1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 2018 Joyent, Inc. All rights reserved. 28 * Copyright (c) 2012 by Delphix. All rights reserved. 29 * Copyright 2025 Oxide Computer Company 30 */ 31 32 #include <mdb/mdb_param.h> 33 #include <mdb/mdb_modapi.h> 34 #include <mdb/mdb_ctf.h> 35 #include <mdb/mdb_whatis.h> 36 #include <sys/cpuvar.h> 37 #include <sys/kmem_impl.h> 38 #include <sys/vmem_impl.h> 39 #include <sys/machelf.h> 40 #include <sys/modctl.h> 41 #include <sys/kobj.h> 42 #include <sys/panic.h> 43 #include <sys/stack.h> 44 #include <sys/sysmacros.h> 45 #include <vm/page.h> 46 47 #include "avl.h" 48 #include "combined.h" 49 #include "dist.h" 50 #include "kmem.h" 51 #include "list.h" 52 53 #define dprintf(x) if (mdb_debug_level) { \ 54 mdb_printf("kmem debug: "); \ 55 /*CSTYLED*/\ 56 mdb_printf x ;\ 57 } 58 59 #define KM_ALLOCATED 0x01 60 #define KM_FREE 0x02 61 #define KM_BUFCTL 0x04 62 #define KM_CONSTRUCTED 0x08 /* only constructed free buffers */ 63 #define KM_HASH 0x10 64 65 static int mdb_debug_level = 0; 66 67 /*ARGSUSED*/ 68 static int 69 kmem_init_walkers(uintptr_t addr, const kmem_cache_t *c, void *ignored) 70 { 71 mdb_walker_t w; 72 char descr[64]; 73 74 (void) mdb_snprintf(descr, sizeof (descr), 75 "walk the %s cache", c->cache_name); 76 77 w.walk_name = c->cache_name; 78 w.walk_descr = descr; 79 w.walk_init = kmem_walk_init; 80 w.walk_step = kmem_walk_step; 81 w.walk_fini = kmem_walk_fini; 82 w.walk_init_arg = (void *)addr; 83 84 if (mdb_add_walker(&w) == -1) 85 mdb_warn("failed to add %s walker", c->cache_name); 86 87 return (WALK_NEXT); 88 } 89 90 /*ARGSUSED*/ 91 int 92 kmem_debug(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 93 { 94 mdb_debug_level ^= 1; 95 96 mdb_printf("kmem: debugging is now %s\n", 97 mdb_debug_level ? "on" : "off"); 98 99 return (DCMD_OK); 100 } 101 102 int 103 kmem_cache_walk_init(mdb_walk_state_t *wsp) 104 { 105 GElf_Sym sym; 106 107 if (mdb_lookup_by_name("kmem_caches", &sym) == -1) { 108 mdb_warn("couldn't find kmem_caches"); 109 return (WALK_ERR); 110 } 111 112 wsp->walk_addr = (uintptr_t)sym.st_value; 113 114 return (list_walk_init_named(wsp, "cache list", "cache")); 115 } 116 117 int 118 kmem_cpu_cache_walk_init(mdb_walk_state_t *wsp) 119 { 120 if (wsp->walk_addr == 0) { 121 mdb_warn("kmem_cpu_cache doesn't support global walks"); 122 return (WALK_ERR); 123 } 124 125 if (mdb_layered_walk("cpu", wsp) == -1) { 126 mdb_warn("couldn't walk 'cpu'"); 127 return (WALK_ERR); 128 } 129 130 wsp->walk_data = (void *)wsp->walk_addr; 131 132 return (WALK_NEXT); 133 } 134 135 int 136 kmem_cpu_cache_walk_step(mdb_walk_state_t *wsp) 137 { 138 uintptr_t caddr = (uintptr_t)wsp->walk_data; 139 const cpu_t *cpu = wsp->walk_layer; 140 kmem_cpu_cache_t cc; 141 142 caddr += OFFSETOF(kmem_cache_t, cache_cpu[cpu->cpu_seqid]); 143 144 if (mdb_vread(&cc, sizeof (kmem_cpu_cache_t), caddr) == -1) { 145 mdb_warn("couldn't read kmem_cpu_cache at %p", caddr); 146 return (WALK_ERR); 147 } 148 149 return (wsp->walk_callback(caddr, &cc, wsp->walk_cbdata)); 150 } 151 152 static int 153 kmem_slab_check(void *p, uintptr_t saddr, void *arg) 154 { 155 kmem_slab_t *sp = p; 156 uintptr_t caddr = (uintptr_t)arg; 157 if ((uintptr_t)sp->slab_cache != caddr) { 158 mdb_warn("slab %p isn't in cache %p (in cache %p)\n", 159 saddr, caddr, sp->slab_cache); 160 return (-1); 161 } 162 163 return (0); 164 } 165 166 static int 167 kmem_partial_slab_check(void *p, uintptr_t saddr, void *arg) 168 { 169 kmem_slab_t *sp = p; 170 171 int rc = kmem_slab_check(p, saddr, arg); 172 if (rc != 0) { 173 return (rc); 174 } 175 176 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 177 mdb_warn("slab %p is not a partial slab\n", saddr); 178 return (-1); 179 } 180 181 return (0); 182 } 183 184 static int 185 kmem_complete_slab_check(void *p, uintptr_t saddr, void *arg) 186 { 187 kmem_slab_t *sp = p; 188 189 int rc = kmem_slab_check(p, saddr, arg); 190 if (rc != 0) { 191 return (rc); 192 } 193 194 if (!KMEM_SLAB_IS_ALL_USED(sp)) { 195 mdb_warn("slab %p is not completely allocated\n", saddr); 196 return (-1); 197 } 198 199 return (0); 200 } 201 202 typedef struct { 203 uintptr_t kns_cache_addr; 204 int kns_nslabs; 205 } kmem_nth_slab_t; 206 207 static int 208 kmem_nth_slab_check(void *p, uintptr_t saddr, void *arg) 209 { 210 kmem_nth_slab_t *chkp = arg; 211 212 int rc = kmem_slab_check(p, saddr, (void *)chkp->kns_cache_addr); 213 if (rc != 0) { 214 return (rc); 215 } 216 217 return (chkp->kns_nslabs-- == 0 ? 1 : 0); 218 } 219 220 static int 221 kmem_complete_slab_walk_init(mdb_walk_state_t *wsp) 222 { 223 uintptr_t caddr = wsp->walk_addr; 224 225 wsp->walk_addr = (uintptr_t)(caddr + 226 offsetof(kmem_cache_t, cache_complete_slabs)); 227 228 return (list_walk_init_checked(wsp, "slab list", "slab", 229 kmem_complete_slab_check, (void *)caddr)); 230 } 231 232 static int 233 kmem_partial_slab_walk_init(mdb_walk_state_t *wsp) 234 { 235 uintptr_t caddr = wsp->walk_addr; 236 237 wsp->walk_addr = (uintptr_t)(caddr + 238 offsetof(kmem_cache_t, cache_partial_slabs)); 239 240 return (avl_walk_init_checked(wsp, "slab list", "slab", 241 kmem_partial_slab_check, (void *)caddr)); 242 } 243 244 int 245 kmem_slab_walk_init(mdb_walk_state_t *wsp) 246 { 247 uintptr_t caddr = wsp->walk_addr; 248 249 if (caddr == 0) { 250 mdb_warn("kmem_slab doesn't support global walks\n"); 251 return (WALK_ERR); 252 } 253 254 combined_walk_init(wsp); 255 combined_walk_add(wsp, 256 kmem_complete_slab_walk_init, list_walk_step, list_walk_fini); 257 combined_walk_add(wsp, 258 kmem_partial_slab_walk_init, avl_walk_step, avl_walk_fini); 259 260 return (WALK_NEXT); 261 } 262 263 static int 264 kmem_first_complete_slab_walk_init(mdb_walk_state_t *wsp) 265 { 266 uintptr_t caddr = wsp->walk_addr; 267 kmem_nth_slab_t *chk; 268 269 chk = mdb_alloc(sizeof (kmem_nth_slab_t), 270 UM_SLEEP | UM_GC); 271 chk->kns_cache_addr = caddr; 272 chk->kns_nslabs = 1; 273 wsp->walk_addr = (uintptr_t)(caddr + 274 offsetof(kmem_cache_t, cache_complete_slabs)); 275 276 return (list_walk_init_checked(wsp, "slab list", "slab", 277 kmem_nth_slab_check, chk)); 278 } 279 280 int 281 kmem_slab_walk_partial_init(mdb_walk_state_t *wsp) 282 { 283 uintptr_t caddr = wsp->walk_addr; 284 kmem_cache_t c; 285 286 if (caddr == 0) { 287 mdb_warn("kmem_slab_partial doesn't support global walks\n"); 288 return (WALK_ERR); 289 } 290 291 if (mdb_vread(&c, sizeof (c), caddr) == -1) { 292 mdb_warn("couldn't read kmem_cache at %p", caddr); 293 return (WALK_ERR); 294 } 295 296 combined_walk_init(wsp); 297 298 /* 299 * Some consumers (umem_walk_step(), in particular) require at 300 * least one callback if there are any buffers in the cache. So 301 * if there are *no* partial slabs, report the first full slab, if 302 * any. 303 * 304 * Yes, this is ugly, but it's cleaner than the other possibilities. 305 */ 306 if (c.cache_partial_slabs.avl_numnodes == 0) { 307 combined_walk_add(wsp, kmem_first_complete_slab_walk_init, 308 list_walk_step, list_walk_fini); 309 } else { 310 combined_walk_add(wsp, kmem_partial_slab_walk_init, 311 avl_walk_step, avl_walk_fini); 312 } 313 314 return (WALK_NEXT); 315 } 316 317 int 318 kmem_cache(uintptr_t addr, uint_t flags, int ac, const mdb_arg_t *argv) 319 { 320 kmem_cache_t c; 321 const char *filter = NULL; 322 323 if (mdb_getopts(ac, argv, 324 'n', MDB_OPT_STR, &filter, 325 NULL) != ac) { 326 return (DCMD_USAGE); 327 } 328 329 if (!(flags & DCMD_ADDRSPEC)) { 330 if (mdb_walk_dcmd("kmem_cache", "kmem_cache", ac, argv) == -1) { 331 mdb_warn("can't walk kmem_cache"); 332 return (DCMD_ERR); 333 } 334 return (DCMD_OK); 335 } 336 337 if (DCMD_HDRSPEC(flags)) 338 mdb_printf("%-?s %-25s %4s %6s %8s %8s\n", "ADDR", "NAME", 339 "FLAG", "CFLAG", "BUFSIZE", "BUFTOTL"); 340 341 if (mdb_vread(&c, sizeof (c), addr) == -1) { 342 mdb_warn("couldn't read kmem_cache at %p", addr); 343 return (DCMD_ERR); 344 } 345 346 if ((filter != NULL) && (strstr(c.cache_name, filter) == NULL)) 347 return (DCMD_OK); 348 349 mdb_printf("%0?p %-25s %04x %06x %8ld %8lld\n", addr, c.cache_name, 350 c.cache_flags, c.cache_cflags, c.cache_bufsize, c.cache_buftotal); 351 352 return (DCMD_OK); 353 } 354 355 void 356 kmem_cache_help(void) 357 { 358 mdb_printf("%s", "Print kernel memory caches.\n\n"); 359 mdb_dec_indent(2); 360 mdb_printf("%<b>OPTIONS%</b>\n"); 361 mdb_inc_indent(2); 362 mdb_printf("%s", 363 " -n name\n" 364 " name of kmem cache (or matching partial name)\n" 365 "\n" 366 "Column\tDescription\n" 367 "\n" 368 "ADDR\t\taddress of kmem cache\n" 369 "NAME\t\tname of kmem cache\n" 370 "FLAG\t\tvarious cache state flags\n" 371 "CFLAG\t\tcache creation flags\n" 372 "BUFSIZE\tobject size in bytes\n" 373 "BUFTOTL\tcurrent total buffers in cache (allocated and free)\n"); 374 } 375 376 #define LABEL_WIDTH 11 377 static void 378 kmem_slabs_print_dist(uint_t *ks_bucket, size_t buffers_per_slab, 379 size_t maxbuckets, size_t minbucketsize) 380 { 381 uint64_t total; 382 int buckets; 383 int i; 384 const int *distarray; 385 int complete[2]; 386 387 buckets = buffers_per_slab; 388 389 total = 0; 390 for (i = 0; i <= buffers_per_slab; i++) 391 total += ks_bucket[i]; 392 393 if (maxbuckets > 1) 394 buckets = MIN(buckets, maxbuckets); 395 396 if (minbucketsize > 1) { 397 /* 398 * minbucketsize does not apply to the first bucket reserved 399 * for completely allocated slabs 400 */ 401 buckets = MIN(buckets, 1 + ((buffers_per_slab - 1) / 402 minbucketsize)); 403 if ((buckets < 2) && (buffers_per_slab > 1)) { 404 buckets = 2; 405 minbucketsize = (buffers_per_slab - 1); 406 } 407 } 408 409 /* 410 * The first printed bucket is reserved for completely allocated slabs. 411 * Passing (buckets - 1) excludes that bucket from the generated 412 * distribution, since we're handling it as a special case. 413 */ 414 complete[0] = buffers_per_slab; 415 complete[1] = buffers_per_slab + 1; 416 distarray = dist_linear(buckets - 1, 1, buffers_per_slab - 1); 417 418 mdb_printf("%*s\n", LABEL_WIDTH, "Allocated"); 419 dist_print_header("Buffers", LABEL_WIDTH, "Slabs"); 420 421 dist_print_bucket(complete, 0, ks_bucket, total, LABEL_WIDTH); 422 /* 423 * Print bucket ranges in descending order after the first bucket for 424 * completely allocated slabs, so a person can see immediately whether 425 * or not there is fragmentation without having to scan possibly 426 * multiple screens of output. Starting at (buckets - 2) excludes the 427 * extra terminating bucket. 428 */ 429 for (i = buckets - 2; i >= 0; i--) { 430 dist_print_bucket(distarray, i, ks_bucket, total, LABEL_WIDTH); 431 } 432 mdb_printf("\n"); 433 } 434 #undef LABEL_WIDTH 435 436 /*ARGSUSED*/ 437 static int 438 kmem_first_slab(uintptr_t addr, const kmem_slab_t *sp, boolean_t *is_slab) 439 { 440 *is_slab = B_TRUE; 441 return (WALK_DONE); 442 } 443 444 /*ARGSUSED*/ 445 static int 446 kmem_first_partial_slab(uintptr_t addr, const kmem_slab_t *sp, 447 boolean_t *is_slab) 448 { 449 /* 450 * The "kmem_partial_slab" walker reports the first full slab if there 451 * are no partial slabs (for the sake of consumers that require at least 452 * one callback if there are any buffers in the cache). 453 */ 454 *is_slab = KMEM_SLAB_IS_PARTIAL(sp); 455 return (WALK_DONE); 456 } 457 458 typedef struct kmem_slab_usage { 459 int ksu_refcnt; /* count of allocated buffers on slab */ 460 boolean_t ksu_nomove; /* slab marked non-reclaimable */ 461 } kmem_slab_usage_t; 462 463 typedef struct kmem_slab_stats { 464 const kmem_cache_t *ks_cp; 465 int ks_slabs; /* slabs in cache */ 466 int ks_partial_slabs; /* partially allocated slabs in cache */ 467 uint64_t ks_unused_buffers; /* total unused buffers in cache */ 468 int ks_max_buffers_per_slab; /* max buffers per slab */ 469 int ks_usage_len; /* ks_usage array length */ 470 kmem_slab_usage_t *ks_usage; /* partial slab usage */ 471 uint_t *ks_bucket; /* slab usage distribution */ 472 } kmem_slab_stats_t; 473 474 /*ARGSUSED*/ 475 static int 476 kmem_slablist_stat(uintptr_t addr, const kmem_slab_t *sp, 477 kmem_slab_stats_t *ks) 478 { 479 kmem_slab_usage_t *ksu; 480 long unused; 481 482 ks->ks_slabs++; 483 ks->ks_bucket[sp->slab_refcnt]++; 484 485 unused = (sp->slab_chunks - sp->slab_refcnt); 486 if (unused == 0) { 487 return (WALK_NEXT); 488 } 489 490 ks->ks_partial_slabs++; 491 ks->ks_unused_buffers += unused; 492 493 if (ks->ks_partial_slabs > ks->ks_usage_len) { 494 kmem_slab_usage_t *usage; 495 int len = ks->ks_usage_len; 496 497 len = (len == 0 ? 16 : len * 2); 498 usage = mdb_zalloc(len * sizeof (kmem_slab_usage_t), UM_SLEEP); 499 if (ks->ks_usage != NULL) { 500 bcopy(ks->ks_usage, usage, 501 ks->ks_usage_len * sizeof (kmem_slab_usage_t)); 502 mdb_free(ks->ks_usage, 503 ks->ks_usage_len * sizeof (kmem_slab_usage_t)); 504 } 505 ks->ks_usage = usage; 506 ks->ks_usage_len = len; 507 } 508 509 ksu = &ks->ks_usage[ks->ks_partial_slabs - 1]; 510 ksu->ksu_refcnt = sp->slab_refcnt; 511 ksu->ksu_nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE); 512 return (WALK_NEXT); 513 } 514 515 static void 516 kmem_slabs_header() 517 { 518 mdb_printf("%-25s %8s %8s %9s %9s %6s\n", 519 "", "", "Partial", "", "Unused", ""); 520 mdb_printf("%-25s %8s %8s %9s %9s %6s\n", 521 "Cache Name", "Slabs", "Slabs", "Buffers", "Buffers", "Waste"); 522 mdb_printf("%-25s %8s %8s %9s %9s %6s\n", 523 "-------------------------", "--------", "--------", "---------", 524 "---------", "------"); 525 } 526 527 int 528 kmem_slabs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 529 { 530 kmem_cache_t c; 531 kmem_slab_stats_t stats; 532 mdb_walk_cb_t cb; 533 int pct; 534 int tenths_pct; 535 size_t maxbuckets = 1; 536 size_t minbucketsize = 0; 537 const char *filter = NULL; 538 const char *name = NULL; 539 uint_t opt_v = FALSE; 540 boolean_t buckets = B_FALSE; 541 boolean_t skip = B_FALSE; 542 543 if (mdb_getopts(argc, argv, 544 'B', MDB_OPT_UINTPTR, &minbucketsize, 545 'b', MDB_OPT_UINTPTR, &maxbuckets, 546 'n', MDB_OPT_STR, &filter, 547 'N', MDB_OPT_STR, &name, 548 'v', MDB_OPT_SETBITS, TRUE, &opt_v, 549 NULL) != argc) { 550 return (DCMD_USAGE); 551 } 552 553 if ((maxbuckets != 1) || (minbucketsize != 0)) { 554 buckets = B_TRUE; 555 } 556 557 if (!(flags & DCMD_ADDRSPEC)) { 558 if (mdb_walk_dcmd("kmem_cache", "kmem_slabs", argc, 559 argv) == -1) { 560 mdb_warn("can't walk kmem_cache"); 561 return (DCMD_ERR); 562 } 563 return (DCMD_OK); 564 } 565 566 if (mdb_vread(&c, sizeof (c), addr) == -1) { 567 mdb_warn("couldn't read kmem_cache at %p", addr); 568 return (DCMD_ERR); 569 } 570 571 if (name == NULL) { 572 skip = ((filter != NULL) && 573 (strstr(c.cache_name, filter) == NULL)); 574 } else if (filter == NULL) { 575 skip = (strcmp(c.cache_name, name) != 0); 576 } else { 577 /* match either -n or -N */ 578 skip = ((strcmp(c.cache_name, name) != 0) && 579 (strstr(c.cache_name, filter) == NULL)); 580 } 581 582 if (!