1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2019 Joyent, Inc. 25 * Copyright (c) 2013 by Delphix. All rights reserved. 26 */ 27 28 #include <mdb/mdb_param.h> 29 #include <mdb/mdb_modapi.h> 30 #include <mdb/mdb_ks.h> 31 #include <mdb/mdb_ctf.h> 32 33 #include <sys/types.h> 34 #include <sys/thread.h> 35 #include <sys/session.h> 36 #include <sys/user.h> 37 #include <sys/proc.h> 38 #include <sys/var.h> 39 #include <sys/t_lock.h> 40 #include <sys/callo.h> 41 #include <sys/priocntl.h> 42 #include <sys/class.h> 43 #include <sys/regset.h> 44 #include <sys/stack.h> 45 #include <sys/cpuvar.h> 46 #include <sys/vnode.h> 47 #include <sys/vfs.h> 48 #include <sys/flock_impl.h> 49 #include <sys/kmem_impl.h> 50 #include <sys/vmem_impl.h> 51 #include <sys/kstat.h> 52 #include <sys/dditypes.h> 53 #include <sys/ddi_impldefs.h> 54 #include <sys/sysmacros.h> 55 #include <sys/sysconf.h> 56 #include <sys/task.h> 57 #include <sys/project.h> 58 #include <sys/errorq_impl.h> 59 #include <sys/cred_impl.h> 60 #include <sys/zone.h> 61 #include <sys/panic.h> 62 #include <regex.h> 63 #include <sys/port_impl.h> 64 65 #include "avl.h" 66 #include "bio.h" 67 #include "bitset.h" 68 #include "combined.h" 69 #include "contract.h" 70 #include "cpupart_mdb.h" 71 #include "cred.h" 72 #include "ctxop.h" 73 #include "cyclic.h" 74 #include "damap.h" 75 #include "ddi_periodic.h" 76 #include "devinfo.h" 77 #include "dnlc.h" 78 #include "findstack.h" 79 #include "fm.h" 80 #include "gcore.h" 81 #include "group.h" 82 #include "irm.h" 83 #include "kgrep.h" 84 #include "kmem.h" 85 #include "ldi.h" 86 #include "leaky.h" 87 #include "lgrp.h" 88 #include "list.h" 89 #include "log.h" 90 #include "mdi.h" 91 #include "memory.h" 92 #include "mmd.h" 93 #include "modhash.h" 94 #include "ndievents.h" 95 #include "net.h" 96 #include "netstack.h" 97 #include "nvpair.h" 98 #include "pci.h" 99 #include "pg.h" 100 #include "rctl.h" 101 #include "sobj.h" 102 #include "streams.h" 103 #include "sysevent.h" 104 #include "taskq.h" 105 #include "thread.h" 106 #include "tsd.h" 107 #include "tsol.h" 108 #include "typegraph.h" 109 #include "vfs.h" 110 #include "zone.h" 111 #include "hotplug.h" 112 113 /* 114 * Surely this is defined somewhere... 115 */ 116 #define NINTR 16 117 118 #define KILOS 10 119 #define MEGS 20 120 #define GIGS 30 121 122 #ifndef STACK_BIAS 123 #define STACK_BIAS 0 124 #endif 125 126 static char 127 pstat2ch(uchar_t state) 128 { 129 switch (state) { 130 case SSLEEP: return ('S'); 131 case SRUN: return ('R'); 132 case SZOMB: return ('Z'); 133 case SIDL: return ('I'); 134 case SONPROC: return ('O'); 135 case SSTOP: return ('T'); 136 case SWAIT: return ('W'); 137 default: return ('?'); 138 } 139 } 140 141 #define PS_PRTTHREADS 0x1 142 #define PS_PRTLWPS 0x2 143 #define PS_PSARGS 0x4 144 #define PS_TASKS 0x8 145 #define PS_PROJECTS 0x10 146 #define PS_ZONES 0x20 147 148 static int 149 ps_threadprint(uintptr_t addr, const void *data, void *private) 150 { 151 const kthread_t *t = (const kthread_t *)data; 152 uint_t prt_flags = *((uint_t *)private); 153 154 static const mdb_bitmask_t t_state_bits[] = { 155 { "TS_FREE", UINT_MAX, TS_FREE }, 156 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 157 { "TS_RUN", TS_RUN, TS_RUN }, 158 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 159 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 160 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 161 { "TS_WAIT", TS_WAIT, TS_WAIT }, 162 { NULL, 0, 0 } 163 }; 164 165 if (prt_flags & PS_PRTTHREADS) 166 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 167 168 if (prt_flags & PS_PRTLWPS) { 169 char desc[128] = ""; 170 171 (void) thread_getdesc(addr, B_FALSE, desc, sizeof (desc)); 172 173 mdb_printf("\tL %?a ID: %s\n", t->t_lwp, desc); 174 } 175 176 return (WALK_NEXT); 177 } 178 179 typedef struct mdb_pflags_proc { 180 struct pid *p_pidp; 181 ushort_t p_pidflag; 182 uint_t p_proc_flag; 183 uint_t p_flag; 184 } mdb_pflags_proc_t; 185 186 static int 187 pflags(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 188 { 189 mdb_pflags_proc_t pr; 190 struct pid pid; 191 192 static const mdb_bitmask_t p_flag_bits[] = { 193 { "SSYS", SSYS, SSYS }, 194 { "SEXITING", SEXITING, SEXITING }, 195 { "SITBUSY", SITBUSY, SITBUSY }, 196 { "SFORKING", SFORKING, SFORKING }, 197 { "SWATCHOK", SWATCHOK, SWATCHOK }, 198 { "SKILLED", SKILLED, SKILLED }, 199 { "SSCONT", SSCONT, SSCONT }, 200 { "SZONETOP", SZONETOP, SZONETOP }, 201 { "SEXTKILLED", SEXTKILLED, SEXTKILLED }, 202 { "SUGID", SUGID, SUGID }, 203 { "SEXECED", SEXECED, SEXECED }, 204 { "SJCTL", SJCTL, SJCTL }, 205 { "SNOWAIT", SNOWAIT, SNOWAIT }, 206 { "SVFORK", SVFORK, SVFORK }, 207 { "SVFWAIT", SVFWAIT, SVFWAIT }, 208 { "SEXITLWPS", SEXITLWPS, SEXITLWPS }, 209 { "SHOLDFORK", SHOLDFORK, SHOLDFORK }, 210 { "SHOLDFORK1", SHOLDFORK1, SHOLDFORK1 }, 211 { "SCOREDUMP", SCOREDUMP, SCOREDUMP }, 212 { "SMSACCT", SMSACCT, SMSACCT }, 213 { "SLWPWRAP", SLWPWRAP, SLWPWRAP }, 214 { "SAUTOLPG", SAUTOLPG, SAUTOLPG }, 215 { "SNOCD", SNOCD, SNOCD }, 216 { "SHOLDWATCH", SHOLDWATCH, SHOLDWATCH }, 217 { "SMSFORK", SMSFORK, SMSFORK }, 218 { "SDOCORE", SDOCORE, SDOCORE }, 219 { NULL, 0, 0 } 220 }; 221 222 static const mdb_bitmask_t p_pidflag_bits[] = { 223 { "CLDPEND", CLDPEND, CLDPEND }, 224 { "CLDCONT", CLDCONT, CLDCONT }, 225 { "CLDNOSIGCHLD", CLDNOSIGCHLD, CLDNOSIGCHLD }, 226 { "CLDWAITPID", CLDWAITPID, CLDWAITPID }, 227 { NULL, 0, 0 } 228 }; 229 230 static const mdb_bitmask_t p_proc_flag_bits[] = { 231 { "P_PR_TRACE", P_PR_TRACE, P_PR_TRACE }, 232 { "P_PR_PTRACE", P_PR_PTRACE, P_PR_PTRACE }, 233 { "P_PR_FORK", P_PR_FORK, P_PR_FORK }, 234 { "P_PR_LOCK", P_PR_LOCK, P_PR_LOCK }, 235 { "P_PR_ASYNC", P_PR_ASYNC, P_PR_ASYNC }, 236 { "P_PR_EXEC", P_PR_EXEC, P_PR_EXEC }, 237 { "P_PR_BPTADJ", P_PR_BPTADJ, P_PR_BPTADJ }, 238 { "P_PR_RUNLCL", P_PR_RUNLCL, P_PR_RUNLCL }, 239 { "P_PR_KILLCL", P_PR_KILLCL, P_PR_KILLCL }, 240 { NULL, 0, 0 } 241 }; 242 243 if (!(flags & DCMD_ADDRSPEC)) { 244 if (mdb_walk_dcmd("proc", "pflags", argc, argv) == -1) { 245 mdb_warn("can't walk 'proc'"); 246 return (DCMD_ERR); 247 } 248 return (DCMD_OK); 249 } 250 251 if (mdb_ctf_vread(&pr, "proc_t", "mdb_pflags_proc_t", addr, 0) == -1 || 252 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp) == -1) { 253 mdb_warn("cannot read proc_t or pid"); 254 return (DCMD_ERR); 255 } 256 257 mdb_printf("%p [pid %d]:\n", addr, pid.pid_id); 258 mdb_printf("\tp_flag: %08x <%b>\n", pr.p_flag, pr.p_flag, 259 p_flag_bits); 260 mdb_printf("\tp_pidflag: %08x <%b>\n", pr.p_pidflag, pr.p_pidflag, 261 p_pidflag_bits); 262 mdb_printf("\tp_proc_flag: %08x <%b>\n", pr.p_proc_flag, pr.p_proc_flag, 263 p_proc_flag_bits); 264 265 return (DCMD_OK); 266 } 267 268 typedef struct mdb_ps_proc { 269 char p_stat; 270 struct pid *p_pidp; 271 struct pid *p_pgidp; 272 struct cred *p_cred; 273 struct sess *p_sessp; 274 struct task *p_task; 275 struct zone *p_zone; 276 pid_t p_ppid; 277 uint_t p_flag; 278 struct { 279 char u_comm[MAXCOMLEN + 1]; 280 char u_psargs[PSARGSZ]; 281 } p_user; 282 } mdb_ps_proc_t; 283 284 int 285 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 286 { 287 uint_t prt_flags = 0; 288 mdb_ps_proc_t pr; 289 struct pid pid, pgid, sid; 290 sess_t session; 291 cred_t cred; 292 task_t tk; 293 kproject_t pj; 294 zone_t zn; 295 296 if (!(flags & DCMD_ADDRSPEC)) { 297 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 298 mdb_warn("can't walk 'proc'"); 299 return (DCMD_ERR); 300 } 301 return (DCMD_OK); 302 } 303 304 if (mdb_getopts(argc, argv, 305 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 306 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 307 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 308 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 309 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 310 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 311 return (DCMD_USAGE); 312 313 if (DCMD_HDRSPEC(flags)) { 314 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 315 "S", "PID", "PPID", "PGID", "SID"); 316 if (prt_flags & PS_TASKS) 317 mdb_printf("%5s ", "TASK"); 318 if (prt_flags & PS_PROJECTS) 319 mdb_printf("%5s ", "PROJ"); 320 if (prt_flags & PS_ZONES) 321 mdb_printf("%5s ", "ZONE"); 322 mdb_printf("%6s %10s %?s %s%</u>\n", 323 "UID", "FLAGS", "ADDR", "NAME"); 324 } 325 326 if (mdb_ctf_vread(&pr, "proc_t", "mdb_ps_proc_t", addr, 0) == -1) 327 return (DCMD_ERR); 328 329 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 330 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 331 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 332 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 333 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 334 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 335 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 336 if (prt_flags & PS_PROJECTS) 337 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 338 if (prt_flags & PS_ZONES) 339 mdb_vread(&zn, sizeof (zn), (uintptr_t)pr.p_zone); 340 341 mdb_printf("%c %6d %6d %6d %6d ", 342 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 343 sid.pid_id); 344 if (prt_flags & PS_TASKS) 345 mdb_printf("%5d ", tk.tk_tkid); 346 if (prt_flags & PS_PROJECTS) 347 mdb_printf("%5d ", pj.kpj_id); 348 if (prt_flags & PS_ZONES) 349 mdb_printf("%5d ", zn.zone_id); 350 mdb_printf("%6d 0x%08x %0?p %s\n", 351 cred.cr_uid, pr.p_flag, addr, 352 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 353 354 if (prt_flags & ~PS_PSARGS) 355 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 356 357 return (DCMD_OK); 358 } 359 360 #define PG_NEWEST 0x0001 361 #define PG_OLDEST 0x0002 362 #define PG_PIPE_OUT 0x0004 363 #define PG_EXACT_MATCH 0x0008 364 365 typedef struct pgrep_data { 366 uint_t pg_flags; 367 uint_t pg_psflags; 368 uintptr_t pg_xaddr; 369 hrtime_t pg_xstart; 370 const char *pg_pat; 371 #ifndef _KMDB 372 regex_t pg_reg; 373 #endif 374 } pgrep_data_t; 375 376 typedef struct mdb_pgrep_proc { 377 struct { 378 timestruc_t u_start; 379 char u_comm[MAXCOMLEN + 1]; 380 } p_user; 381 } mdb_pgrep_proc_t; 382 383 /*ARGSUSED*/ 384 static int 385 pgrep_cb(uintptr_t addr, const void *ignored, void *data) 386 { 387 mdb_pgrep_proc_t p; 388 pgrep_data_t *pgp = data; 389 #ifndef _KMDB 390 regmatch_t pmatch; 391 #endif 392 393 if (mdb_ctf_vread(&p, "proc_t", "mdb_pgrep_proc_t", addr, 0) == -1) 394 return (WALK_ERR); 395 396 /* 397 * kmdb doesn't have access to the reg* functions, so we fall back 398 * to strstr/strcmp. 399 */ 400 #ifdef _KMDB 401 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 402 (strcmp(p.p_user.u_comm, pgp->pg_pat) != 0) : 403 (strstr(p.p_user.u_comm, pgp->pg_pat) == NULL)) 404 return (WALK_NEXT); 405 #else 406 if (regexec(&pgp->pg_reg, p.p_user.u_comm, 1, &pmatch, 0) != 0) 407 return (WALK_NEXT); 408 409 if ((pgp->pg_flags & PG_EXACT_MATCH) && 410 (pmatch.rm_so != 0 || p.p_user.u_comm[pmatch.rm_eo] != '\0')) 411 return (WALK_NEXT); 412 #endif 413 414 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 415 hrtime_t start; 416 417 start = (hrtime_t)p.p_user.u_start.tv_sec * NANOSEC + 418 p.p_user.u_start.tv_nsec; 419 420 if (pgp->pg_flags & PG_NEWEST) { 421 if (pgp->pg_xaddr == 0 || start > pgp->pg_xstart) { 422 pgp->pg_xaddr = addr; 423 pgp->pg_xstart = start; 424 } 425 } else { 426 if (pgp->pg_xaddr == 0 || start < pgp->pg_xstart) { 427 pgp->pg_xaddr = addr; 428 pgp->pg_xstart = start; 429 } 430 } 431 432 } else if (pgp->pg_flags & PG_PIPE_OUT) { 433 mdb_printf("%p\n", addr); 434 435 } else { 436 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 437 mdb_warn("can't invoke 'ps'"); 438 return (WALK_DONE); 439 } 440 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 441 } 442 443 return (WALK_NEXT); 444 } 445 446 /*ARGSUSED*/ 447 int 448 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 449 { 450 pgrep_data_t pg; 451 int i; 452 #ifndef _KMDB 453 int err; 454 #endif 455 456 if (flags & DCMD_ADDRSPEC) 457 return (DCMD_USAGE); 458 459 pg.pg_flags = 0; 460 pg.pg_xaddr = 0; 461 462 i = mdb_getopts(argc, argv, 463 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 464 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 465 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 466 NULL); 467 468 argc -= i; 469 argv += i; 470 471 if (argc != 1) 472 return (DCMD_USAGE); 473 474 /* 475 * -n and -o are mutually exclusive. 476 */ 477 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 478 return (DCMD_USAGE); 479 480 if (argv->a_type != MDB_TYPE_STRING) 481 return (DCMD_USAGE); 482 483 if (flags & DCMD_PIPE_OUT) 484 pg.pg_flags |= PG_PIPE_OUT; 485 486 pg.pg_pat = argv->a_un.a_str; 487 if (DCMD_HDRSPEC(flags)) 488 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 489 else 490 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 491 492 #ifndef _KMDB 493 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 494 size_t nbytes; 495 char *buf; 496 497 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 498 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 499 (void) regerror(err, &pg.pg_reg, buf, nbytes); 500 mdb_warn("%s\n", buf); 501 502 return (DCMD_ERR); 503 } 504 #endif 505 506 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 507 mdb_warn("can't walk 'proc'"); 508 return (DCMD_ERR); 509 } 510 511 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 512 if (pg.pg_flags & PG_PIPE_OUT) { 513 mdb_printf("%p\n", pg.pg_xaddr); 514 } else { 515 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 516 0, NULL) != 0) { 517 mdb_warn("can't invoke 'ps'"); 518 return (DCMD_ERR); 519 } 520 } 521 } 522 523 return (DCMD_OK); 524 } 525 526 int 527 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 528 { 529 task_t tk; 530 kproject_t pj; 531 532 if (!(flags & DCMD_ADDRSPEC)) { 533 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 534 mdb_warn("can't walk task_cache"); 535 return (DCMD_ERR); 536 } 537 return (DCMD_OK); 538 } 539 if (DCMD_HDRSPEC(flags)) { 540 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 541 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 542 } 543 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 544 mdb_warn("can't read task_t structure at %p", addr); 545 return (DCMD_ERR); 546 } 547 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 548 mdb_warn("can't read project_t structure at %p", addr); 549 return (DCMD_ERR); 550 } 551 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 552 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 553 tk.tk_flags); 554 return (DCMD_OK); 555 } 556 557 int 558 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 559 { 560 kproject_t pj; 561 562 if (!(flags & DCMD_ADDRSPEC)) { 563 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 564 mdb_warn("can't walk projects"); 565 return (DCMD_ERR); 566 } 567 return (DCMD_OK); 568 } 569 if (DCMD_HDRSPEC(flags)) { 570 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 571 "ADDR", "PROJID", "ZONEID", "REFCNT"); 572 } 573 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 574 mdb_warn("can't read kproject_t structure at %p", addr); 575 return (DCMD_ERR); 576 } 577 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 578 pj.kpj_count); 579 return (DCMD_OK); 580 } 581 582 /* walk callouts themselves, either by list or id hash. */ 583 int 584 callout_walk_init(mdb_walk_state_t *wsp) 585 { 586 if (wsp->walk_addr == 0) { 587 mdb_warn("callout doesn't support global walk"); 588 return (WALK_ERR); 589 } 590 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP); 591 return (WALK_NEXT); 592 } 593 594 #define CALLOUT_WALK_BYLIST 0 595 #define CALLOUT_WALK_BYID 1 596 597 /* the walker arg switches between walking by list (0) and walking by id (1). */ 598 int 599 callout_walk_step(mdb_walk_state_t *wsp) 600 { 601 int retval; 602 603 if (wsp->walk_addr == 0) { 604 return (WALK_DONE); 605 } 606 if (mdb_vread(wsp->walk_data, sizeof (callout_t), 607 wsp->walk_addr) == -1) { 608 mdb_warn("failed to read callout at %p", wsp->walk_addr); 609 return (WALK_DONE); 610 } 611 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 612 wsp->walk_cbdata); 613 614 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) { 615 wsp->walk_addr = 616 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext); 617 } else { 618 wsp->walk_addr = 619 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext); 620 } 621 622 return (retval); 623 } 624 625 void 626 callout_walk_fini(mdb_walk_state_t *wsp) 627 { 628 mdb_free(wsp->walk_data, sizeof (callout_t)); 629 } 630 631 /* 632 * walker for callout lists. This is different from hashes and callouts. 633 * Thankfully, it's also simpler. 