1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 #include <mdb/mdb_param.h>
28 #include <mdb/mdb_modapi.h>
29
30 #include <sys/fs/ufs_inode.h>
31 #include <sys/kmem_impl.h>
32 #include <sys/vmem_impl.h>
33 #include <sys/modctl.h>
34 #include <sys/kobj.h>
35 #include <sys/kobj_impl.h>
36 #include <vm/seg_vn.h>
37 #include <vm/as.h>
38 #include <vm/seg_map.h>
39 #include <mdb/mdb_ctf.h>
40
41 #include "kmem.h"
42 #include "leaky_impl.h"
43
44 /*
45 * This file defines the genunix target for leaky.c. There are three types
46 * of buffers in the kernel's heap: TYPE_VMEM, for kmem_oversize allocations,
47 * TYPE_KMEM, for kmem_cache_alloc() allocations bufctl_audit_ts, and
48 * TYPE_CACHE, for kmem_cache_alloc() allocation without bufctl_audit_ts.
49 *
50 * See "leaky_impl.h" for the target interface definition.
51 */
52
53 #define TYPE_VMEM 0 /* lkb_data is the vmem_seg's size */
54 #define TYPE_CACHE 1 /* lkb_cid is the bufctl's cache */
55 #define TYPE_KMEM 2 /* lkb_cid is the bufctl's cache */
56
57 #define LKM_CTL_BUFCTL 0 /* normal allocation, PTR is bufctl */
58 #define LKM_CTL_VMSEG 1 /* oversize allocation, PTR is vmem_seg_t */
59 #define LKM_CTL_CACHE 2 /* normal alloc, non-debug, PTR is cache */
60 #define LKM_CTL_MASK 3L
61
62 #define LKM_CTL(ptr, type) (LKM_CTLPTR(ptr) | (type))
63 #define LKM_CTLPTR(ctl) ((uintptr_t)(ctl) & ~(LKM_CTL_MASK))
64 #define LKM_CTLTYPE(ctl) ((uintptr_t)(ctl) & (LKM_CTL_MASK))
65
66 static int kmem_lite_count = 0; /* cache of the kernel's version */
67
68 /*ARGSUSED*/
69 static int
leaky_mtab(uintptr_t addr,const kmem_bufctl_audit_t * bcp,leak_mtab_t ** lmp)70 leaky_mtab(uintptr_t addr, const kmem_bufctl_audit_t *bcp, leak_mtab_t **lmp)
71 {
72 leak_mtab_t *lm = (*lmp)++;
73
74 lm->lkm_base = (uintptr_t)bcp->bc_addr;
75 lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_BUFCTL);
76
77 return (WALK_NEXT);
78 }
79
80 /*ARGSUSED*/
81 static int
leaky_mtab_addr(uintptr_t addr,void * ignored,leak_mtab_t ** lmp)82 leaky_mtab_addr(uintptr_t addr, void *ignored, leak_mtab_t **lmp)
83 {
84 leak_mtab_t *lm = (*lmp)++;
85
86 lm->lkm_base = addr;
87
88 return (WALK_NEXT);
89 }
90
91 static int
leaky_seg(uintptr_t addr,const vmem_seg_t * seg,leak_mtab_t ** lmp)92 leaky_seg(uintptr_t addr, const vmem_seg_t *seg, leak_mtab_t **lmp)
93 {
94 leak_mtab_t *lm = (*lmp)++;
95
96 lm->lkm_base = seg->vs_start;
97 lm->lkm_limit = seg->vs_end;
98 lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_VMSEG);
99
100 return (WALK_NEXT);
101 }
102
103 static int
leaky_vmem_interested(const vmem_t * vmem)104 leaky_vmem_interested(const vmem_t *vmem)
105 {
106 if (strcmp(vmem->vm_name, "kmem_oversize") != 0 &&
107 strcmp(vmem->vm_name, "static_alloc") != 0)
108 return (0);
109 return (1);
110 }
111
112 static int
leaky_vmem(uintptr_t addr,const vmem_t * vmem,leak_mtab_t ** lmp)113 leaky_vmem(uintptr_t addr, const vmem_t *vmem, leak_mtab_t **lmp)
114 {
115 if (!leaky_vmem_interested(vmem))
116 return (WALK_NEXT);
117