(opt_v || buckets) && DCMD_HDRSPEC(flags)) { 583 kmem_slabs_header(); 584 } else if ((opt_v || buckets) && !skip) { 585 if (DCMD_HDRSPEC(flags)) { 586 kmem_slabs_header(); 587 } else { 588 boolean_t is_slab = B_FALSE; 589 const char *walker_name; 590 if (opt_v) { 591 cb = (mdb_walk_cb_t)kmem_first_partial_slab; 592 walker_name = "kmem_slab_partial"; 593 } else { 594 cb = (mdb_walk_cb_t)kmem_first_slab; 595 walker_name = "kmem_slab"; 596 } 597 (void) mdb_pwalk(walker_name, cb, &is_slab, addr); 598 if (is_slab) { 599 kmem_slabs_header(); 600 } 601 } 602 } 603 604 if (skip) { 605 return (DCMD_OK); 606 } 607 608 bzero(&stats, sizeof (kmem_slab_stats_t)); 609 stats.ks_cp = &c; 610 stats.ks_max_buffers_per_slab = c.cache_maxchunks; 611 /* +1 to include a zero bucket */ 612 stats.ks_bucket = mdb_zalloc((stats.ks_max_buffers_per_slab + 1) * 613 sizeof (*stats.ks_bucket), UM_SLEEP); 614 cb = (mdb_walk_cb_t)kmem_slablist_stat; 615 (void) mdb_pwalk("kmem_slab", cb, &stats, addr); 616 617 if (c.cache_buftotal == 0) { 618 pct = 0; 619 tenths_pct = 0; 620 } else { 621 uint64_t n = stats.ks_unused_buffers * 10000; 622 pct = (int)(n / c.cache_buftotal); 623 tenths_pct = pct - ((pct / 100) * 100); 624 tenths_pct = (tenths_pct + 5) / 10; /* round nearest tenth */ 625 if (tenths_pct == 10) { 626 pct += 100; 627 tenths_pct = 0; 628 } 629 } 630 631 pct /= 100; 632 mdb_printf("%-25s %8d %8d %9lld %9lld %3d.%1d%%\n", c.cache_name, 633 stats.ks_slabs, stats.ks_partial_slabs, c.cache_buftotal, 634 stats.ks_unused_buffers, pct, tenths_pct); 635 636 if (maxbuckets == 0) { 637 maxbuckets = stats.ks_max_buffers_per_slab; 638 } 639 640 if (((maxbuckets > 1) || (minbucketsize > 0)) && 641 (stats.ks_slabs > 0)) { 642 mdb_printf("\n"); 643 kmem_slabs_print_dist(stats.ks_bucket, 644 stats.ks_max_buffers_per_slab, maxbuckets, minbucketsize); 645 } 646 647 mdb_free(stats.ks_bucket, (stats.ks_max_buffers_per_slab + 1) * 648 sizeof (*stats.ks_bucket)); 649 650 if (!opt_v) { 651 return (DCMD_OK); 652 } 653 654 if (opt_v && (stats.ks_partial_slabs > 0)) { 655 int i; 656 kmem_slab_usage_t *ksu; 657 658 mdb_printf(" %d complete (%d), %d partial:", 659 (stats.ks_slabs - stats.ks_partial_slabs), 660 stats.ks_max_buffers_per_slab, 661 stats.ks_partial_slabs); 662 663 for (i = 0; i < stats.ks_partial_slabs; i++) { 664 ksu = &stats.ks_usage[i]; 665 mdb_printf(" %d%s", ksu->ksu_refcnt, 666 (ksu->ksu_nomove ? "*" : "")); 667 } 668 mdb_printf("\n\n"); 669 } 670 671 if (stats.ks_usage_len > 0) { 672 mdb_free(stats.ks_usage, 673 stats.ks_usage_len * sizeof (kmem_slab_usage_t)); 674 } 675 676 return (DCMD_OK); 677 } 678 679 void 680 kmem_slabs_help(void) 681 { 682 mdb_printf("%s", 683 "Display slab usage per kmem cache.\n\n"); 684 mdb_dec_indent(2); 685 mdb_printf("%<b>OPTIONS%</b>\n"); 686 mdb_inc_indent(2); 687 mdb_printf("%s", 688 " -n name\n" 689 " name of kmem cache (or matching partial name)\n" 690 " -N name\n" 691 " exact name of kmem cache\n" 692 " -b maxbins\n" 693 " Print a distribution of allocated buffers per slab using at\n" 694 " most maxbins bins. The first bin is reserved for completely\n" 695 " allocated slabs. Setting maxbins to zero (-b 0) has the same\n" 696 " effect as specifying the maximum allocated buffers per slab\n" 697 " or setting minbinsize to 1 (-B 1).\n" 698 " -B minbinsize\n" 699 " Print a distribution of allocated buffers per slab, making\n" 700 " all bins (except the first, reserved for completely allocated\n" 701 " slabs) at least minbinsize buffers apart.\n" 702 " -v verbose output: List the allocated buffer count of each partial\n" 703 " slab on the free list in order from front to back to show how\n" 704 " closely the slabs are ordered by usage. For example\n" 705 "\n" 706 " 10 complete, 3 partial (8): 7 3 1\n" 707 "\n" 708 " means there are thirteen slabs with eight buffers each, including\n" 709 " three partially allocated slabs with less than all eight buffers\n" 710 " allocated.\n" 711 "\n" 712 " Buffer allocations are always from the front of the partial slab\n" 713 " list. When a buffer is freed from a completely used slab, that\n" 714 " slab is added to the front of the partial slab list. Assuming\n" 715 " that all buffers are equally likely to be freed soon, the\n" 716 " desired order of partial slabs is most-used at the front of the\n" 717 " list and least-used at the back (as in the example above).\n" 718 " However, if a slab contains an allocated buffer that will not\n" 719 " soon be freed, it would be better for that slab to be at the\n" 720 " front where all of its buffers can be allocated. Taking a slab\n" 721 " off the partial slab list (either with all buffers freed or all\n" 722 " buffers allocated) reduces cache fragmentation.\n" 723 "\n" 724 " A slab's allocated buffer count representing a partial slab (9 in\n" 725 " the example below) may be marked as follows:\n" 726 "\n" 727 " 9* An asterisk indicates that kmem has marked the slab non-\n" 728 " reclaimable because the kmem client refused to move one of the\n" 729 " slab's buffers. Since kmem does not expect to completely free the\n" 730 " slab, it moves it to the front of the list in the hope of\n" 731 " completely allocating it instead. A slab marked with an asterisk\n" 732 " stays marked for as long as it remains on the partial slab list.\n" 733 "\n" 734 "Column\t\tDescription\n" 735 "\n" 736 "Cache Name\t\tname of kmem cache\n" 737 "Slabs\t\t\ttotal slab count\n" 738 "Partial Slabs\t\tcount of partially allocated slabs on the free list\n" 739 "Buffers\t\ttotal buffer count (Slabs * (buffers per slab))\n" 740 "Unused Buffers\tcount of unallocated buffers across all partial slabs\n" 741 "Waste\t\t\t(Unused Buffers / Buffers) does not include space\n" 742 "\t\t\t for accounting structures (debug mode), slab\n" 743 "\t\t\t coloring (incremental small offsets to stagger\n" 744 "\t\t\t buffer alignment), or the per-CPU magazine layer\n"); 745 } 746 747 static int 748 addrcmp(const void *lhs, const void *rhs) 749 { 750 uintptr_t p1 = *((uintptr_t *)lhs); 751 uintptr_t p2 = *((uintptr_t *)rhs); 752 753 if (p1 < p2) 754 return (-1); 755 if (p1 > p2) 756 return (1); 757 return (0); 758 } 759 760 static int 761 bufctlcmp(const kmem_bufctl_audit_t **lhs, const kmem_bufctl_audit_t **rhs) 762 { 763 const kmem_bufctl_audit_t *bcp1 = *lhs; 764 const kmem_bufctl_audit_t *bcp2 = *rhs; 765 766 if (bcp1->bc_timestamp > bcp2->bc_timestamp) 767 return (-1); 768 769 if (bcp1->bc_timestamp < bcp2->bc_timestamp) 770 return (1); 771 772 return (0); 773 } 774 775 typedef struct kmem_hash_walk { 776 uintptr_t *kmhw_table; 777 size_t kmhw_nelems; 778 size_t kmhw_pos; 779 kmem_bufctl_t kmhw_cur; 780 } kmem_hash_walk_t; 781 782 int 783 kmem_hash_walk_init(mdb_walk_state_t *wsp) 784 { 785 kmem_hash_walk_t *kmhw; 786 uintptr_t *hash; 787 kmem_cache_t c; 788 uintptr_t haddr, addr = wsp->walk_addr; 789 size_t nelems; 790 size_t hsize; 791 792 if (addr == 0) { 793 mdb_warn("kmem_hash doesn't support global walks\n"); 794 return (WALK_ERR); 795 } 796 797 if (mdb_vread(&c, sizeof (c), addr) == -1) { 798 mdb_warn("couldn't read cache at addr %p", addr); 799 return (WALK_ERR); 800 } 801 802 if (!(c.cache_flags & KMF_HASH)) { 803 mdb_warn("cache %p doesn't have a hash table\n", addr); 804 return (WALK_DONE); /* nothing to do */ 805 } 806 807 kmhw = mdb_zalloc(sizeof (kmem_hash_walk_t), UM_SLEEP); 808 kmhw->kmhw_cur.bc_next = NULL; 809 kmhw->kmhw_pos = 0; 810 811 kmhw->kmhw_nelems = nelems = c.cache_hash_mask + 1; 812 hsize = nelems * sizeof (uintptr_t); 813 haddr = (uintptr_t)c.cache_hash_table; 814 815 kmhw->kmhw_table = hash = mdb_alloc(hsize, UM_SLEEP); 816 if (mdb_vread(hash, hsize, haddr) == -1) { 817 mdb_warn("failed to read hash table at %p", haddr); 818 mdb_free(hash, hsize); 819 mdb_free(kmhw, sizeof (kmem_hash_walk_t)); 820 return (WALK_ERR); 821 } 822 823 wsp->walk_data = kmhw; 824 825 return (WALK_NEXT); 826 } 827 828 int 829 kmem_hash_walk_step(mdb_walk_state_t *wsp) 830 { 831 kmem_hash_walk_t *kmhw = wsp->walk_data; 832 uintptr_t addr = 0; 833 834 if ((addr = (uintptr_t)kmhw->kmhw_cur.bc_next) == 0) { 835 while (kmhw->kmhw_pos < kmhw->kmhw_nelems) { 836 if ((addr = kmhw->kmhw_table[kmhw->kmhw_pos++]) != 0) 837 break; 838 } 839 } 840 if (addr == 0) 841 return (WALK_DONE); 842 843 if (mdb_vread(&kmhw->kmhw_cur, sizeof (kmem_bufctl_t), addr) == -1) { 844 mdb_warn("couldn't read kmem_bufctl_t at addr %p", addr); 845 return (WALK_ERR); 846 } 847 848 return (wsp->walk_callback(addr, &kmhw->kmhw_cur, wsp->walk_cbdata)); 849 } 850 851 void 852 kmem_hash_walk_fini(mdb_walk_state_t *wsp) 853 { 854 kmem_hash_walk_t *kmhw = wsp->walk_data; 855 856 if (kmhw == NULL) 857 return; 858 859 mdb_free(kmhw->kmhw_table, kmhw->kmhw_nelems * sizeof (uintptr_t)); 860 mdb_free(kmhw, sizeof (kmem_hash_walk_t)); 861 } 862 863 /* 864 * Find the address of the bufctl structure for the address 'buf' in cache 865 * 'cp', which is at address caddr, and place it in *out. 866 */ 867 static int 868 kmem_hash_lookup(kmem_cache_t *cp, uintptr_t caddr, void *buf, uintptr_t *out) 869 { 870 uintptr_t bucket = (uintptr_t)KMEM_HASH(cp, buf); 871 kmem_bufctl_t *bcp; 872 kmem_bufctl_t bc; 873 874 if (mdb_vread(&bcp, sizeof (kmem_bufctl_t *), bucket) == -1) { 875 mdb_warn("unable to read hash bucket for %p in cache %p", 876 buf, caddr); 877 return (-1); 878 } 879 880 while (bcp != NULL) { 881 if (mdb_vread(&bc, sizeof (kmem_bufctl_t), 882 (uintptr_t)bcp) == -1) { 883 mdb_warn("unable to read bufctl at %p", bcp); 884 return (-1); 885 } 886 if (bc.bc_addr == buf) { 887 *out = (uintptr_t)bcp; 888 return (0); 889 } 890 bcp = bc.bc_next; 891 } 892 893 mdb_warn("unable to find bufctl for %p in cache %p\n", buf, caddr); 894 return (-1); 895 } 896 897 int 898 kmem_get_magsize(const kmem_cache_t *cp) 899 { 900 uintptr_t addr = (uintptr_t)cp->cache_magtype; 901 GElf_Sym mt_sym; 902 kmem_magtype_t mt; 903 int res; 904 905 /* 906 * if cpu 0 has a non-zero magsize, it must be correct. caches 907 * with KMF_NOMAGAZINE have disabled their magazine layers, so 908 * it is okay to return 0 for them. 909 */ 910 if ((res = cp->cache_cpu[0].cc_magsize) != 0 || 911 (cp->cache_flags & KMF_NOMAGAZINE)) 912 return (res); 913 914 if (mdb_lookup_by_name("kmem_magtype", &mt_sym) == -1) { 915 mdb_warn("unable to read 'kmem_magtype'"); 916 } else if (addr < mt_sym.st_value || 917 addr + sizeof (mt) - 1 > mt_sym.st_value + mt_sym.st_size - 1 || 918 ((addr - mt_sym.st_value) % sizeof (mt)) != 0) { 919 mdb_warn("cache '%s' has invalid magtype pointer (%p)\n", 920 cp->cache_name, addr); 921 return (0); 922 } 923 if (mdb_vread(&mt, sizeof (mt), addr) == -1) { 924 mdb_warn("unable to read magtype at %a", addr); 925 return (0); 926 } 927 return (mt.mt_magsize); 928 } 929 930 /*ARGSUSED*/ 931 static int 932 kmem_estimate_slab(uintptr_t addr, const kmem_slab_t *sp, size_t *est) 933 { 934 *est -= (sp->slab_chunks - sp->slab_refcnt); 935 936 return (WALK_NEXT); 937 } 938 939 /* 940 * Returns an upper bound on the number of allocated buffers in a given 941 * cache. 942 */ 943 size_t 944 kmem_estimate_allocated(uintptr_t addr, const kmem_cache_t *cp) 945 { 946 int magsize; 947 size_t cache_est; 948 949 cache_est = cp->cache_buftotal; 950 951 (void) mdb_pwalk("kmem_slab_partial", 952 (mdb_walk_cb_t)kmem_estimate_slab, &cache_est, addr); 953 954 if ((magsize = kmem_get_magsize(cp)) != 0) { 955 size_t mag_est = cp->cache_full.ml_total * magsize; 956 957 if (cache_est >= mag_est) { 958 cache_est -= mag_est; 959 } else { 960 mdb_warn("cache %p's magazine layer holds more buffers " 961 "than the slab layer.\n", addr); 962 } 963 } 964 return (cache_est); 965 } 966 967 #define READMAG_ROUNDS(rounds) { \ 968 if (mdb_vread(mp, magbsize, (uintptr_t)kmp) == -1) { \ 969 mdb_warn("couldn't read magazine at %p", kmp); \ 970 goto fail; \ 971 } \ 972 for (i = 0; i < rounds; i++) { \ 973 maglist[magcnt++] = mp->mag_round[i]; \ 974 if (magcnt == magmax) { \ 975 mdb_warn("%d magazines exceeds fudge factor\n", \ 976 magcnt); \ 977 goto fail; \ 978 } \ 979 } \ 980 } 981 982 int 983 kmem_read_magazines(kmem_cache_t *cp, uintptr_t addr, int ncpus, 984 void ***maglistp, size_t *magcntp, size_t *magmaxp, int alloc_flags) 985 { 986 kmem_magazine_t *kmp, *mp; 987 void **maglist = NULL; 988 int i, cpu; 989 size_t magsize, magmax, magbsize; 990 size_t magcnt = 0; 991 992 /* 993 * Read the magtype out of the cache, after verifying the pointer's 994 * correctness. 995 */ 996 magsize = kmem_get_magsize(cp); 997 if (magsize == 0) { 998 *maglistp = NULL; 999 *magcntp = 0; 1000 *magmaxp = 0; 1001 return (WALK_NEXT); 1002 } 1003 1004 /* 1005 * There are several places where we need to go buffer hunting: 1006 * the per-CPU loaded magazine, the per-CPU spare full magazine, 1007 * and the full magazine list in the depot. 1008 * 1009 * For an upper bound on the number of buffers in the magazine 1010 * layer, we have the number of magazines on the cache_full 1011 * list plus at most two magazines per CPU (the loaded and the 1012 * spare). Toss in 100 magazines as a fudge factor in case this 1013 * is live (the number "100" comes from the same fudge factor in 1014 * crash(8)). 1015 */ 1016 magmax = (cp->cache_full.ml_total + 2 * ncpus + 100) * magsize; 1017 magbsize = offsetof(kmem_magazine_t, mag_round[magsize]); 1018 1019 if (magbsize >= PAGESIZE / 2) { 1020 mdb_warn("magazine size for cache %p unreasonable (%x)\n", 1021 addr, magbsize); 1022 return (WALK_ERR); 1023 } 1024 1025 maglist = mdb_alloc(magmax * sizeof (void *), alloc_flags); 1026 mp = mdb_alloc(magbsize, alloc_flags); 1027 if (mp == NULL || maglist == NULL) 1028 goto fail; 1029 1030 /* 1031 * First up: the magazines in the depot (i.e. on the cache_full list). 1032 */ 1033 for (kmp = cp->cache_full.ml_list; kmp != NULL; ) { 1034 READMAG_ROUNDS(magsize); 1035 kmp = mp->mag_next; 1036 1037 if (kmp == cp->cache_full.ml_list) 1038 break; /* cache_full list loop detected */ 1039 } 1040 1041 dprintf(("cache_full list done\n")); 1042 1043 /* 1044 * Now whip through the CPUs, snagging the loaded magazines 1045 * and full spares. 1046 * 1047 * In order to prevent inconsistent dumps, rounds and prounds 1048 * are copied aside before dumping begins. 1049 */ 1050 for (cpu = 0; cpu < ncpus; cpu++) { 1051 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu]; 1052 short rounds, prounds; 1053 1054 if (KMEM_DUMPCC(ccp)) { 1055 rounds = ccp->cc_dump_rounds; 1056 prounds = ccp->cc_dump_prounds; 1057 } else { 1058 rounds = ccp->cc_rounds; 1059 prounds = ccp->cc_prounds; 1060 } 1061 1062 dprintf(("reading cpu cache %p\n", 1063 (uintptr_t)ccp - (uintptr_t)cp + addr)); 1064 1065 if (rounds > 0 && 1066 (kmp = ccp->cc_loaded) != NULL) { 1067 dprintf(("reading %d loaded rounds\n", rounds)); 1068 READMAG_ROUNDS(rounds); 1069 } 1070 1071 if (prounds > 0 && 1072 (kmp = ccp->cc_ploaded) != NULL) { 1073 dprintf(("reading %d previously loaded rounds\n", 1074 prounds)); 1075 READMAG_ROUNDS(prounds); 1076 } 1077 } 1078 1079 dprintf(("magazine layer: %d buffers\n", magcnt)); 1080 1081 if (!(alloc_flags & UM_GC)) 1082 mdb_free(mp, magbsize); 1083 1084 *maglistp = maglist; 1085 *magcntp = magcnt; 1086 *magmaxp = magmax; 1087 1088 return (WALK_NEXT); 1089 1090 fail: 1091 if (!(alloc_flags & UM_GC)) { 1092 if (mp) 1093 mdb_free(mp, magbsize); 1094 if (maglist) 1095 mdb_free(maglist, magmax * sizeof (void *)); 1096 } 1097 return (WALK_ERR); 1098 } 1099 1100 static int 1101 kmem_walk_callback(mdb_walk_state_t *wsp, uintptr_t buf) 1102 { 1103 return (wsp->walk_callback(buf, NULL, wsp->walk_cbdata)); 1104 } 1105 1106 static int 1107 bufctl_walk_callback(kmem_cache_t *cp, mdb_walk_state_t *wsp, uintptr_t buf) 1108 { 1109 kmem_bufctl_audit_t b; 1110 1111 /* 1112 * if KMF_AUDIT is not set, we know that we're looking at a 1113 * kmem_bufctl_t. 1114 */ 1115 if (!