1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <mdb/mdb_param.h> 27 #include <mdb/mdb_modapi.h> 28 #include <mdb/mdb_ks.h> 29 #include <mdb/mdb_ctf.h> 30 31 #include <sys/types.h> 32 #include <sys/thread.h> 33 #include <sys/session.h> 34 #include <sys/user.h> 35 #include <sys/proc.h> 36 #include <sys/var.h> 37 #include <sys/t_lock.h> 38 #include <sys/systm.h> 39 #include <sys/callo.h> 40 #include <sys/priocntl.h> 41 #include <sys/class.h> 42 #include <sys/regset.h> 43 #include <sys/stack.h> 44 #include <sys/cpuvar.h> 45 #include <sys/vnode.h> 46 #include <sys/vfs.h> 47 #include <sys/flock_impl.h> 48 #include <sys/kmem_impl.h> 49 #include <sys/vmem_impl.h> 50 #include <sys/kstat.h> 51 #include <vm/seg_vn.h> 52 #include <vm/anon.h> 53 #include <vm/as.h> 54 #include <vm/seg_map.h> 55 #include <sys/dditypes.h> 56 #include <sys/ddi_impldefs.h> 57 #include <sys/sysmacros.h> 58 #include <sys/sysconf.h> 59 #include <sys/task.h> 60 #include <sys/project.h> 61 #include <sys/taskq.h> 62 #include <sys/taskq_impl.h> 63 #include <sys/errorq_impl.h> 64 #include <sys/cred_impl.h> 65 #include <sys/zone.h> 66 #include <sys/panic.h> 67 #include <regex.h> 68 #include <sys/port_impl.h> 69 70 #include "avl.h" 71 #include "combined.h" 72 #include "contract.h" 73 #include "cpupart_mdb.h" 74 #include "devinfo.h" 75 #include "leaky.h" 76 #include "lgrp.h" 77 #include "pg.h" 78 #include "group.h" 79 #include "list.h" 80 #include "log.h" 81 #include "kgrep.h" 82 #include "kmem.h" 83 #include "bio.h" 84 #include "streams.h" 85 #include "cyclic.h" 86 #include "findstack.h" 87 #include "ndievents.h" 88 #include "mmd.h" 89 #include "net.h" 90 #include "netstack.h" 91 #include "nvpair.h" 92 #include "ctxop.h" 93 #include "tsd.h" 94 #include "thread.h" 95 #include "memory.h" 96 #include "sobj.h" 97 #include "sysevent.h" 98 #include "rctl.h" 99 #include "tsol.h" 100 #include "typegraph.h" 101 #include "ldi.h" 102 #include "vfs.h" 103 #include "zone.h" 104 #include "modhash.h" 105 #include "mdi.h" 106 #include "fm.h" 107 108 /* 109 * Surely this is defined somewhere... 110 */ 111 #define NINTR 16 112 113 #define KILOS 10 114 #define MEGS 20 115 #define GIGS 30 116 117 #ifndef STACK_BIAS 118 #define STACK_BIAS 0 119 #endif 120 121 static char 122 pstat2ch(uchar_t state) 123 { 124 switch (state) { 125 case SSLEEP: return ('S'); 126 case SRUN: return ('R'); 127 case SZOMB: return ('Z'); 128 case SIDL: return ('I'); 129 case SONPROC: return ('O'); 130 case SSTOP: return ('T'); 131 case SWAIT: return ('W'); 132 default: return ('?'); 133 } 134 } 135 136 #define PS_PRTTHREADS 0x1 137 #define PS_PRTLWPS 0x2 138 #define PS_PSARGS 0x4 139 #define PS_TASKS 0x8 140 #define PS_PROJECTS 0x10 141 #define PS_ZONES 0x20 142 143 static int 144 ps_threadprint(uintptr_t addr, const void *data, void *private) 145 { 146 const kthread_t *t = (const kthread_t *)data; 147 uint_t prt_flags = *((uint_t *)private); 148 149 static const mdb_bitmask_t t_state_bits[] = { 150 { "TS_FREE", UINT_MAX, TS_FREE }, 151 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 152 { "TS_RUN", TS_RUN, TS_RUN }, 153 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 154 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 155 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 156 { "TS_WAIT", TS_WAIT, TS_WAIT }, 157 { NULL, 0, 0 } 158 }; 159 160 if (prt_flags & PS_PRTTHREADS) 161 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 162 163 if (prt_flags & PS_PRTLWPS) 164 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 165 166 return (WALK_NEXT); 167 } 168 169 int 170 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 171 { 172 uint_t prt_flags = 0; 173 proc_t pr; 174 struct pid pid, pgid, sid; 175 sess_t session; 176 cred_t cred; 177 task_t tk; 178 kproject_t pj; 179 zone_t zn; 180 181 if (!(flags & DCMD_ADDRSPEC)) { 182 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 183 mdb_warn("can't walk 'proc'"); 184 return (DCMD_ERR); 185 } 186 return (DCMD_OK); 187 } 188 189 if (mdb_getopts(argc, argv, 190 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 191 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 192 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 193 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 194 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 195 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 196 return (DCMD_USAGE); 197 198 if (DCMD_HDRSPEC(flags)) { 199 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 200 "S", "PID", "PPID", "PGID", "SID"); 201 if (prt_flags & PS_TASKS) 202 mdb_printf("%5s ", "TASK"); 203 if (prt_flags & PS_PROJECTS) 204 mdb_printf("%5s ", "PROJ"); 205 if (prt_flags & PS_ZONES) 206 mdb_printf("%5s ", "ZONE"); 207 mdb_printf("%6s %10s %?s %s%</u>\n", 208 "UID", "FLAGS", "ADDR", "NAME"); 209 } 210 211 mdb_vread(&pr, sizeof (pr), addr); 212 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 213 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 214 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 215 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 216 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 217 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 218 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 219 if (prt_flags & PS_PROJECTS) 220 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 221 if (prt_flags & PS_ZONES) 222 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 223 224 mdb_printf("%c %6d %6d %6d %6d ", 225 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 226 sid.pid_id); 227 if (prt_flags & PS_TASKS) 228 mdb_printf("%5d ", tk.tk_tkid); 229 if (prt_flags & PS_PROJECTS) 230 mdb_printf("%5d ", pj.kpj_id); 231 if (prt_flags & PS_ZONES) 232 mdb_printf("%5d ", zn.zone_id); 233 mdb_printf("%6d 0x%08x %0?p %s\n", 234 cred.cr_uid, pr.p_flag, addr, 235 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 236 237 if (prt_flags & ~PS_PSARGS) 238 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 239 240 return (DCMD_OK); 241 } 242 243 #define PG_NEWEST 0x0001 244 #define PG_OLDEST 0x0002 245 #define PG_PIPE_OUT 0x0004 246 #define PG_EXACT_MATCH 0x0008 247 248 typedef struct pgrep_data { 249 uint_t pg_flags; 250 uint_t pg_psflags; 251 uintptr_t pg_xaddr; 252 hrtime_t pg_xstart; 253 const char *pg_pat; 254 #ifndef _KMDB 255 regex_t pg_reg; 256 #endif 257 } pgrep_data_t; 258 259 /*ARGSUSED*/ 260 static int 261 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 262 { 263 const proc_t *prp = pdata; 264 pgrep_data_t *pgp = data; 265 #ifndef _KMDB 266 regmatch_t pmatch; 267 #endif 268 269 /* 270 * kmdb doesn't have access to the reg* functions, so we fall back 271 * to strstr/strcmp. 272 */ 273 #ifdef _KMDB 274 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 275 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 276 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 277 return (WALK_NEXT); 278 #else 279 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 280 return (WALK_NEXT); 281 282 if ((pgp->pg_flags & PG_EXACT_MATCH) && 283 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 284 return (WALK_NEXT); 285 #endif 286 287 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 288 hrtime_t start; 289 290 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 291 prp->p_user.u_start.tv_nsec; 292 293 if (pgp->pg_flags & PG_NEWEST) { 294 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 295 pgp->pg_xaddr = addr; 296 pgp->pg_xstart = start; 297 } 298 } else { 299 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 300 pgp->pg_xaddr = addr; 301 pgp->pg_xstart = start; 302 } 303 } 304 305 } else if (pgp->pg_flags & PG_PIPE_OUT) { 306 mdb_printf("%p\n", addr); 307 308 } else { 309 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 310 mdb_warn("can't invoke 'ps'"); 311 return (WALK_DONE); 312 } 313 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 314 } 315 316 return (WALK_NEXT); 317 } 318 319 /*ARGSUSED*/ 320 int 321 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 322 { 323 pgrep_data_t pg; 324 int i; 325 #ifndef _KMDB 326 int err; 327 #endif 328 329 if (flags & DCMD_ADDRSPEC) 330 return (DCMD_USAGE); 331 332 pg.pg_flags = 0; 333 pg.pg_xaddr = 0; 334 335 i = mdb_getopts(argc, argv, 336 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 337 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 338 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 339 NULL); 340 341 argc -= i; 342 argv += i; 343 344 if (argc != 1) 345 return (DCMD_USAGE); 346 347 /* 348 * -n and -o are mutually exclusive. 349 */ 350 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 351 return (DCMD_USAGE); 352 353 if (argv->a_type != MDB_TYPE_STRING) 354 return (DCMD_USAGE); 355 356 if (flags & DCMD_PIPE_OUT) 357 pg.pg_flags |= PG_PIPE_OUT; 358 359 pg.pg_pat = argv->a_un.a_str; 360 if (DCMD_HDRSPEC(flags)) 361 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 362 else 363 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 364 365 #ifndef _KMDB 366 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 367 size_t nbytes; 368 char *buf; 369 370 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 371 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 372 (void) regerror(err, &pg.pg_reg, buf, nbytes); 373 mdb_warn("%s\n", buf); 374 375 return (DCMD_ERR); 376 } 377 #endif 378 379 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 380 mdb_warn("can't walk 'proc'"); 381 return (DCMD_ERR); 382 } 383 384 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 385 if (pg.pg_flags & PG_PIPE_OUT) { 386 mdb_printf("%p\n", pg.pg_xaddr); 387 } else { 388 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 389 0, NULL) != 0) { 390 mdb_warn("can't invoke 'ps'"); 391 return (DCMD_ERR); 392 } 393 } 394 } 395 396 return (DCMD_OK); 397 } 398 399 int 400 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 401 { 402 task_t tk; 403 kproject_t pj; 404 405 if (!(flags & DCMD_ADDRSPEC)) { 406 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 407 mdb_warn("can't walk task_cache"); 408 return (DCMD_ERR); 409 } 410 return (DCMD_OK); 411 } 412 if (DCMD_HDRSPEC(flags)) { 413 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 414 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 415 } 416 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 417 mdb_warn("can't read task_t structure at %p", addr); 418 return (DCMD_ERR); 419 } 420 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 421 mdb_warn("can't read project_t structure at %p", addr); 422 return (DCMD_ERR); 423 } 424 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 425 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 426 tk.tk_flags); 427 return (DCMD_OK); 428 } 429 430 int 431 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 432 { 433 kproject_t pj; 434 435 if (!(flags & DCMD_ADDRSPEC)) { 436 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 437 mdb_warn("can't walk projects"); 438 return (DCMD_ERR); 439 } 440 return (DCMD_OK); 441 } 442 if (DCMD_HDRSPEC(flags)) { 443 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 444 "ADDR", "PROJID", "ZONEID", "REFCNT"); 445 } 446 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 447 mdb_warn("can't read kproject_t structure at %p", addr); 448 return (DCMD_ERR); 449 } 450 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 451 pj.kpj_count); 452 return (DCMD_OK); 453 } 454 455 /* walk callouts themselves, either by list or id hash. */ 456 int 457 callout_walk_init(mdb_walk_state_t *wsp) 458 { 459 if (wsp->walk_addr == NULL) { 460 mdb_warn("callout doesn't support global walk"); 461 return (WALK_ERR); 462 } 463 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP); 464 return (WALK_NEXT); 465 } 466 467 #define CALLOUT_WALK_BYLIST 0 468 #define CALLOUT_WALK_BYID 1 469 470 /* the walker arg switches between walking by list (0) and walking by id (1). */ 471 int 472 callout_walk_step(mdb_walk_state_t *wsp) 473 { 474 int retval; 475 476 if (wsp->walk_addr == NULL) { 477 return (WALK_DONE); 478 } 479 if (mdb_vread(wsp->walk_data, sizeof (callout_t), 480 wsp->walk_addr) == -1) { 481 mdb_warn("failed to read callout at %p", wsp->walk_addr); 482 return (WALK_DONE); 483 } 484 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 485 wsp->walk_cbdata); 486 487 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) { 488 wsp->walk_addr = 489 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext); 490 } else { 491 wsp->walk_addr = 492 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext); 493 } 494 495 return (retval); 496 } 497 498 void 499 callout_walk_fini(mdb_walk_state_t *wsp) 500 { 501 mdb_free(wsp->walk_data, sizeof (callout_t)); 502 } 503 504 /* 505 * walker for callout lists. This is different from hashes and callouts. 506 * Thankfully, it's also simpler. 507 */ 508 int 509 callout_list_walk_init(mdb_walk_state_t *wsp) 510 { 511 if (wsp->walk_addr == NULL) { 512 mdb_warn("callout list doesn't support global walk"); 513 return (WALK_ERR); 514 } 515 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP); 516 return (WALK_NEXT); 517 } 518 519 int 520 callout_list_walk_step(mdb_walk_state_t *wsp) 521 { 522 int retval; 523 524 if (wsp->walk_addr == NULL) { 525 return (WALK_DONE); 526 } 527 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t), 528 wsp->walk_addr) != sizeof (callout_list_t)) { 529 mdb_warn("failed to read callout_list at %p", wsp->walk_addr); 530 return (WALK_ERR); 531 } 532 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 533 wsp->walk_cbdata); 534 535 wsp->walk_addr = (uintptr_t) 536 (((callout_list_t *)wsp->walk_data)->cl_next); 537 538 return (retval); 539 } 540 541 void 542 callout_list_walk_fini(mdb_walk_state_t *wsp) 543 { 544 mdb_free(wsp->walk_data, sizeof (callout_list_t)); 545 } 546 547 /* routines/structs to walk callout table(s) */ 548 typedef struct cot_data { 549 callout_table_t *ct0; 550 callout_table_t ct; 551 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 552 callout_hash_t cot_clhash[CALLOUT_BUCKETS]; 553 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS]; 554 int cotndx; 555 int cotsize; 556 } cot_data_t; 557 558 int 559 callout_table_walk_init(mdb_walk_state_t *wsp) 560 { 561 int max_ncpus; 562 cot_data_t *cot_walk_data; 563 564 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP); 565 566 if (wsp->walk_addr == NULL) { 567 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) { 568 mdb_warn("failed to read 'callout_table'"); 569 return (WALK_ERR); 570 } 571 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 572 mdb_warn("failed to get callout_table array size"); 573 return (WALK_ERR); 574 } 575 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus; 576 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0; 577 } else { 578 /* not a global walk */ 579 cot_walk_data->cotsize = 1; 580 } 581 582 cot_walk_data->cotndx = 0; 583 wsp->walk_data = cot_walk_data; 584 585 return (WALK_NEXT); 586 } 587 588 int 589 callout_table_walk_step(mdb_walk_state_t *wsp) 590 { 591 int retval; 592 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data; 593 size_t size; 594 595 if (cotwd->cotndx >= cotwd->cotsize) { 596 return (WALK_DONE); 597 } 598 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t), 599 wsp->walk_addr) != sizeof (callout_table_t)) { 600 mdb_warn("failed to read callout_table at %p", wsp->walk_addr); 601 return (WALK_ERR); 602 } 603 604 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 605 if (cotwd->ct.ct_idhash != NULL) { 606 if (mdb_vread(cotwd->cot_idhash, size, 607 (uintptr_t)(cotwd->ct.ct_idhash)) != size) { 608 mdb_warn("failed to read id_hash at %p", 609 cotwd->ct.ct_idhash); 610 return (WALK_ERR); 611 } 612 } 613 if (cotwd->ct.ct_clhash != NULL) { 614 if (mdb_vread(&(cotwd->cot_clhash), size, 615 (uintptr_t)cotwd->ct.ct_clhash) == -1) { 616 mdb_warn("failed to read cl_hash at %p", 617 cotwd->ct.ct_clhash); 618 return (WALK_ERR); 619 } 620 } 621 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS; 622 if (cotwd->ct.ct_kstat_data != NULL) { 623 if (mdb_vread(&(cotwd->ct_kstat_data), size, 624 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) { 625 mdb_warn("failed to read kstats at %p", 626 cotwd->ct.ct_kstat_data); 627 return (WALK_ERR); 628 } 629 } 630 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd, 631 wsp->walk_cbdata); 632 633 cotwd->cotndx++; 634 if (cotwd->cotndx >= cotwd->cotsize) { 635 return (WALK_DONE); 636 } 637 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr + 638 sizeof (callout_table_t)); 639 640 return (retval); 641 } 642 643 void 644 callout_table_walk_fini(mdb_walk_state_t *wsp) 645 { 646 mdb_free(wsp->walk_data, sizeof (cot_data_t)); 647 } 648 649 static const char *co_typenames[] = { "R", "N" }; 650 651 #define CO_PLAIN_ID(xid) ((xid) & ~CALLOUT_EXECUTING) 652 653 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS) 654 655 /* callout flags, in no particular order */ 656 #define COF_REAL 0x0000001 657 #define COF_NORM 0x0000002 658 #define COF_LONG 0x0000004 659 #define COF_SHORT 0x0000008 660 #define COF_EMPTY 0x0000010 661 #define COF_TIME 0x0000020 662 #define COF_BEFORE 0x0000040 663 #define COF_AFTER 0x0000080 664 #define COF_SEQID 0x0000100 665 #define COF_FUNC 0x0000200 666 #define COF_ADDR 0x0000400 667 #define COF_EXEC 0x0000800 668 #define COF_HIRES 0x0001000 669 /* 0x0002000 reserved for future flags */ 670 #define COF_TABLE 0x0004000 671 #define COF_BYIDH 0x0008000 672 #define COF_FREE 0x0010000 673 #define COF_LIST 0x0020000 674 #define COF_EXPREL 0x0040000 675 #define COF_HDR 0x0080000 676 #define COF_VERBOSE 0x0100000 677 #define COF_LONGLIST 0x0200000 678 #define COF_THDR 0x0400000 679 #define COF_LHDR 0x0800000 680 #define COF_CHDR 0x1000000 681 #define COF_PARAM 0x2000000 682 #define COF_DECODE 0x4000000 683 684 /* show real and normal, short and long, expired and unexpired. */ 685 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT) 686 687 /* private callout data for callback functions */ 688 typedef struct callout_data { 689 uint_t flags; /* COF_* */ 690 cpu_t *cpu; /* cpu pointer if given */ 691 int seqid; /* cpu seqid, or -1 */ 692 hrtime_t time; /* expiration time value */ 693 hrtime_t atime; /* expiration before value */ 694 hrtime_t btime; /* expiration after value */ 695 uintptr_t funcaddr; /* function address or NULL */ 696 uintptr_t param; /* parameter to function or NULL */ 697 hrtime_t now; /* current system time */ 698 int nsec_per_tick; /* for conversions */ 699 ulong_t ctbits; /* for decoding xid */ 700 callout_table_t *co_table; /* top of callout table array */ 701 int ndx; /* table index. */ 702 int bucket; /* which list/id bucket are we in */ 703 hrtime_t exp; /* expire time */ 704 } callout_data_t; 705 706 /* this callback does the actual callback itself (finally). */ 707 /*ARGSUSED*/ 708 static int 709 callouts_cb(uintptr_t addr, const void *data, void *priv) 710 { 711 callout_data_t *coargs = (callout_data_t *)priv; 712 callout_t *co = (callout_t *)data; 713 int tableid; 714 callout_id_t coid; 715 716 if ((coargs == NULL) || (co == NULL)) { 717 return (WALK_ERR); 718 } 719 720 if ((coargs->flags & COF_FUNC) && 721 (coargs->funcaddr != (uintptr_t)co->c_func)) { 722 return (WALK_NEXT); 723 } 724 if ((coargs->flags & COF_PARAM) && 725 (coargs->param != (uintptr_t)co->c_arg)) { 726 return (WALK_NEXT); 727 } 728 729 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) { 730 return (WALK_NEXT); 731 } 732 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) { 733 return (WALK_NEXT); 734 } 735 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) { 736 return (WALK_NEXT); 737 } 738 if ((coargs->flags & COF_HIRES) && !