1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <mdb/mdb_param.h> 28 #include <mdb/mdb_modapi.h> 29 30 #include <sys/fs/ufs_inode.h> 31 #include <sys/kmem_impl.h> 32 #include <sys/vmem_impl.h> 33 #include <sys/modctl.h> 34 #include <sys/kobj.h> 35 #include <sys/kobj_impl.h> 36 #include <vm/seg_vn.h> 37 #include <vm/as.h> 38 #include <vm/seg_map.h> 39 #include <mdb/mdb_ctf.h> 40 41 #include "kmem.h" 42 #include "leaky_impl.h" 43 44 /* 45 * This file defines the genunix target for leaky.c. There are three types 46 * of buffers in the kernel's heap: TYPE_VMEM, for kmem_oversize allocations, 47 * TYPE_KMEM, for kmem_cache_alloc() allocations bufctl_audit_ts, and 48 * TYPE_CACHE, for kmem_cache_alloc() allocation without bufctl_audit_ts. 49 * 50 * See "leaky_impl.h" for the target interface definition. 51 */ 52 53 #define TYPE_VMEM 0 /* lkb_data is the vmem_seg's size */ 54 #define TYPE_CACHE 1 /* lkb_cid is the bufctl's cache */ 55 #define TYPE_KMEM 2 /* lkb_cid is the bufctl's cache */ 56 57 #define LKM_CTL_BUFCTL 0 /* normal allocation, PTR is bufctl */ 58 #define LKM_CTL_VMSEG 1 /* oversize allocation, PTR is vmem_seg_t */ 59 #define LKM_CTL_CACHE 2 /* normal alloc, non-debug, PTR is cache */ 60 #define LKM_CTL_MASK 3L 61 62 #define LKM_CTL(ptr, type) (LKM_CTLPTR(ptr) | (type)) 63 #define LKM_CTLPTR(ctl) ((uintptr_t)(ctl) & ~(LKM_CTL_MASK)) 64 #define LKM_CTLTYPE(ctl) ((uintptr_t)(ctl) & (LKM_CTL_MASK)) 65 66 static int kmem_lite_count = 0; /* cache of the kernel's version */ 67 68 /*ARGSUSED*/ 69 static int 70 leaky_mtab(uintptr_t addr, const kmem_bufctl_audit_t *bcp, leak_mtab_t **lmp) 71 { 72 leak_mtab_t *lm = (*lmp)++; 73 74 lm->lkm_base = (uintptr_t)bcp->bc_addr; 75 lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_BUFCTL); 76 77 return (WALK_NEXT); 78 } 79 80 /*ARGSUSED*/ 81 static int 82 leaky_mtab_addr(uintptr_t addr, void *ignored, leak_mtab_t **lmp) 83 { 84 leak_mtab_t *lm = (*lmp)++; 85 86 lm->lkm_base = addr; 87 88 return (WALK_NEXT); 89 } 90 91 static int 92 leaky_seg(uintptr_t addr, const vmem_seg_t *seg, leak_mtab_t **lmp) 93 { 94 leak_mtab_t *lm = (*lmp)++; 95 96 lm->lkm_base = seg->vs_start; 97 lm->lkm_limit = seg->vs_end; 98 lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_VMSEG); 99 100 return (WALK_NEXT); 101 } 102 103 static int 104 leaky_vmem_interested(const vmem_t *vmem) 105 { 106 if (strcmp(vmem->vm_name, "kmem_oversize") != 0 && 107 strcmp(vmem->vm_name, "static_alloc") != 0) 108 return (0); 109 return (1); 110 } 111 112 static int 113 leaky_vmem(uintptr_t addr, const vmem_t *vmem, leak_mtab_t **lmp) 114 { 115 if (!leaky_vmem_interested(vmem)) 116 return (WALK_NEXT); 117 118 if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)leaky_seg, lmp, addr) == -1) 119 mdb_warn("can't walk vmem_alloc for kmem_oversize (%p)", addr); 120 121 return (WALK_NEXT); 122 } 123 124 /*ARGSUSED*/ 