(cp->cache_flags & KMF_AUDIT) || 1116 mdb_vread(&b, sizeof (kmem_bufctl_audit_t), buf) == -1) { 1117 (void) memset(&b, 0, sizeof (b)); 1118 if (mdb_vread(&b, sizeof (kmem_bufctl_t), buf) == -1) { 1119 mdb_warn("unable to read bufctl at %p", buf); 1120 return (WALK_ERR); 1121 } 1122 } 1123 1124 return (wsp->walk_callback(buf, &b, wsp->walk_cbdata)); 1125 } 1126 1127 typedef struct kmem_walk { 1128 int kmw_type; 1129 1130 uintptr_t kmw_addr; /* cache address */ 1131 kmem_cache_t *kmw_cp; 1132 size_t kmw_csize; 1133 1134 /* 1135 * magazine layer 1136 */ 1137 void **kmw_maglist; 1138 size_t kmw_max; 1139 size_t kmw_count; 1140 size_t kmw_pos; 1141 1142 /* 1143 * slab layer 1144 */ 1145 char *kmw_valid; /* to keep track of freed buffers */ 1146 char *kmw_ubase; /* buffer for slab data */ 1147 } kmem_walk_t; 1148 1149 static int 1150 kmem_walk_init_common(mdb_walk_state_t *wsp, int type) 1151 { 1152 kmem_walk_t *kmw; 1153 int ncpus, csize; 1154 kmem_cache_t *cp; 1155 size_t vm_quantum; 1156 1157 size_t magmax, magcnt; 1158 void **maglist = NULL; 1159 uint_t chunksize = 1, slabsize = 1; 1160 int status = WALK_ERR; 1161 uintptr_t addr = wsp->walk_addr; 1162 const char *layered; 1163 1164 type &= ~KM_HASH; 1165 1166 if (addr == 0) { 1167 mdb_warn("kmem walk doesn't support global walks\n"); 1168 return (WALK_ERR); 1169 } 1170 1171 dprintf(("walking %p\n", addr)); 1172 1173 /* 1174 * First we need to figure out how many CPUs are configured in the 1175 * system to know how much to slurp out. 1176 */ 1177 mdb_readvar(&ncpus, "max_ncpus"); 1178 1179 csize = KMEM_CACHE_SIZE(ncpus); 1180 cp = mdb_alloc(csize, UM_SLEEP); 1181 1182 if (mdb_vread(cp, csize, addr) == -1) { 1183 mdb_warn("couldn't read cache at addr %p", addr); 1184 goto out2; 1185 } 1186 1187 /* 1188 * It's easy for someone to hand us an invalid cache address. 1189 * Unfortunately, it is hard for this walker to survive an 1190 * invalid cache cleanly. So we make sure that: 1191 * 1192 * 1. the vmem arena for the cache is readable, 1193 * 2. the vmem arena's quantum is a power of 2, 1194 * 3. our slabsize is a multiple of the quantum, and 1195 * 4. our chunksize is >0 and less than our slabsize. 1196 */ 1197 if (mdb_vread(&vm_quantum, sizeof (vm_quantum), 1198 (uintptr_t)&cp->cache_arena->vm_quantum) == -1 || 1199 vm_quantum == 0 || 1200 (vm_quantum & (vm_quantum - 1)) != 0 || 1201 cp->cache_slabsize < vm_quantum || 1202 P2PHASE(cp->cache_slabsize, vm_quantum) != 0 || 1203 cp->cache_chunksize == 0 || 1204 cp->cache_chunksize > cp->cache_slabsize) { 1205 mdb_warn("%p is not a valid kmem_cache_t\n", addr); 1206 goto out2; 1207 } 1208 1209 dprintf(("buf total is %d\n", cp->cache_buftotal)); 1210 1211 if (cp->cache_buftotal == 0) { 1212 mdb_free(cp, csize); 1213 return (WALK_DONE); 1214 } 1215 1216 /* 1217 * If they ask for bufctls, but it's a small-slab cache, 1218 * there is nothing to report. 1219 */ 1220 if ((type & KM_BUFCTL) && !(cp->cache_flags & KMF_HASH)) { 1221 dprintf(("bufctl requested, not KMF_HASH (flags: %p)\n", 1222 cp->cache_flags)); 1223 mdb_free(cp, csize); 1224 return (WALK_DONE); 1225 } 1226 1227 /* 1228 * If they want constructed buffers, but there's no constructor or 1229 * the cache has DEADBEEF checking enabled, there is nothing to report. 1230 */ 1231 if ((type & KM_CONSTRUCTED) && (!(type & KM_FREE) || 1232 cp->cache_constructor == NULL || 1233 (cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) == KMF_DEADBEEF)) { 1234 mdb_free(cp, csize); 1235 return (WALK_DONE); 1236 } 1237 1238 /* 1239 * Read in the contents of the magazine layer 1240 */ 1241 if (kmem_read_magazines(cp, addr, ncpus, &maglist, &magcnt, 1242 &magmax, UM_SLEEP) == WALK_ERR) 1243 goto out2; 1244 1245 /* 1246 * We have all of the buffers from the magazines; if we are walking 1247 * allocated buffers, sort them so we can bsearch them later. 1248 */ 1249 if (type & KM_ALLOCATED) 1250 qsort(maglist, magcnt, sizeof (void *), addrcmp); 1251 1252 wsp->walk_data = kmw = mdb_zalloc(sizeof (kmem_walk_t), UM_SLEEP); 1253 1254 kmw->kmw_type = type; 1255 kmw->kmw_addr = addr; 1256 kmw->kmw_cp = cp; 1257 kmw->kmw_csize = csize; 1258 kmw->kmw_maglist = maglist; 1259 kmw->kmw_max = magmax; 1260 kmw->kmw_count = magcnt; 1261 kmw->kmw_pos = 0; 1262 1263 /* 1264 * When walking allocated buffers in a KMF_HASH cache, we walk the 1265 * hash table instead of the slab layer. 1266 */ 1267 if ((cp->cache_flags & KMF_HASH) && (type & KM_ALLOCATED)) { 1268 layered = "kmem_hash"; 1269 1270 kmw->kmw_type |= KM_HASH; 1271 } else { 1272 /* 1273 * If we are walking freed buffers, we only need the 1274 * magazine layer plus the partially allocated slabs. 1275 * To walk allocated buffers, we need all of the slabs. 1276 */ 1277 if (type & KM_ALLOCATED) 1278 layered = "kmem_slab"; 1279 else 1280 layered = "kmem_slab_partial"; 1281 1282 /* 1283 * for small-slab caches, we read in the entire slab. For 1284 * freed buffers, we can just walk the freelist. For 1285 * allocated buffers, we use a 'valid' array to track 1286 * the freed buffers. 1287 */ 1288 if (!(cp->cache_flags & KMF_HASH)) { 1289 chunksize = cp->cache_chunksize; 1290 slabsize = cp->cache_slabsize; 1291 1292 kmw->kmw_ubase = mdb_alloc(slabsize + 1293 sizeof (kmem_bufctl_t), UM_SLEEP); 1294 1295 if (type & KM_ALLOCATED) 1296 kmw->kmw_valid = 1297 mdb_alloc(slabsize / chunksize, UM_SLEEP); 1298 } 1299 } 1300 1301 status = WALK_NEXT; 1302 1303 if (mdb_layered_walk(layered, wsp) == -1) { 1304 mdb_warn("unable to start layered '%s' walk", layered); 1305 status = WALK_ERR; 1306 } 1307 1308 out1: 1309 if (status == WALK_ERR) { 1310 if (kmw->kmw_valid) 1311 mdb_free(kmw->kmw_valid, slabsize / chunksize); 1312 1313 if (kmw->kmw_ubase) 1314 mdb_free(kmw->kmw_ubase, slabsize + 1315 sizeof (kmem_bufctl_t)); 1316 1317 if (kmw->kmw_maglist) 1318 mdb_free(kmw->kmw_maglist, 1319 kmw->kmw_max * sizeof (uintptr_t)); 1320 1321 mdb_free(kmw, sizeof (kmem_walk_t)); 1322 wsp->walk_data = NULL; 1323 } 1324 1325 out2: 1326 if (status == WALK_ERR) 1327 mdb_free(cp, csize); 1328 1329 return (status); 1330 } 1331 1332 int 1333 kmem_walk_step(mdb_walk_state_t *wsp) 1334 { 1335 kmem_walk_t *kmw = wsp->walk_data; 1336 int type = kmw->kmw_type; 1337 kmem_cache_t *cp = kmw->kmw_cp; 1338 1339 void **maglist = kmw->kmw_maglist; 1340 int magcnt = kmw->kmw_count; 1341 1342 uintptr_t chunksize, slabsize; 1343 uintptr_t addr; 1344 const kmem_slab_t *sp; 1345 const kmem_bufctl_t *bcp; 1346 kmem_bufctl_t bc; 1347 1348 int chunks; 1349 char *kbase; 1350 void *buf; 1351 int i, ret; 1352 1353 char *valid, *ubase; 1354 1355 /* 1356 * first, handle the 'kmem_hash' layered walk case 1357 */ 1358 if (type & KM_HASH) { 1359 /* 1360 * We have a buffer which has been allocated out of the 1361 * global layer. We need to make sure that it's not 1362 * actually sitting in a magazine before we report it as 1363 * an allocated buffer. 1364 */ 1365 buf = ((const kmem_bufctl_t *)wsp->walk_layer)->bc_addr; 1366 1367 if (magcnt > 0 && 1368 bsearch(&buf, maglist, magcnt, sizeof (void *), 1369 addrcmp) != NULL) 1370 return (WALK_NEXT); 1371 1372 if (type & KM_BUFCTL) 1373 return (bufctl_walk_callback(cp, wsp, wsp->walk_addr)); 1374 1375 return (kmem_walk_callback(wsp, (uintptr_t)buf)); 1376 } 1377 1378 ret = WALK_NEXT; 1379 1380 addr = kmw->kmw_addr; 1381 1382 /* 1383 * If we're walking freed buffers, report everything in the 1384 * magazine layer before processing the first slab. 1385 */ 1386 if ((type & KM_FREE) && magcnt != 0) { 1387 kmw->kmw_count = 0; /* only do this once */ 1388 for (i = 0; i < magcnt; i++) { 1389 buf = maglist[i]; 1390 1391 if (type & KM_BUFCTL) { 1392 uintptr_t out; 1393 1394 if (cp->cache_flags & KMF_BUFTAG) { 1395 kmem_buftag_t *btp; 1396 kmem_buftag_t tag; 1397 1398 /* LINTED - alignment */ 1399 btp = KMEM_BUFTAG(cp, buf); 1400 if (mdb_vread(&tag, sizeof (tag), 1401 (uintptr_t)btp) == -1) { 1402 mdb_warn("reading buftag for " 1403 "%p at %p", buf, btp); 1404 continue; 1405 } 1406 out = (uintptr_t)tag.bt_bufctl; 1407 } else { 1408 if (kmem_hash_lookup(cp, addr, buf, 1409 &out) == -1) 1410 continue; 1411 } 1412 ret = bufctl_walk_callback(cp, wsp, out); 1413 } else { 1414 ret = kmem_walk_callback(wsp, (uintptr_t)buf); 1415 } 1416 1417 if (ret != WALK_NEXT) 1418 return (ret); 1419 } 1420 } 1421 1422 /* 1423 * If they want constructed buffers, we're finished, since the 1424 * magazine layer holds them all. 1425 */ 1426 if (type & KM_CONSTRUCTED) 1427 return (WALK_DONE); 1428 1429 /* 1430 * Handle the buffers in the current slab 1431 */ 1432 chunksize = cp->cache_chunksize; 1433 slabsize = cp->cache_slabsize; 1434 1435 sp = wsp->walk_layer; 1436 chunks = sp->slab_chunks; 1437 kbase = sp->slab_base; 1438 1439 dprintf(("kbase is %p\n", kbase)); 1440 1441 if (!(cp->cache_flags & KMF_HASH)) { 1442 valid = kmw->kmw_valid; 1443 ubase = kmw->kmw_ubase; 1444 1445 if (mdb_vread(ubase, chunks * chunksize, 1446 (uintptr_t)kbase) == -1) { 1447 mdb_warn("failed to read slab contents at %p", kbase); 1448 return (WALK_ERR); 1449 } 1450 1451 /* 1452 * Set up the valid map as fully allocated -- we'll punch 1453 * out the freelist. 1454 */ 1455 if (type & KM_ALLOCATED) 1456 (void) memset(valid, 1, chunks); 1457 } else { 1458 valid = NULL; 1459 ubase = NULL; 1460 } 1461 1462 /* 1463 * walk the slab's freelist 1464 */ 1465 bcp = sp->slab_head; 1466 1467 dprintf(("refcnt is %d; chunks is %d\n", sp->slab_refcnt, chunks)); 1468 1469 /* 1470 * since we could be in the middle of allocating a buffer, 1471 * our refcnt could be one higher than it aught. So we 1472 * check one further on the freelist than the count allows. 1473 */ 1474 for (i = sp->slab_refcnt; i <= chunks; i++) { 1475 uint_t ndx; 1476 1477 dprintf(("bcp is %p\n", bcp)); 1478 1479 if (bcp == NULL) { 1480 if (i == chunks) 1481 break; 1482 mdb_warn( 1483 "slab %p in cache %p freelist too short by %d\n", 1484 sp, addr, chunks - i); 1485 break; 1486 } 1487 1488 if (cp->cache_flags & KMF_HASH) { 1489 if (mdb_vread(&bc, sizeof (bc), (uintptr_t)bcp) == -1) { 1490 mdb_warn("failed to read bufctl ptr at %p", 1491 bcp); 1492 break; 1493 } 1494 buf = bc.bc_addr; 1495 } else { 1496 /* 1497 * Otherwise the buffer is (or should be) in the slab 1498 * that we've read in; determine its offset in the 1499 * slab, validate that it's not corrupt, and add to 1500 * our base address to find the umem_bufctl_t. (Note 1501 * that we don't need to add the size of the bufctl 1502 * to our offset calculation because of the slop that's 1503 * allocated for the buffer at ubase.) 1504 */ 1505 uintptr_t offs = (uintptr_t)bcp - (uintptr_t)kbase; 1506 1507 if (offs > chunks * chunksize) { 1508 mdb_warn("found corrupt bufctl ptr %p" 1509 " in slab %p in cache %p\n", bcp, 1510 wsp->walk_addr, addr); 1511 break; 1512 } 1513 1514 bc = *((kmem_bufctl_t *)((uintptr_t)ubase + offs)); 1515 buf = KMEM_BUF(cp, bcp); 1516 } 1517 1518 ndx = ((uintptr_t)buf - (uintptr_t)kbase) / chunksize; 1519 1520 if (ndx > slabsize / cp->cache_bufsize) { 1521 /* 1522 * This is very wrong; we have managed to find 1523 * a buffer in the slab which shouldn't 1524 * actually be here. Emit a warning, and 1525 * try to continue. 1526 */ 1527 mdb_warn("buf %p is out of range for " 1528 "slab %p, cache %p\n", buf, sp, addr); 1529 } else if (type & KM_ALLOCATED) { 1530 /* 1531 * we have found a buffer on the slab's freelist; 1532 * clear its entry 1533 */ 1534 valid[ndx] = 0; 1535 } else { 1536 /* 1537 * Report this freed buffer 1538 */ 1539 if (type & KM_BUFCTL) { 1540 ret = bufctl_walk_callback(cp, wsp, 1541 (uintptr_t)bcp); 1542 } else { 1543 ret = kmem_walk_callback(wsp, (uintptr_t)buf); 1544 } 1545 if (ret != WALK_NEXT) 1546 return (ret); 1547 } 1548 1549 bcp = bc.bc_next; 1550 } 1551 1552 if (bcp != NULL) { 1553 dprintf(("slab %p in cache %p freelist too long (%p)\n", 1554 sp, addr, bcp)); 1555 } 1556 1557 /* 1558 * If we are walking freed buffers, the loop above handled reporting 1559 * them. 1560 */ 1561 if (type & KM_FREE) 1562 return (WALK_NEXT); 1563 1564 if (type & KM_BUFCTL) { 1565 mdb_warn("impossible situation: small-slab KM_BUFCTL walk for " 1566 "cache %p\n", addr); 1567 return (WALK_ERR); 1568 } 1569 1570 /* 1571 * Report allocated buffers, skipping buffers in the magazine layer. 1572 * We only get this far for small-slab caches. 1573 */ 1574 for (i = 0; ret == WALK_NEXT && i < chunks; i++) { 1575 buf = (char *)kbase + i * chunksize; 1576 1577 if (!valid[i]) 1578 continue; /* on slab freelist */ 1579 1580 if (magcnt > 0 && 1581 bsearch(&buf, maglist, magcnt, sizeof (void *), 1582 addrcmp) != NULL) 1583 continue; /* in magazine layer */ 1584 1585 ret = kmem_walk_callback(wsp, (uintptr_t)buf); 1586 } 1587 return (ret); 1588 } 1589 1590 void 1591 kmem_walk_fini(mdb_walk_state_t *wsp) 1592 { 1593 kmem_walk_t *kmw = wsp->walk_data; 1594 uintptr_t chunksize; 1595 uintptr_t slabsize; 1596 1597 if (kmw == NULL) 1598 return; 1599 1600 if (kmw->kmw_maglist != NULL) 1601 mdb_free(kmw->kmw_maglist, kmw->kmw_max * sizeof (void *)); 1602 1603 chunksize = kmw->kmw_cp->cache_chunksize; 1604 slabsize = kmw->kmw_cp->cache_slabsize; 1605 1606 if (kmw->kmw_valid != NULL) 1607 mdb_free(kmw->kmw_valid, slabsize / chunksize); 1608 if (kmw->kmw_ubase != NULL) 1609 mdb_free(kmw->kmw_ubase, slabsize + sizeof (kmem_bufctl_t)); 1610 1611 mdb_free(kmw->kmw_cp, kmw->kmw_csize); 1612 mdb_free(kmw, sizeof (kmem_walk_t)); 1613 } 1614 1615 /*ARGSUSED*/ 1616 static int 1617 kmem_walk_all(uintptr_t addr, const kmem_cache_t *c, mdb_walk_state_t *wsp) 1618 { 1619 /* 1620 * Buffers allocated from NOTOUCH caches can also show up as freed 1621 * memory in other caches. This can be a little confusing, so we 1622 * don't walk NOTOUCH caches when walking all caches (thereby assuring 1623 * that "::walk kmem" and "::walk freemem" yield disjoint output). 1624 */ 1625 if (c->cache_cflags & KMC_NOTOUCH) 1626 return (WALK_NEXT); 1627 1628 if (mdb_pwalk(wsp->walk_data, wsp->walk_callback, 1629 wsp->walk_cbdata, addr) == -1) 1630 return (WALK_DONE); 1631 1632 return (WALK_NEXT); 1633 } 1634 1635 #define KMEM_WALK_ALL(name, wsp) { \ 1636 wsp->walk_data = (name); \ 1637 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmem_walk_all, wsp) == -1) \ 1638 return (WALK_ERR); \ 1639 return (WALK_DONE); \ 1640 } 1641 1642 int 1643 kmem_walk_init(mdb_walk_state_t *wsp) 1644 { 1645 if (wsp->walk_arg != NULL) 1646 wsp->walk_addr = (uintptr_t)wsp->walk_arg; 1647 1648 if (wsp->walk_addr == 0) 1649 KMEM_WALK_ALL("kmem", wsp); 1650 return (kmem_walk_init_common(wsp, KM_ALLOCATED)); 1651 } 1652 1653 int 1654 bufctl_walk_init(mdb_walk_state_t *wsp) 1655 { 1656 if (wsp->walk_addr == 0) 1657 KMEM_WALK_ALL("bufctl", wsp); 1658 return (kmem_walk_init_common(wsp, KM_ALLOCATED | KM_BUFCTL)); 1659 } 1660 1661 int 1662 freemem_walk_init(mdb_walk_state_t *wsp) 1663 { 1664 if (wsp->walk_addr == 0) 1665 KMEM_WALK_ALL("freemem", wsp); 1666 return (kmem_walk_init_common(wsp, KM_FREE)); 1667 } 1668 1669 int 1670 freemem_constructed_walk_init(mdb_walk_state_t *wsp) 1671 { 1672 if (wsp->walk_addr == 0) 1673 KMEM_WALK_ALL("freemem_constructed", wsp); 1674 return (kmem_walk_init_common(wsp, KM_FREE | KM_CONSTRUCTED)); 1675 } 1676 1677 int 1678 freectl_walk_init(mdb_walk_state_t *wsp) 1679 { 1680 if (wsp->walk_addr == 0) 1681 KMEM_WALK_ALL("freectl", wsp); 1682 return (kmem_walk_init_common(wsp, KM_FREE | KM_BUFCTL)); 1683 } 1684 1685 int 1686 freectl_constructed_walk_init(mdb_walk_state_t *wsp) 1687 { 1688 if (wsp->walk_addr == 0) 1689 KMEM_WALK_ALL("freectl_constructed", wsp); 1690 return (kmem_walk_init_common(wsp, 1691 KM_FREE | KM_BUFCTL | KM_CONSTRUCTED)); 1692 } 1693 1694 typedef struct bufctl_history_walk { 1695 void *bhw_next; 1696 kmem_cache_t *bhw_cache; 1697 kmem_slab_t *bhw_slab; 1698 hrtime_t bhw_timestamp; 1699 } bufctl_history_walk_t; 1700 1701 int 1702 bufctl_history_walk_init(mdb_walk_state_t *wsp) 1703 { 1704 bufctl_history_walk_t *bhw; 1705 kmem_bufctl_audit_t bc; 1706 kmem_bufctl_audit_t bcn; 1707 1708 if (wsp->walk_addr == 0) { 1709 mdb_warn("bufctl_history walk doesn't support global walks\n"); 1710 return (WALK_ERR); 1711 } 1712 1713 if (mdb_vread(&bc, sizeof (bc), wsp->walk_addr) == -1) { 1714 mdb_warn("unable to read bufctl at %p", wsp->walk_addr); 1715 return (WALK_ERR); 1716 } 1717 1718 bhw = mdb_zalloc(sizeof (*bhw), UM_SLEEP); 1719 bhw->bhw_timestamp = 0; 1720 bhw->bhw_cache = bc.bc_cache; 1721 bhw->bhw_slab = bc.bc_slab; 1722 1723 /* 1724 * sometimes the first log entry matches the base bufctl; in that 1725 * case, skip the base bufctl. 