(co->c_xid & CALLOUT_HRESTIME)) { 739 return (WALK_NEXT); 740 } 741 742 /* it is possible we don't have the exp time */ 743 if (coargs->flags & COF_BYIDH) { 744 if (!(coargs->flags & COF_FREE)) { 745 /* we have to fetch the expire time ourselves. */ 746 if (mdb_vread(&coargs->exp, sizeof (hrtime_t), 747 (uintptr_t)co->c_list + offsetof(callout_list_t, 748 cl_expiration)) == -1) { 749 mdb_warn("failed to read expiration " 750 "time from %p", co->c_list); 751 coargs->exp = 0; 752 } 753 } else { 754 /* free callouts can't use list pointer. */ 755 coargs->exp = 0; 756 } 757 } 758 759 #define callout_table_mask ((1 << coargs->ctbits) - 1) 760 tableid = CALLOUT_ID_TO_TABLE(co->c_xid); 761 #undef callout_table_mask 762 coid = CO_PLAIN_ID(co->c_xid); 763 764 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) { 765 /* 766 * We need to print the headers. If walking by id, then 767 * the list header isn't printed, so we must include 768 * that info here. 769 */ 770 if (!(coargs->flags & COF_VERBOSE)) { 771 mdb_printf("%<u>%3s %-1s %-14s %</u>", 772 "SEQ", "T", "EXP"); 773 } else if (coargs->flags & COF_BYIDH) { 774 mdb_printf("%<u>%-14s %</u>", "EXP"); 775 } 776 mdb_printf("%<u>%-3s %-?s %-20s%</u>", 777 "XHL", "XID", "FUNC(ARG)"); 778 if (coargs->flags & COF_LONGLIST) { 779 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>", 780 "PREVID", "NEXTID", "PREVL", "NEXTL"); 781 } 782 mdb_printf("\n"); 783 coargs->flags &= ~COF_CHDR; 784 coargs->flags |= (COF_THDR | COF_LHDR); 785 } 786 787 if (!(coargs->flags & COF_ADDR)) { 788 if (!(coargs->flags & COF_VERBOSE)) { 789 mdb_printf("%-3d %1s %-14llx ", 790 TABLE_TO_SEQID(tableid), 791 co_typenames[tableid & CALLOUT_TYPE_MASK], 792 (coargs->flags & COF_EXPREL) ? 793 coargs->exp - coargs->now : coargs->exp); 794 } else if (coargs->flags & COF_BYIDH) { 795 mdb_printf("%-14x ", 796 (coargs->flags & COF_EXPREL) ? 797 coargs->exp - coargs->now : coargs->exp); 798 } 799 mdb_printf("%1s%1s%1s %-?llx %a(%p)", 800 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ", 801 (co->c_xid & CALLOUT_HRESTIME) ? "H" : " ", 802 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ", 803 (long long)coid, co->c_func, co->c_arg); 804 if (coargs->flags & COF_LONGLIST) { 805 mdb_printf(" %-?p %-?p %-?p %-?p", 806 co->c_idprev, co->c_idnext, co->c_clprev, 807 co->c_clnext); 808 } 809 } else { 810 /* address only */ 811 mdb_printf("%-0p", addr); 812 } 813 mdb_printf("\n"); 814 return (WALK_NEXT); 815 } 816 817 /* this callback is for callout list handling. idhash is done by callout_t_cb */ 818 /*ARGSUSED*/ 819 static int 820 callout_list_cb(uintptr_t addr, const void *data, void *priv) 821 { 822 callout_data_t *coargs = (callout_data_t *)priv; 823 callout_list_t *cl = (callout_list_t *)data; 824 callout_t *coptr; 825 826 if ((coargs == NULL) || (cl == NULL)) { 827 return (WALK_ERR); 828 } 829 830 coargs->exp = cl->cl_expiration; 831 if ((coargs->flags & COF_TIME) && 832 (cl->cl_expiration != coargs->time)) { 833 return (WALK_NEXT); 834 } 835 if ((coargs->flags & COF_BEFORE) && 836 (cl->cl_expiration > coargs->btime)) { 837 return (WALK_NEXT); 838 } 839 if ((coargs->flags & COF_AFTER) && 840 (cl->cl_expiration < coargs->atime)) { 841 return (WALK_NEXT); 842 } 843 if (!(coargs->flags & COF_EMPTY) && 844 (cl->cl_callouts.ch_head == NULL)) { 845 return (WALK_NEXT); 846 } 847 848 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) && 849 (coargs->flags & (COF_LIST | COF_VERBOSE))) { 850 if (!(coargs->flags & COF_VERBOSE)) { 851 /* don't be redundant again */ 852 mdb_printf("%<u>SEQ T %</u>"); 853 } 854 mdb_printf("%<u>EXP BUCKET " 855 "CALLOUTS UTOS THREAD %</u>"); 856 857 if (coargs->flags & COF_LONGLIST) { 858 mdb_printf("%<u> %-?s %-?s %-?s%</u>", 859 "DONE", "PREV", "NEXT"); 860 } 861 mdb_printf("\n"); 862 coargs->flags &= ~COF_LHDR; 863 coargs->flags |= (COF_THDR | COF_CHDR); 864 } 865 if (coargs->flags & (COF_LIST | COF_VERBOSE)) { 866 if (!(coargs->flags & COF_ADDR)) { 867 if (!(coargs->flags & COF_VERBOSE)) { 868 mdb_printf("%3d %1s ", 869 TABLE_TO_SEQID(coargs->ndx), 870 co_typenames[coargs->ndx & 871 CALLOUT_TYPE_MASK]); 872 } 873 874 mdb_printf("%-14llx %-6d %-0?p %-4d %-0?p", 875 (coargs->flags & COF_EXPREL) ? 876 coargs->exp - coargs->now : coargs->exp, 877 coargs->bucket, cl->cl_callouts.ch_head, 878 cl->cl_waiting, cl->cl_executor); 879 880 if (coargs->flags & COF_LONGLIST) { 881 mdb_printf(" %-?p %-?p %-?p", 882 cl->cl_done, cl->cl_prev, cl->cl_next); 883 } 884 } else { 885 /* address only */ 886 mdb_printf("%-0p", addr); 887 } 888 mdb_printf("\n"); 889 if (coargs->flags & COF_LIST) { 890 return (WALK_NEXT); 891 } 892 } 893 /* yet another layer as we walk the actual callouts via list. */ 894 if (cl->cl_callouts.ch_head == NULL) { 895 return (WALK_NEXT); 896 } 897 /* free list structures do not have valid callouts off of them. */ 898 if (coargs->flags & COF_FREE) { 899 return (WALK_NEXT); 900 } 901 coptr = (callout_t *)cl->cl_callouts.ch_head; 902 903 if (coargs->flags & COF_VERBOSE) { 904 mdb_inc_indent(4); 905 } 906 /* 907 * walk callouts using yet another callback routine. 908 * we use callouts_bytime because id hash is handled via 909 * the callout_t_cb callback. 910 */ 911 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs, 912 (uintptr_t)coptr) == -1) { 913 mdb_warn("cannot walk callouts at %p", coptr); 914 return (WALK_ERR); 915 } 916 if (coargs->flags & COF_VERBOSE) { 917 mdb_dec_indent(4); 918 } 919 920 return (WALK_NEXT); 921 } 922 923 /* this callback handles the details of callout table walking. */ 924 static int 925 callout_t_cb(uintptr_t addr, const void *data, void *priv) 926 { 927 callout_data_t *coargs = (callout_data_t *)priv; 928 cot_data_t *cotwd = (cot_data_t *)data; 929 callout_table_t *ct = &(cotwd->ct); 930 int index, seqid, cotype; 931 int i; 932 callout_list_t *clptr; 933 callout_t *coptr; 934 935 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) { 936 return (WALK_ERR); 937 } 938 939 index = ((char *)addr - (char *)coargs->co_table) / 940 sizeof (callout_table_t); 941 cotype = index & CALLOUT_TYPE_MASK; 942 seqid = TABLE_TO_SEQID(index); 943 944 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) { 945 return (WALK_NEXT); 946 } 947 948 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) { 949 return (WALK_NEXT); 950 } 951 952 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) { 953 return (WALK_NEXT); 954 } 955 956 if (!(coargs->flags & COF_EMPTY) && ( 957 (ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) { 958 return (WALK_NEXT); 959 } 960 961 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) && 962 (coargs->flags & (COF_TABLE | COF_VERBOSE))) { 963 /* print table hdr */ 964 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>", 965 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP"); 966 coargs->flags &= ~COF_THDR; 967 coargs->flags |= (COF_LHDR | COF_CHDR); 968 if (coargs->flags & COF_LONGLIST) { 969 /* more info! */ 970 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s" 971 " %-?s %-?s %-?s%</u>", 972 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", 973 "PEND", "FREE", "LOCK"); 974 } 975 mdb_printf("\n"); 976 } 977 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) { 978 if (!(coargs->flags & COF_ADDR)) { 979 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p", 980 seqid, co_typenames[cotype], 981 ct->ct_free, ct->ct_lfree, ct->ct_cyclic, 982 ct->ct_heap); 983 if (coargs->flags & COF_LONGLIST) { 984 /* more info! */ 985 mdb_printf(" %-7d %-7d %-?p %-?p" 986 " %-?lld %-?lld %-?p", 987 ct->ct_heap_num, ct->ct_heap_max, 988 ct->ct_taskq, ct->ct_expired.ch_head, 989 cotwd->ct_timeouts_pending, 990 cotwd->ct_allocations - 991 cotwd->ct_timeouts_pending, 992 ct->ct_mutex); 993 } 994 } else { 995 /* address only */ 996 mdb_printf("%-0?p", addr); 997 } 998 mdb_printf("\n"); 999 if (coargs->flags & COF_TABLE) { 1000 return (WALK_NEXT); 1001 } 1002 } 1003 1004 coargs->ndx = index; 1005 if (coargs->flags & COF_VERBOSE) { 1006 mdb_inc_indent(4); 1007 } 1008 /* keep digging. */ 1009 if (!(coargs->flags & COF_BYIDH)) { 1010 /* walk the list hash table */ 1011 if (coargs->flags & COF_FREE) { 1012 clptr = ct->ct_lfree; 1013 coargs->bucket = 0; 1014 if (clptr == NULL) { 1015 return (WALK_NEXT); 1016 } 1017 if (mdb_pwalk("callout_list", callout_list_cb, coargs, 1018 (uintptr_t)clptr) == -1) { 1019 mdb_warn("cannot walk callout free list at %p", 1020 clptr); 1021 return (WALK_ERR); 1022 } 1023 } else { 1024 /* first print the expired list. */ 1025 clptr = (callout_list_t *)ct->ct_expired.ch_head; 1026 if (clptr != NULL) { 1027 coargs->bucket = -1; 1028 if (mdb_pwalk("callout_list", callout_list_cb, 1029 coargs, (uintptr_t)clptr) == -1) { 1030 mdb_warn("cannot walk callout_list" 1031 " at %p", clptr); 1032 return (WALK_ERR); 1033 } 1034 } 1035 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1036 if (ct->ct_clhash == NULL) { 1037 /* nothing to do */ 1038 break; 1039 } 1040 if (cotwd->cot_clhash[i].ch_head == NULL) { 1041 continue; 1042 } 1043 clptr = (callout_list_t *) 1044 cotwd->cot_clhash[i].ch_head; 1045 coargs->bucket = i; 1046 /* walk list with callback routine. */ 1047 if (mdb_pwalk("callout_list", callout_list_cb, 1048 coargs, (uintptr_t)clptr) == -1) { 1049 mdb_warn("cannot walk callout_list" 1050 " at %p", clptr); 1051 return (WALK_ERR); 1052 } 1053 } 1054 } 1055 } else { 1056 /* walk the id hash table. */ 1057 if (coargs->flags & COF_FREE) { 1058 coptr = ct->ct_free; 1059 coargs->bucket = 0; 1060 if (coptr == NULL) { 1061 return (WALK_NEXT); 1062 } 1063 if (mdb_pwalk("callouts_byid", callouts_cb, coargs, 1064 (uintptr_t)coptr) == -1) { 1065 mdb_warn("cannot walk callout id free list" 1066 " at %p", coptr); 1067 return (WALK_ERR); 1068 } 1069 } else { 1070 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1071 if (ct->ct_idhash == NULL) { 1072 break; 1073 } 1074 coptr = (callout_t *) 1075 cotwd->cot_idhash[i].ch_head; 1076 if (coptr == NULL) { 1077 continue; 1078 } 1079 coargs->bucket = i; 1080 1081 /* 1082 * walk callouts directly by id. For id 1083 * chain, the callout list is just a header, 1084 * so there's no need to walk it. 1085 */ 1086 if (mdb_pwalk("callouts_byid", callouts_cb, 1087 coargs, (uintptr_t)coptr) == -1) { 1088 mdb_warn("cannot walk callouts at %p", 1089 coptr); 1090 return (WALK_ERR); 1091 } 1092 } 1093 } 1094 } 1095 if (coargs->flags & COF_VERBOSE) { 1096 mdb_dec_indent(4); 1097 } 1098 return (WALK_NEXT); 1099 } 1100 1101 /* 1102 * initialize some common info for both callout dcmds. 1103 */ 1104 int 1105 callout_common_init(callout_data_t *coargs) 1106 { 1107 /* we need a couple of things */ 1108 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) { 1109 mdb_warn("failed to read 'callout_table'"); 1110 return (DCMD_ERR); 1111 } 1112 /* need to get now in nsecs. Approximate with hrtime vars */ 1113 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") != 1114 sizeof (hrtime_t)) { 1115 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), 1116 "hrtime_base") != sizeof (hrtime_t)) { 1117 mdb_warn("Could not determine current system time"); 1118 return (DCMD_ERR); 1119 } 1120 } 1121 1122 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) { 1123 mdb_warn("failed to read 'callout_table_bits'"); 1124 return (DCMD_ERR); 1125 } 1126 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) { 1127 mdb_warn("failed to read 'nsec_per_tick'"); 1128 return (DCMD_ERR); 1129 } 1130 return (DCMD_OK); 1131 } 1132 1133 /* 1134 * dcmd to print callouts. Optional addr limits to specific table. 1135 * Parses lots of options that get passed to callbacks for walkers. 1136 * Has it's own help function. 1137 */ 1138 /*ARGSUSED*/ 1139 int 1140 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1141 { 1142 callout_data_t coargs; 1143 /* getopts doesn't help much with stuff like this */ 1144 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag; 1145 char *funcname = NULL; 1146 char *paramstr = NULL; 1147 uintptr_t Stmp, Ctmp; /* for getopt. */ 1148 int retval; 1149 1150 coargs.flags = COF_DEFAULT; 1151 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE; 1152 coargs.seqid = -1; 1153 1154 if (mdb_getopts(argc, argv, 1155 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags, 1156 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags, 1157 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags, 1158 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags, 1159 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags, 1160 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags, 1161 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags, 1162 'd', MDB_OPT_SETBITS, 1, &dflag, 1163 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp, 1164 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp, 1165 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time, 1166 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime, 1167 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime, 1168 'k', MDB_OPT_SETBITS, 1, &kflag, 1169 'f', MDB_OPT_STR, &funcname, 1170 'p', MDB_OPT_STR, ¶mstr, 1171 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags, 1172 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags, 1173 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags, 1174 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags, 1175 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1176 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags, 1177 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags, 1178 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags, 1179 NULL) != argc) { 1180 return (DCMD_USAGE); 1181 } 1182 1183 /* initialize from kernel variables */ 1184 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1185 return (retval); 1186 } 1187 1188 /* do some option post-processing */ 1189 if (kflag) { 1190 coargs.time *= coargs.nsec_per_tick; 1191 coargs.atime *= coargs.nsec_per_tick; 1192 coargs.btime *= coargs.nsec_per_tick; 1193 } 1194 1195 if (dflag) { 1196 coargs.time += coargs.now; 1197 coargs.atime += coargs.now; 1198 coargs.btime += coargs.now; 1199 } 1200 if (Sflag) { 1201 if (flags & DCMD_ADDRSPEC) { 1202 mdb_printf("-S option conflicts with explicit" 1203 " address\n"); 1204 return (DCMD_USAGE); 1205 } 1206 coargs.flags |= COF_SEQID; 1207 coargs.seqid = (int)Stmp; 1208 } 1209 if (Cflag) { 1210 if (flags & DCMD_ADDRSPEC) { 1211 mdb_printf("-C option conflicts with explicit" 1212 " address\n"); 1213 return (DCMD_USAGE); 1214 } 1215 if (coargs.flags & COF_SEQID) { 1216 mdb_printf("-C and -S are mutually exclusive\n"); 1217 return (DCMD_USAGE); 1218 } 1219 coargs.cpu = (cpu_t *)Ctmp; 1220 if (mdb_vread(&coargs.seqid, sizeof (processorid_t), 1221 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) { 1222 mdb_warn("failed to read cpu_t at %p", Ctmp); 1223 return (DCMD_ERR); 1224 } 1225 coargs.flags |= COF_SEQID; 1226 } 1227 /* avoid null outputs. */ 1228 if (!(coargs.flags & (COF_REAL | COF_NORM))) { 1229 coargs.flags |= COF_REAL | COF_NORM; 1230 } 1231 if (!(coargs.flags & (COF_LONG | COF_SHORT))) { 1232 coargs.flags |= COF_LONG | COF_SHORT; 1233 } 1234 if (tflag) { 1235 if (aflag || bflag) { 1236 mdb_printf("-t and -a|b are mutually exclusive\n"); 1237 return (DCMD_USAGE); 1238 } 1239 coargs.flags |= COF_TIME; 1240 } 1241 if (aflag) { 1242 coargs.flags |= COF_AFTER; 1243 } 1244 if (bflag) { 1245 coargs.flags |= COF_BEFORE; 1246 } 1247 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) { 1248 mdb_printf("value for -a must be earlier than the value" 1249 " for -b.\n"); 1250 return (DCMD_USAGE); 1251 } 1252 1253 if (funcname != NULL) { 1254 GElf_Sym sym; 1255 1256 if (mdb_lookup_by_name(funcname, &sym) != 0) { 1257 coargs.funcaddr = mdb_strtoull(funcname); 1258 } else { 1259 coargs.funcaddr = sym.st_value; 1260 } 1261 coargs.flags |= COF_FUNC; 1262 } 1263 1264 if (paramstr != NULL) { 1265 GElf_Sym sym; 1266 1267 if (mdb_lookup_by_name(paramstr, &sym) != 0) { 1268 coargs.param = mdb_strtoull(paramstr); 1269 } else { 1270 coargs.param = sym.st_value; 1271 } 1272 coargs.flags |= COF_PARAM; 1273 } 1274 1275 if (!(flags & DCMD_ADDRSPEC)) { 1276 /* don't pass "dot" if no addr. */ 1277 addr = NULL; 1278 } 1279 if (addr != NULL) { 1280 /* 1281 * a callout table was specified. Ignore -r|n option 1282 * to avoid null output. 1283 */ 1284 coargs.flags |= (COF_REAL | COF_NORM); 1285 } 1286 1287 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) { 1288 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR; 1289 } 1290 if (coargs.flags & COF_FREE) { 1291 coargs.flags |= COF_EMPTY; 1292 /* -F = free callouts, -FL = free lists */ 1293 if (!