634 */ 635 int 636 callout_list_walk_init(mdb_walk_state_t *wsp) 637 { 638 if (wsp->walk_addr == 0) { 639 mdb_warn("callout list doesn't support global walk"); 640 return (WALK_ERR); 641 } 642 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP); 643 return (WALK_NEXT); 644 } 645 646 int 647 callout_list_walk_step(mdb_walk_state_t *wsp) 648 { 649 int retval; 650 651 if (wsp->walk_addr == 0) { 652 return (WALK_DONE); 653 } 654 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t), 655 wsp->walk_addr) != sizeof (callout_list_t)) { 656 mdb_warn("failed to read callout_list at %p", wsp->walk_addr); 657 return (WALK_ERR); 658 } 659 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 660 wsp->walk_cbdata); 661 662 wsp->walk_addr = (uintptr_t) 663 (((callout_list_t *)wsp->walk_data)->cl_next); 664 665 return (retval); 666 } 667 668 void 669 callout_list_walk_fini(mdb_walk_state_t *wsp) 670 { 671 mdb_free(wsp->walk_data, sizeof (callout_list_t)); 672 } 673 674 /* routines/structs to walk callout table(s) */ 675 typedef struct cot_data { 676 callout_table_t *ct0; 677 callout_table_t ct; 678 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 679 callout_hash_t cot_clhash[CALLOUT_BUCKETS]; 680 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS]; 681 int cotndx; 682 int cotsize; 683 } cot_data_t; 684 685 int 686 callout_table_walk_init(mdb_walk_state_t *wsp) 687 { 688 int max_ncpus; 689 cot_data_t *cot_walk_data; 690 691 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP); 692 693 if (wsp->walk_addr == 0) { 694 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) { 695 mdb_warn("failed to read 'callout_table'"); 696 return (WALK_ERR); 697 } 698 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 699 mdb_warn("failed to get callout_table array size"); 700 return (WALK_ERR); 701 } 702 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus; 703 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0; 704 } else { 705 /* not a global walk */ 706 cot_walk_data->cotsize = 1; 707 } 708 709 cot_walk_data->cotndx = 0; 710 wsp->walk_data = cot_walk_data; 711 712 return (WALK_NEXT); 713 } 714 715 int 716 callout_table_walk_step(mdb_walk_state_t *wsp) 717 { 718 int retval; 719 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data; 720 size_t size; 721 722 if (cotwd->cotndx >= cotwd->cotsize) { 723 return (WALK_DONE); 724 } 725 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t), 726 wsp->walk_addr) != sizeof (callout_table_t)) { 727 mdb_warn("failed to read callout_table at %p", wsp->walk_addr); 728 return (WALK_ERR); 729 } 730 731 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 732 if (cotwd->ct.ct_idhash != NULL) { 733 if (mdb_vread(cotwd->cot_idhash, size, 734 (uintptr_t)(cotwd->ct.ct_idhash)) != size) { 735 mdb_warn("failed to read id_hash at %p", 736 cotwd->ct.ct_idhash); 737 return (WALK_ERR); 738 } 739 } 740 if (cotwd->ct.ct_clhash != NULL) { 741 if (mdb_vread(&(cotwd->cot_clhash), size, 742 (uintptr_t)cotwd->ct.ct_clhash) == -1) { 743 mdb_warn("failed to read cl_hash at %p", 744 cotwd->ct.ct_clhash); 745 return (WALK_ERR); 746 } 747 } 748 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS; 749 if (cotwd->ct.ct_kstat_data != NULL) { 750 if (mdb_vread(&(cotwd->ct_kstat_data), size, 751 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) { 752 mdb_warn("failed to read kstats at %p", 753 cotwd->ct.ct_kstat_data); 754 return (WALK_ERR); 755 } 756 } 757 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd, 758 wsp->walk_cbdata); 759 760 cotwd->cotndx++; 761 if (cotwd->cotndx >= cotwd->cotsize) { 762 return (WALK_DONE); 763 } 764 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr + 765 sizeof (callout_table_t)); 766 767 return (retval); 768 } 769 770 void 771 callout_table_walk_fini(mdb_walk_state_t *wsp) 772 { 773 mdb_free(wsp->walk_data, sizeof (cot_data_t)); 774 } 775 776 static const char *co_typenames[] = { "R", "N" }; 777 778 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK) 779 780 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS) 781 782 /* callout flags, in no particular order */ 783 #define COF_REAL 0x00000001 784 #define COF_NORM 0x00000002 785 #define COF_LONG 0x00000004 786 #define COF_SHORT 0x00000008 787 #define COF_EMPTY 0x00000010 788 #define COF_TIME 0x00000020 789 #define COF_BEFORE 0x00000040 790 #define COF_AFTER 0x00000080 791 #define COF_SEQID 0x00000100 792 #define COF_FUNC 0x00000200 793 #define COF_ADDR 0x00000400 794 #define COF_EXEC 0x00000800 795 #define COF_HIRES 0x00001000 796 #define COF_ABS 0x00002000 797 #define COF_TABLE 0x00004000 798 #define COF_BYIDH 0x00008000 799 #define COF_FREE 0x00010000 800 #define COF_LIST 0x00020000 801 #define COF_EXPREL 0x00040000 802 #define COF_HDR 0x00080000 803 #define COF_VERBOSE 0x00100000 804 #define COF_LONGLIST 0x00200000 805 #define COF_THDR 0x00400000 806 #define COF_LHDR 0x00800000 807 #define COF_CHDR 0x01000000 808 #define COF_PARAM 0x02000000 809 #define COF_DECODE 0x04000000 810 #define COF_HEAP 0x08000000 811 #define COF_QUEUE 0x10000000 812 813 /* show real and normal, short and long, expired and unexpired. */ 814 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT) 815 816 #define COF_LIST_FLAGS \ 817 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE) 818 819 /* private callout data for callback functions */ 820 typedef struct callout_data { 821 uint_t flags; /* COF_* */ 822 cpu_t *cpu; /* cpu pointer if given */ 823 int seqid; /* cpu seqid, or -1 */ 824 hrtime_t time; /* expiration time value */ 825 hrtime_t atime; /* expiration before value */ 826 hrtime_t btime; /* expiration after value */ 827 uintptr_t funcaddr; /* function address or NULL */ 828 uintptr_t param; /* parameter to function or NULL */ 829 hrtime_t now; /* current system time */ 830 int nsec_per_tick; /* for conversions */ 831 ulong_t ctbits; /* for decoding xid */ 832 callout_table_t *co_table; /* top of callout table array */ 833 int ndx; /* table index. */ 834 int bucket; /* which list/id bucket are we in */ 835 hrtime_t exp; /* expire time */ 836 int list_flags; /* copy of cl_flags */ 837 } callout_data_t; 838 839 /* this callback does the actual callback itself (finally). */ 840 /*ARGSUSED*/ 841 static int 842 callouts_cb(uintptr_t addr, const void *data, void *priv) 843 { 844 callout_data_t *coargs = (callout_data_t *)priv; 845 callout_t *co = (callout_t *)data; 846 int tableid, list_flags; 847 callout_id_t coid; 848 849 if ((coargs == NULL) || (co == NULL)) { 850 return (WALK_ERR); 851 } 852 853 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) { 854 /* 855 * The callout must have been reallocated. No point in 856 * walking any more. 857 */ 858 return (WALK_DONE); 859 } 860 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) { 861 /* 862 * The callout must have been freed. No point in 863 * walking any more. 864 */ 865 return (WALK_DONE); 866 } 867 if ((coargs->flags & COF_FUNC) && 868 (coargs->funcaddr != (uintptr_t)co->c_func)) { 869 return (WALK_NEXT); 870 } 871 if ((coargs->flags & COF_PARAM) && 872 (coargs->param != (uintptr_t)co->c_arg)) { 873 return (WALK_NEXT); 874 } 875 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) { 876 return (WALK_NEXT); 877 } 878 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) { 879 return (WALK_NEXT); 880 } 881 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) { 882 return (WALK_NEXT); 883 } 884 /* it is possible we don't have the exp time or flags */ 885 if (coargs->flags & COF_BYIDH) { 886 if (!(coargs->flags & COF_FREE)) { 887 /* we have to fetch the expire time ourselves. */ 888 if (mdb_vread(&coargs->exp, sizeof (hrtime_t), 889 (uintptr_t)co->c_list + offsetof(callout_list_t, 890 cl_expiration)) == -1) { 891 mdb_warn("failed to read expiration " 892 "time from %p", co->c_list); 893 coargs->exp = 0; 894 } 895 /* and flags. */ 896 if (mdb_vread(&coargs->list_flags, sizeof (int), 897 (uintptr_t)co->c_list + offsetof(callout_list_t, 898 cl_flags)) == -1) { 899 mdb_warn("failed to read list flags" 900 "from %p", co->c_list); 901 coargs->list_flags = 0; 902 } 903 } else { 904 /* free callouts can't use list pointer. */ 905 coargs->exp = 0; 906 coargs->list_flags = 0; 907 } 908 if (coargs->exp != 0) { 909 if ((coargs->flags & COF_TIME) && 910 (coargs->exp != coargs->time)) { 911 return (WALK_NEXT); 912 } 913 if ((coargs->flags & COF_BEFORE) && 914 (coargs->exp > coargs->btime)) { 915 return (WALK_NEXT); 916 } 917 if ((coargs->flags & COF_AFTER) && 918 (coargs->exp < coargs->atime)) { 919 return (WALK_NEXT); 920 } 921 } 922 /* tricky part, since both HIRES and ABS can be set */ 923 list_flags = coargs->list_flags; 924 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 925 /* both flags are set, only skip "regular" ones */ 926 if (! (list_flags & COF_LIST_FLAGS)) { 927 return (WALK_NEXT); 928 } 929 } else { 930 /* individual flags, or no flags */ 931 if ((coargs->flags & COF_HIRES) && 932 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 933 return (WALK_NEXT); 934 } 935 if ((coargs->flags & COF_ABS) && 936 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 937 return (WALK_NEXT); 938 } 939 } 940 /* 941 * We do the checks for COF_HEAP and COF_QUEUE here only if we 942 * are traversing BYIDH. If the traversal is by callout list, 943 * we do this check in callout_list_cb() to be more 944 * efficient. 945 */ 946 if ((coargs->flags & COF_HEAP) && 947 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 948 return (WALK_NEXT); 949 } 950 951 if ((coargs->flags & COF_QUEUE) && 952 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 953 return (WALK_NEXT); 954 } 955 } 956 957 #define callout_table_mask ((1 << coargs->ctbits) - 1) 958 tableid = CALLOUT_ID_TO_TABLE(co->c_xid); 959 #undef callout_table_mask 960 coid = CO_PLAIN_ID(co->c_xid); 961 962 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) { 963 /* 964 * We need to print the headers. If walking by id, then 965 * the list header isn't printed, so we must include 966 * that info here. 967 */ 968 if (!(coargs->flags & COF_VERBOSE)) { 969 mdb_printf("%<u>%3s %-1s %-14s %</u>", 970 "SEQ", "T", "EXP"); 971 } else if (coargs->flags & COF_BYIDH) { 972 mdb_printf("%<u>%-14s %</u>", "EXP"); 973 } 974 mdb_printf("%<u>%-4s %-?s %-20s%</u>", 975 "XHAL", "XID", "FUNC(ARG)"); 976 if (coargs->flags & COF_LONGLIST) { 977 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>", 978 "PREVID", "NEXTID", "PREVL", "NEXTL"); 979 mdb_printf("%<u> %-?s %-4s %-?s%</u>", 980 "DONE", "UTOS", "THREAD"); 981 } 982 mdb_printf("\n"); 983 coargs->flags &= ~COF_CHDR; 984 coargs->flags |= (COF_THDR | COF_LHDR); 985 } 986 987 if (!(coargs->flags & COF_ADDR)) { 988 if (!(coargs->flags & COF_VERBOSE)) { 989 mdb_printf("%-3d %1s %-14llx ", 990 TABLE_TO_SEQID(tableid), 991 co_typenames[tableid & CALLOUT_TYPE_MASK], 992 (coargs->flags & COF_EXPREL) ? 993 coargs->exp - coargs->now : coargs->exp); 994 } else if (coargs->flags & COF_BYIDH) { 995 mdb_printf("%-14x ", 996 (coargs->flags & COF_EXPREL) ? 997 coargs->exp - coargs->now : coargs->exp); 998 } 999 list_flags = coargs->list_flags; 1000 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)", 1001 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ", 1002 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ", 1003 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ", 1004 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ", 1005 (long long)coid, co->c_func, co->c_arg); 1006 if (coargs->flags & COF_LONGLIST) { 1007 mdb_printf(" %-?p %-?p %-?p %-?p", 1008 co->c_idprev, co->c_idnext, co->c_clprev, 1009 co->c_clnext); 1010 mdb_printf(" %-?p %-4d %-0?p", 1011 co->c_done, co->c_waiting, co->c_executor); 1012 } 1013 } else { 1014 /* address only */ 1015 mdb_printf("%-0p", addr); 1016 } 1017 mdb_printf("\n"); 1018 return (WALK_NEXT); 1019 } 1020 1021 /* this callback is for callout list handling. idhash is done by callout_t_cb */ 1022 /*ARGSUSED*/ 1023 static int 1024 callout_list_cb(uintptr_t addr, const void *data, void *priv) 1025 { 1026 callout_data_t *coargs = (callout_data_t *)priv; 1027 callout_list_t *cl = (callout_list_t *)data; 1028 callout_t *coptr; 1029 int list_flags; 1030 1031 if ((coargs == NULL) || (cl == NULL)) { 1032 return (WALK_ERR); 1033 } 1034 1035 coargs->exp = cl->cl_expiration; 1036 coargs->list_flags = cl->cl_flags; 1037 if ((coargs->flags & COF_FREE) && 1038 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 1039 /* 1040 * The callout list must have been reallocated. No point in 1041 * walking any more. 1042 */ 1043 return (WALK_DONE); 1044 } 1045 if (!(coargs->flags & COF_FREE) && 1046 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 1047 /* 1048 * The callout list must have been freed. No point in 1049 * walking any more. 1050 */ 1051 return (WALK_DONE); 1052 } 1053 if ((coargs->flags & COF_TIME) && 1054 (cl->cl_expiration != coargs->time)) { 1055 return (WALK_NEXT); 1056 } 1057 if ((coargs->flags & COF_BEFORE) && 1058 (cl->cl_expiration > coargs->btime)) { 1059 return (WALK_NEXT); 1060 } 1061 if ((coargs->flags & COF_AFTER) && 1062 (cl->cl_expiration < coargs->atime)) { 1063 return (WALK_NEXT); 1064 } 1065 if (!(coargs->flags & COF_EMPTY) && 1066 (cl->cl_callouts.ch_head == NULL)) { 1067 return (WALK_NEXT); 1068 } 1069 /* FOUR cases, each different, !A!B, !AB, A!B, AB */ 1070 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 1071 /* both flags are set, only skip "regular" ones */ 1072 if (! (cl->cl_flags & COF_LIST_FLAGS)) { 1073 return (WALK_NEXT); 1074 } 1075 } else { 1076 if ((coargs->flags & COF_HIRES) && 1077 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 1078 return (WALK_NEXT); 1079 } 1080 if ((coargs->flags & COF_ABS) && 1081 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 1082 return (WALK_NEXT); 1083 } 1084 } 1085 1086 if ((coargs->flags & COF_HEAP) && 1087 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 1088 return (WALK_NEXT); 1089 } 1090 1091 if ((coargs->flags & COF_QUEUE) && 1092 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 1093 return (WALK_NEXT); 1094 } 1095 1096 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) && 1097 (coargs->flags & (COF_LIST | COF_VERBOSE))) { 1098 if (!(coargs->flags & COF_VERBOSE)) { 1099 /* don't be redundant again */ 1100 mdb_printf("%<u>SEQ T %</u>"); 1101 } 1102 mdb_printf("%<u>EXP HA BUCKET " 1103 "CALLOUTS %</u>"); 1104 1105 if (coargs->flags & COF_LONGLIST) { 1106 mdb_printf("%<u> %-?s %-?s%</u>", 1107 "PREV", "NEXT"); 1108 } 1109 mdb_printf("\n"); 1110 coargs->flags &= ~COF_LHDR; 1111 coargs->flags |= (COF_THDR | COF_CHDR); 1112 } 1113 if (coargs->flags & (COF_LIST | COF_VERBOSE)) { 1114 if (!(coargs->flags & COF_ADDR)) { 1115 if (!(coargs->flags & COF_VERBOSE)) { 1116 mdb_printf("%3d %1s ", 1117 TABLE_TO_SEQID(coargs->ndx), 1118 co_typenames[coargs->ndx & 1119 CALLOUT_TYPE_MASK]); 1120 } 1121 1122 list_flags = coargs->list_flags; 1123 mdb_printf("%-14llx %1s%1s %-6d %-0?p ", 1124 (coargs->flags & COF_EXPREL) ? 1125 coargs->exp - coargs->now : coargs->exp, 1126 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? 1127 "H" : " ", 1128 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? 1129 "A" : " ", 1130 coargs->bucket, cl->cl_callouts.ch_head); 1131 1132 if (coargs->flags & COF_LONGLIST) { 1133 mdb_printf(" %-?p %-?p", 1134 cl->cl_prev, cl->cl_next); 1135 } 1136 } else { 1137 /* address only */ 1138 mdb_printf("%-0p", addr); 1139 } 1140 mdb_printf("\n"); 1141 if (coargs->flags & COF_LIST) { 1142 return (WALK_NEXT); 1143 } 1144 } 1145 /* yet another layer as we walk the actual callouts via list. */ 1146 if (cl->cl_callouts.ch_head == NULL) { 1147 return (WALK_NEXT); 1148 } 1149 /* free list structures do not have valid callouts off of them. */ 1150 if (coargs->flags & COF_FREE) { 1151 return (WALK_NEXT); 1152 } 1153 coptr = (callout_t *)cl->cl_callouts.ch_head; 1154 1155 if (coargs->flags & COF_VERBOSE) { 1156 mdb_inc_indent(4); 1157 } 1158 /* 1159 * walk callouts using yet another callback routine. 1160 * we use callouts_bytime because id hash is handled via 1161 * the callout_t_cb callback. 1162 */ 1163 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs, 1164 (uintptr_t)coptr) == -1) { 1165 mdb_warn("cannot walk callouts at %p", coptr); 1166 return (WALK_ERR); 1167 } 1168 if (coargs->flags & COF_VERBOSE) { 1169 mdb_dec_indent(4); 1170 } 1171 1172 return (WALK_NEXT); 1173 } 1174 1175 /* this callback handles the details of callout table walking. */ 1176 static int 1177 callout_t_cb(uintptr_t addr, const void *data, void *priv) 1178 { 1179 callout_data_t *coargs = (callout_data_t *)priv; 1180 cot_data_t *cotwd = (cot_data_t *)data; 1181 callout_table_t *ct = &(cotwd->ct); 1182 int index, seqid, cotype; 1183 int i; 1184 callout_list_t *clptr; 1185 callout_t *coptr; 1186 1187 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) { 1188 return (WALK_ERR); 1189 } 1190 1191 index = ((char *)addr - (char *)coargs->co_table) / 1192 sizeof (callout_table_t); 1193 cotype = index & CALLOUT_TYPE_MASK; 1194 seqid = TABLE_TO_SEQID(index); 1195 1196 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) { 1197 return (WALK_NEXT); 1198 } 1199 1200 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) { 1201 return (WALK_NEXT); 1202 } 1203 1204 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) { 1205 return (WALK_NEXT); 1206 } 1207 1208 if (!(coargs->flags & COF_EMPTY) && ( 1209 (ct->ct_heap == NULL) || (ct->ct_cyclic == 0))) { 1210 return (WALK_NEXT); 1211 } 1212 1213 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) && 1214 (coargs->flags & (COF_TABLE | COF_VERBOSE))) { 1215 /* print table hdr */ 1216 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>", 1217 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP"); 1218 coargs->flags &= ~COF_THDR; 1219 coargs->flags |= (COF_LHDR | COF_CHDR); 1220 if (coargs->flags & COF_LONGLIST) { 1221 /* more info! */ 1222 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s" 1223 " %-?s %-?s %-?s%</u>", 1224 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE", 1225 "PEND", "FREE", "LOCK"); 1226 } 1227 mdb_printf("\n"); 1228 } 1229 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) { 1230 if (!(coargs->flags & COF_ADDR)) { 1231 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p", 1232 seqid, co_typenames[cotype], 1233 ct->ct_free, ct->ct_lfree, ct->ct_cyclic, 1234 ct->ct_heap); 1235 if (coargs->flags & COF_LONGLIST) { 1236 /* more info! */ 1237 mdb_printf(" %-7d %-7d %-?p %-?p %-?p" 1238 " %-?lld %-?lld %-?p", 1239 ct->ct_heap_num, ct->ct_heap_max, 1240 ct->ct_taskq, ct->ct_expired.ch_head, 1241 ct->ct_queue.ch_head, 1242 cotwd->ct_timeouts_pending, 1243 cotwd->ct_allocations - 1244 cotwd->ct_timeouts_pending, 1245 ct->ct_mutex); 1246 } 1247 } else { 1248 /* address only */ 1249 mdb_printf("%-0?p", addr); 1250 } 1251 mdb_printf("\n"); 1252 if (coargs->flags & COF_TABLE) { 1253 return (WALK_NEXT); 1254 } 1255 } 1256 1257 coargs->ndx = index; 1258 if (coargs->flags & COF_VERBOSE) { 1259 mdb_inc_indent(4); 1260 } 1261 /* keep digging. */ 1262 if (!