1726 */ 1727 if (bc.bc_lastlog != NULL && 1728 mdb_vread(&bcn, sizeof (bcn), (uintptr_t)bc.bc_lastlog) != -1 && 1729 bc.bc_addr == bcn.bc_addr && 1730 bc.bc_cache == bcn.bc_cache && 1731 bc.bc_slab == bcn.bc_slab && 1732 bc.bc_timestamp == bcn.bc_timestamp && 1733 bc.bc_thread == bcn.bc_thread) 1734 bhw->bhw_next = bc.bc_lastlog; 1735 else 1736 bhw->bhw_next = (void *)wsp->walk_addr; 1737 1738 wsp->walk_addr = (uintptr_t)bc.bc_addr; 1739 wsp->walk_data = bhw; 1740 1741 return (WALK_NEXT); 1742 } 1743 1744 int 1745 bufctl_history_walk_step(mdb_walk_state_t *wsp) 1746 { 1747 bufctl_history_walk_t *bhw = wsp->walk_data; 1748 uintptr_t addr = (uintptr_t)bhw->bhw_next; 1749 uintptr_t baseaddr = wsp->walk_addr; 1750 kmem_bufctl_audit_t bc; 1751 1752 if (addr == 0) 1753 return (WALK_DONE); 1754 1755 if (mdb_vread(&bc, sizeof (bc), addr) == -1) { 1756 mdb_warn("unable to read bufctl at %p", bhw->bhw_next); 1757 return (WALK_ERR); 1758 } 1759 1760 /* 1761 * The bufctl is only valid if the address, cache, and slab are 1762 * correct. We also check that the timestamp is decreasing, to 1763 * prevent infinite loops. 1764 */ 1765 if ((uintptr_t)bc.bc_addr != baseaddr || 1766 bc.bc_cache != bhw->bhw_cache || 1767 bc.bc_slab != bhw->bhw_slab || 1768 (bhw->bhw_timestamp != 0 && bc.bc_timestamp >= bhw->bhw_timestamp)) 1769 return (WALK_DONE); 1770 1771 bhw->bhw_next = bc.bc_lastlog; 1772 bhw->bhw_timestamp = bc.bc_timestamp; 1773 1774 return (wsp->walk_callback(addr, &bc, wsp->walk_cbdata)); 1775 } 1776 1777 void 1778 bufctl_history_walk_fini(mdb_walk_state_t *wsp) 1779 { 1780 bufctl_history_walk_t *bhw = wsp->walk_data; 1781 1782 mdb_free(bhw, sizeof (*bhw)); 1783 } 1784 1785 typedef struct kmem_log_walk { 1786 kmem_bufctl_audit_t *klw_base; 1787 kmem_bufctl_audit_t **klw_sorted; 1788 kmem_log_header_t klw_lh; 1789 size_t klw_size; 1790 size_t klw_maxndx; 1791 size_t klw_ndx; 1792 } kmem_log_walk_t; 1793 1794 int 1795 kmem_log_walk_init(mdb_walk_state_t *wsp) 1796 { 1797 uintptr_t lp = wsp->walk_addr; 1798 kmem_log_walk_t *klw; 1799 kmem_log_header_t *lhp; 1800 int maxndx, i, j, k; 1801 1802 /* 1803 * By default (global walk), walk the kmem_transaction_log. Otherwise 1804 * read the log whose kmem_log_header_t is stored at walk_addr. 1805 */ 1806 if (lp == 0 && mdb_readvar(&lp, "kmem_transaction_log") == -1) { 1807 mdb_warn("failed to read 'kmem_transaction_log'"); 1808 return (WALK_ERR); 1809 } 1810 1811 if (lp == 0) { 1812 mdb_warn("log is disabled\n"); 1813 return (WALK_ERR); 1814 } 1815 1816 klw = mdb_zalloc(sizeof (kmem_log_walk_t), UM_SLEEP); 1817 lhp = &klw->klw_lh; 1818 1819 if (mdb_vread(lhp, sizeof (kmem_log_header_t), lp) == -1) { 1820 mdb_warn("failed to read log header at %p", lp); 1821 mdb_free(klw, sizeof (kmem_log_walk_t)); 1822 return (WALK_ERR); 1823 } 1824 1825 klw->klw_size = lhp->lh_chunksize * lhp->lh_nchunks; 1826 klw->klw_base = mdb_alloc(klw->klw_size, UM_SLEEP); 1827 maxndx = lhp->lh_chunksize / sizeof (kmem_bufctl_audit_t) - 1; 1828 1829 if (mdb_vread(klw->klw_base, klw->klw_size, 1830 (uintptr_t)lhp->lh_base) == -1) { 1831 mdb_warn("failed to read log at base %p", lhp->lh_base); 1832 mdb_free(klw->klw_base, klw->klw_size); 1833 mdb_free(klw, sizeof (kmem_log_walk_t)); 1834 return (WALK_ERR); 1835 } 1836 1837 klw->klw_sorted = mdb_alloc(maxndx * lhp->lh_nchunks * 1838 sizeof (kmem_bufctl_audit_t *), UM_SLEEP); 1839 1840 for (i = 0, k = 0; i < lhp->lh_nchunks; i++) { 1841 kmem_bufctl_audit_t *chunk = (kmem_bufctl_audit_t *) 1842 ((uintptr_t)klw->klw_base + i * lhp->lh_chunksize); 1843 1844 for (j = 0; j < maxndx; j++) 1845 klw->klw_sorted[k++] = &chunk[j]; 1846 } 1847 1848 qsort(klw->klw_sorted, k, sizeof (kmem_bufctl_audit_t *), 1849 (int(*)(const void *, const void *))bufctlcmp); 1850 1851 klw->klw_maxndx = k; 1852 wsp->walk_data = klw; 1853 1854 return (WALK_NEXT); 1855 } 1856 1857 int 1858 kmem_log_walk_step(mdb_walk_state_t *wsp) 1859 { 1860 kmem_log_walk_t *klw = wsp->walk_data; 1861 kmem_bufctl_audit_t *bcp; 1862 1863 if (klw->klw_ndx == klw->klw_maxndx) 1864 return (WALK_DONE); 1865 1866 bcp = klw->klw_sorted[klw->klw_ndx++]; 1867 1868 return (wsp->walk_callback((uintptr_t)bcp - (uintptr_t)klw->klw_base + 1869 (uintptr_t)klw->klw_lh.lh_base, bcp, wsp->walk_cbdata)); 1870 } 1871 1872 void 1873 kmem_log_walk_fini(mdb_walk_state_t *wsp) 1874 { 1875 kmem_log_walk_t *klw = wsp->walk_data; 1876 1877 mdb_free(klw->klw_base, klw->klw_size); 1878 mdb_free(klw->klw_sorted, klw->klw_maxndx * 1879 sizeof (kmem_bufctl_audit_t *)); 1880 mdb_free(klw, sizeof (kmem_log_walk_t)); 1881 } 1882 1883 typedef struct allocdby_bufctl { 1884 uintptr_t abb_addr; 1885 hrtime_t abb_ts; 1886 } allocdby_bufctl_t; 1887 1888 typedef struct allocdby_walk { 1889 const char *abw_walk; 1890 uintptr_t abw_thread; 1891 size_t abw_nbufs; 1892 size_t abw_size; 1893 allocdby_bufctl_t *abw_buf; 1894 size_t abw_ndx; 1895 } allocdby_walk_t; 1896 1897 int 1898 allocdby_walk_bufctl(uintptr_t addr, const kmem_bufctl_audit_t *bcp, 1899 allocdby_walk_t *abw) 1900 { 1901 if ((uintptr_t)bcp->bc_thread != abw->abw_thread) 1902 return (WALK_NEXT); 1903 1904 if (abw->abw_nbufs == abw->abw_size) { 1905 allocdby_bufctl_t *buf; 1906 size_t oldsize = sizeof (allocdby_bufctl_t) * abw->abw_size; 1907 1908 buf = mdb_zalloc(oldsize << 1, UM_SLEEP); 1909 1910 bcopy(abw->abw_buf, buf, oldsize); 1911 mdb_free(abw->abw_buf, oldsize); 1912 1913 abw->abw_size <<= 1; 1914 abw->abw_buf = buf; 1915 } 1916 1917 abw->abw_buf[abw->abw_nbufs].abb_addr = addr; 1918 abw->abw_buf[abw->abw_nbufs].abb_ts = bcp->bc_timestamp; 1919 abw->abw_nbufs++; 1920 1921 return (WALK_NEXT); 1922 } 1923 1924 /*ARGSUSED*/ 1925 int 1926 allocdby_walk_cache(uintptr_t addr, const kmem_cache_t *c, allocdby_walk_t *abw) 1927 { 1928 if (mdb_pwalk(abw->abw_walk, (mdb_walk_cb_t)allocdby_walk_bufctl, 1929 abw, addr) == -1) { 1930 mdb_warn("couldn't walk bufctl for cache %p", addr); 1931 return (WALK_DONE); 1932 } 1933 1934 return (WALK_NEXT); 1935 } 1936 1937 static int 1938 allocdby_cmp(const allocdby_bufctl_t *lhs, const allocdby_bufctl_t *rhs) 1939 { 1940 if (lhs->abb_ts < rhs->abb_ts) 1941 return (1); 1942 if (lhs->abb_ts > rhs->abb_ts) 1943 return (-1); 1944 return (0); 1945 } 1946 1947 static int 1948 allocdby_walk_init_common(mdb_walk_state_t *wsp, const char *walk) 1949 { 1950 allocdby_walk_t *abw; 1951 1952 if (wsp->walk_addr == 0) { 1953 mdb_warn("allocdby walk doesn't support global walks\n"); 1954 return (WALK_ERR); 1955 } 1956 1957 abw = mdb_zalloc(sizeof (allocdby_walk_t), UM_SLEEP); 1958 1959 abw->abw_thread = wsp->walk_addr; 1960 abw->abw_walk = walk; 1961 abw->abw_size = 128; /* something reasonable */ 1962 abw->abw_buf = 1963 mdb_zalloc(abw->abw_size * sizeof (allocdby_bufctl_t), UM_SLEEP); 1964 1965 wsp->walk_data = abw; 1966 1967 if (mdb_walk("kmem_cache", 1968 (mdb_walk_cb_t)allocdby_walk_cache, abw) == -1) { 1969 mdb_warn("couldn't walk kmem_cache"); 1970 allocdby_walk_fini(wsp); 1971 return (WALK_ERR); 1972 } 1973 1974 qsort(abw->abw_buf, abw->abw_nbufs, sizeof (allocdby_bufctl_t), 1975 (int(*)(const void *, const void *))allocdby_cmp); 1976 1977 return (WALK_NEXT); 1978 } 1979 1980 int 1981 allocdby_walk_init(mdb_walk_state_t *wsp) 1982 { 1983 return (allocdby_walk_init_common(wsp, "bufctl")); 1984 } 1985 1986 int 1987 freedby_walk_init(mdb_walk_state_t *wsp) 1988 { 1989 return (allocdby_walk_init_common(wsp, "freectl")); 1990 } 1991 1992 int 1993 allocdby_walk_step(mdb_walk_state_t *wsp) 1994 { 1995 allocdby_walk_t *abw = wsp->walk_data; 1996 kmem_bufctl_audit_t bc; 1997 uintptr_t addr; 1998 1999 if (abw->abw_ndx == abw->abw_nbufs) 2000 return (WALK_DONE); 2001 2002 addr = abw->abw_buf[abw->abw_ndx++].abb_addr; 2003 2004 if (mdb_vread(&bc, sizeof (bc), addr) == -1) { 2005 mdb_warn("couldn't read bufctl at %p", addr); 2006 return (WALK_DONE); 2007 } 2008 2009 return (wsp->walk_callback(addr, &bc, wsp->walk_cbdata)); 2010 } 2011 2012 void 2013 allocdby_walk_fini(mdb_walk_state_t *wsp) 2014 { 2015 allocdby_walk_t *abw = wsp->walk_data; 2016 2017 mdb_free(abw->abw_buf, sizeof (allocdby_bufctl_t) * abw->abw_size); 2018 mdb_free(abw, sizeof (allocdby_walk_t)); 2019 } 2020 2021 /*ARGSUSED*/ 2022 int 2023 allocdby_walk(uintptr_t addr, const kmem_bufctl_audit_t *bcp, void *ignored) 2024 { 2025 char c[MDB_SYM_NAMLEN]; 2026 GElf_Sym sym; 2027 int i; 2028 2029 mdb_printf("%0?p %12llx ", addr, bcp->bc_timestamp); 2030 for (i = 0; i < bcp->bc_depth; i++) { 2031 if (mdb_lookup_by_addr(bcp->bc_stack[i], 2032 MDB_SYM_FUZZY, c, sizeof (c), &sym) == -1) 2033 continue; 2034 if (strncmp(c, "kmem_", 5) == 0) 2035 continue; 2036 mdb_printf("%s+0x%lx", 2037 c, bcp->bc_stack[i] - (uintptr_t)sym.st_value); 2038 break; 2039 } 2040 mdb_printf("\n"); 2041 2042 return (WALK_NEXT); 2043 } 2044 2045 static int 2046 allocdby_common(uintptr_t addr, uint_t flags, const char *w) 2047 { 2048 if (!(flags & DCMD_ADDRSPEC)) 2049 return (DCMD_USAGE); 2050 2051 mdb_printf("%-?s %12s %s\n", "BUFCTL", "TIMESTAMP", "CALLER"); 2052 2053 if (mdb_pwalk(w, (mdb_walk_cb_t)allocdby_walk, NULL, addr) == -1) { 2054 mdb_warn("can't walk '%s' for %p", w, addr); 2055 return (DCMD_ERR); 2056 } 2057 2058 return (DCMD_OK); 2059 } 2060 2061 /*ARGSUSED*/ 2062 int 2063 allocdby(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2064 { 2065 return (allocdby_common(addr, flags, "allocdby")); 2066 } 2067 2068 /*ARGSUSED*/ 2069 int 2070 freedby(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2071 { 2072 return (allocdby_common(addr, flags, "freedby")); 2073 } 2074 2075 /* 2076 * Return a string describing the address in relation to the given thread's 2077 * stack. 2078 * 2079 * - If the thread state is TS_FREE, return " (inactive interrupt thread)". 2080 * 2081 * - If the address is above the stack pointer, return an empty string 2082 * signifying that the address is active. 2083 * 2084 * - If the address is below the stack pointer, and the thread is not on proc, 2085 * return " (below sp)". 2086 * 2087 * - If the address is below the stack pointer, and the thread is on proc, 2088 * return " (possibly below sp)". Depending on context, we may or may not 2089 * have an accurate t_sp. 2090 */ 2091 static const char * 2092 stack_active(const kthread_t *t, uintptr_t addr) 2093 { 2094 uintptr_t panicstk; 2095 GElf_Sym sym; 2096 2097 if (t->t_state == TS_FREE) 2098 return (" (inactive interrupt thread)"); 2099 2100 /* 2101 * Check to see if we're on the panic stack. If so, ignore t_sp, as it 2102 * no longer relates to the thread's real stack. 2103 */ 2104 if (mdb_lookup_by_name("panic_stack", &sym) == 0) { 2105 panicstk = (uintptr_t)sym.st_value; 2106 2107 if (t->t_sp >= panicstk && t->t_sp < panicstk + PANICSTKSIZE) 2108 return (""); 2109 } 2110 2111 if (addr >= t->t_sp + STACK_BIAS) 2112 return (""); 2113 2114 if (t->t_state == TS_ONPROC) 2115 return (" (possibly below sp)"); 2116 2117 return (" (below sp)"); 2118 } 2119 2120 /* 2121 * Additional state for the kmem and vmem ::whatis handlers 2122 */ 2123 typedef struct whatis_info { 2124 mdb_whatis_t *wi_w; 2125 const kmem_cache_t *wi_cache; 2126 const vmem_t *wi_vmem; 2127 vmem_t *wi_msb_arena; 2128 size_t wi_slab_size; 2129 uint_t wi_slab_found; 2130 uint_t wi_kmem_lite_count; 2131 uint_t wi_freemem; 2132 } whatis_info_t; 2133 2134 /* call one of our dcmd functions with "-v" and the provided address */ 2135 static void 2136 whatis_call_printer(mdb_dcmd_f *dcmd, uintptr_t addr) 2137 { 2138 mdb_arg_t a; 2139 a.a_type = MDB_TYPE_STRING; 2140 a.a_un.a_str = "-v"; 2141 2142 mdb_printf(":\n"); 2143 (void) (*dcmd)(addr, DCMD_ADDRSPEC, 1, &a); 2144 } 2145 2146 static void 2147 whatis_print_kmf_lite(uintptr_t btaddr, size_t count) 2148 { 2149 #define KMEM_LITE_MAX 16 2150 pc_t callers[KMEM_LITE_MAX]; 2151 pc_t uninit = (pc_t)KMEM_UNINITIALIZED_PATTERN; 2152 2153 kmem_buftag_t bt; 2154 intptr_t stat; 2155 const char *plural = ""; 2156 int i; 2157 2158 /* validate our arguments and read in the buftag */ 2159 if (count == 0 || count > KMEM_LITE_MAX || 2160 mdb_vread(&bt, sizeof (bt), btaddr) == -1) 2161 return; 2162 2163 /* validate the buffer state and read in the callers */ 2164 stat = (intptr_t)bt.bt_bufctl ^ bt.bt_bxstat; 2165 2166 if (stat != KMEM_BUFTAG_ALLOC && stat != KMEM_BUFTAG_FREE) 2167 return; 2168 2169 if (mdb_vread(callers, count * sizeof (pc_t), 2170 btaddr + offsetof(kmem_buftag_lite_t, bt_history)) == -1) 2171 return; 2172 2173 /* If there aren't any filled in callers, bail */ 2174 if (callers[0] == uninit) 2175 return; 2176 2177 plural = (callers[1] == uninit) ? "" : "s"; 2178 2179 /* Everything's done and checked; print them out */ 2180 mdb_printf(":\n"); 2181 2182 mdb_inc_indent(8); 2183 mdb_printf("recent caller%s: %a", plural, callers[0]); 2184 for (i = 1; i < count; i++) { 2185 if (callers[i] == uninit) 2186 break; 2187 mdb_printf(", %a", callers[i]); 2188 } 2189 mdb_dec_indent(8); 2190 } 2191 2192 static void 2193 whatis_print_kmem(whatis_info_t *wi, uintptr_t maddr, uintptr_t addr, 2194 uintptr_t baddr) 2195 { 2196 mdb_whatis_t *w = wi->wi_w; 2197 2198 const kmem_cache_t *cp = wi->wi_cache; 2199 /* LINTED pointer cast may result in improper alignment */ 2200 uintptr_t btaddr = (uintptr_t)KMEM_BUFTAG(cp, addr); 2201 int quiet = (mdb_whatis_flags(w) & WHATIS_QUIET); 2202 int call_printer = (!quiet && (cp->cache_flags & KMF_AUDIT)); 2203 2204 mdb_whatis_report_object(w, maddr, addr, ""); 2205 2206 if (baddr != 0 && !call_printer) 2207 mdb_printf("bufctl %p ", baddr); 2208 2209 mdb_printf("%s from %s", 2210 (wi->wi_freemem == FALSE) ? "allocated" : "freed", cp->cache_name); 2211 2212 if (baddr != 0 && call_printer) { 2213 whatis_call_printer(bufctl, baddr); 2214 return; 2215 } 2216 2217 /* for KMF_LITE caches, try to print out the previous callers */ 2218 if (!quiet && (cp->cache_flags & KMF_LITE)) 2219 whatis_print_kmf_lite(btaddr, wi->wi_kmem_lite_count); 2220 2221 mdb_printf("\n"); 2222 } 2223 2224 /*ARGSUSED*/ 2225 static int 2226 whatis_walk_kmem(uintptr_t addr, void *ignored, whatis_info_t *wi) 2227 { 2228 mdb_whatis_t *w = wi->wi_w; 2229 2230 uintptr_t cur; 2231 size_t size = wi->wi_cache->cache_bufsize; 2232 2233 while (mdb_whatis_match(w, addr, size, &cur)) 2234 whatis_print_kmem(wi, cur, addr, 0); 2235 2236 return (WHATIS_WALKRET(w)); 2237 } 2238 2239 /*ARGSUSED*/ 2240 static int 2241 whatis_walk_bufctl(uintptr_t baddr, const kmem_bufctl_t *bcp, whatis_info_t *wi) 2242 { 2243 mdb_whatis_t *w = wi->wi_w; 2244 2245 uintptr_t cur; 2246 uintptr_t addr = (uintptr_t)bcp->bc_addr; 2247 size_t size = wi->wi_cache->cache_bufsize; 2248 2249 while (mdb_whatis_match(w, addr, size, &cur)) 2250 whatis_print_kmem(wi, cur, addr, baddr); 2251 2252 return (WHATIS_WALKRET(w)); 2253 } 2254 2255 static int 2256 whatis_walk_seg(uintptr_t addr, const vmem_seg_t *vs, whatis_info_t *wi) 2257 { 2258 mdb_whatis_t *w = wi->wi_w; 2259 2260 size_t size = vs->vs_end - vs->vs_start; 2261 uintptr_t cur; 2262 2263 /* We're not interested in anything but alloc and free segments */ 2264 if (vs->vs_type != VMEM_ALLOC && vs->vs_type != VMEM_FREE) 2265 return (WALK_NEXT); 2266 2267 while (mdb_whatis_match(w, vs->vs_start, size, &cur)) { 2268 mdb_whatis_report_object(w, cur, vs->vs_start, ""); 2269 2270 /* 2271 * If we're not printing it seperately, provide the vmem_seg 2272 * pointer if it has a stack trace. 