118 if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)leaky_seg, lmp, addr) == -1)
119 mdb_warn("can't walk vmem_alloc for kmem_oversize (%p)", addr);
120
121 return (WALK_NEXT);
122 }
123
124 /*ARGSUSED*/
125 static int
leaky_estimate_vmem(uintptr_t addr,const vmem_t * vmem,size_t * est)126 leaky_estimate_vmem(uintptr_t addr, const vmem_t *vmem, size_t *est)
127 {
128 if (!leaky_vmem_interested(vmem))
129 return (WALK_NEXT);
130
131 *est += (int)(vmem->vm_kstat.vk_alloc.value.ui64 -
132 vmem->vm_kstat.vk_free.value.ui64);
133
134 return (WALK_NEXT);
135 }
136
137 static int
leaky_interested(const kmem_cache_t * c)138 leaky_interested(const kmem_cache_t *c)
139 {
140 vmem_t vmem;
141
142 /*
143 * ignore HAT-related caches that happen to derive from kmem_default
144 */
145 if (strcmp(c->cache_name, "sfmmu1_cache") == 0 ||
146 strcmp(c->cache_name, "sf_hment_cache") == 0 ||
147 strcmp(c->cache_name, "pa_hment_cache") == 0)
148 return (0);
149
150 if (mdb_vread(&vmem, sizeof (vmem), (uintptr_t)c->cache_arena) == -1) {
151 mdb_warn("cannot read arena %p for cache '%s'",
152 (uintptr_t)c->cache_arena, c->cache_name);
153 return (0);
154 }
155
156 /*
157 * If this cache isn't allocating from the kmem_default,
158 * kmem_firewall, or static vmem arenas, we're not interested.
159 */
160 if (strcmp(vmem.vm_name, "kmem_default") != 0 &&
161 strcmp(vmem.vm_name, "kmem_firewall") != 0 &&
162 strcmp(vmem.vm_name, "static") != 0)
163 return (0);
164
165 return (1);
166 }
167
168 static int
leaky_estimate(uintptr_t addr,const kmem_cache_t * c,size_t * est)169 leaky_estimate(uintptr_t addr, const kmem_cache_t *c, size_t *est)
170 {
171 if (!leaky_interested(c))
172 return (WALK_NEXT);
173
174 *est += kmem_estimate_allocated(addr, c);
175
176 return (WALK_NEXT);
177 }
178
179 /*ARGSUSED*/
180 static int
leaky_cache(uintptr_t addr,const kmem_cache_t * c,leak_mtab_t ** lmp)181 leaky_cache(uintptr_t addr, const kmem_cache_t *c, leak_mtab_t **lmp)
182 {
183 leak_mtab_t *lm = *lmp;
184 mdb_walk_cb_t cb;
185 const char *walk;
186 int audit = (c->cache_flags & KMF_AUDIT);
187
188 if (!leaky_interested(c))
189 return (WALK_NEXT);
190
191 if (audit) {
192 walk = "bufctl";
193 cb = (mdb_walk_cb_t)leaky_mtab;
194 } else {
195 walk = "kmem";
196 cb = (mdb_walk_cb_t)leaky_mtab_addr;
197 }
198 if (mdb_pwalk(walk, cb, lmp, addr) == -1) {
199 mdb_warn("can't walk kmem for cache %p (%s)", addr,
200 c->cache_name);
201 return (WALK_DONE);
202 }
203
204 for (; lm < *lmp; lm++) {
205 lm->lkm_limit = lm->lkm_base + c->cache_bufsize;
206 if (!audit)
207 lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_CACHE);
208 }
209
210 return (WALK_NEXT);
211 }
212
213 /*ARGSUSED*/
214 static int
leaky_scan_buffer(uintptr_t addr,const void * ignored,const kmem_cache_t * c)215 leaky_scan_buffer(uintptr_t addr, const void *ignored, const kmem_cache_t *c)
216 {
217 leaky_grep(addr, c->cache_bufsize);
218
219 /*
220 * free, constructed KMF_LITE buffers keep their first uint64_t in
221 * their buftag's redzone.
