 	    (uintptr_t)(aw->aw_amp.ahp)) == -1) {
1156 		mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp);
1157 		mdb_free(aw, sizeof (anon_walk_data_t));
1158 		return (WALK_ERR);
1159 	}
1160 
1161 	/* update min and maxslot with the given constraints */
1162 	maxslot = MIN(maxslot, aw->aw_ahp.size);
1163 	minslot = MIN(minslot, maxslot);
1164 
1165 	if (aw->aw_ahp.size <= ANON_CHUNK_SIZE ||
1166 	    (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) {
1167 		aw->aw_nlevone = maxslot;
1168 		aw->aw_levone_ndx = minslot;
1169 		aw->aw_levtwo = NULL;
1170 	} else {
1171 		aw->aw_nlevone =
1172 		    (maxslot + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
1173 		aw->aw_levone_ndx = 0;
1174 		aw->aw_levtwo =
1175 		    mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP);
1176 	}
1177 
1178 	aw->aw_levone =
1179 	    mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP);
1180 	aw->aw_all = (wsp->walk_arg == ANON_WALK_ALL);
1181 
1182 	mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t),
1183 	    (uintptr_t)aw->aw_ahp.array_chunk);
1184 
1185 	aw->aw_levtwo_ndx = 0;
1186 	aw->aw_minslot = minslot;
1187 	aw->aw_maxslot = maxslot;
1188 
1189 out:
1190 	wsp->walk_data = aw;
1191 	return (0);
1192 }
1193 
1194 int
1195 anon_walk_step(mdb_walk_state_t *wsp)
1196 {
1197 	anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
1198 	struct anon anon;
1199 	uintptr_t anonptr;
1200 	ulong_t slot;
1201 
1202 	/*
1203 	 * Once we've walked through level one, we're done.
1204 	 */
1205 	if (aw->aw_levone_ndx >= aw->aw_nlevone) {
1206 		return (WALK_DONE);
1207 	}
1208 
1209 	if (aw->aw_levtwo == NULL) {
1210 		anonptr = aw->aw_levone[aw->aw_levone_ndx];
1211 		aw->aw_levone_ndx++;
1212 	} else {
1213 		if (aw->aw_levtwo_ndx == 0) {
1214 			uintptr_t levtwoptr;
1215 
1216 			/* The first time through, skip to our first index. */
1217 			if (aw->aw_levone_ndx == 0) {
1218 				aw->aw_levone_ndx =
1219 				    aw->aw_minslot / ANON_CHUNK_SIZE;
1220 				aw->aw_levtwo_ndx =
1221 				    aw->aw_minslot % ANON_CHUNK_SIZE;
1222 			}
1223 
1224 			levtwoptr = (uintptr_t)aw->aw_levone[aw->aw_levone_ndx];
1225 
1226 			if (levtwoptr == 0) {
1227 				if (!aw->aw_all) {
1228 					aw->aw_levtwo_ndx = 0;
1229 					aw->aw_levone_ndx++;
1230 					return (WALK_NEXT);
1231 				}
1232 				bzero(aw->aw_levtwo,
1233 				    ANON_CHUNK_SIZE * sizeof (uintptr_t));
1234 
1235 			} else if (mdb_vread(aw->aw_levtwo,
1236 			    ANON_CHUNK_SIZE * sizeof (uintptr_t), levtwoptr) ==
1237 			    -1) {
1238 				mdb_warn("unable to read anon_map %p's "
1239 				    "second-level map %d at %p",
1240 				    aw->aw_ampp, aw->aw_levone_ndx,
1241 				    levtwoptr);
1242 				return (WALK_ERR);
1243 			}
1244 		}
1245 		slot = aw->aw_levone_ndx * ANON_CHUNK_SIZE + aw->aw_levtwo_ndx;
1246 		anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx];
1247 
1248 		/* update the indices for next time */
1249 		aw->aw_levtwo_ndx++;
1250 		if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) {
1251 			aw->aw_levtwo_ndx = 0;
1252 			aw->aw_levone_ndx++;
1253 		}
1254 
1255 		/* make sure the slot # is in the requested range */
1256 		if (slot >= aw->aw_maxslot) {
1257 			return (WALK_DONE);
1258 		}
1259 	}
1260 
1261 	if (anonptr != 0) {
1262 		mdb_vread(&anon, sizeof (anon), anonptr);
1263 		return (wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata));
1264 	}
1265 	if (aw->aw_all) {
1266 		return (wsp->walk_callback(0, NULL, wsp->walk_cbdata));
1267 	}
1268 	return (WALK_NEXT);
1269 }
1270 
1271 void
1272 anon_walk_fini(mdb_walk_state_t *wsp)
1273 {
1274 	anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
1275 
1276 	if (aw->aw_levtwo != NULL)
1277 		mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t));
1278 
1279 	mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t));