2273 */ 2274 if ((mdb_whatis_flags(w) & WHATIS_QUIET) && 2275 (!(mdb_whatis_flags(w) & WHATIS_BUFCTL) || 2276 (vs->vs_type == VMEM_ALLOC && vs->vs_depth != 0))) { 2277 mdb_printf("vmem_seg %p ", addr); 2278 } 2279 2280 mdb_printf("%s from the %s vmem arena", 2281 (vs->vs_type == VMEM_ALLOC) ? "allocated" : "freed", 2282 wi->wi_vmem->vm_name); 2283 2284 if (!(mdb_whatis_flags(w) & WHATIS_QUIET)) 2285 whatis_call_printer(vmem_seg, addr); 2286 else 2287 mdb_printf("\n"); 2288 } 2289 2290 return (WHATIS_WALKRET(w)); 2291 } 2292 2293 static int 2294 whatis_walk_vmem(uintptr_t addr, const vmem_t *vmem, whatis_info_t *wi) 2295 { 2296 mdb_whatis_t *w = wi->wi_w; 2297 const char *nm = vmem->vm_name; 2298 2299 int identifier = ((vmem->vm_cflags & VMC_IDENTIFIER) != 0); 2300 int idspace = ((mdb_whatis_flags(w) & WHATIS_IDSPACE) != 0); 2301 2302 if (identifier != idspace) 2303 return (WALK_NEXT); 2304 2305 wi->wi_vmem = vmem; 2306 2307 if (mdb_whatis_flags(w) & WHATIS_VERBOSE) 2308 mdb_printf("Searching vmem arena %s...\n", nm); 2309 2310 if (mdb_pwalk("vmem_seg", 2311 (mdb_walk_cb_t)whatis_walk_seg, wi, addr) == -1) { 2312 mdb_warn("can't walk vmem_seg for %p", addr); 2313 return (WALK_NEXT); 2314 } 2315 2316 return (WHATIS_WALKRET(w)); 2317 } 2318 2319 /*ARGSUSED*/ 2320 static int 2321 whatis_walk_slab(uintptr_t saddr, const kmem_slab_t *sp, whatis_info_t *wi) 2322 { 2323 mdb_whatis_t *w = wi->wi_w; 2324 2325 /* It must overlap with the slab data, or it's not interesting */ 2326 if (mdb_whatis_overlaps(w, 2327 (uintptr_t)sp->slab_base, wi->wi_slab_size)) { 2328 wi->wi_slab_found++; 2329 return (WALK_DONE); 2330 } 2331 return (WALK_NEXT); 2332 } 2333 2334 static int 2335 whatis_walk_cache(uintptr_t addr, const kmem_cache_t *c, whatis_info_t *wi) 2336 { 2337 mdb_whatis_t *w = wi->wi_w; 2338 2339 char *walk, *freewalk; 2340 mdb_walk_cb_t func; 2341 int do_bufctl; 2342 2343 int identifier = ((c->cache_flags & KMC_IDENTIFIER) != 0); 2344 int idspace = ((mdb_whatis_flags(w) & WHATIS_IDSPACE) != 0); 2345 2346 if (identifier != idspace) 2347 return (WALK_NEXT); 2348 2349 /* Override the '-b' flag as necessary */ 2350 if (!(c->cache_flags & KMF_HASH)) 2351 do_bufctl = FALSE; /* no bufctls to walk */ 2352 else if (c->cache_flags & KMF_AUDIT) 2353 do_bufctl = TRUE; /* we always want debugging info */ 2354 else 2355 do_bufctl = ((mdb_whatis_flags(w) & WHATIS_BUFCTL) != 0); 2356 2357 if (do_bufctl) { 2358 walk = "bufctl"; 2359 freewalk = "freectl"; 2360 func = (mdb_walk_cb_t)whatis_walk_bufctl; 2361 } else { 2362 walk = "kmem"; 2363 freewalk = "freemem"; 2364 func = (mdb_walk_cb_t)whatis_walk_kmem; 2365 } 2366 2367 wi->wi_cache = c; 2368 2369 if (mdb_whatis_flags(w) & WHATIS_VERBOSE) 2370 mdb_printf("Searching %s...\n", c->cache_name); 2371 2372 /* 2373 * If more then two buffers live on each slab, figure out if we're 2374 * interested in anything in any slab before doing the more expensive 2375 * kmem/freemem (bufctl/freectl) walkers. 2376 */ 2377 wi->wi_slab_size = c->cache_slabsize - c->cache_maxcolor; 2378 if (!(c->cache_flags & KMF_HASH)) 2379 wi->wi_slab_size -= sizeof (kmem_slab_t); 2380 2381 if ((wi->wi_slab_size / c->cache_chunksize) > 2) { 2382 wi->wi_slab_found = 0; 2383 if (mdb_pwalk("kmem_slab", (mdb_walk_cb_t)whatis_walk_slab, wi, 2384 addr) == -1) { 2385 mdb_warn("can't find kmem_slab walker"); 2386 return (WALK_DONE); 2387 } 2388 if (wi->wi_slab_found == 0) 2389 return (WALK_NEXT); 2390 } 2391 2392 wi->wi_freemem = FALSE; 2393 if (mdb_pwalk(walk, func, wi, addr) == -1) { 2394 mdb_warn("can't find %s walker", walk); 2395 return (WALK_DONE); 2396 } 2397 2398 if (mdb_whatis_done(w)) 2399 return (WALK_DONE); 2400 2401 /* 2402 * We have searched for allocated memory; now search for freed memory. 2403 */ 2404 if (mdb_whatis_flags(w) & WHATIS_VERBOSE) 2405 mdb_printf("Searching %s for free memory...\n", c->cache_name); 2406 2407 wi->wi_freemem = TRUE; 2408 if (mdb_pwalk(freewalk, func, wi, addr) == -1) { 2409 mdb_warn("can't find %s walker", freewalk); 2410 return (WALK_DONE); 2411 } 2412 2413 return (WHATIS_WALKRET(w)); 2414 } 2415 2416 static int 2417 whatis_walk_touch(uintptr_t addr, const kmem_cache_t *c, whatis_info_t *wi) 2418 { 2419 if (c->cache_arena == wi->wi_msb_arena || 2420 (c->cache_cflags & KMC_NOTOUCH)) 2421 return (WALK_NEXT); 2422 2423 return (whatis_walk_cache(addr, c, wi)); 2424 } 2425 2426 static int 2427 whatis_walk_metadata(uintptr_t addr, const kmem_cache_t *c, whatis_info_t *wi) 2428 { 2429 if (c->cache_arena != wi->wi_msb_arena) 2430 return (WALK_NEXT); 2431 2432 return (whatis_walk_cache(addr, c, wi)); 2433 } 2434 2435 static int 2436 whatis_walk_notouch(uintptr_t addr, const kmem_cache_t *c, whatis_info_t *wi) 2437 { 2438 if (c->cache_arena == wi->wi_msb_arena || 2439 !(c->cache_cflags & KMC_NOTOUCH)) 2440 return (WALK_NEXT); 2441 2442 return (whatis_walk_cache(addr, c, wi)); 2443 } 2444 2445 static int 2446 whatis_walk_thread(uintptr_t addr, const kthread_t *t, mdb_whatis_t *w) 2447 { 2448 uintptr_t cur; 2449 uintptr_t saddr; 2450 size_t size; 2451 2452 /* 2453 * Often, one calls ::whatis on an address from a thread structure. 2454 * We use this opportunity to short circuit this case... 2455 */ 2456 while (mdb_whatis_match(w, addr, sizeof (kthread_t), &cur)) 2457 mdb_whatis_report_object(w, cur, addr, 2458 "allocated as a thread structure\n"); 2459 2460 /* 2461 * Now check the stack 2462 */ 2463 if (t->t_stkbase == NULL) 2464 return (WALK_NEXT); 2465 2466 /* 2467 * This assumes that t_stk is the end of the stack, but it's really 2468 * only the initial stack pointer for the thread. Arguments to the 2469 * initial procedure, SA(MINFRAME), etc. are all after t_stk. So 2470 * that 't->t_stk::whatis' reports "part of t's stack", we include 2471 * t_stk in the range (the "+ 1", below), but the kernel should 2472 * really include the full stack bounds where we can find it. 2473 */ 2474 saddr = (uintptr_t)t->t_stkbase; 2475 size = (uintptr_t)t->t_stk - saddr + 1; 2476 while (mdb_whatis_match(w, saddr, size, &cur)) 2477 mdb_whatis_report_object(w, cur, cur, 2478 "in thread %p's stack%s\n", addr, stack_active(t, cur)); 2479 2480 return (WHATIS_WALKRET(w)); 2481 } 2482 2483 static void 2484 whatis_modctl_match(mdb_whatis_t *w, const char *name, 2485 uintptr_t base, size_t size, const char *where) 2486 { 2487 uintptr_t cur; 2488 2489 /* 2490 * Since we're searching for addresses inside a module, we report 2491 * them as symbols. 2492 */ 2493 while (mdb_whatis_match(w, base, size, &cur)) 2494 mdb_whatis_report_address(w, cur, "in %s's %s\n", name, where); 2495 } 2496 2497 struct kmem_ctf_module { 2498 Shdr *symhdr; 2499 char *symtbl; 2500 unsigned int nsyms; 2501 char *symspace; 2502 size_t symsize; 2503 char *text; 2504 char *data; 2505 uintptr_t bss; 2506 size_t text_size; 2507 size_t data_size; 2508 size_t bss_size; 2509 }; 2510 2511 static int 2512 whatis_walk_modctl(uintptr_t addr, const struct modctl *m, mdb_whatis_t *w) 2513 { 2514 char name[MODMAXNAMELEN]; 2515 struct kmem_ctf_module mod; 2516 Shdr shdr; 2517 2518 if (m->mod_mp == NULL) 2519 return (WALK_NEXT); 2520 2521 if (mdb_ctf_vread(&mod, "struct module", "struct kmem_ctf_module", 2522 (uintptr_t)m->mod_mp, 0) == -1) { 2523 mdb_warn("couldn't read modctl %p's module", addr); 2524 return (WALK_NEXT); 2525 } 2526 2527 if (mdb_readstr(name, sizeof (name), (uintptr_t)m->mod_modname) == -1) 2528 (void) mdb_snprintf(name, sizeof (name), "0x%p", addr); 2529 2530 whatis_modctl_match(w, name, 2531 (uintptr_t)mod.text, mod.text_size, "text segment"); 2532 whatis_modctl_match(w, name, 2533 (uintptr_t)mod.data, mod.data_size, "data segment"); 2534 whatis_modctl_match(w, name, 2535 (uintptr_t)mod.bss, mod.bss_size, "bss segment"); 2536 2537 if (mdb_vread(&shdr, sizeof (shdr), (uintptr_t)mod.symhdr) == -1) { 2538 mdb_warn("couldn't read symbol header for %p's module", addr); 2539 return (WALK_NEXT); 2540 } 2541 2542 whatis_modctl_match(w, name, 2543 (uintptr_t)mod.symtbl, mod.nsyms * shdr.sh_entsize, "symtab"); 2544 whatis_modctl_match(w, name, 2545 (uintptr_t)mod.symspace, mod.symsize, "symtab"); 2546 2547 return (WHATIS_WALKRET(w)); 2548 } 2549 2550 /*ARGSUSED*/ 2551 static int 2552 whatis_walk_memseg(uintptr_t addr, const struct memseg *seg, mdb_whatis_t *w) 2553 { 2554 uintptr_t cur; 2555 2556 uintptr_t base = (uintptr_t)seg->pages; 2557 size_t size = (uintptr_t)seg->epages - base; 2558 2559 while (mdb_whatis_match(w, base, size, &cur)) { 2560 /* round our found pointer down to the page_t base. */ 2561 size_t offset = (cur - base) % sizeof (page_t); 2562 2563 mdb_whatis_report_object(w, cur, cur - offset, 2564 "allocated as a page structure\n"); 2565 } 2566 2567 return (WHATIS_WALKRET(w)); 2568 } 2569 2570 /*ARGSUSED*/ 2571 static int 2572 whatis_run_modules(mdb_whatis_t *w, void *arg) 2573 { 2574 if (mdb_walk("modctl", (mdb_walk_cb_t)whatis_walk_modctl, w) == -1) { 2575 mdb_warn("couldn't find modctl walker"); 2576 return (1); 2577 } 2578 return (0); 2579 } 2580 2581 /*ARGSUSED*/ 2582 static int 2583 whatis_run_threads(mdb_whatis_t *w, void *ignored) 2584 { 2585 /* 2586 * Now search all thread stacks. Yes, this is a little weak; we 2587 * can save a lot of work by first checking to see if the 2588 * address is in segkp vs. segkmem. But hey, computers are 2589 * fast. 2590 */ 2591 if (mdb_walk("thread", (mdb_walk_cb_t)whatis_walk_thread, w) == -1) { 2592 mdb_warn("couldn't find thread walker"); 2593 return (1); 2594 } 2595 return (0); 2596 } 2597 2598 /*ARGSUSED*/ 2599 static int 2600 whatis_run_pages(mdb_whatis_t *w, void *ignored) 2601 { 2602 if (mdb_walk("memseg", (mdb_walk_cb_t)whatis_walk_memseg, w) == -1) { 2603 mdb_warn("couldn't find memseg walker"); 2604 return (1); 2605 } 2606 return (0); 2607 } 2608 2609 /*ARGSUSED*/ 2610 static int 2611 whatis_run_kmem(mdb_whatis_t *w, void *ignored) 2612 { 2613 whatis_info_t wi; 2614 2615 bzero(&wi, sizeof (wi)); 2616 wi.wi_w = w; 2617 2618 if (mdb_readvar(&wi.wi_msb_arena, "kmem_msb_arena") == -1) 2619 mdb_warn("unable to readvar \"kmem_msb_arena\""); 2620 2621 if (mdb_readvar(&wi.wi_kmem_lite_count, 2622 "kmem_lite_count") == -1 || wi.wi_kmem_lite_count > 16) 2623 wi.wi_kmem_lite_count = 0; 2624 2625 /* 2626 * We process kmem caches in the following order: 2627 * 2628 * non-KMC_NOTOUCH, non-metadata (typically the most interesting) 2629 * metadata (can be huge with KMF_AUDIT) 2630 * KMC_NOTOUCH, non-metadata (see kmem_walk_all()) 2631 */ 2632 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)whatis_walk_touch, 2633 &wi) == -1 || 2634 mdb_walk("kmem_cache", (mdb_walk_cb_t)whatis_walk_metadata, 2635 &wi) == -1 || 2636 mdb_walk("kmem_cache", (mdb_walk_cb_t)whatis_walk_notouch, 2637 &wi) == -1) { 2638 mdb_warn("couldn't find kmem_cache walker"); 2639 return (1); 2640 } 2641 return (0); 2642 } 2643 2644 /*ARGSUSED*/ 2645 static int 2646 whatis_run_vmem(mdb_whatis_t *w, void *ignored) 2647 { 2648 whatis_info_t wi; 2649 2650 bzero(&wi, sizeof (wi)); 2651 wi.wi_w = w; 2652 2653 if (mdb_walk("vmem_postfix", 2654 (mdb_walk_cb_t)whatis_walk_vmem, &wi) == -1) { 2655 mdb_warn("couldn't find vmem_postfix walker"); 2656 return (1); 2657 } 2658 return (0); 2659 } 2660 2661 typedef struct kmem_log_cpu { 2662 uintptr_t kmc_low; 2663 uintptr_t kmc_high; 2664 } kmem_log_cpu_t; 2665 2666 typedef struct kmem_log_data { 2667 uintptr_t kmd_addr; 2668 kmem_log_cpu_t *kmd_cpu; 2669 } kmem_log_data_t; 2670 2671 int 2672 kmem_log_walk(uintptr_t addr, const kmem_bufctl_audit_t *b, 2673 kmem_log_data_t *kmd) 2674 { 2675 int i; 2676 kmem_log_cpu_t *kmc = kmd->kmd_cpu; 2677 size_t bufsize; 2678 2679 for (i = 0; i < NCPU; i++) { 2680 if (addr >= kmc[i].kmc_low && addr < kmc[i].kmc_high) 2681 break; 2682 } 2683 2684 if (kmd->kmd_addr) { 2685 if (b->bc_cache == NULL) 2686 return (WALK_NEXT); 2687 2688 if (mdb_vread(&bufsize, sizeof (bufsize), 2689 (uintptr_t)&b->bc_cache->cache_bufsize) == -1) { 2690 mdb_warn( 2691 "failed to read cache_bufsize for cache at %p", 2692 b->bc_cache); 2693 return (WALK_ERR); 2694 } 2695 2696 if (kmd->kmd_addr < (uintptr_t)b->bc_addr || 2697 kmd->kmd_addr >= (uintptr_t)b->bc_addr + bufsize) 2698 return (WALK_NEXT); 2699 } 2700 2701 if (i == NCPU) 2702 mdb_printf(" "); 2703 else 2704 mdb_printf("%3d", i); 2705 2706 mdb_printf(" %0?p %0?p %16llx %0?p\n", addr, b->bc_addr, 2707 b->bc_timestamp, b->bc_thread); 2708 2709 return (WALK_NEXT); 2710 } 2711 2712 /*ARGSUSED*/ 2713 int 2714 kmem_log(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2715 { 2716 kmem_log_header_t lh; 2717 kmem_cpu_log_header_t clh; 2718 uintptr_t lhp, clhp; 2719 int ncpus; 2720 uintptr_t *cpu; 2721 GElf_Sym sym; 2722 kmem_log_cpu_t *kmc; 2723 int i; 2724 kmem_log_data_t kmd; 2725 uint_t opt_b = FALSE; 2726 2727 if (mdb_getopts(argc, argv, 2728 'b', MDB_OPT_SETBITS, TRUE, &opt_b, NULL) != argc) 2729 return (DCMD_USAGE); 2730 2731 if (mdb_readvar(&lhp, "kmem_transaction_log") == -1) { 2732 mdb_warn("failed to read 'kmem_transaction_log'"); 2733 return (DCMD_ERR); 2734 } 2735 2736 if (lhp == 0) { 2737 mdb_warn("no kmem transaction log\n"); 2738 return (DCMD_ERR); 2739 } 2740 2741 mdb_readvar(&ncpus, "ncpus"); 2742 2743 if (mdb_vread(&lh, sizeof (kmem_log_header_t), lhp) == -1) { 2744 mdb_warn("failed to read log header at %p", lhp); 2745 return (DCMD_ERR); 2746 } 2747 2748 clhp = lhp + ((uintptr_t)&lh.lh_cpu[0] - (uintptr_t)&lh); 2749 2750 cpu = mdb_alloc(sizeof (uintptr_t) * NCPU, UM_SLEEP | UM_GC); 2751 2752 if (mdb_lookup_by_name("cpu", &sym) == -1) { 2753 mdb_warn("couldn't find 'cpu' array"); 2754 return (DCMD_ERR); 2755 } 2756 2757 if (sym.st_size != NCPU * sizeof (uintptr_t)) { 2758 mdb_warn("expected 'cpu' to be of size %d; found %d\n", 2759 NCPU * sizeof (uintptr_t), sym.st_size); 2760 return (DCMD_ERR); 2761 } 2762 2763 if (mdb_vread(cpu, sym.st_size, (uintptr_t)sym.st_value) == -1) { 2764 mdb_warn("failed to read cpu array at %p", sym.st_value); 2765 return (DCMD_ERR); 2766 } 2767 2768 kmc = mdb_zalloc(sizeof (kmem_log_cpu_t) * NCPU, UM_SLEEP | UM_GC); 2769 kmd.kmd_addr = 0; 2770 kmd.kmd_cpu = kmc; 2771 2772 for (i = 0; i < NCPU; i++) { 2773 2774 if (cpu[i] == 0) 2775 continue; 2776 2777 if (mdb_vread(&clh, sizeof (clh), clhp) == -1) { 2778 mdb_warn("cannot read cpu %d's log header at %p", 2779 i, clhp); 2780 return (DCMD_ERR); 2781 } 2782 2783 kmc[i].kmc_low = clh.clh_chunk * lh.lh_chunksize + 2784 (uintptr_t)lh.lh_base; 2785 kmc[i].kmc_high = (uintptr_t)clh.clh_current; 2786 2787 clhp += sizeof (kmem_cpu_log_header_t); 2788 } 2789 2790 mdb_printf("%3s %-?s %-?s %16s %-?s\n", "CPU", "ADDR", "BUFADDR", 2791 "TIMESTAMP", "THREAD"); 2792 2793 /* 2794 * If we have been passed an address, print out only log entries 2795 * corresponding to that address. If opt_b is specified, then interpret 2796 * the address as a bufctl. 