(coargs.flags & COF_LIST)) { 1294 coargs.flags |= COF_BYIDH; 1295 } 1296 } 1297 1298 /* walk table, using specialized callback routine. */ 1299 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) { 1300 mdb_warn("cannot walk callout_table"); 1301 return (DCMD_ERR); 1302 } 1303 return (DCMD_OK); 1304 } 1305 1306 1307 /* 1308 * Given an extended callout id, dump its information. 1309 */ 1310 /*ARGSUSED*/ 1311 int 1312 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1313 { 1314 callout_data_t coargs; 1315 callout_table_t *ctptr; 1316 callout_table_t ct; 1317 callout_id_t coid; 1318 callout_t *coptr; 1319 int tableid; 1320 callout_id_t xid; 1321 ulong_t idhash; 1322 int i, retval; 1323 const mdb_arg_t *arg; 1324 size_t size; 1325 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 1326 1327 coargs.flags = COF_DEFAULT | COF_BYIDH; 1328 i = mdb_getopts(argc, argv, 1329 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags, 1330 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1331 NULL); 1332 argc -= i; 1333 argv += i; 1334 1335 if (argc != 1) { 1336 return (DCMD_USAGE); 1337 } 1338 arg = &argv[0]; 1339 1340 if (arg->a_type == MDB_TYPE_IMMEDIATE) { 1341 xid = arg->a_un.a_val; 1342 } else { 1343 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str); 1344 } 1345 1346 if (DCMD_HDRSPEC(flags)) { 1347 coargs.flags |= COF_CHDR; 1348 } 1349 1350 1351 /* initialize from kernel variables */ 1352 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1353 return (retval); 1354 } 1355 1356 /* we must massage the environment so that the macros will play nice */ 1357 #define callout_table_mask ((1 << coargs.ctbits) - 1) 1358 #define callout_table_bits coargs.ctbits 1359 #define nsec_per_tick coargs.nsec_per_tick 1360 tableid = CALLOUT_ID_TO_TABLE(xid); 1361 idhash = CALLOUT_IDHASH(xid); 1362 #undef callouts_table_bits 1363 #undef callout_table_mask 1364 #undef nsec_per_tick 1365 coid = CO_PLAIN_ID(xid); 1366 1367 if (flags & DCMD_ADDRSPEC) { 1368 mdb_printf("calloutid does not accept explicit address.\n"); 1369 return (DCMD_USAGE); 1370 } 1371 1372 if (coargs.flags & COF_DECODE) { 1373 if (DCMD_HDRSPEC(flags)) { 1374 mdb_printf("%<u>%3s %1s %3s %-?s %-6s %</u>\n", 1375 "SEQ", "T", "XHL", "XID", "IDHASH"); 1376 } 1377 mdb_printf("%-3d %1s %1s%1s%1s %-?llx %-6d\n", 1378 TABLE_TO_SEQID(tableid), 1379 co_typenames[tableid & CALLOUT_TYPE_MASK], 1380 (xid & CALLOUT_EXECUTING) ? "X" : " ", 1381 (xid & CALLOUT_HRESTIME) ? "H" : " ", 1382 (xid & CALLOUT_LONGTERM) ? "L" : " ", 1383 (long long)coid, idhash); 1384 return (DCMD_OK); 1385 } 1386 1387 /* get our table. Note this relies on the types being correct */ 1388 ctptr = coargs.co_table + tableid; 1389 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) { 1390 mdb_warn("failed to read callout_table at %p", ctptr); 1391 return (DCMD_ERR); 1392 } 1393 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 1394 if (ct.ct_idhash != NULL) { 1395 if (mdb_vread(&(cot_idhash), size, 1396 (uintptr_t)ct.ct_idhash) == -1) { 1397 mdb_warn("failed to read id_hash at %p", 1398 ct.ct_idhash); 1399 return (WALK_ERR); 1400 } 1401 } 1402 1403 /* callout at beginning of hash chain */ 1404 if (ct.ct_idhash == NULL) { 1405 mdb_printf("id hash chain for this xid is empty\n"); 1406 return (DCMD_ERR); 1407 } 1408 coptr = (callout_t *)cot_idhash[idhash].ch_head; 1409 if (coptr == NULL) { 1410 mdb_printf("id hash chain for this xid is empty\n"); 1411 return (DCMD_ERR); 1412 } 1413 1414 coargs.ndx = tableid; 1415 coargs.bucket = idhash; 1416 1417 /* use the walker, luke */ 1418 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs, 1419 (uintptr_t)coptr) == -1) { 1420 mdb_warn("cannot walk callouts at %p", coptr); 1421 return (WALK_ERR); 1422 } 1423 1424 return (DCMD_OK); 1425 } 1426 1427 void 1428 callout_help(void) 1429 { 1430 mdb_printf("callout: display callouts.\n" 1431 "Given a callout table address, display callouts from table.\n" 1432 "Without an address, display callouts from all tables.\n" 1433 "options:\n" 1434 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n" 1435 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n" 1436 " -x : limit display to callouts which are executing\n" 1437 " -h : limit display to callouts based on hrestime\n" 1438 " -t|a|b nsec: limit display to callouts that expire a(t) time," 1439 " (a)fter time,\n or (b)efore time. Use -a and -b together " 1440 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n" 1441 " -d : interpret time option to -t|a|b as delta from current time\n" 1442 " -k : use ticks instead of nanoseconds as arguments to" 1443 " -t|a|b. Note that\n ticks are less accurate and may not" 1444 " match other tick times (ie: lbolt).\n" 1445 " -D : display exiration time as delta from current time\n" 1446 " -S seqid : limit display to callouts for this cpu sequence id\n" 1447 " -C addr : limit display to callouts for this cpu pointer\n" 1448 " -f name|addr : limit display to callouts with this function\n" 1449 " -p name|addr : limit display to callouts functions with this" 1450 " parameter\n" 1451 " -T : display the callout table itself, instead of callouts\n" 1452 " -L : display callout lists instead of callouts\n" 1453 " -E : with -T or L, display empty data structures.\n" 1454 " -i : traverse callouts by id hash instead of list hash\n" 1455 " -F : walk free callout list (free list with -i) instead\n" 1456 " -v : display more info for each item\n" 1457 " -V : show details of each level of info as it is traversed\n" 1458 " -A : show only addresses. Useful for pipelines.\n"); 1459 } 1460 1461 void 1462 calloutid_help(void) 1463 { 1464 mdb_printf("calloutid: display callout by id.\n" 1465 "Given an extended callout id, display the callout infomation.\n" 1466 "options:\n" 1467 " -d : do not dereference callout, just decode the id.\n" 1468 " -v : verbose display more info about the callout\n"); 1469 } 1470 1471 /*ARGSUSED*/ 1472 int 1473 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1474 { 1475 long num_classes, i; 1476 sclass_t *class_tbl; 1477 GElf_Sym g_sclass; 1478 char class_name[PC_CLNMSZ]; 1479 size_t tbl_size; 1480 1481 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 1482 mdb_warn("failed to find symbol sclass\n"); 1483 return (DCMD_ERR); 1484 } 1485 1486 tbl_size = (size_t)g_sclass.st_size; 1487 num_classes = tbl_size / (sizeof (sclass_t)); 1488 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 1489 1490 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 1491 mdb_warn("failed to read sclass"); 1492 return (DCMD_ERR); 1493 } 1494 1495 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 1496 "INIT FCN", "CLASS FCN"); 1497 1498 for (i = 0; i < num_classes; i++) { 1499 if (mdb_vread(class_name, sizeof (class_name), 1500 (uintptr_t)class_tbl[i].cl_name) == -1) 1501 (void) strcpy(class_name, "???"); 1502 1503 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 1504 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 1505 } 1506 1507 return (DCMD_OK); 1508 } 1509 1510 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 1511 1512 int 1513 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1514 { 1515 uintptr_t rootdir; 1516 vnode_t vn; 1517 char buf[MAXPATHLEN]; 1518 1519 uint_t opt_F = FALSE; 1520 1521 if (mdb_getopts(argc, argv, 1522 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 1523 return (DCMD_USAGE); 1524 1525 if (!(flags & DCMD_ADDRSPEC)) { 1526 mdb_warn("expected explicit vnode_t address before ::\n"); 1527 return (DCMD_USAGE); 1528 } 1529 1530 if (mdb_readvar(&rootdir, "rootdir") == -1) { 1531 mdb_warn("failed to read rootdir"); 1532 return (DCMD_ERR); 1533 } 1534 1535 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 1536 return (DCMD_ERR); 1537 1538 if (*buf == '\0') { 1539 mdb_printf("??\n"); 1540 return (DCMD_OK); 1541 } 1542 1543 mdb_printf("%s", buf); 1544 if (opt_F && buf[strlen(buf)-1] != '/' && 1545 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 1546 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 1547 mdb_printf("\n"); 1548 1549 return (DCMD_OK); 1550 } 1551 1552 int 1553 ld_walk_init(mdb_walk_state_t *wsp) 1554 { 1555 wsp->walk_data = (void *)wsp->walk_addr; 1556 return (WALK_NEXT); 1557 } 1558 1559 int 1560 ld_walk_step(mdb_walk_state_t *wsp) 1561 { 1562 int status; 1563 lock_descriptor_t ld; 1564 1565 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 1566 mdb_warn("couldn't read lock_descriptor_t at %p\n", 1567 wsp->walk_addr); 1568 return (WALK_ERR); 1569 } 1570 1571 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 1572 if (status == WALK_ERR) 1573 return (WALK_ERR); 1574 1575 wsp->walk_addr = (uintptr_t)ld.l_next; 1576 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 1577 return (WALK_DONE); 1578 1579 return (status); 1580 } 1581 1582 int 1583 lg_walk_init(mdb_walk_state_t *wsp) 1584 { 1585 GElf_Sym sym; 1586 1587 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 1588 mdb_warn("failed to find symbol 'lock_graph'\n"); 1589 return (WALK_ERR); 1590 } 1591 1592 wsp->walk_addr = (uintptr_t)sym.st_value; 1593 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 1594 1595 return (WALK_NEXT); 1596 } 1597 1598 typedef struct lg_walk_data { 1599 uintptr_t startaddr; 1600 mdb_walk_cb_t callback; 1601 void *data; 1602 } lg_walk_data_t; 1603 1604 /* 1605 * We can't use ::walk lock_descriptor directly, because the head of each graph 1606 * is really a dummy lock. Rather than trying to dynamically determine if this 1607 * is a dummy node or not, we just filter out the initial element of the 1608 * list. 1609 */ 1610 static int 1611 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 1612 { 1613 lg_walk_data_t *lw = priv; 1614 1615 if (addr != lw->startaddr) 1616 return (lw->callback(addr, data, lw->data)); 1617 1618 return (WALK_NEXT); 1619 } 1620 1621 int 1622 lg_walk_step(mdb_walk_state_t *wsp) 1623 { 1624 graph_t *graph; 1625 lg_walk_data_t lw; 1626 1627 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 1628 return (WALK_DONE); 1629 1630 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 1631 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 1632 return (WALK_ERR); 1633 } 1634 1635 wsp->walk_addr += sizeof (graph); 1636 1637 if (graph == NULL) 1638 return (WALK_NEXT); 1639 1640 lw.callback = wsp->walk_callback; 1641 lw.data = wsp->walk_cbdata; 1642 1643 lw.startaddr = (uintptr_t)&(graph->active_locks); 1644 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1645 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1646 return (WALK_ERR); 1647 } 1648 1649 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 1650 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1651 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1652 return (WALK_ERR); 1653 } 1654 1655 return (WALK_NEXT); 1656 } 1657 1658 /* 1659 * The space available for the path corresponding to the locked vnode depends 1660 * on whether we are printing 32- or 64-bit addresses. 1661 */ 1662 #ifdef _LP64 1663 #define LM_VNPATHLEN 20 1664 #else 1665 #define LM_VNPATHLEN 30 1666 #endif 1667 1668 /*ARGSUSED*/ 1669 static int 1670 lminfo_cb(uintptr_t addr, const void *data, void *priv) 1671 { 1672 const lock_descriptor_t *ld = data; 1673 char buf[LM_VNPATHLEN]; 1674 proc_t p; 1675 1676 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 1677 addr, ld->l_type == F_RDLCK ? "RD" : 1678 ld->l_type == F_WRLCK ? "WR" : "??", 1679 ld->l_state, ld->l_flock.l_pid, 1680 ld->l_flock.l_pid == 0 ? "<kernel>" : 1681 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 1682 "<defunct>" : p.p_user.u_comm, 1683 ld->l_vnode); 1684 1685 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 1686 sizeof (buf)); 1687 mdb_printf("%s\n", buf); 1688 1689 return (WALK_NEXT); 1690 } 1691 1692 /*ARGSUSED*/ 1693 int 1694 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1695 { 1696 if (DCMD_HDRSPEC(flags)) 1697 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 1698 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 1699 1700 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 1701 } 1702 1703 /*ARGSUSED*/ 1704 int 1705 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1706 { 1707 struct seg s; 1708 1709 if (argc != 0) 1710 return (DCMD_USAGE); 1711 1712 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) { 1713 mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n", 1714 "SEG", "BASE", "SIZE", "DATA", "OPS"); 1715 } 1716 1717 if (mdb_vread(&s, sizeof (s), addr) == -1) { 1718 mdb_warn("failed to read seg at %p", addr); 1719 return (DCMD_ERR); 1720 } 1721 1722 mdb_printf("%?p %?p %?lx %?p %a\n", 1723 addr, s.s_base, s.s_size, s.s_data, s.s_ops); 1724 1725 return (DCMD_OK); 1726 } 1727 1728 /*ARGSUSED*/ 1729 static int 1730 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres) 1731 { 1732 uintptr_t pp = 1733 mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off); 1734 1735 if (pp != NULL) 1736 (*nres)++; 1737 1738 return (WALK_NEXT); 1739 } 1740 1741 static int 1742 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 1743 { 1744 1745 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 1746 1747 if (segvn == (uintptr_t)seg->s_ops) { 1748 struct segvn_data svn; 1749 int nres = 0; 1750 1751 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 1752 1753 if (svn.amp == NULL) { 1754 mdb_printf(" %8s", ""); 1755 goto drive_on; 1756 } 1757 1758 /* 1759 * We've got an amp for this segment; walk through 1760 * the amp, and determine mappings. 1761 */ 1762 if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon, 1763 &nres, (uintptr_t)svn.amp) == -1) 1764 mdb_warn("failed to walk anon (amp=%p)", svn.amp); 1765 1766 mdb_printf(" %7dk", (nres * PAGESIZE) / 1024); 1767 drive_on: 1768 1769 if (svn.vp != NULL) { 1770 char buf[29]; 1771 1772 mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf)); 1773 mdb_printf(" %s", buf); 1774 } else 1775 mdb_printf(" [ anon ]"); 1776 } 1777 1778 mdb_printf("\n"); 1779 return (WALK_NEXT); 1780 } 1781 1782 static int 1783 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 1784 { 1785 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 1786 1787 if (segvn == (uintptr_t)seg->s_ops) { 1788 struct segvn_data svn; 1789 1790 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 1791 1792 if (svn.vp != NULL) { 1793 mdb_printf(" %0?p", svn.vp); 1794 } else { 1795 mdb_printf(" [ anon ]"); 1796 } 1797 } 1798 1799 mdb_printf("\n"); 1800 return (WALK_NEXT); 1801 } 1802 1803 /*ARGSUSED*/ 1804 int 1805 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1806 { 1807 uintptr_t segvn; 1808 proc_t proc; 1809 uint_t quick = FALSE; 1810 mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg; 1811 1812 GElf_Sym sym; 1813 1814 if (!(flags & DCMD_ADDRSPEC)) 1815 return (DCMD_USAGE); 1816 1817 if (mdb_getopts(argc, argv, 1818 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc) 1819 return (DCMD_USAGE); 1820 1821 if (mdb_vread(&proc, sizeof (proc), addr) == -1) { 1822 mdb_warn("failed to read proc at %p", addr); 1823 return (DCMD_ERR); 1824 } 1825 1826 if (mdb_lookup_by_name("segvn_ops", &sym) == 0) 1827 segvn = (uintptr_t)sym.st_value; 1828 else 1829 segvn = NULL; 1830 1831 mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE"); 1832 1833 if (quick) { 1834 mdb_printf("VNODE\n"); 1835 cb = (mdb_walk_cb_t)pmap_walk_seg_quick; 1836 } else { 1837 mdb_printf("%8s %s\n", "RES", "PATH"); 1838 } 1839 1840 if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) { 1841 mdb_warn("failed to walk segments of as %p", proc.p_as); 1842 return (DCMD_ERR); 1843 } 1844 1845 return (DCMD_OK); 1846 } 1847 1848 typedef struct anon_walk_data { 1849 uintptr_t *aw_levone; 1850 uintptr_t *aw_levtwo; 1851 int aw_nlevone; 1852 int aw_levone_ndx; 1853 int aw_levtwo_ndx; 1854 struct anon_map aw_amp; 1855 struct anon_hdr aw_ahp; 1856 } anon_walk_data_t; 1857 1858 int 1859 anon_walk_init(mdb_walk_state_t *wsp) 1860 { 1861 anon_walk_data_t *aw; 1862 1863 if (wsp->walk_addr == NULL) { 1864 mdb_warn("anon walk doesn't support global walks\n"); 1865 return (WALK_ERR); 1866 } 1867 1868 aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP); 1869 1870 if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) { 1871 mdb_warn("failed to read anon map at %p", wsp->walk_addr); 1872 mdb_free(aw, sizeof (anon_walk_data_t)); 1873 return (WALK_ERR); 1874 } 1875 1876 if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp), 1877 (uintptr_t)(aw->aw_amp.ahp)) == -1) { 1878 mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp); 1879 mdb_free(aw, sizeof (anon_walk_data_t)); 1880 return (WALK_ERR); 1881 } 1882 1883 if (aw->aw_ahp.size <= ANON_CHUNK_SIZE || 1884 (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) { 1885 aw->aw_nlevone = aw->aw_ahp.size; 1886 aw->aw_levtwo = NULL; 1887 } else { 1888 aw->aw_nlevone = 1889 (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 1890 aw->aw_levtwo = 1891 mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP); 1892 } 1893 1894 aw->aw_levone = 1895 mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP); 1896 1897 aw->aw_levone_ndx = 0; 1898 aw->aw_levtwo_ndx = 0; 1899 1900 mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t), 1901 (uintptr_t)aw->aw_ahp.array_chunk); 1902 1903 if (aw->aw_levtwo != NULL) { 1904 while (aw->aw_levone[aw->aw_levone_ndx] == NULL) { 1905 aw->aw_levone_ndx++; 1906 if (aw->aw_levone_ndx == aw->aw_nlevone) { 1907 mdb_warn("corrupt anon; couldn't" 1908 "find ptr to lev two map"); 1909 goto out; 1910 } 1911 } 1912 1913 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), 1914 aw->aw_levone[aw->aw_levone_ndx]); 1915 } 1916 1917 out: 1918 wsp->walk_data = aw; 1919 return (0); 1920 } 1921 1922 int 1923 anon_walk_step(mdb_walk_state_t *wsp) 1924 { 1925 int status; 1926 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 1927 struct anon anon; 1928 uintptr_t anonptr; 1929 1930 again: 1931 /* 1932 * Once we've walked through level one, we're done. 1933 */ 1934 if (aw->aw_levone_ndx == aw->aw_nlevone) 1935 return (WALK_DONE); 1936 1937 