125 static int 126 leaky_estimate_vmem(uintptr_t addr, const vmem_t *vmem, size_t *est) 127 { 128 if (!leaky_vmem_interested(vmem)) 129 return (WALK_NEXT); 130 131 *est += (int)(vmem->vm_kstat.vk_alloc.value.ui64 - 132 vmem->vm_kstat.vk_free.value.ui64); 133 134 return (WALK_NEXT); 135 } 136 137 static int 138 leaky_interested(const kmem_cache_t *c) 139 { 140 vmem_t vmem; 141 142 /* 143 * ignore HAT-related caches that happen to derive from kmem_default 144 */ 145 if (strcmp(c->cache_name, "sfmmu1_cache") == 0 || 146 strcmp(c->cache_name, "sf_hment_cache") == 0 || 147 strcmp(c->cache_name, "pa_hment_cache") == 0) 148 return (0); 149 150 if (mdb_vread(&vmem, sizeof (vmem), (uintptr_t)c->cache_arena) == -1) { 151 mdb_warn("cannot read arena %p for cache '%s'", 152 (uintptr_t)c->cache_arena, c->cache_name); 153 return (0); 154 } 155 156 /* 157 * If this cache isn't allocating from the kmem_default, 158 * kmem_firewall, or static vmem arenas, we're not interested. 159 */ 160 if (strcmp(vmem.vm_name, "kmem_default") != 0 && 161 strcmp(vmem.vm_name, "kmem_firewall") != 0 && 162 strcmp(vmem.vm_name, "static") != 0) 163 return (0); 164 165 return (1); 166 } 167 168 static int 169 leaky_estimate(uintptr_t addr, const kmem_cache_t *c, size_t *est) 170 { 171 if (!leaky_interested(c)) 172 return (WALK_NEXT); 173 174 *est += kmem_estimate_allocated(addr, c); 175 176 return (WALK_NEXT); 177 } 178 179 /*ARGSUSED*/ 180 static int 181 leaky_cache(uintptr_t addr, const kmem_cache_t *c, leak_mtab_t **lmp) 182 { 183 leak_mtab_t *lm = *lmp; 184 mdb_walk_cb_t cb; 185 const char *walk; 186 int audit = (c->cache_flags & KMF_AUDIT); 187 188 if (!leaky_interested(c)) 189 return (WALK_NEXT); 190 191 if (audit) { 192 walk = "bufctl"; 193 cb = (mdb_walk_cb_t)leaky_mtab; 194 } else { 195 walk = "kmem"; 196 cb = (mdb_walk_cb_t)leaky_mtab_addr; 197 } 198 if (mdb_pwalk(walk, cb, lmp, addr) == -1) { 199 mdb_warn("can't walk kmem for cache %p (%s)", addr, 200 c->cache_name); 201 return (WALK_DONE); 202 } 203 204 for (; lm < *lmp; lm++) { 205 lm->lkm_limit = lm->lkm_base + c->cache_bufsize; 206 if (!audit) 207 lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_CACHE); 208 } 209 210 return (WALK_NEXT); 211 } 212 213 /*ARGSUSED*/ 214 static int 215 leaky_scan_buffer(uintptr_t addr, const void *ignored, const kmem_cache_t *c) 216 { 217 leaky_grep(addr, c->cache_bufsize); 218 219 /* 220 * free, constructed KMF_LITE buffers keep their first uint64_t in 221 * their buftag's redzone. 222 */ 223 if (c->cache_flags & KMF_LITE) { 224 /* LINTED alignment */ 225 kmem_buftag_t *btp = KMEM_BUFTAG(c, addr); 226 leaky_grep((uintptr_t)&btp->bt_redzone, 227 sizeof (btp->bt_redzone)); 228 } 229 230 return (WALK_NEXT); 231 } 232 233 /*ARGSUSED*/ 234 static int 235 leaky_scan_cache(uintptr_t addr, const kmem_cache_t *c, void *ignored) 236 { 237 if (!leaky_interested(c)) 238 return (WALK_NEXT); 239 240 /* 241 * Scan all of the free, constructed buffers, since they may have 242 * pointers to allocated objects. 