2797 */ 2798 if (flags & DCMD_ADDRSPEC) { 2799 kmem_bufctl_audit_t b; 2800 2801 if (opt_b) { 2802 kmd.kmd_addr = addr; 2803 } else { 2804 if (mdb_vread(&b, 2805 sizeof (kmem_bufctl_audit_t), addr) == -1) { 2806 mdb_warn("failed to read bufctl at %p", addr); 2807 return (DCMD_ERR); 2808 } 2809 2810 (void) kmem_log_walk(addr, &b, &kmd); 2811 2812 return (DCMD_OK); 2813 } 2814 } 2815 2816 if (mdb_walk("kmem_log", (mdb_walk_cb_t)kmem_log_walk, &kmd) == -1) { 2817 mdb_warn("can't find kmem log walker"); 2818 return (DCMD_ERR); 2819 } 2820 2821 return (DCMD_OK); 2822 } 2823 2824 typedef struct bufctl_history_cb { 2825 int bhc_flags; 2826 int bhc_argc; 2827 const mdb_arg_t *bhc_argv; 2828 int bhc_ret; 2829 } bufctl_history_cb_t; 2830 2831 /*ARGSUSED*/ 2832 static int 2833 bufctl_history_callback(uintptr_t addr, const void *ign, void *arg) 2834 { 2835 bufctl_history_cb_t *bhc = arg; 2836 2837 bhc->bhc_ret = 2838 bufctl(addr, bhc->bhc_flags, bhc->bhc_argc, bhc->bhc_argv); 2839 2840 bhc->bhc_flags &= ~DCMD_LOOPFIRST; 2841 2842 return ((bhc->bhc_ret == DCMD_OK)? WALK_NEXT : WALK_DONE); 2843 } 2844 2845 void 2846 bufctl_help(void) 2847 { 2848 mdb_printf("%s", 2849 "Display the contents of kmem_bufctl_audit_ts, with optional filtering.\n\n"); 2850 mdb_dec_indent(2); 2851 mdb_printf("%<b>OPTIONS%</b>\n"); 2852 mdb_inc_indent(2); 2853 mdb_printf("%s", 2854 " -v Display the full content of the bufctl, including its stack trace\n" 2855 " -h retrieve the bufctl's transaction history, if available\n" 2856 " -a addr\n" 2857 " filter out bufctls not involving the buffer at addr\n" 2858 " -c caller\n" 2859 " filter out bufctls without the function/PC in their stack trace\n" 2860 " -e earliest\n" 2861 " filter out bufctls timestamped before earliest\n" 2862 " -l latest\n" 2863 " filter out bufctls timestamped after latest\n" 2864 " -t thread\n" 2865 " filter out bufctls not involving thread\n"); 2866 } 2867 2868 int 2869 bufctl(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2870 { 2871 kmem_bufctl_audit_t bc; 2872 uint_t verbose = FALSE; 2873 uint_t history = FALSE; 2874 uint_t in_history = FALSE; 2875 uintptr_t caller = 0, thread = 0; 2876 uintptr_t laddr, haddr, baddr = 0; 2877 hrtime_t earliest = 0, latest = 0; 2878 int i, depth; 2879 char c[MDB_SYM_NAMLEN]; 2880 GElf_Sym sym; 2881 2882 if (mdb_getopts(argc, argv, 2883 'v', MDB_OPT_SETBITS, TRUE, &verbose, 2884 'h', MDB_OPT_SETBITS, TRUE, &history, 2885 'H', MDB_OPT_SETBITS, TRUE, &in_history, /* internal */ 2886 'c', MDB_OPT_UINTPTR, &caller, 2887 't', MDB_OPT_UINTPTR, &thread, 2888 'e', MDB_OPT_UINT64, &earliest, 2889 'l', MDB_OPT_UINT64, &latest, 2890 'a', MDB_OPT_UINTPTR, &baddr, NULL) != argc) 2891 return (DCMD_USAGE); 2892 2893 if (!(flags & DCMD_ADDRSPEC)) 2894 return (DCMD_USAGE); 2895 2896 if (in_history && !history) 2897 return (DCMD_USAGE); 2898 2899 if (history && !in_history) { 2900 mdb_arg_t *nargv = mdb_zalloc(sizeof (*nargv) * (argc + 1), 2901 UM_SLEEP | UM_GC); 2902 bufctl_history_cb_t bhc; 2903 2904 nargv[0].a_type = MDB_TYPE_STRING; 2905 nargv[0].a_un.a_str = "-H"; /* prevent recursion */ 2906 2907 for (i = 0; i < argc; i++) 2908 nargv[i + 1] = argv[i]; 2909 2910 /* 2911 * When in history mode, we treat each element as if it 2912 * were in a seperate loop, so that the headers group 2913 * bufctls with similar histories. 2914 */ 2915 bhc.bhc_flags = flags | DCMD_LOOP | DCMD_LOOPFIRST; 2916 bhc.bhc_argc = argc + 1; 2917 bhc.bhc_argv = nargv; 2918 bhc.bhc_ret = DCMD_OK; 2919 2920 if (mdb_pwalk("bufctl_history", bufctl_history_callback, &bhc, 2921 addr) == -1) { 2922 mdb_warn("unable to walk bufctl_history"); 2923 return (DCMD_ERR); 2924 } 2925 2926 if (bhc.bhc_ret == DCMD_OK && !(flags & DCMD_PIPE_OUT)) 2927 mdb_printf("\n"); 2928 2929 return (bhc.bhc_ret); 2930 } 2931 2932 if (DCMD_HDRSPEC(flags) && !(flags & DCMD_PIPE_OUT)) { 2933 if (verbose) { 2934 mdb_printf("%16s %16s %16s %16s\n" 2935 "%<u>%16s %16s %16s %16s%</u>\n", 2936 "ADDR", "BUFADDR", "TIMESTAMP", "THREAD", 2937 "", "CACHE", "LASTLOG", "CONTENTS"); 2938 } else { 2939 mdb_printf("%<u>%-?s %-?s %-12s %-?s %s%</u>\n", 2940 "ADDR", "BUFADDR", "TIMESTAMP", "THREAD", "CALLER"); 2941 } 2942 } 2943 2944 if (mdb_vread(&bc, sizeof (bc), addr) == -1) { 2945 mdb_warn("couldn't read bufctl at %p", addr); 2946 return (DCMD_ERR); 2947 } 2948 2949 /* 2950 * Guard against bogus bc_depth in case the bufctl is corrupt or 2951 * the address does not really refer to a bufctl. 2952 */ 2953 depth = MIN(bc.bc_depth, KMEM_STACK_DEPTH); 2954 2955 if (caller != 0) { 2956 laddr = caller; 2957 haddr = caller + sizeof (caller); 2958 2959 if (mdb_lookup_by_addr(caller, MDB_SYM_FUZZY, c, sizeof (c), 2960 &sym) != -1 && caller == (uintptr_t)sym.st_value) { 2961 /* 2962 * We were provided an exact symbol value; any 2963 * address in the function is valid. 2964 */ 2965 laddr = (uintptr_t)sym.st_value; 2966 haddr = (uintptr_t)sym.st_value + sym.st_size; 2967 } 2968 2969 for (i = 0; i < depth; i++) 2970 if (bc.bc_stack[i] >= laddr && bc.bc_stack[i] < haddr) 2971 break; 2972 2973 if (i == depth) 2974 return (DCMD_OK); 2975 } 2976 2977 if (thread != 0 && (uintptr_t)bc.bc_thread != thread) 2978 return (DCMD_OK); 2979 2980 if (earliest != 0 && bc.bc_timestamp < earliest) 2981 return (DCMD_OK); 2982 2983 if (latest != 0 && bc.bc_timestamp > latest) 2984 return (DCMD_OK); 2985 2986 if (baddr != 0 && (uintptr_t)bc.bc_addr != baddr) 2987 return (DCMD_OK); 2988 2989 if (flags & DCMD_PIPE_OUT) { 2990 mdb_printf("%#lr\n", addr); 2991 return (DCMD_OK); 2992 } 2993 2994 if (verbose) { 2995 mdb_printf( 2996 "%<b>%16p%</b> %16p %16llx %16p\n" 2997 "%16s %16p %16p %16p\n", 2998 addr, bc.bc_addr, bc.bc_timestamp, bc.bc_thread, 2999 "", bc.bc_cache, bc.bc_lastlog, bc.bc_contents); 3000 3001 mdb_inc_indent(17); 3002 for (i = 0; i < depth; i++) 3003 mdb_printf("%a\n", bc.bc_stack[i]); 3004 mdb_dec_indent(17); 3005 mdb_printf("\n"); 3006 } else { 3007 mdb_printf("%0?p %0?p %12llx %0?p", addr, bc.bc_addr, 3008 bc.bc_timestamp, bc.bc_thread); 3009 3010 for (i = 0; i < depth; i++) { 3011 if (mdb_lookup_by_addr(bc.bc_stack[i], 3012 MDB_SYM_FUZZY, c, sizeof (c), &sym) == -1) 3013 continue; 3014 if (strncmp(c, "kmem_", 5) == 0) 3015 continue; 3016 mdb_printf(" %a\n", bc.bc_stack[i]); 3017 break; 3018 } 3019 3020 if (i >= depth) 3021 mdb_printf("\n"); 3022 } 3023 3024 return (DCMD_OK); 3025 } 3026 3027 typedef struct kmem_verify { 3028 uint64_t *kmv_buf; /* buffer to read cache contents into */ 3029 size_t kmv_size; /* number of bytes in kmv_buf */ 3030 int kmv_corruption; /* > 0 if corruption found. */ 3031 uint_t kmv_flags; /* dcmd flags */ 3032 struct kmem_cache kmv_cache; /* the cache we're operating on */ 3033 } kmem_verify_t; 3034 3035 /* 3036 * verify_pattern() 3037 * verify that buf is filled with the pattern pat. 3038 */ 3039 static int64_t 3040 verify_pattern(uint64_t *buf_arg, size_t size, uint64_t pat) 3041 { 3042 /*LINTED*/ 3043 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 3044 uint64_t *buf; 3045 3046 for (buf = buf_arg; buf < bufend; buf++) 3047 if (*buf != pat) 3048 return ((uintptr_t)buf - (uintptr_t)buf_arg); 3049 return (-1); 3050 } 3051 3052 /* 3053 * verify_buftag() 3054 * verify that btp->bt_bxstat == (bcp ^ pat) 3055 */ 3056 static int 3057 verify_buftag(kmem_buftag_t *btp, uintptr_t pat) 3058 { 3059 return (btp->bt_bxstat == ((intptr_t)btp->bt_bufctl ^ pat) ? 0 : -1); 3060 } 3061 3062 /* 3063 * verify_free() 3064 * verify the integrity of a free block of memory by checking 3065 * that it is filled with 0xdeadbeef and that its buftag is sane. 3066 */ 3067 /*ARGSUSED1*/ 3068 static int 3069 verify_free(uintptr_t addr, const void *data, void *private) 3070 { 3071 kmem_verify_t *kmv = (kmem_verify_t *)private; 3072 uint64_t *buf = kmv->kmv_buf; /* buf to validate */ 3073 int64_t corrupt; /* corruption offset */ 3074 kmem_buftag_t *buftagp; /* ptr to buftag */ 3075 kmem_cache_t *cp = &kmv->kmv_cache; 3076 boolean_t besilent = !!(kmv->kmv_flags & (DCMD_LOOP | DCMD_PIPE_OUT)); 3077 3078 /*LINTED*/ 3079 buftagp = KMEM_BUFTAG(cp, buf); 3080 3081 /* 3082 * Read the buffer to check. 3083 */ 3084 if (mdb_vread(buf, kmv->kmv_size, addr) == -1) { 3085 if (!besilent) 3086 mdb_warn("couldn't read %p", addr); 3087 return (WALK_NEXT); 3088 } 3089 3090 if ((corrupt = verify_pattern(buf, cp->cache_verify, 3091 KMEM_FREE_PATTERN)) >= 0) { 3092 if (!besilent) 3093 mdb_printf("buffer %p (free) seems corrupted, at %p\n", 3094 addr, (uintptr_t)addr + corrupt); 3095 goto corrupt; 3096 } 3097 /* 3098 * When KMF_LITE is set, buftagp->bt_redzone is used to hold 3099 * the first bytes of the buffer, hence we cannot check for red 3100 * zone corruption. 3101 */ 3102 if ((cp->cache_flags & (KMF_HASH | KMF_LITE)) == KMF_HASH && 3103 buftagp->bt_redzone != KMEM_REDZONE_PATTERN) { 3104 if (!besilent) 3105 mdb_printf("buffer %p (free) seems to " 3106 "have a corrupt redzone pattern\n", addr); 3107 goto corrupt; 3108 } 3109 3110 /* 3111 * confirm bufctl pointer integrity. 3112 */ 3113 if (verify_buftag(buftagp, KMEM_BUFTAG_FREE) == -1) { 3114 if (!besilent) 3115 mdb_printf("buffer %p (free) has a corrupt " 3116 "buftag\n", addr); 3117 goto corrupt; 3118 } 3119 3120 return (WALK_NEXT); 3121 corrupt: 3122 if (kmv->kmv_flags & DCMD_PIPE_OUT) 3123 mdb_printf("%p\n", addr); 3124 kmv->kmv_corruption++; 3125 return (WALK_NEXT); 3126 } 3127 3128 /* 3129 * verify_alloc() 3130 * Verify that the buftag of an allocated buffer makes sense with respect 3131 * to the buffer. 3132 */ 3133 /*ARGSUSED1*/ 3134 static int 3135 verify_alloc(uintptr_t addr, const void *data, void *private) 3136 { 3137 kmem_verify_t *kmv = (kmem_verify_t *)private; 3138 kmem_cache_t *cp = &kmv->kmv_cache; 3139 uint64_t *buf = kmv->kmv_buf; /* buf to validate */ 3140 /*LINTED*/ 3141 kmem_buftag_t *buftagp = KMEM_BUFTAG(cp, buf); 3142 uint32_t *ip = (uint32_t *)buftagp; 3143 uint8_t *bp = (uint8_t *)buf; 3144 int looks_ok = 0, size_ok = 1; /* flags for finding corruption */ 3145 boolean_t besilent = !!(kmv->kmv_flags & (DCMD_LOOP | DCMD_PIPE_OUT)); 3146 3147 /* 3148 * Read the buffer to check. 3149 */ 3150 if (mdb_vread(buf, kmv->kmv_size, addr) == -1) { 3151 if (!besilent) 3152 mdb_warn("couldn't read %p", addr); 3153 return (WALK_NEXT); 3154 } 3155 3156 /* 3157 * There are two cases to handle: 3158 * 1. If the buf was alloc'd using kmem_cache_alloc, it will have 3159 * 0xfeedfacefeedface at the end of it 3160 * 2. If the buf was alloc'd using kmem_alloc, it will have 3161 * 0xbb just past the end of the region in use. At the buftag, 3162 * it will have 0xfeedface (or, if the whole buffer is in use, 3163 * 0xfeedface & bb000000 or 0xfeedfacf & 000000bb depending on 3164 * endianness), followed by 32 bits containing the offset of the 3165 * 0xbb byte in the buffer. 3166 * 3167 * Finally, the two 32-bit words that comprise the second half of the 3168 * buftag should xor to KMEM_BUFTAG_ALLOC 3169 */ 3170 3171 if (buftagp->bt_redzone == KMEM_REDZONE_PATTERN) 3172 looks_ok = 1; 3173 else if (!KMEM_SIZE_VALID(ip[1])) 3174 size_ok = 0; 3175 else if (bp[KMEM_SIZE_DECODE(ip[1])] == KMEM_REDZONE_BYTE) 3176 looks_ok = 1; 3177 else 3178 size_ok = 0; 3179 3180 if (!size_ok) { 3181 if (!besilent) 3182 mdb_printf("buffer %p (allocated) has a corrupt " 3183 "redzone size encoding\n", addr); 3184 goto corrupt; 3185 } 3186 3187 if (!looks_ok) { 3188 if (!besilent) 3189 mdb_printf("buffer %p (allocated) has a corrupt " 3190 "redzone signature\n", addr); 3191 goto corrupt; 3192 } 3193 3194 if (verify_buftag(buftagp, KMEM_BUFTAG_ALLOC) == -1) { 3195 if (!besilent) 3196 mdb_printf("buffer %p (allocated) has a " 3197 "corrupt buftag\n", addr); 3198 goto corrupt; 3199 } 3200 3201 return (WALK_NEXT); 3202 corrupt: 3203 if (kmv->kmv_flags & DCMD_PIPE_OUT) 3204 mdb_printf("%p\n", addr); 3205 3206 kmv->kmv_corruption++; 3207 return (WALK_NEXT); 3208 } 3209 3210 /*ARGSUSED2*/ 3211 int 3212 kmem_verify(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3213 { 3214 if (flags & DCMD_ADDRSPEC) { 3215 int check_alloc = 0, check_free = 0; 3216 kmem_verify_t kmv; 3217 3218 if (mdb_vread(&kmv.kmv_cache, sizeof (kmv.kmv_cache), 3219 addr) == -1) { 3220 mdb_warn("couldn't read kmem_cache %p", addr); 3221 return (DCMD_ERR); 3222 } 3223 3224 if ((kmv.kmv_cache.cache_dump.kd_unsafe || 3225 kmv.kmv_cache.cache_dump.kd_alloc_fails) && 3226 !(flags & (DCMD_LOOP | DCMD_PIPE_OUT))) { 3227 mdb_warn("WARNING: cache was used during dump: " 3228 "corruption may be incorrectly reported\n"); 3229 } 3230 3231 kmv.kmv_size = kmv.kmv_cache.cache_buftag + 3232 sizeof (kmem_buftag_t); 3233 kmv.kmv_buf = mdb_alloc(kmv.kmv_size, UM_SLEEP | UM_GC); 3234 kmv.kmv_corruption = 0; 3235 kmv.kmv_flags = flags; 3236 3237 if ((kmv.kmv_cache.cache_flags & KMF_REDZONE)) { 3238 check_alloc = 1; 3239 if (kmv.kmv_cache.cache_flags & KMF_DEADBEEF) 3240 check_free = 1; 3241 } else { 3242 if (!(flags & DCMD_LOOP)) { 3243 mdb_warn("cache %p (%s) does not have " 3244 "redzone checking enabled\n", addr, 3245 kmv.kmv_cache.cache_name); 3246 } 3247 return (DCMD_ERR); 3248 } 3249 3250 if (!(flags & (DCMD_LOOP | DCMD_PIPE_OUT))) { 3251 mdb_printf("Summary for cache '%s'\n", 3252 kmv.kmv_cache.cache_name); 3253 mdb_inc_indent(2); 3254 } 3255 3256 if (check_alloc) 3257 (void) mdb_pwalk("kmem", verify_alloc, &kmv, addr); 3258 if (check_free) 3259 (void) mdb_pwalk("freemem", verify_free, &kmv, addr); 3260 3261 if (!(flags & DCMD_PIPE_OUT)) { 3262 if (flags & DCMD_LOOP) { 3263 if (kmv.kmv_corruption == 0) { 3264 mdb_printf("%-*s %?p clean\n", 3265 KMEM_CACHE_NAMELEN, 3266 kmv.kmv_cache.cache_name, addr); 3267 } else { 3268 mdb_printf("%-*s %?p %d corrupt " 3269 "buffer%s\n", KMEM_CACHE_NAMELEN, 3270 kmv.kmv_cache.cache_name, addr, 3271 kmv.kmv_corruption, 3272 kmv.kmv_corruption > 1 ? "s" : ""); 3273 } 3274 } else { 3275 /* 3276 * This is the more verbose mode, when the user 3277 * typed addr::kmem_verify. If the cache was 3278 * clean, nothing will have yet been printed. So 3279 * say something. 3280 */ 3281 if (kmv.kmv_corruption == 0) 3282 mdb_printf("clean\n"); 3283 3284 mdb_dec_indent(2); 3285 } 3286 } 3287 } else { 3288 /* 3289 * If the user didn't specify a cache to verify, we'll walk all 3290 * kmem_cache's, specifying ourself as a callback for each... 3291 * this is the equivalent of '::walk kmem_cache .::kmem_verify' 3292 */ 3293 3294 if (!