222 */
223 if (c->cache_flags & KMF_LITE) {
224 /* LINTED alignment */
225 kmem_buftag_t *btp = KMEM_BUFTAG(c, addr);
226 leaky_grep((uintptr_t)&btp->bt_redzone,
227 sizeof (btp->bt_redzone));
228 }
229
230 return (WALK_NEXT);
231 }
232
233 /*ARGSUSED*/
234 static int
leaky_scan_cache(uintptr_t addr,const kmem_cache_t * c,void * ignored)235 leaky_scan_cache(uintptr_t addr, const kmem_cache_t *c, void *ignored)
236 {
237 if (!leaky_interested(c))
238 return (WALK_NEXT);
239
240 /*
241 * Scan all of the free, constructed buffers, since they may have
242 * pointers to allocated objects.
243 */
244 if (mdb_pwalk("freemem_constructed",
245 (mdb_walk_cb_t)leaky_scan_buffer, (void *)c, addr) == -1) {
246 mdb_warn("can't walk freemem_constructed for cache %p (%s)",
247 addr, c->cache_name);
248 return (WALK_DONE);
249 }
250
251 return (WALK_NEXT);
252 }
253
254 /*ARGSUSED*/
255 static int
leaky_modctl(uintptr_t addr,const struct modctl * m,int * ignored)256 leaky_modctl(uintptr_t addr, const struct modctl *m, int *ignored)
257 {
258 struct module mod;
259 char name[MODMAXNAMELEN];
260
261 if (m->mod_mp == NULL)
262 return (WALK_NEXT);
263
264 if (mdb_vread(&mod, sizeof (mod), (uintptr_t)m->mod_mp) == -1) {
265 mdb_warn("couldn't read modctl %p's module", addr);
266 return (WALK_NEXT);
267 }
268
269 if (mdb_readstr(name, sizeof (name), (uintptr_t)m->mod_modname) == -1)
270 (void) mdb_snprintf(name, sizeof (name), "0x%p", addr);
271
272 leaky_grep((uintptr_t)m->mod_mp, sizeof (struct module));
273 leaky_grep((uintptr_t)mod.data, mod.data_size);
274 leaky_grep((uintptr_t)mod.bss, mod.bss_size);
275
276 return (WALK_NEXT);
277 }
278
279 static int
leaky_thread(uintptr_t addr,const kthread_t * t,unsigned long * pagesize)280 leaky_thread(uintptr_t addr, const kthread_t *t, unsigned long *pagesize)
281 {
282 uintptr_t size, base = (uintptr_t)t->t_stkbase;
283 uintptr_t stk = (uintptr_t)t->t_stk;
284
285 /*
286 * If this thread isn't in memory, we can't look at its stack. This
287 * may result in false positives, so we print a warning.
288 */
289 if (!(t->t_schedflag & TS_LOAD)) {
290 mdb_printf("findleaks: thread %p's stack swapped out; "
291 "false positives possible\n", addr);
292 return (WALK_NEXT);
293 }
294
295 if (t->t_state != TS_FREE)
296 leaky_grep(base, stk - base);
297
298 /*
299 * There is always gunk hanging out between t_stk and the page
300 * boundary. If this thread structure wasn't kmem allocated,
301 * this will include the thread structure itself. If the thread
302 * _is_ kmem allocated, we'll be able to get to it via allthreads.
303 */
304 size = *pagesize - (stk & (*pagesize - 1));
305
306 leaky_grep(stk, size);
307
308 return (WALK_NEXT);
309 }
310
311 /*ARGSUSED*/
312 static int
leaky_kstat(uintptr_t addr,vmem_seg_t * seg,void * ignored)313 leaky_kstat(uintptr_t addr, vmem_seg_t *seg, void *ignored)
314 {
315 leaky_grep(seg->vs_start, seg->vs_end - seg->vs_start);
316
317 return (WALK_NEXT);
318 }
319
320 static void
leaky_kludge(void)321 leaky_kludge(void)
322 {
323 GElf_Sym sym;
324 mdb_ctf_id_t id, rid;
325
326 int max_mem_nodes;
327 uintptr_t *counters;
328 size_t ncounters;
329 ssize_t hwpm_size;
330 int idx;
331
332 /*
333 * Because of DR, the page counters (which live in the kmem64 segment)
334 * can point into kmem_alloc()ed memory. The "page_counters" array
335 * is multi-dimensional, and each entry points to an array of
336 * "hw_page_map_t"s which is "max_mem_nodes" in length.
