1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <mdb/mdb_param.h> 30 #include <mdb/mdb_modapi.h> 31 32 #include <sys/fs/ufs_inode.h> 33 #include <sys/kmem_impl.h> 34 #include <sys/vmem_impl.h> 35 #include <sys/modctl.h> 36 #include <sys/kobj.h> 37 #include <sys/kobj_impl.h> 38 #include <vm/seg_vn.h> 39 #include <vm/as.h> 40 #include <vm/seg_map.h> 41 #include <mdb/mdb_ctf.h> 42 43 #include "kmem.h" 44 #include "leaky_impl.h" 45 46 /* 47 * This file defines the genunix target for leaky.c. There are three types 48 * of buffers in the kernel's heap: TYPE_VMEM, for kmem_oversize allocations, 49 * TYPE_KMEM, for kmem_cache_alloc() allocations bufctl_audit_ts, and 50 * TYPE_CACHE, for kmem_cache_alloc() allocation without bufctl_audit_ts. 51 * 52 * See "leaky_impl.h" for the target interface definition. 53 */ 54 55 #define TYPE_VMEM 0 /* lkb_data is the vmem_seg's size */ 56 #define TYPE_CACHE 1 /* lkb_cid is the bufctl's cache */ 57 #define TYPE_KMEM 2 /* lkb_cid is the bufctl's cache */ 58 59 #define LKM_CTL_BUFCTL 0 /* normal allocation, PTR is bufctl */ 60 #define LKM_CTL_VMSEG 1 /* oversize allocation, PTR is vmem_seg_t */ 61 #define LKM_CTL_CACHE 2 /* normal alloc, non-debug, PTR is cache */ 62 #define LKM_CTL_MASK 3L 63 64 #define LKM_CTL(ptr, type) (LKM_CTLPTR(ptr) | (type)) 65 #define LKM_CTLPTR(ctl) ((uintptr_t)(ctl) & ~(LKM_CTL_MASK)) 66 #define LKM_CTLTYPE(ctl) ((uintptr_t)(ctl) & (LKM_CTL_MASK)) 67 68 static int kmem_lite_count = 0; /* cache of the kernel's version */ 69 70 /*ARGSUSED*/ 71 static int 72 leaky_mtab(uintptr_t addr, const kmem_bufctl_audit_t *bcp, leak_mtab_t **lmp) 73 { 74 leak_mtab_t *lm = (*lmp)++; 75 76 lm->lkm_base = (uintptr_t)bcp->bc_addr; 77 lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_BUFCTL); 78 79 return (WALK_NEXT); 80 } 81 82 /*ARGSUSED*/ 83 static int 84 leaky_mtab_addr(uintptr_t addr, void *ignored, leak_mtab_t **lmp) 85 { 86 leak_mtab_t *lm = (*lmp)++; 87 88 lm->lkm_base = addr; 89 90 return (WALK_NEXT); 91 } 92 93 static int 94 leaky_seg(uintptr_t addr, const vmem_seg_t *seg, leak_mtab_t **lmp) 95 { 96 leak_mtab_t *lm = (*lmp)++; 97 98 lm->lkm_base = seg->vs_start; 99 lm->lkm_limit = seg->vs_end; 100 lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_VMSEG); 101 102 return (WALK_NEXT); 103 } 104 105 static int 106 leaky_vmem_interested(const vmem_t *vmem) 107 { 108 if (strcmp(vmem->vm_name, "kmem_oversize") != 0 && 109 strcmp(vmem->vm_name, "static_alloc") != 0) 110 return (0); 111 return (1); 112 } 113 114 static int 115 leaky_vmem(uintptr_t addr, const vmem_t *vmem, leak_mtab_t **lmp) 116 { 117 if (!leaky_vmem_interested(vmem)) 118 return (WALK_NEXT); 119 120 if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)leaky_seg, lmp, addr) == -1) 121 mdb_warn("can't walk vmem_alloc for kmem_oversize (%p)", addr); 122 123 return (WALK_NEXT); 124 } 125 126 /*ARGSUSED*/ 127 