(flags & DCMD_PIPE_OUT)) { 3295 uintptr_t dump_curr; 3296 uintptr_t dump_end; 3297 3298 if (mdb_readvar(&dump_curr, "kmem_dump_curr") != -1 && 3299 mdb_readvar(&dump_end, "kmem_dump_end") != -1 && 3300 dump_curr == dump_end) { 3301 mdb_warn("WARNING: exceeded kmem_dump_size; " 3302 "corruption may be incorrectly reported\n"); 3303 } 3304 3305 mdb_printf("%<u>%-*s %-?s %-20s%</b>\n", 3306 KMEM_CACHE_NAMELEN, "Cache Name", "Addr", 3307 "Cache Integrity"); 3308 } 3309 3310 (void) (mdb_walk_dcmd("kmem_cache", "kmem_verify", 0, NULL)); 3311 } 3312 3313 return (DCMD_OK); 3314 } 3315 3316 typedef struct vmem_node { 3317 struct vmem_node *vn_next; 3318 struct vmem_node *vn_parent; 3319 struct vmem_node *vn_sibling; 3320 struct vmem_node *vn_children; 3321 uintptr_t vn_addr; 3322 int vn_marked; 3323 vmem_t vn_vmem; 3324 } vmem_node_t; 3325 3326 typedef struct vmem_walk { 3327 vmem_node_t *vw_root; 3328 vmem_node_t *vw_current; 3329 } vmem_walk_t; 3330 3331 int 3332 vmem_walk_init(mdb_walk_state_t *wsp) 3333 { 3334 uintptr_t vaddr, paddr; 3335 vmem_node_t *head = NULL, *root = NULL, *current = NULL, *parent, *vp; 3336 vmem_walk_t *vw; 3337 3338 if (mdb_readvar(&vaddr, "vmem_list") == -1) { 3339 mdb_warn("couldn't read 'vmem_list'"); 3340 return (WALK_ERR); 3341 } 3342 3343 while (vaddr != 0) { 3344 vp = mdb_zalloc(sizeof (vmem_node_t), UM_SLEEP); 3345 vp->vn_addr = vaddr; 3346 vp->vn_next = head; 3347 head = vp; 3348 3349 if (vaddr == wsp->walk_addr) 3350 current = vp; 3351 3352 if (mdb_vread(&vp->vn_vmem, sizeof (vmem_t), vaddr) == -1) { 3353 mdb_warn("couldn't read vmem_t at %p", vaddr); 3354 goto err; 3355 } 3356 3357 vaddr = (uintptr_t)vp->vn_vmem.vm_next; 3358 } 3359 3360 for (vp = head; vp != NULL; vp = vp->vn_next) { 3361 3362 if ((paddr = (uintptr_t)vp->vn_vmem.vm_source) == 0) { 3363 vp->vn_sibling = root; 3364 root = vp; 3365 continue; 3366 } 3367 3368 for (parent = head; parent != NULL; parent = parent->vn_next) { 3369 if (parent->vn_addr != paddr) 3370 continue; 3371 vp->vn_sibling = parent->vn_children; 3372 parent->vn_children = vp; 3373 vp->vn_parent = parent; 3374 break; 3375 } 3376 3377 if (parent == NULL) { 3378 mdb_warn("couldn't find %p's parent (%p)\n", 3379 vp->vn_addr, paddr); 3380 goto err; 3381 } 3382 } 3383 3384 vw = mdb_zalloc(sizeof (vmem_walk_t), UM_SLEEP); 3385 vw->vw_root = root; 3386 3387 if (current != NULL) 3388 vw->vw_current = current; 3389 else 3390 vw->vw_current = root; 3391 3392 wsp->walk_data = vw; 3393 return (WALK_NEXT); 3394 err: 3395 for (vp = head; head != NULL; vp = head) { 3396 head = vp->vn_next; 3397 mdb_free(vp, sizeof (vmem_node_t)); 3398 } 3399 3400 return (WALK_ERR); 3401 } 3402 3403 int 3404 vmem_walk_step(mdb_walk_state_t *wsp) 3405 { 3406 vmem_walk_t *vw = wsp->walk_data; 3407 vmem_node_t *vp; 3408 int rval; 3409 3410 if ((vp = vw->vw_current) == NULL) 3411 return (WALK_DONE); 3412 3413 rval = wsp->walk_callback(vp->vn_addr, &vp->vn_vmem, wsp->walk_cbdata); 3414 3415 if (vp->vn_children != NULL) { 3416 vw->vw_current = vp->vn_children; 3417 return (rval); 3418 } 3419 3420 do { 3421 vw->vw_current = vp->vn_sibling; 3422 vp = vp->vn_parent; 3423 } while (vw->vw_current == NULL && vp != NULL); 3424 3425 return (rval); 3426 } 3427 3428 /* 3429 * The "vmem_postfix" walk walks the vmem arenas in post-fix order; all 3430 * children are visited before their parent. We perform the postfix walk 3431 * iteratively (rather than recursively) to allow mdb to regain control 3432 * after each callback. 3433 */ 3434 int 3435 vmem_postfix_walk_step(mdb_walk_state_t *wsp) 3436 { 3437 vmem_walk_t *vw = wsp->walk_data; 3438 vmem_node_t *vp = vw->vw_current; 3439 int rval; 3440 3441 /* 3442 * If this node is marked, then we know that we have already visited 3443 * all of its children. If the node has any siblings, they need to 3444 * be visited next; otherwise, we need to visit the parent. Note 3445 * that vp->vn_marked will only be zero on the first invocation of 3446 * the step function. 3447 */ 3448 if (vp->vn_marked) { 3449 if (vp->vn_sibling != NULL) 3450 vp = vp->vn_sibling; 3451 else if (vp->vn_parent != NULL) 3452 vp = vp->vn_parent; 3453 else { 3454 /* 3455 * We have neither a parent, nor a sibling, and we 3456 * have already been visited; we're done. 3457 */ 3458 return (WALK_DONE); 3459 } 3460 } 3461 3462 /* 3463 * Before we visit this node, visit its children. 3464 */ 3465 while (vp->vn_children != NULL && !vp->vn_children->vn_marked) 3466 vp = vp->vn_children; 3467 3468 vp->vn_marked = 1; 3469 vw->vw_current = vp; 3470 rval = wsp->walk_callback(vp->vn_addr, &vp->vn_vmem, wsp->walk_cbdata); 3471 3472 return (rval); 3473 } 3474 3475 void 3476 vmem_walk_fini(mdb_walk_state_t *wsp) 3477 { 3478 vmem_walk_t *vw = wsp->walk_data; 3479 vmem_node_t *root = vw->vw_root; 3480 int done; 3481 3482 if (root == NULL) 3483 return; 3484 3485 if ((vw->vw_root = root->vn_children) != NULL) 3486 vmem_walk_fini(wsp); 3487 3488 vw->vw_root = root->vn_sibling; 3489 done = (root->vn_sibling == NULL && root->vn_parent == NULL); 3490 mdb_free(root, sizeof (vmem_node_t)); 3491 3492 if (done) { 3493 mdb_free(vw, sizeof (vmem_walk_t)); 3494 } else { 3495 vmem_walk_fini(wsp); 3496 } 3497 } 3498 3499 typedef struct vmem_seg_walk { 3500 uint8_t vsw_type; 3501 uintptr_t vsw_start; 3502 uintptr_t vsw_current; 3503 } vmem_seg_walk_t; 3504 3505 /*ARGSUSED*/ 3506 int 3507 vmem_seg_walk_common_init(mdb_walk_state_t *wsp, uint8_t type, char *name) 3508 { 3509 vmem_seg_walk_t *vsw; 3510 3511 if (wsp->walk_addr == 0) { 3512 mdb_warn("vmem_%s does not support global walks\n", name); 3513 return (WALK_ERR); 3514 } 3515 3516 wsp->walk_data = vsw = mdb_alloc(sizeof (vmem_seg_walk_t), UM_SLEEP); 3517 3518 vsw->vsw_type = type; 3519 vsw->vsw_start = wsp->walk_addr + offsetof(vmem_t, vm_seg0); 3520 vsw->vsw_current = vsw->vsw_start; 3521 3522 return (WALK_NEXT); 3523 } 3524 3525 /* 3526 * vmem segments can't have type 0 (this should be added to vmem_impl.h). 3527 */ 3528 #define VMEM_NONE 0 3529 3530 int 3531 vmem_alloc_walk_init(mdb_walk_state_t *wsp) 3532 { 3533 return (vmem_seg_walk_common_init(wsp, VMEM_ALLOC, "alloc")); 3534 } 3535 3536 int 3537 vmem_free_walk_init(mdb_walk_state_t *wsp) 3538 { 3539 return (vmem_seg_walk_common_init(wsp, VMEM_FREE, "free")); 3540 } 3541 3542 int 3543 vmem_span_walk_init(mdb_walk_state_t *wsp) 3544 { 3545 return (vmem_seg_walk_common_init(wsp, VMEM_SPAN, "span")); 3546 } 3547 3548 int 3549 vmem_seg_walk_init(mdb_walk_state_t *wsp) 3550 { 3551 return (vmem_seg_walk_common_init(wsp, VMEM_NONE, "seg")); 3552 } 3553 3554 int 3555 vmem_seg_walk_step(mdb_walk_state_t *wsp) 3556 { 3557 vmem_seg_t seg; 3558 vmem_seg_walk_t *vsw = wsp->walk_data; 3559 uintptr_t addr = vsw->vsw_current; 3560 static size_t seg_size = 0; 3561 int rval; 3562 3563 if (!seg_size) { 3564 if (mdb_readvar(&seg_size, "vmem_seg_size") == -1) { 3565 mdb_warn("failed to read 'vmem_seg_size'"); 3566 seg_size = sizeof (vmem_seg_t); 3567 } 3568 } 3569 3570 if (seg_size < sizeof (seg)) 3571 bzero((caddr_t)&seg + seg_size, sizeof (seg) - seg_size); 3572 3573 if (mdb_vread(&seg, seg_size, addr) == -1) { 3574 mdb_warn("couldn't read vmem_seg at %p", addr); 3575 return (WALK_ERR); 3576 } 3577 3578 vsw->vsw_current = (uintptr_t)seg.vs_anext; 3579 if (vsw->vsw_type != VMEM_NONE && seg.vs_type != vsw->vsw_type) { 3580 rval = WALK_NEXT; 3581 } else { 3582 rval = wsp->walk_callback(addr, &seg, wsp->walk_cbdata); 3583 } 3584 3585 if (vsw->vsw_current == vsw->vsw_start) 3586 return (WALK_DONE); 3587 3588 return (rval); 3589 } 3590 3591 void 3592 vmem_seg_walk_fini(mdb_walk_state_t *wsp) 3593 { 3594 vmem_seg_walk_t *vsw = wsp->walk_data; 3595 3596 mdb_free(vsw, sizeof (vmem_seg_walk_t)); 3597 } 3598 3599 #define VMEM_NAMEWIDTH 22 3600 3601 int 3602 vmem(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3603 { 3604 vmem_t v, parent; 3605 vmem_kstat_t *vkp = &v.vm_kstat; 3606 uintptr_t paddr; 3607 int ident = 0; 3608 char c[VMEM_NAMEWIDTH]; 3609 3610 if (!(flags & DCMD_ADDRSPEC)) { 3611 if (mdb_walk_dcmd("vmem", "vmem", argc, argv) == -1) { 3612 mdb_warn("can't walk vmem"); 3613 return (DCMD_ERR); 3614 } 3615 return (DCMD_OK); 3616 } 3617 3618 if (DCMD_HDRSPEC(flags)) 3619 mdb_printf("%-?s %-*s %10s %12s %9s %5s\n", 3620 "ADDR", VMEM_NAMEWIDTH, "NAME", "INUSE", 3621 "TOTAL", "SUCCEED", "FAIL"); 3622 3623 if (mdb_vread(&v, sizeof (v), addr) == -1) { 3624 mdb_warn("couldn't read vmem at %p", addr); 3625 return (DCMD_ERR); 3626 } 3627 3628 for (paddr = (uintptr_t)v.vm_source; paddr != 0; ident += 2) { 3629 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 3630 mdb_warn("couldn't trace %p's ancestry", addr); 3631 ident = 0; 3632 break; 3633 } 3634 paddr = (uintptr_t)parent.vm_source; 3635 } 3636 3637 (void) mdb_snprintf(c, VMEM_NAMEWIDTH, "%*s%s", ident, "", v.vm_name); 3638 3639 mdb_printf("%0?p %-*s %10llu %12llu %9llu %5llu\n", 3640 addr, VMEM_NAMEWIDTH, c, 3641 vkp->vk_mem_inuse.value.ui64, vkp->vk_mem_total.value.ui64, 3642 vkp->vk_alloc.value.ui64, vkp->vk_fail.value.ui64); 3643 3644 return (DCMD_OK); 3645 } 3646 3647 void 3648 vmem_seg_help(void) 3649 { 3650 mdb_printf("%s", 3651 "Display the contents of vmem_seg_ts, with optional filtering.\n\n" 3652 "\n" 3653 "A vmem_seg_t represents a range of addresses (or arbitrary numbers),\n" 3654 "representing a single chunk of data. Only ALLOC segments have debugging\n" 3655 "information.\n"); 3656 mdb_dec_indent(2); 3657 mdb_printf("%<b>OPTIONS%</b>\n"); 3658 mdb_inc_indent(2); 3659 mdb_printf("%s", 3660 " -v Display the full content of the vmem_seg, including its stack trace\n" 3661 " -s report the size of the segment, instead of the end address\n" 3662 " -c caller\n" 3663 " filter out segments without the function/PC in their stack trace\n" 3664 " -e earliest\n" 3665 " filter out segments timestamped before earliest\n" 3666 " -l latest\n" 3667 " filter out segments timestamped after latest\n" 3668 " -m minsize\n" 3669 " filer out segments smaller than minsize\n" 3670 " -M maxsize\n" 3671 " filer out segments larger than maxsize\n" 3672 " -t thread\n" 3673 " filter out segments not involving thread\n" 3674 " -T type\n" 3675 " filter out segments not of type 'type'\n" 3676 " type is one of: ALLOC/FREE/SPAN/ROTOR/WALKER\n"); 3677 } 3678 3679 /*ARGSUSED*/ 3680 int 3681 vmem_seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3682 { 3683 vmem_seg_t vs; 3684 pc_t *stk = vs.vs_stack; 3685 uintptr_t sz; 3686 uint8_t t; 3687 const char *type = NULL; 3688 GElf_Sym sym; 3689 char c[MDB_SYM_NAMLEN]; 3690 int no_debug; 3691 int i; 3692 int depth; 3693 uintptr_t laddr, haddr; 3694 3695 uintptr_t caller = 0, thread = 0; 3696 uintptr_t minsize = 0, maxsize = 0; 3697 3698 hrtime_t earliest = 0, latest = 0; 3699 3700 uint_t size = 0; 3701 uint_t verbose = 0; 3702 3703 if (!(flags & DCMD_ADDRSPEC)) 3704 return (DCMD_USAGE); 3705 3706 if (mdb_getopts(argc, argv, 3707 'c', MDB_OPT_UINTPTR, &caller, 3708 'e', MDB_OPT_UINT64, &earliest, 3709 'l', MDB_OPT_UINT64, &latest, 3710 's', MDB_OPT_SETBITS, TRUE, &size, 3711 'm', MDB_OPT_UINTPTR, &minsize, 3712 'M', MDB_OPT_UINTPTR, &maxsize, 3713 't', MDB_OPT_UINTPTR, &thread, 3714 'T', MDB_OPT_STR, &type, 3715 'v', MDB_OPT_SETBITS, TRUE, &verbose, 3716 NULL) != argc) 3717 return (DCMD_USAGE); 3718 3719 if (DCMD_HDRSPEC(flags) && !(flags & DCMD_PIPE_OUT)) { 3720 if (verbose) { 3721 mdb_printf("%16s %4s %16s %16s %16s\n" 3722 "%<u>%16s %4s %16s %16s %16s%</u>\n", 3723 "ADDR", "TYPE", "START", "END", "SIZE", 3724 "", "", "THREAD", "TIMESTAMP", ""); 3725 } else { 3726 mdb_printf("%?s %4s %?s %?s %s\n", "ADDR", "TYPE", 3727 "START", size? "SIZE" : "END", "WHO"); 3728 } 3729 } 3730 3731 if (mdb_vread(&vs, sizeof (vs), addr) == -1) { 3732 mdb_warn("couldn't read vmem_seg at %p", addr); 3733 return (DCMD_ERR); 3734 } 3735 3736 if (type != NULL) { 3737 if (strcmp(type, "ALLC") == 0 || strcmp(type, "ALLOC") == 0) 3738 t = VMEM_ALLOC; 3739 else if (strcmp(type, "FREE") == 0) 3740 t = VMEM_FREE; 3741 else if (strcmp(type, "SPAN") == 0) 3742 t = VMEM_SPAN; 3743 else if (strcmp(type, "ROTR") == 0 || 3744 strcmp(type, "ROTOR") == 0) 3745 t = VMEM_ROTOR; 3746 else if (strcmp(type, "WLKR") == 0 || 3747 strcmp(type, "WALKER") == 0) 3748 t = VMEM_WALKER; 3749 else { 3750 mdb_warn("\"%s\" is not a recognized vmem_seg type\n", 3751 type); 3752 return (DCMD_ERR); 3753 } 3754 3755 if (vs.vs_type != t) 3756 return (DCMD_OK); 3757 } 3758 3759 sz = vs.vs_end - vs.vs_start; 3760 3761 if (minsize != 0 && sz < minsize) 3762 return (DCMD_OK); 3763 3764 if (maxsize != 0 && sz > maxsize) 3765 return (DCMD_OK); 3766 3767 t = vs.vs_type; 3768 depth = vs.vs_depth; 3769 3770 /* 3771 * debug info, when present, is only accurate for VMEM_ALLOC segments 3772 */ 3773 no_debug = (t != VMEM_ALLOC) || 3774 (depth == 0 || depth > VMEM_STACK_DEPTH); 3775 3776 if (no_debug) { 3777 if (caller != 0 || thread != 0 || earliest != 0 || latest != 0) 3778 return (DCMD_OK); /* not enough info */ 3779 } else { 3780 if (caller != 0) { 3781 laddr = caller; 3782 haddr = caller + sizeof (caller); 3783 3784 if (mdb_lookup_by_addr(caller, MDB_SYM_FUZZY, c, 3785 sizeof (c), &sym) != -1 && 3786 caller == (uintptr_t)sym.st_value) { 3787 /* 3788 * We were provided an exact symbol value; any 3789 * address in the function is valid. 3790 */ 3791 laddr = (uintptr_t)sym.st_value; 3792 haddr = (uintptr_t)sym.st_value + sym.st_size; 3793 } 3794 3795 for (i = 0; i < depth; i++) 3796 if (vs.vs_stack[i] >= laddr && 3797 vs.vs_stack[i] < haddr) 3798 break; 3799 3800 if (i == depth) 3801 return (DCMD_OK); 3802 } 3803 3804 if (thread != 0 && (uintptr_t)vs.vs_thread != thread) 3805 return (DCMD_OK); 3806 3807 if (earliest != 0 && vs.vs_timestamp < earliest) 3808 return (DCMD_OK); 3809 3810 if (latest != 0 && vs.vs_timestamp > latest) 3811 return (DCMD_OK); 3812 } 3813 3814 type = (t == VMEM_ALLOC ? "ALLC" : 3815 t == VMEM_FREE ? "FREE" : 3816 t == VMEM_SPAN ? "SPAN" : 3817 t == VMEM_ROTOR ? "ROTR" : 3818 t == VMEM_WALKER ? "WLKR" : 3819 "????"); 3820 3821 if (flags & DCMD_PIPE_OUT) { 3822 mdb_printf("%#lr\n", addr); 3823 return (DCMD_OK); 3824 } 3825 3826 if (verbose) { 3827 mdb_printf("%<b>%16p%</b> %4s %16p %16p %16ld\n", 3828 addr, type, vs.vs_start, vs.vs_end, sz); 3829 3830 if (no_debug) 3831 return (DCMD_OK); 3832 3833 mdb_printf("%16s %4s %16p %16llx\n", 3834 "", "", vs.vs_thread, vs.vs_timestamp); 3835 3836 mdb_inc_indent(17); 3837 for (i = 0; i < depth; i++) { 3838 mdb_printf("%a\n", stk[i]); 3839 } 3840 mdb_dec_indent(17); 3841 mdb_printf("\n"); 3842 } else { 3843 mdb_printf("%0?p %4s %0?p %0?p", addr, type, 3844 vs.vs_start, size? sz : vs.vs_end); 3845 3846 if (no_debug) { 3847 mdb_printf("\n"); 3848 return (DCMD_OK); 3849 } 3850 3851 for (i = 0; i < depth; i++) { 3852 if (mdb_lookup_by_addr(stk[i], MDB_SYM_FUZZY, 3853 c, sizeof (c), &sym) == -1) 3854 continue; 3855 if (strncmp(c, "vmem_", 5) == 0) 3856 continue; 3857 break; 3858 } 3859 mdb_printf(" %a\n", stk[i]); 3860 } 3861 return (DCMD_OK); 3862 } 3863 3864 typedef struct kmalog_data { 3865 uintptr_t kma_addr; 3866 hrtime_t kma_newest; 3867 } kmalog_data_t; 3868 3869 /*ARGSUSED*/ 3870 static int 3871 showbc(uintptr_t addr, const kmem_bufctl_audit_t *bcp, kmalog_data_t *kma) 3872 { 3873 char name[KMEM_CACHE_NAMELEN + 1]; 3874 hrtime_t delta; 3875 int i, depth; 3876 size_t bufsize; 3877 3878 if (bcp->bc_timestamp == 0) 3879 return (WALK_DONE); 3880 3881 if (kma->kma_newest == 0) 3882 kma->kma_newest = bcp->bc_timestamp; 3883 3884 if (kma->kma_addr) { 3885 if (mdb_vread(&bufsize, sizeof (bufsize), 3886 (uintptr_t)&bcp->bc_cache->cache_bufsize) == -1) { 3887 mdb_warn( 3888 "failed to read cache_bufsize for cache at %p", 3889 bcp->bc_cache); 3890 return (WALK_ERR); 3891 } 3892 3893 if (kma->kma_addr < (uintptr_t)bcp->bc_addr || 3894 kma->kma_addr >= (uintptr_t)bcp->bc_addr + bufsize) 3895 return (WALK_NEXT); 3896 } 3897 3898 delta = kma->kma_newest - bcp->bc_timestamp; 3899 depth = MIN(bcp->bc_depth, KMEM_STACK_DEPTH); 3900 3901 if (mdb_readstr(name, sizeof (name), (uintptr_t) 3902 &bcp->bc_cache->cache_name) <= 0) 3903 (void) mdb_snprintf(name, sizeof (name), "%a", bcp->bc_cache); 3904 3905 mdb_printf("\nT-%lld.