337 *
338 * To keep this from having too much grotty knowledge of internals,
339 * we use CTF data to get the size of the structure. For simplicity,
340 * we treat the page_counters array as a flat array of pointers, and
341 * use its size to determine how much to scan. Unused entries will
342 * be NULL.
343 */
344 if (mdb_lookup_by_name("page_counters", &sym) == -1) {
345 mdb_warn("unable to lookup page_counters");
346 return;
347 }
348
349 if (mdb_readvar(&max_mem_nodes, "max_mem_nodes") == -1) {
350 mdb_warn("unable to read max_mem_nodes");
351 return;
352 }
353
354 if (mdb_ctf_lookup_by_name("unix`hw_page_map_t", &id) == -1 ||
355 mdb_ctf_type_resolve(id, &rid) == -1 ||
356 (hwpm_size = mdb_ctf_type_size(rid)) < 0) {
357 mdb_warn("unable to lookup unix`hw_page_map_t");
358 return;
359 }
360
361 counters = mdb_alloc(sym.st_size, UM_SLEEP | UM_GC);
362
363 if (mdb_vread(counters, sym.st_size, (uintptr_t)sym.st_value) == -1) {
364 mdb_warn("unable to read page_counters");
365 return;
366 }
367
368 ncounters = sym.st_size / sizeof (counters);
369
370 for (idx = 0; idx < ncounters; idx++) {
371 uintptr_t addr = counters[idx];
372 if (addr != 0)
373 leaky_grep(addr, hwpm_size * max_mem_nodes);
374 }
375 }
376
377 int
leaky_subr_estimate(size_t * estp)378 leaky_subr_estimate(size_t *estp)
379 {
380 uintptr_t panicstr;
381 int state;
382
383 if ((state = mdb_get_state()) == MDB_STATE_RUNNING) {
384 mdb_warn("findleaks: can only be run on a system "
385 "dump or under kmdb; see dumpadm(8)\n");
386 return (DCMD_ERR);
387 }
388
389 if (mdb_readvar(&panicstr, "panicstr") == -1) {
390 mdb_warn("can't read variable 'panicstr'");
391 return (DCMD_ERR);
392 }
393
394 if (state != MDB_STATE_STOPPED && panicstr == 0) {
395 mdb_warn("findleaks: cannot be run on a live dump.\n");
396 return (DCMD_ERR);
397 }
398
399 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_estimate, estp) == -1) {
400 mdb_warn("couldn't walk 'kmem_cache'");
401 return (DCMD_ERR);
402 }
403
404 if (*estp == 0) {
405 mdb_warn("findleaks: no buffers found\n");
406 return (DCMD_ERR);
407 }
408
409 if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_estimate_vmem, estp) == -1) {
410 mdb_warn("couldn't walk 'vmem'");
411 return (DCMD_ERR);
412 }
413
414 return (DCMD_OK);
415 }
416
417 int
leaky_subr_fill(leak_mtab_t ** lmpp)418 leaky_subr_fill(leak_mtab_t **lmpp)
419 {
420 if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_vmem, lmpp) == -1) {
421 mdb_warn("couldn't walk 'vmem'");
422 return (DCMD_ERR);
423 }
424
425 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_cache, lmpp) == -1) {
426 mdb_warn("couldn't walk 'kmem_cache'");
427 return (DCMD_ERR);
428 }
429
430 if (mdb_readvar(&kmem_lite_count, "kmem_lite_count") == -1) {
431 mdb_warn("couldn't read 'kmem_lite_count'");
432 kmem_lite_count = 0;
433 } else if (kmem_lite_count > 16) {
434 mdb_warn("kmem_lite_count nonsensical, ignored\n");
435 kmem_lite_count = 0;
436 }
437
438 return (DCMD_OK);
439 }
440
441 int
leaky_subr_run(void)442 leaky_subr_run(void)
443 {
444 unsigned long ps = PAGESIZE;
445 uintptr_t kstat_arena;
446 uintptr_t dmods;
447
448 leaky_kludge();
449
450 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_scan_cache,
451 NULL) == -1) {
452 mdb_warn("couldn't walk 'kmem_cache'");
453 return (DCMD_ERR);
454 }
455
456 if (mdb_walk("modctl", (mdb_walk_cb_t)leaky_modctl, NULL) == -1) {
457 mdb_warn("couldn't walk 'modctl'");
458 return (DCMD_ERR);
459 }
460
461 /*
462 * If kmdb is loaded, we need to walk it's module list, since kmdb
463 * modctl structures can reference kmem allocations.