static int 128 leaky_estimate_vmem(uintptr_t addr, const vmem_t *vmem, size_t *est) 129 { 130 if (!leaky_vmem_interested(vmem)) 131 return (WALK_NEXT); 132 133 *est += (int)(vmem->vm_kstat.vk_alloc.value.ui64 - 134 vmem->vm_kstat.vk_free.value.ui64); 135 136 return (WALK_NEXT); 137 } 138 139 static int 140 leaky_interested(const kmem_cache_t *c) 141 { 142 vmem_t vmem; 143 144 /* 145 * ignore HAT-related caches that happen to derive from kmem_default 146 */ 147 if (strcmp(c->cache_name, "sfmmu1_cache") == 0 || 148 strcmp(c->cache_name, "sf_hment_cache") == 0 || 149 strcmp(c->cache_name, "pa_hment_cache") == 0) 150 return (0); 151 152 if (mdb_vread(&vmem, sizeof (vmem), (uintptr_t)c->cache_arena) == -1) { 153 mdb_warn("cannot read arena %p for cache '%s'", 154 (uintptr_t)c->cache_arena, c->cache_name); 155 return (0); 156 } 157 158 /* 159 * If this cache isn't allocating from the kmem_default, 160 * kmem_firewall, or static vmem arenas, we're not interested. 161 */ 162 if (strcmp(vmem.vm_name, "kmem_default") != 0 && 163 strcmp(vmem.vm_name, "kmem_firewall") != 0 && 164 strcmp(vmem.vm_name, "static") != 0) 165 return (0); 166 167 return (1); 168 } 169 170 static int 171 leaky_estimate(uintptr_t addr, const kmem_cache_t *c, size_t *est) 172 { 173 if (!leaky_interested(c)) 174 return (WALK_NEXT); 175 176 *est += kmem_estimate_allocated(addr, c); 177 178 return (WALK_NEXT); 179 } 180 181 /*ARGSUSED*/ 182 static int 183 leaky_cache(uintptr_t addr, const kmem_cache_t *c, leak_mtab_t **lmp) 184 { 185 leak_mtab_t *lm = *lmp; 186 mdb_walk_cb_t cb; 187 const char *walk; 188 int audit = (c->cache_flags & KMF_AUDIT); 189 190 if (!leaky_interested(c)) 191 return (WALK_NEXT); 192 193 if (audit) { 194 walk = "bufctl"; 195 cb = (mdb_walk_cb_t)leaky_mtab; 196 } else { 197 walk = "kmem"; 198 cb = (mdb_walk_cb_t)leaky_mtab_addr; 199 } 200 if (mdb_pwalk(walk, cb, lmp, addr) == -1) { 201 mdb_warn("can't walk kmem for cache %p (%s)", addr, 202 c->cache_name); 203 return (WALK_DONE); 204 } 205 206 for (; lm < *lmp; lm++) { 207 lm->lkm_limit = lm->lkm_base + c->cache_bufsize; 208 if (!audit) 209 lm->lkm_bufctl = LKM_CTL(addr, LKM_CTL_CACHE); 210 } 211 212 return (WALK_NEXT); 213 } 214 215 /*ARGSUSED*/ 216 static int 217 leaky_scan_buffer(uintptr_t addr, const void *ignored, const kmem_cache_t *c) 218 { 219 leaky_grep(addr, c->cache_bufsize); 220 221 /* 222 * free, constructed KMF_LITE buffers keep their first uint64_t in 223 * their buftag's redzone. 224 */ 225 if (c->cache_flags & KMF_LITE) { 226 /* LINTED alignment */ 227 kmem_buftag_t *btp = KMEM_BUFTAG(c, addr); 228 leaky_grep((uintptr_t)&btp->bt_redzone, 229 sizeof (btp->bt_redzone)); 230 } 231 232 return (WALK_NEXT); 233 } 234 235 /*ARGSUSED*/ 236 static int 237 leaky_scan_cache(uintptr_t addr, const kmem_cache_t *c, void *ignored) 238 { 239 if (!leaky_interested(c)) 240 return (WALK_NEXT); 241 242 /* 243 * Scan all of the free, constructed buffers, since they may have 244 * pointers to allocated objects. 