1280 	mdb_free(aw, sizeof (anon_walk_data_t));
1281 }
1282 
1283 int
1284 anon_walk_init(mdb_walk_state_t *wsp)
1285 {
1286 	return (anon_walk_init_common(wsp, 0, ULONG_MAX));
1287 }
1288 
1289 int
1290 segvn_anon_walk_init(mdb_walk_state_t *wsp)
1291 {
1292 	const uintptr_t		svd_addr = wsp->walk_addr;
1293 	uintptr_t		amp_addr;
1294 	uintptr_t		seg_addr;
1295 	struct segvn_data	svd;
1296 	struct anon_map		amp;
1297 	struct seg		seg;
1298 
1299 	if (svd_addr == 0) {
1300 		mdb_warn("segvn_anon walk doesn't support global walks\n");
1301 		return (WALK_ERR);
1302 	}
1303 	if (mdb_vread(&svd, sizeof (svd), svd_addr) == -1) {
1304 		mdb_warn("segvn_anon walk: unable to read segvn_data at %p",
1305 		    svd_addr);
1306 		return (WALK_ERR);
1307 	}
1308 	if (svd.amp == NULL) {
1309 		mdb_warn("segvn_anon walk: segvn_data at %p has no anon map\n",
1310 		    svd_addr);
1311 		return (WALK_ERR);
1312 	}
1313 	amp_addr = (uintptr_t)svd.amp;
1314 	if (mdb_vread(&amp, sizeof (amp), amp_addr) == -1) {
1315 		mdb_warn("segvn_anon walk: unable to read amp %p for "
1316 		    "segvn_data %p", amp_addr, svd_addr);
1317 		return (WALK_ERR);
1318 	}
1319 	seg_addr = (uintptr_t)svd.seg;
1320 	if (mdb_vread(&seg, sizeof (seg), seg_addr) == -1) {
1321 		mdb_warn("segvn_anon walk: unable to read seg %p for "
1322 		    "segvn_data %p", seg_addr, svd_addr);
1323 		return (WALK_ERR);
1324 	}
1325 	if ((seg.s_size + (svd.anon_index << PAGESHIFT)) > amp.size) {
1326 		mdb_warn("anon map %p is too small for segment %p\n",
1327 		    amp_addr, seg_addr);
1328 		return (WALK_ERR);
1329 	}
1330 
1331 	wsp->walk_addr = amp_addr;
1332 	return (anon_walk_init_common(wsp,
1333 	    svd.anon_index, svd.anon_index + (seg.s_size >> PAGESHIFT)));
1334 }
1335 
1336 
1337 typedef struct {
1338 	u_offset_t		svs_offset;
1339 	uintptr_t		svs_page;
1340 } segvn_sparse_t;
1341 #define	SEGVN_MAX_SPARSE	((128 * 1024) / sizeof (segvn_sparse_t))
1342 
1343 typedef struct {
1344 	uintptr_t		svw_svdp;
1345 	struct segvn_data	svw_svd;
1346 	struct seg		svw_seg;
1347 	size_t			svw_walkoff;
1348 	ulong_t			svw_anonskip;
1349 	segvn_sparse_t		*svw_sparse;
1350 	size_t			svw_sparse_idx;
1351 	size_t			svw_sparse_count;
1352 	size_t			svw_sparse_size;
1353 	uint8_t			svw_sparse_overflow;
1354 	uint8_t			svw_all;
1355 } segvn_walk_data_t;
1356 
1357 static int
1358 segvn_sparse_fill(uintptr_t addr, const void *pp_arg, void *arg)
1359 {
1360 	segvn_walk_data_t	*const	svw = arg;
1361 	const page_t		*const	pp = pp_arg;
1362 	const u_offset_t		offset = pp->p_offset;
1363 	segvn_sparse_t		*const	cur =
1364 	    &svw->svw_sparse[svw->svw_sparse_count];
1365 
1366 	/* See if the page is of interest */
1367 	if ((u_offset_t)(offset - svw->svw_svd.offset) >= svw->svw_seg.s_size) {
1368 		return (WALK_NEXT);
1369 	}
1370 	/* See if we have space for the new entry, then add it. */
1371 	if (svw->svw_sparse_count >= svw->svw_sparse_size) {
1372 		svw->svw_sparse_overflow = 1;
1373 		return (WALK_DONE);
1374 	}
1375 	svw->svw_sparse_count++;
1376 	cur->svs_offset = offset;
1377 	cur->svs_page = addr;
1378 	return (WALK_NEXT);
1379 }
1380 
1381 static int
1382 segvn_sparse_cmp(const void *lp, const void *rp)
1383 {
1384 	const segvn_sparse_t *const	l = lp;
1385 	const segvn_sparse_t *const	r = rp;
1386 
1387 	if (l->svs_offset < r->svs_offset) {
1388 		return (-1);
1389 	}
1390 	if (l->svs_offset > r->svs_offset) {
1391 		return (1);
1392 	}
1393 	return (0);
1394 }
1395 
1396 /*
1397  * Builds on the "anon_all" walker to walk all resident pages in a segvn_data
1398  * structure.  For segvn_datas without an anon structure, it just looks up
1399  * pages in the vnode.  For segvn_datas with an anon structure, NULL slots
1400  * pass through to the vnode, and non-null slots are checked for residency.