(coargs->flags & COF_BYIDH)) { 1263 /* walk the list hash table */ 1264 if (coargs->flags & COF_FREE) { 1265 clptr = ct->ct_lfree; 1266 coargs->bucket = 0; 1267 if (clptr == NULL) { 1268 return (WALK_NEXT); 1269 } 1270 if (mdb_pwalk("callout_list", callout_list_cb, coargs, 1271 (uintptr_t)clptr) == -1) { 1272 mdb_warn("cannot walk callout free list at %p", 1273 clptr); 1274 return (WALK_ERR); 1275 } 1276 } else { 1277 /* first print the expired list. */ 1278 clptr = (callout_list_t *)ct->ct_expired.ch_head; 1279 if (clptr != NULL) { 1280 coargs->bucket = -1; 1281 if (mdb_pwalk("callout_list", callout_list_cb, 1282 coargs, (uintptr_t)clptr) == -1) { 1283 mdb_warn("cannot walk callout_list" 1284 " at %p", clptr); 1285 return (WALK_ERR); 1286 } 1287 } 1288 /* then, print the callout queue */ 1289 clptr = (callout_list_t *)ct->ct_queue.ch_head; 1290 if (clptr != NULL) { 1291 coargs->bucket = -1; 1292 if (mdb_pwalk("callout_list", callout_list_cb, 1293 coargs, (uintptr_t)clptr) == -1) { 1294 mdb_warn("cannot walk callout_list" 1295 " at %p", clptr); 1296 return (WALK_ERR); 1297 } 1298 } 1299 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1300 if (ct->ct_clhash == NULL) { 1301 /* nothing to do */ 1302 break; 1303 } 1304 if (cotwd->cot_clhash[i].ch_head == NULL) { 1305 continue; 1306 } 1307 clptr = (callout_list_t *) 1308 cotwd->cot_clhash[i].ch_head; 1309 coargs->bucket = i; 1310 /* walk list with callback routine. */ 1311 if (mdb_pwalk("callout_list", callout_list_cb, 1312 coargs, (uintptr_t)clptr) == -1) { 1313 mdb_warn("cannot walk callout_list" 1314 " at %p", clptr); 1315 return (WALK_ERR); 1316 } 1317 } 1318 } 1319 } else { 1320 /* walk the id hash table. */ 1321 if (coargs->flags & COF_FREE) { 1322 coptr = ct->ct_free; 1323 coargs->bucket = 0; 1324 if (coptr == NULL) { 1325 return (WALK_NEXT); 1326 } 1327 if (mdb_pwalk("callouts_byid", callouts_cb, coargs, 1328 (uintptr_t)coptr) == -1) { 1329 mdb_warn("cannot walk callout id free list" 1330 " at %p", coptr); 1331 return (WALK_ERR); 1332 } 1333 } else { 1334 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1335 if (ct->ct_idhash == NULL) { 1336 break; 1337 } 1338 coptr = (callout_t *) 1339 cotwd->cot_idhash[i].ch_head; 1340 if (coptr == NULL) { 1341 continue; 1342 } 1343 coargs->bucket = i; 1344 1345 /* 1346 * walk callouts directly by id. For id 1347 * chain, the callout list is just a header, 1348 * so there's no need to walk it. 1349 */ 1350 if (mdb_pwalk("callouts_byid", callouts_cb, 1351 coargs, (uintptr_t)coptr) == -1) { 1352 mdb_warn("cannot walk callouts at %p", 1353 coptr); 1354 return (WALK_ERR); 1355 } 1356 } 1357 } 1358 } 1359 if (coargs->flags & COF_VERBOSE) { 1360 mdb_dec_indent(4); 1361 } 1362 return (WALK_NEXT); 1363 } 1364 1365 /* 1366 * initialize some common info for both callout dcmds. 1367 */ 1368 int 1369 callout_common_init(callout_data_t *coargs) 1370 { 1371 /* we need a couple of things */ 1372 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) { 1373 mdb_warn("failed to read 'callout_table'"); 1374 return (DCMD_ERR); 1375 } 1376 /* need to get now in nsecs. Approximate with hrtime vars */ 1377 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") != 1378 sizeof (hrtime_t)) { 1379 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), 1380 "hrtime_base") != sizeof (hrtime_t)) { 1381 mdb_warn("Could not determine current system time"); 1382 return (DCMD_ERR); 1383 } 1384 } 1385 1386 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) { 1387 mdb_warn("failed to read 'callout_table_bits'"); 1388 return (DCMD_ERR); 1389 } 1390 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) { 1391 mdb_warn("failed to read 'nsec_per_tick'"); 1392 return (DCMD_ERR); 1393 } 1394 return (DCMD_OK); 1395 } 1396 1397 /* 1398 * dcmd to print callouts. Optional addr limits to specific table. 1399 * Parses lots of options that get passed to callbacks for walkers. 1400 * Has it's own help function. 1401 */ 1402 /*ARGSUSED*/ 1403 int 1404 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1405 { 1406 callout_data_t coargs; 1407 /* getopts doesn't help much with stuff like this */ 1408 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag; 1409 char *funcname = NULL; 1410 char *paramstr = NULL; 1411 uintptr_t Stmp, Ctmp; /* for getopt. */ 1412 int retval; 1413 1414 coargs.flags = COF_DEFAULT; 1415 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE; 1416 coargs.seqid = -1; 1417 1418 if (mdb_getopts(argc, argv, 1419 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags, 1420 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags, 1421 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags, 1422 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags, 1423 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags, 1424 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags, 1425 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags, 1426 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags, 1427 'd', MDB_OPT_SETBITS, 1, &dflag, 1428 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp, 1429 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp, 1430 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time, 1431 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime, 1432 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime, 1433 'k', MDB_OPT_SETBITS, 1, &kflag, 1434 'f', MDB_OPT_STR, &funcname, 1435 'p', MDB_OPT_STR, ¶mstr, 1436 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags, 1437 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags, 1438 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags, 1439 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags, 1440 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1441 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags, 1442 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags, 1443 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags, 1444 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags, 1445 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags, 1446 NULL) != argc) { 1447 return (DCMD_USAGE); 1448 } 1449 1450 /* initialize from kernel variables */ 1451 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1452 return (retval); 1453 } 1454 1455 /* do some option post-processing */ 1456 if (kflag) { 1457 coargs.time *= coargs.nsec_per_tick; 1458 coargs.atime *= coargs.nsec_per_tick; 1459 coargs.btime *= coargs.nsec_per_tick; 1460 } 1461 1462 if (dflag) { 1463 coargs.time += coargs.now; 1464 coargs.atime += coargs.now; 1465 coargs.btime += coargs.now; 1466 } 1467 if (Sflag) { 1468 if (flags & DCMD_ADDRSPEC) { 1469 mdb_printf("-S option conflicts with explicit" 1470 " address\n"); 1471 return (DCMD_USAGE); 1472 } 1473 coargs.flags |= COF_SEQID; 1474 coargs.seqid = (int)Stmp; 1475 } 1476 if (Cflag) { 1477 if (flags & DCMD_ADDRSPEC) { 1478 mdb_printf("-C option conflicts with explicit" 1479 " address\n"); 1480 return (DCMD_USAGE); 1481 } 1482 if (coargs.flags & COF_SEQID) { 1483 mdb_printf("-C and -S are mutually exclusive\n"); 1484 return (DCMD_USAGE); 1485 } 1486 coargs.cpu = (cpu_t *)Ctmp; 1487 if (mdb_vread(&coargs.seqid, sizeof (processorid_t), 1488 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) { 1489 mdb_warn("failed to read cpu_t at %p", Ctmp); 1490 return (DCMD_ERR); 1491 } 1492 coargs.flags |= COF_SEQID; 1493 } 1494 /* avoid null outputs. */ 1495 if (!(coargs.flags & (COF_REAL | COF_NORM))) { 1496 coargs.flags |= COF_REAL | COF_NORM; 1497 } 1498 if (!(coargs.flags & (COF_LONG | COF_SHORT))) { 1499 coargs.flags |= COF_LONG | COF_SHORT; 1500 } 1501 if (tflag) { 1502 if (aflag || bflag) { 1503 mdb_printf("-t and -a|b are mutually exclusive\n"); 1504 return (DCMD_USAGE); 1505 } 1506 coargs.flags |= COF_TIME; 1507 } 1508 if (aflag) { 1509 coargs.flags |= COF_AFTER; 1510 } 1511 if (bflag) { 1512 coargs.flags |= COF_BEFORE; 1513 } 1514 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) { 1515 mdb_printf("value for -a must be earlier than the value" 1516 " for -b.\n"); 1517 return (DCMD_USAGE); 1518 } 1519 1520 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) { 1521 mdb_printf("-H and -Q are mutually exclusive\n"); 1522 return (DCMD_USAGE); 1523 } 1524 1525 if (funcname != NULL) { 1526 GElf_Sym sym; 1527 1528 if (mdb_lookup_by_name(funcname, &sym) != 0) { 1529 coargs.funcaddr = mdb_strtoull(funcname); 1530 } else { 1531 coargs.funcaddr = sym.st_value; 1532 } 1533 coargs.flags |= COF_FUNC; 1534 } 1535 1536 if (paramstr != NULL) { 1537 GElf_Sym sym; 1538 1539 if (mdb_lookup_by_name(paramstr, &sym) != 0) { 1540 coargs.param = mdb_strtoull(paramstr); 1541 } else { 1542 coargs.param = sym.st_value; 1543 } 1544 coargs.flags |= COF_PARAM; 1545 } 1546 1547 if (!(flags & DCMD_ADDRSPEC)) { 1548 /* don't pass "dot" if no addr. */ 1549 addr = 0; 1550 } 1551 if (addr != 0) { 1552 /* 1553 * a callout table was specified. Ignore -r|n option 1554 * to avoid null output. 1555 */ 1556 coargs.flags |= (COF_REAL | COF_NORM); 1557 } 1558 1559 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) { 1560 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR; 1561 } 1562 if (coargs.flags & COF_FREE) { 1563 coargs.flags |= COF_EMPTY; 1564 /* -F = free callouts, -FL = free lists */ 1565 if (!(coargs.flags & COF_LIST)) { 1566 coargs.flags |= COF_BYIDH; 1567 } 1568 } 1569 1570 /* walk table, using specialized callback routine. */ 1571 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) { 1572 mdb_warn("cannot walk callout_table"); 1573 return (DCMD_ERR); 1574 } 1575 return (DCMD_OK); 1576 } 1577 1578 1579 /* 1580 * Given an extended callout id, dump its information. 1581 */ 1582 /*ARGSUSED*/ 1583 int 1584 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1585 { 1586 callout_data_t coargs; 1587 callout_table_t *ctptr; 1588 callout_table_t ct; 1589 callout_id_t coid; 1590 callout_t *coptr; 1591 int tableid; 1592 callout_id_t xid; 1593 ulong_t idhash; 1594 int i, retval; 1595 const mdb_arg_t *arg; 1596 size_t size; 1597 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 1598 1599 coargs.flags = COF_DEFAULT | COF_BYIDH; 1600 i = mdb_getopts(argc, argv, 1601 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags, 1602 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1603 NULL); 1604 argc -= i; 1605 argv += i; 1606 1607 if (argc != 1) { 1608 return (DCMD_USAGE); 1609 } 1610 arg = &argv[0]; 1611 1612 if (arg->a_type == MDB_TYPE_IMMEDIATE) { 1613 xid = arg->a_un.a_val; 1614 } else { 1615 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str); 1616 } 1617 1618 if (DCMD_HDRSPEC(flags)) { 1619 coargs.flags |= COF_CHDR; 1620 } 1621 1622 1623 /* initialize from kernel variables */ 1624 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1625 return (retval); 1626 } 1627 1628 /* we must massage the environment so that the macros will play nice */ 1629 #define callout_table_mask ((1 << coargs.ctbits) - 1) 1630 #define callout_table_bits coargs.ctbits 1631 #define nsec_per_tick coargs.nsec_per_tick 1632 tableid = CALLOUT_ID_TO_TABLE(xid); 1633 idhash = CALLOUT_IDHASH(xid); 1634 #undef callouts_table_bits 1635 #undef callout_table_mask 1636 #undef nsec_per_tick 1637 coid = CO_PLAIN_ID(xid); 1638 1639 if (flags & DCMD_ADDRSPEC) { 1640 mdb_printf("calloutid does not accept explicit address.\n"); 1641 return (DCMD_USAGE); 1642 } 1643 1644 if (coargs.flags & COF_DECODE) { 1645 if (DCMD_HDRSPEC(flags)) { 1646 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n", 1647 "SEQ", "T", "XL", "XID", "IDHASH"); 1648 } 1649 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n", 1650 TABLE_TO_SEQID(tableid), 1651 co_typenames[tableid & CALLOUT_TYPE_MASK], 1652 (xid & CALLOUT_EXECUTING) ? "X" : " ", 1653 (xid & CALLOUT_LONGTERM) ? "L" : " ", 1654 (long long)coid, idhash); 1655 return (DCMD_OK); 1656 } 1657 1658 /* get our table. Note this relies on the types being correct */ 1659 ctptr = coargs.co_table + tableid; 1660 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) { 1661 mdb_warn("failed to read callout_table at %p", ctptr); 1662 return (DCMD_ERR); 1663 } 1664 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 1665 if (ct.ct_idhash != NULL) { 1666 if (mdb_vread(&(cot_idhash), size, 1667 (uintptr_t)ct.ct_idhash) == -1) { 1668 mdb_warn("failed to read id_hash at %p", 1669 ct.ct_idhash); 1670 return (WALK_ERR); 1671 } 1672 } 1673 1674 /* callout at beginning of hash chain */ 1675 if (ct.ct_idhash == NULL) { 1676 mdb_printf("id hash chain for this xid is empty\n"); 1677 return (DCMD_ERR); 1678 } 1679 coptr = (callout_t *)cot_idhash[idhash].ch_head; 1680 if (coptr == NULL) { 1681 mdb_printf("id hash chain for this xid is empty\n"); 1682 return (DCMD_ERR); 1683 } 1684 1685 coargs.ndx = tableid; 1686 coargs.bucket = idhash; 1687 1688 /* use the walker, luke */ 1689 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs, 1690 (uintptr_t)coptr) == -1) { 1691 mdb_warn("cannot walk callouts at %p", coptr); 1692 return (WALK_ERR); 1693 } 1694 1695 return (DCMD_OK); 1696 } 1697 1698 void 1699 callout_help(void) 1700 { 1701 mdb_printf("callout: display callouts.\n" 1702 "Given a callout table address, display callouts from table.\n" 1703 "Without an address, display callouts from all tables.\n" 1704 "options:\n" 1705 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n" 1706 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n" 1707 " -x : limit display to callouts which are executing\n" 1708 " -h : limit display to callouts based on hrestime\n" 1709 " -B : limit display to callouts based on absolute time\n" 1710 " -t|a|b nsec: limit display to callouts that expire a(t) time," 1711 " (a)fter time,\n or (b)efore time. Use -a and -b together " 1712 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n" 1713 " -d : interpret time option to -t|a|b as delta from current time\n" 1714 " -k : use ticks instead of nanoseconds as arguments to" 1715 " -t|a|b. Note that\n ticks are less accurate and may not" 1716 " match other tick times (ie: lbolt).\n" 1717 " -D : display exiration time as delta from current time\n" 1718 " -S seqid : limit display to callouts for this cpu sequence id\n" 1719 " -C addr : limit display to callouts for this cpu pointer\n" 1720 " -f name|addr : limit display to callouts with this function\n" 1721 " -p name|addr : limit display to callouts functions with this" 1722 " parameter\n" 1723 " -T : display the callout table itself, instead of callouts\n" 1724 " -L : display callout lists instead of callouts\n" 1725 " -E : with -T or L, display empty data structures.\n" 1726 " -i : traverse callouts by id hash instead of list hash\n" 1727 " -F : walk free callout list (free list with -i) instead\n" 1728 " -v : display more info for each item\n" 1729 " -V : show details of each level of info as it is traversed\n" 1730 " -H : limit display to callouts in the callout heap\n" 1731 " -Q : limit display to callouts in the callout queue\n" 1732 " -A : show only addresses. Useful for pipelines.\n"); 1733 } 1734 1735 void 1736 calloutid_help(void) 1737 { 1738 mdb_printf("calloutid: display callout by id.\n" 1739 "Given an extended callout id, display the callout infomation.\n" 1740 "options:\n" 1741 " -d : do not dereference callout, just decode the id.\n" 1742 " -v : verbose display more info about the callout\n"); 1743 } 1744 1745 /*ARGSUSED*/ 1746 int 1747 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1748 { 1749 long num_classes, i; 1750 sclass_t *class_tbl; 1751 GElf_Sym g_sclass; 1752 char class_name[PC_CLNMSZ]; 1753 size_t tbl_size; 1754 1755 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 1756 mdb_warn("failed to find symbol sclass\n"); 1757 return (DCMD_ERR); 1758 } 1759 1760 tbl_size = (size_t)g_sclass.st_size; 1761 num_classes = tbl_size / (sizeof (sclass_t)); 1762 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 1763 1764 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 1765 mdb_warn("failed to read sclass"); 1766 return (DCMD_ERR); 1767 } 1768 1769 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 1770 "INIT FCN", "CLASS FCN"); 1771 1772 for (i = 0; i < num_classes; i++) { 1773 if (mdb_vread(class_name, sizeof (class_name), 1774 (uintptr_t)class_tbl[i].cl_name) == -1) 1775 (void) strcpy(class_name, "???"); 1776 1777 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 1778 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 1779 } 1780 1781 return (DCMD_OK); 1782 } 1783 1784 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 1785 1786 int 1787 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1788 { 1789 uintptr_t rootdir; 1790 vnode_t vn; 1791 char buf[MAXPATHLEN]; 1792 1793 uint_t opt_F = FALSE; 1794 1795 if (mdb_getopts(argc, argv, 1796 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 1797 return (DCMD_USAGE); 1798 1799 if (!(flags & DCMD_ADDRSPEC)) { 1800 mdb_warn("expected explicit vnode_t address before ::\n"); 1801 return (DCMD_USAGE); 1802 } 1803 1804 if (mdb_readvar(&rootdir, "rootdir") == -1) { 1805 mdb_warn("failed to read rootdir"); 1806 return (DCMD_ERR); 1807 } 1808 1809 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 1810 return (DCMD_ERR); 1811 1812 if (*buf == '\0') { 1813 mdb_printf("??\n"); 1814 return (DCMD_OK); 1815 } 1816 1817 mdb_printf("%s", buf); 1818 if (opt_F && buf[strlen(buf)-1] != '/' && 1819 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 1820 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 1821 mdb_printf("\n"); 1822 1823 return (DCMD_OK); 1824 } 1825 1826 int 1827 ld_walk_init(mdb_walk_state_t *wsp) 1828 { 1829 wsp->walk_data = (void *)wsp->walk_addr; 1830 return (WALK_NEXT); 1831 } 1832 1833 int 1834 ld_walk_step(mdb_walk_state_t *wsp) 1835 { 1836 int status; 1837 lock_descriptor_t ld; 1838 1839 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 1840 mdb_warn("couldn't read lock_descriptor_t at %p\n", 1841 wsp->walk_addr); 1842 return (WALK_ERR); 1843 } 1844 1845 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 1846 if (status == WALK_ERR) 1847 return (WALK_ERR); 1848 1849 wsp->walk_addr = (uintptr_t)ld.l_next; 1850 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 1851 return (WALK_DONE); 1852 1853 return (status); 1854 } 1855 1856 int 1857 lg_walk_init(mdb_walk_state_t *wsp) 1858 { 1859 GElf_Sym sym; 1860 1861 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 1862 mdb_warn("failed to find symbol 'lock_graph'\n"); 1863 return (WALK_ERR); 1864 } 1865 1866 wsp->walk_addr = (uintptr_t)sym.st_value; 1867 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 1868 1869 return (WALK_NEXT); 1870 } 1871 1872 typedef struct lg_walk_data { 1873 uintptr_t startaddr; 1874 mdb_walk_cb_t callback; 1875 void *data; 1876 } lg_walk_data_t; 1877 1878 /* 1879 * We can't use ::walk lock_descriptor directly, because the head of each graph 1880 * is really a dummy lock. Rather than trying to dynamically determine if this 1881 * is a dummy node or not, we just filter out the initial element of the 1882 * list. 1883 */ 1884 static int 1885 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 1886 { 1887 lg_walk_data_t *lw = priv; 1888 1889 if (addr != lw->startaddr) 1890 return (lw->callback(addr, data, lw->data)); 1891 1892 return (WALK_NEXT); 1893 } 1894 1895 int 1896 lg_walk_step(mdb_walk_state_t *wsp) 1897 { 1898 graph_t *graph; 1899 lg_walk_data_t lw; 1900 1901 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 1902 return (WALK_DONE); 1903 1904 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 1905 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 1906 return (WALK_ERR); 1907 } 1908 1909 wsp->walk_addr += sizeof (graph); 1910 1911 if (graph == NULL) 1912 return (WALK_NEXT); 1913 1914 lw.callback = wsp->walk_callback; 1915 lw.data = wsp->walk_cbdata; 1916 1917 lw.startaddr = (uintptr_t)&(graph->active_locks); 1918 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1919 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1920 return (WALK_ERR); 1921 } 1922 1923 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 1924 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1925 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1926 return (WALK_ERR); 1927 } 1928 1929 return (WALK_NEXT); 1930 } 1931 1932 /* 1933 * The space available for the path corresponding to the locked vnode depends 1934 * on whether we are printing 32- or 64-bit addresses. 