if (aw->aw_levtwo == NULL) { 1938 anonptr = aw->aw_levone[aw->aw_levone_ndx]; 1939 aw->aw_levone_ndx++; 1940 } else { 1941 anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx]; 1942 aw->aw_levtwo_ndx++; 1943 1944 if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) { 1945 aw->aw_levtwo_ndx = 0; 1946 1947 do { 1948 aw->aw_levone_ndx++; 1949 1950 if (aw->aw_levone_ndx == aw->aw_nlevone) 1951 return (WALK_DONE); 1952 } while (aw->aw_levone[aw->aw_levone_ndx] == NULL); 1953 1954 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * 1955 sizeof (uintptr_t), 1956 aw->aw_levone[aw->aw_levone_ndx]); 1957 } 1958 } 1959 1960 if (anonptr != NULL) { 1961 mdb_vread(&anon, sizeof (anon), anonptr); 1962 status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata); 1963 } else 1964 goto again; 1965 1966 return (status); 1967 } 1968 1969 void 1970 anon_walk_fini(mdb_walk_state_t *wsp) 1971 { 1972 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 1973 1974 if (aw->aw_levtwo != NULL) 1975 mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t)); 1976 1977 mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t)); 1978 mdb_free(aw, sizeof (anon_walk_data_t)); 1979 } 1980 1981 /*ARGSUSED*/ 1982 int 1983 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1984 { 1985 if ((uintptr_t)f->f_vnode == *target) { 1986 mdb_printf("file %p\n", addr); 1987 *target = NULL; 1988 } 1989 1990 return (WALK_NEXT); 1991 } 1992 1993 /*ARGSUSED*/ 1994 int 1995 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1996 { 1997 uintptr_t t = *target; 1998 1999 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 2000 mdb_warn("couldn't file walk proc %p", addr); 2001 return (WALK_ERR); 2002 } 2003 2004 if (t == NULL) 2005 mdb_printf("%p\n", addr); 2006 2007 return (WALK_NEXT); 2008 } 2009 2010 /*ARGSUSED*/ 2011 int 2012 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2013 { 2014 uintptr_t target = addr; 2015 2016 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 2017 return (DCMD_USAGE); 2018 2019 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 2020 mdb_warn("can't proc walk"); 2021 return (DCMD_ERR); 2022 } 2023 2024 return (DCMD_OK); 2025 } 2026 2027 typedef struct datafmt { 2028 char *hdr1; 2029 char *hdr2; 2030 char *dashes; 2031 char *fmt; 2032 } datafmt_t; 2033 2034 static datafmt_t kmemfmt[] = { 2035 { "cache ", "name ", 2036 "-------------------------", "%-25s " }, 2037 { " buf", " size", "------", "%6u " }, 2038 { " buf", "in use", "------", "%6u " }, 2039 { " buf", " total", "------", "%6u " }, 2040 { " memory", " in use", "----------", "%9u%c " }, 2041 { " alloc", " succeed", "---------", "%9u " }, 2042 { "alloc", " fail", "-----", "%5u " }, 2043 { NULL, NULL, NULL, NULL } 2044 }; 2045 2046 static datafmt_t vmemfmt[] = { 2047 { "vmem ", "name ", 2048 "-------------------------", "%-*s " }, 2049 { " memory", " in use", "----------", "%9llu%c " }, 2050 { " memory", " total", "-----------", "%10llu%c " }, 2051 { " memory", " import", "----------", "%9llu%c " }, 2052 { " alloc", " succeed", "---------", "%9llu " }, 2053 { "alloc", " fail", "-----", "%5llu " }, 2054 { NULL, NULL, NULL, NULL } 2055 }; 2056 2057 /*ARGSUSED*/ 2058 static int 2059 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 2060 { 2061 if (ccp->cc_rounds > 0) 2062 *avail += ccp->cc_rounds; 2063 if (ccp->cc_prounds > 0) 2064 *avail += ccp->cc_prounds; 2065 2066 return (WALK_NEXT); 2067 } 2068 2069 /*ARGSUSED*/ 2070 static int 2071 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 2072 { 2073 *alloc += ccp->cc_alloc; 2074 2075 return (WALK_NEXT); 2076 } 2077 2078 /*ARGSUSED*/ 2079 static int 2080 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 2081 { 2082 *avail += sp->slab_chunks - sp->slab_refcnt; 2083 2084 return (WALK_NEXT); 2085 } 2086 2087 typedef struct kmastat_vmem { 2088 uintptr_t kv_addr; 2089 struct kmastat_vmem *kv_next; 2090 int kv_meminuse; 2091 int kv_alloc; 2092 int kv_fail; 2093 } kmastat_vmem_t; 2094 2095 typedef struct kmastat_args { 2096 kmastat_vmem_t **ka_kvpp; 2097 uint_t ka_shift; 2098 } kmastat_args_t; 2099 2100 static int 2101 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 2102 { 2103 kmastat_vmem_t **kvp = kap->ka_kvpp; 2104 kmastat_vmem_t *kv; 2105 datafmt_t *dfp = kmemfmt; 2106 int magsize; 2107 2108 int avail, alloc, total; 2109 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 2110 cp->cache_slabsize; 2111 2112 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 2113 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 2114 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 2115 2116 magsize = kmem_get_magsize(cp); 2117 2118 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 2119 avail = cp->cache_full.ml_total * magsize; 2120 total = cp->cache_buftotal; 2121 2122 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 2123 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 2124 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 2125 2126 for (kv = *kvp; kv != NULL; kv = kv->kv_next) { 2127 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 2128 goto out; 2129 } 2130 2131 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 2132 kv->kv_next = *kvp; 2133 kv->kv_addr = (uintptr_t)cp->cache_arena; 2134 *kvp = kv; 2135 out: 2136 kv->kv_meminuse += meminuse; 2137 kv->kv_alloc += alloc; 2138 kv->kv_fail += cp->cache_alloc_fail; 2139 2140 mdb_printf((dfp++)->fmt, cp->cache_name); 2141 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 2142 mdb_printf((dfp++)->fmt, total - avail); 2143 mdb_printf((dfp++)->fmt, total); 2144 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 2145 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2146 kap->ka_shift == KILOS ? 'K' : 'B'); 2147 mdb_printf((dfp++)->fmt, alloc); 2148 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 2149 mdb_printf("\n"); 2150 2151 return (WALK_NEXT); 2152 } 2153 2154 static int 2155 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 2156 { 2157 kmastat_vmem_t *kv = *kap->ka_kvpp; 2158 size_t len; 2159 2160 while (kv != NULL && kv->kv_addr != addr) 2161 kv = kv->kv_next; 2162 2163 if (kv == NULL || kv->kv_alloc == 0) 2164 return (WALK_NEXT); 2165 2166 len = MIN(17, strlen(v->vm_name)); 2167 2168 mdb_printf("Total [%s]%*s %6s %6s %6s %9u%c %9u %5u\n", v->vm_name, 2169 17 - len, "", "", "", "", 2170 kv->kv_meminuse >> kap->ka_shift, 2171 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2172 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 2173 2174 return (WALK_NEXT); 2175 } 2176 2177 /*ARGSUSED*/ 2178 static int 2179 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 2180 { 2181 datafmt_t *dfp = vmemfmt; 2182 const vmem_kstat_t *vkp = &v->vm_kstat; 2183 uintptr_t paddr; 2184 vmem_t parent; 2185 int ident = 0; 2186 2187 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 2188 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 2189 mdb_warn("couldn't trace %p's ancestry", addr); 2190 ident = 0; 2191 break; 2192 } 2193 paddr = (uintptr_t)parent.vm_source; 2194 } 2195 2196 mdb_printf("%*s", ident, ""); 2197 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 2198 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 2199 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2200 *shiftp == KILOS ? 'K' : 'B'); 2201 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 2202 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2203 *shiftp == KILOS ? 'K' : 'B'); 2204 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 2205 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2206 *shiftp == KILOS ? 'K' : 'B'); 2207 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 2208 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 2209 2210 mdb_printf("\n"); 2211 2212 return (WALK_NEXT); 2213 } 2214 2215 /*ARGSUSED*/ 2216 int 2217 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2218 { 2219 kmastat_vmem_t *kv = NULL; 2220 datafmt_t *dfp; 2221 kmastat_args_t ka; 2222 2223 ka.ka_shift = 0; 2224 if (mdb_getopts(argc, argv, 2225 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 2226 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 2227 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 2228 return (DCMD_USAGE); 2229 2230 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2231 mdb_printf("%s ", dfp->hdr1); 2232 mdb_printf("\n"); 2233 2234 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2235 mdb_printf("%s ", dfp->hdr2); 2236 mdb_printf("\n"); 2237 2238 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2239 mdb_printf("%s ", dfp->dashes); 2240 mdb_printf("\n"); 2241 2242 ka.ka_kvpp = &kv; 2243 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 2244 mdb_warn("can't walk 'kmem_cache'"); 2245 return (DCMD_ERR); 2246 } 2247 2248 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2249 mdb_printf("%s ", dfp->dashes); 2250 mdb_printf("\n"); 2251 2252 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 2253 mdb_warn("can't walk 'vmem'"); 2254 return (DCMD_ERR); 2255 } 2256 2257 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2258 mdb_printf("%s ", dfp->dashes); 2259 mdb_printf("\n"); 2260 2261 mdb_printf("\n"); 2262 2263 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2264 mdb_printf("%s ", dfp->hdr1); 2265 mdb_printf("\n"); 2266 2267 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2268 mdb_printf("%s ", dfp->hdr2); 2269 mdb_printf("\n"); 2270 2271 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2272 mdb_printf("%s ", dfp->dashes); 2273 mdb_printf("\n"); 2274 2275 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 2276 mdb_warn("can't walk 'vmem'"); 2277 return (DCMD_ERR); 2278 } 2279 2280 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2281 mdb_printf("%s ", dfp->dashes); 2282 mdb_printf("\n"); 2283 return (DCMD_OK); 2284 } 2285 2286 /* 2287 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 2288 * up of a set of 'struct seg's. We could just scan each seg en masse, but 2289 * unfortunately, a few of the segs are both large and sparse, so we could 2290 * spend quite a bit of time scanning VAs which have no backing pages. 2291 * 2292 * So for the few very sparse segs, we skip the segment itself, and scan 2293 * the allocated vmem_segs in the vmem arena which manages that part of kas. 2294 * Currently, we do this for: 2295 * 2296 * SEG VMEM ARENA 2297 * kvseg heap_arena 2298 * kvseg32 heap32_arena 2299 * kvseg_core heap_core_arena 2300 * 2301 * In addition, we skip the segkpm segment in its entirety, since it is very 2302 * sparse, and contains no new kernel data. 2303 */ 2304 typedef struct kgrep_walk_data { 2305 kgrep_cb_func *kg_cb; 2306 void *kg_cbdata; 2307 uintptr_t kg_kvseg; 2308 uintptr_t kg_kvseg32; 2309 uintptr_t kg_kvseg_core; 2310 uintptr_t kg_segkpm; 2311 uintptr_t kg_heap_lp_base; 2312 uintptr_t kg_heap_lp_end; 2313 } kgrep_walk_data_t; 2314 2315 static int 2316 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 2317 { 2318 uintptr_t base = (uintptr_t)seg->s_base; 2319 2320 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 2321 addr == kg->kg_kvseg_core) 2322 return (WALK_NEXT); 2323 2324 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 2325 return (WALK_NEXT); 2326 2327 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 2328 } 2329 2330 /*ARGSUSED*/ 2331 static int 2332 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2333 { 2334 /* 2335 * skip large page heap address range - it is scanned by walking 2336 * allocated vmem_segs in the heap_lp_arena 2337 */ 2338 if (seg->vs_start == kg->kg_heap_lp_base && 2339 seg->vs_end == kg->kg_heap_lp_end) 2340 return (WALK_NEXT); 2341 2342 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2343 } 2344 2345 /*ARGSUSED*/ 2346 static int 2347 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2348 { 2349 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2350 } 2351 2352 static int 2353 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 2354 { 2355 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 2356 2357 if (strcmp(vmem->vm_name, "heap") != 0 && 2358 strcmp(vmem->vm_name, "heap32") != 0 && 2359 strcmp(vmem->vm_name, "heap_core") != 0 && 2360 strcmp(vmem->vm_name, "heap_lp") != 0) 2361 return (WALK_NEXT); 2362 2363 if (strcmp(vmem->vm_name, "heap_lp") == 0) 2364 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 2365 2366 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 2367 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 2368 return (WALK_ERR); 2369 } 2370 2371 return (WALK_NEXT); 2372 } 2373 2374 int 2375 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 2376 { 2377 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 2378 kgrep_walk_data_t kg; 2379 2380 if (mdb_get_state() == MDB_STATE_RUNNING) { 2381 mdb_warn("kgrep can only be run on a system " 2382 "dump or under kmdb; see dumpadm(1M)\n"); 2383 return (DCMD_ERR); 2384 } 2385 2386 if (mdb_lookup_by_name("kas", &kas) == -1) { 2387 mdb_warn("failed to locate 'kas' symbol\n"); 2388 return (DCMD_ERR); 2389 } 2390 2391 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 2392 mdb_warn("failed to locate 'kvseg' symbol\n"); 2393 return (DCMD_ERR); 2394 } 2395 2396 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 2397 mdb_warn("failed to locate 'kvseg32' symbol\n"); 2398 return (DCMD_ERR); 2399 } 2400 2401 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 2402 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 2403 return (DCMD_ERR); 2404 } 2405 2406 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 2407 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 2408 return (DCMD_ERR); 2409 } 2410 2411 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 2412 mdb_warn("failed to read 'heap_lp_base'\n"); 2413 return (DCMD_ERR); 2414 } 2415 2416 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 2417 mdb_warn("failed to read 'heap_lp_end'\n"); 2418 return (DCMD_ERR); 2419 } 2420 2421 kg.kg_cb = cb; 2422 kg.kg_cbdata = cbdata; 2423 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 2424 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 2425 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 2426 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 2427 2428 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 2429 &kg, kas.st_value) == -1) { 2430 mdb_warn("failed to walk kas segments"); 2431 return (DCMD_ERR); 2432 } 2433 2434 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 2435 mdb_warn("failed to walk heap/heap32 vmem arenas"); 2436 return (DCMD_ERR); 2437 } 2438 2439 return (DCMD_OK); 2440 } 2441 2442 size_t 2443 kgrep_subr_pagesize(void) 2444 { 2445 return (PAGESIZE); 2446 } 2447 2448 typedef struct file_walk_data { 2449 struct uf_entry *fw_flist; 2450 int fw_flistsz; 2451 int fw_ndx; 2452 int fw_nofiles; 2453 } file_walk_data_t; 2454 2455 int 2456 file_walk_init(mdb_walk_state_t *wsp) 2457 { 2458 file_walk_data_t *fw; 2459 proc_t p; 2460 2461 if (wsp->walk_addr == NULL) { 2462 mdb_warn("file walk doesn't support global walks\n"); 2463 return (WALK_ERR); 2464 } 2465 2466 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 2467 2468 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 2469 mdb_free(fw, sizeof (file_walk_data_t)); 2470 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 2471 return (WALK_ERR); 2472 } 2473 2474 if (p.p_user.u_finfo.fi_nfiles == 0) { 2475 mdb_free(fw, sizeof (file_walk_data_t)); 2476 return (WALK_DONE); 2477 } 2478 2479 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 2480 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 2481 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 2482 2483 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 2484 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 2485 mdb_warn("failed to read file array at %p", 2486 p.p_user.u_finfo.fi_list); 2487 mdb_free(fw->fw_flist, fw->fw_flistsz); 2488 mdb_free(fw, sizeof (file_walk_data_t)); 2489 return (WALK_ERR); 2490 } 2491 2492 fw->fw_ndx = 0; 2493 wsp->walk_data = fw; 2494 2495 return (WALK_NEXT); 2496 } 2497 2498 int 2499 file_walk_step(mdb_walk_state_t *wsp) 2500 { 2501 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2502 struct file file; 2503 uintptr_t fp; 2504 2505 again: 2506 if (fw->fw_ndx == fw->fw_nofiles) 2507 return (WALK_DONE); 2508 2509 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 2510 goto again; 2511 2512 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2513 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2514 } 2515 2516 int 2517 allfile_walk_step(mdb_walk_state_t *wsp) 2518 { 2519 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2520 struct file file; 2521 uintptr_t fp; 2522 2523 if (fw->fw_ndx == fw->fw_nofiles) 2524 return (WALK_DONE); 2525 2526 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 2527 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2528 else 2529 bzero(&file, sizeof (file)); 2530 2531 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2532 } 2533 2534 void 2535 file_walk_fini(mdb_walk_state_t *wsp) 2536 { 2537 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2538 2539 mdb_free(fw->fw_flist, fw->fw_flistsz); 2540 mdb_free(fw, sizeof (file_walk_data_t)); 2541 } 2542 2543 int 2544 port_walk_init(mdb_walk_state_t *wsp) 2545 { 2546 if (wsp->walk_addr == NULL) { 2547 mdb_warn("port walk doesn't support global walks\n"); 2548 return (WALK_ERR); 2549 } 2550 2551 if (mdb_layered_walk("file", wsp) == -1) { 2552 mdb_warn("couldn't walk 'file'"); 2553 return (WALK_ERR); 2554 } 2555 return (WALK_NEXT); 2556 } 2557 2558 int 2559 port_walk_step(mdb_walk_state_t *wsp) 2560 { 2561 struct vnode vn; 2562 uintptr_t vp; 2563 uintptr_t pp; 2564 struct port port; 2565 2566 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 2567 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2568 mdb_warn("failed to read vnode_t at %p", vp); 2569 return (WALK_ERR); 2570 } 2571 if (vn.v_type != VPORT) 2572 return (WALK_NEXT); 2573 2574 pp = (uintptr_t)vn.v_data; 2575 if (mdb_vread(&port, sizeof (port), pp) == -1) { 2576 mdb_warn("failed to read port_t at %p", pp); 2577 return (WALK_ERR); 2578 } 2579 