243 */ 244 if (mdb_pwalk("freemem_constructed", 245 (mdb_walk_cb_t)leaky_scan_buffer, (void *)c, addr) == -1) { 246 mdb_warn("can't walk freemem_constructed for cache %p (%s)", 247 addr, c->cache_name); 248 return (WALK_DONE); 249 } 250 251 return (WALK_NEXT); 252 } 253 254 /*ARGSUSED*/ 255 static int 256 leaky_modctl(uintptr_t addr, const struct modctl *m, int *ignored) 257 { 258 struct module mod; 259 char name[MODMAXNAMELEN]; 260 261 if (m->mod_mp == NULL) 262 return (WALK_NEXT); 263 264 if (mdb_vread(&mod, sizeof (mod), (uintptr_t)m->mod_mp) == -1) { 265 mdb_warn("couldn't read modctl %p's module", addr); 266 return (WALK_NEXT); 267 } 268 269 if (mdb_readstr(name, sizeof (name), (uintptr_t)m->mod_modname) == -1) 270 (void) mdb_snprintf(name, sizeof (name), "0x%p", addr); 271 272 leaky_grep((uintptr_t)m->mod_mp, sizeof (struct module)); 273 leaky_grep((uintptr_t)mod.data, mod.data_size); 274 leaky_grep((uintptr_t)mod.bss, mod.bss_size); 275 276 return (WALK_NEXT); 277 } 278 279 static int 280 leaky_thread(uintptr_t addr, const kthread_t *t, unsigned long *pagesize) 281 { 282 uintptr_t size, base = (uintptr_t)t->t_stkbase; 283 uintptr_t stk = (uintptr_t)t->t_stk; 284 285 /* 286 * If this thread isn't in memory, we can't look at its stack. This 287 * may result in false positives, so we print a warning. 288 */ 289 if (!(t->t_schedflag & TS_LOAD)) { 290 mdb_printf("findleaks: thread %p's stack swapped out; " 291 "false positives possible\n", addr); 292 return (WALK_NEXT); 293 } 294 295 if (t->t_state != TS_FREE) 296 leaky_grep(base, stk - base); 297 298 /* 299 * There is always gunk hanging out between t_stk and the page 300 * boundary. If this thread structure wasn't kmem allocated, 301 * this will include the thread structure itself. If the thread 302 * _is_ kmem allocated, we'll be able to get to it via allthreads. 303 */ 304 size = *pagesize - (stk & (*pagesize - 1)); 305 306 leaky_grep(stk, size); 307 308 return (WALK_NEXT); 309 } 310 311 /*ARGSUSED*/ 312 static int 313 leaky_kstat(uintptr_t addr, vmem_seg_t *seg, void *ignored) 314 { 315 leaky_grep(seg->vs_start, seg->vs_end - seg->vs_start); 316 317 return (WALK_NEXT); 318 } 319 320 static void 321 leaky_kludge(void) 322 { 323 GElf_Sym sym; 324 mdb_ctf_id_t id, rid; 325 326 int max_mem_nodes; 327 uintptr_t *counters; 328 size_t ncounters; 329 ssize_t hwpm_size; 330 int idx; 331 332 /* 333 * Because of DR, the page counters (which live in the kmem64 segment) 334 * can point into kmem_alloc()ed memory. The "page_counters" array 335 * is multi-dimensional, and each entry points to an array of 336 * "hw_page_map_t"s which is "max_mem_nodes" in length. 