1935 */ 1936 #ifdef _LP64 1937 #define LM_VNPATHLEN 20 1938 #else 1939 #define LM_VNPATHLEN 30 1940 #endif 1941 1942 typedef struct mdb_lminfo_proc { 1943 struct { 1944 char u_comm[MAXCOMLEN + 1]; 1945 } p_user; 1946 } mdb_lminfo_proc_t; 1947 1948 /*ARGSUSED*/ 1949 static int 1950 lminfo_cb(uintptr_t addr, const void *data, void *priv) 1951 { 1952 const lock_descriptor_t *ld = data; 1953 char buf[LM_VNPATHLEN]; 1954 mdb_lminfo_proc_t p; 1955 uintptr_t paddr = 0; 1956 1957 if (ld->l_flock.l_pid != 0) 1958 paddr = mdb_pid2proc(ld->l_flock.l_pid, NULL); 1959 1960 if (paddr != 0) 1961 mdb_ctf_vread(&p, "proc_t", "mdb_lminfo_proc_t", paddr, 0); 1962 1963 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 1964 addr, ld->l_type == F_RDLCK ? "RD" : 1965 ld->l_type == F_WRLCK ? "WR" : "??", 1966 ld->l_state, ld->l_flock.l_pid, 1967 ld->l_flock.l_pid == 0 ? "<kernel>" : 1968 paddr == 0 ? "<defunct>" : p.p_user.u_comm, ld->l_vnode); 1969 1970 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 1971 sizeof (buf)); 1972 mdb_printf("%s\n", buf); 1973 1974 return (WALK_NEXT); 1975 } 1976 1977 /*ARGSUSED*/ 1978 int 1979 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1980 { 1981 if (DCMD_HDRSPEC(flags)) 1982 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 1983 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 1984 1985 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, 0)); 1986 } 1987 1988 /*ARGSUSED*/ 1989 int 1990 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1991 { 1992 if ((uintptr_t)f->f_vnode == *target) { 1993 mdb_printf("file %p\n", addr); 1994 *target = 0; 1995 } 1996 1997 return (WALK_NEXT); 1998 } 1999 2000 /*ARGSUSED*/ 2001 int 2002 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 2003 { 2004 uintptr_t t = *target; 2005 2006 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 2007 mdb_warn("couldn't file walk proc %p", addr); 2008 return (WALK_ERR); 2009 } 2010 2011 if (t == 0) 2012 mdb_printf("%p\n", addr); 2013 2014 return (WALK_NEXT); 2015 } 2016 2017 /*ARGSUSED*/ 2018 int 2019 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2020 { 2021 uintptr_t target = addr; 2022 2023 if (!(flags & DCMD_ADDRSPEC) || addr == 0) 2024 return (DCMD_USAGE); 2025 2026 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 2027 mdb_warn("can't proc walk"); 2028 return (DCMD_ERR); 2029 } 2030 2031 return (DCMD_OK); 2032 } 2033 2034 typedef struct datafmt { 2035 char *hdr1; 2036 char *hdr2; 2037 char *dashes; 2038 char *fmt; 2039 } datafmt_t; 2040 2041 static datafmt_t kmemfmt[] = { 2042 { "cache ", "name ", 2043 "-------------------------", "%-25s " }, 2044 { " buf", " size", "------", "%6u " }, 2045 { " buf", "in use", "------", "%6u " }, 2046 { " buf", " total", "------", "%6u " }, 2047 { " memory", " in use", "----------", "%10lu%c " }, 2048 { " alloc", " succeed", "---------", "%9u " }, 2049 { "alloc", " fail", "-----", "%5u " }, 2050 { NULL, NULL, NULL, NULL } 2051 }; 2052 2053 static datafmt_t vmemfmt[] = { 2054 { "vmem ", "name ", 2055 "-------------------------", "%-*s " }, 2056 { " memory", " in use", "----------", "%9llu%c " }, 2057 { " memory", " total", "-----------", "%10llu%c " }, 2058 { " memory", " import", "----------", "%9llu%c " }, 2059 { " alloc", " succeed", "---------", "%9llu " }, 2060 { "alloc", " fail", "-----", "%5llu " }, 2061 { NULL, NULL, NULL, NULL } 2062 }; 2063 2064 /*ARGSUSED*/ 2065 static int 2066 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 2067 { 2068 short rounds, prounds; 2069 2070 if (KMEM_DUMPCC(ccp)) { 2071 rounds = ccp->cc_dump_rounds; 2072 prounds = ccp->cc_dump_prounds; 2073 } else { 2074 rounds = ccp->cc_rounds; 2075 prounds = ccp->cc_prounds; 2076 } 2077 if (rounds > 0) 2078 *avail += rounds; 2079 if (prounds > 0) 2080 *avail += prounds; 2081 2082 return (WALK_NEXT); 2083 } 2084 2085 /*ARGSUSED*/ 2086 static int 2087 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 2088 { 2089 *alloc += ccp->cc_alloc; 2090 2091 return (WALK_NEXT); 2092 } 2093 2094 /*ARGSUSED*/ 2095 static int 2096 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 2097 { 2098 *avail += sp->slab_chunks - sp->slab_refcnt; 2099 2100 return (WALK_NEXT); 2101 } 2102 2103 typedef struct kmastat_vmem { 2104 uintptr_t kv_addr; 2105 struct kmastat_vmem *kv_next; 2106 size_t kv_meminuse; 2107 int kv_alloc; 2108 int kv_fail; 2109 } kmastat_vmem_t; 2110 2111 typedef struct kmastat_args { 2112 kmastat_vmem_t **ka_kvpp; 2113 uint_t ka_shift; 2114 } kmastat_args_t; 2115 2116 static int 2117 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 2118 { 2119 kmastat_vmem_t **kvpp = kap->ka_kvpp; 2120 kmastat_vmem_t *kv; 2121 datafmt_t *dfp = kmemfmt; 2122 int magsize; 2123 2124 int avail, alloc, total; 2125 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 2126 cp->cache_slabsize; 2127 2128 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 2129 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 2130 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 2131 2132 magsize = kmem_get_magsize(cp); 2133 2134 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 2135 avail = cp->cache_full.ml_total * magsize; 2136 total = cp->cache_buftotal; 2137 2138 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 2139 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 2140 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 2141 2142 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) { 2143 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 2144 goto out; 2145 } 2146 2147 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 2148 kv->kv_next = *kvpp; 2149 kv->kv_addr = (uintptr_t)cp->cache_arena; 2150 *kvpp = kv; 2151 out: 2152 kv->kv_meminuse += meminuse; 2153 kv->kv_alloc += alloc; 2154 kv->kv_fail += cp->cache_alloc_fail; 2155 2156 mdb_printf((dfp++)->fmt, cp->cache_name); 2157 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 2158 mdb_printf((dfp++)->fmt, total - avail); 2159 mdb_printf((dfp++)->fmt, total); 2160 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 2161 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2162 kap->ka_shift == KILOS ? 'K' : 'B'); 2163 mdb_printf((dfp++)->fmt, alloc); 2164 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 2165 mdb_printf("\n"); 2166 2167 return (WALK_NEXT); 2168 } 2169 2170 static int 2171 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 2172 { 2173 kmastat_vmem_t *kv = *kap->ka_kvpp; 2174 size_t len; 2175 2176 while (kv != NULL && kv->kv_addr != addr) 2177 kv = kv->kv_next; 2178 2179 if (kv == NULL || kv->kv_alloc == 0) 2180 return (WALK_NEXT); 2181 2182 len = MIN(17, strlen(v->vm_name)); 2183 2184 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name, 2185 17 - len, "", "", "", "", 2186 kv->kv_meminuse >> kap->ka_shift, 2187 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2188 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 2189 2190 return (WALK_NEXT); 2191 } 2192 2193 /*ARGSUSED*/ 2194 static int 2195 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 2196 { 2197 datafmt_t *dfp = vmemfmt; 2198 const vmem_kstat_t *vkp = &v->vm_kstat; 2199 uintptr_t paddr; 2200 vmem_t parent; 2201 int ident = 0; 2202 2203 for (paddr = (uintptr_t)v->vm_source; paddr != 0; ident += 4) { 2204 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 2205 mdb_warn("couldn't trace %p's ancestry", addr); 2206 ident = 0; 2207 break; 2208 } 2209 paddr = (uintptr_t)parent.vm_source; 2210 } 2211 2212 mdb_printf("%*s", ident, ""); 2213 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 2214 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 2215 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2216 *shiftp == KILOS ? 'K' : 'B'); 2217 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 2218 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2219 *shiftp == KILOS ? 'K' : 'B'); 2220 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 2221 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2222 *shiftp == KILOS ? 'K' : 'B'); 2223 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 2224 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 2225 2226 mdb_printf("\n"); 2227 2228 return (WALK_NEXT); 2229 } 2230 2231 /*ARGSUSED*/ 2232 int 2233 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2234 { 2235 kmastat_vmem_t *kv = NULL; 2236 datafmt_t *dfp; 2237 kmastat_args_t ka; 2238 2239 ka.ka_shift = 0; 2240 if (mdb_getopts(argc, argv, 2241 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 2242 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 2243 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 2244 return (DCMD_USAGE); 2245 2246 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2247 mdb_printf("%s ", dfp->hdr1); 2248 mdb_printf("\n"); 2249 2250 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2251 mdb_printf("%s ", dfp->hdr2); 2252 mdb_printf("\n"); 2253 2254 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2255 mdb_printf("%s ", dfp->dashes); 2256 mdb_printf("\n"); 2257 2258 ka.ka_kvpp = &kv; 2259 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 2260 mdb_warn("can't walk 'kmem_cache'"); 2261 return (DCMD_ERR); 2262 } 2263 2264 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2265 mdb_printf("%s ", dfp->dashes); 2266 mdb_printf("\n"); 2267 2268 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 2269 mdb_warn("can't walk 'vmem'"); 2270 return (DCMD_ERR); 2271 } 2272 2273 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2274 mdb_printf("%s ", dfp->dashes); 2275 mdb_printf("\n"); 2276 2277 mdb_printf("\n"); 2278 2279 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2280 mdb_printf("%s ", dfp->hdr1); 2281 mdb_printf("\n"); 2282 2283 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2284 mdb_printf("%s ", dfp->hdr2); 2285 mdb_printf("\n"); 2286 2287 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2288 mdb_printf("%s ", dfp->dashes); 2289 mdb_printf("\n"); 2290 2291 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 2292 mdb_warn("can't walk 'vmem'"); 2293 return (DCMD_ERR); 2294 } 2295 2296 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2297 mdb_printf("%s ", dfp->dashes); 2298 mdb_printf("\n"); 2299 return (DCMD_OK); 2300 } 2301 2302 /* 2303 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 2304 * up of a set of 'struct seg's. We could just scan each seg en masse, but 2305 * unfortunately, a few of the segs are both large and sparse, so we could 2306 * spend quite a bit of time scanning VAs which have no backing pages. 2307 * 2308 * So for the few very sparse segs, we skip the segment itself, and scan 2309 * the allocated vmem_segs in the vmem arena which manages that part of kas. 2310 * Currently, we do this for: 2311 * 2312 * SEG VMEM ARENA 2313 * kvseg heap_arena 2314 * kvseg32 heap32_arena 2315 * kvseg_core heap_core_arena 2316 * 2317 * In addition, we skip the segkpm segment in its entirety, since it is very 2318 * sparse, and contains no new kernel data. 2319 */ 2320 typedef struct kgrep_walk_data { 2321 kgrep_cb_func *kg_cb; 2322 void *kg_cbdata; 2323 uintptr_t kg_kvseg; 2324 uintptr_t kg_kvseg32; 2325 uintptr_t kg_kvseg_core; 2326 uintptr_t kg_segkpm; 2327 uintptr_t kg_heap_lp_base; 2328 uintptr_t kg_heap_lp_end; 2329 } kgrep_walk_data_t; 2330 2331 static int 2332 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 2333 { 2334 uintptr_t base = (uintptr_t)seg->s_base; 2335 2336 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 2337 addr == kg->kg_kvseg_core) 2338 return (WALK_NEXT); 2339 2340 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 2341 return (WALK_NEXT); 2342 2343 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 2344 } 2345 2346 /*ARGSUSED*/ 2347 static int 2348 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2349 { 2350 /* 2351 * skip large page heap address range - it is scanned by walking 2352 * allocated vmem_segs in the heap_lp_arena 2353 */ 2354 if (seg->vs_start == kg->kg_heap_lp_base && 2355 seg->vs_end == kg->kg_heap_lp_end) 2356 return (WALK_NEXT); 2357 2358 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2359 } 2360 2361 /*ARGSUSED*/ 2362 static int 2363 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2364 { 2365 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2366 } 2367 2368 static int 2369 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 2370 { 2371 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 2372 2373 if (strcmp(vmem->vm_name, "heap") != 0 && 2374 strcmp(vmem->vm_name, "heap32") != 0 && 2375 strcmp(vmem->vm_name, "heap_core") != 0 && 2376 strcmp(vmem->vm_name, "heap_lp") != 0) 2377 return (WALK_NEXT); 2378 2379 if (strcmp(vmem->vm_name, "heap_lp") == 0) 2380 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 2381 2382 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 2383 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 2384 return (WALK_ERR); 2385 } 2386 2387 return (WALK_NEXT); 2388 } 2389 2390 int 2391 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 2392 { 2393 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 2394 kgrep_walk_data_t kg; 2395 2396 if (mdb_get_state() == MDB_STATE_RUNNING) { 2397 mdb_warn("kgrep can only be run on a system " 2398 "dump or under kmdb; see dumpadm(1M)\n"); 2399 return (DCMD_ERR); 2400 } 2401 2402 if (mdb_lookup_by_name("kas", &kas) == -1) { 2403 mdb_warn("failed to locate 'kas' symbol\n"); 2404 return (DCMD_ERR); 2405 } 2406 2407 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 2408 mdb_warn("failed to locate 'kvseg' symbol\n"); 2409 return (DCMD_ERR); 2410 } 2411 2412 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 2413 mdb_warn("failed to locate 'kvseg32' symbol\n"); 2414 return (DCMD_ERR); 2415 } 2416 2417 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 2418 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 2419 return (DCMD_ERR); 2420 } 2421 2422 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 2423 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 2424 return (DCMD_ERR); 2425 } 2426 2427 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 2428 mdb_warn("failed to read 'heap_lp_base'\n"); 2429 return (DCMD_ERR); 2430 } 2431 2432 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 2433 mdb_warn("failed to read 'heap_lp_end'\n"); 2434 return (DCMD_ERR); 2435 } 2436 2437 kg.kg_cb = cb; 2438 kg.kg_cbdata = cbdata; 2439 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 2440 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 2441 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 2442 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 2443 2444 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 2445 &kg, kas.st_value) == -1) { 2446 mdb_warn("failed to walk kas segments"); 2447 return (DCMD_ERR); 2448 } 2449 2450 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 2451 mdb_warn("failed to walk heap/heap32 vmem arenas"); 2452 return (DCMD_ERR); 2453 } 2454 2455 return (DCMD_OK); 2456 } 2457 2458 size_t 2459 kgrep_subr_pagesize(void) 2460 { 2461 return (PAGESIZE); 2462 } 2463 2464 typedef struct file_walk_data { 2465 struct uf_entry *fw_flist; 2466 int fw_flistsz; 2467 int fw_ndx; 2468 int fw_nofiles; 2469 } file_walk_data_t; 2470 2471 typedef struct mdb_file_proc { 2472 struct { 2473 struct { 2474 int fi_nfiles; 2475 uf_entry_t *volatile fi_list; 2476 } u_finfo; 2477 } p_user; 2478 } mdb_file_proc_t; 2479 2480 int 2481 file_walk_init(mdb_walk_state_t *wsp) 2482 { 2483 file_walk_data_t *fw; 2484 mdb_file_proc_t p; 2485 2486 if (wsp->walk_addr == 0) { 2487 mdb_warn("file walk doesn't support global walks\n"); 2488 return (WALK_ERR); 2489 } 2490 2491 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 2492 2493 if (mdb_ctf_vread(&p, "proc_t", "mdb_file_proc_t", 2494 wsp->walk_addr, 0) == -1) { 2495 mdb_free(fw, sizeof (file_walk_data_t)); 2496 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 2497 return (WALK_ERR); 2498 } 2499 2500 if (p.p_user.u_finfo.fi_nfiles == 0) { 2501 mdb_free(fw, sizeof (file_walk_data_t)); 2502 return (WALK_DONE); 2503 } 2504 2505 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 2506 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 2507 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 2508 2509 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 2510 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 2511 mdb_warn("failed to read file array at %p", 2512 p.p_user.u_finfo.fi_list); 2513 mdb_free(fw->fw_flist, fw->fw_flistsz); 2514 mdb_free(fw, sizeof (file_walk_data_t)); 2515 return (WALK_ERR); 2516 } 2517 2518 fw->fw_ndx = 0; 2519 wsp->walk_data = fw; 2520 2521 return (WALK_NEXT); 2522 } 2523 2524 int 2525 file_walk_step(mdb_walk_state_t *wsp) 2526 { 2527 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2528 struct file file; 2529 uintptr_t fp; 2530 2531 again: 2532 if (fw->fw_ndx == fw->fw_nofiles) 2533 return (WALK_DONE); 2534 2535 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == 0) 2536 goto again; 2537 2538 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2539 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2540 } 2541 2542 int 2543 allfile_walk_step(mdb_walk_state_t *wsp) 2544 { 2545 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2546 struct file file; 2547 uintptr_t fp; 2548 2549 if (fw->fw_ndx == fw->fw_nofiles) 2550 return (WALK_DONE); 2551 2552 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != 0) 2553 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2554 else 2555 bzero(&file, sizeof (file)); 2556 2557 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2558 } 2559 2560 void 2561 file_walk_fini(mdb_walk_state_t *wsp) 2562 { 2563 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2564 2565 mdb_free(fw->fw_flist, fw->fw_flistsz); 2566 mdb_free(fw, sizeof (file_walk_data_t)); 2567 } 2568 2569 int 2570 port_walk_init(mdb_walk_state_t *wsp) 2571 { 2572 if (wsp->walk_addr == 0) { 2573 mdb_warn("port walk doesn't support global walks\n"); 2574 return (WALK_ERR); 2575 } 2576 2577 if (mdb_layered_walk("file", wsp) == -1) { 2578 mdb_warn("couldn't walk 'file'"); 2579 return (WALK_ERR); 2580 } 2581 return (WALK_NEXT); 2582 } 2583 2584 int 2585 port_walk_step(mdb_walk_state_t *wsp) 2586 { 2587 struct vnode vn; 2588 uintptr_t vp; 2589 uintptr_t pp; 2590 struct port port; 2591 2592 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 2593 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2594 mdb_warn("failed to read vnode_t at %p", vp); 2595 return (WALK_ERR); 2596 } 2597 if (vn.v_type != VPORT) 2598 return (WALK_NEXT); 2599 2600 pp = (uintptr_t)vn.v_data; 2601 if (mdb_vread(&port, sizeof (port), pp) == -1) { 2602 mdb_warn("failed to read port_t at %p", pp); 2603 return (WALK_ERR); 2604 } 2605 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 2606 } 2607 2608 typedef struct portev_walk_data { 2609 list_node_t *pev_node; 2610 list_node_t *pev_last; 2611 size_t pev_offset; 2612 } portev_walk_data_t; 2613 2614 int 2615 portev_walk_init(mdb_walk_state_t *wsp) 2616 { 2617 portev_walk_data_t *pevd; 2618 struct port port; 2619 struct vnode vn; 2620 struct list *list; 2621 uintptr_t vp; 2622 2623 if (wsp->walk_addr == 0) { 2624 mdb_warn("portev walk doesn't support global walks\n"); 2625 return (WALK_ERR); 2626 } 2627 2628 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 2629 2630 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 2631 mdb_free(pevd, sizeof (portev_walk_data_t)); 2632 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 2633 return (WALK_ERR); 2634 } 2635 2636 vp = (uintptr_t)port.port_vnode; 2637 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2638 mdb_free(pevd, sizeof (portev_walk_data_t)); 2639 mdb_warn("failed to read vnode_t at %p", vp); 2640 return (WALK_ERR); 2641 } 2642 2643 if (vn.v_type != VPORT) { 2644 mdb_free(pevd, sizeof (portev_walk_data_t)); 2645 mdb_warn("input address (%p) does not point to an event port", 2646 wsp->walk_addr); 2647 return (WALK_ERR); 2648 } 2649 2650 if (port.port_queue.portq_nent == 0) { 2651 mdb_free(pevd, sizeof (portev_walk_data_t)); 2652 return (WALK_DONE); 2653 } 2654 list = &port.port_queue.portq_list; 2655 pevd->pev_offset = list->list_offset; 2656 pevd->pev_last = list->list_head.list_prev; 2657 pevd->pev_node = list->list_head.list_next; 2658 wsp->walk_data = pevd; 2659 return (WALK_NEXT); 2660 } 2661 2662 int 2663 portev_walk_step(mdb_walk_state_t *wsp) 2664 { 2665 portev_walk_data_t *pevd; 2666 struct port_kevent ev; 2667 uintptr_t evp; 2668 2669 pevd = (portev_walk_data_t *)wsp->walk_data; 2670 2671 if (pevd->pev_last == NULL) 2672 return (WALK_DONE); 2673 if (pevd->pev_node == pevd->pev_last) 2674 pevd->pev_last = NULL; /* last round */ 2675 2676 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 2677 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 2678 mdb_warn("failed to read port_kevent at %p", evp); 2679 return (WALK_DONE); 2680 } 2681 pevd->pev_node = ev.portkev_node.list_next; 2682 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 2683 } 2684 2685 void 2686 portev_walk_fini(mdb_walk_state_t *wsp) 2687 { 2688 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 2689 2690 if (pevd != NULL) 2691 mdb_free(pevd, sizeof (portev_walk_data_t)); 2692 } 2693 2694 typedef struct proc_walk_data { 2695 uintptr_t *pw_stack; 2696 int pw_depth; 2697 int pw_max; 2698 } proc_walk_data_t; 2699 2700 int 2701 proc_walk_init(mdb_walk_state_t *wsp) 2702 { 2703 GElf_Sym sym; 2704 proc_walk_data_t *pw; 2705 2706 if (wsp->walk_addr == 0) { 2707 if (mdb_lookup_by_name("p0", &sym) == -1) { 2708 mdb_warn("failed to read 'practive'"); 2709 return (WALK_ERR); 2710 } 2711 wsp->walk_addr = (uintptr_t)sym.st_value; 2712 } 2713 2714 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 2715 2716 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 2717 mdb_warn("failed to read 'nproc'"); 2718 mdb_free(pw, sizeof (pw)); 2719 return (WALK_ERR); 2720 } 2721 2722 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 2723 wsp->walk_data = pw; 2724 2725 return (WALK_NEXT); 2726 } 2727 2728 typedef struct mdb_walk_proc { 2729 struct proc *p_child; 2730 struct proc *p_sibling; 2731 } mdb_walk_proc_t; 2732 2733 int 2734 proc_walk_step(mdb_walk_state_t *wsp) 2735 { 2736 proc_walk_data_t *pw = wsp->walk_data; 2737 uintptr_t addr = wsp->walk_addr; 2738 uintptr_t cld, sib; 2739 int status; 2740 mdb_walk_proc_t pr; 2741 2742 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2743 addr, 0) == -1) { 2744 mdb_warn("failed to read proc at %p", addr); 2745 return (WALK_DONE); 2746 } 2747 2748 cld = (uintptr_t)pr.p_child; 2749 sib = (uintptr_t)pr.p_sibling; 2750 2751 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 2752 pw->pw_depth--; 2753 goto sib; 2754 } 2755 2756 /* 2757 * Always pass NULL as the local copy pointer. Consumers 2758 * should use mdb_ctf_vread() to read their own minimal 2759 * version of proc_t. Thus minimizing the chance of breakage 2760 * with older crash dumps. 2761 */ 2762 status = wsp->walk_callback(addr, NULL, wsp->walk_cbdata); 2763 2764 if (status != WALK_NEXT) 2765 return (status); 2766 2767 if ((wsp->walk_addr = cld) != 0) { 2768 if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2769 cld, 0) == -1) { 2770 mdb_warn("proc %p has invalid p_child %p; skipping\n", 2771 addr, cld); 2772 goto sib; 2773 } 2774 2775 pw->pw_stack[pw->pw_depth++] = addr; 2776 2777 if (pw->pw_depth == pw->pw_max) { 2778 mdb_warn("depth %d exceeds max depth; try again\n", 2779 pw->pw_depth); 2780 return (WALK_DONE); 2781 } 2782 return (WALK_NEXT); 2783 } 2784 2785 sib: 2786 /* 2787 * We know that p0 has no siblings, and if another starting proc 2788 * was given, we don't want to walk its siblings anyway. 2789 */ 2790 if (pw->pw_depth == 0) 2791 return (WALK_DONE); 2792 2793 if (sib != 0 && mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t", 2794 sib, 0) == -1) { 2795 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 2796 addr, sib); 2797 sib = 0; 2798 } 2799 2800 if ((wsp->walk_addr = sib) == 0) { 2801 if (pw->pw_depth > 0) { 2802 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 2803 return (WALK_NEXT); 2804 } 2805 return (WALK_DONE); 2806 } 2807 2808 return (WALK_NEXT); 2809 } 2810 2811 void 2812 proc_walk_fini(mdb_walk_state_t *wsp) 2813 { 2814 proc_walk_data_t *pw = wsp->walk_data; 2815 2816 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 2817 mdb_free(pw, sizeof (proc_walk_data_t)); 2818 } 2819 2820 int 2821 task_walk_init(mdb_walk_state_t *wsp) 2822 { 2823 task_t task; 2824 2825 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 2826 mdb_warn("failed to read task at %p", wsp->walk_addr); 2827 return (WALK_ERR); 2828 } 2829 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 2830 wsp->walk_data = task.tk_memb_list; 2831 return (WALK_NEXT); 2832 } 2833 2834 typedef struct mdb_task_proc { 2835 struct proc *p_tasknext; 2836 } mdb_task_proc_t; 2837 2838 int 2839 task_walk_step(mdb_walk_state_t *wsp) 2840 { 2841 mdb_task_proc_t proc; 2842 int status; 2843 2844 if (mdb_ctf_vread(&proc, "proc_t", "mdb_task_proc_t", 2845 wsp->walk_addr, 0) == -1) { 2846 mdb_warn("failed to read proc at %p", wsp->walk_addr); 2847 return (WALK_DONE); 2848 } 2849 2850 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 2851 2852 if (proc.p_tasknext == wsp->walk_data) 2853 return (WALK_DONE); 2854 2855 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 2856 return (status); 2857 } 2858 2859 int 2860 project_walk_init(mdb_walk_state_t *wsp) 2861 { 2862 if (wsp->walk_addr == 0) { 2863 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 2864 mdb_warn("failed to read 'proj0p'"); 2865 return (WALK_ERR); 2866 } 2867 } 2868 wsp->walk_data = (void *)wsp->walk_addr; 2869 return (WALK_NEXT); 2870 } 2871 2872 int 2873 project_walk_step(mdb_walk_state_t *wsp) 2874 { 2875 uintptr_t addr = wsp->walk_addr; 2876 kproject_t pj; 2877 int status; 2878 2879 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 2880 mdb_warn("failed to read project at %p", addr); 2881 return (WALK_DONE); 2882 } 2883 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 2884 if (status != WALK_NEXT) 2885 return (status); 2886 wsp->walk_addr = (uintptr_t)pj.kpj_next; 2887 if ((void *)wsp->walk_addr == wsp->walk_data) 2888 return (WALK_DONE); 2889 return (WALK_NEXT); 2890 } 2891 2892 static int 2893 generic_walk_step(mdb_walk_state_t *wsp) 2894 { 2895 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 2896 wsp->walk_cbdata)); 2897 } 2898 2899 static int 2900 cpu_walk_cmp(const void *l, const void *r) 2901 { 2902 uintptr_t lhs = *((uintptr_t *)l); 2903 uintptr_t rhs = *((uintptr_t *)r); 2904 cpu_t lcpu, rcpu; 2905 2906 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 2907 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 2908 2909 if (lcpu.cpu_id < rcpu.cpu_id) 2910 return (-1); 2911 2912 if (lcpu.cpu_id > rcpu.cpu_id) 2913 return (1); 2914 2915 return (0); 2916 } 2917 2918 typedef struct cpu_walk { 2919 uintptr_t *cw_array; 2920 int cw_ndx; 2921 } cpu_walk_t; 2922 2923 int 2924 cpu_walk_init(mdb_walk_state_t *wsp) 2925 { 2926 cpu_walk_t *cw; 2927 int max_ncpus, i = 0; 2928 uintptr_t current, first; 2929 cpu_t cpu, panic_cpu; 2930 uintptr_t panicstr, addr; 2931 GElf_Sym sym; 2932 2933 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 2934 2935 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 2936 mdb_warn("failed to read 'max_ncpus'"); 2937 return (WALK_ERR); 2938 } 2939 2940 if (mdb_readvar(&panicstr, "panicstr") == -1) { 2941 mdb_warn("failed to read 'panicstr'"); 2942 return (WALK_ERR); 2943 } 2944 2945 if (panicstr != 0) { 2946 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 2947 mdb_warn("failed to find 'panic_cpu'"); 2948 return (WALK_ERR); 2949 } 2950 2951 addr = (uintptr_t)sym.st_value; 2952 2953 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 2954 mdb_warn("failed to read 'panic_cpu'"); 2955 return (WALK_ERR); 2956 } 2957 } 2958 2959 /* 2960 * Unfortunately, there is no platform-independent way to walk 2961 * CPUs in ID order. We therefore loop through in cpu_next order, 2962 * building an array of CPU pointers which will subsequently be 2963 * sorted. 2964 */ 2965 cw->cw_array = 2966 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 2967 2968 if (mdb_readvar(&first, "cpu_list") == -1) { 2969 mdb_warn("failed to read 'cpu_list'"); 2970 return (WALK_ERR); 2971 } 2972 2973 current = first; 2974 do { 2975 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 2976 mdb_warn("failed to read cpu at %p", current); 2977 return (WALK_ERR); 2978 } 2979 2980 if (panicstr != 0 && panic_cpu.cpu_id == cpu.cpu_id) { 2981 cw->cw_array[i++] = addr; 2982 } else { 2983 cw->cw_array[i++] = current; 2984 } 2985 } while ((current = (uintptr_t)cpu.cpu_next) != first); 2986 2987 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2988 wsp->walk_data = cw; 2989 2990 return (WALK_NEXT); 2991 } 2992 2993 int 2994 cpu_walk_step(mdb_walk_state_t *wsp) 2995 { 2996 cpu_walk_t *cw = wsp->walk_data; 2997 cpu_t cpu; 2998 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2999 3000 if (addr == 0) 3001 return (WALK_DONE); 3002 3003 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 3004 mdb_warn("failed to read cpu at %p", addr); 3005 return (WALK_DONE); 3006 } 3007 3008 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 3009 } 3010 3011 typedef struct cpuinfo_data { 3012 intptr_t cid_cpu; 3013 uintptr_t **cid_ithr; 3014 char cid_print_head; 3015 char cid_print_thr; 3016 char cid_print_ithr; 3017 char cid_print_flags; 3018 } cpuinfo_data_t; 3019 3020 int 3021 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 3022 { 3023 cpu_t c; 3024 int id; 3025 uint8_t pil; 3026 3027 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 3028 return (WALK_NEXT); 3029 3030 if (thr->t_bound_cpu == NULL) { 3031 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 3032 return (WALK_NEXT); 3033 } 3034 3035 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 3036 3037 if ((id = c.cpu_id) >= NCPU) { 3038 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 3039 thr->t_bound_cpu, id, NCPU); 3040 return (WALK_NEXT); 3041 } 3042 3043 if ((pil = thr->t_pil) >= NINTR) { 3044 mdb_warn("thread %p has pil (%d) greater than %d\n", 3045 addr, pil, NINTR); 3046 return (WALK_NEXT); 3047 } 3048 3049 if (cid->cid_ithr[id][pil] != 0) { 3050 mdb_warn("CPU %d has multiple threads at pil %d (at least " 3051 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 3052 return (WALK_NEXT); 3053 } 3054 3055 cid->cid_ithr[id][pil] = addr; 3056 3057 return (WALK_NEXT); 3058 } 3059 3060 #define CPUINFO_IDWIDTH 3 3061 #define CPUINFO_FLAGWIDTH 9 3062 3063 #ifdef _LP64 3064 #if defined(__amd64) 3065 #define CPUINFO_TWIDTH 16 3066 #define CPUINFO_CPUWIDTH 16 3067 #else 3068 #define CPUINFO_CPUWIDTH 11 3069 #define CPUINFO_TWIDTH 11 3070 #endif 3071 #else 3072 #define CPUINFO_CPUWIDTH 8 3073 #define CPUINFO_TWIDTH 8 3074 #endif 3075 3076 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 3077 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 3078 #define CPUINFO_ITHRDELT 4 3079 3080 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 3081 flagline < nflaglines ? flagbuf[flagline++] : "") 3082 3083 typedef struct mdb_cpuinfo_proc { 3084 struct { 3085 char u_comm[MAXCOMLEN + 1]; 3086 } p_user; 3087 } mdb_cpuinfo_proc_t; 3088 3089 int 3090 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 3091 { 3092 kthread_t t; 3093 disp_t disp; 3094 mdb_cpuinfo_proc_t p; 3095 uintptr_t pinned; 3096 char **flagbuf; 3097 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 3098 3099 const char *flags[] = { 3100 "RUNNING", "READY", "QUIESCED", "EXISTS", 3101 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 3102 "SPARE", "FAULTED", "DISABLED", NULL 3103 }; 3104 3105 if (cid->cid_cpu != -1) { 3106 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 3107 return (WALK_NEXT); 3108 3109 /* 3110 * Set cid_cpu to -1 to indicate that we found a matching CPU. 3111 */ 3112 cid->cid_cpu = -1; 3113 rval = WALK_DONE; 3114 } 3115 3116 if (cid->cid_print_head) { 3117 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 3118 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 3119 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 3120 "PROC"); 3121 cid->cid_print_head = FALSE; 3122 } 3123 3124 bspl = cpu->cpu_base_spl; 3125 3126 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 3127 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 3128 return (WALK_ERR); 3129 } 3130 3131 mdb_printf("%3d %0*p %3x %4d %4d ", 3132 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 3133 disp.disp_nrunnable, bspl); 3134 3135 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 3136 mdb_printf("%3d ", t.t_pri); 3137 } else { 3138 mdb_printf("%3s ", "-"); 3139 } 3140 3141 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 3142 cpu->cpu_kprunrun ? "yes" : "no"); 3143 3144 if (cpu->cpu_last_swtch) { 3145 mdb_printf("t-%-4d ", 3146 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch); 3147 } else { 3148 mdb_printf("%-6s ", "-"); 3149 } 3150 3151 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 3152 3153 if (cpu->cpu_thread == cpu->cpu_idle_thread) 3154 mdb_printf(" (idle)\n"); 3155 else if (cpu->cpu_thread == NULL) 3156 mdb_printf(" -\n"); 3157 else { 3158 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t", 3159 (uintptr_t)t.t_procp, 0) != -1) { 3160 mdb_printf(" %s\n", p.p_user.u_comm); 3161 } else { 3162 mdb_printf(" ?\n"); 3163 } 3164 } 3165 3166 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 3167 3168 if (cid->cid_print_flags) { 3169 int first = 1, i, j, k; 3170 char *s; 3171 3172 cid->cid_print_head = TRUE; 3173 3174 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 3175 if (!(cpu->cpu_flags & i)) 3176 continue; 3177 3178 if (first) { 3179 s = mdb_alloc(CPUINFO_THRDELT + 1, 3180 UM_GC | UM_SLEEP); 3181 3182 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 3183 "%*s|%*s", CPUINFO_FLAGDELT, "", 3184 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 3185 flagbuf[nflaglines++] = s; 3186 } 3187 3188 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 3189 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 3190 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 3191 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 3192 first ? "<--+" : ""); 3193 3194 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 3195 s[k] = ' '; 3196 s[k] = '\0'; 3197 3198 flagbuf[nflaglines++] = s; 3199 first = 0; 3200 } 3201 } 3202 3203 if (cid->cid_print_ithr) { 3204 int i, found_one = FALSE; 3205 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 3206 3207 for (i = NINTR - 1; i >= 0; i--) { 3208 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 3209 3210 if (iaddr == 0) 3211 continue; 3212 3213 if (!found_one) { 3214 found_one = TRUE; 3215 3216 CPUINFO_INDENT; 3217 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 3218 CPUINFO_ITHRDELT, ""); 3219 3220 CPUINFO_INDENT; 3221 mdb_printf("%c%*s+--> %3s %s\n", 3222 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 3223 "", "PIL", "THREAD"); 3224 } 3225 3226 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 3227 mdb_warn("failed to read kthread_t at %p", 3228 iaddr); 3229 return (WALK_ERR); 3230 } 3231 3232 CPUINFO_INDENT; 3233 mdb_printf("%c%*s %3d %0*p\n", 3234 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 3235 t.t_pil, CPUINFO_TWIDTH, iaddr); 3236 3237 pinned = (uintptr_t)t.t_intr; 3238 } 3239 3240 if (found_one && pinned != 0) { 3241 cid->cid_print_head = TRUE; 3242 (void) strcpy(p.p_user.u_comm, "?"); 3243 3244 if (mdb_vread(&t, sizeof (t), 3245 (uintptr_t)pinned) == -1) { 3246 mdb_warn("failed to read kthread_t at %p", 3247 pinned); 3248 return (WALK_ERR); 3249 } 3250 if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t", 3251 (uintptr_t)t.t_procp, 0) == -1) { 3252 mdb_warn("failed to read proc_t at %p", 3253 t.t_procp); 3254 return (WALK_ERR); 3255 } 3256 3257 CPUINFO_INDENT; 3258 mdb_printf("%c%*s %3s %0*p %s\n", 3259 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 3260 CPUINFO_TWIDTH, pinned, 3261 pinned == (uintptr_t)cpu->cpu_idle_thread ? 