245 */ 246 if (mdb_pwalk("freemem_constructed", 247 (mdb_walk_cb_t)leaky_scan_buffer, (void *)c, addr) == -1) { 248 mdb_warn("can't walk freemem_constructed for cache %p (%s)", 249 addr, c->cache_name); 250 return (WALK_DONE); 251 } 252 253 return (WALK_NEXT); 254 } 255 256 /*ARGSUSED*/ 257 static int 258 leaky_modctl(uintptr_t addr, const struct modctl *m, int *ignored) 259 { 260 struct module mod; 261 char name[MODMAXNAMELEN]; 262 263 if (m->mod_mp == NULL) 264 return (WALK_NEXT); 265 266 if (mdb_vread(&mod, sizeof (mod), (uintptr_t)m->mod_mp) == -1) { 267 mdb_warn("couldn't read modctl %p's module", addr); 268 return (WALK_NEXT); 269 } 270 271 if (mdb_readstr(name, sizeof (name), (uintptr_t)m->mod_modname) == -1) 272 (void) mdb_snprintf(name, sizeof (name), "0x%p", addr); 273 274 leaky_grep((uintptr_t)m->mod_mp, sizeof (struct module)); 275 leaky_grep((uintptr_t)mod.data, mod.data_size); 276 leaky_grep((uintptr_t)mod.bss, mod.bss_size); 277 278 return (WALK_NEXT); 279 } 280 281 static int 282 leaky_thread(uintptr_t addr, const kthread_t *t, unsigned long *pagesize) 283 { 284 uintptr_t size, base = (uintptr_t)t->t_stkbase; 285 uintptr_t stk = (uintptr_t)t->t_stk; 286 287 /* 288 * If this thread isn't in memory, we can't look at its stack. This 289 * may result in false positives, so we print a warning. 290 */ 291 if (!(t->t_schedflag & TS_LOAD)) { 292 mdb_printf("findleaks: thread %p's stack swapped out; " 293 "false positives possible\n", addr); 294 return (WALK_NEXT); 295 } 296 297 if (t->t_state != TS_FREE) 298 leaky_grep(base, stk - base); 299 300 /* 301 * There is always gunk hanging out between t_stk and the page 302 * boundary. If this thread structure wasn't kmem allocated, 303 * this will include the thread structure itself. If the thread 304 * _is_ kmem allocated, we'll be able to get to it via allthreads. 305 */ 306 size = *pagesize - (stk & (*pagesize - 1)); 307 308 leaky_grep(stk, size); 309 310 return (WALK_NEXT); 311 } 312 313 /*ARGSUSED*/ 314 static int 315 leaky_kstat(uintptr_t addr, vmem_seg_t *seg, void *ignored) 316 { 317 leaky_grep(seg->vs_start, seg->vs_end - seg->vs_start); 318 319 return (WALK_NEXT); 320 } 321 322 static void 323 leaky_kludge(void) 324 { 325 GElf_Sym sym; 326 mdb_ctf_id_t id, rid; 327 328 int max_mem_nodes; 329 uintptr_t *counters; 330 size_t ncounters; 331 ssize_t hwpm_size; 332 int idx; 333 334 /* 335 * Because of DR, the page counters (which live in the kmem64 segment) 336 * can point into kmem_alloc()ed memory. The "page_counters" array 337 * is multi-dimensional, and each entry points to an array of 338 * "hw_page_map_t"s which is "max_mem_nodes" in length. 