xref: /illumos-gate/usr/src/cmd/mdb/common/modules/genunix/genunix.c (revision a99cb9618990662acbd3bab1b4a5b05a6ca62556)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
23  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2019 Joyent, Inc.
25  * Copyright (c) 2013 by Delphix. All rights reserved.
26  */
27 
28 #include <mdb/mdb_param.h>
29 #include <mdb/mdb_modapi.h>
30 #include <mdb/mdb_ks.h>
31 #include <mdb/mdb_ctf.h>
32 
33 #include <sys/types.h>
34 #include <sys/thread.h>
35 #include <sys/session.h>
36 #include <sys/user.h>
37 #include <sys/proc.h>
38 #include <sys/var.h>
39 #include <sys/t_lock.h>
40 #include <sys/callo.h>
41 #include <sys/priocntl.h>
42 #include <sys/class.h>
43 #include <sys/regset.h>
44 #include <sys/stack.h>
45 #include <sys/cpuvar.h>
46 #include <sys/vnode.h>
47 #include <sys/vfs.h>
48 #include <sys/flock_impl.h>
49 #include <sys/kmem_impl.h>
50 #include <sys/vmem_impl.h>
51 #include <sys/kstat.h>
52 #include <sys/dditypes.h>
53 #include <sys/ddi_impldefs.h>
54 #include <sys/sysmacros.h>
55 #include <sys/sysconf.h>
56 #include <sys/task.h>
57 #include <sys/project.h>
58 #include <sys/errorq_impl.h>
59 #include <sys/cred_impl.h>
60 #include <sys/zone.h>
61 #include <sys/panic.h>
62 #include <regex.h>
63 #include <sys/port_impl.h>
64 
65 #include "avl.h"
66 #include "bio.h"
67 #include "bitset.h"
68 #include "combined.h"
69 #include "contract.h"
70 #include "cpupart_mdb.h"
71 #include "cred.h"
72 #include "ctxop.h"
73 #include "cyclic.h"
74 #include "damap.h"
75 #include "ddi_periodic.h"
76 #include "devinfo.h"
77 #include "dnlc.h"
78 #include "findstack.h"
79 #include "fm.h"
80 #include "gcore.h"
81 #include "group.h"
82 #include "irm.h"
83 #include "kgrep.h"
84 #include "kmem.h"
85 #include "ldi.h"
86 #include "leaky.h"
87 #include "lgrp.h"
88 #include "list.h"
89 #include "log.h"
90 #include "mdi.h"
91 #include "memory.h"
92 #include "mmd.h"
93 #include "modhash.h"
94 #include "ndievents.h"
95 #include "net.h"
96 #include "netstack.h"
97 #include "nvpair.h"
98 #include "pci.h"
99 #include "pg.h"
100 #include "rctl.h"
101 #include "sobj.h"
102 #include "streams.h"
103 #include "sysevent.h"
104 #include "taskq.h"
105 #include "thread.h"
106 #include "tsd.h"
107 #include "tsol.h"
108 #include "typegraph.h"
109 #include "vfs.h"
110 #include "zone.h"
111 #include "hotplug.h"
112 
113 /*
114  * Surely this is defined somewhere...
115  */
116 #define	NINTR		16
117 
118 #define	KILOS		10
119 #define	MEGS		20
120 #define	GIGS		30
121 
122 #ifndef STACK_BIAS
123 #define	STACK_BIAS	0
124 #endif
125 
126 static char
127 pstat2ch(uchar_t state)
128 {
129 	switch (state) {
130 		case SSLEEP: return ('S');
131 		case SRUN: return ('R');
132 		case SZOMB: return ('Z');
133 		case SIDL: return ('I');
134 		case SONPROC: return ('O');
135 		case SSTOP: return ('T');
136 		case SWAIT: return ('W');
137 		default: return ('?');
138 	}
139 }
140 
141 #define	PS_PRTTHREADS	0x1
142 #define	PS_PRTLWPS	0x2
143 #define	PS_PSARGS	0x4
144 #define	PS_TASKS	0x8
145 #define	PS_PROJECTS	0x10
146 #define	PS_ZONES	0x20
147 
148 static int
149 ps_threadprint(uintptr_t addr, const void *data, void *private)
150 {
151 	const kthread_t *t = (const kthread_t *)data;
152 	uint_t prt_flags = *((uint_t *)private);
153 
154 	static const mdb_bitmask_t t_state_bits[] = {
155 		{ "TS_FREE",	UINT_MAX,	TS_FREE		},
156 		{ "TS_SLEEP",	TS_SLEEP,	TS_SLEEP	},
157 		{ "TS_RUN",	TS_RUN,		TS_RUN		},
158 		{ "TS_ONPROC",	TS_ONPROC,	TS_ONPROC	},
159 		{ "TS_ZOMB",	TS_ZOMB,	TS_ZOMB		},
160 		{ "TS_STOPPED",	TS_STOPPED,	TS_STOPPED	},
161 		{ "TS_WAIT",	TS_WAIT,	TS_WAIT		},
162 		{ NULL,		0,		0		}
163 	};
164 
165 	if (prt_flags & PS_PRTTHREADS)
166 		mdb_printf("\tT  %?a <%b>\n", addr, t->t_state, t_state_bits);
167 
168 	if (prt_flags & PS_PRTLWPS) {
169 		char desc[128] = "";
170 
171 		(void) thread_getdesc(addr, B_FALSE, desc, sizeof (desc));
172 
173 		mdb_printf("\tL  %?a ID: %s\n", t->t_lwp, desc);
174 	}
175 
176 	return (WALK_NEXT);
177 }
178 
179 typedef struct mdb_pflags_proc {
180 	struct pid	*p_pidp;
181 	ushort_t	p_pidflag;
182 	uint_t		p_proc_flag;
183 	uint_t		p_flag;
184 } mdb_pflags_proc_t;
185 
186 static int
187 pflags(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
188 {
189 	mdb_pflags_proc_t pr;
190 	struct pid pid;
191 
192 	static const mdb_bitmask_t p_flag_bits[] = {
193 		{ "SSYS",		SSYS,		SSYS		},
194 		{ "SEXITING",		SEXITING,	SEXITING	},
195 		{ "SITBUSY",		SITBUSY,	SITBUSY		},
196 		{ "SFORKING",		SFORKING,	SFORKING	},
197 		{ "SWATCHOK",		SWATCHOK,	SWATCHOK	},
198 		{ "SKILLED",		SKILLED,	SKILLED		},
199 		{ "SSCONT",		SSCONT,		SSCONT		},
200 		{ "SZONETOP",		SZONETOP,	SZONETOP	},
201 		{ "SEXTKILLED",		SEXTKILLED,	SEXTKILLED	},
202 		{ "SUGID",		SUGID,		SUGID		},
203 		{ "SEXECED",		SEXECED,	SEXECED		},
204 		{ "SJCTL",		SJCTL,		SJCTL		},
205 		{ "SNOWAIT",		SNOWAIT,	SNOWAIT		},
206 		{ "SVFORK",		SVFORK,		SVFORK		},
207 		{ "SVFWAIT",		SVFWAIT,	SVFWAIT		},
208 		{ "SEXITLWPS",		SEXITLWPS,	SEXITLWPS	},
209 		{ "SHOLDFORK",		SHOLDFORK,	SHOLDFORK	},
210 		{ "SHOLDFORK1",		SHOLDFORK1,	SHOLDFORK1	},
211 		{ "SCOREDUMP",		SCOREDUMP,	SCOREDUMP	},
212 		{ "SMSACCT",		SMSACCT,	SMSACCT		},
213 		{ "SLWPWRAP",		SLWPWRAP,	SLWPWRAP	},
214 		{ "SAUTOLPG",		SAUTOLPG,	SAUTOLPG	},
215 		{ "SNOCD",		SNOCD,		SNOCD		},
216 		{ "SHOLDWATCH",		SHOLDWATCH,	SHOLDWATCH	},
217 		{ "SMSFORK",		SMSFORK,	SMSFORK		},
218 		{ "SDOCORE",		SDOCORE,	SDOCORE		},
219 		{ NULL,			0,		0		}
220 	};
221 
222 	static const mdb_bitmask_t p_pidflag_bits[] = {
223 		{ "CLDPEND",		CLDPEND,	CLDPEND		},
224 		{ "CLDCONT",		CLDCONT,	CLDCONT		},
225 		{ "CLDNOSIGCHLD",	CLDNOSIGCHLD,	CLDNOSIGCHLD	},
226 		{ "CLDWAITPID",		CLDWAITPID,	CLDWAITPID	},
227 		{ NULL,			0,		0		}
228 	};
229 
230 	static const mdb_bitmask_t p_proc_flag_bits[] = {
231 		{ "P_PR_TRACE",		P_PR_TRACE,	P_PR_TRACE	},
232 		{ "P_PR_PTRACE",	P_PR_PTRACE,	P_PR_PTRACE	},
233 		{ "P_PR_FORK",		P_PR_FORK,	P_PR_FORK	},
234 		{ "P_PR_LOCK",		P_PR_LOCK,	P_PR_LOCK	},
235 		{ "P_PR_ASYNC",		P_PR_ASYNC,	P_PR_ASYNC	},
236 		{ "P_PR_EXEC",		P_PR_EXEC,	P_PR_EXEC	},
237 		{ "P_PR_BPTADJ",	P_PR_BPTADJ,	P_PR_BPTADJ	},
238 		{ "P_PR_RUNLCL",	P_PR_RUNLCL,	P_PR_RUNLCL	},
239 		{ "P_PR_KILLCL",	P_PR_KILLCL,	P_PR_KILLCL	},
240 		{ NULL,			0,		0		}
241 	};
242 
243 	if (!(flags & DCMD_ADDRSPEC)) {
244 		if (mdb_walk_dcmd("proc", "pflags", argc, argv) == -1) {
245 			mdb_warn("can't walk 'proc'");
246 			return (DCMD_ERR);
247 		}
248 		return (DCMD_OK);
249 	}
250 
251 	if (mdb_ctf_vread(&pr, "proc_t", "mdb_pflags_proc_t", addr, 0) == -1 ||
252 	    mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp) == -1) {
253 		mdb_warn("cannot read proc_t or pid");
254 		return (DCMD_ERR);
255 	}
256 
257 	mdb_printf("%p [pid %d]:\n", addr, pid.pid_id);
258 	mdb_printf("\tp_flag:      %08x <%b>\n", pr.p_flag, pr.p_flag,
259 	    p_flag_bits);
260 	mdb_printf("\tp_pidflag:   %08x <%b>\n", pr.p_pidflag, pr.p_pidflag,
261 	    p_pidflag_bits);
262 	mdb_printf("\tp_proc_flag: %08x <%b>\n", pr.p_proc_flag, pr.p_proc_flag,
263 	    p_proc_flag_bits);
264 
265 	return (DCMD_OK);
266 }
267 
268 typedef struct mdb_ps_proc {
269 	char		p_stat;
270 	struct pid	*p_pidp;
271 	struct pid	*p_pgidp;
272 	struct cred	*p_cred;
273 	struct sess	*p_sessp;
274 	struct task	*p_task;
275 	struct zone	*p_zone;
276 	pid_t		p_ppid;
277 	uint_t		p_flag;
278 	struct {
279 		char		u_comm[MAXCOMLEN + 1];
280 		char		u_psargs[PSARGSZ];
281 	} p_user;
282 } mdb_ps_proc_t;
283 
284 int
285 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
286 {
287 	uint_t prt_flags = 0;
288 	mdb_ps_proc_t pr;
289 	struct pid pid, pgid, sid;
290 	sess_t session;
291 	cred_t cred;
292 	task_t tk;
293 	kproject_t pj;
294 	zone_t zn;
295 
296 	if (!(flags & DCMD_ADDRSPEC)) {
297 		if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
298 			mdb_warn("can't walk 'proc'");
299 			return (DCMD_ERR);
300 		}
301 		return (DCMD_OK);
302 	}
303 
304 	if (mdb_getopts(argc, argv,
305 	    'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
306 	    'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
307 	    'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
308 	    'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
309 	    'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
310 	    't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
311 		return (DCMD_USAGE);
312 
313 	if (DCMD_HDRSPEC(flags)) {
314 		mdb_printf("%<u>%1s %6s %6s %6s %6s ",
315 		    "S", "PID", "PPID", "PGID", "SID");
316 		if (prt_flags & PS_TASKS)
317 			mdb_printf("%5s ", "TASK");
318 		if (prt_flags & PS_PROJECTS)
319 			mdb_printf("%5s ", "PROJ");
320 		if (prt_flags & PS_ZONES)
321 			mdb_printf("%5s ", "ZONE");
322 		mdb_printf("%6s %10s %?s %s%</u>\n",
323 		    "UID", "FLAGS", "ADDR", "NAME");
324 	}
325 
326 	if (mdb_ctf_vread(&pr, "proc_t", "mdb_ps_proc_t", addr, 0) == -1)
327 		return (DCMD_ERR);
328 
329 	mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
330 	mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
331 	mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
332 	mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
333 	mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
334 	if (prt_flags & (PS_TASKS | PS_PROJECTS))
335 		mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
336 	if (prt_flags & PS_PROJECTS)
337 		mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
338 	if (prt_flags & PS_ZONES)
339 		mdb_vread(&zn, sizeof (zn), (uintptr_t)pr.p_zone);
340 
341 	mdb_printf("%c %6d %6d %6d %6d ",
342 	    pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
343 	    sid.pid_id);
344 	if (prt_flags & PS_TASKS)
345 		mdb_printf("%5d ", tk.tk_tkid);
346 	if (prt_flags & PS_PROJECTS)
347 		mdb_printf("%5d ", pj.kpj_id);
348 	if (prt_flags & PS_ZONES)
349 		mdb_printf("%5d ", zn.zone_id);
350 	mdb_printf("%6d 0x%08x %0?p %s\n",
351 	    cred.cr_uid, pr.p_flag, addr,
352 	    (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
353 
354 	if (prt_flags & ~PS_PSARGS)
355 		(void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
356 
357 	return (DCMD_OK);
358 }
359 
360 #define	PG_NEWEST	0x0001
361 #define	PG_OLDEST	0x0002
362 #define	PG_PIPE_OUT	0x0004
363 #define	PG_EXACT_MATCH	0x0008
364 
365 typedef struct pgrep_data {
366 	uint_t pg_flags;
367 	uint_t pg_psflags;
368 	uintptr_t pg_xaddr;
369 	hrtime_t pg_xstart;
370 	const char *pg_pat;
371 #ifndef _KMDB
372 	regex_t pg_reg;
373 #endif
374 } pgrep_data_t;
375 
376 typedef struct mdb_pgrep_proc {
377 	struct {
378 		timestruc_t	u_start;
379 		char		u_comm[MAXCOMLEN + 1];
380 	} p_user;
381 } mdb_pgrep_proc_t;
382 
383 /*ARGSUSED*/
384 static int
385 pgrep_cb(uintptr_t addr, const void *ignored, void *data)
386 {
387 	mdb_pgrep_proc_t p;
388 	pgrep_data_t *pgp = data;
389 #ifndef _KMDB
390 	regmatch_t pmatch;
391 #endif
392 
393 	if (mdb_ctf_vread(&p, "proc_t", "mdb_pgrep_proc_t", addr, 0) == -1)
394 		return (WALK_ERR);
395 
396 	/*
397 	 * kmdb doesn't have access to the reg* functions, so we fall back
398 	 * to strstr/strcmp.
399 	 */
400 #ifdef _KMDB
401 	if ((pgp->pg_flags & PG_EXACT_MATCH) ?
402 	    (strcmp(p.p_user.u_comm, pgp->pg_pat) != 0) :
403 	    (strstr(p.p_user.u_comm, pgp->pg_pat) == NULL))
404 		return (WALK_NEXT);
405 #else
406 	if (regexec(&pgp->pg_reg, p.p_user.u_comm, 1, &pmatch, 0) != 0)
407 		return (WALK_NEXT);
408 
409 	if ((pgp->pg_flags & PG_EXACT_MATCH) &&
410 	    (pmatch.rm_so != 0 || p.p_user.u_comm[pmatch.rm_eo] != '\0'))
411 		return (WALK_NEXT);
412 #endif
413 
414 	if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
415 		hrtime_t start;
416 
417 		start = (hrtime_t)p.p_user.u_start.tv_sec * NANOSEC +
418 		    p.p_user.u_start.tv_nsec;
419 
420 		if (pgp->pg_flags & PG_NEWEST) {
421 			if (pgp->pg_xaddr == 0 || start > pgp->pg_xstart) {
422 				pgp->pg_xaddr = addr;
423 				pgp->pg_xstart = start;
424 			}
425 		} else {
426 			if (pgp->pg_xaddr == 0 || start < pgp->pg_xstart) {
427 				pgp->pg_xaddr = addr;
428 				pgp->pg_xstart = start;
429 			}
430 		}
431 
432 	} else if (pgp->pg_flags & PG_PIPE_OUT) {
433 		mdb_printf("%p\n", addr);
434 
435 	} else {
436 		if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
437 			mdb_warn("can't invoke 'ps'");
438 			return (WALK_DONE);
439 		}
440 		pgp->pg_psflags &= ~DCMD_LOOPFIRST;
441 	}
442 
443 	return (WALK_NEXT);
444 }
445 
446 /*ARGSUSED*/
447 int
448 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
449 {
450 	pgrep_data_t pg;
451 	int i;
452 #ifndef _KMDB
453 	int err;
454 #endif
455 
456 	if (flags & DCMD_ADDRSPEC)
457 		return (DCMD_USAGE);
458 
459 	pg.pg_flags = 0;
460 	pg.pg_xaddr = 0;
461 
462 	i = mdb_getopts(argc, argv,
463 	    'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
464 	    'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
465 	    'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
466 	    NULL);
467 
468 	argc -= i;
469 	argv += i;
470 
471 	if (argc != 1)
472 		return (DCMD_USAGE);
473 
474 	/*
475 	 * -n and -o are mutually exclusive.
476 	 */
477 	if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
478 		return (DCMD_USAGE);
479 
480 	if (argv->a_type != MDB_TYPE_STRING)
481 		return (DCMD_USAGE);
482 
483 	if (flags & DCMD_PIPE_OUT)
484 		pg.pg_flags |= PG_PIPE_OUT;
485 
486 	pg.pg_pat = argv->a_un.a_str;
487 	if (DCMD_HDRSPEC(flags))
488 		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
489 	else
490 		pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
491 
492 #ifndef _KMDB
493 	if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
494 		size_t nbytes;
495 		char *buf;
496 
497 		nbytes = regerror(err, &pg.pg_reg, NULL, 0);
498 		buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
499 		(void) regerror(err, &pg.pg_reg, buf, nbytes);
500 		mdb_warn("%s\n", buf);
501 
502 		return (DCMD_ERR);
503 	}
504 #endif
505 
506 	if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
507 		mdb_warn("can't walk 'proc'");
508 		return (DCMD_ERR);
509 	}
510 
511 	if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
512 		if (pg.pg_flags & PG_PIPE_OUT) {
513 			mdb_printf("%p\n", pg.pg_xaddr);
514 		} else {
515 			if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
516 			    0, NULL) != 0) {
517 				mdb_warn("can't invoke 'ps'");
518 				return (DCMD_ERR);
519 			}
520 		}
521 	}
522 
523 	return (DCMD_OK);
524 }
525 
526 int
527 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
528 {
529 	task_t tk;
530 	kproject_t pj;
531 
532 	if (!(flags & DCMD_ADDRSPEC)) {
533 		if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
534 			mdb_warn("can't walk task_cache");
535 			return (DCMD_ERR);
536 		}
537 		return (DCMD_OK);
538 	}
539 	if (DCMD_HDRSPEC(flags)) {
540 		mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
541 		    "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
542 	}
543 	if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
544 		mdb_warn("can't read task_t structure at %p", addr);
545 		return (DCMD_ERR);
546 	}
547 	if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
548 		mdb_warn("can't read project_t structure at %p", addr);
549 		return (DCMD_ERR);
550 	}
551 	mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
552 	    addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
553 	    tk.tk_flags);
554 	return (DCMD_OK);
555 }
556 
557 int
558 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
559 {
560 	kproject_t pj;
561 
562 	if (!(flags & DCMD_ADDRSPEC)) {
563 		if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
564 			mdb_warn("can't walk projects");
565 			return (DCMD_ERR);
566 		}
567 		return (DCMD_OK);
568 	}
569 	if (DCMD_HDRSPEC(flags)) {
570 		mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
571 		    "ADDR", "PROJID", "ZONEID", "REFCNT");
572 	}
573 	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
574 		mdb_warn("can't read kproject_t structure at %p", addr);
575 		return (DCMD_ERR);
576 	}
577 	mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
578 	    pj.kpj_count);
579 	return (DCMD_OK);
580 }
581 
582 /* walk callouts themselves, either by list or id hash. */
583 int
584 callout_walk_init(mdb_walk_state_t *wsp)
585 {
586 	if (wsp->walk_addr == 0) {
587 		mdb_warn("callout doesn't support global walk");
588 		return (WALK_ERR);
589 	}
590 	wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP);
591 	return (WALK_NEXT);
592 }
593 
594 #define	CALLOUT_WALK_BYLIST	0
595 #define	CALLOUT_WALK_BYID	1
596 
597 /* the walker arg switches between walking by list (0) and walking by id (1). */
598 int
599 callout_walk_step(mdb_walk_state_t *wsp)
600 {
601 	int retval;
602 
603 	if (wsp->walk_addr == 0) {
604 		return (WALK_DONE);
605 	}
606 	if (mdb_vread(wsp->walk_data, sizeof (callout_t),
607 	    wsp->walk_addr) == -1) {
608 		mdb_warn("failed to read callout at %p", wsp->walk_addr);
609 		return (WALK_DONE);
610 	}
611 	retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
612 	    wsp->walk_cbdata);
613 
614 	if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) {
615 		wsp->walk_addr =
616 		    (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext);
617 	} else {
618 		wsp->walk_addr =
619 		    (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext);
620 	}
621 
622 	return (retval);
623 }
624 
625 void
626 callout_walk_fini(mdb_walk_state_t *wsp)
627 {
628 	mdb_free(wsp->walk_data, sizeof (callout_t));
629 }
630 
631 /*
632  * walker for callout lists. This is different from hashes and callouts.