337 * 338 * To keep this from having too much grotty knowledge of internals, 339 * we use CTF data to get the size of the structure. For simplicity, 340 * we treat the page_counters array as a flat array of pointers, and 341 * use its size to determine how much to scan. Unused entries will 342 * be NULL. 343 */ 344 if (mdb_lookup_by_name("page_counters", &sym) == -1) { 345 mdb_warn("unable to lookup page_counters"); 346 return; 347 } 348 349 if (mdb_readvar(&max_mem_nodes, "max_mem_nodes") == -1) { 350 mdb_warn("unable to read max_mem_nodes"); 351 return; 352 } 353 354 if (mdb_ctf_lookup_by_name("unix`hw_page_map_t", &id) == -1 || 355 mdb_ctf_type_resolve(id, &rid) == -1 || 356 (hwpm_size = mdb_ctf_type_size(rid)) < 0) { 357 mdb_warn("unable to lookup unix`hw_page_map_t"); 358 return; 359 } 360 361 counters = mdb_alloc(sym.st_size, UM_SLEEP | UM_GC); 362 363 if (mdb_vread(counters, sym.st_size, (uintptr_t)sym.st_value) == -1) { 364 mdb_warn("unable to read page_counters"); 365 return; 366 } 367 368 ncounters = sym.st_size / sizeof (counters); 369 370 for (idx = 0; idx < ncounters; idx++) { 371 uintptr_t addr = counters[idx]; 372 if (addr != 0) 373 leaky_grep(addr, hwpm_size * max_mem_nodes); 374 } 375 } 376 377 int 378 leaky_subr_estimate(size_t *estp) 379 { 380 uintptr_t panicstr; 381 int state; 382 383 if ((state = mdb_get_state()) == MDB_STATE_RUNNING) { 384 mdb_warn("findleaks: can only be run on a system " 385 "dump or under kmdb; see dumpadm(8)\n"); 386 return (DCMD_ERR); 387 } 388 389 if (mdb_readvar(&panicstr, "panicstr") == -1) { 390 mdb_warn("can't read variable 'panicstr'"); 391 return (DCMD_ERR); 392 } 393 394 if (state != MDB_STATE_STOPPED && panicstr == 0) { 395 mdb_warn("findleaks: cannot be run on a live dump.\n"); 396 return (DCMD_ERR); 397 } 398 399 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_estimate, estp) == -1) { 400 mdb_warn("couldn't walk 'kmem_cache'"); 401 return (DCMD_ERR); 402 } 403 404 if (*estp == 0) { 405 mdb_warn("findleaks: no buffers found\n"); 406 return (DCMD_ERR); 407 } 408 409 if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_estimate_vmem, estp) == -1) { 410 mdb_warn("couldn't walk 'vmem'"); 411 return (DCMD_ERR); 412 } 413 414 return (DCMD_OK); 415 } 416 417 int 418 leaky_subr_fill(leak_mtab_t **lmpp) 419 { 420 if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_vmem, lmpp) == -1) { 421 mdb_warn("couldn't walk 'vmem'"); 422 return (DCMD_ERR); 423 } 424 425 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_cache, lmpp) == -1) { 426 mdb_warn("couldn't walk 'kmem_cache'"); 427 return (DCMD_ERR); 428 } 429 430 if (mdb_readvar(&kmem_lite_count, "kmem_lite_count") == -1) { 431 mdb_warn("couldn't read 'kmem_lite_count'"); 432 kmem_lite_count = 0; 433 } else if (kmem_lite_count > 16) { 434 mdb_warn("kmem_lite_count nonsensical, ignored\n"); 435 kmem_lite_count = 0; 436 } 437 438 return (DCMD_OK); 439 } 440 441 int 442 leaky_subr_run(void) 