339 * 340 * To keep this from having too much grotty knowledge of internals, 341 * we use CTF data to get the size of the structure. For simplicity, 342 * we treat the page_counters array as a flat array of pointers, and 343 * use its size to determine how much to scan. Unused entries will 344 * be NULL. 345 */ 346 if (mdb_lookup_by_name("page_counters", &sym) == -1) { 347 mdb_warn("unable to lookup page_counters"); 348 return; 349 } 350 351 if (mdb_readvar(&max_mem_nodes, "max_mem_nodes") == -1) { 352 mdb_warn("unable to read max_mem_nodes"); 353 return; 354 } 355 356 if (mdb_ctf_lookup_by_name("unix`hw_page_map_t", &id) == -1 || 357 mdb_ctf_type_resolve(id, &rid) == -1 || 358 (hwpm_size = mdb_ctf_type_size(rid)) < 0) { 359 mdb_warn("unable to lookup unix`hw_page_map_t"); 360 return; 361 } 362 363 counters = mdb_alloc(sym.st_size, UM_SLEEP | UM_GC); 364 365 if (mdb_vread(counters, sym.st_size, (uintptr_t)sym.st_value) == -1) { 366 mdb_warn("unable to read page_counters"); 367 return; 368 } 369 370 ncounters = sym.st_size / sizeof (counters); 371 372 for (idx = 0; idx < ncounters; idx++) { 373 uintptr_t addr = counters[idx]; 374 if (addr != 0) 375 leaky_grep(addr, hwpm_size * max_mem_nodes); 376 } 377 } 378 379 int 380 leaky_subr_estimate(size_t *estp) 381 { 382 uintptr_t panicstr; 383 int state; 384 385 if ((state = mdb_get_state()) == MDB_STATE_RUNNING) { 386 mdb_warn("findleaks: can only be run on a system " 387 "dump or under kmdb; see dumpadm(1M)\n"); 388 return (DCMD_ERR); 389 } 390 391 if (mdb_readvar(&panicstr, "panicstr") == -1) { 392 mdb_warn("can't read variable 'panicstr'"); 393 return (DCMD_ERR); 394 } 395 396 if (state != MDB_STATE_STOPPED && panicstr == NULL) { 397 mdb_warn("findleaks: cannot be run on a live dump.\n"); 398 return (DCMD_ERR); 399 } 400 401 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_estimate, estp) == -1) { 402 mdb_warn("couldn't walk 'kmem_cache'"); 403 return (DCMD_ERR); 404 } 405 406 if (*estp == 0) { 407 mdb_warn("findleaks: no buffers found\n"); 408 return (DCMD_ERR); 409 } 410 411 if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_estimate_vmem, estp) == -1) { 412 mdb_warn("couldn't walk 'vmem'"); 413 return (DCMD_ERR); 414 } 415 416 return (DCMD_OK); 417 } 418 419 int 420 leaky_subr_fill(leak_mtab_t **lmpp) 421 { 422 if (mdb_walk("vmem", (mdb_walk_cb_t)leaky_vmem, lmpp) == -1) { 423 mdb_warn("couldn't walk 'vmem'"); 424 return (DCMD_ERR); 425 } 426 427 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_cache, lmpp) == -1) { 428 mdb_warn("couldn't walk 'kmem_cache'"); 429 return (DCMD_ERR); 430 } 431 432 if (mdb_readvar(&kmem_lite_count, "kmem_lite_count") == -1) { 433 mdb_warn("couldn't read 'kmem_lite_count'"); 434 kmem_lite_count = 0; 435 } else if (kmem_lite_count > 16) { 436 mdb_warn("kmem_lite_count nonsensical, ignored\n"); 437 kmem_lite_count = 0; 438 } 439 440 return (DCMD_OK); 441 } 442 443 int 444 leaky_subr_run(void) 445 { 446 unsigned long ps; 447 uintptr_t kstat_arena; 