1401  */
1402 int
1403 segvn_pages_walk_init(mdb_walk_state_t *wsp)
1404 {
1405 	segvn_walk_data_t	*svw;
1406 	struct segvn_data	*svd;
1407 
1408 	if (wsp->walk_addr == 0) {
1409 		mdb_warn("segvn walk doesn't support global walks\n");
1410 		return (WALK_ERR);
1411 	}
1412 
1413 	svw = mdb_zalloc(sizeof (*svw), UM_SLEEP);
1414 	svw->svw_svdp = wsp->walk_addr;
1415 	svw->svw_anonskip = 0;
1416 	svw->svw_sparse_idx = 0;
1417 	svw->svw_walkoff = 0;
1418 	svw->svw_all = (wsp->walk_arg == SEGVN_PAGES_ALL);
1419 
1420 	if (mdb_vread(&svw->svw_svd, sizeof (svw->svw_svd), wsp->walk_addr) ==
1421 	    -1) {
1422 		mdb_warn("failed to read segvn_data at %p", wsp->walk_addr);
1423 		mdb_free(svw, sizeof (*svw));
1424 		return (WALK_ERR);
1425 	}
1426 
1427 	svd = &svw->svw_svd;
1428 	if (mdb_vread(&svw->svw_seg, sizeof (svw->svw_seg),
1429 	    (uintptr_t)svd->seg) == -1) {
1430 		mdb_warn("failed to read seg at %p (from %p)",
1431 		    svd->seg, &((struct segvn_data *)(wsp->walk_addr))->seg);
1432 		mdb_free(svw, sizeof (*svw));
1433 		return (WALK_ERR);
1434 	}
1435 
1436 	if (svd->amp == NULL && svd->vp == NULL) {
1437 		/* make the walk terminate immediately;  no pages */
1438 		svw->svw_walkoff = svw->svw_seg.s_size;
1439 
1440 	} else if (svd->amp == NULL &&
1441 	    (svw->svw_seg.s_size >> PAGESHIFT) >= SEGVN_MAX_SPARSE) {
1442 		/*
1443 		 * If we don't have an anon pointer, and the segment is large,
1444 		 * we try to load the in-memory pages into a fixed-size array,
1445 		 * which is then sorted and reported directly.  This is much
1446 		 * faster than doing a mdb_page_lookup() for each possible
1447 		 * offset.
1448 		 *
1449 		 * If the allocation fails, or there are too many pages
1450 		 * in-core, we fall back to looking up the pages individually.
1451 		 */
1452 		svw->svw_sparse = mdb_alloc(
1453 		    SEGVN_MAX_SPARSE * sizeof (*svw->svw_sparse), UM_NOSLEEP);
1454 		if (svw->svw_sparse != NULL) {
1455 			svw->svw_sparse_size = SEGVN_MAX_SPARSE;
1456 
1457 			if (mdb_pwalk("page", segvn_sparse_fill, svw,
1458 			    (uintptr_t)svd->vp) == -1 ||
1459 			    svw->svw_sparse_overflow) {
1460 				mdb_free(svw->svw_sparse, SEGVN_MAX_SPARSE *
1461 				    sizeof (*svw->svw_sparse));
1462 				svw->svw_sparse = NULL;
1463 			} else {
1464 				qsort(svw->svw_sparse, svw->svw_sparse_count,
1465 				    sizeof (*svw->svw_sparse),
1466 				    segvn_sparse_cmp);
1467 			}
1468 		}
1469 
1470 	} else if (svd->amp != NULL) {
1471 		const char *const layer = (!svw->svw_all && svd->vp == NULL) ?