443 { 444 unsigned long ps = PAGESIZE; 445 uintptr_t kstat_arena; 446 uintptr_t dmods; 447 448 leaky_kludge(); 449 450 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_scan_cache, 451 NULL) == -1) { 452 mdb_warn("couldn't walk 'kmem_cache'"); 453 return (DCMD_ERR); 454 } 455 456 if (mdb_walk("modctl", (mdb_walk_cb_t)leaky_modctl, NULL) == -1) { 457 mdb_warn("couldn't walk 'modctl'"); 458 return (DCMD_ERR); 459 } 460 461 /* 462 * If kmdb is loaded, we need to walk it's module list, since kmdb 463 * modctl structures can reference kmem allocations. 464 */ 465 if ((mdb_readvar(&dmods, "kdi_dmods") != -1) && (dmods != 0)) 466 (void) mdb_pwalk("modctl", (mdb_walk_cb_t)leaky_modctl, 467 NULL, dmods); 468 469 if (mdb_walk("thread", (mdb_walk_cb_t)leaky_thread, &ps) == -1) { 470 mdb_warn("couldn't walk 'thread'"); 471 return (DCMD_ERR); 472 } 473 474 if (mdb_walk("deathrow", (mdb_walk_cb_t)leaky_thread, &ps) == -1) { 475 mdb_warn("couldn't walk 'deathrow'"); 476 return (DCMD_ERR); 477 } 478 479 if (mdb_readvar(&kstat_arena, "kstat_arena") == -1) { 480 mdb_warn("couldn't read 'kstat_arena'"); 481 return (DCMD_ERR); 482 } 483 484 if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)leaky_kstat, 485 NULL, kstat_arena) == -1) { 486 mdb_warn("couldn't walk kstat vmem arena"); 487 return (DCMD_ERR); 488 } 489 490 return (DCMD_OK); 491 } 492 493 void 494 leaky_subr_add_leak(leak_mtab_t *lmp) 495 { 496 uintptr_t addr = LKM_CTLPTR(lmp->lkm_bufctl); 497 size_t depth; 498 499 switch (LKM_CTLTYPE(lmp->lkm_bufctl)) { 500 case LKM_CTL_VMSEG: { 501 vmem_seg_t vs; 502 503 if (mdb_vread(&vs, sizeof (vs), addr) == -1) { 504 mdb_warn("couldn't read leaked vmem_seg at addr %p", 505 addr); 506 return; 507 } 508 depth = MIN(vs.vs_depth, VMEM_STACK_DEPTH); 509 510 leaky_add_leak(TYPE_VMEM, addr, vs.vs_start, vs.vs_timestamp, 511 vs.vs_stack, depth, 0, (vs.vs_end - vs.vs_start)); 512 break; 513 } 514 case LKM_CTL_BUFCTL: { 515 kmem_bufctl_audit_t bc; 516 517 if (mdb_vread(&bc, sizeof (bc), addr) == -1) { 518 mdb_warn("couldn't read leaked bufctl at addr %p", 519 addr); 520 return; 521 } 522 523 depth = MIN(bc.bc_depth, KMEM_STACK_DEPTH); 524 525 /* 526 * The top of the stack will be kmem_cache_alloc+offset. 527 * Since the offset in kmem_cache_alloc() isn't interesting 528 * we skip that frame for the purposes of uniquifying stacks. 529 * 530 * We also use the cache pointer as the leaks's cid, to 531 * prevent the coalescing of leaks from different caches. 532 */ 533 if (depth > 0) 534 depth--; 535 leaky_add_leak(TYPE_KMEM, addr, (uintptr_t)bc.bc_addr, 536 bc.bc_timestamp, bc.bc_stack + 1, depth, 537 (uintptr_t)bc.bc_cache, 0); 538 break; 539 } 540 case LKM_CTL_CACHE: { 541 kmem_cache_t cache; 542 kmem_buftag_lite_t bt; 543 pc_t caller; 544 int depth = 0; 545 546 /* 547 * For KMF_LITE caches, we can get the allocation PC 548 * out of the buftag structure. 