464 */
465 if ((mdb_readvar(&dmods, "kdi_dmods") != -1) && (dmods != 0))
466 (void) mdb_pwalk("modctl", (mdb_walk_cb_t)leaky_modctl,
467 NULL, dmods);
468
469 if (mdb_walk("thread", (mdb_walk_cb_t)leaky_thread, &ps) == -1) {
470 mdb_warn("couldn't walk 'thread'");
471 return (DCMD_ERR);
472 }
473
474 if (mdb_walk("deathrow", (mdb_walk_cb_t)leaky_thread, &ps) == -1) {
475 mdb_warn("couldn't walk 'deathrow'");
476 return (DCMD_ERR);
477 }
478
479 if (mdb_readvar(&kstat_arena, "kstat_arena") == -1) {
480 mdb_warn("couldn't read 'kstat_arena'");
481 return (DCMD_ERR);
482 }
483
484 if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)leaky_kstat,
485 NULL, kstat_arena) == -1) {
486 mdb_warn("couldn't walk kstat vmem arena");
487 return (DCMD_ERR);
488 }
489
490 return (DCMD_OK);
491 }
492
493 void
leaky_subr_add_leak(leak_mtab_t * lmp)494 leaky_subr_add_leak(leak_mtab_t *lmp)
495 {
496 uintptr_t addr = LKM_CTLPTR(lmp->lkm_bufctl);
497 size_t depth;
498
499 switch (LKM_CTLTYPE(lmp->lkm_bufctl)) {
500 case LKM_CTL_VMSEG: {
501 vmem_seg_t vs;
502
503 if (mdb_vread(&vs, sizeof (vs), addr) == -1) {
504 mdb_warn("couldn't read leaked vmem_seg at addr %p",
505 addr);
506 return;
507 }
508 depth = MIN(vs.vs_depth, VMEM_STACK_DEPTH);
509
510 leaky_add_leak(TYPE_VMEM, addr, vs.vs_start, vs.vs_timestamp,
511 vs.vs_stack, depth, 0, (vs.vs_end - vs.vs_start));
512 break;
513 }
514 case LKM_CTL_BUFCTL: {
515 kmem_bufctl_audit_t bc;
516
517 if (mdb_vread(&bc, sizeof (bc), addr) == -1) {
518 mdb_warn("couldn't read leaked bufctl at addr %p",
519 addr);
520 return;
521 }
522
523 depth = MIN(bc.bc_depth, KMEM_STACK_DEPTH);
524
525 /*
526 * The top of the stack will be kmem_cache_alloc+offset.
527 * Since the offset in kmem_cache_alloc() isn't interesting
528 * we skip that frame for the purposes of uniquifying stacks.
529 *
530 * We also use the cache pointer as the leaks's cid, to
531 * prevent the coalescing of leaks from different caches.
532 */
533 if (depth > 0)
534 depth--;
535 leaky_add_leak(TYPE_KMEM, addr, (uintptr_t)bc.bc_addr,
536 bc.bc_timestamp, bc.bc_stack + 1, depth,
537 (uintptr_t)bc.bc_cache, 0);
538 break;
539 }
540 case LKM_CTL_CACHE: {
541 kmem_cache_t cache;
542 kmem_buftag_lite_t bt;
543 pc_t caller;
544 int depth = 0;
545
546 /*
547 * For KMF_LITE caches, we can get the allocation PC
548 * out of the buftag structure.