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 2580 } 2581 2582 typedef struct portev_walk_data { 2583 list_node_t *pev_node; 2584 list_node_t *pev_last; 2585 size_t pev_offset; 2586 } portev_walk_data_t; 2587 2588 int 2589 portev_walk_init(mdb_walk_state_t *wsp) 2590 { 2591 portev_walk_data_t *pevd; 2592 struct port port; 2593 struct vnode vn; 2594 struct list *list; 2595 uintptr_t vp; 2596 2597 if (wsp->walk_addr == NULL) { 2598 mdb_warn("portev walk doesn't support global walks\n"); 2599 return (WALK_ERR); 2600 } 2601 2602 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 2603 2604 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 2605 mdb_free(pevd, sizeof (portev_walk_data_t)); 2606 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 2607 return (WALK_ERR); 2608 } 2609 2610 vp = (uintptr_t)port.port_vnode; 2611 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2612 mdb_free(pevd, sizeof (portev_walk_data_t)); 2613 mdb_warn("failed to read vnode_t at %p", vp); 2614 return (WALK_ERR); 2615 } 2616 2617 if (vn.v_type != VPORT) { 2618 mdb_free(pevd, sizeof (portev_walk_data_t)); 2619 mdb_warn("input address (%p) does not point to an event port", 2620 wsp->walk_addr); 2621 return (WALK_ERR); 2622 } 2623 2624 if (port.port_queue.portq_nent == 0) { 2625 mdb_free(pevd, sizeof (portev_walk_data_t)); 2626 return (WALK_DONE); 2627 } 2628 list = &port.port_queue.portq_list; 2629 pevd->pev_offset = list->list_offset; 2630 pevd->pev_last = list->list_head.list_prev; 2631 pevd->pev_node = list->list_head.list_next; 2632 wsp->walk_data = pevd; 2633 return (WALK_NEXT); 2634 } 2635 2636 int 2637 portev_walk_step(mdb_walk_state_t *wsp) 2638 { 2639 portev_walk_data_t *pevd; 2640 struct port_kevent ev; 2641 uintptr_t evp; 2642 2643 pevd = (portev_walk_data_t *)wsp->walk_data; 2644 2645 if (pevd->pev_last == NULL) 2646 return (WALK_DONE); 2647 if (pevd->pev_node == pevd->pev_last) 2648 pevd->pev_last = NULL; /* last round */ 2649 2650 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 2651 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 2652 mdb_warn("failed to read port_kevent at %p", evp); 2653 return (WALK_DONE); 2654 } 2655 pevd->pev_node = ev.portkev_node.list_next; 2656 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 2657 } 2658 2659 void 2660 portev_walk_fini(mdb_walk_state_t *wsp) 2661 { 2662 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 2663 2664 if (pevd != NULL) 2665 mdb_free(pevd, sizeof (portev_walk_data_t)); 2666 } 2667 2668 typedef struct proc_walk_data { 2669 uintptr_t *pw_stack; 2670 int pw_depth; 2671 int pw_max; 2672 } proc_walk_data_t; 2673 2674 int 2675 proc_walk_init(mdb_walk_state_t *wsp) 2676 { 2677 GElf_Sym sym; 2678 proc_walk_data_t *pw; 2679 2680 if (wsp->walk_addr == NULL) { 2681 if (mdb_lookup_by_name("p0", &sym) == -1) { 2682 mdb_warn("failed to read 'practive'"); 2683 return (WALK_ERR); 2684 } 2685 wsp->walk_addr = (uintptr_t)sym.st_value; 2686 } 2687 2688 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 2689 2690 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 2691 mdb_warn("failed to read 'nproc'"); 2692 mdb_free(pw, sizeof (pw)); 2693 return (WALK_ERR); 2694 } 2695 2696 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 2697 wsp->walk_data = pw; 2698 2699 return (WALK_NEXT); 2700 } 2701 2702 int 2703 proc_walk_step(mdb_walk_state_t *wsp) 2704 { 2705 proc_walk_data_t *pw = wsp->walk_data; 2706 uintptr_t addr = wsp->walk_addr; 2707 uintptr_t cld, sib; 2708 2709 int status; 2710 proc_t pr; 2711 2712 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 2713 mdb_warn("failed to read proc at %p", addr); 2714 return (WALK_DONE); 2715 } 2716 2717 cld = (uintptr_t)pr.p_child; 2718 sib = (uintptr_t)pr.p_sibling; 2719 2720 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 2721 pw->pw_depth--; 2722 goto sib; 2723 } 2724 2725 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 2726 2727 if (status != WALK_NEXT) 2728 return (status); 2729 2730 if ((wsp->walk_addr = cld) != NULL) { 2731 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 2732 mdb_warn("proc %p has invalid p_child %p; skipping\n", 2733 addr, cld); 2734 goto sib; 2735 } 2736 2737 pw->pw_stack[pw->pw_depth++] = addr; 2738 2739 if (pw->pw_depth == pw->pw_max) { 2740 mdb_warn("depth %d exceeds max depth; try again\n", 2741 pw->pw_depth); 2742 return (WALK_DONE); 2743 } 2744 return (WALK_NEXT); 2745 } 2746 2747 sib: 2748 /* 2749 * We know that p0 has no siblings, and if another starting proc 2750 * was given, we don't want to walk its siblings anyway. 2751 */ 2752 if (pw->pw_depth == 0) 2753 return (WALK_DONE); 2754 2755 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 2756 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 2757 addr, sib); 2758 sib = NULL; 2759 } 2760 2761 if ((wsp->walk_addr = sib) == NULL) { 2762 if (pw->pw_depth > 0) { 2763 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 2764 return (WALK_NEXT); 2765 } 2766 return (WALK_DONE); 2767 } 2768 2769 return (WALK_NEXT); 2770 } 2771 2772 void 2773 proc_walk_fini(mdb_walk_state_t *wsp) 2774 { 2775 proc_walk_data_t *pw = wsp->walk_data; 2776 2777 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 2778 mdb_free(pw, sizeof (proc_walk_data_t)); 2779 } 2780 2781 int 2782 task_walk_init(mdb_walk_state_t *wsp) 2783 { 2784 task_t task; 2785 2786 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 2787 mdb_warn("failed to read task at %p", wsp->walk_addr); 2788 return (WALK_ERR); 2789 } 2790 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 2791 wsp->walk_data = task.tk_memb_list; 2792 return (WALK_NEXT); 2793 } 2794 2795 int 2796 task_walk_step(mdb_walk_state_t *wsp) 2797 { 2798 proc_t proc; 2799 int status; 2800 2801 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 2802 mdb_warn("failed to read proc at %p", wsp->walk_addr); 2803 return (WALK_DONE); 2804 } 2805 2806 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 2807 2808 if (proc.p_tasknext == wsp->walk_data) 2809 return (WALK_DONE); 2810 2811 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 2812 return (status); 2813 } 2814 2815 int 2816 project_walk_init(mdb_walk_state_t *wsp) 2817 { 2818 if (wsp->walk_addr == NULL) { 2819 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 2820 mdb_warn("failed to read 'proj0p'"); 2821 return (WALK_ERR); 2822 } 2823 } 2824 wsp->walk_data = (void *)wsp->walk_addr; 2825 return (WALK_NEXT); 2826 } 2827 2828 int 2829 project_walk_step(mdb_walk_state_t *wsp) 2830 { 2831 uintptr_t addr = wsp->walk_addr; 2832 kproject_t pj; 2833 int status; 2834 2835 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 2836 mdb_warn("failed to read project at %p", addr); 2837 return (WALK_DONE); 2838 } 2839 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 2840 if (status != WALK_NEXT) 2841 return (status); 2842 wsp->walk_addr = (uintptr_t)pj.kpj_next; 2843 if ((void *)wsp->walk_addr == wsp->walk_data) 2844 return (WALK_DONE); 2845 return (WALK_NEXT); 2846 } 2847 2848 static int 2849 generic_walk_step(mdb_walk_state_t *wsp) 2850 { 2851 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 2852 wsp->walk_cbdata)); 2853 } 2854 2855 int 2856 seg_walk_init(mdb_walk_state_t *wsp) 2857 { 2858 if (wsp->walk_addr == NULL) { 2859 mdb_warn("seg walk must begin at struct as *\n"); 2860 return (WALK_ERR); 2861 } 2862 2863 /* 2864 * this is really just a wrapper to AVL tree walk 2865 */ 2866 wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree; 2867 return (avl_walk_init(wsp)); 2868 } 2869 2870 static int 2871 cpu_walk_cmp(const void *l, const void *r) 2872 { 2873 uintptr_t lhs = *((uintptr_t *)l); 2874 uintptr_t rhs = *((uintptr_t *)r); 2875 cpu_t lcpu, rcpu; 2876 2877 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 2878 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 2879 2880 if (lcpu.cpu_id < rcpu.cpu_id) 2881 return (-1); 2882 2883 if (lcpu.cpu_id > rcpu.cpu_id) 2884 return (1); 2885 2886 return (0); 2887 } 2888 2889 typedef struct cpu_walk { 2890 uintptr_t *cw_array; 2891 int cw_ndx; 2892 } cpu_walk_t; 2893 2894 int 2895 cpu_walk_init(mdb_walk_state_t *wsp) 2896 { 2897 cpu_walk_t *cw; 2898 int max_ncpus, i = 0; 2899 uintptr_t current, first; 2900 cpu_t cpu, panic_cpu; 2901 uintptr_t panicstr, addr; 2902 GElf_Sym sym; 2903 2904 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 2905 2906 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 2907 mdb_warn("failed to read 'max_ncpus'"); 2908 return (WALK_ERR); 2909 } 2910 2911 if (mdb_readvar(&panicstr, "panicstr") == -1) { 2912 mdb_warn("failed to read 'panicstr'"); 2913 return (WALK_ERR); 2914 } 2915 2916 if (panicstr != NULL) { 2917 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 2918 mdb_warn("failed to find 'panic_cpu'"); 2919 return (WALK_ERR); 2920 } 2921 2922 addr = (uintptr_t)sym.st_value; 2923 2924 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 2925 mdb_warn("failed to read 'panic_cpu'"); 2926 return (WALK_ERR); 2927 } 2928 } 2929 2930 /* 2931 * Unfortunately, there is no platform-independent way to walk 2932 * CPUs in ID order. We therefore loop through in cpu_next order, 2933 * building an array of CPU pointers which will subsequently be 2934 * sorted. 2935 */ 2936 cw->cw_array = 2937 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 2938 2939 if (mdb_readvar(&first, "cpu_list") == -1) { 2940 mdb_warn("failed to read 'cpu_list'"); 2941 return (WALK_ERR); 2942 } 2943 2944 current = first; 2945 do { 2946 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 2947 mdb_warn("failed to read cpu at %p", current); 2948 return (WALK_ERR); 2949 } 2950 2951 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 2952 cw->cw_array[i++] = addr; 2953 } else { 2954 cw->cw_array[i++] = current; 2955 } 2956 } while ((current = (uintptr_t)cpu.cpu_next) != first); 2957 2958 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2959 wsp->walk_data = cw; 2960 2961 return (WALK_NEXT); 2962 } 2963 2964 int 2965 cpu_walk_step(mdb_walk_state_t *wsp) 2966 { 2967 cpu_walk_t *cw = wsp->walk_data; 2968 cpu_t cpu; 2969 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2970 2971 if (addr == NULL) 2972 return (WALK_DONE); 2973 2974 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2975 mdb_warn("failed to read cpu at %p", addr); 2976 return (WALK_DONE); 2977 } 2978 2979 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2980 } 2981 2982 typedef struct cpuinfo_data { 2983 intptr_t cid_cpu; 2984 uintptr_t cid_lbolt; 2985 uintptr_t **cid_ithr; 2986 char cid_print_head; 2987 char cid_print_thr; 2988 char cid_print_ithr; 2989 char cid_print_flags; 2990 } cpuinfo_data_t; 2991 2992 int 2993 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2994 { 2995 cpu_t c; 2996 int id; 2997 uint8_t pil; 2998 2999 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 3000 return (WALK_NEXT); 3001 3002 if (thr->t_bound_cpu == NULL) { 3003 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 3004 return (WALK_NEXT); 3005 } 3006 3007 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 3008 3009 if ((id = c.cpu_id) >= NCPU) { 3010 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 3011 thr->t_bound_cpu, id, NCPU); 3012 return (WALK_NEXT); 3013 } 3014 3015 if ((pil = thr->t_pil) >= NINTR) { 3016 mdb_warn("thread %p has pil (%d) greater than %d\n", 3017 addr, pil, NINTR); 3018 return (WALK_NEXT); 3019 } 3020 3021 if (cid->cid_ithr[id][pil] != NULL) { 3022 mdb_warn("CPU %d has multiple threads at pil %d (at least " 3023 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 3024 return (WALK_NEXT); 3025 } 3026 3027 cid->cid_ithr[id][pil] = addr; 3028 3029 return (WALK_NEXT); 3030 } 3031 3032 #define CPUINFO_IDWIDTH 3 3033 #define CPUINFO_FLAGWIDTH 9 3034 3035 #ifdef _LP64 3036 #if defined(__amd64) 3037 #define CPUINFO_TWIDTH 16 3038 #define CPUINFO_CPUWIDTH 16 3039 #else 3040 #define CPUINFO_CPUWIDTH 11 3041 #define CPUINFO_TWIDTH 11 3042 #endif 3043 #else 3044 #define CPUINFO_CPUWIDTH 8 3045 #define CPUINFO_TWIDTH 8 3046 #endif 3047 3048 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 3049 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 3050 #define CPUINFO_ITHRDELT 4 3051 3052 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 3053 flagline < nflaglines ? flagbuf[flagline++] : "") 3054 3055 int 3056 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 3057 { 3058 kthread_t t; 3059 disp_t disp; 3060 proc_t p; 3061 uintptr_t pinned; 3062 char **flagbuf; 3063 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 3064 3065 const char *flags[] = { 3066 "RUNNING", "READY", "QUIESCED", "EXISTS", 3067 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 3068 "SPARE", "FAULTED", NULL 3069 }; 3070 3071 if (cid->cid_cpu != -1) { 3072 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 3073 return (WALK_NEXT); 3074 3075 /* 3076 * Set cid_cpu to -1 to indicate that we found a matching CPU. 3077 */ 3078 cid->cid_cpu = -1; 3079 rval = WALK_DONE; 3080 } 3081 3082 if (cid->cid_print_head) { 3083 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 3084 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 3085 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 3086 "PROC"); 3087 cid->cid_print_head = FALSE; 3088 } 3089 3090 bspl = cpu->cpu_base_spl; 3091 3092 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 3093 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 3094 return (WALK_ERR); 3095 } 3096 3097 mdb_printf("%3d %0*p %3x %4d %4d ", 3098 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 3099 disp.disp_nrunnable, bspl); 3100 3101 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 3102 mdb_printf("%3d ", t.t_pri); 3103 } else { 3104 mdb_printf("%3s ", "-"); 3105 } 3106 3107 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 3108 cpu->cpu_kprunrun ? "yes" : "no"); 3109 3110 if (cpu->cpu_last_swtch) { 3111 clock_t lbolt; 3112 3113 if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) { 3114 mdb_warn("failed to read lbolt at %p", cid->cid_lbolt); 3115 return (WALK_ERR); 3116 } 3117 mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch); 3118 } else { 3119 mdb_printf("%-6s ", "-"); 3120 } 3121 3122 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 3123 3124 if (cpu->cpu_thread == cpu->cpu_idle_thread) 3125 mdb_printf(" (idle)\n"); 3126 else if (cpu->cpu_thread == NULL) 3127 mdb_printf(" -\n"); 3128 else { 3129 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 3130 mdb_printf(" %s\n", p.p_user.u_comm); 3131 } else { 3132 mdb_printf(" ?\n"); 3133 } 3134 } 3135 3136 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 3137 3138 if (cid->cid_print_flags) { 3139 int first = 1, i, j, k; 3140 char *s; 3141 3142 cid->cid_print_head = TRUE; 3143 3144 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 3145 if (!(cpu->cpu_flags & i)) 3146 continue; 3147 3148 if (first) { 3149 s = mdb_alloc(CPUINFO_THRDELT + 1, 3150 UM_GC | UM_SLEEP); 3151 3152 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 3153 "%*s|%*s", CPUINFO_FLAGDELT, "", 3154 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 3155 flagbuf[nflaglines++] = s; 3156 } 3157 3158 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 3159 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 3160 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 3161 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 3162 first ? "<--+" : ""); 3163 3164 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 3165 s[k] = ' '; 3166 s[k] = '\0'; 3167 3168 flagbuf[nflaglines++] = s; 3169 first = 0; 3170 } 3171 } 3172 3173 if (cid->cid_print_ithr) { 3174 int i, found_one = FALSE; 3175 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 3176 3177 for (i = NINTR - 1; i >= 0; i--) { 3178 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 3179 3180 if (iaddr == NULL) 3181 continue; 3182 3183 if (!found_one) { 3184 found_one = TRUE; 3185 3186 CPUINFO_INDENT; 3187 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 3188 CPUINFO_ITHRDELT, ""); 3189 3190 CPUINFO_INDENT; 3191 mdb_printf("%c%*s+--> %3s %s\n", 3192 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 3193 "", "PIL", "THREAD"); 3194 } 3195 3196 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 3197 mdb_warn("failed to read kthread_t at %p", 3198 iaddr); 3199 return (WALK_ERR); 3200 } 3201 3202 CPUINFO_INDENT; 3203 mdb_printf("%c%*s %3d %0*p\n", 3204 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 3205 t.t_pil, CPUINFO_TWIDTH, iaddr); 3206 3207 pinned = (uintptr_t)t.t_intr; 3208 } 3209 3210 if (found_one && pinned != NULL) { 3211 cid->cid_print_head = TRUE; 3212 (void) strcpy(p.p_user.u_comm, "?"); 3213 3214 if (mdb_vread(&t, sizeof (t), 3215 (uintptr_t)pinned) == -1) { 3216 mdb_warn("failed to read kthread_t at %p", 3217 pinned); 3218 return (WALK_ERR); 3219 } 3220 if (mdb_vread(&p, sizeof (p), 3221 (uintptr_t)t.t_procp) == -1) { 3222 mdb_warn("failed to read proc_t at %p", 3223 t.t_procp); 3224 return (WALK_ERR); 3225 } 3226 3227 CPUINFO_INDENT; 3228 mdb_printf("%c%*s %3s %0*p %s\n", 3229 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 3230 CPUINFO_TWIDTH, pinned, 3231 pinned == (uintptr_t)cpu->cpu_idle_thread ? 