448 uintptr_t dmods; 449 450 if (mdb_readvar(&ps, "_pagesize") == -1) { 451 mdb_warn("couldn't read '_pagesize'"); 452 return (DCMD_ERR); 453 } 454 455 leaky_kludge(); 456 457 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)leaky_scan_cache, 458 NULL) == -1) { 459 mdb_warn("couldn't walk 'kmem_cache'"); 460 return (DCMD_ERR); 461 } 462 463 if (mdb_walk("modctl", (mdb_walk_cb_t)leaky_modctl, NULL) == -1) { 464 mdb_warn("couldn't walk 'modctl'"); 465 return (DCMD_ERR); 466 } 467 468 /* 469 * If kmdb is loaded, we need to walk it's module list, since kmdb 470 * modctl structures can reference kmem allocations. 471 */ 472 if ((mdb_readvar(&dmods, "kdi_dmods") != -1) && (dmods != NULL)) 473 (void) mdb_pwalk("modctl", (mdb_walk_cb_t)leaky_modctl, 474 NULL, dmods); 475 476 if (mdb_walk("thread", (mdb_walk_cb_t)leaky_thread, &ps) == -1) { 477 mdb_warn("couldn't walk 'thread'"); 478 return (DCMD_ERR); 479 } 480 481 if (mdb_walk("deathrow", (mdb_walk_cb_t)leaky_thread, &ps) == -1) { 482 mdb_warn("couldn't walk 'deathrow'"); 483 return (DCMD_ERR); 484 } 485 486 if (mdb_readvar(&kstat_arena, "kstat_arena") == -1) { 487 mdb_warn("couldn't read 'kstat_arena'"); 488 return (DCMD_ERR); 489 } 490 491 if (mdb_pwalk("vmem_alloc", (mdb_walk_cb_t)leaky_kstat, 492 NULL, kstat_arena) == -1) { 493 mdb_warn("couldn't walk kstat vmem arena"); 494 return (DCMD_ERR); 495 } 496 497 return (DCMD_OK); 498 } 499 500 void 501 leaky_subr_add_leak(leak_mtab_t *lmp) 502 { 503 uintptr_t addr = LKM_CTLPTR(lmp->lkm_bufctl); 504 size_t depth; 505 506 switch (LKM_CTLTYPE(lmp->lkm_bufctl)) { 507 case LKM_CTL_VMSEG: { 508 vmem_seg_t vs; 509 510 if (mdb_vread(&vs, sizeof (vs), addr) == -1) { 511 mdb_warn("couldn't read leaked vmem_seg at addr %p", 512 addr); 513 return; 514 } 515 depth = MIN(vs.vs_depth, VMEM_STACK_DEPTH); 516 517 leaky_add_leak(TYPE_VMEM, addr, vs.vs_start, vs.vs_timestamp, 518 vs.vs_stack, depth, 0, (vs.vs_end - vs.vs_start)); 519 break; 520 } 521 case LKM_CTL_BUFCTL: { 522 kmem_bufctl_audit_t bc; 523 524 if (mdb_vread(&bc, sizeof (bc), addr) == -1) { 525 mdb_warn("couldn't read leaked bufctl at addr %p", 526 addr); 527 return; 528 } 529 530 depth = MIN(bc.bc_depth, KMEM_STACK_DEPTH); 531 532 /* 533 * The top of the stack will be kmem_cache_alloc+offset. 534 * Since the offset in kmem_cache_alloc() isn't interesting 535 * we skip that frame for the purposes of uniquifying stacks. 536 * 537 * We also use the cache pointer as the leaks's cid, to 538 * prevent the coalescing of leaks from different caches. 539 */ 540 if (depth > 0) 541 depth--; 542 leaky_add_leak(TYPE_KMEM, addr, (uintptr_t)bc.bc_addr, 543 bc.bc_timestamp, bc.bc_stack + 1, depth, 544 (uintptr_t)bc.bc_cache, 0); 545 break; 546 } 547 case LKM_CTL_CACHE: { 548 kmem_cache_t cache; 549 kmem_buftag_lite_t bt; 550 pc_t caller; 551 int depth = 0; 552 553 /* 554 * For KMF_LITE caches, we can get the allocation PC 555 * out of the buftag structure. 