633  * Thankfully, it's also simpler.
634  */
635 int
636 callout_list_walk_init(mdb_walk_state_t *wsp)
637 {
638 	if (wsp->walk_addr == 0) {
639 		mdb_warn("callout list doesn't support global walk");
640 		return (WALK_ERR);
641 	}
642 	wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP);
643 	return (WALK_NEXT);
644 }
645 
646 int
647 callout_list_walk_step(mdb_walk_state_t *wsp)
648 {
649 	int retval;
650 
651 	if (wsp->walk_addr == 0) {
652 		return (WALK_DONE);
653 	}
654 	if (mdb_vread(wsp->walk_data, sizeof (callout_list_t),
655 	    wsp->walk_addr) != sizeof (callout_list_t)) {
656 		mdb_warn("failed to read callout_list at %p", wsp->walk_addr);
657 		return (WALK_ERR);
658 	}
659 	retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
660 	    wsp->walk_cbdata);
661 
662 	wsp->walk_addr = (uintptr_t)
663 	    (((callout_list_t *)wsp->walk_data)->cl_next);
664 
665 	return (retval);
666 }
667 
668 void
669 callout_list_walk_fini(mdb_walk_state_t *wsp)
670 {
671 	mdb_free(wsp->walk_data, sizeof (callout_list_t));
672 }
673 
674 /* routines/structs to walk callout table(s) */
675 typedef struct cot_data {
676 	callout_table_t *ct0;
677 	callout_table_t ct;
678 	callout_hash_t cot_idhash[CALLOUT_BUCKETS];
679 	callout_hash_t cot_clhash[CALLOUT_BUCKETS];
680 	kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS];
681 	int cotndx;
682 	int cotsize;
683 } cot_data_t;
684 
685 int
686 callout_table_walk_init(mdb_walk_state_t *wsp)
687 {
688 	int max_ncpus;
689 	cot_data_t *cot_walk_data;
690 
691 	cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP);
692 
693 	if (wsp->walk_addr == 0) {
694 		if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) {
695 			mdb_warn("failed to read 'callout_table'");
696 			return (WALK_ERR);
697 		}
698 		if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
699 			mdb_warn("failed to get callout_table array size");
700 			return (WALK_ERR);
701 		}
702 		cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus;
703 		wsp->walk_addr = (uintptr_t)cot_walk_data->ct0;
704 	} else {
705 		/* not a global walk */
706 		cot_walk_data->cotsize = 1;
707 	}
708 
709 	cot_walk_data->cotndx = 0;
710 	wsp->walk_data = cot_walk_data;
711 
712 	return (WALK_NEXT);
713 }
714 
715 int
716 callout_table_walk_step(mdb_walk_state_t *wsp)
717 {
718 	int retval;
719 	cot_data_t *cotwd = (cot_data_t *)wsp->walk_data;
720 	size_t size;
721 
722 	if (cotwd->cotndx >= cotwd->cotsize) {
723 		return (WALK_DONE);
724 	}
725 	if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t),
726 	    wsp->walk_addr) != sizeof (callout_table_t)) {
727 		mdb_warn("failed to read callout_table at %p", wsp->walk_addr);
728 		return (WALK_ERR);
729 	}
730 
731 	size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
732 	if (cotwd->ct.ct_idhash != NULL) {
733 		if (mdb_vread(cotwd->cot_idhash, size,
734 		    (uintptr_t)(cotwd->ct.ct_idhash)) != size) {
735 			mdb_warn("failed to read id_hash at %p",
736 			    cotwd->ct.ct_idhash);
737 			return (WALK_ERR);
738 		}
739 	}
740 	if (cotwd->ct.ct_clhash != NULL) {
741 		if (mdb_vread(&(cotwd->cot_clhash), size,
742 		    (uintptr_t)cotwd->ct.ct_clhash) == -1) {
743 			mdb_warn("failed to read cl_hash at %p",
744 			    cotwd->ct.ct_clhash);
745 			return (WALK_ERR);
746 		}
747 	}
748 	size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS;
749 	if (cotwd->ct.ct_kstat_data != NULL) {
750 		if (mdb_vread(&(cotwd->ct_kstat_data), size,
751 		    (uintptr_t)cotwd->ct.ct_kstat_data) == -1) {
752 			mdb_warn("failed to read kstats at %p",
753 			    cotwd->ct.ct_kstat_data);
754 			return (WALK_ERR);
755 		}
756 	}
757 	retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd,
758 	    wsp->walk_cbdata);
759 
760 	cotwd->cotndx++;
761 	if (cotwd->cotndx >= cotwd->cotsize) {
762 		return (WALK_DONE);
763 	}
764 	wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr +
765 	    sizeof (callout_table_t));
766 
767 	return (retval);
768 }
769 
770 void
771 callout_table_walk_fini(mdb_walk_state_t *wsp)
772 {
773 	mdb_free(wsp->walk_data, sizeof (cot_data_t));
774 }
775 
776 static const char *co_typenames[] = { "R", "N" };
777 
778 #define	CO_PLAIN_ID(xid)	((xid) & CALLOUT_ID_MASK)
779 
780 #define	TABLE_TO_SEQID(x)	((x) >> CALLOUT_TYPE_BITS)
781 
782 /* callout flags, in no particular order */
783 #define	COF_REAL	0x00000001
784 #define	COF_NORM	0x00000002
785 #define	COF_LONG	0x00000004
786 #define	COF_SHORT	0x00000008
787 #define	COF_EMPTY	0x00000010
788 #define	COF_TIME	0x00000020
789 #define	COF_BEFORE	0x00000040
790 #define	COF_AFTER	0x00000080
791 #define	COF_SEQID	0x00000100
792 #define	COF_FUNC	0x00000200
793 #define	COF_ADDR	0x00000400
794 #define	COF_EXEC	0x00000800
795 #define	COF_HIRES	0x00001000
796 #define	COF_ABS		0x00002000
797 #define	COF_TABLE	0x00004000
798 #define	COF_BYIDH	0x00008000
799 #define	COF_FREE	0x00010000
800 #define	COF_LIST	0x00020000
801 #define	COF_EXPREL	0x00040000
802 #define	COF_HDR		0x00080000
803 #define	COF_VERBOSE	0x00100000
804 #define	COF_LONGLIST	0x00200000
805 #define	COF_THDR	0x00400000
806 #define	COF_LHDR	0x00800000
807 #define	COF_CHDR	0x01000000
808 #define	COF_PARAM	0x02000000
809 #define	COF_DECODE	0x04000000
810 #define	COF_HEAP	0x08000000
811 #define	COF_QUEUE	0x10000000
812 
813 /* show real and normal, short and long, expired and unexpired. */
814 #define	COF_DEFAULT	(COF_REAL | COF_NORM | COF_LONG | COF_SHORT)
815 
816 #define	COF_LIST_FLAGS	\
817 	(CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE)
818 
819 /* private callout data for callback functions */
820 typedef struct callout_data {
821 	uint_t flags;		/* COF_* */
822 	cpu_t *cpu;		/* cpu pointer if given */
823 	int seqid;		/* cpu seqid, or -1 */
824 	hrtime_t time;		/* expiration time value */
825 	hrtime_t atime;		/* expiration before value */
826 	hrtime_t btime;		/* expiration after value */
827 	uintptr_t funcaddr;	/* function address or NULL */
828 	uintptr_t param;	/* parameter to function or NULL */
829 	hrtime_t now;		/* current system time */
830 	int nsec_per_tick;	/* for conversions */
831 	ulong_t ctbits;		/* for decoding xid */
832 	callout_table_t *co_table;	/* top of callout table array */
833 	int ndx;		/* table index. */
834 	int bucket;		/* which list/id bucket are we in */
835 	hrtime_t exp;		/* expire time */
836 	int list_flags;		/* copy of cl_flags */
837 } callout_data_t;
838 
839 /* this callback does the actual callback itself (finally). */
840 /*ARGSUSED*/
841 static int
842 callouts_cb(uintptr_t addr, const void *data, void *priv)
843 {
844 	callout_data_t *coargs = (callout_data_t *)priv;
845 	callout_t *co = (callout_t *)data;
846 	int tableid, list_flags;
847 	callout_id_t coid;
848 
849 	if ((coargs == NULL) || (co == NULL)) {
850 		return (WALK_ERR);
851 	}
852 
853 	if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) {
854 		/*
855 		 * The callout must have been reallocated. No point in
856 		 * walking any more.
857 		 */
858 		return (WALK_DONE);
859 	}
860 	if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) {
861 		/*
862 		 * The callout must have been freed. No point in
863 		 * walking any more.
864 		 */
865 		return (WALK_DONE);
866 	}
867 	if ((coargs->flags & COF_FUNC) &&
868 	    (coargs->funcaddr != (uintptr_t)co->c_func)) {
869 		return (WALK_NEXT);
870 	}
871 	if ((coargs->flags & COF_PARAM) &&
872 	    (coargs->param != (uintptr_t)co->c_arg)) {
873 		return (WALK_NEXT);
874 	}
875 	if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) {
876 		return (WALK_NEXT);
877 	}
878 	if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) {
879 		return (WALK_NEXT);
880 	}
881 	if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) {
882 		return (WALK_NEXT);
883 	}
884 	/* it is possible we don't have the exp time or flags */
885 	if (coargs->flags & COF_BYIDH) {
886 		if (!(coargs->flags & COF_FREE)) {
887 			/* we have to fetch the expire time ourselves. */
888 			if (mdb_vread(&coargs->exp, sizeof (hrtime_t),
889 			    (uintptr_t)co->c_list + offsetof(callout_list_t,
890 			    cl_expiration)) == -1) {
891 				mdb_warn("failed to read expiration "
892 				    "time from %p", co->c_list);
893 				coargs->exp = 0;
894 			}
895 			/* and flags. */
896 			if (mdb_vread(&coargs->list_flags, sizeof (int),
897 			    (uintptr_t)co->c_list + offsetof(callout_list_t,
898 			    cl_flags)) == -1) {
899 				mdb_warn("failed to read list flags"
900 				    "from %p", co->c_list);
901 				coargs->list_flags = 0;
902 			}
903 		} else {
904 			/* free callouts can't use list pointer. */
905 			coargs->exp = 0;
906 			coargs->list_flags = 0;
907 		}
908 		if (coargs->exp != 0) {
909 			if ((coargs->flags & COF_TIME) &&
910 			    (coargs->exp != coargs->time)) {
911 				return (WALK_NEXT);
912 			}
913 			if ((coargs->flags & COF_BEFORE) &&
914 			    (coargs->exp > coargs->btime)) {
915 				return (WALK_NEXT);
916 			}
917 			if ((coargs->flags & COF_AFTER) &&
918 			    (coargs->exp < coargs->atime)) {
919 				return (WALK_NEXT);
920 			}
921 		}
922 		/* tricky part, since both HIRES and ABS can be set */
923 		list_flags = coargs->list_flags;
924 		if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
925 			/* both flags are set, only skip "regular" ones */
926 			if (! (list_flags & COF_LIST_FLAGS)) {
927 				return (WALK_NEXT);
928 			}
929 		} else {
930 			/* individual flags, or no flags */
931 			if ((coargs->flags & COF_HIRES) &&
932 			    !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
933 				return (WALK_NEXT);
934 			}
935 			if ((coargs->flags & COF_ABS) &&
936 			    !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
937 				return (WALK_NEXT);
938 			}
939 		}
940 		/*
941 		 * We do the checks for COF_HEAP and COF_QUEUE here only if we
942 		 * are traversing BYIDH. If the traversal is by callout list,
943 		 * we do this check in callout_list_cb() to be more
944 		 * efficient.
945 		 */
946 		if ((coargs->flags & COF_HEAP) &&
947 		    !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
948 			return (WALK_NEXT);
949 		}
950 
951 		if ((coargs->flags & COF_QUEUE) &&
952 		    !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
953 			return (WALK_NEXT);
954 		}
955 	}
956 
957 #define	callout_table_mask	((1 << coargs->ctbits) - 1)
958 	tableid = CALLOUT_ID_TO_TABLE(co->c_xid);
959 #undef	callout_table_mask
960 	coid = CO_PLAIN_ID(co->c_xid);
961 
962 	if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) {
963 		/*
964 		 * We need to print the headers. If walking by id, then
965 		 * the list header isn't printed, so we must include
966 		 * that info here.
967 		 */
968 		if (!(coargs->flags & COF_VERBOSE)) {
969 			mdb_printf("%<u>%3s %-1s %-14s %</u>",
970 			    "SEQ", "T", "EXP");
971 		} else if (coargs->flags & COF_BYIDH) {
972 			mdb_printf("%<u>%-14s %</u>", "EXP");
973 		}
974 		mdb_printf("%<u>%-4s %-?s %-20s%</u>",
975 		    "XHAL", "XID", "FUNC(ARG)");
976 		if (coargs->flags & COF_LONGLIST) {
977 			mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>",
978 			    "PREVID", "NEXTID", "PREVL", "NEXTL");
979 			mdb_printf("%<u> %-?s %-4s %-?s%</u>",
980 			    "DONE", "UTOS", "THREAD");
981 		}
982 		mdb_printf("\n");
983 		coargs->flags &= ~COF_CHDR;
984 		coargs->flags |= (COF_THDR | COF_LHDR);
985 	}
986 
987 	if (!(coargs->flags & COF_ADDR)) {
988 		if (!(coargs->flags & COF_VERBOSE)) {
989 			mdb_printf("%-3d %1s %-14llx ",
990 			    TABLE_TO_SEQID(tableid),
991 			    co_typenames[tableid & CALLOUT_TYPE_MASK],
992 			    (coargs->flags & COF_EXPREL) ?
993 			    coargs->exp - coargs->now : coargs->exp);
994 		} else if (coargs->flags & COF_BYIDH) {
995 			mdb_printf("%-14x ",
996 			    (coargs->flags & COF_EXPREL) ?
997 			    coargs->exp - coargs->now : coargs->exp);
998 		}
999 		list_flags = coargs->list_flags;
1000 		mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)",
1001 		    (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ",
1002 		    (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ",
1003 		    (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ",
1004 		    (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ",
1005 		    (long long)coid, co->c_func, co->c_arg);
1006 		if (coargs->flags & COF_LONGLIST) {
1007 			mdb_printf(" %-?p %-?p %-?p %-?p",
1008 			    co->c_idprev, co->c_idnext, co->c_clprev,
1009 			    co->c_clnext);
1010 			mdb_printf(" %-?p %-4d %-0?p",
1011 			    co->c_done, co->c_waiting, co->c_executor);
1012 		}
1013 	} else {
1014 		/* address only */
1015 		mdb_printf("%-0p", addr);
1016 	}
1017 	mdb_printf("\n");
1018 	return (WALK_NEXT);
1019 }
1020 
1021 /* this callback is for callout list handling. idhash is done by callout_t_cb */
1022 /*ARGSUSED*/
1023 static int
1024 callout_list_cb(uintptr_t addr, const void *data, void *priv)
1025 {
1026 	callout_data_t *coargs = (callout_data_t *)priv;
1027 	callout_list_t *cl = (callout_list_t *)data;
1028 	callout_t *coptr;
1029 	int list_flags;
1030 
1031 	if ((coargs == NULL) || (cl == NULL)) {
1032 		return (WALK_ERR);
1033 	}
1034 
1035 	coargs->exp = cl->cl_expiration;
1036 	coargs->list_flags = cl->cl_flags;
1037 	if ((coargs->flags & COF_FREE) &&
1038 	    !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1039 		/*
1040 		 * The callout list must have been reallocated. No point in
1041 		 * walking any more.
1042 		 */
1043 		return (WALK_DONE);
1044 	}
1045 	if (!(coargs->flags & COF_FREE) &&
1046 	    (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
1047 		/*
1048 		 * The callout list must have been freed. No point in
1049 		 * walking any more.
1050 		 */
1051 		return (WALK_DONE);
1052 	}
1053 	if ((coargs->flags & COF_TIME) &&
1054 	    (cl->cl_expiration != coargs->time)) {
1055 		return (WALK_NEXT);
1056 	}
1057 	if ((coargs->flags & COF_BEFORE) &&
1058 	    (cl->cl_expiration > coargs->btime)) {
1059 		return (WALK_NEXT);
1060 	}
1061 	if ((coargs->flags & COF_AFTER) &&
1062 	    (cl->cl_expiration < coargs->atime)) {
1063 		return (WALK_NEXT);
1064 	}
1065 	if (!(coargs->flags & COF_EMPTY) &&
1066 	    (cl->cl_callouts.ch_head == NULL)) {
1067 		return (WALK_NEXT);
1068 	}
1069 	/* FOUR cases, each different, !A!B, !AB, A!B, AB */
1070 	if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
1071 		/* both flags are set, only skip "regular" ones */
1072 		if (! (cl->cl_flags & COF_LIST_FLAGS)) {
1073 			return (WALK_NEXT);
1074 		}
1075 	} else {
1076 		if ((coargs->flags & COF_HIRES) &&
1077 		    !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
1078 			return (WALK_NEXT);
1079 		}
1080 		if ((coargs->flags & COF_ABS) &&
1081 		    !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
1082 			return (WALK_NEXT);
1083 		}
1084 	}
1085 
1086 	if ((coargs->flags & COF_HEAP) &&
1087 	    !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
1088 		return (WALK_NEXT);
1089 	}
1090 
1091 	if ((coargs->flags & COF_QUEUE) &&
1092 	    !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
1093 		return (WALK_NEXT);
1094 	}
1095 
1096 	if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) &&
1097 	    (coargs->flags & (COF_LIST | COF_VERBOSE))) {
1098 		if (!(coargs->flags & COF_VERBOSE)) {
1099 			/* don't be redundant again */
1100 			mdb_printf("%<u>SEQ T %</u>");
1101 		}
1102 		mdb_printf("%<u>EXP            HA BUCKET "
1103 		    "CALLOUTS         %</u>");
1104 
1105 		if (coargs->flags & COF_LONGLIST) {
1106 			mdb_printf("%<u> %-?s %-?s%</u>",
1107 			    "PREV", "NEXT");
1108 		}
1109 		mdb_printf("\n");
1110 		coargs->flags &= ~COF_LHDR;
1111 		coargs->flags |= (COF_THDR | COF_CHDR);
1112 	}
1113 	if (coargs->flags & (COF_LIST | COF_VERBOSE)) {
1114 		if (!(coargs->flags & COF_ADDR)) {
1115 			if (!(coargs->flags & COF_VERBOSE)) {
1116 				mdb_printf("%3d %1s ",
1117 				    TABLE_TO_SEQID(coargs->ndx),
1118 				    co_typenames[coargs->ndx &
1119 				    CALLOUT_TYPE_MASK]);
1120 			}
1121 
1122 			list_flags = coargs->list_flags;
1123 			mdb_printf("%-14llx %1s%1s %-6d %-0?p ",
1124 			    (coargs->flags & COF_EXPREL) ?
1125 			    coargs->exp - coargs->now : coargs->exp,
1126 			    (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ?
1127 			    "H" : " ",
1128 			    (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ?
1129 			    "A" : " ",
1130 			    coargs->bucket, cl->cl_callouts.ch_head);
1131 
1132 			if (coargs->flags & COF_LONGLIST) {
1133 				mdb_printf(" %-?p %-?p",
1134 				    cl->cl_prev, cl->cl_next);
1135 			}
1136 		} else {
1137 			/* address only */
1138 			mdb_printf("%-0p", addr);
1139 		}
1140 		mdb_printf("\n");
1141 		if (coargs->flags & COF_LIST) {
1142 			return (WALK_NEXT);
1143 		}
1144 	}
1145 	/* yet another layer as we walk the actual callouts via list. */
1146 	if (cl->cl_callouts.ch_head == NULL) {
1147 		return (WALK_NEXT);
1148 	}
1149 	/* free list structures do not have valid callouts off of them. */
1150 	if (coargs->flags & COF_FREE) {
1151 		return (WALK_NEXT);
1152 	}
1153 	coptr = (callout_t *)cl->cl_callouts.ch_head;
1154 
1155 	if (coargs->flags & COF_VERBOSE) {
1156 		mdb_inc_indent(4);
1157 	}
1158 	/*
1159 	 * walk callouts using yet another callback routine.
1160 	 * we use callouts_bytime because id hash is handled via
1161 	 * the callout_t_cb callback.