549 */
550 if (mdb_vread(&cache, sizeof (cache), addr) != -1 &&
551 (cache.cache_flags & KMF_LITE) &&
552 kmem_lite_count > 0 &&
553 mdb_vread(&bt, sizeof (bt),
554 /* LINTED alignment */
555 (uintptr_t)KMEM_BUFTAG(&cache, lmp->lkm_base)) != -1) {
556 caller = bt.bt_history[0];
557 depth = 1;
558 }
559 leaky_add_leak(TYPE_CACHE, lmp->lkm_base, lmp->lkm_base, 0,
560 &caller, depth, addr, addr);
561 break;
562 }
563 default:
564 mdb_warn("internal error: invalid leak_bufctl_t\n");
565 break;
566 }
567 }
568
569 static void
leaky_subr_caller(const pc_t * stack,uint_t depth,char * buf,uintptr_t * pcp)570 leaky_subr_caller(const pc_t *stack, uint_t depth, char *buf, uintptr_t *pcp)
571 {
572 int i;
573 GElf_Sym sym;
574 uintptr_t pc = 0;
575
576 buf[0] = 0;
577
578 for (i = 0; i < depth; i++) {
579 pc = stack[i];
580
581 if (mdb_lookup_by_addr(pc,
582 MDB_SYM_FUZZY, buf, MDB_SYM_NAMLEN, &sym) == -1)
583 continue;
584 if (strncmp(buf, "kmem_", 5) == 0)
585 continue;
586 if (strncmp(buf, "vmem_", 5) == 0)
587 continue;
588 *pcp = pc;
589
590 return;
591 }
592
593 /*
594 * We're only here if the entire call chain begins with "kmem_";
595 * this shouldn't happen, but we'll just use the last caller.
596 */
597 *pcp = pc;
598 }
599
600 int
leaky_subr_bufctl_cmp(const leak_bufctl_t * lhs,const leak_bufctl_t * rhs)601 leaky_subr_bufctl_cmp(const leak_bufctl_t *lhs, const leak_bufctl_t *rhs)
602 {
603 char lbuf[MDB_SYM_NAMLEN], rbuf[MDB_SYM_NAMLEN];
604 uintptr_t lcaller, rcaller;
605 int rval;
606
607 leaky_subr_caller(lhs->lkb_stack, lhs->lkb_depth, lbuf, &lcaller);
608 leaky_subr_caller(rhs->lkb_stack, lhs->lkb_depth, rbuf, &rcaller);
609
610 if (rval = strcmp(lbuf, rbuf))
611 return (rval);
612
613 if (lcaller < rcaller)
614 return (-1);
615
616 if (lcaller > rcaller)
617 return (1);
618
619 if (lhs->lkb_data < rhs->lkb_data)
620 return (-1);
621
622 if (lhs->lkb_data > rhs->lkb_data)
623 return (1);
624
625 return (0);
626 }
627
628 /*
629 * Global state variables used by the leaky_subr_dump_* routines. Note that
630 * they are carefully cleared before use.
631 */
632 static int lk_vmem_seen;
633 static int lk_cache_seen;
634 static int lk_kmem_seen;
635 static size_t lk_ttl;
636 static size_t lk_bytes;
637
638 void
leaky_subr_dump_start(int type)639 leaky_subr_dump_start(int type)
640 {
641 switch (type) {
642 case TYPE_VMEM:
643 lk_vmem_seen = 0;
644 break;
645 case TYPE_CACHE:
646 lk_cache_seen = 0;
647 break;
648 case TYPE_KMEM:
649 lk_kmem_seen = 0;
650 break;
651 default:
652 break;
653 }
654
655 lk_ttl = 0;
656 lk_bytes = 0;
657 }
658
659 void
leaky_subr_dump(const leak_bufctl_t * lkb,int verbose)660 leaky_subr_dump(const leak_bufctl_t *lkb, int verbose)
661 {
662 const leak_bufctl_t *cur;
663 kmem_cache_t cache;
664 size_t min, max, size;
665 char sz[30];
666 char c[MDB_SYM_NAMLEN];
667 uintptr_t caller;
668
669 if (verbose) {
670 lk_ttl = 0;
671 lk_bytes = 0;
672 }
673
674 switch (lkb->lkb_type) {
675 case TYPE_VMEM:
676 if (!verbose && !lk_vmem_seen) {
677 lk_vmem_seen = 1;
678 mdb_printf("%-16s %7s %?s %s\n",