1472 		    "segvn_anon" : "segvn_anon_all";
1473 		/*
1474 		 * If we're not printing all offsets, and the segvn_data has
1475 		 * no backing VP, we can use the "segvn_anon" walker, which
1476 		 * efficiently skips NULL slots.
1477 		 *
1478 		 * Otherwise, we layer over the "segvn_anon_all" walker
1479 		 * (which reports all anon slots, even NULL ones), so that
1480 		 * segvn_pages_walk_step() knows the precise offset for each
1481 		 * element.  It uses that offset information to look up the
1482 		 * backing pages for NULL anon slots.
1483 		 */
1484 		if (mdb_layered_walk(layer, wsp) == -1) {
1485 			mdb_warn("segvn_pages: failed to layer \"%s\" "
1486 			    "for segvn_data %p", layer, svw->svw_svdp);
1487 			mdb_free(svw, sizeof (*svw));
1488 			return (WALK_ERR);
1489 		}
1490 	}
1491 
1492 	wsp->walk_data = svw;
1493 	return (WALK_NEXT);
1494 }
1495 
1496 int
1497 segvn_pages_walk_step(mdb_walk_state_t *wsp)
1498 {
1499 	segvn_walk_data_t	*const	svw = wsp->walk_data;
1500 	struct seg		*const	seg = &svw->svw_seg;
1501 	struct segvn_data	*const	svd = &svw->svw_svd;
1502 	uintptr_t		pp;
1503 	page_t			page;
1504 
1505 	/* If we've walked off the end of the segment, we're done. */
1506 	if (svw->svw_walkoff >= seg->s_size) {
1507 		return (WALK_DONE);
1508 	}
1509 
1510 	/*
1511 	 * If we've got a sparse page array, just send it directly.
1512 	 */
1513 	if (svw->svw_sparse != NULL) {
1514 		u_offset_t off;
1515 
1516 		if (svw->svw_sparse_idx >= svw->svw_sparse_count) {
1517 			pp = 0;
1518 			if (!svw->svw_all) {
1519 				return (WALK_DONE);
1520 			}
1521 		} else {
1522 			segvn_sparse_t	*const svs =
1523 			    &svw->svw_sparse[svw->svw_sparse_idx];
1524 			off = svs->svs_offset - svd->offset;
1525 			if (svw->svw_all && svw->svw_walkoff != off) {
1526 				pp = 0;
1527 			} else {
1528 				pp = svs->svs_page;
1529 				svw->svw_sparse_idx++;
1530 			}
1531 		}
1532 
1533 	} else if (svd->amp == NULL || wsp->walk_addr == 0) {
1534 		/*
1535 		 * If there's no anon, or the anon slot is NULL, look up
1536 		 * <vp, offset>.
1537 		 */
1538 		if (svd->vp != NULL) {
1539 			pp = mdb_page_lookup((uintptr_t)svd->vp,
1540 			    svd->offset + svw->svw_walkoff);
1541 		} else {
1542 			pp = 0;
1543 		}
1544 
1545 	} else {
1546 		const struct anon	*const	anon = wsp->walk_layer;
1547 
1548 		/*
1549 		 * We have a "struct anon"; if it's not swapped out,
1550 		 * look up the page.
1551 		 */
1552 		if (anon->an_vp != NULL || anon->an_off != 0) {
1553 			pp = mdb_page_lookup((uintptr_t)anon->an_vp,
1554 			    anon->an_off);
1555 			if (pp == 0 && mdb_get_state() != MDB_STATE_RUNNING) {
1556 				mdb_warn("walk segvn_pages: segvn_data %p "
1557 				    "offset %ld, anon page <%p, %llx> not "
1558 				    "found.\n", svw->svw_svdp, svw->svw_walkoff,
1559 				    anon->an_vp, anon->an_off);
1560 			}
1561 		} else {
1562 			if (anon->an_pvp == NULL) {
1563 				mdb_warn("walk segvn_pages: useless struct "
1564 				    "anon at %p\n", wsp->walk_addr);
1565 			}
1566 			pp = 0;	/* nothing at this offset */
1567 		}
1568 	}
1569 
1570 	svw->svw_walkoff += PAGESIZE;	/* Update for the next call */
1571 	if (pp != 0) {
1572 		if (mdb_vread(&page, sizeof (page_t), pp) == -1) {
1573 			mdb_warn("unable to read page_t at %#lx", pp);
1574 			return (WALK_ERR);
1575 		}
1576 		return (wsp->walk_callback(pp, &page, wsp->walk_cbdata));
1577 	}
1578 	if (svw->svw_all) {
1579 		return (wsp->walk_callback(0, NULL, wsp->walk_cbdata));
1580 	}
1581 	return (WALK_NEXT);
1582 }
1583 
1584 void
1585 segvn_pages_walk_fini(mdb_walk_state_t *wsp)
1586 {
1587 	segvn_walk_data_t	*const	svw = wsp->walk_data;
1588 
1589 	if (svw->svw_sparse != NULL) {
1590 		mdb_free(svw->svw_sparse, SEGVN_MAX_SPARSE *
1591 		    sizeof (*svw->svw_sparse));
1592 	}
1593 	mdb_free(svw, sizeof (*svw));
1594 }
1595 
1596 /*
1597  * Grumble, grumble.