1162 	 */
1163 	if (mdb_pwalk("callouts_bytime", callouts_cb, coargs,
1164 	    (uintptr_t)coptr) == -1) {
1165 		mdb_warn("cannot walk callouts at %p", coptr);
1166 		return (WALK_ERR);
1167 	}
1168 	if (coargs->flags & COF_VERBOSE) {
1169 		mdb_dec_indent(4);
1170 	}
1171 
1172 	return (WALK_NEXT);
1173 }
1174 
1175 /* this callback handles the details of callout table walking. */
1176 static int
1177 callout_t_cb(uintptr_t addr, const void *data, void *priv)
1178 {
1179 	callout_data_t *coargs = (callout_data_t *)priv;
1180 	cot_data_t *cotwd = (cot_data_t *)data;
1181 	callout_table_t *ct = &(cotwd->ct);
1182 	int index, seqid, cotype;
1183 	int i;
1184 	callout_list_t *clptr;
1185 	callout_t *coptr;
1186 
1187 	if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) {
1188 		return (WALK_ERR);
1189 	}
1190 
1191 	index =  ((char *)addr - (char *)coargs->co_table) /
1192 	    sizeof (callout_table_t);
1193 	cotype = index & CALLOUT_TYPE_MASK;
1194 	seqid = TABLE_TO_SEQID(index);
1195 
1196 	if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) {
1197 		return (WALK_NEXT);
1198 	}
1199 
1200 	if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) {
1201 		return (WALK_NEXT);
1202 	}
1203 
1204 	if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) {
1205 		return (WALK_NEXT);
1206 	}
1207 
1208 	if (!(coargs->flags & COF_EMPTY) && (
1209 	    (ct->ct_heap == NULL) || (ct->ct_cyclic == 0))) {
1210 		return (WALK_NEXT);
1211 	}
1212 
1213 	if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) &&
1214 	    (coargs->flags & (COF_TABLE | COF_VERBOSE))) {
1215 		/* print table hdr */
1216 		mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>",
1217 		    "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP");
1218 		coargs->flags &= ~COF_THDR;
1219 		coargs->flags |= (COF_LHDR | COF_CHDR);
1220 		if (coargs->flags & COF_LONGLIST) {
1221 			/* more info! */
1222 			mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s"
1223 			    " %-?s %-?s %-?s%</u>",
1224 			    "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE",
1225 			    "PEND", "FREE", "LOCK");
1226 		}
1227 		mdb_printf("\n");
1228 	}
1229 	if (coargs->flags & (COF_TABLE | COF_VERBOSE)) {
1230 		if (!(coargs->flags & COF_ADDR)) {
1231 			mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p",
1232 			    seqid, co_typenames[cotype],
1233 			    ct->ct_free, ct->ct_lfree, ct->ct_cyclic,
1234 			    ct->ct_heap);
1235 			if (coargs->flags & COF_LONGLIST)  {
1236 				/* more info! */
1237 				mdb_printf(" %-7d %-7d %-?p %-?p %-?p"
1238 				    " %-?lld %-?lld %-?p",
1239 				    ct->ct_heap_num,  ct->ct_heap_max,
1240 				    ct->ct_taskq, ct->ct_expired.ch_head,
1241 				    ct->ct_queue.ch_head,
1242 				    cotwd->ct_timeouts_pending,
1243 				    cotwd->ct_allocations -
1244 				    cotwd->ct_timeouts_pending,
1245 				    ct->ct_mutex);
1246 			}
1247 		} else {
1248 			/* address only */
1249 			mdb_printf("%-0?p", addr);
1250 		}
1251 		mdb_printf("\n");
1252 		if (coargs->flags & COF_TABLE) {
1253 			return (WALK_NEXT);
1254 		}
1255 	}
1256 
1257 	coargs->ndx = index;
1258 	if (coargs->flags & COF_VERBOSE) {
1259 		mdb_inc_indent(4);
1260 	}
1261 	/* keep digging. */
1262 	if (!(coargs->flags & COF_BYIDH)) {
1263 		/* walk the list hash table */
1264 		if (coargs->flags & COF_FREE) {
1265 			clptr = ct->ct_lfree;
1266 			coargs->bucket = 0;
1267 			if (clptr == NULL) {
1268 				return (WALK_NEXT);
1269 			}
1270 			if (mdb_pwalk("callout_list", callout_list_cb, coargs,
1271 			    (uintptr_t)clptr) == -1) {
1272 				mdb_warn("cannot walk callout free list at %p",
1273 				    clptr);
1274 				return (WALK_ERR);
1275 			}
1276 		} else {
1277 			/* first print the expired list. */
1278 			clptr = (callout_list_t *)ct->ct_expired.ch_head;
1279 			if (clptr != NULL) {
1280 				coargs->bucket = -1;
1281 				if (mdb_pwalk("callout_list", callout_list_cb,
1282 				    coargs, (uintptr_t)clptr) == -1) {
1283 					mdb_warn("cannot walk callout_list"
1284 					    " at %p", clptr);
1285 					return (WALK_ERR);
1286 				}
1287 			}
1288 			/* then, print the callout queue */
1289 			clptr = (callout_list_t *)ct->ct_queue.ch_head;
1290 			if (clptr != NULL) {
1291 				coargs->bucket = -1;
1292 				if (mdb_pwalk("callout_list", callout_list_cb,
1293 				    coargs, (uintptr_t)clptr) == -1) {
1294 					mdb_warn("cannot walk callout_list"
1295 					    " at %p", clptr);
1296 					return (WALK_ERR);
1297 				}
1298 			}
1299 			for (i = 0; i < CALLOUT_BUCKETS; i++) {
1300 				if (ct->ct_clhash == NULL) {
1301 					/* nothing to do */
1302 					break;
1303 				}
1304 				if (cotwd->cot_clhash[i].ch_head == NULL) {
1305 					continue;
1306 				}
1307 				clptr = (callout_list_t *)
1308 				    cotwd->cot_clhash[i].ch_head;
1309 				coargs->bucket = i;
1310 				/* walk list with callback routine. */
1311 				if (mdb_pwalk("callout_list", callout_list_cb,
1312 				    coargs, (uintptr_t)clptr) == -1) {
1313 					mdb_warn("cannot walk callout_list"
1314 					    " at %p", clptr);
1315 					return (WALK_ERR);
1316 				}
1317 			}
1318 		}
1319 	} else {
1320 		/* walk the id hash table. */
1321 		if (coargs->flags & COF_FREE) {
1322 			coptr = ct->ct_free;
1323 			coargs->bucket = 0;
1324 			if (coptr == NULL) {
1325 				return (WALK_NEXT);
1326 			}
1327 			if (mdb_pwalk("callouts_byid", callouts_cb, coargs,
1328 			    (uintptr_t)coptr) == -1) {
1329 				mdb_warn("cannot walk callout id free list"
1330 				    " at %p", coptr);
1331 				return (WALK_ERR);
1332 			}
1333 		} else {
1334 			for (i = 0; i < CALLOUT_BUCKETS; i++) {
1335 				if (ct->ct_idhash == NULL) {
1336 					break;
1337 				}
1338 				coptr = (callout_t *)
1339 				    cotwd->cot_idhash[i].ch_head;
1340 				if (coptr == NULL) {
1341 					continue;
1342 				}
1343 				coargs->bucket = i;
1344 
1345 				/*
1346 				 * walk callouts directly by id. For id
1347 				 * chain, the callout list is just a header,
1348 				 * so there's no need to walk it.
1349 				 */
1350 				if (mdb_pwalk("callouts_byid", callouts_cb,
1351 				    coargs, (uintptr_t)coptr) == -1) {
1352 					mdb_warn("cannot walk callouts at %p",
1353 					    coptr);
1354 					return (WALK_ERR);
1355 				}
1356 			}
1357 		}
1358 	}
1359 	if (coargs->flags & COF_VERBOSE) {
1360 		mdb_dec_indent(4);
1361 	}
1362 	return (WALK_NEXT);
1363 }
1364 
1365 /*
1366  * initialize some common info for both callout dcmds.
1367  */
1368 int
1369 callout_common_init(callout_data_t *coargs)
1370 {
1371 	/* we need a couple of things */
1372 	if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) {
1373 		mdb_warn("failed to read 'callout_table'");
1374 		return (DCMD_ERR);
1375 	}
1376 	/* need to get now in nsecs. Approximate with hrtime vars */
1377 	if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") !=
1378 	    sizeof (hrtime_t)) {
1379 		if (mdb_readsym(&(coargs->now), sizeof (hrtime_t),
1380 		    "hrtime_base") != sizeof (hrtime_t)) {
1381 			mdb_warn("Could not determine current system time");
1382 			return (DCMD_ERR);
1383 		}
1384 	}
1385 
1386 	if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) {
1387 		mdb_warn("failed to read 'callout_table_bits'");
1388 		return (DCMD_ERR);
1389 	}
1390 	if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) {
1391 		mdb_warn("failed to read 'nsec_per_tick'");
1392 		return (DCMD_ERR);
1393 	}
1394 	return (DCMD_OK);
1395 }
1396 
1397 /*
1398  * dcmd to print callouts.  Optional addr limits to specific table.
1399  * Parses lots of options that get passed to callbacks for walkers.
1400  * Has it's own help function.
1401  */
1402 /*ARGSUSED*/
1403 int
1404 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1405 {
1406 	callout_data_t coargs;
1407 	/* getopts doesn't help much with stuff like this */
1408 	boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag;
1409 	char *funcname = NULL;
1410 	char *paramstr = NULL;
1411 	uintptr_t Stmp, Ctmp;	/* for getopt. */
1412 	int retval;
1413 
1414 	coargs.flags = COF_DEFAULT;
1415 	Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE;
1416 	coargs.seqid = -1;
1417 
1418 	if (mdb_getopts(argc, argv,
1419 	    'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags,
1420 	    'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags,
1421 	    'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags,
1422 	    's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags,
1423 	    'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags,
1424 	    'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags,
1425 	    'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags,
1426 	    'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags,
1427 	    'd', MDB_OPT_SETBITS, 1, &dflag,
1428 	    'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp,
1429 	    'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp,
1430 	    't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time,
1431 	    'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime,
1432 	    'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime,
1433 	    'k', MDB_OPT_SETBITS, 1, &kflag,
1434 	    'f', MDB_OPT_STR, &funcname,
1435 	    'p', MDB_OPT_STR, &paramstr,
1436 	    'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags,
1437 	    'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags,
1438 	    'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags,
1439 	    'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags,
1440 	    'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1441 	    'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags,
1442 	    'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags,
1443 	    'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags,
1444 	    'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags,
1445 	    'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags,
1446 	    NULL) != argc) {
1447 		return (DCMD_USAGE);
1448 	}
1449 
1450 	/* initialize from kernel variables */
1451 	if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1452 		return (retval);
1453 	}
1454 
1455 	/* do some option post-processing */
1456 	if (kflag) {
1457 		coargs.time *= coargs.nsec_per_tick;
1458 		coargs.atime *= coargs.nsec_per_tick;
1459 		coargs.btime *= coargs.nsec_per_tick;
1460 	}
1461 
1462 	if (dflag) {
1463 		coargs.time += coargs.now;
1464 		coargs.atime += coargs.now;
1465 		coargs.btime += coargs.now;
1466 	}
1467 	if (Sflag) {
1468 		if (flags & DCMD_ADDRSPEC) {
1469 			mdb_printf("-S option conflicts with explicit"
1470 			    " address\n");
1471 			return (DCMD_USAGE);
1472 		}
1473 		coargs.flags |= COF_SEQID;
1474 		coargs.seqid = (int)Stmp;
1475 	}
1476 	if (Cflag) {
1477 		if (flags & DCMD_ADDRSPEC) {
1478 			mdb_printf("-C option conflicts with explicit"
1479 			    " address\n");
1480 			return (DCMD_USAGE);
1481 		}
1482 		if (coargs.flags & COF_SEQID) {
1483 			mdb_printf("-C and -S are mutually exclusive\n");
1484 			return (DCMD_USAGE);
1485 		}
1486 		coargs.cpu = (cpu_t *)Ctmp;
1487 		if (mdb_vread(&coargs.seqid, sizeof (processorid_t),
1488 		    (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) {
1489 			mdb_warn("failed to read cpu_t at %p", Ctmp);
1490 			return (DCMD_ERR);
1491 		}
1492 		coargs.flags |= COF_SEQID;
1493 	}
1494 	/* avoid null outputs. */
1495 	if (!(coargs.flags & (COF_REAL | COF_NORM))) {
1496 		coargs.flags |= COF_REAL | COF_NORM;
1497 	}
1498 	if (!(coargs.flags & (COF_LONG | COF_SHORT))) {
1499 		coargs.flags |= COF_LONG | COF_SHORT;
1500 	}
1501 	if (tflag) {
1502 		if (aflag || bflag) {
1503 			mdb_printf("-t and -a|b are mutually exclusive\n");
1504 			return (DCMD_USAGE);
1505 		}
1506 		coargs.flags |= COF_TIME;
1507 	}
1508 	if (aflag) {
1509 		coargs.flags |= COF_AFTER;
1510 	}
1511 	if (bflag) {
1512 		coargs.flags |= COF_BEFORE;
1513 	}
1514 	if ((aflag && bflag) && (coargs.btime <= coargs.atime)) {
1515 		mdb_printf("value for -a must be earlier than the value"
1516 		    " for -b.\n");
1517 		return (DCMD_USAGE);
1518 	}
1519 
1520 	if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) {
1521 		mdb_printf("-H and -Q are mutually exclusive\n");
1522 		return (DCMD_USAGE);
1523 	}
1524 
1525 	if (funcname != NULL) {
1526 		GElf_Sym sym;
1527 
1528 		if (mdb_lookup_by_name(funcname, &sym) != 0) {
1529 			coargs.funcaddr = mdb_strtoull(funcname);
1530 		} else {
1531 			coargs.funcaddr = sym.st_value;
1532 		}
1533 		coargs.flags |= COF_FUNC;
1534 	}
1535 
1536 	if (paramstr != NULL) {
1537 		GElf_Sym sym;
1538 
1539 		if (mdb_lookup_by_name(paramstr, &sym) != 0) {
1540 			coargs.param = mdb_strtoull(paramstr);
1541 		} else {
1542 			coargs.param = sym.st_value;
1543 		}
1544 		coargs.flags |= COF_PARAM;
1545 	}
1546 
1547 	if (!(flags & DCMD_ADDRSPEC)) {
1548 		/* don't pass "dot" if no addr. */
1549 		addr = 0;
1550 	}
1551 	if (addr != 0) {
1552 		/*
1553 		 * a callout table was specified. Ignore -r|n option
1554 		 * to avoid null output.
1555 		 */
1556 		coargs.flags |= (COF_REAL | COF_NORM);
1557 	}
1558 
1559 	if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) {
1560 		coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR;
1561 	}
1562 	if (coargs.flags & COF_FREE) {
1563 		coargs.flags |= COF_EMPTY;
1564 		/* -F = free callouts, -FL = free lists */
1565 		if (!(coargs.flags & COF_LIST)) {
1566 			coargs.flags |= COF_BYIDH;
1567 		}
1568 	}
1569 
1570 	/* walk table, using specialized callback routine. */
1571 	if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) {
1572 		mdb_warn("cannot walk callout_table");
1573 		return (DCMD_ERR);
1574 	}
1575 	return (DCMD_OK);
1576 }
1577 
1578 
1579 /*
1580  * Given an extended callout id, dump its information.
1581  */
1582 /*ARGSUSED*/
1583 int
1584 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1585 {
1586 	callout_data_t coargs;
1587 	callout_table_t *ctptr;
1588 	callout_table_t ct;
1589 	callout_id_t coid;
1590 	callout_t *coptr;
1591 	int tableid;
1592 	callout_id_t xid;
1593 	ulong_t idhash;
1594 	int i, retval;
1595 	const mdb_arg_t *arg;
1596 	size_t size;
1597 	callout_hash_t cot_idhash[CALLOUT_BUCKETS];
1598 
1599 	coargs.flags = COF_DEFAULT | COF_BYIDH;
1600 	i = mdb_getopts(argc, argv,
1601 	    'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags,
1602 	    'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1603 	    NULL);
1604 	argc -= i;
1605 	argv += i;
1606 
1607 	if (argc != 1) {
1608 		return (DCMD_USAGE);
1609 	}
1610 	arg = &argv[0];
1611 
1612 	if (arg->a_type == MDB_TYPE_IMMEDIATE) {
1613 		xid = arg->a_un.a_val;
1614 	} else {
1615 		xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str);
1616 	}
1617 
1618 	if (DCMD_HDRSPEC(flags)) {
1619 		coargs.flags |= COF_CHDR;
1620 	}
1621 
1622 
1623 	/* initialize from kernel variables */
1624 	if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1625 		return (retval);
1626 	}
1627 
1628 	/* we must massage the environment so that the macros will play nice */
1629 #define	callout_table_mask	((1 << coargs.ctbits) - 1)
1630 #define	callout_table_bits	coargs.ctbits
1631 #define	nsec_per_tick		coargs.nsec_per_tick
1632 	tableid = CALLOUT_ID_TO_TABLE(xid);
1633 	idhash = CALLOUT_IDHASH(xid);
1634 #undef	callouts_table_bits
1635 #undef	callout_table_mask
1636 #undef	nsec_per_tick
1637 	coid = CO_PLAIN_ID(xid);
1638 
1639 	if (flags & DCMD_ADDRSPEC) {
1640 		mdb_printf("calloutid does not accept explicit address.\n");
1641 		return (DCMD_USAGE);
1642 	}
1643 
1644 	if (coargs.flags & COF_DECODE) {
1645 		if (DCMD_HDRSPEC(flags)) {
1646 			mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n",
1647 			    "SEQ", "T", "XL", "XID", "IDHASH");
1648 		}
1649 		mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n",
1650 		    TABLE_TO_SEQID(tableid),
1651 		    co_typenames[tableid & CALLOUT_TYPE_MASK],
1652 		    (xid & CALLOUT_EXECUTING) ? "X" : " ",
1653 		    (xid & CALLOUT_LONGTERM) ? "L" : " ",
1654 		    (long long)coid, idhash);
1655 		return (DCMD_OK);
1656 	}
1657 
1658 	/* get our table. Note this relies on the types being correct */
1659 	ctptr = coargs.co_table + tableid;
1660 	if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) {
1661 		mdb_warn("failed to read callout_table at %p", ctptr);
1662 		return (DCMD_ERR);
1663 	}
1664 	size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
1665 	if (ct.ct_idhash != NULL) {
1666 		if (mdb_vread(&(cot_idhash), size,
1667 		    (uintptr_t)ct.ct_idhash) == -1) {
1668 			mdb_warn("failed to read id_hash at %p",
1669 			    ct.ct_idhash);
1670 			return (WALK_ERR);
1671 		}
1672 	}
1673 
1674 	/* callout at beginning of hash chain */
1675 	if (ct.ct_idhash == NULL) {
1676 		mdb_printf("id hash chain for this xid is empty\n");
1677 		return (DCMD_ERR);
1678 	}
1679 	coptr = (callout_t *)cot_idhash[idhash].ch_head;
1680 	if (coptr == NULL) {
1681 		mdb_printf("id hash chain for this xid is empty\n");
1682 		return (DCMD_ERR);
1683 	}
1684 
1685 	coargs.ndx = tableid;
1686 	coargs.bucket = idhash;
1687 
1688 	/* use the walker, luke */
1689 	if (mdb_pwalk("callouts_byid", callouts_cb, &coargs,
1690 	    (uintptr_t)coptr) == -1) {
1691 		mdb_warn("cannot walk callouts at %p", coptr);
1692 		return (WALK_ERR);
1693 	}
1694 
1695 	return (DCMD_OK);
1696 }
1697 
1698 void
1699 callout_help(void)
1700 {
1701 	mdb_printf("callout: display callouts.\n"
1702 	    "Given a callout table address, display callouts from table.\n"
1703 	    "Without an address, display callouts from all tables.\n"
1704 	    "options:\n"
1705 	    " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n"
1706 	    " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n"
1707 	    " -x : limit display to callouts which are executing\n"
1708 	    " -h : limit display to callouts based on hrestime\n"
1709 	    " -B : limit display to callouts based on absolute time\n"
1710 	    " -t|a|b nsec: limit display to callouts that expire a(t) time,"
1711 	    " (a)fter time,\n     or (b)efore time. Use -a and -b together "
1712 	    " to specify a range.\n     For \"now\", use -d[t|a|b] 0.\n"
1713 	    " -d : interpret time option to -t|a|b as delta from current time\n"
1714 	    " -k : use ticks instead of nanoseconds as arguments to"
1715 	    " -t|a|b. Note that\n     ticks are less accurate and may not"
1716 	    " match other tick times (ie: lbolt).\n"
1717 	    " -D : display exiration time as delta from current time\n"
1718 	    " -S seqid : limit display to callouts for this cpu sequence id\n"
1719 	    " -C addr :  limit display to callouts for this cpu pointer\n"
1720 	    " -f name|addr : limit display to callouts with this function\n"
1721 	    " -p name|addr : limit display to callouts functions with this"
1722 	    " parameter\n"
1723 	    " -T : display the callout table itself, instead of callouts\n"
1724 	    " -L : display callout lists instead of callouts\n"
1725 	    " -E : with -T or L, display empty data structures.\n"
1726 	    " -i : traverse callouts by id hash instead of list hash\n"
1727 	    " -F : walk free callout list (free list with -i) instead\n"
1728 	    " -v : display more info for each item\n"
1729 	    " -V : show details of each level of info as it is traversed\n"
1730 	    " -H : limit display to callouts in the callout heap\n"
1731 	    " -Q : limit display to callouts in the callout queue\n"
1732 	    " -A : show only addresses. Useful for pipelines.\n");
1733 }
1734 
1735 void
1736 calloutid_help(void)
1737 {
1738 	mdb_printf("calloutid: display callout by id.\n"
1739 	    "Given an extended callout id, display the callout infomation.\n"
1740 	    "options:\n"
1741 	    " -d : do not dereference callout, just decode the id.\n"
1742 	    " -v : verbose display more info about the callout\n");
1743 }
1744 
1745 /*ARGSUSED*/
1746 int
1747 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1748 {
1749 	long num_classes, i;
1750 	sclass_t *class_tbl;
1751 	GElf_Sym g_sclass;
1752 	char class_name[PC_CLNMSZ];
1753 	size_t tbl_size;
1754 
1755 	if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
1756 		mdb_warn("failed to find symbol sclass\n");
1757 		return (DCMD_ERR);
1758 	}
1759 
1760 	tbl_size = (size_t)g_sclass.st_size;
1761 	num_classes = tbl_size / (sizeof (sclass_t));
1762 	class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
1763 
1764 	if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
1765 		mdb_warn("failed to read sclass");
1766 		return (DCMD_ERR);
1767 	}
1768 
1769 	mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
1770 	    "INIT FCN", "CLASS FCN");
1771 
1772 	for (i = 0; i < num_classes; i++) {
1773 		if (mdb_vread(class_name, sizeof (class_name),
1774 		    (uintptr_t)class_tbl[i].cl_name) == -1)
1775 			(void) strcpy(class_name, "???");
1776 
1777 		mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
1778 		    class_tbl[i].cl_init, class_tbl[i].cl_funcs);
1779 	}
1780 
1781 	return (DCMD_OK);
1782 }
1783 
1784 #define	FSNAMELEN	32	/* Max len of FS name we read from vnodeops */
1785 
1786 int
1787 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1788 {
1789 	uintptr_t rootdir;
1790 	vnode_t vn;
1791 	char buf[MAXPATHLEN];
1792 
1793 	uint_t opt_F = FALSE;
1794 
1795 	if (mdb_getopts(argc, argv,
1796 	    'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
1797 		return (DCMD_USAGE);
1798 
1799 	if (!(flags & DCMD_ADDRSPEC)) {
1800 		mdb_warn("expected explicit vnode_t address before ::\n");
1801 		return (DCMD_USAGE);
1802 	}
1803 
1804 	if (mdb_readvar(&rootdir, "rootdir") == -1) {
1805 		mdb_warn("failed to read rootdir");
1806 		return (DCMD_ERR);
1807 	}
1808 
1809 	if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
1810 		return (DCMD_ERR);
1811 
1812 	if (*buf == '\0') {
1813 		mdb_printf("??\n");
1814 		return (DCMD_OK);
1815 	}
1816 
1817 	mdb_printf("%s", buf);
1818 	if (opt_F && buf[strlen(buf)-1] != '/' &&
1819 	    mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
1820 		mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
1821 	mdb_printf("\n");
1822 
1823 	return (DCMD_OK);
1824 }
1825 
1826 int
1827 ld_walk_init(mdb_walk_state_t *wsp)
1828 {
1829 	wsp->walk_data = (void *)wsp->walk_addr;
1830 	return (WALK_NEXT);
1831 }
1832 
1833 int
1834 ld_walk_step(mdb_walk_state_t *wsp)
1835 {
1836 	int status;
1837 	lock_descriptor_t ld;
1838 
1839 	if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
1840 		mdb_warn("couldn't read lock_descriptor_t at %p\n",
1841 		    wsp->walk_addr);
1842 		return (WALK_ERR);
1843 	}
1844 
1845 	status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
1846 	if (status == WALK_ERR)
1847 		return (WALK_ERR);
1848 
1849 	wsp->walk_addr = (uintptr_t)ld.l_next;
1850 	if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
1851 		return (WALK_DONE);
1852 
1853 	return (status);
1854 }
1855 
1856 int
1857 lg_walk_init(mdb_walk_state_t *wsp)
1858 {
1859 	GElf_Sym sym;
1860 
1861 	if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
1862 		mdb_warn("failed to find symbol 'lock_graph'\n");
1863 		return (WALK_ERR);
1864 	}
1865 
1866 	wsp->walk_addr = (uintptr_t)sym.st_value;
1867 	wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
1868 
1869 	return (WALK_NEXT);
1870 }
1871 
1872 typedef struct lg_walk_data {
1873 	uintptr_t startaddr;
1874 	mdb_walk_cb_t callback;
1875 	void *data;
1876 } lg_walk_data_t;
1877 
1878 /*
1879  * We can't use ::walk lock_descriptor directly, because the head of each graph
1880  * is really a dummy lock.  Rather than trying to dynamically determine if this
1881  * is a dummy node or not, we just filter out the initial element of the
1882  * list.