549 */ 550 if (mdb_vread(&cache, sizeof (cache), addr) != -1 && 551 (cache.cache_flags & KMF_LITE) && 552 kmem_lite_count > 0 && 553 mdb_vread(&bt, sizeof (bt), 554 /* LINTED alignment */ 555 (uintptr_t)KMEM_BUFTAG(&cache, lmp->lkm_base)) != -1) { 556 caller = bt.bt_history[0]; 557 depth = 1; 558 } 559 leaky_add_leak(TYPE_CACHE, lmp->lkm_base, lmp->lkm_base, 0, 560 &caller, depth, addr, addr); 561 break; 562 } 563 default: 564 mdb_warn("internal error: invalid leak_bufctl_t\n"); 565 break; 566 } 567 } 568 569 static void 570 leaky_subr_caller(const pc_t *stack, uint_t depth, char *buf, uintptr_t *pcp) 571 { 572 int i; 573 GElf_Sym sym; 574 uintptr_t pc = 0; 575 576 buf[0] = 0; 577 578 for (i = 0; i < depth; i++) { 579 pc = stack[i]; 580 581 if (mdb_lookup_by_addr(pc, 582 MDB_SYM_FUZZY, buf, MDB_SYM_NAMLEN, &sym) == -1) 583 continue; 584 if (strncmp(buf, "kmem_", 5) == 0) 585 continue; 586 if (strncmp(buf, "vmem_", 5) == 0) 587 continue; 588 *pcp = pc; 589 590 return; 591 } 592 593 /* 594 * We're only here if the entire call chain begins with "kmem_"; 595 * this shouldn't happen, but we'll just use the last caller. 596 */ 597 *pcp = pc; 598 } 599 600 int 601 leaky_subr_bufctl_cmp(const leak_bufctl_t *lhs, const leak_bufctl_t *rhs) 602 { 603 char lbuf[MDB_SYM_NAMLEN], rbuf[MDB_SYM_NAMLEN]; 604 uintptr_t lcaller, rcaller; 605 int rval; 606 607 leaky_subr_caller(lhs->lkb_stack, lhs->lkb_depth, lbuf, &lcaller); 608 leaky_subr_caller(rhs->lkb_stack, lhs->lkb_depth, rbuf, &rcaller); 609 610 if (rval = strcmp(lbuf, rbuf)) 611 return (rval); 612 613 if (lcaller < rcaller) 614 return (-1); 615 616 if (lcaller > rcaller) 617 return (1); 618 619 if (lhs->lkb_data < rhs->lkb_data) 620 return (-1); 621 622 if (lhs->lkb_data > rhs->lkb_data) 623 return (1); 624 625 return (0); 626 } 627 628 /* 629 * Global state variables used by the leaky_subr_dump_* routines. Note that 630 * they are carefully cleared before use. 631 */ 632 static int lk_vmem_seen; 633 static int lk_cache_seen; 634 static int lk_kmem_seen; 635 static size_t lk_ttl; 636 static size_t lk_bytes; 637 638 void 639 leaky_subr_dump_start(int type) 640 { 641 switch (type) { 642 case TYPE_VMEM: 643 lk_vmem_seen = 0; 644 break; 645 case TYPE_CACHE: 646 lk_cache_seen = 0; 647 break; 648 case TYPE_KMEM: 649 lk_kmem_seen = 0; 650 break; 651 default: 652 break; 653 } 654 655 lk_ttl = 0; 656 lk_bytes = 0; 657 } 658 659 void 660 leaky_subr_dump(const leak_bufctl_t *lkb, int verbose) 661 { 662 const leak_bufctl_t *cur; 663 kmem_cache_t cache; 664 size_t min, max, size; 665 char sz[30]; 666 char c[MDB_SYM_NAMLEN]; 667 uintptr_t caller; 668 669 if (verbose) { 670 lk_ttl = 0; 671 lk_bytes = 0; 672 } 673 674 switch (lkb->lkb_type) { 675 case TYPE_VMEM: 676 if (!verbose && !lk_vmem_seen) { 677 lk_vmem_seen = 1; 678 mdb_printf("%-16s %7s %?s %s\n", 679 "BYTES", "LEAKED", "VMEM_SEG", "CALLER"); 680 } 681 682 min = max = lkb->lkb_data; 683 684 for (cur = lkb; cur != NULL; cur = cur->lkb_next) { 685 size = cur->lkb_data; 686 687 if (size < min) 688 min = size; 689 if (size > max) 690 max = size; 691 692 lk_ttl++; 693 lk_bytes += size; 694 } 695 696 if (min == max) 697 (void) mdb_snprintf(sz, sizeof (sz), "%ld", min); 698 else 699 (void) mdb_snprintf(sz, sizeof (sz), "%ld-%ld", 700 min, max); 701 702 if (!verbose) { 703 leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth, 704 c, &caller); 705 706 if (caller != 0) { 707 (void) mdb_snprintf(c, sizeof (c), 708 "%a", caller); 709 } else { 710 (void) mdb_snprintf(c, sizeof (c), 711 "%s", "?"); 712 } 713 mdb_printf("%-16s %7d %?p %s\n", sz, lkb->lkb_dups + 1, 714 lkb->lkb_addr, c); 715 } else { 716 mdb_arg_t v; 717 718 if (lk_ttl == 1) 719 mdb_printf("kmem_oversize leak: 1 vmem_seg, " 720 "%ld bytes\n", lk_bytes); 721 else 722 mdb_printf("kmem_oversize leak: %d vmem_segs, " 723 "%s bytes each, %ld bytes total\n", 724 lk_ttl, sz, lk_bytes); 725 726 v.a_type = MDB_TYPE_STRING; 727 v.a_un.a_str = "-v"; 728 729 if (mdb_call_dcmd("vmem_seg", lkb->lkb_addr, 730 DCMD_ADDRSPEC, 1, &v) == -1) { 731 mdb_warn("'%p::vmem_seg -v' failed", 732 lkb->lkb_addr); 733 } 734 } 735 return; 736 737 case TYPE_CACHE: 738 if (!verbose && !lk_cache_seen) { 739 lk_cache_seen = 1; 740 if (lk_vmem_seen) 741 mdb_printf("\n"); 742 mdb_printf("%-?s %7s %?s %s\n", 743 "CACHE", "LEAKED", "BUFFER", "CALLER"); 744 } 745 746 if (mdb_vread(&cache, sizeof (cache), lkb->lkb_data) == -1) { 747 /* 748 * This _really_ shouldn't happen; we shouldn't 749 * have been able to get this far if this 750 * cache wasn't readable. 751 */ 752 mdb_warn("can't read cache %p for leaked " 753 "buffer %p", lkb->lkb_data, lkb->lkb_addr); 754 return; 755 } 756 757 lk_ttl += lkb->lkb_dups + 1; 758 lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize; 759 760 caller = (lkb->lkb_depth == 0) ? 0 : lkb->lkb_stack[0]; 761 if (caller != 0) { 762 (void) mdb_snprintf(c, sizeof (c), "%a", caller); 763 } else { 764 (void) mdb_snprintf(c, sizeof (c), 765 "%s", (verbose) ? "" : "?"); 766 } 767 768 if (!verbose) { 769 mdb_printf("%0?p %7d %0?p %s\n", lkb->lkb_cid, 770 lkb->lkb_dups + 1, lkb->lkb_addr, c); 771 } else { 772 if (lk_ttl == 1) 773 mdb_printf("%s leak: 1 buffer, %ld bytes,\n", 774 cache.cache_name, lk_bytes); 775 else 776 mdb_printf("%s leak: %d buffers, " 777 "%ld bytes each, %ld bytes total,\n", 778 cache.cache_name, lk_ttl, 779 cache.cache_bufsize, lk_bytes); 780 781 mdb_printf(" sample addr %p%s%s\n", 782 lkb->lkb_addr, (caller == 0) ? "" : ", caller ", c); 783 } 784 return; 785 786 case TYPE_KMEM: 787 if (!verbose && !lk_kmem_seen) { 788 lk_kmem_seen = 1; 789 if (lk_vmem_seen || lk_cache_seen) 790 mdb_printf("\n"); 791 mdb_printf("%-?s %7s %?s %s\n", 792 "CACHE", "LEAKED", "BUFCTL", "CALLER"); 793 } 794 795 if (mdb_vread(&cache, sizeof (cache), lkb->lkb_cid) == -1) { 796 /* 797 * This _really_ shouldn't happen; we shouldn't 798 * have been able to get this far if this 799 * cache wasn't readable. 