679 "BYTES", "LEAKED", "VMEM_SEG", "CALLER");
680 }
681
682 min = max = lkb->lkb_data;
683
684 for (cur = lkb; cur != NULL; cur = cur->lkb_next) {
685 size = cur->lkb_data;
686
687 if (size < min)
688 min = size;
689 if (size > max)
690 max = size;
691
692 lk_ttl++;
693 lk_bytes += size;
694 }
695
696 if (min == max)
697 (void) mdb_snprintf(sz, sizeof (sz), "%ld", min);
698 else
699 (void) mdb_snprintf(sz, sizeof (sz), "%ld-%ld",
700 min, max);
701
702 if (!verbose) {
703 leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth,
704 c, &caller);
705
706 if (caller != 0) {
707 (void) mdb_snprintf(c, sizeof (c),
708 "%a", caller);
709 } else {
710 (void) mdb_snprintf(c, sizeof (c),
711 "%s", "?");
712 }
713 mdb_printf("%-16s %7d %?p %s\n", sz, lkb->lkb_dups + 1,
714 lkb->lkb_addr, c);
715 } else {
716 mdb_arg_t v;
717
718 if (lk_ttl == 1)
719 mdb_printf("kmem_oversize leak: 1 vmem_seg, "
720 "%ld bytes\n", lk_bytes);
721 else
722 mdb_printf("kmem_oversize leak: %d vmem_segs, "
723 "%s bytes each, %ld bytes total\n",
724 lk_ttl, sz, lk_bytes);
725
726 v.a_type = MDB_TYPE_STRING;
727 v.a_un.a_str = "-v";
728
729 if (mdb_call_dcmd("vmem_seg", lkb->lkb_addr,
730 DCMD_ADDRSPEC, 1, &v) == -1) {
731 mdb_warn("'%p::vmem_seg -v' failed",
732 lkb->lkb_addr);
733 }
734 }
735 return;
736
737 case TYPE_CACHE:
738 if (!verbose && !lk_cache_seen) {
739 lk_cache_seen = 1;
740 if (lk_vmem_seen)
741 mdb_printf("\n");
742 mdb_printf("%-?s %7s %?s %s\n",
743 "CACHE", "LEAKED", "BUFFER", "CALLER");
744 }
745
746 if (mdb_vread(&cache, sizeof (cache), lkb->lkb_data) == -1) {
747 /*
748 * This _really_ shouldn't happen; we shouldn't
749 * have been able to get this far if this
750 * cache wasn't readable.
751 */
752 mdb_warn("can't read cache %p for leaked "
753 "buffer %p", lkb->lkb_data, lkb->lkb_addr);
754 return;
755 }
756
757 lk_ttl += lkb->lkb_dups + 1;
758 lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize;
759
760 caller = (lkb->lkb_depth == 0) ? 0 : lkb->lkb_stack[0];
761 if (caller != 0) {
762 (void) mdb_snprintf(c, sizeof (c), "%a", caller);
763 } else {
764 (void) mdb_snprintf(c, sizeof (c),
765 "%s", (verbose) ? "" : "?");
766 }
767
768 if (!verbose) {
769 mdb_printf("%0?p %7d %0?p %s\n", lkb->lkb_cid,
770 lkb->lkb_dups + 1, lkb->lkb_addr, c);
771 } else {
772 if (lk_ttl == 1)
773 mdb_printf("%s leak: 1 buffer, %ld bytes,\n",
774 cache.cache_name, lk_bytes);
775 else
776 mdb_printf("%s leak: %d buffers, "
777 "%ld bytes each, %ld bytes total,\n",
778 cache.cache_name, lk_ttl,
779 cache.cache_bufsize, lk_bytes);
780
781 mdb_printf(" sample addr %p%s%s\n",
782 lkb->lkb_addr, (caller == 0) ? "" : ", caller ", c);
783 }
784 return;
785
786 case TYPE_KMEM:
787 if (!verbose && !lk_kmem_seen) {
788 lk_kmem_seen = 1;
789 if (lk_vmem_seen || lk_cache_seen)
790 mdb_printf("\n");
791 mdb_printf("%-?s %7s %?s %s\n",
792 "CACHE", "LEAKED", "BUFCTL", "CALLER");
793 }
794
795 if (mdb_vread(&cache, sizeof (cache), lkb->lkb_cid) == -1) {
796 /*
797 * This _really_ shouldn't happen; we shouldn't
798 * have been able to get this far if this
799 * cache wasn't readable.