1883  */
1884 static int
1885 lg_walk_cb(uintptr_t addr, const void *data, void *priv)
1886 {
1887 	lg_walk_data_t *lw = priv;
1888 
1889 	if (addr != lw->startaddr)
1890 		return (lw->callback(addr, data, lw->data));
1891 
1892 	return (WALK_NEXT);
1893 }
1894 
1895 int
1896 lg_walk_step(mdb_walk_state_t *wsp)
1897 {
1898 	graph_t *graph;
1899 	lg_walk_data_t lw;
1900 
1901 	if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
1902 		return (WALK_DONE);
1903 
1904 	if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
1905 		mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
1906 		return (WALK_ERR);
1907 	}
1908 
1909 	wsp->walk_addr += sizeof (graph);
1910 
1911 	if (graph == NULL)
1912 		return (WALK_NEXT);
1913 
1914 	lw.callback = wsp->walk_callback;
1915 	lw.data = wsp->walk_cbdata;
1916 
1917 	lw.startaddr = (uintptr_t)&(graph->active_locks);
1918 	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1919 		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1920 		return (WALK_ERR);
1921 	}
1922 
1923 	lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
1924 	if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1925 		mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1926 		return (WALK_ERR);
1927 	}
1928 
1929 	return (WALK_NEXT);
1930 }
1931 
1932 /*
1933  * The space available for the path corresponding to the locked vnode depends
1934  * on whether we are printing 32- or 64-bit addresses.
1935  */
1936 #ifdef _LP64
1937 #define	LM_VNPATHLEN	20
1938 #else
1939 #define	LM_VNPATHLEN	30
1940 #endif
1941 
1942 typedef struct mdb_lminfo_proc {
1943 	struct {
1944 		char		u_comm[MAXCOMLEN + 1];
1945 	} p_user;
1946 } mdb_lminfo_proc_t;
1947 
1948 /*ARGSUSED*/
1949 static int
1950 lminfo_cb(uintptr_t addr, const void *data, void *priv)
1951 {
1952 	const lock_descriptor_t *ld = data;
1953 	char buf[LM_VNPATHLEN];
1954 	mdb_lminfo_proc_t p;
1955 	uintptr_t paddr = 0;
1956 
1957 	if (ld->l_flock.l_pid != 0)
1958 		paddr = mdb_pid2proc(ld->l_flock.l_pid, NULL);
1959 
1960 	if (paddr != 0)
1961 		mdb_ctf_vread(&p, "proc_t", "mdb_lminfo_proc_t", paddr, 0);
1962 
1963 	mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
1964 	    addr, ld->l_type == F_RDLCK ? "RD" :
1965 	    ld->l_type == F_WRLCK ? "WR" : "??",
1966 	    ld->l_state, ld->l_flock.l_pid,
1967 	    ld->l_flock.l_pid == 0 ? "<kernel>" :
1968 	    paddr == 0 ? "<defunct>" : p.p_user.u_comm, ld->l_vnode);
1969 
1970 	mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
1971 	    sizeof (buf));
1972 	mdb_printf("%s\n", buf);
1973 
1974 	return (WALK_NEXT);
1975 }
1976 
1977 /*ARGSUSED*/
1978 int
1979 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1980 {
1981 	if (DCMD_HDRSPEC(flags))
1982 		mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
1983 		    "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
1984 
1985 	return (mdb_pwalk("lock_graph", lminfo_cb, NULL, 0));
1986 }
1987 
1988 /*ARGSUSED*/
1989 int
1990 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
1991 {
1992 	if ((uintptr_t)f->f_vnode == *target) {
1993 		mdb_printf("file %p\n", addr);
1994 		*target = 0;
1995 	}
1996 
1997 	return (WALK_NEXT);
1998 }
1999 
2000 /*ARGSUSED*/
2001 int
2002 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
2003 {
2004 	uintptr_t t = *target;
2005 
2006 	if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
2007 		mdb_warn("couldn't file walk proc %p", addr);
2008 		return (WALK_ERR);
2009 	}
2010 
2011 	if (t == 0)
2012 		mdb_printf("%p\n", addr);
2013 
2014 	return (WALK_NEXT);
2015 }
2016 
2017 /*ARGSUSED*/
2018 int
2019 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2020 {
2021 	uintptr_t target = addr;
2022 
2023 	if (!(flags & DCMD_ADDRSPEC) || addr == 0)
2024 		return (DCMD_USAGE);
2025 
2026 	if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
2027 		mdb_warn("can't proc walk");
2028 		return (DCMD_ERR);
2029 	}
2030 
2031 	return (DCMD_OK);
2032 }
2033 
2034 typedef struct datafmt {
2035 	char	*hdr1;
2036 	char	*hdr2;
2037 	char	*dashes;
2038 	char	*fmt;
2039 } datafmt_t;
2040 
2041 static datafmt_t kmemfmt[] = {
2042 	{ "cache                    ", "name                     ",
2043 	"-------------------------", "%-25s "				},
2044 	{ "   buf",	"  size",	"------",	"%6u "		},
2045 	{ "   buf",	"in use",	"------",	"%6u "		},
2046 	{ "   buf",	" total",	"------",	"%6u "		},
2047 	{ "   memory",	"   in use",	"----------",	"%10lu%c "	},
2048 	{ "    alloc",	"  succeed",	"---------",	"%9u "		},
2049 	{ "alloc",	" fail",	"-----",	"%5u "		},
2050 	{ NULL,		NULL,		NULL,		NULL		}
2051 };
2052 
2053 static datafmt_t vmemfmt[] = {
2054 	{ "vmem                     ", "name                     ",
2055 	"-------------------------", "%-*s "				},
2056 	{ "   memory",	"   in use",	"----------",	"%9llu%c "	},
2057 	{ "    memory",	"     total",	"-----------",	"%10llu%c "	},
2058 	{ "   memory",	"   import",	"----------",	"%9llu%c "	},
2059 	{ "    alloc",	"  succeed",	"---------",	"%9llu "	},
2060 	{ "alloc",	" fail",	"-----",	"%5llu "	},
2061 	{ NULL,		NULL,		NULL,		NULL		}
2062 };
2063 
2064 /*ARGSUSED*/
2065 static int
2066 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
2067 {
2068 	short rounds, prounds;
2069 
2070 	if (KMEM_DUMPCC(ccp)) {
2071 		rounds = ccp->cc_dump_rounds;
2072 		prounds = ccp->cc_dump_prounds;
2073 	} else {
2074 		rounds = ccp->cc_rounds;
2075 		prounds = ccp->cc_prounds;
2076 	}
2077 	if (rounds > 0)
2078 		*avail += rounds;
2079 	if (prounds > 0)
2080 		*avail += prounds;
2081 
2082 	return (WALK_NEXT);
2083 }
2084 
2085 /*ARGSUSED*/
2086 static int
2087 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
2088 {
2089 	*alloc += ccp->cc_alloc;
2090 
2091 	return (WALK_NEXT);
2092 }
2093 
2094 /*ARGSUSED*/
2095 static int
2096 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
2097 {
2098 	*avail += sp->slab_chunks - sp->slab_refcnt;
2099 
2100 	return (WALK_NEXT);
2101 }
2102 
2103 typedef struct kmastat_vmem {
2104 	uintptr_t kv_addr;
2105 	struct kmastat_vmem *kv_next;
2106 	size_t kv_meminuse;
2107 	int kv_alloc;
2108 	int kv_fail;
2109 } kmastat_vmem_t;
2110 
2111 typedef struct kmastat_args {
2112 	kmastat_vmem_t **ka_kvpp;
2113 	uint_t ka_shift;
2114 } kmastat_args_t;
2115 
2116 static int
2117 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
2118 {
2119 	kmastat_vmem_t **kvpp = kap->ka_kvpp;
2120 	kmastat_vmem_t *kv;
2121 	datafmt_t *dfp = kmemfmt;
2122 	int magsize;
2123 
2124 	int avail, alloc, total;
2125 	size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
2126 	    cp->cache_slabsize;
2127 
2128 	mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
2129 	mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
2130 	mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
2131 
2132 	magsize = kmem_get_magsize(cp);
2133 
2134 	alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
2135 	avail = cp->cache_full.ml_total * magsize;
2136 	total = cp->cache_buftotal;
2137 
2138 	(void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
2139 	(void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
2140 	(void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
2141 
2142 	for (kv = *kvpp; kv != NULL; kv = kv->kv_next) {
2143 		if (kv->kv_addr == (uintptr_t)cp->cache_arena)
2144 			goto out;
2145 	}
2146 
2147 	kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
2148 	kv->kv_next = *kvpp;
2149 	kv->kv_addr = (uintptr_t)cp->cache_arena;
2150 	*kvpp = kv;
2151 out:
2152 	kv->kv_meminuse += meminuse;
2153 	kv->kv_alloc += alloc;
2154 	kv->kv_fail += cp->cache_alloc_fail;
2155 
2156 	mdb_printf((dfp++)->fmt, cp->cache_name);
2157 	mdb_printf((dfp++)->fmt, cp->cache_bufsize);
2158 	mdb_printf((dfp++)->fmt, total - avail);
2159 	mdb_printf((dfp++)->fmt, total);
2160 	mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift,
2161 	    kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2162 	    kap->ka_shift == KILOS ? 'K' : 'B');
2163 	mdb_printf((dfp++)->fmt, alloc);
2164 	mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
2165 	mdb_printf("\n");
2166 
2167 	return (WALK_NEXT);
2168 }
2169 
2170 static int
2171 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
2172 {
2173 	kmastat_vmem_t *kv = *kap->ka_kvpp;
2174 	size_t len;
2175 
2176 	while (kv != NULL && kv->kv_addr != addr)
2177 		kv = kv->kv_next;
2178 
2179 	if (kv == NULL || kv->kv_alloc == 0)
2180 		return (WALK_NEXT);
2181 
2182 	len = MIN(17, strlen(v->vm_name));
2183 
2184 	mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name,
2185 	    17 - len, "", "", "", "",
2186 	    kv->kv_meminuse >> kap->ka_shift,
2187 	    kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2188 	    kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail);
2189 
2190 	return (WALK_NEXT);
2191 }
2192 
2193 /*ARGSUSED*/
2194 static int
2195 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
2196 {
2197 	datafmt_t *dfp = vmemfmt;
2198 	const vmem_kstat_t *vkp = &v->vm_kstat;
2199 	uintptr_t paddr;
2200 	vmem_t parent;
2201 	int ident = 0;
2202 
2203 	for (paddr = (uintptr_t)v->vm_source; paddr != 0; ident += 4) {
2204 		if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
2205 			mdb_warn("couldn't trace %p's ancestry", addr);
2206 			ident = 0;
2207 			break;
2208 		}
2209 		paddr = (uintptr_t)parent.vm_source;
2210 	}
2211 
2212 	mdb_printf("%*s", ident, "");
2213 	mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
2214 	mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp,
2215 	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2216 	    *shiftp == KILOS ? 'K' : 'B');
2217 	mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp,
2218 	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2219 	    *shiftp == KILOS ? 'K' : 'B');
2220 	mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp,
2221 	    *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2222 	    *shiftp == KILOS ? 'K' : 'B');
2223 	mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
2224 	mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
2225 
2226 	mdb_printf("\n");
2227 
2228 	return (WALK_NEXT);
2229 }
2230 
2231 /*ARGSUSED*/
2232 int
2233 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2234 {
2235 	kmastat_vmem_t *kv = NULL;
2236 	datafmt_t *dfp;
2237 	kmastat_args_t ka;
2238 
2239 	ka.ka_shift = 0;
2240 	if (mdb_getopts(argc, argv,
2241 	    'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift,
2242 	    'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift,
2243 	    'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc)
2244 		return (DCMD_USAGE);
2245 
2246 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2247 		mdb_printf("%s ", dfp->hdr1);
2248 	mdb_printf("\n");
2249 
2250 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2251 		mdb_printf("%s ", dfp->hdr2);
2252 	mdb_printf("\n");
2253 
2254 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2255 		mdb_printf("%s ", dfp->dashes);
2256 	mdb_printf("\n");
2257 
2258 	ka.ka_kvpp = &kv;
2259 	if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
2260 		mdb_warn("can't walk 'kmem_cache'");
2261 		return (DCMD_ERR);
2262 	}
2263 
2264 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2265 		mdb_printf("%s ", dfp->dashes);
2266 	mdb_printf("\n");
2267 
2268 	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
2269 		mdb_warn("can't walk 'vmem'");
2270 		return (DCMD_ERR);
2271 	}
2272 
2273 	for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2274 		mdb_printf("%s ", dfp->dashes);
2275 	mdb_printf("\n");
2276 
2277 	mdb_printf("\n");
2278 
2279 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2280 		mdb_printf("%s ", dfp->hdr1);
2281 	mdb_printf("\n");
2282 
2283 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2284 		mdb_printf("%s ", dfp->hdr2);
2285 	mdb_printf("\n");
2286 
2287 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2288 		mdb_printf("%s ", dfp->dashes);
2289 	mdb_printf("\n");
2290 
2291 	if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
2292 		mdb_warn("can't walk 'vmem'");
2293 		return (DCMD_ERR);
2294 	}
2295 
2296 	for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2297 		mdb_printf("%s ", dfp->dashes);
2298 	mdb_printf("\n");
2299 	return (DCMD_OK);
2300 }
2301 
2302 /*
2303  * Our ::kgrep callback scans the entire kernel VA space (kas).  kas is made
2304  * up of a set of 'struct seg's.  We could just scan each seg en masse, but
2305  * unfortunately, a few of the segs are both large and sparse, so we could
2306  * spend quite a bit of time scanning VAs which have no backing pages.
2307  *
2308  * So for the few very sparse segs, we skip the segment itself, and scan
2309  * the allocated vmem_segs in the vmem arena which manages that part of kas.
2310  * Currently, we do this for:
2311  *
2312  *	SEG		VMEM ARENA
2313  *	kvseg		heap_arena
2314  *	kvseg32		heap32_arena
2315  *	kvseg_core	heap_core_arena
2316  *
2317  * In addition, we skip the segkpm segment in its entirety, since it is very
2318  * sparse, and contains no new kernel data.