800 */ 801 mdb_warn("can't read cache %p for leaked " 802 "bufctl %p", lkb->lkb_cid, lkb->lkb_addr); 803 return; 804 } 805 806 lk_ttl += lkb->lkb_dups + 1; 807 lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize; 808 809 if (!verbose) { 810 leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth, 811 c, &caller); 812 813 if (caller != 0) { 814 (void) mdb_snprintf(c, sizeof (c), 815 "%a", caller); 816 } else { 817 (void) mdb_snprintf(c, sizeof (c), 818 "%s", "?"); 819 } 820 mdb_printf("%0?p %7d %0?p %s\n", lkb->lkb_cid, 821 lkb->lkb_dups + 1, lkb->lkb_addr, c); 822 } else { 823 mdb_arg_t v; 824 825 if (lk_ttl == 1) 826 mdb_printf("%s leak: 1 buffer, %ld bytes\n", 827 cache.cache_name, lk_bytes); 828 else 829 mdb_printf("%s leak: %d buffers, " 830 "%ld bytes each, %ld bytes total\n", 831 cache.cache_name, lk_ttl, 832 cache.cache_bufsize, lk_bytes); 833 834 v.a_type = MDB_TYPE_STRING; 835 v.a_un.a_str = "-v"; 836 837 if (mdb_call_dcmd("bufctl", lkb->lkb_addr, 838 DCMD_ADDRSPEC, 1, &v) == -1) { 839 mdb_warn("'%p::bufctl -v' failed", 840 lkb->lkb_addr); 841 } 842 } 843 return; 844 845 default: 846 return; 847 } 848 } 849 850 void 851 leaky_subr_dump_end(int type) 852 { 853 int i; 854 int width; 855 const char *leaks; 856 857 switch (type) { 858 case TYPE_VMEM: 859 if (!lk_vmem_seen) 860 return; 861 862 width = 16; 863 leaks = "kmem_oversize leak"; 864 break; 865 866 case TYPE_CACHE: 867 if (!lk_cache_seen) 868 return; 869 870 width = sizeof (uintptr_t) * 2; 871 leaks = "buffer"; 872 break; 873 874 case TYPE_KMEM: 875 if (!lk_kmem_seen) 876 return; 877 878 width = sizeof (uintptr_t) * 2; 879 leaks = "buffer"; 880 break; 881 882 default: 883 return; 884 } 885 886 for (i = 0; i < 72; i++) 887 mdb_printf("-"); 888 mdb_printf("\n%*s %7ld %s%s, %ld byte%s\n", 889 width, "Total", lk_ttl, leaks, (lk_ttl == 1) ? "" : "s", 890 lk_bytes, (lk_bytes == 1) ? "" : "s"); 891 } 892 893 int 894 leaky_subr_invoke_callback(const leak_bufctl_t *lkb, mdb_walk_cb_t cb, 895 void *cbdata) 896 { 897 kmem_bufctl_audit_t bc; 898 vmem_seg_t vs; 899 900 switch (lkb->lkb_type) { 901 case TYPE_VMEM: 902 if (mdb_vread(&vs, sizeof (vs), lkb->lkb_addr) == -1) { 903 mdb_warn("unable to read vmem_seg at %p", 904 lkb->lkb_addr); 905 return (WALK_NEXT); 906 } 907 return (cb(lkb->lkb_addr, &vs, cbdata)); 908 909 case TYPE_CACHE: 910 return (cb(lkb->lkb_addr, NULL, cbdata)); 911 912 case TYPE_KMEM: 913 if (mdb_vread(&bc, sizeof (bc), lkb->lkb_addr) == -1) { 914 mdb_warn("unable to read bufctl at %p", 915 lkb->lkb_addr); 916 return (WALK_NEXT); 917 } 918 return (cb(lkb->lkb_addr, &bc, cbdata)); 919 default: 920 return (WALK_NEXT); 921 } 922 } 923