1598  */
1599 #define	SMAP_HASHFUNC(vp, off)	\
1600 	((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \
1601 	((off) >> MAXBSHIFT)) & smd_hashmsk)
1602 
1603 int
1604 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1605 {
1606 	long smd_hashmsk;
1607 	int hash;
1608 	uintptr_t offset = 0;
1609 	struct smap smp;
1610 	uintptr_t saddr, kaddr;
1611 	uintptr_t smd_hash, smd_smap;
1612 	struct seg seg;
1613 
1614 	if (!(flags & DCMD_ADDRSPEC))
1615 		return (DCMD_USAGE);
1616 
1617 	if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) {
1618 		mdb_warn("failed to read smd_hashmsk");
1619 		return (DCMD_ERR);
1620 	}
1621 
1622 	if (mdb_readvar(&smd_hash, "smd_hash") == -1) {
1623 		mdb_warn("failed to read smd_hash");
1624 		return (DCMD_ERR);
1625 	}
1626 
1627 	if (mdb_readvar(&smd_smap, "smd_smap") == -1) {
1628 		mdb_warn("failed to read smd_hash");
1629 		return (DCMD_ERR);
1630 	}
1631 
1632 	if (mdb_readvar(&kaddr, "segkmap") == -1) {
1633 		mdb_warn("failed to read segkmap");
1634 		return (DCMD_ERR);
1635 	}
1636 
1637 	if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
1638 		mdb_warn("failed to read segkmap at %p", kaddr);
1639 		return (DCMD_ERR);
1640 	}
1641 
1642 	if (argc != 0) {
1643 		const mdb_arg_t *arg = &argv[0];
1644 
1645 		if (arg->a_type == MDB_TYPE_IMMEDIATE)
1646 			offset = arg->a_un.a_val;
1647 		else
1648 			offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str);
1649 	}
1650 
1651 	hash = SMAP_HASHFUNC(addr, offset);
1652 
1653 	if (mdb_vread(&saddr, sizeof (saddr),
1654 	    smd_hash + hash * sizeof (uintptr_t)) == -1) {
1655 		mdb_warn("couldn't read smap at %p",
1656 		    smd_hash + hash * sizeof (uintptr_t));
1657 		return (DCMD_ERR);
1658 	}
1659 
1660 	do {
1661 		if (mdb_vread(&smp, sizeof (smp), saddr) == -1) {
1662 			mdb_warn("couldn't read smap at %p", saddr);
1663 			return (DCMD_ERR);
1664 		}
1665 
1666 		if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) {
1667 			mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n",
1668 			    addr, offset, saddr, ((saddr - smd_smap) /
1669 			    sizeof (smp)) * MAXBSIZE + seg.s_base);
1670 			return (DCMD_OK);
1671 		}
1672 
1673 		saddr = (uintptr_t)smp.sm_hash;
1674 	} while (saddr != 0);
1675 
1676 	mdb_printf("no smap for vnode %p, offs %p\n", addr, offset);
1677 	return (DCMD_OK);
1678 }
1679 
1680 /*ARGSUSED*/
1681 int
1682 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1683 {
1684 	uintptr_t kaddr;
1685 	struct seg seg;
1686 	struct segmap_data sd;
1687 
1688 	if (!(flags & DCMD_ADDRSPEC))
1689 		return (DCMD_USAGE);
1690 
1691 	if (mdb_readvar(&kaddr, "segkmap") == -1) {
1692 		mdb_warn("failed to read segkmap");
1693 		return (DCMD_ERR);
1694 	}
1695 
1696 	if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
1697 		mdb_warn("failed to read segkmap at %p", kaddr);
1698 		return (DCMD_ERR);
1699 	}
1700 
1701 	if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) {
1702 		mdb_warn("failed to read segmap_data at %p", seg.s_data);
1703 		return (DCMD_ERR);
1704 	}
1705 
1706 	mdb_printf("%p is smap %p\n", addr,
1707 	    ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) *
1708 	    sizeof (struct smap) + (uintptr_t)sd.smd_sm);
1709 
1710 	return (DCMD_OK);
1711 }
1712