2319  */
2320 typedef struct kgrep_walk_data {
2321 	kgrep_cb_func *kg_cb;
2322 	void *kg_cbdata;
2323 	uintptr_t kg_kvseg;
2324 	uintptr_t kg_kvseg32;
2325 	uintptr_t kg_kvseg_core;
2326 	uintptr_t kg_segkpm;
2327 	uintptr_t kg_heap_lp_base;
2328 	uintptr_t kg_heap_lp_end;
2329 } kgrep_walk_data_t;
2330 
2331 static int
2332 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
2333 {
2334 	uintptr_t base = (uintptr_t)seg->s_base;
2335 
2336 	if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
2337 	    addr == kg->kg_kvseg_core)
2338 		return (WALK_NEXT);
2339 
2340 	if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
2341 		return (WALK_NEXT);
2342 
2343 	return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
2344 }
2345 
2346 /*ARGSUSED*/
2347 static int
2348 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2349 {
2350 	/*
2351 	 * skip large page heap address range - it is scanned by walking
2352 	 * allocated vmem_segs in the heap_lp_arena
2353 	 */
2354 	if (seg->vs_start == kg->kg_heap_lp_base &&
2355 	    seg->vs_end == kg->kg_heap_lp_end)
2356 		return (WALK_NEXT);
2357 
2358 	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2359 }
2360 
2361 /*ARGSUSED*/
2362 static int
2363 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2364 {
2365 	return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2366 }
2367 
2368 static int
2369 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
2370 {
2371 	mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
2372 
2373 	if (strcmp(vmem->vm_name, "heap") != 0 &&
2374 	    strcmp(vmem->vm_name, "heap32") != 0 &&
2375 	    strcmp(vmem->vm_name, "heap_core") != 0 &&
2376 	    strcmp(vmem->vm_name, "heap_lp") != 0)
2377 		return (WALK_NEXT);
2378 
2379 	if (strcmp(vmem->vm_name, "heap_lp") == 0)
2380 		walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
2381 
2382 	if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
2383 		mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
2384 		return (WALK_ERR);
2385 	}
2386 
2387 	return (WALK_NEXT);
2388 }
2389 
2390 int
2391 kgrep_subr(kgrep_cb_func *cb, void *cbdata)
2392 {
2393 	GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
2394 	kgrep_walk_data_t kg;
2395 
2396 	if (mdb_get_state() == MDB_STATE_RUNNING) {
2397 		mdb_warn("kgrep can only be run on a system "
2398 		    "dump or under kmdb; see dumpadm(1M)\n");
2399 		return (DCMD_ERR);
2400 	}
2401 
2402 	if (mdb_lookup_by_name("kas", &kas) == -1) {
2403 		mdb_warn("failed to locate 'kas' symbol\n");
2404 		return (DCMD_ERR);
2405 	}
2406 
2407 	if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
2408 		mdb_warn("failed to locate 'kvseg' symbol\n");
2409 		return (DCMD_ERR);
2410 	}
2411 
2412 	if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
2413 		mdb_warn("failed to locate 'kvseg32' symbol\n");
2414 		return (DCMD_ERR);
2415 	}
2416 
2417 	if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
2418 		mdb_warn("failed to locate 'kvseg_core' symbol\n");
2419 		return (DCMD_ERR);
2420 	}
2421 
2422 	if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
2423 		mdb_warn("failed to locate 'segkpm_ops' symbol\n");
2424 		return (DCMD_ERR);
2425 	}
2426 
2427 	if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
2428 		mdb_warn("failed to read 'heap_lp_base'\n");
2429 		return (DCMD_ERR);
2430 	}
2431 
2432 	if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
2433 		mdb_warn("failed to read 'heap_lp_end'\n");
2434 		return (DCMD_ERR);
2435 	}
2436 
2437 	kg.kg_cb = cb;
2438 	kg.kg_cbdata = cbdata;
2439 	kg.kg_kvseg = (uintptr_t)kvseg.st_value;
2440 	kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
2441 	kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
2442 	kg.kg_segkpm = (uintptr_t)segkpm.st_value;
2443 
2444 	if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
2445 	    &kg, kas.st_value) == -1) {
2446 		mdb_warn("failed to walk kas segments");
2447 		return (DCMD_ERR);
2448 	}
2449 
2450 	if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
2451 		mdb_warn("failed to walk heap/heap32 vmem arenas");
2452 		return (DCMD_ERR);
2453 	}
2454 
2455 	return (DCMD_OK);
2456 }
2457 
2458 size_t
2459 kgrep_subr_pagesize(void)
2460 {
2461 	return (PAGESIZE);
2462 }
2463 
2464 typedef struct file_walk_data {
2465 	struct uf_entry *fw_flist;
2466 	int fw_flistsz;
2467 	int fw_ndx;
2468 	int fw_nofiles;
2469 } file_walk_data_t;
2470 
2471 typedef struct mdb_file_proc {
2472 	struct {
2473 		struct {
2474 			int			fi_nfiles;
2475 			uf_entry_t *volatile	fi_list;
2476 		} u_finfo;
2477 	} p_user;
2478 } mdb_file_proc_t;
2479 
2480 int
2481 file_walk_init(mdb_walk_state_t *wsp)
2482 {
2483 	file_walk_data_t *fw;
2484 	mdb_file_proc_t p;
2485 
2486 	if (wsp->walk_addr == 0) {
2487 		mdb_warn("file walk doesn't support global walks\n");
2488 		return (WALK_ERR);
2489 	}
2490 
2491 	fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
2492 
2493 	if (mdb_ctf_vread(&p, "proc_t", "mdb_file_proc_t",
2494 	    wsp->walk_addr, 0) == -1) {
2495 		mdb_free(fw, sizeof (file_walk_data_t));
2496 		mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
2497 		return (WALK_ERR);
2498 	}
2499 
2500 	if (p.p_user.u_finfo.fi_nfiles == 0) {
2501 		mdb_free(fw, sizeof (file_walk_data_t));
2502 		return (WALK_DONE);
2503 	}
2504 
2505 	fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
2506 	fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
2507 	fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
2508 
2509 	if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
2510 	    (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
2511 		mdb_warn("failed to read file array at %p",
2512 		    p.p_user.u_finfo.fi_list);
2513 		mdb_free(fw->fw_flist, fw->fw_flistsz);
2514 		mdb_free(fw, sizeof (file_walk_data_t));
2515 		return (WALK_ERR);
2516 	}
2517 
2518 	fw->fw_ndx = 0;
2519 	wsp->walk_data = fw;
2520 
2521 	return (WALK_NEXT);
2522 }
2523 
2524 int
2525 file_walk_step(mdb_walk_state_t *wsp)
2526 {
2527 	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2528 	struct file file;
2529 	uintptr_t fp;
2530 
2531 again:
2532 	if (fw->fw_ndx == fw->fw_nofiles)
2533 		return (WALK_DONE);
2534 
2535 	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == 0)
2536 		goto again;
2537 
2538 	(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2539 	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2540 }
2541 
2542 int
2543 allfile_walk_step(mdb_walk_state_t *wsp)
2544 {
2545 	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2546 	struct file file;
2547 	uintptr_t fp;
2548 
2549 	if (fw->fw_ndx == fw->fw_nofiles)
2550 		return (WALK_DONE);
2551 
2552 	if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != 0)
2553 		(void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2554 	else
2555 		bzero(&file, sizeof (file));
2556 
2557 	return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2558 }
2559 
2560 void
2561 file_walk_fini(mdb_walk_state_t *wsp)
2562 {
2563 	file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2564 
2565 	mdb_free(fw->fw_flist, fw->fw_flistsz);
2566 	mdb_free(fw, sizeof (file_walk_data_t));
2567 }
2568 
2569 int
2570 port_walk_init(mdb_walk_state_t *wsp)
2571 {
2572 	if (wsp->walk_addr == 0) {
2573 		mdb_warn("port walk doesn't support global walks\n");
2574 		return (WALK_ERR);
2575 	}
2576 
2577 	if (mdb_layered_walk("file", wsp) == -1) {
2578 		mdb_warn("couldn't walk 'file'");
2579 		return (WALK_ERR);
2580 	}
2581 	return (WALK_NEXT);
2582 }
2583 
2584 int
2585 port_walk_step(mdb_walk_state_t *wsp)
2586 {
2587 	struct vnode	vn;
2588 	uintptr_t	vp;
2589 	uintptr_t	pp;
2590 	struct port	port;
2591 
2592 	vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
2593 	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2594 		mdb_warn("failed to read vnode_t at %p", vp);
2595 		return (WALK_ERR);
2596 	}
2597 	if (vn.v_type != VPORT)
2598 		return (WALK_NEXT);
2599 
2600 	pp = (uintptr_t)vn.v_data;
2601 	if (mdb_vread(&port, sizeof (port), pp) == -1) {
2602 		mdb_warn("failed to read port_t at %p", pp);
2603 		return (WALK_ERR);
2604 	}
2605 	return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
2606 }
2607 
2608 typedef struct portev_walk_data {
2609 	list_node_t	*pev_node;
2610 	list_node_t	*pev_last;
2611 	size_t		pev_offset;
2612 } portev_walk_data_t;
2613 
2614 int
2615 portev_walk_init(mdb_walk_state_t *wsp)
2616 {
2617 	portev_walk_data_t *pevd;
2618 	struct port	port;
2619 	struct vnode	vn;
2620 	struct list	*list;
2621 	uintptr_t	vp;
2622 
2623 	if (wsp->walk_addr == 0) {
2624 		mdb_warn("portev walk doesn't support global walks\n");
2625 		return (WALK_ERR);
2626 	}
2627 
2628 	pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
2629 
2630 	if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
2631 		mdb_free(pevd, sizeof (portev_walk_data_t));
2632 		mdb_warn("failed to read port structure at %p", wsp->walk_addr);
2633 		return (WALK_ERR);
2634 	}
2635 
2636 	vp = (uintptr_t)port.port_vnode;
2637 	if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2638 		mdb_free(pevd, sizeof (portev_walk_data_t));
2639 		mdb_warn("failed to read vnode_t at %p", vp);
2640 		return (WALK_ERR);
2641 	}
2642 
2643 	if (vn.v_type != VPORT) {
2644 		mdb_free(pevd, sizeof (portev_walk_data_t));
2645 		mdb_warn("input address (%p) does not point to an event port",
2646 		    wsp->walk_addr);
2647 		return (WALK_ERR);
2648 	}
2649 
2650 	if (port.port_queue.portq_nent == 0) {
2651 		mdb_free(pevd, sizeof (portev_walk_data_t));
2652 		return (WALK_DONE);
2653 	}
2654 	list = &port.port_queue.portq_list;
2655 	pevd->pev_offset = list->list_offset;
2656 	pevd->pev_last = list->list_head.list_prev;
2657 	pevd->pev_node = list->list_head.list_next;
2658 	wsp->walk_data = pevd;
2659 	return (WALK_NEXT);
2660 }
2661 
2662 int
2663 portev_walk_step(mdb_walk_state_t *wsp)
2664 {
2665 	portev_walk_data_t	*pevd;
2666 	struct port_kevent	ev;
2667 	uintptr_t		evp;
2668 
2669 	pevd = (portev_walk_data_t *)wsp->walk_data;
2670 
2671 	if (pevd->pev_last == NULL)
2672 		return (WALK_DONE);
2673 	if (pevd->pev_node == pevd->pev_last)
2674 		pevd->pev_last = NULL;		/* last round */
2675 
2676 	evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
2677 	if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
2678 		mdb_warn("failed to read port_kevent at %p", evp);
2679 		return (WALK_DONE);
2680 	}
2681 	pevd->pev_node = ev.portkev_node.list_next;
2682 	return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
2683 }
2684 
2685 void
2686 portev_walk_fini(mdb_walk_state_t *wsp)
2687 {
2688 	portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
2689 
2690 	if (pevd != NULL)
2691 		mdb_free(pevd, sizeof (portev_walk_data_t));
2692 }
2693 
2694 typedef struct proc_walk_data {
2695 	uintptr_t *pw_stack;
2696 	int pw_depth;
2697 	int pw_max;
2698 } proc_walk_data_t;
2699 
2700 int
2701 proc_walk_init(mdb_walk_state_t *wsp)
2702 {
2703 	GElf_Sym sym;
2704 	proc_walk_data_t *pw;
2705 
2706 	if (wsp->walk_addr == 0) {
2707 		if (mdb_lookup_by_name("p0", &sym) == -1) {
2708 			mdb_warn("failed to read 'practive'");
2709 			return (WALK_ERR);
2710 		}
2711 		wsp->walk_addr = (uintptr_t)sym.st_value;
2712 	}
2713 
2714 	pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
2715 
2716 	if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
2717 		mdb_warn("failed to read 'nproc'");
2718 		mdb_free(pw, sizeof (pw));
2719 		return (WALK_ERR);
2720 	}
2721 
2722 	pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
2723 	wsp->walk_data = pw;
2724 
2725 	return (WALK_NEXT);
2726 }
2727 
2728 typedef struct mdb_walk_proc {
2729 	struct proc	*p_child;
2730 	struct proc	*p_sibling;
2731 } mdb_walk_proc_t;
2732 
2733 int
2734 proc_walk_step(mdb_walk_state_t *wsp)
2735 {
2736 	proc_walk_data_t *pw = wsp->walk_data;
2737 	uintptr_t addr = wsp->walk_addr;
2738 	uintptr_t cld, sib;
2739 	int status;
2740 	mdb_walk_proc_t pr;
2741 
2742 	if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2743 	    addr, 0) == -1) {
2744 		mdb_warn("failed to read proc at %p", addr);
2745 		return (WALK_DONE);
2746 	}
2747 
2748 	cld = (uintptr_t)pr.p_child;
2749 	sib = (uintptr_t)pr.p_sibling;
2750 
2751 	if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
2752 		pw->pw_depth--;
2753 		goto sib;
2754 	}
2755 
2756 	/*
2757 	 * Always pass NULL as the local copy pointer. Consumers
2758 	 * should use mdb_ctf_vread() to read their own minimal
2759 	 * version of proc_t. Thus minimizing the chance of breakage
2760 	 * with older crash dumps.
2761 	 */
2762 	status = wsp->walk_callback(addr, NULL, wsp->walk_cbdata);
2763 
2764 	if (status != WALK_NEXT)
2765 		return (status);
2766 
2767 	if ((wsp->walk_addr = cld) != 0) {
2768 		if (mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2769 		    cld, 0) == -1) {
2770 			mdb_warn("proc %p has invalid p_child %p; skipping\n",
2771 			    addr, cld);
2772 			goto sib;
2773 		}
2774 
2775 		pw->pw_stack[pw->pw_depth++] = addr;
2776 
2777 		if (pw->pw_depth == pw->pw_max) {
2778 			mdb_warn("depth %d exceeds max depth; try again\n",
2779 			    pw->pw_depth);
2780 			return (WALK_DONE);
2781 		}
2782 		return (WALK_NEXT);
2783 	}
2784 
2785 sib:
2786 	/*
2787 	 * We know that p0 has no siblings, and if another starting proc
2788 	 * was given, we don't want to walk its siblings anyway.
2789 	 */
2790 	if (pw->pw_depth == 0)
2791 		return (WALK_DONE);
2792 
2793 	if (sib != 0 && mdb_ctf_vread(&pr, "proc_t", "mdb_walk_proc_t",
2794 	    sib, 0) == -1) {
2795 		mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
2796 		    addr, sib);
2797 		sib = 0;
2798 	}
2799 
2800 	if ((wsp->walk_addr = sib) == 0) {
2801 		if (pw->pw_depth > 0) {
2802 			wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
2803 			return (WALK_NEXT);
2804 		}
2805 		return (WALK_DONE);
2806 	}
2807 
2808 	return (WALK_NEXT);
2809 }
2810 
2811 void
2812 proc_walk_fini(mdb_walk_state_t *wsp)
2813 {
2814 	proc_walk_data_t *pw = wsp->walk_data;
2815 
2816 	mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
2817 	mdb_free(pw, sizeof (proc_walk_data_t));
2818 }
2819 
2820 int
2821 task_walk_init(mdb_walk_state_t *wsp)
2822 {
2823 	task_t task;
2824 
2825 	if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
2826 		mdb_warn("failed to read task at %p", wsp->walk_addr);
2827 		return (WALK_ERR);
2828 	}
2829 	wsp->walk_addr = (uintptr_t)task.tk_memb_list;
2830 	wsp->walk_data = task.tk_memb_list;
2831 	return (WALK_NEXT);
2832 }
2833 
2834 typedef struct mdb_task_proc {
2835 	struct proc	*p_tasknext;
2836 } mdb_task_proc_t;
2837 
2838 int
2839 task_walk_step(mdb_walk_state_t *wsp)
2840 {
2841 	mdb_task_proc_t proc;
2842 	int status;
2843 
2844 	if (mdb_ctf_vread(&proc, "proc_t", "mdb_task_proc_t",
2845 	    wsp->walk_addr, 0) == -1) {
2846 		mdb_warn("failed to read proc at %p", wsp->walk_addr);
2847 		return (WALK_DONE);
2848 	}
2849 
2850 	status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
2851 
2852 	if (proc.p_tasknext == wsp->walk_data)
2853 		return (WALK_DONE);
2854 
2855 	wsp->walk_addr = (uintptr_t)proc.p_tasknext;
2856 	return (status);
2857 }
2858 
2859 int
2860 project_walk_init(mdb_walk_state_t *wsp)
2861 {
2862 	if (wsp->walk_addr == 0) {
2863 		if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
2864 			mdb_warn("failed to read 'proj0p'");
2865 			return (WALK_ERR);
2866 		}
2867 	}
2868 	wsp->walk_data = (void *)wsp->walk_addr;
2869 	return (WALK_NEXT);
2870 }
2871 
2872 int
2873 project_walk_step(mdb_walk_state_t *wsp)
2874 {
2875 	uintptr_t addr = wsp->walk_addr;
2876 	kproject_t pj;
2877 	int status;
2878 
2879 	if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
2880 		mdb_warn("failed to read project at %p", addr);
2881 		return (WALK_DONE);
2882 	}
2883 	status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
2884 	if (status != WALK_NEXT)
2885 		return (status);
2886 	wsp->walk_addr = (uintptr_t)pj.kpj_next;
2887 	if ((void *)wsp->walk_addr == wsp->walk_data)
2888 		return (WALK_DONE);
2889 	return (WALK_NEXT);
2890 }
2891 
2892 static int
2893 generic_walk_step(mdb_walk_state_t *wsp)
2894 {
2895 	return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2896 	    wsp->walk_cbdata));
2897 }
2898 
2899 static int
2900 cpu_walk_cmp(const void *l, const void *r)
2901 {
2902 	uintptr_t lhs = *((uintptr_t *)l);
2903 	uintptr_t rhs = *((uintptr_t *)r);
2904 	cpu_t lcpu, rcpu;
2905 
2906 	(void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
2907 	(void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
2908 
2909 	if (lcpu.cpu_id < rcpu.cpu_id)
2910 		return (-1);
2911 
2912 	if (lcpu.cpu_id > rcpu.cpu_id)
2913 		return (1);
2914 
2915 	return (0);
2916 }
2917 
2918 typedef struct cpu_walk {
2919 	uintptr_t *cw_array;
2920 	int cw_ndx;
2921 } cpu_walk_t;
2922 
2923 int
2924 cpu_walk_init(mdb_walk_state_t *wsp)
2925 {
2926 	cpu_walk_t *cw;
2927 	int max_ncpus, i = 0;
2928 	uintptr_t current, first;
2929 	cpu_t cpu, panic_cpu;
2930 	uintptr_t panicstr, addr;
2931 	GElf_Sym sym;
2932 
2933 	cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
2934 
2935 	if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
2936 		mdb_warn("failed to read 'max_ncpus'");
2937 		return (WALK_ERR);
2938 	}
2939 
2940 	if (mdb_readvar(&panicstr, "panicstr") == -1) {
2941 		mdb_warn("failed to read 'panicstr'");
2942 		return (WALK_ERR);
2943 	}
2944 
2945 	if (panicstr != 0) {
2946 		if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
2947 			mdb_warn("failed to find 'panic_cpu'");
2948 			return (WALK_ERR);
2949 		}
2950 
2951 		addr = (uintptr_t)sym.st_value;
2952 
2953 		if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
2954 			mdb_warn("failed to read 'panic_cpu'");
2955 			return (WALK_ERR);
2956 		}
2957 	}
2958 
2959 	/*
2960 	 * Unfortunately, there is no platform-independent way to walk
2961 	 * CPUs in ID order.  We therefore loop through in cpu_next order,
2962 	 * building an array of CPU pointers which will subsequently be
2963 	 * sorted.
2964 	 */
2965 	cw->cw_array =
2966 	    mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
2967 
2968 	if (mdb_readvar(&first, "cpu_list") == -1) {
2969 		mdb_warn("failed to read 'cpu_list'");
2970 		return (WALK_ERR);
2971 	}
2972 
2973 	current = first;
2974 	do {
2975 		if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
2976 			mdb_warn("failed to read cpu at %p", current);
2977 			return (WALK_ERR);
2978 		}
2979 
2980 		if (panicstr != 0 && panic_cpu.cpu_id == cpu.cpu_id) {
2981 			cw->cw_array[i++] = addr;
2982 		} else {
2983 			cw->cw_array[i++] = current;
2984 		}
2985 	} while ((current = (uintptr_t)cpu.cpu_next) != first);
2986 
2987 	qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
2988 	wsp->walk_data = cw;
2989 
2990 	return (WALK_NEXT);
2991 }
2992 
2993 int
2994 cpu_walk_step(mdb_walk_state_t *wsp)
2995 {
2996 	cpu_walk_t *cw = wsp->walk_data;
2997 	cpu_t cpu;
2998 	uintptr_t addr = cw->cw_array[cw->cw_ndx++];
2999 
3000 	if (addr == 0)
3001 		return (WALK_DONE);
3002 
3003 	if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
3004 		mdb_warn("failed to read cpu at %p", addr);
3005 		return (WALK_DONE);
3006 	}
3007 
3008 	return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
3009 }
3010 
3011 typedef struct cpuinfo_data {
3012 	intptr_t cid_cpu;
3013 	uintptr_t **cid_ithr;
3014 	char	cid_print_head;
3015 	char	cid_print_thr;
3016 	char	cid_print_ithr;
3017 	char	cid_print_flags;
3018 } cpuinfo_data_t;
3019 
3020 int
3021 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
3022 {
3023 	cpu_t c;
3024 	int id;
3025 	uint8_t pil;
3026 
3027 	if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
3028 		return (WALK_NEXT);
3029 
3030 	if (thr->t_bound_cpu == NULL) {
3031 		mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
3032 		return (WALK_NEXT);
3033 	}
3034 
3035 	(void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
3036 
3037 	if ((id = c.cpu_id) >= NCPU) {
3038 		mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
3039 		    thr->t_bound_cpu, id, NCPU);
3040 		return (WALK_NEXT);
3041 	}
3042 
3043 	if ((pil = thr->t_pil) >= NINTR) {
3044 		mdb_warn("thread %p has pil (%d) greater than %d\n",
3045 		    addr, pil, NINTR);
3046 		return (WALK_NEXT);
3047 	}
3048 
3049 	if (cid->cid_ithr[id][pil] != 0) {
3050 		mdb_warn("CPU %d has multiple threads at pil %d (at least "
3051 		    "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
3052 		return (WALK_NEXT);
3053 	}
3054 
3055 	cid->cid_ithr[id][pil] = addr;
3056 
3057 	return (WALK_NEXT);
3058 }
3059 
3060 #define	CPUINFO_IDWIDTH		3
3061 #define	CPUINFO_FLAGWIDTH	9
3062 
3063 #ifdef _LP64
3064 #if defined(__amd64)
3065 #define	CPUINFO_TWIDTH		16
3066 #define	CPUINFO_CPUWIDTH	16
3067 #else
3068 #define	CPUINFO_CPUWIDTH	11
3069 #define	CPUINFO_TWIDTH		11
3070 #endif
3071 #else
3072 #define	CPUINFO_CPUWIDTH	8
3073 #define	CPUINFO_TWIDTH		8
3074 #endif
3075 
3076 #define	CPUINFO_THRDELT		(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
3077 #define	CPUINFO_FLAGDELT	(CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
3078 #define	CPUINFO_ITHRDELT	4
3079 
3080 #define	CPUINFO_INDENT	mdb_printf("%*s", CPUINFO_THRDELT, \
3081     flagline < nflaglines ? flagbuf[flagline++] : "")
3082 
3083 typedef struct mdb_cpuinfo_proc {
3084 	struct {
3085 		char		u_comm[MAXCOMLEN + 1];
3086 	} p_user;
3087 } mdb_cpuinfo_proc_t;
3088 
3089 int
3090 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
3091 {
3092 	kthread_t t;
3093 	disp_t disp;
3094 	mdb_cpuinfo_proc_t p;
3095 	uintptr_t pinned;
3096 	char **flagbuf;
3097 	int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
3098 
3099 	const char *flags[] = {
3100 	    "RUNNING", "READY", "QUIESCED", "EXISTS",
3101 	    "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
3102 	    "SPARE", "FAULTED", "DISABLED", NULL
3103 	};
3104 
3105 	if (cid->cid_cpu != -1) {
3106 		if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
3107 			return (WALK_NEXT);
3108 
3109 		/*
3110 		 * Set cid_cpu to -1 to indicate that we found a matching CPU.