3232 "(idle)" : p.p_user.u_comm); 3233 } 3234 } 3235 3236 if (disp.disp_nrunnable && cid->cid_print_thr) { 3237 dispq_t *dq; 3238 3239 int i, npri = disp.disp_npri; 3240 3241 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 3242 3243 if (mdb_vread(dq, sizeof (dispq_t) * npri, 3244 (uintptr_t)disp.disp_q) == -1) { 3245 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 3246 return (WALK_ERR); 3247 } 3248 3249 CPUINFO_INDENT; 3250 mdb_printf("|\n"); 3251 3252 CPUINFO_INDENT; 3253 mdb_printf("+--> %3s %-*s %s\n", "PRI", 3254 CPUINFO_TWIDTH, "THREAD", "PROC"); 3255 3256 for (i = npri - 1; i >= 0; i--) { 3257 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 3258 3259 while (taddr != NULL) { 3260 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 3261 mdb_warn("failed to read kthread_t " 3262 "at %p", taddr); 3263 return (WALK_ERR); 3264 } 3265 if (mdb_vread(&p, sizeof (p), 3266 (uintptr_t)t.t_procp) == -1) { 3267 mdb_warn("failed to read proc_t at %p", 3268 t.t_procp); 3269 return (WALK_ERR); 3270 } 3271 3272 CPUINFO_INDENT; 3273 mdb_printf(" %3d %0*p %s\n", t.t_pri, 3274 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 3275 3276 taddr = (uintptr_t)t.t_link; 3277 } 3278 } 3279 cid->cid_print_head = TRUE; 3280 } 3281 3282 while (flagline < nflaglines) 3283 mdb_printf("%s\n", flagbuf[flagline++]); 3284 3285 if (cid->cid_print_head) 3286 mdb_printf("\n"); 3287 3288 return (rval); 3289 } 3290 3291 int 3292 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3293 { 3294 uint_t verbose = FALSE; 3295 cpuinfo_data_t cid; 3296 GElf_Sym sym; 3297 clock_t lbolt; 3298 3299 cid.cid_print_ithr = FALSE; 3300 cid.cid_print_thr = FALSE; 3301 cid.cid_print_flags = FALSE; 3302 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 3303 cid.cid_cpu = -1; 3304 3305 if (flags & DCMD_ADDRSPEC) 3306 cid.cid_cpu = addr; 3307 3308 if (mdb_getopts(argc, argv, 3309 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 3310 return (DCMD_USAGE); 3311 3312 if (verbose) { 3313 cid.cid_print_ithr = TRUE; 3314 cid.cid_print_thr = TRUE; 3315 cid.cid_print_flags = TRUE; 3316 cid.cid_print_head = TRUE; 3317 } 3318 3319 if (cid.cid_print_ithr) { 3320 int i; 3321 3322 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 3323 * NCPU, UM_SLEEP | UM_GC); 3324 3325 for (i = 0; i < NCPU; i++) 3326 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 3327 NINTR, UM_SLEEP | UM_GC); 3328 3329 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 3330 &cid) == -1) { 3331 mdb_warn("couldn't walk thread"); 3332 return (DCMD_ERR); 3333 } 3334 } 3335 3336 if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) { 3337 mdb_warn("failed to find panic_lbolt"); 3338 return (DCMD_ERR); 3339 } 3340 3341 cid.cid_lbolt = (uintptr_t)sym.st_value; 3342 3343 if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) { 3344 mdb_warn("failed to read panic_lbolt"); 3345 return (DCMD_ERR); 3346 } 3347 3348 if (lbolt == 0) { 3349 if (mdb_lookup_by_name("lbolt", &sym) == -1) { 3350 mdb_warn("failed to find lbolt"); 3351 return (DCMD_ERR); 3352 } 3353 cid.cid_lbolt = (uintptr_t)sym.st_value; 3354 } 3355 3356 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 3357 mdb_warn("can't walk cpus"); 3358 return (DCMD_ERR); 3359 } 3360 3361 if (cid.cid_cpu != -1) { 3362 /* 3363 * We didn't find this CPU when we walked through the CPUs 3364 * (i.e. the address specified doesn't show up in the "cpu" 3365 * walk). However, the specified address may still correspond 3366 * to a valid cpu_t (for example, if the specified address is 3367 * the actual panicking cpu_t and not the cached panic_cpu). 3368 * Point is: even if we didn't find it, we still want to try 3369 * to print the specified address as a cpu_t. 3370 */ 3371 cpu_t cpu; 3372 3373 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 3374 mdb_warn("%p is neither a valid CPU ID nor a " 3375 "valid cpu_t address\n", cid.cid_cpu); 3376 return (DCMD_ERR); 3377 } 3378 3379 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 3380 } 3381 3382 return (DCMD_OK); 3383 } 3384 3385 /*ARGSUSED*/ 3386 int 3387 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3388 { 3389 int i; 3390 3391 if (!(flags & DCMD_ADDRSPEC)) 3392 return (DCMD_USAGE); 3393 3394 for (i = 0; i < sizeof (addr) * NBBY; i++) 3395 mdb_printf("%p\n", addr ^ (1UL << i)); 3396 3397 return (DCMD_OK); 3398 } 3399 3400 /* 3401 * Grumble, grumble. 3402 */ 3403 #define SMAP_HASHFUNC(vp, off) \ 3404 ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ 3405 ((off) >> MAXBSHIFT)) & smd_hashmsk) 3406 3407 int 3408 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3409 { 3410 long smd_hashmsk; 3411 int hash; 3412 uintptr_t offset = 0; 3413 struct smap smp; 3414 uintptr_t saddr, kaddr; 3415 uintptr_t smd_hash, smd_smap; 3416 struct seg seg; 3417 3418 if (!(flags & DCMD_ADDRSPEC)) 3419 return (DCMD_USAGE); 3420 3421 if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) { 3422 mdb_warn("failed to read smd_hashmsk"); 3423 return (DCMD_ERR); 3424 } 3425 3426 if (mdb_readvar(&smd_hash, "smd_hash") == -1) { 3427 mdb_warn("failed to read smd_hash"); 3428 return (DCMD_ERR); 3429 } 3430 3431 if (mdb_readvar(&smd_smap, "smd_smap") == -1) { 3432 mdb_warn("failed to read smd_hash"); 3433 return (DCMD_ERR); 3434 } 3435 3436 if (mdb_readvar(&kaddr, "segkmap") == -1) { 3437 mdb_warn("failed to read segkmap"); 3438 return (DCMD_ERR); 3439 } 3440 3441 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 3442 mdb_warn("failed to read segkmap at %p", kaddr); 3443 return (DCMD_ERR); 3444 } 3445 3446 if (argc != 0) { 3447 const mdb_arg_t *arg = &argv[0]; 3448 3449 if (arg->a_type == MDB_TYPE_IMMEDIATE) 3450 offset = arg->a_un.a_val; 3451 else 3452 offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str); 3453 } 3454 3455 hash = SMAP_HASHFUNC(addr, offset); 3456 3457 if (mdb_vread(&saddr, sizeof (saddr), 3458 smd_hash + hash * sizeof (uintptr_t)) == -1) { 3459 mdb_warn("couldn't read smap at %p", 3460 smd_hash + hash * sizeof (uintptr_t)); 3461 return (DCMD_ERR); 3462 } 3463 3464 do { 3465 if (mdb_vread(&smp, sizeof (smp), saddr) == -1) { 3466 mdb_warn("couldn't read smap at %p", saddr); 3467 return (DCMD_ERR); 3468 } 3469 3470 if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) { 3471 mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n", 3472 addr, offset, saddr, ((saddr - smd_smap) / 3473 sizeof (smp)) * MAXBSIZE + seg.s_base); 3474 return (DCMD_OK); 3475 } 3476 3477 saddr = (uintptr_t)smp.sm_hash; 3478 } while (saddr != NULL); 3479 3480 mdb_printf("no smap for vnode %p, offs %p\n", addr, offset); 3481 return (DCMD_OK); 3482 } 3483 3484 /*ARGSUSED*/ 3485 int 3486 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3487 { 3488 uintptr_t kaddr; 3489 struct seg seg; 3490 struct segmap_data sd; 3491 3492 if (!(flags & DCMD_ADDRSPEC)) 3493 return (DCMD_USAGE); 3494 3495 if (mdb_readvar(&kaddr, "segkmap") == -1) { 3496 mdb_warn("failed to read segkmap"); 3497 return (DCMD_ERR); 3498 } 3499 3500 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 3501 mdb_warn("failed to read segkmap at %p", kaddr); 3502 return (DCMD_ERR); 3503 } 3504 3505 if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) { 3506 mdb_warn("failed to read segmap_data at %p", seg.s_data); 3507 return (DCMD_ERR); 3508 } 3509 3510 mdb_printf("%p is smap %p\n", addr, 3511 ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) * 3512 sizeof (struct smap) + (uintptr_t)sd.smd_sm); 3513 3514 return (DCMD_OK); 3515 } 3516 3517 int 3518 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 3519 { 3520 if (p->p_as == *asp) 3521 mdb_printf("%p\n", addr); 3522 return (WALK_NEXT); 3523 } 3524 3525 /*ARGSUSED*/ 3526 int 3527 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3528 { 3529 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 3530 return (DCMD_USAGE); 3531 3532 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 3533 mdb_warn("failed to walk proc"); 3534 return (DCMD_ERR); 3535 } 3536 3537 return (DCMD_OK); 3538 } 3539 3540 /*ARGSUSED*/ 3541 int 3542 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 3543 { 3544 proc_t parent; 3545 int ident = 0; 3546 uintptr_t paddr; 3547 3548 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 3549 mdb_vread(&parent, sizeof (parent), paddr); 3550 paddr = (uintptr_t)parent.p_parent; 3551 } 3552 3553 mdb_inc_indent(ident); 3554 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 3555 mdb_dec_indent(ident); 3556 3557 return (WALK_NEXT); 3558 } 3559 3560 void 3561 ptree_ancestors(uintptr_t addr, uintptr_t start) 3562 { 3563 proc_t p; 3564 3565 if (mdb_vread(&p, sizeof (p), addr) == -1) { 3566 mdb_warn("couldn't read ancestor at %p", addr); 3567 return; 3568 } 3569 3570 if (p.p_parent != NULL) 3571 ptree_ancestors((uintptr_t)p.p_parent, start); 3572 3573 if (addr != start) 3574 (void) ptree_walk(addr, &p, NULL); 3575 } 3576 3577 /*ARGSUSED*/ 3578 int 3579 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3580 { 3581 if (!(flags & DCMD_ADDRSPEC)) 3582 addr = NULL; 3583 else 3584 ptree_ancestors(addr, addr); 3585 3586 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 3587 mdb_warn("couldn't walk 'proc'"); 3588 return (DCMD_ERR); 3589 } 3590 3591 return (DCMD_OK); 3592 } 3593 3594 /*ARGSUSED*/ 3595 static int 3596 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3597 { 3598 int fdnum; 3599 const mdb_arg_t *argp = &argv[0]; 3600 proc_t p; 3601 uf_entry_t uf; 3602 3603 if ((flags & DCMD_ADDRSPEC) == 0) { 3604 mdb_warn("fd doesn't give global information\n"); 3605 return (DCMD_ERR); 3606 } 3607 if (argc != 1) 3608 return (DCMD_USAGE); 3609 3610 if (argp->a_type == MDB_TYPE_IMMEDIATE) 3611 fdnum = argp->a_un.a_val; 3612 else 3613 fdnum = mdb_strtoull(argp->a_un.a_str); 3614 3615 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 3616 mdb_warn("couldn't read proc_t at %p", addr); 3617 return (DCMD_ERR); 3618 } 3619 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 3620 mdb_warn("process %p only has %d files open.\n", 3621 addr, p.p_user.u_finfo.fi_nfiles); 3622 return (DCMD_ERR); 3623 } 3624 if (mdb_vread(&uf, sizeof (uf_entry_t), 3625 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 3626 mdb_warn("couldn't read uf_entry_t at %p", 3627 &p.p_user.u_finfo.fi_list[fdnum]); 3628 return (DCMD_ERR); 3629 } 3630 3631 mdb_printf("%p\n", uf.uf_file); 3632 return (DCMD_OK); 3633 } 3634 3635 /*ARGSUSED*/ 3636 static int 3637 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3638 { 3639 pid_t pid = (pid_t)addr; 3640 3641 if (argc != 0) 3642 return (DCMD_USAGE); 3643 3644 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 3645 mdb_warn("PID 0t%d not found\n", pid); 3646 return (DCMD_ERR); 3647 } 3648 3649 mdb_printf("%p\n", addr); 3650 return (DCMD_OK); 3651 } 3652 3653 static char *sysfile_cmd[] = { 3654 "exclude:", 3655 "include:", 3656 "forceload:", 3657 "rootdev:", 3658 "rootfs:", 3659 "swapdev:", 3660 "swapfs:", 3661 "moddir:", 3662 "set", 3663 "unknown", 3664 }; 3665 3666 static char *sysfile_ops[] = { "", "=", "&", "|" }; 3667 3668 /*ARGSUSED*/ 3669 static int 3670 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 3671 { 3672 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 3673 *target = NULL; 3674 return (WALK_DONE); 3675 } 3676 return (WALK_NEXT); 3677 } 3678 3679 /*ARGSUSED*/ 3680 static int 3681 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3682 { 3683 struct sysparam *sysp, sys; 3684 char var[256]; 3685 char modname[256]; 3686 char val[256]; 3687 char strval[256]; 3688 vmem_t *mod_sysfile_arena; 3689 void *straddr; 3690 3691 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 3692 mdb_warn("failed to read sysparam_hd"); 3693 return (DCMD_ERR); 3694 } 3695 3696 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 3697 mdb_warn("failed to read mod_sysfile_arena"); 3698 return (DCMD_ERR); 3699 } 3700 3701 while (sysp != NULL) { 3702 var[0] = '\0'; 3703 val[0] = '\0'; 3704 modname[0] = '\0'; 3705 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 3706 mdb_warn("couldn't read sysparam %p", sysp); 3707 return (DCMD_ERR); 3708 } 3709 if (sys.sys_modnam != NULL && 3710 mdb_readstr(modname, 256, 3711 (uintptr_t)sys.sys_modnam) == -1) { 3712 mdb_warn("couldn't read modname in %p", sysp); 3713 return (DCMD_ERR); 3714 } 3715 if (sys.sys_ptr != NULL && 3716 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 3717 mdb_warn("couldn't read ptr in %p", sysp); 3718 return (DCMD_ERR); 3719 } 3720 if (sys.sys_op != SETOP_NONE) { 3721 /* 3722 * Is this an int or a string? We determine this 3723 * by checking whether straddr is contained in 3724 * mod_sysfile_arena. If so, the walker will set 3725 * straddr to NULL. 3726 */ 3727 straddr = (void *)(uintptr_t)sys.sys_info; 3728 if (sys.sys_op == SETOP_ASSIGN && 3729 sys.sys_info != 0 && 3730 mdb_pwalk("vmem_seg", 3731 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 3732 (uintptr_t)mod_sysfile_arena) == 0 && 3733 straddr == NULL && 3734 mdb_readstr(strval, 256, 3735 (uintptr_t)sys.sys_info) != -1) { 3736 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 3737 strval); 3738 } else { 3739 (void) mdb_snprintf(val, sizeof (val), 3740 "0x%llx [0t%llu]", sys.sys_info, 3741 sys.sys_info); 3742 } 3743 } 3744 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 3745 modname, modname[0] == '\0' ? "" : ":", 3746 var, sysfile_ops[sys.sys_op], val); 3747 3748 sysp = sys.sys_next; 3749 } 3750 3751 return (DCMD_OK); 3752 } 3753 3754 /* 3755 * Dump a taskq_ent_t given its address. 3756 */ 3757 /*ARGSUSED*/ 3758 int 3759 taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3760 { 3761 taskq_ent_t taskq_ent; 3762 GElf_Sym sym; 3763 char buf[MDB_SYM_NAMLEN+1]; 3764 3765 3766 if (!(flags & DCMD_ADDRSPEC)) { 3767 mdb_warn("expected explicit taskq_ent_t address before ::\n"); 3768 return (DCMD_USAGE); 3769 } 3770 3771 if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) { 3772 mdb_warn("failed to read taskq_ent_t at %p", addr); 3773 return (DCMD_ERR); 3774 } 3775 3776 if (DCMD_HDRSPEC(flags)) { 3777 mdb_printf("%<u>%-?s %-?s %-s%</u>\n", 3778 "ENTRY", "ARG", "FUNCTION"); 3779 } 3780 3781 if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT, 3782 buf, sizeof (buf), &sym) == -1) { 3783 (void) strcpy(buf, "????"); 3784 } 3785 3786 mdb_printf("%-?p %-?p %s\n", addr, taskq_ent.tqent_arg, buf); 3787 3788 return (DCMD_OK); 3789 } 3790 3791 /* 3792 * Given the address of the (taskq_t) task queue head, walk the queue listing 3793 * the address of every taskq_ent_t. 3794 */ 3795 int 3796 taskq_walk_init(mdb_walk_state_t *wsp) 3797 { 3798 taskq_t tq_head; 3799 3800 3801 if (wsp->walk_addr == NULL) { 3802 mdb_warn("start address required\n"); 3803 return (WALK_ERR); 3804 } 3805 3806 3807 /* 3808 * Save the address of the list head entry. This terminates the list. 3809 */ 3810 wsp->walk_data = (void *) 3811 ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task)); 3812 3813 3814 /* 3815 * Read in taskq head, set walk_addr to point to first taskq_ent_t. 3816 */ 3817 if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) == 3818 -1) { 3819 mdb_warn("failed to read taskq list head at %p", 3820 wsp->walk_addr); 3821 } 3822 wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next; 3823 3824 3825 /* 3826 * Check for null list (next=head) 3827 */ 3828 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 3829 return (WALK_DONE); 3830 } 3831 3832 return (WALK_NEXT); 3833 } 3834 3835 3836 int 3837 taskq_walk_step(mdb_walk_state_t *wsp) 3838 { 3839 taskq_ent_t tq_ent; 3840 int status; 3841 3842 3843 if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) == 3844 -1) { 3845 mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr); 3846 return (DCMD_ERR); 3847 } 3848 3849 status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent, 3850 wsp->walk_cbdata); 3851 3852 wsp->walk_addr = (uintptr_t)tq_ent.tqent_next; 3853 3854 3855 /* Check if we're at the last element (next=head) */ 3856 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 3857 return (WALK_DONE); 3858 } 3859 3860 return (status); 3861 } 3862 3863 int 3864 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3865 { 3866 3867 if (*didp == thr->t_did) { 3868 mdb_printf("%p\n", addr); 3869 return (WALK_DONE); 3870 } else 3871 return (WALK_NEXT); 3872 } 3873 3874 /*ARGSUSED*/ 3875 int 3876 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3877 { 3878 const mdb_arg_t *argp = &argv[0]; 3879 kt_did_t did; 3880 3881 if (argc != 1) 3882 return (DCMD_USAGE); 3883 3884 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 3885 3886 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3887 mdb_warn("failed to walk thread"); 3888 return (DCMD_ERR); 3889 3890 } 3891 return (DCMD_OK); 3892 3893 } 3894 3895 static int 3896 errorq_walk_init(mdb_walk_state_t *wsp) 3897 { 3898 if (wsp->walk_addr == NULL && 3899 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 3900 mdb_warn("failed to read errorq_list"); 3901 return (WALK_ERR); 3902 } 3903 3904 return (WALK_NEXT); 3905 } 3906 3907 static int 3908 errorq_walk_step(mdb_walk_state_t *wsp) 3909 { 3910 uintptr_t addr = wsp->walk_addr; 3911 errorq_t eq; 3912 3913 if (addr == NULL) 3914 return (WALK_DONE); 3915 3916 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 3917 mdb_warn("failed to read errorq at %p", addr); 3918 return (WALK_ERR); 3919 } 3920 3921 wsp->walk_addr = (uintptr_t)eq.eq_next; 3922 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 3923 } 3924 3925 typedef struct eqd_walk_data { 3926 uintptr_t *eqd_stack; 3927 void *eqd_buf; 3928 ulong_t eqd_qpos; 3929 ulong_t eqd_qlen; 3930 size_t eqd_size; 3931 } eqd_walk_data_t; 3932 3933 /* 3934 * In order to walk the list of pending error queue elements, we push the 3935 * addresses of the corresponding data buffers in to the eqd_stack array. 3936 * The error lists are in reverse chronological order when iterating using 3937 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3938 * walker client gets addresses in order from oldest error to newest error. 3939 */ 3940 static void 3941 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3942 { 3943 errorq_elem_t eqe; 3944 3945 while (addr != NULL) { 3946 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3947 mdb_warn("failed to read errorq element at %p", addr); 3948 break; 3949 } 3950 3951 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3952 mdb_warn("errorq is overfull -- more than %lu " 3953 "elems found\n", eqdp->eqd_qlen); 3954 break; 3955 } 3956 3957 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3958 addr = (uintptr_t)eqe.eqe_prev; 3959 } 3960 } 3961 3962 static int 3963 eqd_walk_init(mdb_walk_state_t *wsp) 3964 { 3965 eqd_walk_data_t *eqdp; 3966 errorq_elem_t eqe, *addr; 3967 errorq_t eq; 3968 ulong_t i; 3969 3970 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3971 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3972 return (WALK_ERR); 3973 } 3974 3975 if (eq.eq_ptail != NULL && 3976 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3977 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3978 return (WALK_ERR); 3979 } 3980 3981 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3982 wsp->walk_data = eqdp; 3983 3984 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3985 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3986 eqdp->eqd_qlen = eq.eq_qlen; 3987 eqdp->eqd_qpos = 0; 3988 eqdp->eqd_size = eq.eq_size; 3989 3990 /* 3991 * The newest elements in the queue are on the pending list, so we 3992 * push those on to our stack first. 