800 */
801 mdb_warn("can't read cache %p for leaked "
802 "bufctl %p", lkb->lkb_cid, lkb->lkb_addr);
803 return;
804 }
805
806 lk_ttl += lkb->lkb_dups + 1;
807 lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize;
808
809 if (!verbose) {
810 leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth,
811 c, &caller);
812
813 if (caller != 0) {
814 (void) mdb_snprintf(c, sizeof (c),
815 "%a", caller);
816 } else {
817 (void) mdb_snprintf(c, sizeof (c),
818 "%s", "?");
819 }
820 mdb_printf("%0?p %7d %0?p %s\n", lkb->lkb_cid,
821 lkb->lkb_dups + 1, lkb->lkb_addr, c);
822 } else {
823 mdb_arg_t v;
824
825 if (lk_ttl == 1)
826 mdb_printf("%s leak: 1 buffer, %ld bytes\n",
827 cache.cache_name, lk_bytes);
828 else
829 mdb_printf("%s leak: %d buffers, "
830 "%ld bytes each, %ld bytes total\n",
831 cache.cache_name, lk_ttl,
832 cache.cache_bufsize, lk_bytes);
833
834 v.a_type = MDB_TYPE_STRING;
835 v.a_un.a_str = "-v";
836
837 if (mdb_call_dcmd("bufctl", lkb->lkb_addr,
838 DCMD_ADDRSPEC, 1, &v) == -1) {
839 mdb_warn("'%p::bufctl -v' failed",
840 lkb->lkb_addr);
841 }
842 }
843 return;
844
845 default:
846 return;
847 }
848 }
849
850 void
leaky_subr_dump_end(int type)851 leaky_subr_dump_end(int type)
852 {
853 int i;
854 int width;
855 const char *leaks;
856
857 switch (type) {
858 case TYPE_VMEM:
859 if (!lk_vmem_seen)
860 return;
861
862 width = 16;
863 leaks = "kmem_oversize leak";
864 break;
865
866 case TYPE_CACHE:
867 if (!lk_cache_seen)
868 return;
869
870 width = sizeof (uintptr_t) * 2;
871 leaks = "buffer";
872 break;
873
874 case TYPE_KMEM:
875 if (!lk_kmem_seen)
876 return;
877
878 width = sizeof (uintptr_t) * 2;
879 leaks = "buffer";
880 break;
881
882 default:
883 return;
884 }
885
886 for (i = 0; i < 72; i++)
887 mdb_printf("-");
888 mdb_printf("\n%*s %7ld %s%s, %ld byte%s\n",
889 width, "Total", lk_ttl, leaks, (lk_ttl == 1) ? "" : "s",
890 lk_bytes, (lk_bytes == 1) ? "" : "s");
891 }
892
893 int
leaky_subr_invoke_callback(const leak_bufctl_t * lkb,mdb_walk_cb_t cb,void * cbdata)894 leaky_subr_invoke_callback(const leak_bufctl_t *lkb, mdb_walk_cb_t cb,
895 void *cbdata)
896 {
897 kmem_bufctl_audit_t bc;
898 vmem_seg_t vs;
899
900 switch (lkb->lkb_type) {
901 case TYPE_VMEM:
902 if (mdb_vread(&vs, sizeof (vs), lkb->lkb_addr) == -1) {
903 mdb_warn("unable to read vmem_seg at %p",
904 lkb->lkb_addr);
905 return (WALK_NEXT);
906 }
907 return (cb(lkb->lkb_addr, &vs, cbdata));
908
909 case TYPE_CACHE:
910 return (cb(lkb->lkb_addr, NULL, cbdata));
911
912 case TYPE_KMEM:
913 if (mdb_vread(&bc, sizeof (bc), lkb->lkb_addr) == -1) {
914 mdb_warn("unable to read bufctl at %p",
915 lkb->lkb_addr);
916 return (WALK_NEXT);
917 }
918 return (cb(lkb->lkb_addr, &bc, cbdata));
919 default:
920 return (WALK_NEXT);
921 }
922 }
923