3111 		 */
3112 		cid->cid_cpu = -1;
3113 		rval = WALK_DONE;
3114 	}
3115 
3116 	if (cid->cid_print_head) {
3117 		mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
3118 		    "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
3119 		    "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
3120 		    "PROC");
3121 		cid->cid_print_head = FALSE;
3122 	}
3123 
3124 	bspl = cpu->cpu_base_spl;
3125 
3126 	if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
3127 		mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
3128 		return (WALK_ERR);
3129 	}
3130 
3131 	mdb_printf("%3d %0*p %3x %4d %4d ",
3132 	    cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
3133 	    disp.disp_nrunnable, bspl);
3134 
3135 	if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
3136 		mdb_printf("%3d ", t.t_pri);
3137 	} else {
3138 		mdb_printf("%3s ", "-");
3139 	}
3140 
3141 	mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
3142 	    cpu->cpu_kprunrun ? "yes" : "no");
3143 
3144 	if (cpu->cpu_last_swtch) {
3145 		mdb_printf("t-%-4d ",
3146 		    (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch);
3147 	} else {
3148 		mdb_printf("%-6s ", "-");
3149 	}
3150 
3151 	mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
3152 
3153 	if (cpu->cpu_thread == cpu->cpu_idle_thread)
3154 		mdb_printf(" (idle)\n");
3155 	else if (cpu->cpu_thread == NULL)
3156 		mdb_printf(" -\n");
3157 	else {
3158 		if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3159 		    (uintptr_t)t.t_procp, 0) != -1) {
3160 			mdb_printf(" %s\n", p.p_user.u_comm);
3161 		} else {
3162 			mdb_printf(" ?\n");
3163 		}
3164 	}
3165 
3166 	flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
3167 
3168 	if (cid->cid_print_flags) {
3169 		int first = 1, i, j, k;
3170 		char *s;
3171 
3172 		cid->cid_print_head = TRUE;
3173 
3174 		for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
3175 			if (!(cpu->cpu_flags & i))
3176 				continue;
3177 
3178 			if (first) {
3179 				s = mdb_alloc(CPUINFO_THRDELT + 1,
3180 				    UM_GC | UM_SLEEP);
3181 
3182 				(void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
3183 				    "%*s|%*s", CPUINFO_FLAGDELT, "",
3184 				    CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
3185 				flagbuf[nflaglines++] = s;
3186 			}
3187 
3188 			s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
3189 			(void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
3190 			    CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
3191 			    CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
3192 			    first ? "<--+" : "");
3193 
3194 			for (k = strlen(s); k < CPUINFO_THRDELT; k++)
3195 				s[k] = ' ';
3196 			s[k] = '\0';
3197 
3198 			flagbuf[nflaglines++] = s;
3199 			first = 0;
3200 		}
3201 	}
3202 
3203 	if (cid->cid_print_ithr) {
3204 		int i, found_one = FALSE;
3205 		int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
3206 
3207 		for (i = NINTR - 1; i >= 0; i--) {
3208 			uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
3209 
3210 			if (iaddr == 0)
3211 				continue;
3212 
3213 			if (!found_one) {
3214 				found_one = TRUE;
3215 
3216 				CPUINFO_INDENT;
3217 				mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
3218 				    CPUINFO_ITHRDELT, "");
3219 
3220 				CPUINFO_INDENT;
3221 				mdb_printf("%c%*s+--> %3s %s\n",
3222 				    print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
3223 				    "", "PIL", "THREAD");
3224 			}
3225 
3226 			if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
3227 				mdb_warn("failed to read kthread_t at %p",
3228 				    iaddr);
3229 				return (WALK_ERR);
3230 			}
3231 
3232 			CPUINFO_INDENT;
3233 			mdb_printf("%c%*s     %3d %0*p\n",
3234 			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
3235 			    t.t_pil, CPUINFO_TWIDTH, iaddr);
3236 
3237 			pinned = (uintptr_t)t.t_intr;
3238 		}
3239 
3240 		if (found_one && pinned != 0) {
3241 			cid->cid_print_head = TRUE;
3242 			(void) strcpy(p.p_user.u_comm, "?");
3243 
3244 			if (mdb_vread(&t, sizeof (t),
3245 			    (uintptr_t)pinned) == -1) {
3246 				mdb_warn("failed to read kthread_t at %p",
3247 				    pinned);
3248 				return (WALK_ERR);
3249 			}
3250 			if (mdb_ctf_vread(&p, "proc_t", "mdb_cpuinfo_proc_t",
3251 			    (uintptr_t)t.t_procp, 0) == -1) {
3252 				mdb_warn("failed to read proc_t at %p",
3253 				    t.t_procp);
3254 				return (WALK_ERR);
3255 			}
3256 
3257 			CPUINFO_INDENT;
3258 			mdb_printf("%c%*s     %3s %0*p %s\n",
3259 			    print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
3260 			    CPUINFO_TWIDTH, pinned,
3261 			    pinned == (uintptr_t)cpu->cpu_idle_thread ?
3262 			    "(idle)" : p.p_user.u_comm);
3263 		}
3264 	}
3265 
3266 	if (disp.disp_nrunnable && cid->cid_print_thr) {
3267 		dispq_t *dq;
3268 
3269 		int i, npri = disp.disp_npri;
3270 
3271 		dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
3272 
3273 		if (mdb_vread(dq, sizeof (dispq_t) * npri,
3274 		    (uintptr_t)disp.disp_q) == -1) {
3275 			mdb_warn("failed to read dispq_t at %p", disp.disp_q);
3276 			return (WALK_ERR);
3277 		}
3278 
3279 		CPUINFO_INDENT;
3280 		mdb_printf("|\n");
3281 
3282 		CPUINFO_INDENT;
3283 		mdb_printf("+-->  %3s %-*s %s\n", "PRI",
3284 		    CPUINFO_TWIDTH, "THREAD", "PROC");
3285 
3286 		for (i = npri - 1; i >= 0; i--) {
3287 			uintptr_t taddr = (uintptr_t)dq[i].dq_first;
3288 
3289 			while (taddr != 0) {
3290 				if (mdb_vread(&t, sizeof (t), taddr) == -1) {
3291 					mdb_warn("failed to read kthread_t "
3292 					    "at %p", taddr);
3293 					return (WALK_ERR);
3294 				}
3295 				if (mdb_ctf_vread(&p, "proc_t",
3296 				    "mdb_cpuinfo_proc_t",
3297 				    (uintptr_t)t.t_procp, 0) == -1) {
3298 					mdb_warn("failed to read proc_t at %p",
3299 					    t.t_procp);
3300 					return (WALK_ERR);
3301 				}
3302 
3303 				CPUINFO_INDENT;
3304 				mdb_printf("      %3d %0*p %s\n", t.t_pri,
3305 				    CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
3306 
3307 				taddr = (uintptr_t)t.t_link;
3308 			}
3309 		}
3310 		cid->cid_print_head = TRUE;
3311 	}
3312 
3313 	while (flagline < nflaglines)
3314 		mdb_printf("%s\n", flagbuf[flagline++]);
3315 
3316 	if (cid->cid_print_head)
3317 		mdb_printf("\n");
3318 
3319 	return (rval);
3320 }
3321 
3322 int
3323 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3324 {
3325 	uint_t verbose = FALSE;
3326 	cpuinfo_data_t cid;
3327 
3328 	cid.cid_print_ithr = FALSE;
3329 	cid.cid_print_thr = FALSE;
3330 	cid.cid_print_flags = FALSE;
3331 	cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
3332 	cid.cid_cpu = -1;
3333 
3334 	if (flags & DCMD_ADDRSPEC)
3335 		cid.cid_cpu = addr;
3336 
3337 	if (mdb_getopts(argc, argv,
3338 	    'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3339 		return (DCMD_USAGE);
3340 
3341 	if (verbose) {
3342 		cid.cid_print_ithr = TRUE;
3343 		cid.cid_print_thr = TRUE;
3344 		cid.cid_print_flags = TRUE;
3345 		cid.cid_print_head = TRUE;
3346 	}
3347 
3348 	if (cid.cid_print_ithr) {
3349 		int i;
3350 
3351 		cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
3352 		    * NCPU, UM_SLEEP | UM_GC);
3353 
3354 		for (i = 0; i < NCPU; i++)
3355 			cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
3356 			    NINTR, UM_SLEEP | UM_GC);
3357 
3358 		if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
3359 		    &cid) == -1) {
3360 			mdb_warn("couldn't walk thread");
3361 			return (DCMD_ERR);
3362 		}
3363 	}
3364 
3365 	if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
3366 		mdb_warn("can't walk cpus");
3367 		return (DCMD_ERR);
3368 	}
3369 
3370 	if (cid.cid_cpu != -1) {
3371 		/*
3372 		 * We didn't find this CPU when we walked through the CPUs
3373 		 * (i.e. the address specified doesn't show up in the "cpu"
3374 		 * walk).  However, the specified address may still correspond
3375 		 * to a valid cpu_t (for example, if the specified address is
3376 		 * the actual panicking cpu_t and not the cached panic_cpu).
3377 		 * Point is:  even if we didn't find it, we still want to try
3378 		 * to print the specified address as a cpu_t.
3379 		 */
3380 		cpu_t cpu;
3381 
3382 		if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
3383 			mdb_warn("%p is neither a valid CPU ID nor a "
3384 			    "valid cpu_t address\n", cid.cid_cpu);
3385 			return (DCMD_ERR);
3386 		}
3387 
3388 		(void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
3389 	}
3390 
3391 	return (DCMD_OK);
3392 }
3393 
3394 /*ARGSUSED*/
3395 int
3396 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3397 {
3398 	int i;
3399 
3400 	if (!(flags & DCMD_ADDRSPEC))
3401 		return (DCMD_USAGE);
3402 
3403 	for (i = 0; i < sizeof (addr) * NBBY; i++)
3404 		mdb_printf("%p\n", addr ^ (1UL << i));
3405 
3406 	return (DCMD_OK);
3407 }
3408 
3409 typedef struct mdb_as2proc_proc {
3410 	struct as *p_as;
3411 } mdb_as2proc_proc_t;
3412 
3413 /*ARGSUSED*/
3414 int
3415 as2proc_walk(uintptr_t addr, const void *ignored, struct as **asp)
3416 {
3417 	mdb_as2proc_proc_t p;
3418 
3419 	mdb_ctf_vread(&p, "proc_t", "mdb_as2proc_proc_t", addr, 0);
3420 
3421 	if (p.p_as == *asp)
3422 		mdb_printf("%p\n", addr);
3423 	return (WALK_NEXT);
3424 }
3425 
3426 /*ARGSUSED*/
3427 int
3428 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3429 {
3430 	if (!(flags & DCMD_ADDRSPEC) || argc != 0)
3431 		return (DCMD_USAGE);
3432 
3433 	if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
3434 		mdb_warn("failed to walk proc");
3435 		return (DCMD_ERR);
3436 	}
3437 
3438 	return (DCMD_OK);
3439 }
3440 
3441 typedef struct mdb_ptree_proc {
3442 	struct proc	*p_parent;
3443 	struct {
3444 		char		u_comm[MAXCOMLEN + 1];
3445 	} p_user;
3446 } mdb_ptree_proc_t;
3447 
3448 /*ARGSUSED*/
3449 int
3450 ptree_walk(uintptr_t addr, const void *ignored, void *data)
3451 {
3452 	mdb_ptree_proc_t proc;
3453 	mdb_ptree_proc_t parent;
3454 	int ident = 0;
3455 	uintptr_t paddr;
3456 
3457 	mdb_ctf_vread(&proc, "proc_t", "mdb_ptree_proc_t", addr, 0);
3458 
3459 	for (paddr = (uintptr_t)proc.p_parent; paddr != 0; ident += 5) {
3460 		mdb_ctf_vread(&parent, "proc_t", "mdb_ptree_proc_t", paddr, 0);
3461 		paddr = (uintptr_t)parent.p_parent;
3462 	}
3463 
3464 	mdb_inc_indent(ident);
3465 	mdb_printf("%0?p  %s\n", addr, proc.p_user.u_comm);
3466 	mdb_dec_indent(ident);
3467 
3468 	return (WALK_NEXT);
3469 }
3470 
3471 void
3472 ptree_ancestors(uintptr_t addr, uintptr_t start)
3473 {
3474 	mdb_ptree_proc_t p;
3475 
3476 	if (mdb_ctf_vread(&p, "proc_t", "mdb_ptree_proc_t", addr, 0) == -1) {
3477 		mdb_warn("couldn't read ancestor at %p", addr);
3478 		return;
3479 	}
3480 
3481 	if (p.p_parent != NULL)
3482 		ptree_ancestors((uintptr_t)p.p_parent, start);
3483 
3484 	if (addr != start)
3485 		(void) ptree_walk(addr, &p, NULL);
3486 }
3487 
3488 /*ARGSUSED*/
3489 int
3490 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3491 {
3492 	if (!(flags & DCMD_ADDRSPEC))
3493 		addr = 0;
3494 	else
3495 		ptree_ancestors(addr, addr);
3496 
3497 	if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
3498 		mdb_warn("couldn't walk 'proc'");
3499 		return (DCMD_ERR);
3500 	}
3501 
3502 	return (DCMD_OK);
3503 }
3504 
3505 typedef struct mdb_fd_proc {
3506 	struct {
3507 		struct {
3508 			int			fi_nfiles;
3509 			uf_entry_t *volatile	fi_list;
3510 		} u_finfo;
3511 	} p_user;
3512 } mdb_fd_proc_t;
3513 
3514 /*ARGSUSED*/
3515 static int
3516 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3517 {
3518 	int fdnum;
3519 	const mdb_arg_t *argp = &argv[0];
3520 	mdb_fd_proc_t p;
3521 	uf_entry_t uf;
3522 
3523 	if ((flags & DCMD_ADDRSPEC) == 0) {
3524 		mdb_warn("fd doesn't give global information\n");
3525 		return (DCMD_ERR);
3526 	}
3527 	if (argc != 1)
3528 		return (DCMD_USAGE);
3529 
3530 	if (argp->a_type == MDB_TYPE_IMMEDIATE)
3531 		fdnum = argp->a_un.a_val;
3532 	else
3533 		fdnum = mdb_strtoull(argp->a_un.a_str);
3534 
3535 	if (mdb_ctf_vread(&p, "proc_t", "mdb_fd_proc_t", addr, 0) == -1) {
3536 		mdb_warn("couldn't read proc_t at %p", addr);
3537 		return (DCMD_ERR);
3538 	}
3539 	if (fdnum > p.p_user.u_finfo.fi_nfiles) {
3540 		mdb_warn("process %p only has %d files open.\n",
3541 		    addr, p.p_user.u_finfo.fi_nfiles);
3542 		return (DCMD_ERR);
3543 	}
3544 	if (mdb_vread(&uf, sizeof (uf_entry_t),
3545 	    (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
3546 		mdb_warn("couldn't read uf_entry_t at %p",
3547 		    &p.p_user.u_finfo.fi_list[fdnum]);
3548 		return (DCMD_ERR);
3549 	}
3550 
3551 	mdb_printf("%p\n", uf.uf_file);
3552 	return (DCMD_OK);
3553 }
3554 
3555 /*ARGSUSED*/
3556 static int
3557 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3558 {
3559 	pid_t pid = (pid_t)addr;
3560 
3561 	if (argc != 0)
3562 		return (DCMD_USAGE);
3563 
3564 	if ((addr = mdb_pid2proc(pid, NULL)) == 0) {
3565 		mdb_warn("PID 0t%d not found\n", pid);
3566 		return (DCMD_ERR);
3567 	}
3568 
3569 	mdb_printf("%p\n", addr);
3570 	return (DCMD_OK);
3571 }
3572 
3573 static char *sysfile_cmd[] = {
3574 	"exclude:",
3575 	"include:",
3576 	"forceload:",
3577 	"rootdev:",
3578 	"rootfs:",
3579 	"swapdev:",
3580 	"swapfs:",
3581 	"moddir:",
3582 	"set",
3583 	"unknown",
3584 };
3585 
3586 static char *sysfile_ops[] = { "", "=", "&", "|" };
3587 
3588 /*ARGSUSED*/
3589 static int
3590 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
3591 {
3592 	if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
3593 		*target = NULL;
3594 		return (WALK_DONE);
3595 	}
3596 	return (WALK_NEXT);
3597 }
3598 
3599 /*ARGSUSED*/
3600 static int
3601 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3602 {
3603 	struct sysparam *sysp, sys;
3604 	char var[256];
3605 	char modname[256];
3606 	char val[256];
3607 	char strval[256];
3608 	vmem_t *mod_sysfile_arena;
3609 	void *straddr;
3610 
3611 	if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
3612 		mdb_warn("failed to read sysparam_hd");
3613 		return (DCMD_ERR);
3614 	}
3615 
3616 	if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
3617 		mdb_warn("failed to read mod_sysfile_arena");
3618 		return (DCMD_ERR);
3619 	}
3620 
3621 	while (sysp != NULL) {
3622 		var[0] = '\0';
3623 		val[0] = '\0';
3624 		modname[0] = '\0';
3625 		if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
3626 			mdb_warn("couldn't read sysparam %p", sysp);
3627 			return (DCMD_ERR);
3628 		}
3629 		if (sys.sys_modnam != NULL &&
3630 		    mdb_readstr(modname, 256,
3631 		    (uintptr_t)sys.sys_modnam) == -1) {
3632 			mdb_warn("couldn't read modname in %p", sysp);
3633 			return (DCMD_ERR);
3634 		}
3635 		if (sys.sys_ptr != NULL &&
3636 		    mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
3637 			mdb_warn("couldn't read ptr in %p", sysp);
3638 			return (DCMD_ERR);
3639 		}
3640 		if (sys.sys_op != SETOP_NONE) {
3641 			/*
3642 			 * Is this an int or a string?  We determine this
3643 			 * by checking whether straddr is contained in
3644 			 * mod_sysfile_arena.  If so, the walker will set
3645 			 * straddr to NULL.
3646 			 */
3647 			straddr = (void *)(uintptr_t)sys.sys_info;
3648 			if (sys.sys_op == SETOP_ASSIGN &&
3649 			    sys.sys_info != 0 &&
3650 			    mdb_pwalk("vmem_seg",
3651 			    (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
3652 			    (uintptr_t)mod_sysfile_arena) == 0 &&
3653 			    straddr == NULL &&
3654 			    mdb_readstr(strval, 256,
3655 			    (uintptr_t)sys.sys_info) != -1) {
3656 				(void) mdb_snprintf(val, sizeof (val), "\"%s\"",
3657 				    strval);
3658 			} else {
3659 				(void) mdb_snprintf(val, sizeof (val),
3660 				    "0x%llx [0t%llu]", sys.sys_info,
3661 				    sys.sys_info);
3662 			}
3663 		}
3664 		mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
3665 		    modname, modname[0] == '\0' ? "" : ":",
3666 		    var, sysfile_ops[sys.sys_op], val);
3667 
3668 		sysp = sys.sys_next;
3669 	}
3670 
3671 	return (DCMD_OK);
3672 }
3673 
3674 int
3675 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
3676 {
3677 
3678 	if (*didp == thr->t_did) {
3679 		mdb_printf("%p\n", addr);
3680 		return (WALK_DONE);
3681 	} else
3682 		return (WALK_NEXT);
3683 }
3684 
3685 /*ARGSUSED*/
3686 int
3687 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3688 {
3689 	const mdb_arg_t *argp = &argv[0];
3690 	kt_did_t	did;
3691 
3692 	if (argc != 1)
3693 		return (DCMD_USAGE);
3694 
3695 	did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
3696 
3697 	if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
3698 		mdb_warn("failed to walk thread");
3699 		return (DCMD_ERR);
3700 
3701 	}
3702 	return (DCMD_OK);
3703 
3704 }
3705 
3706 static int
3707 errorq_walk_init(mdb_walk_state_t *wsp)
3708 {
3709 	if (wsp->walk_addr == 0 &&
3710 	    mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
3711 		mdb_warn("failed to read errorq_list");
3712 		return (WALK_ERR);
3713 	}
3714 
3715 	return (WALK_NEXT);
3716 }
3717 
3718 static int
3719 errorq_walk_step(mdb_walk_state_t *wsp)
3720 {
3721 	uintptr_t addr = wsp->walk_addr;
3722 	errorq_t eq;
3723 
3724 	if (addr == 0)
3725 		return (WALK_DONE);
3726 
3727 	if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
3728 		mdb_warn("failed to read errorq at %p", addr);
3729 		return (WALK_ERR);
3730 	}
3731 
3732 	wsp->walk_addr = (uintptr_t)eq.eq_next;
3733 	return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
3734 }
3735 
3736 typedef struct eqd_walk_data {
3737 	uintptr_t *eqd_stack;
3738 	void *eqd_buf;
3739 	ulong_t eqd_qpos;
3740 	ulong_t eqd_qlen;
3741 	size_t eqd_size;
3742 } eqd_walk_data_t;
3743 
3744 /*
3745  * In order to walk the list of pending error queue elements, we push the
3746  * addresses of the corresponding data buffers in to the eqd_stack array.
3747  * The error lists are in reverse chronological order when iterating using
3748  * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
3749  * walker client gets addresses in order from oldest error to newest error.
3750  */
3751 static void
3752 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
3753 {
3754 	errorq_elem_t eqe;
3755 
3756 	while (addr != 0) {
3757 		if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
3758 			mdb_warn("failed to read errorq element at %p", addr);
3759 			break;
3760 		}
3761 
3762 		if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
3763 			mdb_warn("errorq is overfull -- more than %lu "
3764 			    "elems found\n", eqdp->eqd_qlen);
3765 			break;
3766 		}
3767 
3768 		eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
3769 		addr = (uintptr_t)eqe.eqe_prev;
3770 	}
3771 }
3772 
3773 static int
3774 eqd_walk_init(mdb_walk_state_t *wsp)
3775 {
3776 	eqd_walk_data_t *eqdp;
3777 	errorq_elem_t eqe, *addr;
3778 	errorq_t eq;
3779 	ulong_t i;
3780 
3781 	if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
3782 		mdb_warn("failed to read errorq at %p", wsp->walk_addr);
3783 		return (WALK_ERR);
3784 	}
3785 
3786 	if (eq.eq_ptail != NULL &&
3787 	    mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
3788 		mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
3789 		return (WALK_ERR);
3790 	}
3791 
3792 	eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
3793 	wsp->walk_data = eqdp;
3794 
3795 	eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
3796 	eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
3797 	eqdp->eqd_qlen = eq.eq_qlen;
3798 	eqdp->eqd_qpos = 0;
3799 	eqdp->eqd_size = eq.eq_size;
3800 
3801 	/*
3802 	 * The newest elements in the queue are on the pending list, so we
3803 	 * push those on to our stack first.
3804 	 */
3805 	eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
3806 
3807 	/*
3808 	 * If eq_ptail is set, it may point to a subset of the errors on the
3809 	 * pending list in the event a atomic_cas_ptr() failed; if ptail's
3810 	 * data is already in our stack, NULL out eq_ptail and ignore it.
3811 	 */
3812 	if (eq.eq_ptail != NULL) {
3813 		for (i = 0; i < eqdp->eqd_qpos; i++) {
3814 			if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
3815 				eq.eq_ptail = NULL;
3816 				break;
3817 			}
3818 		}
3819 	}
3820 
3821 	/*
3822 	 * If eq_phead is set, it has the processing list in order from oldest
3823 	 * to newest.  Use this to recompute eq_ptail as best we can and then
3824 	 * we nicely fall into eqd_push_list() of eq_ptail below.