3993 */ 3994 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3995 3996 /* 3997 * If eq_ptail is set, it may point to a subset of the errors on the 3998 * pending list in the event a casptr() failed; if ptail's data is 3999 * already in our stack, NULL out eq_ptail and ignore it. 4000 */ 4001 if (eq.eq_ptail != NULL) { 4002 for (i = 0; i < eqdp->eqd_qpos; i++) { 4003 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 4004 eq.eq_ptail = NULL; 4005 break; 4006 } 4007 } 4008 } 4009 4010 /* 4011 * If eq_phead is set, it has the processing list in order from oldest 4012 * to newest. Use this to recompute eq_ptail as best we can and then 4013 * we nicely fall into eqd_push_list() of eq_ptail below. 4014 */ 4015 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 4016 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 4017 eq.eq_ptail = addr; 4018 4019 /* 4020 * The oldest elements in the queue are on the processing list, subject 4021 * to machinations in the if-clauses above. Push any such elements. 4022 */ 4023 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 4024 return (WALK_NEXT); 4025 } 4026 4027 static int 4028 eqd_walk_step(mdb_walk_state_t *wsp) 4029 { 4030 eqd_walk_data_t *eqdp = wsp->walk_data; 4031 uintptr_t addr; 4032 4033 if (eqdp->eqd_qpos == 0) 4034 return (WALK_DONE); 4035 4036 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 4037 4038 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 4039 mdb_warn("failed to read errorq data at %p", addr); 4040 return (WALK_ERR); 4041 } 4042 4043 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 4044 } 4045 4046 static void 4047 eqd_walk_fini(mdb_walk_state_t *wsp) 4048 { 4049 eqd_walk_data_t *eqdp = wsp->walk_data; 4050 4051 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 4052 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 4053 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 4054 } 4055 4056 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 4057 4058 static int 4059 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4060 { 4061 int i; 4062 errorq_t eq; 4063 uint_t opt_v = FALSE; 4064 4065 if (!(flags & DCMD_ADDRSPEC)) { 4066 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 4067 mdb_warn("can't walk 'errorq'"); 4068 return (DCMD_ERR); 4069 } 4070 return (DCMD_OK); 4071 } 4072 4073 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 4074 argc -= i; 4075 argv += i; 4076 4077 if (argc != 0) 4078 return (DCMD_USAGE); 4079 4080 if (opt_v || DCMD_HDRSPEC(flags)) { 4081 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 4082 "ADDR", "NAME", "S", "V", "N"); 4083 if (!opt_v) { 4084 mdb_printf("%7s %7s %7s%</u>\n", 4085 "ACCEPT", "DROP", "LOG"); 4086 } else { 4087 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 4088 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 4089 } 4090 } 4091 4092 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 4093 mdb_warn("failed to read errorq at %p", addr); 4094 return (DCMD_ERR); 4095 } 4096 4097 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 4098 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 4099 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 4100 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 4101 4102 if (!opt_v) { 4103 mdb_printf("%7llu %7llu %7llu\n", 4104 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 4105 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 4106 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 4107 } else { 4108 mdb_printf("%5s %6lu %6lu %3u %a\n", 4109 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 4110 mdb_printf("%38s\n%41s" 4111 "%12s %llu\n" 4112 "%53s %llu\n" 4113 "%53s %llu\n" 4114 "%53s %llu\n" 4115 "%53s %llu\n" 4116 "%53s %llu\n" 4117 "%53s %llu\n" 4118 "%53s %llu\n\n", 4119 "|", "+-> ", 4120 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 4121 "DROPPED", EQKSVAL(eq, eqk_dropped), 4122 "LOGGED", EQKSVAL(eq, eqk_logged), 4123 "RESERVED", EQKSVAL(eq, eqk_reserved), 4124 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 4125 "COMMITTED", EQKSVAL(eq, eqk_committed), 4126 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 4127 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 4128 } 4129 4130 return (DCMD_OK); 4131 } 4132 4133 /*ARGSUSED*/ 4134 static int 4135 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4136 { 4137 cpu_t panic_cpu; 4138 kthread_t *panic_thread; 4139 void *buf; 4140 panic_data_t *pd; 4141 int i, n; 4142 4143 if (!mdb_prop_postmortem) { 4144 mdb_warn("panicinfo can only be run on a system " 4145 "dump; see dumpadm(1M)\n"); 4146 return (DCMD_ERR); 4147 } 4148 4149 if (flags & DCMD_ADDRSPEC || argc != 0) 4150 return (DCMD_USAGE); 4151 4152 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 4153 mdb_warn("failed to read 'panic_cpu'"); 4154 else 4155 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 4156 4157 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 4158 mdb_warn("failed to read 'panic_thread'"); 4159 else 4160 mdb_printf("%16s %?p\n", "thread", panic_thread); 4161 4162 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 4163 pd = (panic_data_t *)buf; 4164 4165 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 4166 pd->pd_version != PANICBUFVERS) { 4167 mdb_warn("failed to read 'panicbuf'"); 4168 mdb_free(buf, PANICBUFSIZE); 4169 return (DCMD_ERR); 4170 } 4171 4172 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 4173 4174 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 4175 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 4176 4177 for (i = 0; i < n; i++) 4178 mdb_printf("%16s %?llx\n", 4179 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 4180 4181 mdb_free(buf, PANICBUFSIZE); 4182 return (DCMD_OK); 4183 } 4184 4185 static const mdb_dcmd_t dcmds[] = { 4186 4187 /* from genunix.c */ 4188 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 4189 { "as2proc", ":", "convert as to proc_t address", as2proc }, 4190 { "binding_hash_entry", ":", "print driver names hash table entry", 4191 binding_hash_entry }, 4192 { "callout", "?[-r|n] [-s|l] [-xh] [-t | -ab nsec [-dkD]]" 4193 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]" 4194 " [-FivVA]", 4195 "display callouts", callout, callout_help }, 4196 { "calloutid", "[-d|v] xid", "print callout by extended id", 4197 calloutid, calloutid_help }, 4198 { "class", NULL, "print process scheduler classes", class }, 4199 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 4200 { "did2thread", "? kt_did", "find kernel thread for this id", 4201 did2thread }, 4202 { "errorq", "?[-v]", "display kernel error queues", errorq }, 4203 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 4204 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 4205 { "lminfo", NULL, "print lock manager information", lminfo }, 4206 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 4207 { "panicinfo", NULL, "print panic information", panicinfo }, 4208 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 4209 { "pmap", ":[-q]", "print process memory map", pmap }, 4210 { "project", NULL, "display kernel project(s)", project }, 4211 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 4212 { "pgrep", "[-x] [-n | -o] pattern", 4213 "pattern match against all processes", pgrep }, 4214 { "ptree", NULL, "print process tree", ptree }, 4215 { "seg", ":", "print address space segment", seg }, 4216 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 4217 sysevent}, 4218 { "sysevent_channel", "?", "print sysevent channel database", 4219 sysevent_channel}, 4220 { "sysevent_class_list", ":", "print sysevent class list", 4221 sysevent_class_list}, 4222 { "sysevent_subclass_list", ":", 4223 "print sysevent subclass list", sysevent_subclass_list}, 4224 { "system", NULL, "print contents of /etc/system file", sysfile }, 4225 { "task", NULL, "display kernel task(s)", task }, 4226 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 4227 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 4228 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 4229 { "whereopen", ":", "given a vnode, dumps procs which have it open", 4230 whereopen }, 4231 4232 /* from zone.c */ 4233 { "zone", "?", "display kernel zone(s)", zoneprt }, 4234 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for " 4235 "selected zones", zsd }, 4236 4237 /* from bio.c */ 4238 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 4239 4240 /* from contract.c */ 4241 { "contract", "?", "display a contract", cmd_contract }, 4242 { "ctevent", ":", "display a contract event", cmd_ctevent }, 4243 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 4244 4245 /* from cpupart.c */ 4246 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 4247 4248 /* from cyclic.c */ 4249 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 4250 { "cycid", "?", "dump a cyclic id", cycid }, 4251 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 4252 { "cyclic", ":", "developer information", cyclic }, 4253 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 4254 4255 /* from devinfo.c */ 4256 { "devbindings", "?[-qs] [device-name | major-num]", 4257 "print devinfo nodes bound to device-name or major-num", 4258 devbindings, devinfo_help }, 4259 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 4260 devinfo_help }, 4261 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 4262 devinfo_audit }, 4263 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 4264 devinfo_audit_log }, 4265 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 4266 devinfo_audit_node }, 4267 { "devinfo2driver", ":", "find driver name for this devinfo node", 4268 devinfo2driver }, 4269 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 4270 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 4271 dev2major }, 4272 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 4273 dev2minor }, 4274 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 4275 devt }, 4276 { "major2name", "?<major-num>", "convert major number to dev name", 4277 major2name }, 4278 { "minornodes", ":", "given a devinfo node, print its minor nodes", 4279 minornodes }, 4280 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 4281 modctl2devinfo }, 4282 { "name2major", "<dev-name>", "convert dev name to major number", 4283 name2major }, 4284 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 4285 { "softstate", ":<instance>", "retrieve soft-state pointer", 4286 softstate }, 4287 { "devinfo_fm", ":", "devinfo fault managment configuration", 4288 devinfo_fm }, 4289 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 4290 devinfo_fmce}, 4291 4292 /* from fm.c */ 4293 { "ereport", "[-v]", "print ereports logged in dump", 4294 ereport }, 4295 4296 /* from findstack.c */ 4297 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 4298 { "findstack_debug", NULL, "toggle findstack debugging", 4299 findstack_debug }, 4300 4301 /* from kgrep.c + genunix.c */ 4302 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 4303 kgrep_help }, 4304 4305 /* from kmem.c */ 4306 { "allocdby", ":", "given a thread, print its allocated buffers", 4307 allocdby }, 4308 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 4309 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 4310 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 4311 { "kmalog", "?[ fail | slab ]", 4312 "display kmem transaction log and stack traces", kmalog }, 4313 { "kmastat", "[-kmg]", "kernel memory allocator stats", 4314 kmastat }, 4315 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 4316 "of the kmem allocator", kmausers, kmausers_help }, 4317 { "kmem_cache", "?[-n name]", 4318 "print kernel memory caches", kmem_cache, kmem_cache_help}, 4319 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 4320 "[-B minbinsize]", "display slab usage per kmem cache", 4321 kmem_slabs, kmem_slabs_help }, 4322 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 4323 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 4324 { "kmem_verify", "?", "check integrity of kmem-managed memory", 4325 kmem_verify }, 4326 { "vmem", "?", "print a vmem_t", vmem }, 4327 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 4328 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 4329 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 4330 { "whatis", ":[-abiv]", "given an address, return information", whatis, 4331 whatis_help }, 4332 { "whatthread", ":[-v]", "print threads whose stack contains the " 4333 "given address", whatthread }, 4334 4335 /* from ldi.c */ 4336 { "ldi_handle", "?[-i]", "display a layered driver handle", 4337 ldi_handle, ldi_handle_help }, 4338 { "ldi_ident", NULL, "display a layered driver identifier", 4339 ldi_ident, ldi_ident_help }, 4340 4341 /* from leaky.c + leaky_subr.c */ 4342 { "findleaks", FINDLEAKS_USAGE, 4343 "search for potential kernel memory leaks", findleaks, 4344 findleaks_help }, 4345 4346 /* from lgrp.c */ 4347 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 4348 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 4349 4350 /* from log.c */ 4351 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 4352 4353 /* from memory.c */ 4354 { "page", "?", "display a summarized page_t", page }, 4355 { "memstat", NULL, "display memory usage summary", memstat }, 4356 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 4357 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 4358 4359 /* from mmd.c */ 4360 { "multidata", ":[-sv]", "display a summarized multidata_t", 4361 multidata }, 4362 { "pattbl", ":", "display a summarized multidata attribute table", 4363 pattbl }, 4364 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 4365 pattr2multidata }, 4366 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 4367 pdesc2slab }, 4368 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 4369 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 4370 slab2multidata }, 4371 4372 /* from modhash.c */ 4373 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 4374 "display information about one or all mod_hash structures", 4375 modhash, modhash_help }, 4376 { "modent", ":[-k | -v | -t type]", 4377 "display information about a mod_hash_entry", modent, 4378 modent_help }, 4379 4380 /* from net.c */ 4381 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 4382 mi }, 4383 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp]", 4384 "show network statistics", netstat }, 4385 { "sonode", "?[-f inet | inet6 | unix | #] " 4386 "[-t stream | dgram | raw | #] [-p #]", 4387 "filter and display sonode", sonode }, 4388 4389 /* from netstack.c */ 4390 { "netstack", "", "show stack instances", netstack }, 4391 4392 /* from nvpair.c */ 4393 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 4394 nvpair_print }, 4395 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 4396 print_nvlist }, 4397 4398 /* from pg.c */ 4399 { "pg", "?[-q]", "display a pg", pg}, 4400 /* from group.c */ 4401 { "group", "?[-q]", "display a group", group}, 4402 4403 /* from log.c */ 4404 /* from rctl.c */ 4405 { "rctl_dict", "?", "print systemwide default rctl definitions", 4406 rctl_dict }, 4407 { "rctl_list", ":[handle]", "print rctls for the given proc", 4408 rctl_list }, 4409 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 4410 rctl }, 4411 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 4412 "sequence", rctl_validate }, 4413 4414 /* from sobj.c */ 4415 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 4416 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 4417 mutex_help }, 4418 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 4419 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 4420 { "turnstile", "?", "display a turnstile", turnstile }, 4421 4422 /* from stream.c */ 4423 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 4424 "print an mblk", mblk_prt, mblk_help }, 4425 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 4426 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 4427 mblk2dblk }, 4428 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 4429 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 4430 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 4431 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 4432 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 4433 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 4434 "filter and display STREAM queue", queue, queue_help }, 4435 { "stdata", ":[-q|v] [-f flag] [-F flag]", 4436 "filter and display STREAM head", stdata, stdata_help }, 4437 { "str2mate", ":", "print mate of this stream", str2mate }, 4438 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 4439 { "stream", ":", "display STREAM", stream }, 4440 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 4441 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 4442 "filter and display STREAM sync queue", syncq, syncq_help }, 4443 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 4444 4445 /* from thread.c */ 4446 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 4447 thread_help }, 4448 { "threadlist", "?[-t] [-v [count]]", 4449 "display threads and associated C stack traces", threadlist, 4450 threadlist_help }, 4451 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo, 4452 stackinfo_help }, 4453 4454 /* from tsd.c */ 4455 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 4456 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 4457 4458 /* 4459 * typegraph does not work under kmdb, as it requires too much memory 4460 * for its internal data structures. 4461 */ 4462 #ifndef _KMDB 4463 /* from typegraph.c */ 4464 { "findlocks", ":", "find locks held by specified thread", findlocks }, 4465 { "findfalse", "?