3262 "(idle)" : p.p_user.u_comm); 3263 } 3264 } 3265 3266 if (disp.disp_nrunnable && cid->cid_print_thr) { 3267 dispq_t *dq; 3268 3269 int i, npri = disp.disp_npri; 3270 3271 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 3272 3273 if (mdb_vread(dq, sizeof (dispq_t) * npri, 3274 (uintptr_t)disp.disp_q) == -1) { 3275 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 3276 return (WALK_ERR); 3277 } 3278 3279 CPUINFO_INDENT; 3280 mdb_printf("|\n"); 3281 3282 CPUINFO_INDENT; 3283 mdb_printf("+--> %3s %-*s %s\n", "PRI", 3284 CPUINFO_TWIDTH, "THREAD", "PROC"); 3285 3286 for (i = npri - 1; i >= 0; i--) { 3287 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 3288 3289 while (taddr != 0) { 3290 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 3291 mdb_warn("failed to read kthread_t " 3292 "at %p", taddr); 3293 return (WALK_ERR); 3294 } 3295 if (mdb_ctf_vread(&p, "proc_t", 3296 "mdb_cpuinfo_proc_t", 3297 (uintptr_t)t.t_procp, 0) == -1) { 3298 mdb_warn("failed to read proc_t at %p", 3299 t.t_procp); 3300 return (WALK_ERR); 3301 } 3302 3303 CPUINFO_INDENT; 3304 mdb_printf(" %3d %0*p %s\n", t.t_pri, 3305 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 3306 3307 taddr = (uintptr_t)t.t_link; 3308 } 3309 } 3310 cid->cid_print_head = TRUE; 3311 } 3312 3313 while (flagline < nflaglines) 3314 mdb_printf("%s\n", flagbuf[flagline++]); 3315 3316 if (cid->cid_print_head) 3317 mdb_printf("\n"); 3318 3319 return (rval); 3320 } 3321 3322 int 3323 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3324 { 3325 uint_t verbose = FALSE; 3326 cpuinfo_data_t cid; 3327 3328 cid.cid_print_ithr = FALSE; 3329 cid.cid_print_thr = FALSE; 3330 cid.cid_print_flags = FALSE; 3331 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 3332 cid.cid_cpu = -1; 3333 3334 if (flags & DCMD_ADDRSPEC) 3335 cid.cid_cpu = addr; 3336 3337 if (mdb_getopts(argc, argv, 3338 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 3339 return (DCMD_USAGE); 3340 3341 if (verbose) { 3342 cid.cid_print_ithr = TRUE; 3343 cid.cid_print_thr = TRUE; 3344 cid.cid_print_flags = TRUE; 3345 cid.cid_print_head = TRUE; 3346 } 3347 3348 if (cid.cid_print_ithr) { 3349 int i; 3350 3351 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 3352 * NCPU, UM_SLEEP | UM_GC); 3353 3354 for (i = 0; i < NCPU; i++) 3355 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 3356 NINTR, UM_SLEEP | UM_GC); 3357 3358 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 3359 &cid) == -1) { 3360 mdb_warn("couldn't walk thread"); 3361 return (DCMD_ERR); 3362 } 3363 } 3364 3365 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 3366 mdb_warn("can't walk cpus"); 3367 return (DCMD_ERR); 3368 } 3369 3370 if (cid.cid_cpu != -1) { 3371 /* 3372 * We didn't find this CPU when we walked through the CPUs 3373 * (i.e. the address specified doesn't show up in the "cpu" 3374 * walk). However, the specified address may still correspond 3375 * to a valid cpu_t (for example, if the specified address is 3376 * the actual panicking cpu_t and not the cached panic_cpu). 3377 * Point is: even if we didn't find it, we still want to try 3378 * to print the specified address as a cpu_t. 3379 */ 3380 cpu_t cpu; 3381 3382 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 3383 mdb_warn("%p is neither a valid CPU ID nor a " 3384 "valid cpu_t address\n", cid.cid_cpu); 3385 return (DCMD_ERR); 3386 } 3387 3388 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 3389 } 3390 3391 return (DCMD_OK); 3392 } 3393 3394 /*ARGSUSED*/ 3395 int 3396 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3397 { 3398 int i; 3399 3400 if (!(flags & DCMD_ADDRSPEC)) 3401 return (DCMD_USAGE); 3402 3403 for (i = 0; i < sizeof (addr) * NBBY; i++) 3404 mdb_printf("%p\n", addr ^ (1UL << i)); 3405 3406 return (DCMD_OK); 3407 } 3408 3409 typedef struct mdb_as2proc_proc { 3410 struct as *p_as; 3411 } mdb_as2proc_proc_t; 3412 3413 /*ARGSUSED*/ 3414 int 3415 as2proc_walk(uintptr_t addr, const void *ignored, struct as **asp) 3416 { 3417 mdb_as2proc_proc_t p; 3418 3419 mdb_ctf_vread(&p, "proc_t", "mdb_as2proc_proc_t", addr, 0); 3420 3421 if (p.p_as == *asp) 3422 mdb_printf("%p\n", addr); 3423 return (WALK_NEXT); 3424 } 3425 3426 /*ARGSUSED*/ 3427 int 3428 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3429 { 3430 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 3431 return (DCMD_USAGE); 3432 3433 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 3434 mdb_warn("failed to walk proc"); 3435 return (DCMD_ERR); 3436 } 3437 3438 return (DCMD_OK); 3439 } 3440 3441 typedef struct mdb_ptree_proc { 3442 struct proc *p_parent; 3443 struct { 3444 char u_comm[MAXCOMLEN + 1]; 3445 } p_user; 3446 } mdb_ptree_proc_t; 3447 3448 /*ARGSUSED*/ 3449 int 3450 ptree_walk(uintptr_t addr, const void *ignored, void *data) 3451 { 3452 mdb_ptree_proc_t proc; 3453 mdb_ptree_proc_t parent; 3454 int ident = 0; 3455 uintptr_t paddr; 3456 3457 mdb_ctf_vread(&proc, "proc_t", "mdb_ptree_proc_t", addr, 0); 3458 3459 for (paddr = (uintptr_t)proc.p_parent; paddr != 0; ident += 5) { 3460 mdb_ctf_vread(&parent, "proc_t", "mdb_ptree_proc_t", paddr, 0); 3461 paddr = (uintptr_t)parent.p_parent; 3462 } 3463 3464 mdb_inc_indent(ident); 3465 mdb_printf("%0?p %s\n", addr, proc.p_user.u_comm); 3466 mdb_dec_indent(ident); 3467 3468 return (WALK_NEXT); 3469 } 3470 3471 void 3472 ptree_ancestors(uintptr_t addr, uintptr_t start) 3473 { 3474 mdb_ptree_proc_t p; 3475 3476 if (mdb_ctf_vread(&p, "proc_t", "mdb_ptree_proc_t", addr, 0) == -1) { 3477 mdb_warn("couldn't read ancestor at %p", addr); 3478 return; 3479 } 3480 3481 if (p.p_parent != NULL) 3482 ptree_ancestors((uintptr_t)p.p_parent, start); 3483 3484 if (addr != start) 3485 (void) ptree_walk(addr, &p, NULL); 3486 } 3487 3488 /*ARGSUSED*/ 3489 int 3490 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3491 { 3492 if (!(flags & DCMD_ADDRSPEC)) 3493 addr = 0; 3494 else 3495 ptree_ancestors(addr, addr); 3496 3497 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 3498 mdb_warn("couldn't walk 'proc'"); 3499 return (DCMD_ERR); 3500 } 3501 3502 return (DCMD_OK); 3503 } 3504 3505 typedef struct mdb_fd_proc { 3506 struct { 3507 struct { 3508 int fi_nfiles; 3509 uf_entry_t *volatile fi_list; 3510 } u_finfo; 3511 } p_user; 3512 } mdb_fd_proc_t; 3513 3514 /*ARGSUSED*/ 3515 static int 3516 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3517 { 3518 int fdnum; 3519 const mdb_arg_t *argp = &argv[0]; 3520 mdb_fd_proc_t p; 3521 uf_entry_t uf; 3522 3523 if ((flags & DCMD_ADDRSPEC) == 0) { 3524 mdb_warn("fd doesn't give global information\n"); 3525 return (DCMD_ERR); 3526 } 3527 if (argc != 1) 3528 return (DCMD_USAGE); 3529 3530 if (argp->a_type == MDB_TYPE_IMMEDIATE) 3531 fdnum = argp->a_un.a_val; 3532 else 3533 fdnum = mdb_strtoull(argp->a_un.a_str); 3534 3535 if (mdb_ctf_vread(&p, "proc_t", "mdb_fd_proc_t", addr, 0) == -1) { 3536 mdb_warn("couldn't read proc_t at %p", addr); 3537 return (DCMD_ERR); 3538 } 3539 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 3540 mdb_warn("process %p only has %d files open.\n", 3541 addr, p.p_user.u_finfo.fi_nfiles); 3542 return (DCMD_ERR); 3543 } 3544 if (mdb_vread(&uf, sizeof (uf_entry_t), 3545 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 3546 mdb_warn("couldn't read uf_entry_t at %p", 3547 &p.p_user.u_finfo.fi_list[fdnum]); 3548 return (DCMD_ERR); 3549 } 3550 3551 mdb_printf("%p\n", uf.uf_file); 3552 return (DCMD_OK); 3553 } 3554 3555 /*ARGSUSED*/ 3556 static int 3557 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3558 { 3559 pid_t pid = (pid_t)addr; 3560 3561 if (argc != 0) 3562 return (DCMD_USAGE); 3563 3564 if ((addr = mdb_pid2proc(pid, NULL)) == 0) { 3565 mdb_warn("PID 0t%d not found\n", pid); 3566 return (DCMD_ERR); 3567 } 3568 3569 mdb_printf("%p\n", addr); 3570 return (DCMD_OK); 3571 } 3572 3573 static char *sysfile_cmd[] = { 3574 "exclude:", 3575 "include:", 3576 "forceload:", 3577 "rootdev:", 3578 "rootfs:", 3579 "swapdev:", 3580 "swapfs:", 3581 "moddir:", 3582 "set", 3583 "unknown", 3584 }; 3585 3586 static char *sysfile_ops[] = { "", "=", "&", "|" }; 3587 3588 /*ARGSUSED*/ 3589 static int 3590 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 3591 { 3592 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 3593 *target = NULL; 3594 return (WALK_DONE); 3595 } 3596 return (WALK_NEXT); 3597 } 3598 3599 /*ARGSUSED*/ 3600 static int 3601 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3602 { 3603 struct sysparam *sysp, sys; 3604 char var[256]; 3605 char modname[256]; 3606 char val[256]; 3607 char strval[256]; 3608 vmem_t *mod_sysfile_arena; 3609 void *straddr; 3610 3611 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 3612 mdb_warn("failed to read sysparam_hd"); 3613 return (DCMD_ERR); 3614 } 3615 3616 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 3617 mdb_warn("failed to read mod_sysfile_arena"); 3618 return (DCMD_ERR); 3619 } 3620 3621 while (sysp != NULL) { 3622 var[0] = '\0'; 3623 val[0] = '\0'; 3624 modname[0] = '\0'; 3625 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 3626 mdb_warn("couldn't read sysparam %p", sysp); 3627 return (DCMD_ERR); 3628 } 3629 if (sys.sys_modnam != NULL && 3630 mdb_readstr(modname, 256, 3631 (uintptr_t)sys.sys_modnam) == -1) { 3632 mdb_warn("couldn't read modname in %p", sysp); 3633 return (DCMD_ERR); 3634 } 3635 if (sys.sys_ptr != NULL && 3636 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 3637 mdb_warn("couldn't read ptr in %p", sysp); 3638 return (DCMD_ERR); 3639 } 3640 if (sys.sys_op != SETOP_NONE) { 3641 /* 3642 * Is this an int or a string? We determine this 3643 * by checking whether straddr is contained in 3644 * mod_sysfile_arena. If so, the walker will set 3645 * straddr to NULL. 3646 */ 3647 straddr = (void *)(uintptr_t)sys.sys_info; 3648 if (sys.sys_op == SETOP_ASSIGN && 3649 sys.sys_info != 0 && 3650 mdb_pwalk("vmem_seg", 3651 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 3652 (uintptr_t)mod_sysfile_arena) == 0 && 3653 straddr == NULL && 3654 mdb_readstr(strval, 256, 3655 (uintptr_t)sys.sys_info) != -1) { 3656 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 3657 strval); 3658 } else { 3659 (void) mdb_snprintf(val, sizeof (val), 3660 "0x%llx [0t%llu]", sys.sys_info, 3661 sys.sys_info); 3662 } 3663 } 3664 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 3665 modname, modname[0] == '\0' ? "" : ":", 3666 var, sysfile_ops[sys.sys_op], val); 3667 3668 sysp = sys.sys_next; 3669 } 3670 3671 return (DCMD_OK); 3672 } 3673 3674 int 3675 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3676 { 3677 3678 if (*didp == thr->t_did) { 3679 mdb_printf("%p\n", addr); 3680 return (WALK_DONE); 3681 } else 3682 return (WALK_NEXT); 3683 } 3684 3685 /*ARGSUSED*/ 3686 int 3687 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3688 { 3689 const mdb_arg_t *argp = &argv[0]; 3690 kt_did_t did; 3691 3692 if (argc != 1) 3693 return (DCMD_USAGE); 3694 3695 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 3696 3697 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3698 mdb_warn("failed to walk thread"); 3699 return (DCMD_ERR); 3700 3701 } 3702 return (DCMD_OK); 3703 3704 } 3705 3706 static int 3707 errorq_walk_init(mdb_walk_state_t *wsp) 3708 { 3709 if (wsp->walk_addr == 0 && 3710 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 3711 mdb_warn("failed to read errorq_list"); 3712 return (WALK_ERR); 3713 } 3714 3715 return (WALK_NEXT); 3716 } 3717 3718 static int 3719 errorq_walk_step(mdb_walk_state_t *wsp) 3720 { 3721 uintptr_t addr = wsp->walk_addr; 3722 errorq_t eq; 3723 3724 if (addr == 0) 3725 return (WALK_DONE); 3726 3727 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 3728 mdb_warn("failed to read errorq at %p", addr); 3729 return (WALK_ERR); 3730 } 3731 3732 wsp->walk_addr = (uintptr_t)eq.eq_next; 3733 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 3734 } 3735 3736 typedef struct eqd_walk_data { 3737 uintptr_t *eqd_stack; 3738 void *eqd_buf; 3739 ulong_t eqd_qpos; 3740 ulong_t eqd_qlen; 3741 size_t eqd_size; 3742 } eqd_walk_data_t; 3743 3744 /* 3745 * In order to walk the list of pending error queue elements, we push the 3746 * addresses of the corresponding data buffers in to the eqd_stack array. 3747 * The error lists are in reverse chronological order when iterating using 3748 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3749 * walker client gets addresses in order from oldest error to newest error. 3750 */ 3751 static void 3752 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3753 { 3754 errorq_elem_t eqe; 3755 3756 while (addr != 0) { 3757 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3758 mdb_warn("failed to read errorq element at %p", addr); 3759 break; 3760 } 3761 3762 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3763 mdb_warn("errorq is overfull -- more than %lu " 3764 "elems found\n", eqdp->eqd_qlen); 3765 break; 3766 } 3767 3768 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3769 addr = (uintptr_t)eqe.eqe_prev; 3770 } 3771 } 3772 3773 static int 3774 eqd_walk_init(mdb_walk_state_t *wsp) 3775 { 3776 eqd_walk_data_t *eqdp; 3777 errorq_elem_t eqe, *addr; 3778 errorq_t eq; 3779 ulong_t i; 3780 3781 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3782 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3783 return (WALK_ERR); 3784 } 3785 3786 if (eq.eq_ptail != NULL && 3787 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3788 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3789 return (WALK_ERR); 3790 } 3791 3792 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3793 wsp->walk_data = eqdp; 3794 3795 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3796 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3797 eqdp->eqd_qlen = eq.eq_qlen; 3798 eqdp->eqd_qpos = 0; 3799 eqdp->eqd_size = eq.eq_size; 3800 3801 /* 3802 * The newest elements in the queue are on the pending list, so we 3803 * push those on to our stack first. 3804 */ 3805 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3806 3807 /* 3808 * If eq_ptail is set, it may point to a subset of the errors on the 3809 * pending list in the event a atomic_cas_ptr() failed; if ptail's 3810 * data is already in our stack, NULL out eq_ptail and ignore it. 3811 */ 3812 if (eq.eq_ptail != NULL) { 3813 for (i = 0; i < eqdp->eqd_qpos; i++) { 3814 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3815 eq.eq_ptail = NULL; 3816 break; 3817 } 3818 } 3819 } 3820 3821 /* 3822 * If eq_phead is set, it has the processing list in order from oldest 3823 * to newest. Use this to recompute eq_ptail as best we can and then 3824 * we nicely fall into eqd_push_list() of eq_ptail below. 3825 */ 3826 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3827 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3828 eq.eq_ptail = addr; 3829 3830 /* 3831 * The oldest elements in the queue are on the processing list, subject 3832 * to machinations in the if-clauses above. Push any such elements. 3833 */ 3834 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3835 return (WALK_NEXT); 3836 } 3837 3838 static int 3839 eqd_walk_step(mdb_walk_state_t *wsp) 3840 { 3841 eqd_walk_data_t *eqdp = wsp->walk_data; 3842 uintptr_t addr; 3843 3844 if (eqdp->eqd_qpos == 0) 3845 return (WALK_DONE); 3846 3847 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3848 3849 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3850 mdb_warn("failed to read errorq data at %p", addr); 3851 return (WALK_ERR); 3852 } 3853 3854 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3855 } 3856 3857 static void 3858 eqd_walk_fini(mdb_walk_state_t *wsp) 3859 { 3860 eqd_walk_data_t *eqdp = wsp->walk_data; 3861 3862 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3863 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3864 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3865 } 3866 3867 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3868 3869 static int 3870 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3871 { 3872 int i; 3873 errorq_t eq; 3874 uint_t opt_v = FALSE; 3875 3876 if (!(flags & DCMD_ADDRSPEC)) { 3877 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3878 mdb_warn("can't walk 'errorq'"); 3879 return (DCMD_ERR); 3880 } 3881 return (DCMD_OK); 3882 } 3883 3884 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3885 argc -= i; 3886 argv += i; 3887 3888 if (argc != 0) 3889 return (DCMD_USAGE); 3890 3891 if (opt_v || DCMD_HDRSPEC(flags)) { 3892 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3893 "ADDR", "NAME", "S", "V", "N"); 3894 if (!opt_v) { 3895 mdb_printf("%7s %7s %7s%</u>\n", 3896 "ACCEPT", "DROP", "LOG"); 3897 } else { 3898 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3899 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3900 } 3901 } 3902 3903 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3904 mdb_warn("failed to read errorq at %p", addr); 3905 return (DCMD_ERR); 3906 } 3907 3908 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3909 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3910 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3911 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3912 3913 if (!opt_v) { 3914 mdb_printf("%7llu %7llu %7llu\n", 3915 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3916 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3917 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3918 } else { 3919 mdb_printf("%5s %6lu %6lu %3u %a\n", 3920 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3921 mdb_printf("%38s\n%41s" 3922 "%12s %llu\n" 3923 "%53s %llu\n" 3924 "%53s %llu\n" 3925 "%53s %llu\n" 3926 "%53s %llu\n" 3927 "%53s %llu\n" 3928 "%53s %llu\n" 3929 "%53s %llu\n\n", 3930 "|", "+-> ", 3931 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3932 "DROPPED", EQKSVAL(eq, eqk_dropped), 3933 "LOGGED", EQKSVAL(eq, eqk_logged), 3934 "RESERVED", EQKSVAL(eq, eqk_reserved), 3935 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3936 "COMMITTED", EQKSVAL(eq, eqk_committed), 3937 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3938 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3939 } 3940 3941 return (DCMD_OK); 3942 } 3943 3944 /*ARGSUSED*/ 3945 static int 3946 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3947 { 3948 cpu_t panic_cpu; 3949 kthread_t *panic_thread; 3950 void *buf; 3951 panic_data_t *pd; 3952 int i, n; 3953 3954 if (!mdb_prop_postmortem) { 3955 mdb_warn("panicinfo can only be run on a system " 3956 "dump; see dumpadm(1M)\n"); 3957 return (DCMD_ERR); 3958 } 3959 3960 if (flags & DCMD_ADDRSPEC || argc != 0) 3961 return (DCMD_USAGE); 3962 3963 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3964 mdb_warn("failed to read 'panic_cpu'"); 3965 else 3966 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3967 3968 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3969 mdb_warn("failed to read 'panic_thread'"); 3970 else 3971 mdb_printf("%16s %?p\n", "thread", panic_thread); 3972 3973 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3974 pd = (panic_data_t *)buf; 3975 3976 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 3977 pd->pd_version != PANICBUFVERS) { 3978 mdb_warn("failed to read 'panicbuf'"); 3979 mdb_free(buf, PANICBUFSIZE); 3980 return (DCMD_ERR); 3981 } 3982 3983 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 3984 3985 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3986 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3987 3988 for (i = 0; i < n; i++) 3989 mdb_printf("%16s %?llx\n", 3990 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3991 3992 mdb_free(buf, PANICBUFSIZE); 3993 return (DCMD_OK); 3994 } 3995 3996 /* 3997 * ::time dcmd, which will print a hires timestamp of when we entered the 3998 * debugger, or the lbolt value if used with the -l option. 