%09lld addr=%p %s\n", 3906 delta / NANOSEC, delta % NANOSEC, bcp->bc_addr, name); 3907 3908 for (i = 0; i < depth; i++) 3909 mdb_printf("\t %a\n", bcp->bc_stack[i]); 3910 3911 return (WALK_NEXT); 3912 } 3913 3914 int 3915 kmalog(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3916 { 3917 const char *logname = "kmem_transaction_log"; 3918 kmalog_data_t kma; 3919 3920 if (argc > 1) 3921 return (DCMD_USAGE); 3922 3923 kma.kma_newest = 0; 3924 if (flags & DCMD_ADDRSPEC) 3925 kma.kma_addr = addr; 3926 else 3927 kma.kma_addr = 0; 3928 3929 if (argc > 0) { 3930 if (argv->a_type != MDB_TYPE_STRING) 3931 return (DCMD_USAGE); 3932 if (strcmp(argv->a_un.a_str, "fail") == 0) 3933 logname = "kmem_failure_log"; 3934 else if (strcmp(argv->a_un.a_str, "slab") == 0) 3935 logname = "kmem_slab_log"; 3936 else if (strcmp(argv->a_un.a_str, "zerosized") == 0) 3937 logname = "kmem_zerosized_log"; 3938 else 3939 return (DCMD_USAGE); 3940 } 3941 3942 if (mdb_readvar(&addr, logname) == -1) { 3943 mdb_warn("failed to read %s log header pointer"); 3944 return (DCMD_ERR); 3945 } 3946 3947 if (mdb_pwalk("kmem_log", (mdb_walk_cb_t)showbc, &kma, addr) == -1) { 3948 mdb_warn("failed to walk kmem log"); 3949 return (DCMD_ERR); 3950 } 3951 3952 return (DCMD_OK); 3953 } 3954 3955 /* 3956 * As the final lure for die-hard crash(8) users, we provide ::kmausers here. 3957 * The first piece is a structure which we use to accumulate kmem_cache_t 3958 * addresses of interest. The kmc_add is used as a callback for the kmem_cache 3959 * walker; we either add all caches, or ones named explicitly as arguments. 3960 */ 3961 3962 typedef struct kmclist { 3963 const char *kmc_name; /* Name to match (or NULL) */ 3964 uintptr_t *kmc_caches; /* List of kmem_cache_t addrs */ 3965 int kmc_nelems; /* Num entries in kmc_caches */ 3966 int kmc_size; /* Size of kmc_caches array */ 3967 } kmclist_t; 3968 3969 static int 3970 kmc_add(uintptr_t addr, const kmem_cache_t *cp, kmclist_t *kmc) 3971 { 3972 void *p; 3973 int s; 3974 3975 if (kmc->kmc_name == NULL || 3976 strcmp(cp->cache_name, kmc->kmc_name) == 0) { 3977 /* 3978 * If we have a match, grow our array (if necessary), and then 3979 * add the virtual address of the matching cache to our list. 3980 */ 3981 if (kmc->kmc_nelems >= kmc->kmc_size) { 3982 s = kmc->kmc_size ? kmc->kmc_size * 2 : 256; 3983 p = mdb_alloc(sizeof (uintptr_t) * s, UM_SLEEP | UM_GC); 3984 3985 bcopy(kmc->kmc_caches, p, 3986 sizeof (uintptr_t) * kmc->kmc_size); 3987 3988 kmc->kmc_caches = p; 3989 kmc->kmc_size = s; 3990 } 3991 3992 kmc->kmc_caches[kmc->kmc_nelems++] = addr; 3993 return (kmc->kmc_name ? WALK_DONE : WALK_NEXT); 3994 } 3995 3996 return (WALK_NEXT); 3997 } 3998 3999 /* 4000 * The second piece of ::kmausers is a hash table of allocations. Each 4001 * allocation owner is identified by its stack trace and data_size. We then 4002 * track the total bytes of all such allocations, and the number of allocations 4003 * to report at the end. Once we have a list of caches, we walk through the 4004 * allocated bufctls of each, and update our hash table accordingly. 4005 */ 4006 4007 typedef struct kmowner { 4008 struct kmowner *kmo_head; /* First hash elt in bucket */ 4009 struct kmowner *kmo_next; /* Next hash elt in chain */ 4010 size_t kmo_signature; /* Hash table signature */ 4011 uint_t kmo_num; /* Number of allocations */ 4012 size_t kmo_data_size; /* Size of each allocation */ 4013 size_t kmo_total_size; /* Total bytes of allocation */ 4014 int kmo_depth; /* Depth of stack trace */ 4015 uintptr_t kmo_stack[KMEM_STACK_DEPTH]; /* Stack trace */ 4016 } kmowner_t; 4017 4018 typedef struct kmusers { 4019 uintptr_t kmu_addr; /* address of interest */ 4020 const kmem_cache_t *kmu_cache; /* Current kmem cache */ 4021 kmowner_t *kmu_hash; /* Hash table of owners */ 4022 int kmu_nelems; /* Number of entries in use */ 4023 int kmu_size; /* Total number of entries */ 4024 } kmusers_t; 4025 4026 static void 4027 kmu_add(kmusers_t *kmu, const kmem_bufctl_audit_t *bcp, 4028 size_t size, size_t data_size) 4029 { 4030 int i, depth = MIN(bcp->bc_depth, KMEM_STACK_DEPTH); 4031 size_t bucket, signature = data_size; 4032 kmowner_t *kmo, *kmoend; 4033 4034 /* 4035 * If the hash table is full, double its size and rehash everything. 4036 */ 4037 if (kmu->kmu_nelems >= kmu->kmu_size) { 4038 int s = kmu->kmu_size ? kmu->kmu_size * 2 : 1024; 4039 4040 kmo = mdb_alloc(sizeof (kmowner_t) * s, UM_SLEEP | UM_GC); 4041 bcopy(kmu->kmu_hash, kmo, sizeof (kmowner_t) * kmu->kmu_size); 4042 kmu->kmu_hash = kmo; 4043 kmu->kmu_size = s; 4044 4045 kmoend = kmu->kmu_hash + kmu->kmu_size; 4046 for (kmo = kmu->kmu_hash; kmo < kmoend; kmo++) 4047 kmo->kmo_head = NULL; 4048 4049 kmoend = kmu->kmu_hash + kmu->kmu_nelems; 4050 for (kmo = kmu->kmu_hash; kmo < kmoend; kmo++) { 4051 bucket = kmo->kmo_signature & (kmu->kmu_size - 1); 4052 kmo->kmo_next = kmu->kmu_hash[bucket].kmo_head; 4053 kmu->kmu_hash[bucket].kmo_head = kmo; 4054 } 4055 } 4056 4057 /* 4058 * Finish computing the hash signature from the stack trace, and then 4059 * see if the owner is in the hash table. If so, update our stats. 4060 */ 4061 for (i = 0; i < depth; i++) 4062 signature += bcp->bc_stack[i]; 4063 4064 bucket = signature & (kmu->kmu_size - 1); 4065 4066 for (kmo = kmu->kmu_hash[bucket].kmo_head; kmo; kmo = kmo->kmo_next) { 4067 if (kmo->kmo_signature == signature) { 4068 size_t difference = 0; 4069 4070 difference |= kmo->kmo_data_size - data_size; 4071 difference |= kmo->kmo_depth - depth; 4072 4073 for (i = 0; i < depth; i++) { 4074 difference |= kmo->kmo_stack[i] - 4075 bcp->bc_stack[i]; 4076 } 4077 4078 if (difference == 0) { 4079 kmo->kmo_total_size += size; 4080 kmo->kmo_num++; 4081 return; 4082 } 4083 } 4084 } 4085 4086 /* 4087 * If the owner is not yet hashed, grab the next element and fill it 4088 * in based on the allocation information. 4089 */ 4090 kmo = &kmu->kmu_hash[kmu->kmu_nelems++]; 4091 kmo->kmo_next = kmu->kmu_hash[bucket].kmo_head; 4092 kmu->kmu_hash[bucket].kmo_head = kmo; 4093 4094 kmo->kmo_signature = signature; 4095 kmo->kmo_num = 1; 4096 kmo->kmo_data_size = data_size; 4097 kmo->kmo_total_size = size; 4098 kmo->kmo_depth = depth; 4099 4100 for (i = 0; i < depth; i++) 4101 kmo->kmo_stack[i] = bcp->bc_stack[i]; 4102 } 4103 4104 /* 4105 * When ::kmausers is invoked without the -f flag, we simply update our hash 4106 * table with the information from each allocated bufctl. 4107 */ 4108 /*ARGSUSED*/ 4109 static int 4110 kmause1(uintptr_t addr, const kmem_bufctl_audit_t *bcp, kmusers_t *kmu) 4111 { 4112 const kmem_cache_t *cp = kmu->kmu_cache; 4113 4114 kmu_add(kmu, bcp, cp->cache_bufsize, cp->cache_bufsize); 4115 return (WALK_NEXT); 4116 } 4117 4118 /* 4119 * When ::kmausers is invoked with the -f flag, we print out the information 4120 * for each bufctl as well as updating the hash table. 4121 */ 4122 static int 4123 kmause2(uintptr_t addr, const kmem_bufctl_audit_t *bcp, kmusers_t *kmu) 4124 { 4125 int i, depth = MIN(bcp->bc_depth, KMEM_STACK_DEPTH); 4126 const kmem_cache_t *cp = kmu->kmu_cache; 4127 kmem_bufctl_t bufctl; 4128 4129 if (kmu->kmu_addr) { 4130 if (mdb_vread(&bufctl, sizeof (bufctl), addr) == -1) 4131 mdb_warn("couldn't read bufctl at %p", addr); 4132 else if (kmu->kmu_addr < (uintptr_t)bufctl.bc_addr || 4133 kmu->kmu_addr >= (uintptr_t)bufctl.bc_addr + 4134 cp->cache_bufsize) 4135 return (WALK_NEXT); 4136 } 4137 4138 mdb_printf("size %d, addr %p, thread %p, cache %s\n", 4139 cp->cache_bufsize, addr, bcp->bc_thread, cp->cache_name); 4140 4141 for (i = 0; i < depth; i++) 4142 mdb_printf("\t %a\n", bcp->bc_stack[i]); 4143 4144 kmu_add(kmu, bcp, cp->cache_bufsize, cp->cache_bufsize); 4145 return (WALK_NEXT); 4146 } 4147 4148 /* 4149 * We sort our results by allocation size before printing them. 4150 */ 4151 static int 4152 kmownercmp(const void *lp, const void *rp) 4153 { 4154 const kmowner_t *lhs = lp; 4155 const kmowner_t *rhs = rp; 4156 4157 return (rhs->kmo_total_size - lhs->kmo_total_size); 4158 } 4159 4160 /* 4161 * The main engine of ::kmausers is relatively straightforward: First we 4162 * accumulate our list of kmem_cache_t addresses into the kmclist_t. Next we 4163 * iterate over the allocated bufctls of each cache in the list. Finally, 4164 * we sort and print our results. 4165 */ 4166 /*ARGSUSED*/ 4167 int 4168 kmausers(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4169 { 4170 int mem_threshold = 8192; /* Minimum # bytes for printing */ 4171 int cnt_threshold = 100; /* Minimum # blocks for printing */ 4172 int audited_caches = 0; /* Number of KMF_AUDIT caches found */ 4173 int do_all_caches = 1; /* Do all caches (no arguments) */ 4174 int opt_e = FALSE; /* Include "small" users */ 4175 int opt_f = FALSE; /* Print stack traces */ 4176 4177 mdb_walk_cb_t callback = (mdb_walk_cb_t)kmause1; 4178 kmowner_t *kmo, *kmoend; 4179 int i, oelems; 4180 4181 kmclist_t kmc; 4182 kmusers_t kmu; 4183 4184 bzero(&kmc, sizeof (kmc)); 4185 bzero(&kmu, sizeof (kmu)); 4186 4187 while ((i = mdb_getopts(argc, argv, 4188 'e', MDB_OPT_SETBITS, TRUE, &opt_e, 4189 'f', MDB_OPT_SETBITS, TRUE, &opt_f, NULL)) != argc) { 4190 4191 argv += i; /* skip past options we just processed */ 4192 argc -= i; /* adjust argc */ 4193 4194 if (argv->a_type != MDB_TYPE_STRING || *argv->a_un.a_str == '-') 4195 return (DCMD_USAGE); 4196 4197 oelems = kmc.kmc_nelems; 4198 kmc.kmc_name = argv->a_un.a_str; 4199 (void) mdb_walk("kmem_cache", (mdb_walk_cb_t)kmc_add, &kmc); 4200 4201 if (kmc.kmc_nelems == oelems) { 4202 mdb_warn("unknown kmem cache: %s\n", kmc.kmc_name); 4203 return (DCMD_ERR); 4204 } 4205 4206 do_all_caches = 0; 4207 argv++; 4208 argc--; 4209 } 4210 4211 if (flags & DCMD_ADDRSPEC) { 4212 opt_f = TRUE; 4213 kmu.kmu_addr = addr; 4214 } else { 4215 kmu.kmu_addr = 0; 4216 } 4217 4218 if (opt_e) 4219 mem_threshold = cnt_threshold = 0; 4220 4221 if (opt_f) 4222 callback = (mdb_walk_cb_t)kmause2; 4223 4224 if (do_all_caches) { 4225 kmc.kmc_name = NULL; /* match all cache names */ 4226 (void) mdb_walk("kmem_cache", (mdb_walk_cb_t)kmc_add, &kmc); 4227 } 4228 4229 for (i = 0; i < kmc.kmc_nelems; i++) { 4230 uintptr_t cp = kmc.kmc_caches[i]; 4231 kmem_cache_t c; 4232 4233 if (mdb_vread(&c, sizeof (c), cp) == -1) { 4234 mdb_warn("failed to read cache at %p", cp); 4235 continue; 4236 } 4237 4238 if (!(c.cache_flags & KMF_AUDIT)) { 4239 if (!do_all_caches) { 4240 mdb_warn("KMF_AUDIT is not enabled for %s\n", 4241 c.cache_name); 4242 } 4243 continue; 4244 } 4245 4246 kmu.kmu_cache = &c; 4247 (void) mdb_pwalk("bufctl", callback, &kmu, cp); 4248 audited_caches++; 4249 } 4250 4251 if (audited_caches == 0 && do_all_caches) { 4252 mdb_warn("KMF_AUDIT is not enabled for any caches\n"); 4253 return (DCMD_ERR); 4254 } 4255 4256 qsort(kmu.kmu_hash, kmu.kmu_nelems, sizeof (kmowner_t), kmownercmp); 4257 kmoend = kmu.kmu_hash + kmu.kmu_nelems; 4258 4259 for (kmo = kmu.kmu_hash; kmo < kmoend; kmo++) { 4260 if (kmo->kmo_total_size < mem_threshold && 4261 kmo->kmo_num < cnt_threshold) 4262 continue; 4263 mdb_printf("%lu bytes for %u allocations with data size %lu:\n", 4264 kmo->kmo_total_size, kmo->kmo_num, kmo->kmo_data_size); 4265 for (i = 0; i < kmo->kmo_depth; i++) 4266 mdb_printf("\t %a\n", kmo->kmo_stack[i]); 4267 } 4268 4269 return (DCMD_OK); 4270 } 4271 4272 void 4273 kmausers_help(void) 4274 { 4275 mdb_printf( 4276 "Displays the largest users of the kmem allocator, sorted by \n" 4277 "trace. If one or more caches is specified, only those caches\n" 4278 "will be searched. By default, all caches are searched. If an\n" 4279 "address is specified, then only those allocations which include\n" 4280 "the given address are displayed. Specifying an address implies\n" 4281 "-f.\n" 4282 "\n" 4283 "\t-e\tInclude all users, not just the largest\n" 4284 "\t-f\tDisplay individual allocations. By default, users are\n" 4285 "\t\tgrouped by stack\n"); 4286 } 4287 4288 static int 4289 kmem_ready_check(void) 4290 { 4291 int ready; 4292 4293 if (mdb_readvar(&ready, "kmem_ready") < 0) 4294 return (-1); /* errno is set for us */ 4295 4296 return (ready); 4297 } 4298 4299 void 4300 kmem_statechange(void) 4301 { 4302 static int been_ready = 0; 4303 4304 if (been_ready) 4305 return; 4306 4307 if (kmem_ready_check() <= 0) 4308 return; 4309 4310 been_ready = 1; 4311 (void) mdb_walk("kmem_cache", (mdb_walk_cb_t)kmem_init_walkers, NULL); 4312 } 4313 4314 void 4315 kmem_init(void) 4316 { 4317 mdb_walker_t w = { 4318 "kmem_cache", "walk list of kmem caches", kmem_cache_walk_init, 4319 list_walk_step, list_walk_fini 4320 }; 4321 4322 /* 4323 * If kmem is ready, we'll need to invoke the kmem_cache walker 4324 * immediately. Walkers in the linkage structure won't be ready until 4325 * _mdb_init returns, so we'll need to add this one manually. If kmem 4326 * is ready, we'll use the walker to initialize the caches. If kmem 4327 * isn't ready, we'll register a callback that will allow us to defer 4328 * cache walking until it is. 4329 */ 4330 if (mdb_add_walker(&w) != 0) { 4331 mdb_warn("failed to add kmem_cache walker"); 4332 return; 4333 } 4334 4335 kmem_statechange(); 4336 4337 /* register our ::whatis handlers */ 4338 mdb_whatis_register("modules", whatis_run_modules, NULL, 4339 WHATIS_PRIO_EARLY, WHATIS_REG_NO_ID); 4340 mdb_whatis_register("threads", whatis_run_threads, NULL, 4341 WHATIS_PRIO_EARLY, WHATIS_REG_NO_ID); 4342 mdb_whatis_register("pages", whatis_run_pages, NULL, 4343 WHATIS_PRIO_EARLY, WHATIS_REG_NO_ID); 4344 mdb_whatis_register("kmem", whatis_run_kmem, NULL, 4345 WHATIS_PRIO_ALLOCATOR, 0); 4346 mdb_whatis_register("vmem", whatis_run_vmem, NULL, 4347 WHATIS_PRIO_ALLOCATOR, 0); 4348 } 4349 4350 typedef struct whatthread { 4351 uintptr_t wt_target; 4352 int wt_verbose; 4353 } whatthread_t; 4354 4355 static int 4356 whatthread_walk_thread(uintptr_t addr, const kthread_t *t, whatthread_t *w) 4357 { 4358 uintptr_t current, data; 4359 4360 if (t->t_stkbase == NULL) 4361 return (WALK_NEXT); 4362 4363 /* 4364 * Warn about swapped out threads, but drive on anyway 4365 */ 4366 if (!(t->t_schedflag & TS_LOAD)) { 4367 mdb_warn("thread %p's stack swapped out\n", addr); 4368 return (WALK_NEXT); 4369 } 4370 4371 /* 4372 * Search the thread's stack for the given pointer. Note that it would 4373 * be more efficient to follow ::kgrep's lead and read in page-sized 4374 * chunks, but this routine is already fast and simple. 4375 */ 4376 for (current = (uintptr_t)t->t_stkbase; current < (uintptr_t)t->t_stk; 4377 current += sizeof (uintptr_t)) { 4378 if (mdb_vread(&data, sizeof (data), current) == -1) { 4379 mdb_warn("couldn't read thread %p's stack at %p", 4380 addr, current); 4381 return (WALK_ERR); 4382 } 4383 4384 if (data == w->wt_target) { 4385 if (w->wt_verbose) { 4386 mdb_printf("%p in thread %p's stack%s\n", 4387 current, addr, stack_active(t, current)); 4388 } else { 4389 mdb_printf("%#lr\n", addr); 4390 return (WALK_NEXT); 4391 } 4392 } 4393 } 4394 4395 return (WALK_NEXT); 4396 } 4397 4398 int 4399 whatthread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4400 { 4401 whatthread_t w; 4402 4403 if (!(flags & DCMD_ADDRSPEC)) 4404 return (DCMD_USAGE); 4405 4406 w.wt_verbose = FALSE; 4407 w.wt_target = addr; 4408 4409 if (mdb_getopts(argc, argv, 4410 'v', MDB_OPT_SETBITS, TRUE, &w.wt_verbose, NULL) != argc) 4411 return (DCMD_USAGE); 4412 4413 if (mdb_walk("thread", (mdb_walk_cb_t)whatthread_walk_thread, &w) 4414 == -1) { 4415 mdb_warn("couldn't walk threads"); 4416 return (DCMD_ERR); 4417 } 4418 4419 return (DCMD_OK); 4420 } 4421