[-v]", "find potentially falsely shared structures", 4466 findfalse }, 4467 { "typegraph", NULL, "build type graph", typegraph }, 4468 { "istype", ":type", "manually set object type", istype }, 4469 { "notype", ":", "manually clear object type", notype }, 4470 { "whattype", ":", "determine object type", whattype }, 4471 #endif 4472 4473 /* from vfs.c */ 4474 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 4475 { "pfiles", ":[-fp]", "print process file information", pfiles, 4476 pfiles_help }, 4477 4478 /* from mdi.c */ 4479 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 4480 "and detailed pi_prop list", mdipi }, 4481 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 4482 mdiprops }, 4483 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 4484 "list all paths", mdiphci }, 4485 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 4486 "all phcis", mdivhci }, 4487 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 4488 "client links", mdiclient_paths }, 4489 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 4490 "phci links", mdiphci_paths }, 4491 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 4492 mdiphcis }, 4493 4494 { NULL } 4495 }; 4496 4497 static const mdb_walker_t walkers[] = { 4498 4499 /* from genunix.c */ 4500 { "anon", "given an amp, list of anon structures", 4501 anon_walk_init, anon_walk_step, anon_walk_fini }, 4502 { "callouts_bytime", "walk callouts by list chain (expiration time)", 4503 callout_walk_init, callout_walk_step, callout_walk_fini, 4504 (void *)CALLOUT_WALK_BYLIST }, 4505 { "callouts_byid", "walk callouts by id hash chain", 4506 callout_walk_init, callout_walk_step, callout_walk_fini, 4507 (void *)CALLOUT_WALK_BYID }, 4508 { "callout_list", "walk a callout list", callout_list_walk_init, 4509 callout_list_walk_step, callout_list_walk_fini }, 4510 { "callout_table", "walk callout table array", callout_table_walk_init, 4511 callout_table_walk_step, callout_table_walk_fini }, 4512 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 4513 { "ereportq_dump", "walk list of ereports in dump error queue", 4514 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 4515 { "ereportq_pend", "walk list of ereports in pending error queue", 4516 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 4517 { "errorq", "walk list of system error queues", 4518 errorq_walk_init, errorq_walk_step, NULL }, 4519 { "errorq_data", "walk pending error queue data buffers", 4520 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 4521 { "allfile", "given a proc pointer, list all file pointers", 4522 file_walk_init, allfile_walk_step, file_walk_fini }, 4523 { "file", "given a proc pointer, list of open file pointers", 4524 file_walk_init, file_walk_step, file_walk_fini }, 4525 { "lock_descriptor", "walk lock_descriptor_t structures", 4526 ld_walk_init, ld_walk_step, NULL }, 4527 { "lock_graph", "walk lock graph", 4528 lg_walk_init, lg_walk_step, NULL }, 4529 { "port", "given a proc pointer, list of created event ports", 4530 port_walk_init, port_walk_step, NULL }, 4531 { "portev", "given a port pointer, list of events in the queue", 4532 portev_walk_init, portev_walk_step, portev_walk_fini }, 4533 { "proc", "list of active proc_t structures", 4534 proc_walk_init, proc_walk_step, proc_walk_fini }, 4535 { "projects", "walk a list of kernel projects", 4536 project_walk_init, project_walk_step, NULL }, 4537 { "seg", "given an as, list of segments", 4538 seg_walk_init, avl_walk_step, avl_walk_fini }, 4539 { "sysevent_pend", "walk sysevent pending queue", 4540 sysevent_pend_walk_init, sysevent_walk_step, 4541 sysevent_walk_fini}, 4542 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 4543 sysevent_walk_step, sysevent_walk_fini}, 4544 { "sysevent_channel", "walk sysevent channel subscriptions", 4545 sysevent_channel_walk_init, sysevent_channel_walk_step, 4546 sysevent_channel_walk_fini}, 4547 { "sysevent_class_list", "walk sysevent subscription's class list", 4548 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 4549 sysevent_class_list_walk_fini}, 4550 { "sysevent_subclass_list", 4551 "walk sysevent subscription's subclass list", 4552 sysevent_subclass_list_walk_init, 4553 sysevent_subclass_list_walk_step, 4554 sysevent_subclass_list_walk_fini}, 4555 { "task", "given a task pointer, walk its processes", 4556 task_walk_init, task_walk_step, NULL }, 4557 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 4558 taskq_walk_init, taskq_walk_step, NULL, NULL }, 4559 4560 /* from avl.c */ 4561 { AVL_WALK_NAME, AVL_WALK_DESC, 4562 avl_walk_init, avl_walk_step, avl_walk_fini }, 4563 4564 /* from zone.c */ 4565 { "zone", "walk a list of kernel zones", 4566 zone_walk_init, zone_walk_step, NULL }, 4567 { "zsd", "walk list of zsd entries for a zone", 4568 zsd_walk_init, zsd_walk_step, NULL }, 4569 4570 /* from bio.c */ 4571 { "buf", "walk the bio buf hash", 4572 buf_walk_init, buf_walk_step, buf_walk_fini }, 4573 4574 /* from contract.c */ 4575 { "contract", "walk all contracts, or those of the specified type", 4576 ct_walk_init, generic_walk_step, NULL }, 4577 { "ct_event", "walk events on a contract event queue", 4578 ct_event_walk_init, generic_walk_step, NULL }, 4579 { "ct_listener", "walk contract event queue listeners", 4580 ct_listener_walk_init, generic_walk_step, NULL }, 4581 4582 /* from cpupart.c */ 4583 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 4584 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 4585 NULL }, 4586 { "cpupart_walk", "walk the set of cpu partitions", 4587 cpupart_walk_init, cpupart_walk_step, NULL }, 4588 4589 /* from ctxop.c */ 4590 { "ctxop", "walk list of context ops on a thread", 4591 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 4592 4593 /* from cyclic.c */ 4594 { "cyccpu", "walk per-CPU cyc_cpu structures", 4595 cyccpu_walk_init, cyccpu_walk_step, NULL }, 4596 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 4597 cycomni_walk_init, cycomni_walk_step, NULL }, 4598 { "cyctrace", "walk cyclic trace buffer", 4599 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 4600 4601 /* from devinfo.c */ 4602 { "binding_hash", "walk all entries in binding hash table", 4603 binding_hash_walk_init, binding_hash_walk_step, NULL }, 4604 { "devinfo", "walk devinfo tree or subtree", 4605 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 4606 { "devinfo_audit_log", "walk devinfo audit system-wide log", 4607 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 4608 devinfo_audit_log_walk_fini}, 4609 { "devinfo_audit_node", "walk per-devinfo audit history", 4610 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 4611 devinfo_audit_node_walk_fini}, 4612 { "devinfo_children", "walk children of devinfo node", 4613 devinfo_children_walk_init, devinfo_children_walk_step, 4614 devinfo_children_walk_fini }, 4615 { "devinfo_parents", "walk ancestors of devinfo node", 4616 devinfo_parents_walk_init, devinfo_parents_walk_step, 4617 devinfo_parents_walk_fini }, 4618 { "devinfo_siblings", "walk siblings of devinfo node", 4619 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 4620 { "devi_next", "walk devinfo list", 4621 NULL, devi_next_walk_step, NULL }, 4622 { "devnames", "walk devnames array", 4623 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 4624 { "minornode", "given a devinfo node, walk minor nodes", 4625 minornode_walk_init, minornode_walk_step, NULL }, 4626 { "softstate", 4627 "given an i_ddi_soft_state*, list all in-use driver stateps", 4628 soft_state_walk_init, soft_state_walk_step, 4629 NULL, NULL }, 4630 { "softstate_all", 4631 "given an i_ddi_soft_state*, list all driver stateps", 4632 soft_state_walk_init, soft_state_all_walk_step, 4633 NULL, NULL }, 4634 { "devinfo_fmc", 4635 "walk a fault management handle cache active list", 4636 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 4637 4638 /* from kmem.c */ 4639 { "allocdby", "given a thread, walk its allocated bufctls", 4640 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4641 { "bufctl", "walk a kmem cache's bufctls", 4642 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 4643 { "bufctl_history", "walk the available history of a bufctl", 4644 bufctl_history_walk_init, bufctl_history_walk_step, 4645 bufctl_history_walk_fini }, 4646 { "freedby", "given a thread, walk its freed bufctls", 4647 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4648 { "freectl", "walk a kmem cache's free bufctls", 4649 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 4650 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 4651 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4652 { "freemem", "walk a kmem cache's free memory", 4653 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 4654 { "freemem_constructed", "walk a kmem cache's constructed free memory", 4655 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4656 { "kmem", "walk a kmem cache", 4657 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 4658 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 4659 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 4660 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 4661 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 4662 { "kmem_log", "walk the kmem transaction log", 4663 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 4664 { "kmem_slab", "given a kmem cache, walk its slabs", 4665 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 4666 { "kmem_slab_partial", 4667 "given a kmem cache, walk its partially allocated slabs (min 1)", 4668 kmem_slab_walk_partial_init, combined_walk_step, 4669 combined_walk_fini }, 4670 { "vmem", "walk vmem structures in pre-fix, depth-first order", 4671 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 4672 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 4673 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4674 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 4675 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4676 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 4677 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 4678 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 4679 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4680 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 4681 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4682 4683 /* from ldi.c */ 4684 { "ldi_handle", "walk the layered driver handle hash", 4685 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 4686 { "ldi_ident", "walk the layered driver identifier hash", 4687 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 4688 4689 /* from leaky.c + leaky_subr.c */ 4690 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 4691 "stack trace", 4692 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 4693 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 4694 "leaks w/ same stack trace", 4695 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 4696 4697 /* from lgrp.c */ 4698 { "lgrp_cpulist", "walk CPUs in a given lgroup", 4699 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 4700 { "lgrptbl", "walk lgroup table", 4701 lgrp_walk_init, lgrp_walk_step, NULL }, 4702 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 4703 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 4704 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 4705 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 4706 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 4707 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 4708 4709 /* from group.c */ 4710 { "group", "walk all elements of a group", 4711 group_walk_init, group_walk_step, NULL }, 4712 4713 /* from list.c */ 4714 { LIST_WALK_NAME, LIST_WALK_DESC, 4715 list_walk_init, list_walk_step, list_walk_fini }, 4716 4717 /* from memory.c */ 4718 { "page", "walk all pages, or those from the specified vnode", 4719 page_walk_init, page_walk_step, page_walk_fini }, 4720 { "memlist", "walk specified memlist", 4721 NULL, memlist_walk_step, NULL }, 4722 { "swapinfo", "walk swapinfo structures", 4723 swap_walk_init, swap_walk_step, NULL }, 4724 4725 /* from mmd.c */ 4726 { "pattr", "walk pattr_t structures", pattr_walk_init, 4727 mmdq_walk_step, mmdq_walk_fini }, 4728 { "pdesc", "walk pdesc_t structures", 4729 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4730 { "pdesc_slab", "walk pdesc_slab_t structures", 4731 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4732 4733 /* from modhash.c */ 4734 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 4735 modhash_walk_step, NULL }, 4736 { "modent", "walk list of entries in a given mod_hash", 4737 modent_walk_init, modent_walk_step, modent_walk_fini }, 4738 { "modchain", "walk list of entries in a given mod_hash_entry", 4739 NULL, modchain_walk_step, NULL }, 4740 4741 /* from net.c */ 4742 { "ar", "walk ar_t structures using MI for all stacks", 4743 mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ar_arg }, 4744 { "icmp", "walk ICMP control structures using MI for all stacks", 4745 mi_payload_walk_init, mi_payload_walk_step, NULL, 4746 &mi_icmp_arg }, 4747 { "ill", "walk ill_t structures using MI for all stacks", 4748 mi_payload_walk_init, mi_payload_walk_step, NULL, &mi_ill_arg }, 4749 4750 { "mi", "given a MI_O, walk the MI", 4751 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 4752 { "sonode", "given a sonode, walk its children", 4753 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 4754 4755 { "ar_stacks", "walk all the ar_stack_t", 4756 ar_stacks_walk_init, ar_stacks_walk_step, NULL }, 4757 { "icmp_stacks", "walk all the icmp_stack_t", 4758 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 4759 { "tcp_stacks", "walk all the tcp_stack_t", 4760 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 4761 { "udp_stacks", "walk all the udp_stack_t", 4762 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 4763 4764 /* from nvpair.c */ 4765 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 4766 nvpair_walk_init, nvpair_walk_step, NULL }, 4767 4768 /* from rctl.c */ 4769 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 4770 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 4771 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 4772 rctl_set_walk_step, NULL }, 4773 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 4774 rctl_val_walk_init, rctl_val_walk_step }, 4775 4776 /* from sobj.c */ 4777 { "blocked", "walk threads blocked on a given sobj", 4778 blocked_walk_init, blocked_walk_step, NULL }, 4779 { "wchan", "given a wchan, list of blocked threads", 4780 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 4781 4782 /* from stream.c */ 4783 { "b_cont", "walk mblk_t list using b_cont", 4784 mblk_walk_init, b_cont_step, mblk_walk_fini }, 4785 { "b_next", "walk mblk_t list using b_next", 4786 mblk_walk_init, b_next_step, mblk_walk_fini }, 4787 { "qlink", "walk queue_t list using q_link", 4788 queue_walk_init, queue_link_step, queue_walk_fini }, 4789 { "qnext", "walk queue_t list using q_next", 4790 queue_walk_init, queue_next_step, queue_walk_fini }, 4791 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 4792 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 4793 { "readq", "walk read queue side of stdata", 4794 str_walk_init, strr_walk_step, str_walk_fini }, 4795 { "writeq", "walk write queue side of stdata", 4796 str_walk_init, strw_walk_step, str_walk_fini }, 4797 4798 /* from thread.c */ 4799 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 4800 deathrow_walk_init, deathrow_walk_step, NULL }, 4801 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 4802 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4803 { "cpupart_dispq", 4804 "given a cpupart_t, walk threads in dispatcher queues", 4805 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4806 { "lwp_deathrow", "walk lwp_deathrow", 4807 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 4808 { "thread", "global or per-process kthread_t structures", 4809 thread_walk_init, thread_walk_step, thread_walk_fini }, 4810 { "thread_deathrow", "walk threads on thread_deathrow", 4811 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 4812 4813 /* from tsd.c */ 4814 { "tsd", "walk list of thread-specific data", 4815 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 4816 4817 /* from tsol.c */ 4818 { "tnrh", "walk remote host cache structures", 4819 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 4820 { "tnrhtp", "walk remote host template structures", 4821 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 4822 4823 /* 4824 * typegraph does not work under kmdb, as it requires too much memory 4825 * for its internal data structures. 4826 */ 4827 #ifndef _KMDB 4828 /* from typegraph.c */ 4829 { "typeconflict", "walk buffers with conflicting type inferences", 4830 typegraph_walk_init, typeconflict_walk_step }, 4831 { "typeunknown", "walk buffers with unknown types", 4832 typegraph_walk_init, typeunknown_walk_step }, 4833 #endif 4834 4835 /* from vfs.c */ 4836 { "vfs", "walk file system list", 4837 vfs_walk_init, vfs_walk_step }, 4838 4839 /* from mdi.c */ 4840 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 4841 mdi_pi_client_link_walk_init, 4842 mdi_pi_client_link_walk_step, 4843 mdi_pi_client_link_walk_fini }, 4844 4845 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 4846 mdi_pi_phci_link_walk_init, 4847 mdi_pi_phci_link_walk_step, 4848 mdi_pi_phci_link_walk_fini }, 4849 4850 { "mdiphci_list", "Walker for mdi_phci ph_next link", 4851 mdi_phci_ph_next_walk_init, 4852 mdi_phci_ph_next_walk_step, 4853 mdi_phci_ph_next_walk_fini }, 4854 4855 /* from netstack.c */ 4856 { "netstack", "walk a list of kernel netstacks", 4857 netstack_walk_init, netstack_walk_step, NULL }, 4858 4859 { NULL } 4860 }; 4861 4862 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 4863 4864 const mdb_modinfo_t * 4865 _mdb_init(void) 4866 { 4867 if (findstack_init() != DCMD_OK) 4868 return (NULL); 4869 4870 kmem_init(); 4871 4872 return (&modinfo); 4873 } 4874 4875 void 4876 _mdb_fini(void) 4877 { 4878 /* 4879 * Force ::findleaks to let go any cached memory 4880 */ 4881 leaky_cleanup(1); 4882 } 4883