3825 	 */
3826 	for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
3827 	    (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
3828 		eq.eq_ptail = addr;
3829 
3830 	/*
3831 	 * The oldest elements in the queue are on the processing list, subject
3832 	 * to machinations in the if-clauses above.  Push any such elements.
3833 	 */
3834 	eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
3835 	return (WALK_NEXT);
3836 }
3837 
3838 static int
3839 eqd_walk_step(mdb_walk_state_t *wsp)
3840 {
3841 	eqd_walk_data_t *eqdp = wsp->walk_data;
3842 	uintptr_t addr;
3843 
3844 	if (eqdp->eqd_qpos == 0)
3845 		return (WALK_DONE);
3846 
3847 	addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
3848 
3849 	if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
3850 		mdb_warn("failed to read errorq data at %p", addr);
3851 		return (WALK_ERR);
3852 	}
3853 
3854 	return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
3855 }
3856 
3857 static void
3858 eqd_walk_fini(mdb_walk_state_t *wsp)
3859 {
3860 	eqd_walk_data_t *eqdp = wsp->walk_data;
3861 
3862 	mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
3863 	mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
3864 	mdb_free(eqdp, sizeof (eqd_walk_data_t));
3865 }
3866 
3867 #define	EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
3868 
3869 static int
3870 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3871 {
3872 	int i;
3873 	errorq_t eq;
3874 	uint_t opt_v = FALSE;
3875 
3876 	if (!(flags & DCMD_ADDRSPEC)) {
3877 		if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
3878 			mdb_warn("can't walk 'errorq'");
3879 			return (DCMD_ERR);
3880 		}
3881 		return (DCMD_OK);
3882 	}
3883 
3884 	i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
3885 	argc -= i;
3886 	argv += i;
3887 
3888 	if (argc != 0)
3889 		return (DCMD_USAGE);
3890 
3891 	if (opt_v || DCMD_HDRSPEC(flags)) {
3892 		mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
3893 		    "ADDR", "NAME", "S", "V", "N");
3894 		if (!opt_v) {
3895 			mdb_printf("%7s %7s %7s%</u>\n",
3896 			    "ACCEPT", "DROP", "LOG");
3897 		} else {
3898 			mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
3899 			    "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
3900 		}
3901 	}
3902 
3903 	if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
3904 		mdb_warn("failed to read errorq at %p", addr);
3905 		return (DCMD_ERR);
3906 	}
3907 
3908 	mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
3909 	    (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
3910 	    (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
3911 	    (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
3912 
3913 	if (!opt_v) {
3914 		mdb_printf("%7llu %7llu %7llu\n",
3915 		    EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
3916 		    EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
3917 		    EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
3918 	} else {
3919 		mdb_printf("%5s %6lu %6lu %3u %a\n",
3920 		    "  |  ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
3921 		mdb_printf("%38s\n%41s"
3922 		    "%12s %llu\n"
3923 		    "%53s %llu\n"
3924 		    "%53s %llu\n"
3925 		    "%53s %llu\n"
3926 		    "%53s %llu\n"
3927 		    "%53s %llu\n"
3928 		    "%53s %llu\n"
3929 		    "%53s %llu\n\n",
3930 		    "|", "+-> ",
3931 		    "DISPATCHED",	EQKSVAL(eq, eqk_dispatched),
3932 		    "DROPPED",		EQKSVAL(eq, eqk_dropped),
3933 		    "LOGGED",		EQKSVAL(eq, eqk_logged),
3934 		    "RESERVED",		EQKSVAL(eq, eqk_reserved),
3935 		    "RESERVE FAIL",	EQKSVAL(eq, eqk_reserve_fail),
3936 		    "COMMITTED",	EQKSVAL(eq, eqk_committed),
3937 		    "COMMIT FAIL",	EQKSVAL(eq, eqk_commit_fail),
3938 		    "CANCELLED",	EQKSVAL(eq, eqk_cancelled));
3939 	}
3940 
3941 	return (DCMD_OK);
3942 }
3943 
3944 /*ARGSUSED*/
3945 static int
3946 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3947 {
3948 	cpu_t panic_cpu;
3949 	kthread_t *panic_thread;
3950 	void *buf;
3951 	panic_data_t *pd;
3952 	int i, n;
3953 
3954 	if (!mdb_prop_postmortem) {
3955 		mdb_warn("panicinfo can only be run on a system "
3956 		    "dump; see dumpadm(1M)\n");
3957 		return (DCMD_ERR);
3958 	}
3959 
3960 	if (flags & DCMD_ADDRSPEC || argc != 0)
3961 		return (DCMD_USAGE);
3962 
3963 	if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
3964 		mdb_warn("failed to read 'panic_cpu'");
3965 	else
3966 		mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
3967 
3968 	if (mdb_readvar(&panic_thread, "panic_thread") == -1)
3969 		mdb_warn("failed to read 'panic_thread'");
3970 	else
3971 		mdb_printf("%16s %?p\n", "thread", panic_thread);
3972 
3973 	buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
3974 	pd = (panic_data_t *)buf;
3975 
3976 	if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 ||
3977 	    pd->pd_version != PANICBUFVERS) {
3978 		mdb_warn("failed to read 'panicbuf'");
3979 		mdb_free(buf, PANICBUFSIZE);
3980 		return (DCMD_ERR);
3981 	}
3982 
3983 	mdb_printf("%16s %s\n", "message",  (char *)buf + pd->pd_msgoff);
3984 
3985 	n = (pd->pd_msgoff - (sizeof (panic_data_t) -
3986 	    sizeof (panic_nv_t))) / sizeof (panic_nv_t);
3987 
3988 	for (i = 0; i < n; i++)
3989 		mdb_printf("%16s %?llx\n",
3990 		    pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
3991 
3992 	mdb_free(buf, PANICBUFSIZE);
3993 	return (DCMD_OK);
3994 }
3995 
3996 /*
3997  * ::time dcmd, which will print a hires timestamp of when we entered the
3998  * debugger, or the lbolt value if used with the -l option.
3999  *
4000  */
4001 /*ARGSUSED*/
4002 static int
4003 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
4004 {
4005 	uint_t opt_dec = FALSE;
4006 	uint_t opt_lbolt = FALSE;
4007 	uint_t opt_hex = FALSE;
4008 	const char *fmt;
4009 	hrtime_t result;
4010 
4011 	if (mdb_getopts(argc, argv,
4012 	    'd', MDB_OPT_SETBITS, TRUE, &opt_dec,
4013 	    'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt,
4014 	    'x', MDB_OPT_SETBITS, TRUE, &opt_hex,
4015 	    NULL) != argc)
4016 		return (DCMD_USAGE);
4017 
4018 	if (opt_dec && opt_hex)
4019 		return (DCMD_USAGE);
4020 
4021 	result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime();
4022 	fmt =
4023 	    opt_hex ? "0x%llx\n" :
4024 	    opt_dec ? "0t%lld\n" : "%#llr\n";
4025 
4026 	mdb_printf(fmt, result);
4027 	return (DCMD_OK);
4028 }
4029 
4030 void
4031 time_help(void)
4032 {
4033 	mdb_printf("Prints the system time in nanoseconds.\n\n"
4034 	    "::time will return the timestamp at which we dropped into, \n"
4035 	    "if called from, kmdb(1); the core dump's high resolution \n"
4036 	    "time if inspecting one; or the running hires time if we're \n"
4037 	    "looking at a live system.\n\n"
4038 	    "Switches:\n"
4039 	    "  -d   report times in decimal\n"
4040 	    "  -l   prints the number of clock ticks since system boot\n"
4041 	    "  -x   report times in hexadecimal\n");
4042 }
4043 
4044 static const mdb_dcmd_t dcmds[] = {
4045 
4046 	/* from genunix.c */
4047 	{ "as2proc", ":", "convert as to proc_t address", as2proc },
4048 	{ "binding_hash_entry", ":", "print driver names hash table entry",
4049 		binding_hash_entry },
4050 	{ "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]"
4051 	    " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]"
4052 	    " [-FivVA]",
4053 	    "display callouts", callout, callout_help },
4054 	{ "calloutid", "[-d|v] xid", "print callout by extended id",
4055 	    calloutid, calloutid_help },
4056 	{ "class", NULL, "print process scheduler classes", class },
4057 	{ "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
4058 	{ "did2thread", "? kt_did", "find kernel thread for this id",
4059 		did2thread },
4060 	{ "errorq", "?[-v]", "display kernel error queues", errorq },
4061 	{ "fd", ":[fd num]", "get a file pointer from an fd", fd },
4062 	{ "flipone", ":", "the vik_rev_level 2 special", flipone },
4063 	{ "lminfo", NULL, "print lock manager information", lminfo },
4064 	{ "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
4065 	{ "panicinfo", NULL, "print panic information", panicinfo },
4066 	{ "pid2proc", "?", "convert PID to proc_t address", pid2proc },
4067 	{ "project", NULL, "display kernel project(s)", project },
4068 	{ "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps },
4069 	{ "pflags", NULL, "display various proc_t flags", pflags },
4070 	{ "pgrep", "[-x] [-n | -o] pattern",
4071 		"pattern match against all processes", pgrep },
4072 	{ "ptree", NULL, "print process tree", ptree },
4073 	{ "sysevent", "?[-sv]", "print sysevent pending or sent queue",
4074 		sysevent},
4075 	{ "sysevent_channel", "?", "print sysevent channel database",
4076 		sysevent_channel},
4077 	{ "sysevent_class_list", ":", "print sysevent class list",
4078 		sysevent_class_list},
4079 	{ "sysevent_subclass_list", ":",
4080 		"print sysevent subclass list", sysevent_subclass_list},
4081 	{ "system", NULL, "print contents of /etc/system file", sysfile },
4082 	{ "task", NULL, "display kernel task(s)", task },
4083 	{ "time", "[-dlx]", "display system time", time, time_help },
4084 	{ "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
4085 	{ "whereopen", ":", "given a vnode, dumps procs which have it open",
4086 	    whereopen },
4087 
4088 	/* from bio.c */
4089 	{ "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
4090 
4091 	/* from bitset.c */
4092 	{ "bitset", ":", "display a bitset", bitset, bitset_help },
4093 
4094 	/* from contract.c */
4095 	{ "contract", "?", "display a contract", cmd_contract },
4096 	{ "ctevent", ":", "display a contract event", cmd_ctevent },
4097 	{ "ctid", ":", "convert id to a contract pointer", cmd_ctid },
4098 
4099 	/* from cpupart.c */
4100 	{ "cpupart", "?[-v]", "print cpu partition info", cpupart },
4101 
4102 	/* from cred.c */
4103 	{ "cred", ":[-v]", "display a credential", cmd_cred },
4104 	{ "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp },
4105 	{ "credsid", ":[-v]", "display a credsid_t", cmd_credsid },
4106 	{ "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist },
4107 
4108 	/* from cyclic.c */
4109 	{ "cyccover", NULL, "dump cyclic coverage information", cyccover },
4110 	{ "cycid", "?", "dump a cyclic id", cycid },
4111 	{ "cycinfo", "?", "dump cyc_cpu info", cycinfo },
4112 	{ "cyclic", ":", "developer information", cyclic },
4113 	{ "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
4114 
4115 	/* from damap.c */
4116 	{ "damap", ":", "display a damap_t", damap, damap_help },
4117 
4118 	/* from ddi_periodic.c */
4119 	{ "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo },
4120 
4121 	/* from devinfo.c */
4122 	{ "devbindings", "?[-qs] [device-name | major-num]",
4123 	    "print devinfo nodes bound to device-name or major-num",
4124 	    devbindings, devinfo_help },
4125 	{ "devinfo", ":[-qsd] [-b bus]", "detailed devinfo of one node",
4126 	    devinfo, devinfo_help },
4127 	{ "devinfo_audit", ":[-v]", "devinfo configuration audit record",
4128 	    devinfo_audit },
4129 	{ "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
4130 	    devinfo_audit_log },
4131 	{ "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
4132 	    devinfo_audit_node },
4133 	{ "devinfo2driver", ":", "find driver name for this devinfo node",
4134 	    devinfo2driver },
4135 	{ "devnames", "?[-vm] [num]", "print devnames array", devnames },
4136 	{ "dev2major", "?<dev_t>", "convert dev_t to a major number",
4137 	    dev2major },
4138 	{ "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
4139 	    dev2minor },
4140 	{ "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
4141 	    devt },
4142 	{ "major2name", "?<major-num>", "convert major number to dev name",
4143 	    major2name },
4144 	{ "minornodes", ":", "given a devinfo node, print its minor nodes",
4145 	    minornodes },
4146 	{ "modctl2devinfo", ":", "given a modctl, list its devinfos",
4147 	    modctl2devinfo },
4148 	{ "name2major", "<dev-name>", "convert dev name to major number",
4149 	    name2major },
4150 	{ "prtconf", "?[-vpc] [-d driver] [-i inst]", "print devinfo tree",
4151 	    prtconf, prtconf_help },
4152 	{ "softstate", ":<instance>", "retrieve soft-state pointer",
4153 	    softstate },
4154 	{ "devinfo_fm", ":", "devinfo fault managment configuration",
4155 	    devinfo_fm },
4156 	{ "devinfo_fmce", ":", "devinfo fault managment cache entry",
4157 	    devinfo_fmce},
4158 
4159 	/* from findstack.c */
4160 	{ "findstack", ":[-v]", "find kernel thread stack", findstack },
4161 	{ "findstack_debug", NULL, "toggle findstack debugging",
4162 		findstack_debug },
4163 	{ "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] "
4164 		"[-s sobj | -S sobj] [-t tstate | -T tstate]",
4165 		"print unique kernel thread stacks",
4166 		stacks, stacks_help },
4167 
4168 	/* from fm.c */
4169 	{ "ereport", "[-v]", "print ereports logged in dump",
4170 	    ereport },
4171 
4172 	/* from group.c */
4173 	{ "group", "?[-q]", "display a group", group},
4174 
4175 	/* from hotplug.c */
4176 	{ "hotplug", "?[-p]", "display a registered hotplug attachment",
4177 	    hotplug, hotplug_help },
4178 
4179 	/* from irm.c */
4180 	{ "irmpools", NULL, "display interrupt pools", irmpools_dcmd },
4181 	{ "irmreqs", NULL, "display interrupt requests in an interrupt pool",
4182 	    irmreqs_dcmd },
4183 	{ "irmreq", NULL, "display an interrupt request", irmreq_dcmd },
4184 
4185 	/* from kgrep.c + genunix.c */
4186 	{ "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
4187 		kgrep_help },
4188 
4189 	/* from kmem.c */
4190 	{ "allocdby", ":", "given a thread, print its allocated buffers",
4191 		allocdby },
4192 	{ "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
4193 		"[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
4194 	{ "freedby", ":", "given a thread, print its freed buffers", freedby },
4195 	{ "kmalog", "?[ fail | slab ]",
4196 	    "display kmem transaction log and stack traces", kmalog },
4197 	{ "kmastat", "[-kmg]", "kernel memory allocator stats",
4198 	    kmastat },
4199 	{ "kmausers", "?[-ef] [cache ...]", "current medium and large users "
4200 		"of the kmem allocator", kmausers, kmausers_help },
4201 	{ "kmem_cache", "?[-n name]",
4202 		"print kernel memory caches", kmem_cache, kmem_cache_help},
4203 	{ "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] "
4204 		"[-B minbinsize]", "display slab usage per kmem cache",
4205 		kmem_slabs, kmem_slabs_help },
4206 	{ "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
4207 	{ "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
4208 	{ "kmem_verify", "?", "check integrity of kmem-managed memory",
4209 		kmem_verify },
4210 	{ "vmem", "?", "print a vmem_t", vmem },
4211 	{ "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
4212 		"[-m minsize] [-M maxsize] [-t thread] [-T type]",
4213 		"print or filter a vmem_seg", vmem_seg, vmem_seg_help },
4214 	{ "whatthread", ":[-v]", "print threads whose stack contains the "
4215 		"given address", whatthread },
4216 
4217 	/* from ldi.c */
4218 	{ "ldi_handle", "?[-i]", "display a layered driver handle",
4219 	    ldi_handle, ldi_handle_help },
4220 	{ "ldi_ident", NULL, "display a layered driver identifier",
4221 	    ldi_ident, ldi_ident_help },
4222 
4223 	/* from leaky.c + leaky_subr.c */
4224 	{ "findleaks", FINDLEAKS_USAGE,
4225 	    "search for potential kernel memory leaks", findleaks,
4226 	    findleaks_help },
4227 
4228 	/* from lgrp.c */
4229 	{ "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
4230 	{ "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
4231 
4232 	/* from log.c */
4233 	{ "msgbuf", "?[-v]", "print most recent console messages", msgbuf },
4234 
4235 	/* from mdi.c */
4236 	{ "mdipi", NULL, "given a path, dump mdi_pathinfo "
4237 		"and detailed pi_prop list", mdipi },
4238 	{ "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
4239 		mdiprops },
4240 	{ "mdiphci", NULL, "given a phci, dump mdi_phci and "
4241 		"list all paths", mdiphci },
4242 	{ "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
4243 		"all phcis", mdivhci },
4244 	{ "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
4245 		"client links", mdiclient_paths },
4246 	{ "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
4247 		"phci links", mdiphci_paths },
4248 	{ "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
4249 		mdiphcis },
4250 
4251 	/* from memory.c */
4252 	{ "addr2smap", ":[offset]", "translate address to smap", addr2smap },
4253 	{ "memlist", "?[-iav]", "display a struct memlist", memlist },
4254 	{ "memstat", NULL, "display memory usage summary", memstat },
4255 	{ "page", "?", "display a summarized page_t", page },
4256 	{ "pagelookup", "?[-v vp] [-o offset]",
4257 		"find the page_t with the name {vp, offset}",
4258 		pagelookup, pagelookup_help },
4259 	{ "page_num2pp", ":", "find the page_t for a given page frame number",
4260 		page_num2pp },
4261 	{ "pmap", ":[-q]", "print process memory map", pmap },
4262 	{ "seg", ":", "print address space segment", seg },
4263 	{ "swapinfo", "?", "display a struct swapinfo", swapinfof },
4264 	{ "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
4265 
4266 	/* from mmd.c */
4267 	{ "multidata", ":[-sv]", "display a summarized multidata_t",
4268 		multidata },
4269 	{ "pattbl", ":", "display a summarized multidata attribute table",
4270 		pattbl },
4271 	{ "pattr2multidata", ":", "print multidata pointer from pattr_t",
4272 		pattr2multidata },
4273 	{ "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
4274 		pdesc2slab },
4275 	{ "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
4276 	{ "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
4277 		slab2multidata },
4278 
4279 	/* from modhash.c */
4280 	{ "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
4281 		"display information about one or all mod_hash structures",
4282 		modhash, modhash_help },
4283 	{ "modent", ":[-k | -v | -t type]",
4284 		"display information about a mod_hash_entry", modent,
4285 		modent_help },
4286 
4287 	/* from net.c */
4288 	{ "dladm", "?<sub-command> [flags]", "show data link information",
4289 		dladm, dladm_help },
4290 	{ "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
4291 		mi },
4292 	{ "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]",
4293 		"show network statistics", netstat },
4294 	{ "sonode", "?[-f inet | inet6 | unix | #] "
4295 		"[-t stream | dgram | raw | #] [-p #]",
4296 		"filter and display sonode", sonode },
4297 
4298 	/* from netstack.c */
4299 	{ "netstack", "", "show stack instances", netstack },
4300 	{ "netstackid2netstack", ":",
4301 		"translate a netstack id to its netstack_t",
4302 		netstackid2netstack },
4303 
4304 	/* from nvpair.c */
4305 	{ NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
4306 		nvpair_print },
4307 	{ NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
4308 		print_nvlist },
4309 
4310 	/* from pg.c */
4311 	{ "pg", "?[-q]", "display a pg", pg},
4312 
4313 	/* from rctl.c */
4314 	{ "rctl_dict", "?", "print systemwide default rctl definitions",
4315 		rctl_dict },
4316 	{ "rctl_list", ":[handle]", "print rctls for the given proc",
4317 		rctl_list },
4318 	{ "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
4319 		rctl },
4320 	{ "rctl_validate", ":[-v] [-n #]", "test resource control value "
4321 		"sequence", rctl_validate },
4322 
4323 	/* from sobj.c */
4324 	{ "rwlock", ":", "dump out a readers/writer lock", rwlock },
4325 	{ "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
4326 		mutex_help },
4327 	{ "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
4328 	{ "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
4329 	{ "turnstile", "?", "display a turnstile", turnstile },
4330 
4331 	/* from stream.c */
4332 	{ "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
4333 		"print an mblk", mblk_prt, mblk_help },
4334 	{ "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
4335 	{ "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
4336 		mblk2dblk },
4337 	{ "q2otherq", ":", "print peer queue for a given queue", q2otherq },
4338 	{ "q2rdq", ":", "print read queue for a given queue", q2rdq },
4339 	{ "q2syncq", ":", "print syncq for a given queue", q2syncq },
4340 	{ "q2stream", ":", "print stream pointer for a given queue", q2stream },
4341 	{ "q2wrq", ":", "print write queue for a given queue", q2wrq },
4342 	{ "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
4343 		"filter and display STREAM queue", queue, queue_help },
4344 	{ "stdata", ":[-q|v] [-f flag] [-F flag]",
4345 		"filter and display STREAM head", stdata, stdata_help },
4346 	{ "str2mate", ":", "print mate of this stream", str2mate },
4347 	{ "str2wrq", ":", "print write queue of this stream", str2wrq },
4348 	{ "stream", ":", "display STREAM", stream },
4349 	{ "strftevent", ":", "print STREAMS flow trace event", strftevent },
4350 	{ "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
4351 		"filter and display STREAM sync queue", syncq, syncq_help },
4352 	{ "syncq2q", ":", "print queue for a given syncq", syncq2q },
4353 
4354 	/* from taskq.c */
4355 	{ "taskq", ":[-atT] [-m min_maxq] [-n name]",
4356 	    "display a taskq", taskq, taskq_help },
4357 	{ "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
4358 
4359 	/* from thread.c */
4360 	{ "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
4361 		thread_help },
4362 	{ "threadlist", "?[-t] [-v [count]]",
4363 		"display threads and associated C stack traces", threadlist,
4364 		threadlist_help },
4365 	{ "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo,
4366 		stackinfo_help },
4367 
4368 	/* from tsd.c */
4369 	{ "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
4370 	{ "tsdtot", ":", "find thread with this tsd", tsdtot },
4371 
4372 	/*
4373 	 * typegraph does not work under kmdb, as it requires too much memory
4374 	 * for its internal data structures.