556 */ 557 if (mdb_vread(&cache, sizeof (cache), addr) != -1 && 558 (cache.cache_flags & KMF_LITE) && 559 kmem_lite_count > 0 && 560 mdb_vread(&bt, sizeof (bt), 561 /* LINTED alignment */ 562 (uintptr_t)KMEM_BUFTAG(&cache, lmp->lkm_base)) != -1) { 563 caller = bt.bt_history[0]; 564 depth = 1; 565 } 566 leaky_add_leak(TYPE_CACHE, lmp->lkm_base, lmp->lkm_base, 0, 567 &caller, depth, addr, addr); 568 break; 569 } 570 default: 571 mdb_warn("internal error: invalid leak_bufctl_t\n"); 572 break; 573 } 574 } 575 576 static void 577 leaky_subr_caller(const pc_t *stack, uint_t depth, char *buf, uintptr_t *pcp) 578 { 579 int i; 580 GElf_Sym sym; 581 uintptr_t pc = 0; 582 583 buf[0] = 0; 584 585 for (i = 0; i < depth; i++) { 586 pc = stack[i]; 587 588 if (mdb_lookup_by_addr(pc, 589 MDB_SYM_FUZZY, buf, MDB_SYM_NAMLEN, &sym) == -1) 590 continue; 591 if (strncmp(buf, "kmem_", 5) == 0) 592 continue; 593 if (strncmp(buf, "vmem_", 5) == 0) 594 continue; 595 *pcp = pc; 596 597 return; 598 } 599 600 /* 601 * We're only here if the entire call chain begins with "kmem_"; 602 * this shouldn't happen, but we'll just use the last caller. 603 */ 604 *pcp = pc; 605 } 606 607 int 608 leaky_subr_bufctl_cmp(const leak_bufctl_t *lhs, const leak_bufctl_t *rhs) 609 { 610 char lbuf[MDB_SYM_NAMLEN], rbuf[MDB_SYM_NAMLEN]; 611 uintptr_t lcaller, rcaller; 612 int rval; 613 614 leaky_subr_caller(lhs->lkb_stack, lhs->lkb_depth, lbuf, &lcaller); 615 leaky_subr_caller(rhs->lkb_stack, lhs->lkb_depth, rbuf, &rcaller); 616 617 if (rval = strcmp(lbuf, rbuf)) 618 return (rval); 619 620 if (lcaller < rcaller) 621 return (-1); 622 623 if (lcaller > rcaller) 624 return (1); 625 626 if (lhs->lkb_data < rhs->lkb_data) 627 return (-1); 628 629 if (lhs->lkb_data > rhs->lkb_data) 630 return (1); 631 632 return (0); 633 } 634 635 /* 636 * Global state variables used by the leaky_subr_dump_* routines. Note that 637 * they are carefully cleared before use. 638 */ 639 static int lk_vmem_seen; 640 static int lk_cache_seen; 641 static int lk_kmem_seen; 642 static size_t lk_ttl; 643 static size_t lk_bytes; 644 645 void 646 leaky_subr_dump_start(int type) 647 { 648 switch (type) { 649 case TYPE_VMEM: 650 lk_vmem_seen = 0; 651 break; 652 case TYPE_CACHE: 653 lk_cache_seen = 0; 654 break; 655 case TYPE_KMEM: 656 lk_kmem_seen = 0; 657 break; 658 default: 659 break; 660 } 661 662 lk_ttl = 0; 663 lk_bytes = 0; 664 } 665 666 void 667 leaky_subr_dump(const leak_bufctl_t *lkb, int verbose) 668 { 669 const leak_bufctl_t *cur; 670 kmem_cache_t cache; 671 size_t min, max, size; 672 char sz[30]; 673 char c[MDB_SYM_NAMLEN]; 674 uintptr_t caller; 675 676 if (verbose) { 677 lk_ttl = 0; 678 lk_bytes = 0; 679 } 680 681 switch (lkb->lkb_type) { 682 case TYPE_VMEM: 683 if (!verbose && !lk_vmem_seen) { 684 lk_vmem_seen = 1; 685 mdb_printf("%-16s %7s %?s %s\n", 686 "BYTES", "LEAKED", "VMEM_SEG", "CALLER"); 687 } 688 689 min = max = lkb->lkb_data; 690 691 for (cur = lkb; cur != NULL; cur = cur->lkb_next) { 692 size = cur->lkb_data; 693 694 if (size < min) 695 min = size; 696 if (size > max) 697 max = size; 698 699 lk_ttl++; 700 lk_bytes += size; 701 } 702 703 if (min == max) 704 (void) mdb_snprintf(sz, sizeof (sz), "%ld", min); 705 else 706 (void) mdb_snprintf(sz, sizeof (sz), "%ld-%ld", 707 min, max); 708 709 if (!verbose) { 710 leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth, 711 c, &caller); 712 713 if (caller != 0) { 714 (void) mdb_snprintf(c, sizeof (c), 715 "%a", caller); 716 } else { 717 (void) mdb_snprintf(c, sizeof (c), 718 "%s", "?"); 719 } 720 mdb_printf("%-16s %7d %?p %s\n", sz, lkb->lkb_dups + 1, 721 lkb->lkb_addr, c); 722 } else { 723 mdb_arg_t v; 724 725 if (lk_ttl == 1) 726 mdb_printf("kmem_oversize leak: 1 vmem_seg, " 727 "%ld bytes\n", lk_bytes); 728 else 729 mdb_printf("kmem_oversize leak: %d vmem_segs, " 730 "%s bytes each, %ld bytes total\n", 731 lk_ttl, sz, lk_bytes); 732 733 v.a_type = MDB_TYPE_STRING; 734 v.a_un.a_str = "-v"; 735 736 if (mdb_call_dcmd("vmem_seg", lkb->lkb_addr, 737 DCMD_ADDRSPEC, 1, &v) == -1) { 738 mdb_warn("'%p::vmem_seg -v' failed", 739 lkb->lkb_addr); 740 } 741 } 742 return; 743 744 case TYPE_CACHE: 745 if (!verbose && !lk_cache_seen) { 746 lk_cache_seen = 1; 747 if (lk_vmem_seen) 748 mdb_printf("\n"); 749 mdb_printf("%-?s %7s %?s %s\n", 750 "CACHE", "LEAKED", "BUFFER", "CALLER"); 751 } 752 753 if (mdb_vread(&cache, sizeof (cache), lkb->lkb_data) == -1) { 754 /* 755 * This _really_ shouldn't happen; we shouldn't 756 * have been able to get this far if this 757 * cache wasn't readable. 758 */ 759 mdb_warn("can't read cache %p for leaked " 760 "buffer %p", lkb->lkb_data, lkb->lkb_addr); 761 return; 762 } 763 764 lk_ttl += lkb->lkb_dups + 1; 765 lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize; 766 767 caller = (lkb->lkb_depth == 0) ? 0 : lkb->lkb_stack[0]; 768 if (caller != 0) { 769 (void) mdb_snprintf(c, sizeof (c), "%a", caller); 770 } else { 771 (void) mdb_snprintf(c, sizeof (c), 772 "%s", (verbose) ? "" : "?"); 773 } 774 775 if (!verbose) { 776 mdb_printf("%0?p %7d %0?p %s\n", lkb->lkb_cid, 777 lkb->lkb_dups + 1, lkb->lkb_addr, c); 778 } else { 779 if (lk_ttl == 1) 780 mdb_printf("%s leak: 1 buffer, %ld bytes,\n", 781 cache.cache_name, lk_bytes); 782 else 783 mdb_printf("%s leak: %d buffers, " 784 "%ld bytes each, %ld bytes total,\n", 785 cache.cache_name, lk_ttl, 786 cache.cache_bufsize, lk_bytes); 787 788 mdb_printf(" sample addr %p%s%s\n", 789 lkb->lkb_addr, (caller == 0) ? "" : ", caller ", c); 790 } 791 return; 792 793 case TYPE_KMEM: 794 if (!verbose && !lk_kmem_seen) { 795 lk_kmem_seen = 1; 796 if (lk_vmem_seen || lk_cache_seen) 797 mdb_printf("\n"); 798 mdb_printf("%-?s %7s %?s %s\n", 799 "CACHE", "LEAKED", "BUFCTL", "CALLER"); 800 } 801 802 if (mdb_vread(&cache, sizeof (cache), lkb->lkb_cid) == -1) { 803 /* 804 * This _really_ shouldn't happen; we shouldn't 805 * have been able to get this far if this 806 * cache wasn't readable. 