3999 * 4000 */ 4001 /*ARGSUSED*/ 4002 static int 4003 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4004 { 4005 uint_t opt_dec = FALSE; 4006 uint_t opt_lbolt = FALSE; 4007 uint_t opt_hex = FALSE; 4008 const char *fmt; 4009 hrtime_t result; 4010 4011 if (mdb_getopts(argc, argv, 4012 'd', MDB_OPT_SETBITS, TRUE, &opt_dec, 4013 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt, 4014 'x', MDB_OPT_SETBITS, TRUE, &opt_hex, 4015 NULL) != argc) 4016 return (DCMD_USAGE); 4017 4018 if (opt_dec && opt_hex) 4019 return (DCMD_USAGE); 4020 4021 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime(); 4022 fmt = 4023 opt_hex ? "0x%llx\n" : 4024 opt_dec ? "0t%lld\n" : "%#llr\n"; 4025 4026 mdb_printf(fmt, result); 4027 return (DCMD_OK); 4028 } 4029 4030 void 4031 time_help(void) 4032 { 4033 mdb_printf("Prints the system time in nanoseconds.\n\n" 4034 "::time will return the timestamp at which we dropped into, \n" 4035 "if called from, kmdb(1); the core dump's high resolution \n" 4036 "time if inspecting one; or the running hires time if we're \n" 4037 "looking at a live system.\n\n" 4038 "Switches:\n" 4039 " -d report times in decimal\n" 4040 " -l prints the number of clock ticks since system boot\n" 4041 " -x report times in hexadecimal\n"); 4042 } 4043 4044 static const mdb_dcmd_t dcmds[] = { 4045 4046 /* from genunix.c */ 4047 { "as2proc", ":", "convert as to proc_t address", as2proc }, 4048 { "binding_hash_entry", ":", "print driver names hash table entry", 4049 binding_hash_entry }, 4050 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]" 4051 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]" 4052 " [-FivVA]", 4053 "display callouts", callout, callout_help }, 4054 { "calloutid", "[-d|v] xid", "print callout by extended id", 4055 calloutid, calloutid_help }, 4056 { "class", NULL, "print process scheduler classes", class }, 4057 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 4058 { "did2thread", "? kt_did", "find kernel thread for this id", 4059 did2thread }, 4060 { "errorq", "?[-v]", "display kernel error queues", errorq }, 4061 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 4062 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 4063 { "lminfo", NULL, "print lock manager information", lminfo }, 4064 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 4065 { "panicinfo", NULL, "print panic information", panicinfo }, 4066 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 4067 { "project", NULL, "display kernel project(s)", project }, 4068 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 4069 { "pflags", NULL, "display various proc_t flags", pflags }, 4070 { "pgrep", "[-x] [-n | -o] pattern", 4071 "pattern match against all processes", pgrep }, 4072 { "ptree", NULL, "print process tree", ptree }, 4073 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 4074 sysevent}, 4075 { "sysevent_channel", "?", "print sysevent channel database", 4076 sysevent_channel}, 4077 { "sysevent_class_list", ":", "print sysevent class list", 4078 sysevent_class_list}, 4079 { "sysevent_subclass_list", ":", 4080 "print sysevent subclass list", sysevent_subclass_list}, 4081 { "system", NULL, "print contents of /etc/system file", sysfile }, 4082 { "task", NULL, "display kernel task(s)", task }, 4083 { "time", "[-dlx]", "display system time", time, time_help }, 4084 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 4085 { "whereopen", ":", "given a vnode, dumps procs which have it open", 4086 whereopen }, 4087 4088 /* from bio.c */ 4089 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 4090 4091 /* from bitset.c */ 4092 { "bitset", ":", "display a bitset", bitset, bitset_help }, 4093 4094 /* from contract.c */ 4095 { "contract", "?", "display a contract", cmd_contract }, 4096 { "ctevent", ":", "display a contract event", cmd_ctevent }, 4097 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 4098 4099 /* from cpupart.c */ 4100 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 4101 4102 /* from cred.c */ 4103 { "cred", ":[-v]", "display a credential", cmd_cred }, 4104 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp }, 4105 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid }, 4106 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist }, 4107 4108 /* from cyclic.c */ 4109 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 4110 { "cycid", "?", "dump a cyclic id", cycid }, 4111 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 4112 { "cyclic", ":", "developer information", cyclic }, 4113 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 4114 4115 /* from damap.c */ 4116 { "damap", ":", "display a damap_t", damap, damap_help }, 4117 4118 /* from ddi_periodic.c */ 4119 { "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo }, 4120 4121 /* from devinfo.c */ 4122 { "devbindings", "?[-qs] [device-name | major-num]", 4123 "print devinfo nodes bound to device-name or major-num", 4124 devbindings, devinfo_help }, 4125 { "devinfo", ":[-qsd] [-b bus]", "detailed devinfo of one node", 4126 devinfo, devinfo_help }, 4127 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 4128 devinfo_audit }, 4129 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 4130 devinfo_audit_log }, 4131 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 4132 devinfo_audit_node }, 4133 { "devinfo2driver", ":", "find driver name for this devinfo node", 4134 devinfo2driver }, 4135 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 4136 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 4137 dev2major }, 4138 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 4139 dev2minor }, 4140 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 4141 devt }, 4142 { "major2name", "?<major-num>", "convert major number to dev name", 4143 major2name }, 4144 { "minornodes", ":", "given a devinfo node, print its minor nodes", 4145 minornodes }, 4146 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 4147 modctl2devinfo }, 4148 { "name2major", "<dev-name>", "convert dev name to major number", 4149 name2major }, 4150 { "prtconf", "?[-vpc] [-d driver] [-i inst]", "print devinfo tree", 4151 prtconf, prtconf_help }, 4152 { "softstate", ":<instance>", "retrieve soft-state pointer", 4153 softstate }, 4154 { "devinfo_fm", ":", "devinfo fault managment configuration", 4155 devinfo_fm }, 4156 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 4157 devinfo_fmce}, 4158 4159 /* from findstack.c */ 4160 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 4161 { "findstack_debug", NULL, "toggle findstack debugging", 4162 findstack_debug }, 4163 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] " 4164 "[-s sobj | -S sobj] [-t tstate | -T tstate]", 4165 "print unique kernel thread stacks", 4166 stacks, stacks_help }, 4167 4168 /* from fm.c */ 4169 { "ereport", "[-v]", "print ereports logged in dump", 4170 ereport }, 4171 4172 /* from group.c */ 4173 { "group", "?[-q]", "display a group", group}, 4174 4175 /* from hotplug.c */ 4176 { "hotplug", "?[-p]", "display a registered hotplug attachment", 4177 hotplug, hotplug_help }, 4178 4179 /* from irm.c */ 4180 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd }, 4181 { "irmreqs", NULL, "display interrupt requests in an interrupt pool", 4182 irmreqs_dcmd }, 4183 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd }, 4184 4185 /* from kgrep.c + genunix.c */ 4186 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 4187 kgrep_help }, 4188 4189 /* from kmem.c */ 4190 { "allocdby", ":", "given a thread, print its allocated buffers", 4191 allocdby }, 4192 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 4193 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 4194 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 4195 { "kmalog", "?[ fail | slab ]", 4196 "display kmem transaction log and stack traces", kmalog }, 4197 { "kmastat", "[-kmg]", "kernel memory allocator stats", 4198 kmastat }, 4199 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 4200 "of the kmem allocator", kmausers, kmausers_help }, 4201 { "kmem_cache", "?[-n name]", 4202 "print kernel memory caches", kmem_cache, kmem_cache_help}, 4203 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 4204 "[-B minbinsize]", "display slab usage per kmem cache", 4205 kmem_slabs, kmem_slabs_help }, 4206 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 4207 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 4208 { "kmem_verify", "?", "check integrity of kmem-managed memory", 4209 kmem_verify }, 4210 { "vmem", "?", "print a vmem_t", vmem }, 4211 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 4212 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 4213 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 4214 { "whatthread", ":[-v]", "print threads whose stack contains the " 4215 "given address", whatthread }, 4216 4217 /* from ldi.c */ 4218 { "ldi_handle", "?[-i]", "display a layered driver handle", 4219 ldi_handle, ldi_handle_help }, 4220 { "ldi_ident", NULL, "display a layered driver identifier", 4221 ldi_ident, ldi_ident_help }, 4222 4223 /* from leaky.c + leaky_subr.c */ 4224 { "findleaks", FINDLEAKS_USAGE, 4225 "search for potential kernel memory leaks", findleaks, 4226 findleaks_help }, 4227 4228 /* from lgrp.c */ 4229 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 4230 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 4231 4232 /* from log.c */ 4233 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 4234 4235 /* from mdi.c */ 4236 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 4237 "and detailed pi_prop list", mdipi }, 4238 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 4239 mdiprops }, 4240 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 4241 "list all paths", mdiphci }, 4242 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 4243 "all phcis", mdivhci }, 4244 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 4245 "client links", mdiclient_paths }, 4246 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 4247 "phci links", mdiphci_paths }, 4248 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 4249 mdiphcis }, 4250 4251 /* from memory.c */ 4252 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 4253 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 4254 { "memstat", NULL, "display memory usage summary", memstat }, 4255 { "page", "?", "display a summarized page_t", page }, 4256 { "pagelookup", "?[-v vp] [-o offset]", 4257 "find the page_t with the name {vp, offset}", 4258 pagelookup, pagelookup_help }, 4259 { "page_num2pp", ":", "find the page_t for a given page frame number", 4260 page_num2pp }, 4261 { "pmap", ":[-q]", "print process memory map", pmap }, 4262 { "seg", ":", "print address space segment", seg }, 4263 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 4264 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 4265 4266 /* from mmd.c */ 4267 { "multidata", ":[-sv]", "display a summarized multidata_t", 4268 multidata }, 4269 { "pattbl", ":", "display a summarized multidata attribute table", 4270 pattbl }, 4271 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 4272 pattr2multidata }, 4273 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 4274 pdesc2slab }, 4275 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 4276 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 4277 slab2multidata }, 4278 4279 /* from modhash.c */ 4280 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 4281 "display information about one or all mod_hash structures", 4282 modhash, modhash_help }, 4283 { "modent", ":[-k | -v | -t type]", 4284 "display information about a mod_hash_entry", modent, 4285 modent_help }, 4286 4287 /* from net.c */ 4288 { "dladm", "?<sub-command> [flags]", "show data link information", 4289 dladm, dladm_help }, 4290 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 4291 mi }, 4292 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]", 4293 "show network statistics", netstat }, 4294 { "sonode", "?[-f inet | inet6 | unix | #] " 4295 "[-t stream | dgram | raw | #] [-p #]", 4296 "filter and display sonode", sonode }, 4297 4298 /* from netstack.c */ 4299 { "netstack", "", "show stack instances", netstack }, 4300 { "netstackid2netstack", ":", 4301 "translate a netstack id to its netstack_t", 4302 netstackid2netstack }, 4303 4304 /* from nvpair.c */ 4305 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 4306 nvpair_print }, 4307 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 4308 print_nvlist }, 4309 4310 /* from pg.c */ 4311 { "pg", "?[-q]", "display a pg", pg}, 4312 4313 /* from rctl.c */ 4314 { "rctl_dict", "?", "print systemwide default rctl definitions", 4315 rctl_dict }, 4316 { "rctl_list", ":[handle]", "print rctls for the given proc", 4317 rctl_list }, 4318 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 4319 rctl }, 4320 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 4321 "sequence", rctl_validate }, 4322 4323 /* from sobj.c */ 4324 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 4325 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 4326 mutex_help }, 4327 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 4328 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 4329 { "turnstile", "?", "display a turnstile", turnstile }, 4330 4331 /* from stream.c */ 4332 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 4333 "print an mblk", mblk_prt, mblk_help }, 4334 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 4335 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 4336 mblk2dblk }, 4337 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 4338 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 4339 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 4340 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 4341 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 4342 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 4343 "filter and display STREAM queue", queue, queue_help }, 4344 { "stdata", ":[-q|v] [-f flag] [-F flag]", 4345 "filter and display STREAM head", stdata, stdata_help }, 4346 { "str2mate", ":", "print mate of this stream", str2mate }, 4347 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 4348 { "stream", ":", "display STREAM", stream }, 4349 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 4350 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 4351 "filter and display STREAM sync queue", syncq, syncq_help }, 4352 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 4353 4354 /* from taskq.c */ 4355 { "taskq", ":[-atT] [-m min_maxq] [-n name]", 4356 "display a taskq", taskq, taskq_help }, 4357 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 4358 4359 /* from thread.c */ 4360 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 4361 thread_help }, 4362 { "threadlist", "?[-t] [-v [count]]", 4363 "display threads and associated C stack traces", threadlist, 4364 threadlist_help }, 4365 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo, 4366 stackinfo_help }, 4367 4368 /* from tsd.c */ 4369 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 4370 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 4371 4372 /* 4373 * typegraph does not work under kmdb, as it requires too much memory 4374 * for its internal data structures. 4375 */ 4376 #ifndef _KMDB 4377 /* from typegraph.c */ 4378 { "findlocks", ":", "find locks held by specified thread", findlocks }, 4379 { "findfalse", "?