4375 	 */
4376 #ifndef _KMDB
4377 	/* from typegraph.c */
4378 	{ "findlocks", ":", "find locks held by specified thread", findlocks },
4379 	{ "findfalse", "?[-v]", "find potentially falsely shared structures",
4380 		findfalse },
4381 	{ "typegraph", NULL, "build type graph", typegraph },
4382 	{ "istype", ":type", "manually set object type", istype },
4383 	{ "notype", ":", "manually clear object type", notype },
4384 	{ "whattype", ":", "determine object type", whattype },
4385 #endif
4386 
4387 	/* from vfs.c */
4388 	{ "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
4389 	{ "pfiles", ":[-fp]", "print process file information", pfiles,
4390 		pfiles_help },
4391 
4392 	/* from zone.c */
4393 	{ "zid2zone", ":", "find the zone_t with the given zone id",
4394 		zid2zone },
4395 	{ "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt },
4396 	{ "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for "
4397 	    "selected zones", zsd },
4398 
4399 #ifndef _KMDB
4400 	{ "gcore", NULL, "generate a user core for the given process",
4401 	    gcore_dcmd },
4402 #endif
4403 
4404 	{ NULL }
4405 };
4406 
4407 static const mdb_walker_t walkers[] = {
4408 
4409 	/* from genunix.c */
4410 	{ "callouts_bytime", "walk callouts by list chain (expiration time)",
4411 		callout_walk_init, callout_walk_step, callout_walk_fini,
4412 		(void *)CALLOUT_WALK_BYLIST },
4413 	{ "callouts_byid", "walk callouts by id hash chain",
4414 		callout_walk_init, callout_walk_step, callout_walk_fini,
4415 		(void *)CALLOUT_WALK_BYID },
4416 	{ "callout_list", "walk a callout list", callout_list_walk_init,
4417 		callout_list_walk_step, callout_list_walk_fini },
4418 	{ "callout_table", "walk callout table array", callout_table_walk_init,
4419 		callout_table_walk_step, callout_table_walk_fini },
4420 	{ "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
4421 	{ "dnlc", "walk dnlc entries",
4422 		dnlc_walk_init, dnlc_walk_step, dnlc_walk_fini },
4423 	{ "ereportq_dump", "walk list of ereports in dump error queue",
4424 		ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
4425 	{ "ereportq_pend", "walk list of ereports in pending error queue",
4426 		ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
4427 	{ "errorq", "walk list of system error queues",
4428 		errorq_walk_init, errorq_walk_step, NULL },
4429 	{ "errorq_data", "walk pending error queue data buffers",
4430 		eqd_walk_init, eqd_walk_step, eqd_walk_fini },
4431 	{ "allfile", "given a proc pointer, list all file pointers",
4432 		file_walk_init, allfile_walk_step, file_walk_fini },
4433 	{ "file", "given a proc pointer, list of open file pointers",
4434 		file_walk_init, file_walk_step, file_walk_fini },
4435 	{ "lock_descriptor", "walk lock_descriptor_t structures",
4436 		ld_walk_init, ld_walk_step, NULL },
4437 	{ "lock_graph", "walk lock graph",
4438 		lg_walk_init, lg_walk_step, NULL },
4439 	{ "port", "given a proc pointer, list of created event ports",
4440 		port_walk_init, port_walk_step, NULL },
4441 	{ "portev", "given a port pointer, list of events in the queue",
4442 		portev_walk_init, portev_walk_step, portev_walk_fini },
4443 	{ "proc", "list of active proc_t structures",
4444 		proc_walk_init, proc_walk_step, proc_walk_fini },
4445 	{ "projects", "walk a list of kernel projects",
4446 		project_walk_init, project_walk_step, NULL },
4447 	{ "sysevent_pend", "walk sysevent pending queue",
4448 		sysevent_pend_walk_init, sysevent_walk_step,
4449 		sysevent_walk_fini},
4450 	{ "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
4451 		sysevent_walk_step, sysevent_walk_fini},
4452 	{ "sysevent_channel", "walk sysevent channel subscriptions",
4453 		sysevent_channel_walk_init, sysevent_channel_walk_step,
4454 		sysevent_channel_walk_fini},
4455 	{ "sysevent_class_list", "walk sysevent subscription's class list",
4456 		sysevent_class_list_walk_init, sysevent_class_list_walk_step,
4457 		sysevent_class_list_walk_fini},
4458 	{ "sysevent_subclass_list",
4459 		"walk sysevent subscription's subclass list",
4460 		sysevent_subclass_list_walk_init,
4461 		sysevent_subclass_list_walk_step,
4462 		sysevent_subclass_list_walk_fini},
4463 	{ "task", "given a task pointer, walk its processes",
4464 		task_walk_init, task_walk_step, NULL },
4465 
4466 	/* from avl.c */
4467 	{ AVL_WALK_NAME, AVL_WALK_DESC,
4468 		avl_walk_init, avl_walk_step, avl_walk_fini },
4469 
4470 	/* from bio.c */
4471 	{ "buf", "walk the bio buf hash",
4472 		buf_walk_init, buf_walk_step, buf_walk_fini },
4473 
4474 	/* from contract.c */
4475 	{ "contract", "walk all contracts, or those of the specified type",
4476 		ct_walk_init, generic_walk_step, NULL },
4477 	{ "ct_event", "walk events on a contract event queue",
4478 		ct_event_walk_init, generic_walk_step, NULL },
4479 	{ "ct_listener", "walk contract event queue listeners",
4480 		ct_listener_walk_init, generic_walk_step, NULL },
4481 
4482 	/* from cpupart.c */
4483 	{ "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
4484 		cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
4485 		NULL },
4486 	{ "cpupart_walk", "walk the set of cpu partitions",
4487 		cpupart_walk_init, cpupart_walk_step, NULL },
4488 
4489 	/* from ctxop.c */
4490 	{ "ctxop", "walk list of context ops on a thread",
4491 		ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
4492 
4493 	/* from cyclic.c */
4494 	{ "cyccpu", "walk per-CPU cyc_cpu structures",
4495 		cyccpu_walk_init, cyccpu_walk_step, NULL },
4496 	{ "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
4497 		cycomni_walk_init, cycomni_walk_step, NULL },
4498 	{ "cyctrace", "walk cyclic trace buffer",
4499 		cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
4500 
4501 	/* from devinfo.c */
4502 	{ "binding_hash", "walk all entries in binding hash table",
4503 		binding_hash_walk_init, binding_hash_walk_step, NULL },
4504 	{ "devinfo", "walk devinfo tree or subtree",
4505 		devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
4506 	{ "devinfo_audit_log", "walk devinfo audit system-wide log",
4507 		devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
4508 		devinfo_audit_log_walk_fini},
4509 	{ "devinfo_audit_node", "walk per-devinfo audit history",
4510 		devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
4511 		devinfo_audit_node_walk_fini},
4512 	{ "devinfo_children", "walk children of devinfo node",
4513 		devinfo_children_walk_init, devinfo_children_walk_step,
4514 		devinfo_children_walk_fini },
4515 	{ "devinfo_parents", "walk ancestors of devinfo node",
4516 		devinfo_parents_walk_init, devinfo_parents_walk_step,
4517 		devinfo_parents_walk_fini },
4518 	{ "devinfo_siblings", "walk siblings of devinfo node",
4519 		devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
4520 	{ "devi_next", "walk devinfo list",
4521 		NULL, devi_next_walk_step, NULL },
4522 	{ "devnames", "walk devnames array",
4523 		devnames_walk_init, devnames_walk_step, devnames_walk_fini },
4524 	{ "minornode", "given a devinfo node, walk minor nodes",
4525 		minornode_walk_init, minornode_walk_step, NULL },
4526 	{ "softstate",
4527 		"given an i_ddi_soft_state*, list all in-use driver stateps",
4528 		soft_state_walk_init, soft_state_walk_step,
4529 		NULL, NULL },
4530 	{ "softstate_all",
4531 		"given an i_ddi_soft_state*, list all driver stateps",
4532 		soft_state_walk_init, soft_state_all_walk_step,
4533 		NULL, NULL },
4534 	{ "devinfo_fmc",
4535 		"walk a fault management handle cache active list",
4536 		devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
4537 
4538 	/* from group.c */
4539 	{ "group", "walk all elements of a group",
4540 		group_walk_init, group_walk_step, NULL },
4541 
4542 	/* from irm.c */
4543 	{ "irmpools", "walk global list of interrupt pools",
4544 	    irmpools_walk_init, list_walk_step, list_walk_fini },
4545 	{ "irmreqs", "walk list of interrupt requests in an interrupt pool",
4546 	    irmreqs_walk_init, list_walk_step, list_walk_fini },
4547 
4548 	/* from kmem.c */
4549 	{ "allocdby", "given a thread, walk its allocated bufctls",
4550 		allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4551 	{ "bufctl", "walk a kmem cache's bufctls",
4552 		bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
4553 	{ "bufctl_history", "walk the available history of a bufctl",
4554 		bufctl_history_walk_init, bufctl_history_walk_step,
4555 		bufctl_history_walk_fini },
4556 	{ "freedby", "given a thread, walk its freed bufctls",
4557 		freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4558 	{ "freectl", "walk a kmem cache's free bufctls",
4559 		freectl_walk_init, kmem_walk_step, kmem_walk_fini },
4560 	{ "freectl_constructed", "walk a kmem cache's constructed free bufctls",
4561 		freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4562 	{ "freemem", "walk a kmem cache's free memory",
4563 		freemem_walk_init, kmem_walk_step, kmem_walk_fini },
4564 	{ "freemem_constructed", "walk a kmem cache's constructed free memory",
4565 		freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4566 	{ "kmem", "walk a kmem cache",
4567 		kmem_walk_init, kmem_walk_step, kmem_walk_fini },
4568 	{ "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
4569 		kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
4570 	{ "kmem_hash", "given a kmem cache, walk its allocated hash table",
4571 		kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
4572 	{ "kmem_log", "walk the kmem transaction log",
4573 		kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
4574 	{ "kmem_slab", "given a kmem cache, walk its slabs",
4575 		kmem_slab_walk_init, combined_walk_step, combined_walk_fini },
4576 	{ "kmem_slab_partial",
4577 	    "given a kmem cache, walk its partially allocated slabs (min 1)",
4578 		kmem_slab_walk_partial_init, combined_walk_step,
4579 		combined_walk_fini },
4580 	{ "vmem", "walk vmem structures in pre-fix, depth-first order",
4581 		vmem_walk_init, vmem_walk_step, vmem_walk_fini },
4582 	{ "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
4583 		vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4584 	{ "vmem_free", "given a vmem_t, walk its free vmem_segs",
4585 		vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4586 	{ "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
4587 		vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
4588 	{ "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
4589 		vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4590 	{ "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
4591 		vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4592 
4593 	/* from ldi.c */
4594 	{ "ldi_handle", "walk the layered driver handle hash",
4595 		ldi_handle_walk_init, ldi_handle_walk_step, NULL },
4596 	{ "ldi_ident", "walk the layered driver identifier hash",
4597 		ldi_ident_walk_init, ldi_ident_walk_step, NULL },
4598 
4599 	/* from leaky.c + leaky_subr.c */
4600 	{ "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
4601 	    "stack trace",
4602 		leaky_walk_init, leaky_walk_step, leaky_walk_fini },
4603 	{ "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
4604 	    "leaks w/ same stack trace",
4605 		leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
4606 
4607 	/* from lgrp.c */
4608 	{ "lgrp_cpulist", "walk CPUs in a given lgroup",
4609 		lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
4610 	{ "lgrptbl", "walk lgroup table",
4611 		lgrp_walk_init, lgrp_walk_step, NULL },
4612 	{ "lgrp_parents", "walk up lgroup lineage from given lgroup",
4613 		lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
4614 	{ "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
4615 		lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
4616 	{ "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
4617 		lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
4618 
4619 	/* from list.c */
4620 	{ LIST_WALK_NAME, LIST_WALK_DESC,
4621 		list_walk_init, list_walk_step, list_walk_fini },
4622 
4623 	/* from mdi.c */
4624 	{ "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
4625 		mdi_pi_client_link_walk_init,
4626 		mdi_pi_client_link_walk_step,
4627 		mdi_pi_client_link_walk_fini },
4628 	{ "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
4629 		mdi_pi_phci_link_walk_init,
4630 		mdi_pi_phci_link_walk_step,
4631 		mdi_pi_phci_link_walk_fini },
4632 	{ "mdiphci_list", "Walker for mdi_phci ph_next link",
4633 		mdi_phci_ph_next_walk_init,
4634 		mdi_phci_ph_next_walk_step,
4635 		mdi_phci_ph_next_walk_fini },
4636 
4637 	/* from memory.c */
4638 	{ "allpages", "walk all pages, including free pages",
4639 		allpages_walk_init, allpages_walk_step, allpages_walk_fini },
4640 	{ "anon", "given an amp, list allocated anon structures",
4641 		anon_walk_init, anon_walk_step, anon_walk_fini,
4642 		ANON_WALK_ALLOC },
4643 	{ "anon_all", "given an amp, list contents of all anon slots",
4644 		anon_walk_init, anon_walk_step, anon_walk_fini,
4645 		ANON_WALK_ALL },
4646 	{ "memlist", "walk specified memlist",
4647 		NULL, memlist_walk_step, NULL },
4648 	{ "page", "walk all pages, or those from the specified vnode",
4649 		page_walk_init, page_walk_step, page_walk_fini },
4650 	{ "seg", "given an as, list of segments",
4651 		seg_walk_init, avl_walk_step, avl_walk_fini },
4652 	{ "segvn_anon",
4653 		"given a struct segvn_data, list allocated anon structures",
4654 		segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4655 		ANON_WALK_ALLOC },
4656 	{ "segvn_anon_all",
4657 		"given a struct segvn_data, list contents of all anon slots",
4658 		segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4659 		ANON_WALK_ALL },
4660 	{ "segvn_pages",
4661 		"given a struct segvn_data, list resident pages in "
4662 		"offset order",
4663 		segvn_pages_walk_init, segvn_pages_walk_step,
4664 		segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT },
4665 	{ "segvn_pages_all",
4666 		"for each offset in a struct segvn_data, give page_t pointer "
4667 		"(if resident), or NULL.",
4668 		segvn_pages_walk_init, segvn_pages_walk_step,
4669 		segvn_pages_walk_fini, SEGVN_PAGES_ALL },
4670 	{ "swapinfo", "walk swapinfo structures",
4671 		swap_walk_init, swap_walk_step, NULL },
4672 
4673 	/* from mmd.c */
4674 	{ "pattr", "walk pattr_t structures", pattr_walk_init,
4675 		mmdq_walk_step, mmdq_walk_fini },
4676 	{ "pdesc", "walk pdesc_t structures",
4677 		pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
4678 	{ "pdesc_slab", "walk pdesc_slab_t structures",
4679 		pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },
4680 
4681 	/* from modhash.c */
4682 	{ "modhash", "walk list of mod_hash structures", modhash_walk_init,
4683 		modhash_walk_step, NULL },
4684 	{ "modent", "walk list of entries in a given mod_hash",
4685 		modent_walk_init, modent_walk_step, modent_walk_fini },
4686 	{ "modchain", "walk list of entries in a given mod_hash_entry",
4687 		NULL, modchain_walk_step, NULL },
4688 
4689 	/* from net.c */
4690 	{ "icmp", "walk ICMP control structures using MI for all stacks",
4691 		mi_payload_walk_init, mi_payload_walk_step, NULL,
4692 		&mi_icmp_arg },
4693 	{ "mi", "given a MI_O, walk the MI",
4694 		mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
4695 	{ "sonode", "given a sonode, walk its children",
4696 		sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
4697 	{ "icmp_stacks", "walk all the icmp_stack_t",
4698 		icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
4699 	{ "tcp_stacks", "walk all the tcp_stack_t",
4700 		tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
4701 	{ "udp_stacks", "walk all the udp_stack_t",
4702 		udp_stacks_walk_init, udp_stacks_walk_step, NULL },
4703 
4704 	/* from netstack.c */
4705 	{ "netstack", "walk a list of kernel netstacks",
4706 		netstack_walk_init, netstack_walk_step, NULL },
4707 
4708 	/* from nvpair.c */
4709 	{ NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
4710 		nvpair_walk_init, nvpair_walk_step, NULL },
4711 
4712 	/* from pci.c */
4713 	{ "pcie_bus", "walk all pcie_bus_t's", pcie_bus_walk_init,
4714 		pcie_bus_walk_step, NULL },
4715 
4716 	/* from rctl.c */
4717 	{ "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
4718 		rctl_dict_walk_init, rctl_dict_walk_step, NULL },
4719 	{ "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
4720 		rctl_set_walk_step, NULL },
4721 	{ "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
4722 		rctl_val_walk_init, rctl_val_walk_step },
4723 
4724 	/* from sobj.c */
4725 	{ "blocked", "walk threads blocked on a given sobj",
4726 		blocked_walk_init, blocked_walk_step, NULL },
4727 	{ "wchan", "given a wchan, list of blocked threads",
4728 		wchan_walk_init, wchan_walk_step, wchan_walk_fini },
4729 
4730 	/* from stream.c */
4731 	{ "b_cont", "walk mblk_t list using b_cont",
4732 		mblk_walk_init, b_cont_step, mblk_walk_fini },
4733 	{ "b_next", "walk mblk_t list using b_next",
4734 		mblk_walk_init, b_next_step, mblk_walk_fini },
4735 	{ "qlink", "walk queue_t list using q_link",
4736 		queue_walk_init, queue_link_step, queue_walk_fini },
4737 	{ "qnext", "walk queue_t list using q_next",
4738 		queue_walk_init, queue_next_step, queue_walk_fini },
4739 	{ "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
4740 		strftblk_walk_init, strftblk_step, strftblk_walk_fini },
4741 	{ "readq", "walk read queue side of stdata",
4742 		str_walk_init, strr_walk_step, str_walk_fini },
4743 	{ "writeq", "walk write queue side of stdata",
4744 		str_walk_init, strw_walk_step, str_walk_fini },
4745 
4746 	/* from taskq.c */
4747 	{ "taskq_thread", "given a taskq_t, list all of its threads",
4748 		taskq_thread_walk_init,
4749 		taskq_thread_walk_step,
4750 		taskq_thread_walk_fini },
4751 	{ "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
4752 		taskq_ent_walk_init, taskq_ent_walk_step, NULL },
4753 
4754 	/* from thread.c */
4755 	{ "deathrow", "walk threads on both lwp_ and thread_deathrow",
4756 		deathrow_walk_init, deathrow_walk_step, NULL },
4757 	{ "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
4758 		cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4759 	{ "cpupart_dispq",
4760 		"given a cpupart_t, walk threads in dispatcher queues",
4761 		cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4762 	{ "lwp_deathrow", "walk lwp_deathrow",
4763 		lwp_deathrow_walk_init, deathrow_walk_step, NULL },
4764 	{ "thread", "global or per-process kthread_t structures",
4765 		thread_walk_init, thread_walk_step, thread_walk_fini },
4766 	{ "thread_deathrow", "walk threads on thread_deathrow",
4767 		thread_deathrow_walk_init, deathrow_walk_step, NULL },
4768 
4769 	/* from tsd.c */
4770 	{ "tsd", "walk list of thread-specific data",
4771 		tsd_walk_init, tsd_walk_step, tsd_walk_fini },
4772 
4773 	/* from tsol.c */
4774 	{ "tnrh", "walk remote host cache structures",
4775 	    tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
4776 	{ "tnrhtp", "walk remote host template structures",
4777 	    tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
4778 
4779 	/*
4780 	 * typegraph does not work under kmdb, as it requires too much memory
4781 	 * for its internal data structures.
4782 	 */
4783 #ifndef _KMDB
4784 	/* from typegraph.c */
4785 	{ "typeconflict", "walk buffers with conflicting type inferences",
4786 		typegraph_walk_init, typeconflict_walk_step },
4787 	{ "typeunknown", "walk buffers with unknown types",
4788 		typegraph_walk_init, typeunknown_walk_step },
4789 #endif
4790 
4791 	/* from vfs.c */
4792 	{ "vfs", "walk file system list",
4793 		vfs_walk_init, vfs_walk_step },
4794 
4795 	/* from zone.c */
4796 	{ "zone", "walk a list of kernel zones",
4797 		zone_walk_init, zone_walk_step, NULL },
4798 	{ "zsd", "walk list of zsd entries for a zone",
4799 		zsd_walk_init, zsd_walk_step, NULL },
4800 
4801 	{ NULL }
4802 };
4803 
4804 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
4805 
4806 /*ARGSUSED*/
4807 static void
4808 genunix_statechange_cb(void *ignored)
4809 {
4810 	/*
4811 	 * Force ::findleaks and ::stacks to let go any cached state.
4812 	 */
4813 	leaky_cleanup(1);
4814 	stacks_cleanup(1);
4815 
4816 	kmem_statechange();	/* notify kmem */
4817 }
4818 
4819 const mdb_modinfo_t *
4820 _mdb_init(void)
4821 {
4822 	kmem_init();
4823 
4824 	(void) mdb_callback_add(MDB_CALLBACK_STCHG,
4825 	    genunix_statechange_cb, NULL);
4826 
4827 #ifndef _KMDB
4828 	gcore_init();
4829 #endif
4830 
4831 	return (&modinfo);
4832 }
4833 
4834 void
4835 _mdb_fini(void)
4836 {
4837 	leaky_cleanup(1);
4838 	stacks_cleanup(1);
4839 }
4840