807 */ 808 mdb_warn("can't read cache %p for leaked " 809 "bufctl %p", lkb->lkb_cid, lkb->lkb_addr); 810 return; 811 } 812 813 lk_ttl += lkb->lkb_dups + 1; 814 lk_bytes += (lkb->lkb_dups + 1) * cache.cache_bufsize; 815 816 if (!verbose) { 817 leaky_subr_caller(lkb->lkb_stack, lkb->lkb_depth, 818 c, &caller); 819 820 if (caller != 0) { 821 (void) mdb_snprintf(c, sizeof (c), 822 "%a", caller); 823 } else { 824 (void) mdb_snprintf(c, sizeof (c), 825 "%s", "?"); 826 } 827 mdb_printf("%0?p %7d %0?p %s\n", lkb->lkb_cid, 828 lkb->lkb_dups + 1, lkb->lkb_addr, c); 829 } else { 830 mdb_arg_t v; 831 832 if (lk_ttl == 1) 833 mdb_printf("%s leak: 1 buffer, %ld bytes\n", 834 cache.cache_name, lk_bytes); 835 else 836 mdb_printf("%s leak: %d buffers, " 837 "%ld bytes each, %ld bytes total\n", 838 cache.cache_name, lk_ttl, 839 cache.cache_bufsize, lk_bytes); 840 841 v.a_type = MDB_TYPE_STRING; 842 v.a_un.a_str = "-v"; 843 844 if (mdb_call_dcmd("bufctl", lkb->lkb_addr, 845 DCMD_ADDRSPEC, 1, &v) == -1) { 846 mdb_warn("'%p::bufctl -v' failed", 847 lkb->lkb_addr); 848 } 849 } 850 return; 851 852 default: 853 return; 854 } 855 } 856 857 void 858 leaky_subr_dump_end(int type) 859 { 860 int i; 861 int width; 862 const char *leaks; 863 864 switch (type) { 865 case TYPE_VMEM: 866 if (!lk_vmem_seen) 867 return; 868 869 width = 16; 870 leaks = "kmem_oversize leak"; 871 break; 872 873 case TYPE_CACHE: 874 if (!lk_cache_seen) 875 return; 876 877 width = sizeof (uintptr_t) * 2; 878 leaks = "buffer"; 879 break; 880 881 case TYPE_KMEM: 882 if (!lk_kmem_seen) 883 return; 884 885 width = sizeof (uintptr_t) * 2; 886 leaks = "buffer"; 887 break; 888 889 default: 890 return; 891 } 892 893 for (i = 0; i < 72; i++) 894 mdb_printf("-"); 895 mdb_printf("\n%*s %7ld %s%s, %ld byte%s\n", 896 width, "Total", lk_ttl, leaks, (lk_ttl == 1) ? "" : "s", 897 lk_bytes, (lk_bytes == 1) ? "" : "s"); 898 } 899 900 int 901 leaky_subr_invoke_callback(const leak_bufctl_t *lkb, mdb_walk_cb_t cb, 902 void *cbdata) 903 { 904 kmem_bufctl_audit_t bc; 905 vmem_seg_t vs; 906 907 switch (lkb->lkb_type) { 908 case TYPE_VMEM: 909 if (mdb_vread(&vs, sizeof (vs), lkb->lkb_addr) == -1) { 910 mdb_warn("unable to read vmem_seg at %p", 911 lkb->lkb_addr); 912 return (WALK_NEXT); 913 } 914 return (cb(lkb->lkb_addr, &vs, cbdata)); 915 916 case TYPE_CACHE: 917 return (cb(lkb->lkb_addr, NULL, cbdata)); 918 919 case TYPE_KMEM: 920 if (mdb_vread(&bc, sizeof (bc), lkb->lkb_addr) == -1) { 921 mdb_warn("unable to read bufctl at %p", 922 lkb->lkb_addr); 923 return (WALK_NEXT); 924 } 925 return (cb(lkb->lkb_addr, &bc, cbdata)); 926 default: 927 return (WALK_NEXT); 928 } 929 } 930