[-v]", "find potentially falsely shared structures", 4380 findfalse }, 4381 { "typegraph", NULL, "build type graph", typegraph }, 4382 { "istype", ":type", "manually set object type", istype }, 4383 { "notype", ":", "manually clear object type", notype }, 4384 { "whattype", ":", "determine object type", whattype }, 4385 #endif 4386 4387 /* from vfs.c */ 4388 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 4389 { "pfiles", ":[-fp]", "print process file information", pfiles, 4390 pfiles_help }, 4391 4392 /* from zone.c */ 4393 { "zid2zone", ":", "find the zone_t with the given zone id", 4394 zid2zone }, 4395 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt }, 4396 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for " 4397 "selected zones", zsd }, 4398 4399 #ifndef _KMDB 4400 { "gcore", NULL, "generate a user core for the given process", 4401 gcore_dcmd }, 4402 #endif 4403 4404 { NULL } 4405 }; 4406 4407 static const mdb_walker_t walkers[] = { 4408 4409 /* from genunix.c */ 4410 { "callouts_bytime", "walk callouts by list chain (expiration time)", 4411 callout_walk_init, callout_walk_step, callout_walk_fini, 4412 (void *)CALLOUT_WALK_BYLIST }, 4413 { "callouts_byid", "walk callouts by id hash chain", 4414 callout_walk_init, callout_walk_step, callout_walk_fini, 4415 (void *)CALLOUT_WALK_BYID }, 4416 { "callout_list", "walk a callout list", callout_list_walk_init, 4417 callout_list_walk_step, callout_list_walk_fini }, 4418 { "callout_table", "walk callout table array", callout_table_walk_init, 4419 callout_table_walk_step, callout_table_walk_fini }, 4420 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 4421 { "dnlc", "walk dnlc entries", 4422 dnlc_walk_init, dnlc_walk_step, dnlc_walk_fini }, 4423 { "ereportq_dump", "walk list of ereports in dump error queue", 4424 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 4425 { "ereportq_pend", "walk list of ereports in pending error queue", 4426 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 4427 { "errorq", "walk list of system error queues", 4428 errorq_walk_init, errorq_walk_step, NULL }, 4429 { "errorq_data", "walk pending error queue data buffers", 4430 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 4431 { "allfile", "given a proc pointer, list all file pointers", 4432 file_walk_init, allfile_walk_step, file_walk_fini }, 4433 { "file", "given a proc pointer, list of open file pointers", 4434 file_walk_init, file_walk_step, file_walk_fini }, 4435 { "lock_descriptor", "walk lock_descriptor_t structures", 4436 ld_walk_init, ld_walk_step, NULL }, 4437 { "lock_graph", "walk lock graph", 4438 lg_walk_init, lg_walk_step, NULL }, 4439 { "port", "given a proc pointer, list of created event ports", 4440 port_walk_init, port_walk_step, NULL }, 4441 { "portev", "given a port pointer, list of events in the queue", 4442 portev_walk_init, portev_walk_step, portev_walk_fini }, 4443 { "proc", "list of active proc_t structures", 4444 proc_walk_init, proc_walk_step, proc_walk_fini }, 4445 { "projects", "walk a list of kernel projects", 4446 project_walk_init, project_walk_step, NULL }, 4447 { "sysevent_pend", "walk sysevent pending queue", 4448 sysevent_pend_walk_init, sysevent_walk_step, 4449 sysevent_walk_fini}, 4450 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 4451 sysevent_walk_step, sysevent_walk_fini}, 4452 { "sysevent_channel", "walk sysevent channel subscriptions", 4453 sysevent_channel_walk_init, sysevent_channel_walk_step, 4454 sysevent_channel_walk_fini}, 4455 { "sysevent_class_list", "walk sysevent subscription's class list", 4456 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 4457 sysevent_class_list_walk_fini}, 4458 { "sysevent_subclass_list", 4459 "walk sysevent subscription's subclass list", 4460 sysevent_subclass_list_walk_init, 4461 sysevent_subclass_list_walk_step, 4462 sysevent_subclass_list_walk_fini}, 4463 { "task", "given a task pointer, walk its processes", 4464 task_walk_init, task_walk_step, NULL }, 4465 4466 /* from avl.c */ 4467 { AVL_WALK_NAME, AVL_WALK_DESC, 4468 avl_walk_init, avl_walk_step, avl_walk_fini }, 4469 4470 /* from bio.c */ 4471 { "buf", "walk the bio buf hash", 4472 buf_walk_init, buf_walk_step, buf_walk_fini }, 4473 4474 /* from contract.c */ 4475 { "contract", "walk all contracts, or those of the specified type", 4476 ct_walk_init, generic_walk_step, NULL }, 4477 { "ct_event", "walk events on a contract event queue", 4478 ct_event_walk_init, generic_walk_step, NULL }, 4479 { "ct_listener", "walk contract event queue listeners", 4480 ct_listener_walk_init, generic_walk_step, NULL }, 4481 4482 /* from cpupart.c */ 4483 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 4484 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 4485 NULL }, 4486 { "cpupart_walk", "walk the set of cpu partitions", 4487 cpupart_walk_init, cpupart_walk_step, NULL }, 4488 4489 /* from ctxop.c */ 4490 { "ctxop", "walk list of context ops on a thread", 4491 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 4492 4493 /* from cyclic.c */ 4494 { "cyccpu", "walk per-CPU cyc_cpu structures", 4495 cyccpu_walk_init, cyccpu_walk_step, NULL }, 4496 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 4497 cycomni_walk_init, cycomni_walk_step, NULL }, 4498 { "cyctrace", "walk cyclic trace buffer", 4499 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 4500 4501 /* from devinfo.c */ 4502 { "binding_hash", "walk all entries in binding hash table", 4503 binding_hash_walk_init, binding_hash_walk_step, NULL }, 4504 { "devinfo", "walk devinfo tree or subtree", 4505 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 4506 { "devinfo_audit_log", "walk devinfo audit system-wide log", 4507 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 4508 devinfo_audit_log_walk_fini}, 4509 { "devinfo_audit_node", "walk per-devinfo audit history", 4510 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 4511 devinfo_audit_node_walk_fini}, 4512 { "devinfo_children", "walk children of devinfo node", 4513 devinfo_children_walk_init, devinfo_children_walk_step, 4514 devinfo_children_walk_fini }, 4515 { "devinfo_parents", "walk ancestors of devinfo node", 4516 devinfo_parents_walk_init, devinfo_parents_walk_step, 4517 devinfo_parents_walk_fini }, 4518 { "devinfo_siblings", "walk siblings of devinfo node", 4519 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 4520 { "devi_next", "walk devinfo list", 4521 NULL, devi_next_walk_step, NULL }, 4522 { "devnames", "walk devnames array", 4523 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 4524 { "minornode", "given a devinfo node, walk minor nodes", 4525 minornode_walk_init, minornode_walk_step, NULL }, 4526 { "softstate", 4527 "given an i_ddi_soft_state*, list all in-use driver stateps", 4528 soft_state_walk_init, soft_state_walk_step, 4529 NULL, NULL }, 4530 { "softstate_all", 4531 "given an i_ddi_soft_state*, list all driver stateps", 4532 soft_state_walk_init, soft_state_all_walk_step, 4533 NULL, NULL }, 4534 { "devinfo_fmc", 4535 "walk a fault management handle cache active list", 4536 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 4537 4538 /* from group.c */ 4539 { "group", "walk all elements of a group", 4540 group_walk_init, group_walk_step, NULL }, 4541 4542 /* from irm.c */ 4543 { "irmpools", "walk global list of interrupt pools", 4544 irmpools_walk_init, list_walk_step, list_walk_fini }, 4545 { "irmreqs", "walk list of interrupt requests in an interrupt pool", 4546 irmreqs_walk_init, list_walk_step, list_walk_fini }, 4547 4548 /* from kmem.c */ 4549 { "allocdby", "given a thread, walk its allocated bufctls", 4550 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4551 { "bufctl", "walk a kmem cache's bufctls", 4552 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 4553 { "bufctl_history", "walk the available history of a bufctl", 4554 bufctl_history_walk_init, bufctl_history_walk_step, 4555 bufctl_history_walk_fini }, 4556 { "freedby", "given a thread, walk its freed bufctls", 4557 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4558 { "freectl", "walk a kmem cache's free bufctls", 4559 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 4560 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 4561 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4562 { "freemem", "walk a kmem cache's free memory", 4563 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 4564 { "freemem_constructed", "walk a kmem cache's constructed free memory", 4565 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4566 { "kmem", "walk a kmem cache", 4567 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 4568 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 4569 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 4570 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 4571 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 4572 { "kmem_log", "walk the kmem transaction log", 4573 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 4574 { "kmem_slab", "given a kmem cache, walk its slabs", 4575 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 4576 { "kmem_slab_partial", 4577 "given a kmem cache, walk its partially allocated slabs (min 1)", 4578 kmem_slab_walk_partial_init, combined_walk_step, 4579 combined_walk_fini }, 4580 { "vmem", "walk vmem structures in pre-fix, depth-first order", 4581 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 4582 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 4583 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4584 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 4585 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4586 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 4587 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 4588 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 4589 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4590 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 4591 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4592 4593 /* from ldi.c */ 4594 { "ldi_handle", "walk the layered driver handle hash", 4595 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 4596 { "ldi_ident", "walk the layered driver identifier hash", 4597 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 4598 4599 /* from leaky.c + leaky_subr.c */ 4600 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 4601 "stack trace", 4602 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 4603 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 4604 "leaks w/ same stack trace", 4605 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 4606 4607 /* from lgrp.c */ 4608 { "lgrp_cpulist", "walk CPUs in a given lgroup", 4609 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 4610 { "lgrptbl", "walk lgroup table", 4611 lgrp_walk_init, lgrp_walk_step, NULL }, 4612 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 4613 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 4614 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 4615 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 4616 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 4617 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 4618 4619 /* from list.c */ 4620 { LIST_WALK_NAME, LIST_WALK_DESC, 4621 list_walk_init, list_walk_step, list_walk_fini }, 4622 4623 /* from mdi.c */ 4624 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 4625 mdi_pi_client_link_walk_init, 4626 mdi_pi_client_link_walk_step, 4627 mdi_pi_client_link_walk_fini }, 4628 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 4629 mdi_pi_phci_link_walk_init, 4630 mdi_pi_phci_link_walk_step, 4631 mdi_pi_phci_link_walk_fini }, 4632 { "mdiphci_list", "Walker for mdi_phci ph_next link", 4633 mdi_phci_ph_next_walk_init, 4634 mdi_phci_ph_next_walk_step, 4635 mdi_phci_ph_next_walk_fini }, 4636 4637 /* from memory.c */ 4638 { "allpages", "walk all pages, including free pages", 4639 allpages_walk_init, allpages_walk_step, allpages_walk_fini }, 4640 { "anon", "given an amp, list allocated anon structures", 4641 anon_walk_init, anon_walk_step, anon_walk_fini, 4642 ANON_WALK_ALLOC }, 4643 { "anon_all", "given an amp, list contents of all anon slots", 4644 anon_walk_init, anon_walk_step, anon_walk_fini, 4645 ANON_WALK_ALL }, 4646 { "memlist", "walk specified memlist", 4647 NULL, memlist_walk_step, NULL }, 4648 { "page", "walk all pages, or those from the specified vnode", 4649 page_walk_init, page_walk_step, page_walk_fini }, 4650 { "seg", "given an as, list of segments", 4651 seg_walk_init, avl_walk_step, avl_walk_fini }, 4652 { "segvn_anon", 4653 "given a struct segvn_data, list allocated anon structures", 4654 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4655 ANON_WALK_ALLOC }, 4656 { "segvn_anon_all", 4657 "given a struct segvn_data, list contents of all anon slots", 4658 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4659 ANON_WALK_ALL }, 4660 { "segvn_pages", 4661 "given a struct segvn_data, list resident pages in " 4662 "offset order", 4663 segvn_pages_walk_init, segvn_pages_walk_step, 4664 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT }, 4665 { "segvn_pages_all", 4666 "for each offset in a struct segvn_data, give page_t pointer " 4667 "(if resident), or NULL.", 4668 segvn_pages_walk_init, segvn_pages_walk_step, 4669 segvn_pages_walk_fini, SEGVN_PAGES_ALL }, 4670 { "swapinfo", "walk swapinfo structures", 4671 swap_walk_init, swap_walk_step, NULL }, 4672 4673 /* from mmd.c */ 4674 { "pattr", "walk pattr_t structures", pattr_walk_init, 4675 mmdq_walk_step, mmdq_walk_fini }, 4676 { "pdesc", "walk pdesc_t structures", 4677 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4678 { "pdesc_slab", "walk pdesc_slab_t structures", 4679 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4680 4681 /* from modhash.c */ 4682 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 4683 modhash_walk_step, NULL }, 4684 { "modent", "walk list of entries in a given mod_hash", 4685 modent_walk_init, modent_walk_step, modent_walk_fini }, 4686 { "modchain", "walk list of entries in a given mod_hash_entry", 4687 NULL, modchain_walk_step, NULL }, 4688 4689 /* from net.c */ 4690 { "icmp", "walk ICMP control structures using MI for all stacks", 4691 mi_payload_walk_init, mi_payload_walk_step, NULL, 4692 &mi_icmp_arg }, 4693 { "mi", "given a MI_O, walk the MI", 4694 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 4695 { "sonode", "given a sonode, walk its children", 4696 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 4697 { "icmp_stacks", "walk all the icmp_stack_t", 4698 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 4699 { "tcp_stacks", "walk all the tcp_stack_t", 4700 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 4701 { "udp_stacks", "walk all the udp_stack_t", 4702 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 4703 4704 /* from netstack.c */ 4705 { "netstack", "walk a list of kernel netstacks", 4706 netstack_walk_init, netstack_walk_step, NULL }, 4707 4708 /* from nvpair.c */ 4709 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 4710 nvpair_walk_init, nvpair_walk_step, NULL }, 4711 4712 /* from pci.c */ 4713 { "pcie_bus", "walk all pcie_bus_t's", pcie_bus_walk_init, 4714 pcie_bus_walk_step, NULL }, 4715 4716 /* from rctl.c */ 4717 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 4718 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 4719 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 4720 rctl_set_walk_step, NULL }, 4721 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 4722 rctl_val_walk_init, rctl_val_walk_step }, 4723 4724 /* from sobj.c */ 4725 { "blocked", "walk threads blocked on a given sobj", 4726 blocked_walk_init, blocked_walk_step, NULL }, 4727 { "wchan", "given a wchan, list of blocked threads", 4728 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 4729 4730 /* from stream.c */ 4731 { "b_cont", "walk mblk_t list using b_cont", 4732 mblk_walk_init, b_cont_step, mblk_walk_fini }, 4733 { "b_next", "walk mblk_t list using b_next", 4734 mblk_walk_init, b_next_step, mblk_walk_fini }, 4735 { "qlink", "walk queue_t list using q_link", 4736 queue_walk_init, queue_link_step, queue_walk_fini }, 4737 { "qnext", "walk queue_t list using q_next", 4738 queue_walk_init, queue_next_step, queue_walk_fini }, 4739 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 4740 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 4741 { "readq", "walk read queue side of stdata", 4742 str_walk_init, strr_walk_step, str_walk_fini }, 4743 { "writeq", "walk write queue side of stdata", 4744 str_walk_init, strw_walk_step, str_walk_fini }, 4745 4746 /* from taskq.c */ 4747 { "taskq_thread", "given a taskq_t, list all of its threads", 4748 taskq_thread_walk_init, 4749 taskq_thread_walk_step, 4750 taskq_thread_walk_fini }, 4751 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 4752 taskq_ent_walk_init, taskq_ent_walk_step, NULL }, 4753 4754 /* from thread.c */ 4755 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 4756 deathrow_walk_init, deathrow_walk_step, NULL }, 4757 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 4758 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4759 { "cpupart_dispq", 4760 "given a cpupart_t, walk threads in dispatcher queues", 4761 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4762 { "lwp_deathrow", "walk lwp_deathrow", 4763 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 4764 { "thread", "global or per-process kthread_t structures", 4765 thread_walk_init, thread_walk_step, thread_walk_fini }, 4766 { "thread_deathrow", "walk threads on thread_deathrow", 4767 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 4768 4769 /* from tsd.c */ 4770 { "tsd", "walk list of thread-specific data", 4771 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 4772 4773 /* from tsol.c */ 4774 { "tnrh", "walk remote host cache structures", 4775 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 4776 { "tnrhtp", "walk remote host template structures", 4777 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 4778 4779 /* 4780 * typegraph does not work under kmdb, as it requires too much memory 4781 * for its internal data structures. 4782 */ 4783 #ifndef _KMDB 4784 /* from typegraph.c */ 4785 { "typeconflict", "walk buffers with conflicting type inferences", 4786 typegraph_walk_init, typeconflict_walk_step }, 4787 { "typeunknown", "walk buffers with unknown types", 4788 typegraph_walk_init, typeunknown_walk_step }, 4789 #endif 4790 4791 /* from vfs.c */ 4792 { "vfs", "walk file system list", 4793 vfs_walk_init, vfs_walk_step }, 4794 4795 /* from zone.c */ 4796 { "zone", "walk a list of kernel zones", 4797 zone_walk_init, zone_walk_step, NULL }, 4798 { "zsd", "walk list of zsd entries for a zone", 4799 zsd_walk_init, zsd_walk_step, NULL }, 4800 4801 { NULL } 4802 }; 4803 4804 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 4805 4806 /*ARGSUSED*/ 4807 static void 4808 genunix_statechange_cb(void *ignored) 4809 { 4810 /* 4811 * Force ::findleaks and ::stacks to let go any cached state. 4812 */ 4813 leaky_cleanup(1); 4814 stacks_cleanup(1); 4815 4816 kmem_statechange(); /* notify kmem */ 4817 } 4818 4819 const mdb_modinfo_t * 4820 _mdb_init(void) 4821 { 4822 kmem_init(); 4823 4824 (void) mdb_callback_add(MDB_CALLBACK_STCHG, 4825 genunix_statechange_cb, NULL); 4826 4827 #ifndef _KMDB 4828 gcore_init(); 4829 #endif 4830 4831 return (&modinfo); 4832 } 4833 4834 void 4835 _mdb_fini(void) 4836 { 4837 leaky_cleanup(1); 4838 stacks_cleanup(1); 4839 } 4840